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ABSTRACT 

By treating patterns as statements in a two-dimensional langu¬ 

age, it is possible to apply linguistic theory to pattern analysis and 

recognition. In this report, patterns are encoded into string form 

using the chain code developed by Freeman. A class of patterns, or pat¬ 

tern language, encodes to a set of strings that is analyzed using the 

large body of theory that exists for string languages. The known rela¬ 

tionships between classes of string languages and classes of automata are 

applied to determine the computational power required to recognize various 

patterns. Pattern languages formed on the basis of equations in two 

variables, pattern properties, and various notions of pattern similarly 

to an arbitrary given pattern are related to the hierarchy of string 

language classes. The extension of results to other pattern encoding 

schemes is considered. 
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languages, automata and classes to jhmn-encoded patterns 

I. INTRODXTION 

A great deal of \/ork has been done in relating classes of string 

languages to the types of automata required to Generate or recognize the 

strings of the languages. It is possible to consider patterns as being a 

form of two-dimensional language. A pattern language, L, can be defined 

to be any subset of the universe of all patterns, U. A previous report^ 

by the author has suggested the possibility of classifying pattern langu¬ 

ages in the same manner as string languages, according to the type of 

automata required to accomplish pattern generation and recognition. A 

pattern language classification scheme of this sort would provide infor¬ 

mation as to what pattern analysis and recognition requirements could be 

fulfilled with various types of programs and computation facilities, and 

in some cases, on whether pattern recognition could be accomplished at all. 

This report is a start in the direction of providing such a classi¬ 

fication system for pattern languages. Consideration is restricted to line 
2 patterns encoded in the chain code developed by Freeman. This encoding 

method represents a line pattern by a sequence of octal digits called a 

chain. The results obtained can be extended to other forms of encoding 

provided that a translator between codes can be built that satisfies 

certain conditions. The extension of results to other pattern encoding 

schemes is considered in the report. 

The work described here is intended to form a linguistic basis 

for the detection of basic object types in the table-driven pattern analysis 



syotem. ïïiis cyotera has been outlined in a previous report,^ and '-/lien 

completed will able to analyze u broad class of line patterns ac- 

cordinc to prespecified granmar rules. Ultimately, it is hoped that 

examination of the linguistic power of each of the operations performed 

3 
by the pattern analysis system will lead to a form of analytic grammar 

for pattern languages. Such a grammar will be able to formally specify 

and analyze a much richer class of patterns than can be accomplished using 

operations on chains alone. 

An introduction to the classes of automata and string languages 

to which pattern classes are related is given in Section II. Since the 

number of different types of languages and automata that have been de¬ 

limited is rather large, only some of the more important of these have 

been selected for comparison with pattern languages. Languages formed by 

Boolean functions of languages and by the concatenation of strings of a 

number of languages are discussed in this section. The latter are related 

to problems that arise in the recognition of patterns that occur as parts 

of chains. 

Section III examines pattern languages based on families of equa¬ 

tions in two variables. Each of the languages consists of the set of chains 

formed by the chain encoding of a class of patterns. Pattern languages 

formed from chains of straight lines, circles, and circular arcs are re¬ 

lated to string language classes. In Section IV, pattern languages based 

on pattern properties such as closure, self intersection, convexity, and 

periodicity are examined. Pattern languages formed on the basis of a 
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nunber of pattern properties are expressed as Boolean functions of the 

lancuages based on the individual properties. Section V examines the 

loncu^ßG® consisting of chains similar in various ways to an arbitrary 

given chain. The extension of resulta to other forms of pattern encoding 

is considered in Section VT. 

fbr background material and information on what others have done 

in applying linguistics to pattern recognition and analysis, the reader 

is referred to a separate literature survey report by the author. ^ 
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II. LAIIGU;\GES AIID AUTOÎLVTA 

This section contains an introduction to some of the classes of 

string languages and automata to which the pattern languages in Sections 

III, IV and V are related and gives some linguistic results that are of 

use in dealing with such languages. An outline of some major classes of 

string languages is given first in Section 2.1. Section 2. 2 contains a 

description of some of the more important classes of automata. Important 

relations between classes of string languages and classes of automata are 

given in Section 2.3. Section 2. 4 discusses some problems concerning non- 

deterministic automata. In Section 2.5, some linguistic results pertaining 

to Boolean functions of languages are given. Finally, the recognition of 

languages whose strings are formed by concatenating the strings of other 

languages is discussed in Section 2.6. 

Most of the material in Section II is well knoim to linguists. 

Proofs of all the stated results would render the size of this report pro¬ 

hibitive. Consequently, results are stated without proof and references 

are given. 

2* 1 Classification gf String ¿angua/tcs 

The pattern languages considered in this report ore composed, offsets 

of chains. Since a chain is a string, these pattern languages can be 

treated as string languages. Classes of string languages and automata 

have been related according to the type of automaton required to accom¬ 

plish string recognition. Therefore, if it can be sho\m that the set of 

chains that forms a particular pattern language falls into one of the 
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existing string language classes, then the automaton required for the de¬ 

tection or recognition of this pattern language is innediately known. Por 

this reason it is useful to examine the main classes of string languages 

and the methods of generating these classes. 

A string language is defined as follows.5 An alphabet. 0., is 

a finite set of symbols such that any string in<:£ can be uniquely de¬ 

composed into its component symbols. Por any such alphabet there is an 

infinite set, U, of finite strings of symbols from 'Á A specification 

that will select a subset, L, of U is called a formal syntax or grwMWMn» 

of the string language, L. Although a formal syntax or grammar may be any 

method for selecting L, of particular Interest are the phrase structure 

granmars (also called constituent structure amrmmwA. The notation and 

terminology used in the following is that of Chomsky.6^ 

A phrase structure grammar, G, is a four-tuple 

G » [VT,VN,P,S] 

where: 

Vip is a finite nonempty set called the terminal vocaTp’lfT’Y 

Vjj is a finite nonempty set called the nonterminal yf»?*VniT»ry 

V'X - 0 

P Is a finite set of rewrite rules or productions of the form, ÿ-<u>, 

where ÿ and w are strings of symbols s VT i'.'Vjj 

S is called the sentence of G. 

The terminal vocabulary is the alphabet ((7) from which the sentences of the 
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language are constructed. The nonterminal vocabulary is the set of sym¬ 

bols used to represent intermediate syntactic entities used in the genera¬ 

tion of the strings of the language. The relation is rtäad "is rewritten 

as," and is specified by a finite set of pairs P. It is customary 

also to write 9 - x when only a substring of is rewritten 1. e. 9 -• \ 

when 9 *= 9 ^ 9 , X = v8, and (\l(,u')e P. S serves as an initial symbol. 

A string of L is generated by writing down the initial symbol, S, applying 

one of the rewrite rules to form a new string, ^ , applying another rule 

to form a new string, and so on until a string, is obtained that 

consists only of terminal symbols and cannot be further rewritten. 

A number of notâtional conventions are adopted to facilitate the 

exposition of a phrase structure grammar and the proofs in Sections III, 

IV, and IV. Small roman letters are used for denoting strings in V^; 

capital letters for strings in VN; Greek letters for arbitrary stringsj 

early letters of all alphabets for single symbols; late letters of all 

alphabets for strings. 

A sequence of strings ... (n > 1) with ^ ■ \, = co 

and 1 < i < n) is called a X-derivation of x. The existence of 

a X“derivation of m is denoted \ =£> u>. A ■ -derivation is terminated if 

it is not a proper initial subsequence of any y-derivation. The set of 

strings, z, of elements of V^, such that there exists a terminated S- 

derivation of z, forms the language, L, generated by G. 

Phrase structure grammars may be classified into five types by 

imposing the following restrictions: 
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Type 0 no restrictions 

Type T ( , )'-o) c P implies tiiat there arc A, ,a and . such 
that V = nA,a, œ = ^here / null 

Type 2 only rules of the form (A, ) where x / nul1 are permitted 

Type 3 only rules of the form (A,x) are permitted, where for all 

rules x Is of the form (i) or (ii), or for all rules x is 

of the form (i) or (iii): 

(i) a 

(ii) aB 

(iii) Ba 

Type 4 only rules of the form (S,z) are permitted 

For J -- 0,1,2,3,4, a language is a type J language if there is 

a type J grammar that can generate it. Type 0 grammars are called un¬ 

restricted grammars. Type 1 grammars are called context-sensitive since 

the symbol replacement depends on the symbols adjacent to (the context) 

£ 
of the symbol being replaced. It has been shown that the class of languages 

that can be generated by a type 1 grammar is not changed if the restriction 

is weakened to requiring only that if v - <a, then ¿(jí) > A( J, where 1 

denotes the length of its string argument. Type 2 grammars and languages 

are called context-free since the symbol replacement is performed inde¬ 

pendent of the context of the symbol. Type 3 grammars are called one¬ 

sided linear and the languages generated by such grammars are called regular 

languages. Type 4 languages can only contain a finite number of strings. 
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Such languages are said to be finite.

THEOREM 1. (Chomsky)® For both languages and grammars 
type 0 £ type 1 _ type 2 _ type 3 £ type U

2.2 Classes of Automata

nie following major classes of automata are discussed:

A. Turing machines
B. Linear bovmded automata
C. Pushdown-storage automata
D. Finite automata
E. K-llmited automata

Each of these classes of automata is less powerful and constitutes a sub

class of the class of automata preceding it on the list. The automata 

class descriptions that follow are intended to form an outline only. Strict 

Biathematical definitions of these classes of automata as well as procffs 

of the results that '&r&- at.-ted can bd found in the llter^Wei^’®*^

A. Turing Machines

The most powerful automata are the Turing machines. In its slo^list 

form a Turing machine consists of a control unit with a finite number of 

states, a tape that can move to the left or right, and a iread-wrlte head 

for reading and writing characters of the output alphabet. ^ /r,: j . on
i, V ' 0 ^ y

the tape. The behavior of the device is specified by the five-tuples 

[i,J,k,l,m]. This rule states that if the device is in state reading 

the symbol a^ (2^ , it will switch to state Sj^, write the symbol a^^^ e r(^ 

in the space formerly occupied by a^, and then move the tape 1 squares to 

the left. The rules of a Turing machine permit the rewriting of blank
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squares of the tape so that an infinite amount of storage is available. 

Increasing the number of tapes that a Turing machine can have does nôt 

change its basic computation power. 

A Turing machine is used to decide whether a given string, z, is 

a member of the language, L, as follows. The control unit begins computa¬ 

tion in an initial state, Sq, with its read-write head scanning the left¬ 

most symbol of z. If at the end of computation the device returns to 

and halts, it is said to have accepted or detected z. If the device halts 

in a state other than S0 or does not halt at all, it is said to have rejected 

z. Hie language, L, consists of the set of all strings that are accepted by 

the given Turing machine. A set of strings defined in mch a manner by a 

Turing machine is said to be recursively enumerable. 

There exists a general problem concerned with the use of recur¬ 

sively enumerable sets of strings as languages. Since there is no time 

limit on the computation of the Turing machine, there is no way of telling 

after any length of time whether the Turing machine will eventually stop 

and either accept or reject the input string, or Just keep running forever. 

All that is known is that if the input string is going to be accepted then 

the Turing machine will halt in a finite amount of time. If both a set and 

its complement are recursively enumerable then the set is called recursive. 

If a set is recursive then there is a Turing machine that will either accept 

or reject an element of the set in a finite amount of time. Recursive sets 

of strings can thus be used as languages. 

The question arises as to what the relationship of a Turing machine 

is to commonly occurring "general purpose" computers. It is possible to 
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construct a Turing machine called a universal Turing machine that can be 

programmed to carry out any computation that can be carried out on any 

Turing machine or computer. All general purpose computers that have pro¬ 

vision for changing tapes or disks, or for other arbitrary increases in 

storage during computation, are such universal Turing machines. 

B. linear joonded Autómata^ 

If in the definition of the single-tape Turing machine the ad¬ 

dition al restriction is made that the device cannot rewrite blank squares 

of the tape, the class of linear bounded automata (LBA) is obtained. Such 

automata can write on, and thus use for computation, only the portions of 

the tape occupied by the input string. The amount of storage available 

for computation is a function of the length of the input string, z, and is 

given by cl(z) + q, where q is the fixed storage of the control unit and c 

is a constant determined by the size of the output alphabet of the device. 

A LBA tests an input string for membership in a language and signifies ac¬ 

ceptance and rejection of the string in the same manner as a Turing machine. 

Por a LBA, however, if the computation time iß finite, it has an upper 

limit, tj^j, expressible as a function of the length of the input string. 

Therefore, it is not necessary to wait forever to be sure that a LBA will 

reject an input string; when computation time exceeds tM it is certain that 

the LBA will never halt and the input string can be rejected. All sets of 

strings that are specified by LBA are thus recursive. 

LBA are shown in Sections III, IV, and V to be capable of detecting 

a number of pattern languages. In demonstrating this capability the 
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following theorem concerning storage available for computation is used. 

The proof of this theorem is given in the Appendix. 

THEORÜM 2. A LBA has sufficient storage for the execution of a 

program if there exist integers, b, m, such that for all 

inputs, z, the storage of no more than m integers is 

required, and none of these integers is larger than b^(z'-l. 

C. Pushdown-Storage Automata 

The pushdown-storage automata (PDSA) are obtained by appropriately 

restricting the LBA. In order to do this it is useful to view a LBA as 

possessing two separate infinite tapes, one solely for input, and the 

other a storage tape used solely for the computation; the storage tape 

having as many squares available for computation as are occupied by the 

symbols appearing on the input tape. This change does not affect the 

computational power of the LBA. 

A PDSA is a LBA meeting the following restrictions: 

(i) The input tape can move in only one direction. 

(ii) Everything to the right of the read-write head of 

the storage tape is automatically erased. 

The storage tape is equivalent to a pushdown-stack. a storage mechanism 

analogous to a cafeteria well for staring dishes. The pushdown-stack 

organization of memory has found wide application in progranmlng. A 

PDSA accepts an input string, z, if it returns to So after reading z 

and halts with the storage tape blank. 

D. Unite Automata 

By eliminating the storage tape from a PDSA, an automaton that 
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consists of a finite state control unit and a tape that can move in only 

one direction is obtained. Since the input tape can move in only one di¬ 

rection, it is useless for storage purposes. The only storage available 

to this device is that of the finite state control unitj hence the device 

is called a finite automaton. A finite automaton accepts an input string 

by simply returning to S0 and halting. If only reading of the input tape 

is permitted then allowing the input tape to move in both directions does 

not change the class of languages that can be recognized. 

E. K-Limited Automate 

A ErA^lted automaton is a finite state automaton for which the 

state of the control unit is dependent only upon the previous K symbols 

of the input that have been accepted, for some fixed K. The behavior of 

a K-limited automaton can be specified by a D* X D matrix, where D is the 

number of symbols in A. 

^•5 Relations Between Classes of T-aiyruages and Automata 

Close correspondences have been found between the hierarchy of 

language classes described in Section 2.1 and the classes of languages 

that can be detected by the hierarchy of automata given in Section 2.2. 

The following grammars and automata are equivalent in linguistic power. 

Phrase structure gr»™^?* 

type 0 (unrestricted) 

type 1 (context-sensitive) 

type 2 (context-free) 

type 3 (one-sided linear) 

Class of automata 

Turing machines 

LBA 

POSA 

finite automata 
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2.4 Deterministic and Nondeteralnlstic Automata 

The preceding discussion has not distinguished automata for which 

behavior is completely determined and automata for which it is not. Auto¬ 

mata that have tape-machine configurations to which more them one transition 

rule can apply are said to be nondeterministic. Automata in which the 

transition rule that applies to a given tape-machine configuration is 

unique are called deterministic. Nondeterministic automata, although use¬ 

ful for theoretical purposes, cannot actually be constructed since their 

operation is not fully specified. A language definition by a nondetermi- 

nistic automaton is a statement that the automaton has transition rules 

that would lead to the acceptance of all strings of the language and no 

others. To any string of a language defined by a nondeterministic automa¬ 

ton there exists a set of transition rule choices for ambiguous situations 

that would lead to the acceptance of the string. Acceptance of the string 

is dependent upon the correct transition rule being chosen in all ambigu¬ 

ous situations encountered; if the correct rules are not chosen, then the 

string my very well be rejected by the automaton. 

Since to a large extent the concern here is with realizable sys¬ 

tems, care must be exercised with proofs that a language can be detected 

by a class of automata unless it can be also established that this detec¬ 

tion can be accomplished with a deterministic automaton. If it is shown, 

however, that a pattern language cannot be detected by a class of automata, 

then it is known that this language cannot be detected by such automata, 

deterministic or nondeterministic. 
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For finite automata and Turing machines, problems of this type 

do not occur. Nondeteministic finite axitomata have deterministic equi¬ 

valents; in the remainder of this report, deterministic and nondetenni- 

nistic finite automata are not distinguished. The term "Turing machine" 

customarily refers to a deterministic device. Since the linguistic power 

of deterministic and nondeterministic devices of this class is equivalent, 

no problems arise. With LBA. and PDSA, however, care must be exercised. 

A result of some use is that every context-free language is accepted by 

a deterministic LBA.'*'0 

2.5 Boolean Functions of Languages 

This section states without proof some results of mathematical 

li.iguistics pertaining to the complement, union and intersection of lan¬ 

guages. The complement of a language, L, denoted L, is the set of all 

strings on the alphabet of L that are not members of L. The union of two 

languages, Lj^ and L2, denoted L,U L2, is the set of all strings that are 

members of L^ or of L2> The intersection of two languages, denoted 

L1f:L2, is the set of all strings that are members of L1 and of L2. Com¬ 

plex pattern languages can be expressed in terms of relatively simple ones 

using the concepts of language complement, union end intersection. The 

theorems that follow show how the language classification of these more 

complex languages can be found from the language classifications of their 

constituents. 

THEOREM 3. (Chomsky and Miller)^ The set of regular languages is 

closed under the Boo]ean_operations. If Lx and L, are 

regular languages, then L,, L •. J L and L <' L^ are regu- 

lar languages. 
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THEOREM h. (Bar-Hillel, Perles and Ghamir)"^ If and ire 

context-free languages, then LX'JL3 is a context-free 
language. 

The set of context-free languages is not closed under intersec- 

12 
tion and complementation. Therefore, that Lx and L2 are context-free 

does not necessarily imply that L1 or L, L2 are context-free. 

TIEOREM 5. (Bar-Hillel, Perles and Shamir)12 If Lx is a regular 

language and Lg is a context-free language, -hen the in¬ 

tersection L2 is a context-free language. 

THEOREM 6a. (Landweber)^ If L, and L2 are context-sensitive 

languages, then the intersection L,f;L2 is a context- 
sensitive language. 

THEOREM 6b. ( Kuroda) The set of languages that tire accepted 

by deterministic LBA is closed under the Boolean opera- 

tions^ If £tnd L2 are accepted by deterministic LBA, 

then and L f'tLp are accepted by determirï stio 
LBA. 

2.6 Product Languages 

The preceding has been concerned with languages comprised of 

whole strings. Often a chain can be divided into a number of smaller 

chains, with each of the smaller chains being itself a member of a pat¬ 

tern class. For instance, a chain representing a straight line Joined 

to the tip of a circular arc or another straight line can advantageously 

be broken into parts for analysis. There is a linguistic concept that 

is of great use in this regard. The language, L = Li«Ite = {z|z = z1z2, 

where z1eL1 and z2eL2] is called the language product of L1 and 1¾. Pro¬ 

duct languages can be formed from any number of languages. The following 
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theorems give the language class membership of product languages in terms 

of the language class membership of their constituents. 

- i4 
THEOREM 7. Klee ne) The product of two regular languages is a 

regular language. 

THEOREM 8. (Bar-Hillel, Perles and Shamir)^ The product of two 

context-free languages is a context-free language. 

An important problem arises in connection with product languages. 

If the product strings arc ambiguous (i.e., if there is more than one way 

of generating or analyzing them), then a unique separation into strings 

of ccmponent languages may not be possible. This problem can arise even 

if the component languages are themselves non-ambiguous and recognizable 

with deterministic automata. .Is a result, the analysis of chains composed 

of smaller chains belonging to a number of pattern languages is more dif¬ 

ficult than the determination of whether an entire chain belongs to a 

given pattern language. 
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III. PATTERN LANGUAGES BASED ON EQUATIONS IN TWO VARIABLES 

The rattern languages considered in this report are composed of 

the sets of chains representing various classes of patterns. The alpha¬ 

bet,.'7., of such languages is the set of eight octal digits from which 

chains are formed. If a bound, M, is assumed on the length of the chains 

that emprise a pattern language, L, then this language can have at most 

M M-l 0 
8 + 8 +...+8 chains. A finite list can be made of the chains 

that belong to L and a K-limited automaton with K = M-l can be con¬ 

structed that wil_ exhaustively check any input chain against this list. 

Hence the following theorem is obtained. 

THEOREM 9. A pattern language consisting of chains, all of length 

less than or equal to some bound, M, is a finite language 

and can be detected by a K-limited automaton with K = M-l. 

In order to show the characteristics inherent in the various 

pattern languages considered, it is necessary that no bound be assumed 

on chain length. For the remainder of the report this assumption is 

made. 

Section HI considers pattern languages consiting of chains of 

continuous curves that can be represented by a family of equations in 

two variables. The curves are specified by the three-tuple [f,R,Q] 

where : 
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= 0 is an equation in two variables describing a 
continuous curve. 

R is a set of regions (ri,r?, ..., rk) of the 

curve f(x,y) = 0. To each r^ correspond two 

coordinate paire, (ïi^i) and (xi,yi). The 
region of_ the curve described by r¿ is 
li < X <Xi, Zl < y 

Q is a_set of parameter ranges 

• • •> • Each of these pairs 
is a coefficient or simple function of co¬ 

efficients appearing in f(x,y). The co¬ 

efficient or function of coefficients cor¬ 

responding to (q.^) is denoted by q . 

It is desirable to examine two separate methods for defining 

a pattern language, L, on the basis of a given [f,R,Q]. 

Strict Definition: A chain, C, belongs to the pattern language defined 

by lf,R,Q] if and only if there exist values of coefficients 

within Q and a position of the encoding grid such that if a 

region of f(x,y) within R is chain encoded, the resultant 
chain is identical to C. 

The superscript, s, (Ls) is used to designate languages defined according 

to the strict definition. For the second type of definition, an algorithm, 

T, called th; RQ-algorithm, is introduced. This algorithm assumes that a 

given chain, C, is a member of L and attempts to calculate the coeffi- 

cients and region of f(x,y), respectively, that yield a curve that is with¬ 

in some tolerance, T, of C. The test for tolerance is made by superimpos¬ 

ing the curve and chain, with the initial points of curve and chain coin¬ 

ciding. If throughout their length the curve and chain are never separated 

by more than T squares, then it is said that the curve and chain confnna 

within T. The complete language specification is a five-tuple, [f,R,Q,r,T]. 
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The pattern language definition ir. as follous. 

Weak Definition^ A cíiaín, C, belongc to the pattern language cpecif’ied 

by Lf,R,Q,r,Tj if and only if the following conditions are satisfied. 

(i) The RQ-algorithin, T, is successful in its calculation 

of coefficients and range of f(x,y) for C. 

(ii) The coefficients and range calculated in (i) yield a 
curve that conforms within T to C. 

Languages defined according to this definition are designed by the super¬ 

script, w, (LW). 

Given a chain, a "maze" can be constructed within which all 

15 
curves that encode to this chain must lie. Determining whether a given 

chain, C, is a member of a particular LS is equivalent to determining if 

there exists a curve or curves in the [f,R,Q] for Ls that can be drawn en¬ 

tirely within the maze defined by C. In many instances it is possible to 

find algorithms to accomplish this, but such algorithms tend to be rela¬ 

tively complex and of little practical use Such algorithms are not 

examined in this report. Detection algorithms for the L are incorporated 

into the language specification. By adjusting T in this specification, it 

is possible to include in the language chains with small amounts of pattern 

distortion or "noise." 

The next two sections examine seme particular pattern languages 

and place them in the hierarchy of language and automata classes given in 

Section 2.3. Section 3»1 treats the language consisting of chains of 

straight lines of arbitrary slope. Section 3-2 examines languages formed 

from chains of circles and circular arcs. An attempt to generalize some 

of the results of those two sections is given in Section 3.3. 
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5.1 Straight Lines 

Consider the fanily of curves specified by [f,R,Q]ST where 

f^Xjy) = y - ax 

( (¾ >1.) = (-oo,-oo1 

1 = (+00,+00) 

Jl =a 

Q “ (¿i^i) = (-00,+co) 

The family of curves described is the family of straight lines of arbi¬ 

trary length and slope. 

The chain code does not store information as to the location with 

respect to the origin of the encoded curves. In the above, for convenience, 

f(x,y) has been selected such that all straight lines pass through the ori¬ 

gin. The languages based on [f,R,QJST include chains of straight lines at 

all locations in the coordinate system. If necessary, a chain can be pre¬ 

ceded by a pair of coordinates giving the starting point of the chain. 

Location restrictions can then be incorporated into R and Q. 

s w 
Let and LgT be straight-line languages based on [f,R,Q]ST, 

defined according to the strict and weak definitions, respectively. l|T 

V 
and Lgrp will be related to the hierarchy of string language and automata 

classes. An RQ-algorithm for the detection of Lgrp is as follows. 

Let a chain, C, be denoted by 

C = cic2c3 ci ••• CN 

where the c^ are the octal digits that are the elements of the chain. 
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Assume the starting point of element ci to lie at the origin, (0,0). De¬ 

note the coordinates of the tip of element ^ by (x1,y1). The slope of 

the straight line represented by the chain is taken to be a = yN/xN. The 

test for language membership is !xNy1-yNxi| < invT for all i. For 

c w 
2 LgrpC- values of the tolerance as small as one square result 

in the acceptance of all chains that are straight lines according to the 

strict definition (as well as some other chains not satisfying this defi¬ 

nition). The RQ-algorithm operates as follows. 

First past; over chain: 

N 

XN ^ i?! Ci) 

N 

yN ’• 1?1 V'i’ 

NTgm (compute by adding Ts^ N times) 

and 7y(c¿) are given by 

C-i 4 2y 

0 10 
111 
2 0 1 
3 -1 1 
4-10 
5 -1 -1 
6 0-1 
7 1-1 

Second pass over chain: 

For each successive i 

(i) Find xNyi = + ^V^Cp) 

(ii) Find yNx1 = y^x^.p + y^ic^ 

(ui) rest l^yp-y^J 1 NTgip 

Compute (i) 

(ii) 

(iii) 

where ^xicp) 
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If for any i the above test fails, then the chain being tested is inmed- 

iately reJecU*d. If the test is satisfied for all i, then the chain 

is accepted. 

THEORIM 10. Lgm is ccntext-sensitive and can be detected by a 
deterministic LM. 

Proof: The program and all fixed storage occupy the control unit of the 

LM. The tape of the LBA is used for the storage of quantities whose mag¬ 

nitude increases with increasing chain length. The program requires sub¬ 

routines for the addition, subtraction and comparison of numbers of arbi¬ 

trary size appearing on the tape. These subroutines can be programmed in 

the finite control unit, but may require working storage for quantities 

not exceeding the magnitude of the numbers calculated or compared. The 

tape of the LBA is used for this working storage. The largest number 

that must be tiored in the first pass is £ NT,^. The largest number 

that must be stored during the second pass is £ 2N . Consequently, the 

storage requirements of Theorem 2 are satisfied and iJL can be detected 

by a deterministic LBA. It follows from Section 2.3 that Lgp is context- 

sensitive. 

w 
and Lg,p in the 

language-automata hierarchy. 

S V 
THEORIM 11. Lgip and Lgrp are not context-free languages and cannot 

be detected by POSA. 

Proof* In the proof of this theorem and a number of others a special, form 

of context-free grammar, G, defined in the following lemma is used. 

6 
ISaS (Chomsky)0 If L is a context-free language, then there exists 

a context-free grammar, G, of L with the following properties: 

The next theorem sets a lower bound for 
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(1) ln the nonterminal vocabulary of G there are 
Infinitely many z's such that A * z. “ ® 

(ii) let n be the^length Of the loncest etring, u, such that 

Strw „ ™iCv 1 11 V*L '¿hen "there is a sub- 
such that1! 5.11 0rplefS s^bols oí* V and an AcVjj of G 
uch that A v^. Replacement of v, by any of the inT 

2?e-etSrÏL0f StrIT’ Z' 5UCh tiat A > = nJî aj.te* the language membership of v in L. 

let 0 he a context-free grabar of L, mt A he on ele- 

»bnt of the nonterminal vocahulary of G that does not generate an Infinite 

number of t. Then A can be eliminated from G in favor of a finite number 

Of rules Of the form B - vhenever 0 contains the rule B - \MS and 

A*X' Carrylne 0111 t»!« procedure for all such A the context-free grem- 

“r' 13 obtaIne4 satisfying property (1). aere must be at least one 

nonterminal symbol. A, In the next-to-last line of the derivation of every 

terminal string, vel. The properties etated In (11) automatically follou 

for a context-free grammar. 
* 

Wow assume that l4T and 1¾ are context-free languages, tten 

there must exist =ont«t-fre. grcars, ^ and of the fo» descrihed 

In Lemna these languies, let CsVl|T »d be arbitrary 

chains of their respective languages. it is possible to choose c|T and 

0SI sufficiently long that the slope of the straight line represented by 

either Is defined to any arbitrary degree of preeleion, even If any sub- 

strlng of length D of either chain 1. not specified. (Bor ^ the length 

required depends on TST.) hy lemma 1 there must exist substrings of T| or 

1... elements in C?T and 0¾ that can be replaced by an infinite nmfcer of 

strings generated by a single element, A° and A*, in and 
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respectively. These replacement strings must themselves be chains of 

straight-line segments, and since there are an infinite number of them, 

some must be sufficiently long to define the slope of the straight line 

represented to any arbitrary degree of precision. It is not difficult to 

see that as original chains and replacement sections are taken longer and 

longer, their slopes must approach each other if the resultant chain is 

to be that of a straight line. Since the number of possible slopes for 

straight lines is Infinite, and since there exist arbitrarily long 

and CgT for straight lines of every slope, there must be an infinite nura- 

s w 
ber of nonterminal elements, A, in the grammars of both -ST 

A corresponding to each possible slope. A phrase-structure grammar, how¬ 

ever, cannot have an infinite nonterminal vocabulary. Hence there do not 

exist context-free grammars of L p or LgT. The second part of the theorem 

follows from Section 2.3. 

For Lgip, the proof is dependent on the notion of tolerance 

rather than a particular RQ-algorithm. Placing restrictions on the slope, 

a, in defining LgT or LgT does not affect this result as long as the num¬ 

ber of values of slope permitted remains infinite. Theorems 10 and 11 

establish the position of l£t in the language-autcmata hierarchy and set 

s 
a lower limit for the language class of L.-j. 

3•2 Circles and Circular Arcs 

This section considers some languages consisting of chains of 

circles and circular arcs. The family of curves is described by [f,R,Qjgj, 

where 
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fix,y) * (X“\ja + íy-ay)® - a® 

“ (-00,-00) 

R 3 _ _ 

v(-Vyi) = (+0O>+0°) 

a . a 
qi * ax + a? 

S “a? 

I = (a®,a®) 

Q a , _ 
■ = (0^) 

No restrictions are made on x or y for the circles. The restric¬ 

tion on qx requires that the circles pass through the origin. This is for 

convenience in detection only since location of curves with respect to the 

origin is disregarded by the chain code. The restriction on places a 

B 
bound, aj^, on the radius of the circles. The language, LCj, consisting of 

chains of circles and circular arcs of bounded radius (defined according 

to either the strict or weak definition) is considered first. Then the 

effects of loosening the bound on radius are considered. 

A. Bounded Radius (ar < a^ 
g 

THEOREM 12. Lqj can be detected by a K-limlted automaton. 

Proof: Chains that trace a closed curve more than once are called repeti¬ 

tive. Chains that trace a closed curve only once or do not trace it com¬ 

pletely are called nonrepetitive. The length of nonrepetitive chains of 

circles with »r < »m is bounded by a bound, Mj., that is a function of a^. 

A finite list can be made of all such nonrepetitive chains and a K-limited 

automaton with K = Mp-1 can be used for their detection. In defining 
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B 
LCI the bound on circle radius Is retained, but the set of chains Is ex¬ 

tended to include repetitive as well as nonrepetitive chains. The number 

B p 
of chains in LCI is Infinite. It con be seen that a chain Is In if 

and only if all sections of this chain of length Mj. describe circles. A 

K-limited automata with K ** M^.-l similar to that used for the detection of 

nonrepetitive chains can be used to detect L®.. 

The reasoning in the foregoing is not dependent on a particular 

gecanetric figure but rather on the boundedness of the length of the line 

describing the figure. Hence Theorem 12 can be generalized to the follcw- 

ing. 

THEOREM IJ. If the nonrepetitive chains of a class of closed curves are 
all of length then the language that consists of the re¬ 
petitive and nonrepetitive chains of this class of curves can 
be detected by a K-limlted automaton with K = M-l. 

B. Unbounded Radius (0 < aj. < 00) 

6 V 
Let Lqj and LCI be languages defined according to the strict and 

weak definitions, respectively, consisting of the chains of circles and 

circular arcs of unbounded radius. A preliminary RQ-algorithm, Fp, for 

w 
the detection of LCI is now given. It is later shown that this algorithm 

needs modification to take care of the cose where Oj. * 00 (straight line). 

The chain is assumed to begin at (0,0). (xi,y1) ^ ^ coordinates 

of the tip of chain element The first step of Fp is to determine 

whether the input chain (assuming th't the curve that it represents is a 

circle) represents a full half circle. This is accomplished by determin¬ 

ing if there is a value of i < N such that (xf+yf) < (xj^+y^). If such 
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a value exists, then (0,0) and (x1.1,yjL_1) are taken to be the coordinates 

of the extreme points of the diameter of the circle. If such a value of i 

does not exist, then it is assumed tliat the input chain does not represent 

a full half-circle. The ccnterpoints, a^ and ay, and radius, ar, are then 

calculated by substituting (0,0), (x^y^,). and the coordinates of the mid¬ 

point of the chain, in f(x,y) = 0. The last step of Tp is a test to deter¬ 

mine whether the input chain lies within T^j squares of a circle with the 

calculated centerpoint and radius. If this test is satisfied, then the 

chain is accepted. 

Seme problems are apparent concerning the detection of with 

this algorithm. For any m in Theorem 2, for a sufficiently short chain of 

a circle of sufficiently large radius, aj. > m^*^. For the RQ 

algorithm given, r ■ LB\ does not have sufficient storage for the detection 

of Lqj. This result is not general; there may exist other RQ-algorithms 

for the detection of Lqj that can be programmed on an LBt (although the 

author has not been able to find any). For the case where aj. is infinite, 

even a Turing machine cannot be used unless a modification of Fp is made. 

The modification consists of combining the RQ-algorithm for straight line 

detection with rp. The straight-line algorithm examines an input chain 

first. If the input chain is that of a straight line, then the chain is 

accepted and the procedure is halted. If the input chain is not that of 

a straight line, then Fp examines the chain. Fp is modified slightly so 

that when three points on the chain are to be used to calculate ax, ay, 

and ar, a check is made first that these three points do not lie in a 

straight line. If they do, the input chain is rejected. The restating 



combined algorithm is the final RQ-algorithm used to define L^j. I’hiB 

algorithm provides an answer in finite time as to whether or not any 

V 
given chain is in L^. Hence the following theorem is obtained: 

7HIX)REW lA, Lqj is a recursive language. 

If a restriction is made that chains must represent at least 

sane fixed fraction of the total length of arc of a circle, the detection 

can be accanplished by a deterministic LBA and the restricted language is 

context-sensitive. The following theorem sets a lower bound on the 

language class membership of LC and LV . 
Cl Cl 

6 y 

THEOREM 15. LCI and LCI are not context-free languages and cannot be 

detected by P35A. 

Assume that and C, are context-free. Then there exist con 

text-free graranars, and of the fern described in Lemma 1 for 

these languages. Let C = Ci,C2,...C, ... be a set of nonrepetitive 

chains, each representing a complete circle with ¿(Ci) > 2' and the dia¬ 

meter of each succeeding chain squares greater than that of the pre¬ 

ceding chain. There are an infinite number of chains in C and 1 of 

these chains are in both Lqj and L^. (It is assumed that Tçj is large 

u s w 
enough so that Lgjc Lcr-1 Now from Lemma 1. : or less elements in any 

CjfZ; can be replaced by an infinite number of chains all generated by 

fame Aj in the nonterminal alphabet of or without destroying the 

language membership of* C . The A for the various C4 must all be differ- 
J J J 

ent since the liave different diameters. There must, therefore, be an 

infinite munter of distinct Ay Since a phraee structure 8rsn«nar cannot 
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have an infinite number of nonterminal symbols, it must be concluded that 

there do net e::iot context-free craemrs of or lJÍj. 'fhe second part 

of the theorem follovs from Section 2.3. 

5•3 Other Curves 

Although some generalizations can be made concerning chain pat¬ 

tern languages based on curves described by [f,R,Q], for the most part 

each nev language must be examined by itself to determine its characteris¬ 

tics and position in the language-automata hierarchy. Theorems 9 and 13 

are general in scope and do not depend on any particular [f,R,Q]. The de¬ 

tection of languages defined according to the strict definition and not 

satisfying the conditions of Theorems 9 or 13 will generally be difficult. 

It should be possible to construct proofs similar to those for Theorems 

11 and 13 to prove that uer languages are not context-free. Restrictions 

on the range are not used for either L^rj, or Lqj but in general these may 

prove useful for language definition. 
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IV. PATTERN LANGUAGES BASED ON PATTERN PROPERTIES 

Given a set (p1,p2, ... Pn) of pattern properties, any of which 

may or may not be ascribed to a given pattern, P, the variables ..., 

Çjj, may be assigned as follows: 

^ = 1 P has property pjl 

^ = 0 P does not have property pj^ 

Let ... be a Boolean function of its respective 

arguments. A pattern language, Ls, can be defined on the basis of g and 

ÍPx ,P2, ... Pn) as follows: 

P 6 L® if = ^ 

P / L® if ••• **n) ~ ® 

By talcing g'f^) = a separate language l| can be defined for each 

individual property Let 0(1®',!®', ... ig') be the result of replac¬ 

ing 5i by L®', "or" by set union (U), "and" by set intersection (fl), and 

"not" by set complement ( ), in g(§1»^2i ••• • ^1611 following re¬ 

lation is obtained. 

GUf,Lf\ ... I*') 

By application of the theorems in Section 2.5 concerning the complement, 

union and intersection of languages, it is often possible to find the 

language class of L® in terms of the langtiage classes of the L® . The re¬ 

mainder of this section is devoted to the examination of pattern languages 

formed on the basis of the properties, closure, self-intersection, convexity 
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and periodicity. No bound ir, assumed on chain length, for any of the pat¬ 

tern languages; in cases where such a bound exists, Theorem 9 can be used. 

^^ Closure 

A chain is said to be closed if its beginning and endpoint 

coincide. 

THEOREM 16. The language, Lql, consisting of these chains that are 

closed, io a context-sensitive language and can be detected 
by a deterministic LBA. 

—0°--: Lcl can *)e detecteci by an automaton that assumes an input chain, 

C, to start at the origin (0,0) and uses two counters to keep track of 

the coordinates (x^) of cr If (x^) - (0,0), then C is accepted. 

The largest number that must be stored is N. By Theorem 2 a LBA can be 

used for detection. 

The author has not been able to determine a lower bound on the 

linguistic class membership of LPT. 
CL 

^.2 Self Intersection 

A chain, C, is said to be self-intersecting if two or more 

points along the chain coincide. 

THEOREM 17. The language, L*^, consisting of those chains that are 

intersecting, is context-sensitive and can be detected 
by a deterministic LBA. 

Rrooi. In testing for self-intersection, the input chain is assumed to 

begin at the origin (0,0). (xi,yi) are the coordinates of chain element 
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Ci- For each i, j, 1 < i < j < n, it is determined whether either of the 

following two conditions exists. 

(1) (xi'yi} = 

(ii) Elements c^^ and c^ arc diagonal and cross each other. 

If either of the above conditions is found, then C is immediately accepted 

and the process is terminated. This algorithm is easily carried out by an 

LBA. 

The author has not been able to determine a lower bound for the 

linguistic class membership of I*-..,.. 

^•3 Convexity 

A chain, C, is said to be convex if it satisfies the following 

conditions. 

(i) It is closed. 

\ii) Ii the first element is removed, then the resulting chain 
is not self-intersecting. 

(iii) For all i, J, 1 < i < j < N, no point on the straight line 

defined by the points (xi,yi), (x^yJ is external to the 
figure described by C. J J 

Two theorems are given that place the language, L^, consisting of those 

chains that are convex, in the language-automata hierarchy. 

THEOREM 18. is context-sensitive and can be detected by a 
deterministic LB 

Proof: The tests for conditions (i) and (ii) are made with deterministic 

LM using the algorithms given in Sections 4.1 and 4.2. The test for con 

dition (iii) requires the comparison for all i, j, 1 < i < j < ii, of 
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successive nodes of the chain segment, ci>c-f + 1 ••• cjí with the straight 

line (xj-x^jy - algorithm is easily carried out by a LM. 

The automata for the detection of (i), (ii) and (iii) can all be combined 

into a single LB'; using a larger alphabet and control unit. 

THEOREM 19. LpQ is not a context-free language. 

Proof: Assume that Lqq is context-free. Then there exists a context-free 

gramma", 9.qq> of the form described in Lemma 1. Let CeL^ be the 

chain of a circle with radius, ar --: 2Ti/n. By Lemma 1, T] or less symbols 

of C can be replaced by an infinite number of chains without destroying 

the language membership of C in LCq. Since there are an infinite number 

of replacement chains, some of the replacement chains must be of length 

greater than 2ar. Replacement chains of length greater than 2ar, however, 

cannot yield a convex figure. Therefore, there does not exist a context- 

free grammar of Lqq. 

4.4 Periodicity 

An arbitrary continuous curve can be described by 

X = s) xa < X < xb 

y = Vs) ya - ^b 

C < s < 5. 
— — a 

where hjj and h^ are functions giving the abscissa and ordinate, respec¬ 

tively, of the curve as functions of the distance along the curve, s. xa 

and ya are the coordinates of the point at which the curve begins, corre¬ 

sponding to s = 0. xb and yb correspond to s = s^ and are the coordinates 
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of the endpoint of the curve. A curve in said to be two-dimensionally 

periodic, or simply periodic, if there are constants, p,, ^ (0 < pr, < > 

Px and py such that 

hx(s+pc) = h^(s) + px I 

> 0 < s < s^-p_ 
hy(S+Ps) = hy(s) + Py \ 

It is assumed that ps, Px and Py are the minimum values such that the 

above relations hold. px and py are called the abscissa period and ordi¬ 

nate period, respectively. 

The notion of periodicity that has been defined is a rather gen¬ 

eral one. The followinp special cases are obtained. 

( i) If Py -- 0 but px /- 0, then the curve is said to be periodic 
alonn the x-axis. 

(ii) If px = 0 but pv / 0, then the curve is said to be periodic 
alonp; the y-axis. 

(iii) If Px = Py - 0, then the curve is repeated over and 
over again with increasing s and is said to be repetitive. 
(Repetitive curves are analogous to repetitive chains.) 

A chain can be described by the function 

V1) = ci 1 5 i £ N 

th 
where ci is the i 1 element of the chain. A chain is periodic if there 

exists sin integer pQ such that 

hc(i+PcJ = hc(i) 1 < i < N-p(. 

i<pc<! 

Pc is assumed to be the minimum integer such that the above relation 

holds and is called the period of the chain. 
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Correspondence between periodicity of chains and (two-dinensional) 

periodicity of curves will now be discussed. A periodic curve will encode 

to a periodic chain if and only if there is a. i integer, t, such that tp^ 

and tpy are both integers. The minimum such t is the ratio of the chain 

period to the curve period. Of primary interest is the case in which t = 1. 

In this case the changes in abscissa and ordinate for pc elements of the 

periodic chain are exactly px and Py, respectively. Periodic curves for 

which Px and Py are not rational numbers do not encode to periodic chains. 

The languages consisting of periodic chains only, and the languages con¬ 

sisting of chains (both periodic and nonperiodic) of periodic curves, are 

treated separately. 

A. Languages Consisting of Periodic Chains 

The cases of bounded pc ( Pc 5 M) nonbounded pc are distinguished. 

THEOREM 20. The language, L^, consisting of chains that are periodic 

with period, pc < M, can be detected with a K-limited automaton 
with K - 2M-1. 

Proof1 If Pc 5 then a chain is periodic if and only If all subsequences 

of this chain of length 2M are periodic. Since the number of possible peri¬ 

odic sequences of length 2M is finite, these sequences can be listed and 

incorporated into a finite automaton. 2M-1 past symbols in conjunction with 

the symbol presently scanned by the automaton constitute sufficient infor¬ 

mation for the automaton to decide whether to reject the chain or to con¬ 

tinue testing the remaining symbols of the chain. 

Theorems 21 and 22 treat the case where pc is not bounded. 
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THEOREM 21. The language, Lp, consisting of those chains that are periodic le 
context-sensitive and can be detected with a deterministic 
LEA. 

Proofî The detection of periodic chains involves the determination of 

whether there exists an integer, pc, (pc < n/2) such that for all i, 

1 < i < N-pc 

Ci = Ci+pc U) 

The tesclng procedure starts with Pc = 1 and tests successive integer 

values of Pc until it finds one such that (1) holds for all i. if no such 

Pc is found after checking all integer p( < N/2, then the chain being 

tested is rejected. Tills algorithm can easily be programmed on a LBA. 

THEOREM 22. Lp is not a context-free language. 

Proof: Assume that Lp is context-free. Then there exists a context-free 

gramnar, Gp, of the form described in Lemma 1 for Lp. Consider periodic 

strings of the form 

where 

C = ww...w 

n 

w = abaabaaabaaaab . . . a...b 

a and b, a ¿ b, are chain elements (octal digits). Clearly, there are an 

infinite number of such w. By Lemma 1 there is a sequence of Tl', T|' < T) 

elements of C that can be replaced by an infinite number of strings, z. 
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all generated by the same nonterminal symbol AeGp. It can be seen that 

if ¿(z) < npc-T|', then the new chain, like the old chain, must be a peri¬ 

odic repetition of w (The new chain does not necessarily have to con¬ 

sist of an integral number of repetitions of w.) If 2pc < £(z) < np^Tl', 

then z must itself be a periodic repetition of w (although not necessarily 

containing an integral number of repetitions of w). Thus the A that gen¬ 

erates replacement strings for C can generate only strings that consist of 

periodic repetitions of w when 2pc < £(z) < npc-Tl'. Since for any w, n 

may be chosen arbitrarily large, it can be seen that there must exist a 

separate AeGp for each w. Since the number of different w is infinite, 

and since a phrase structure grammar must have a finite nonterminal vocabu¬ 

lary, it must be concluded that there does not exist a context-free grammar 

OÍ* Lrp • 

B. Languages Consisting of Chains of Periodic Curves 

Define Ip, to be the language consisting of chains of periodic curves. 

• includes nonperiodic as well as periodic chains and its detection is 

considerably more difficult than the detection of Lp. Two methods for de¬ 

tecting Ipt will be examined. 

The first method is based on a technique for comparing chains 

called chain correlation, which was developed by Freeman.16 Let C and C* 

be arbitrary chains given by 

C c 
2 

• • • C 
N 

C* 
N 

i 

No loss in generality follows the assumption that N' > N. The chain 
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-Ç-Q£rgjg,t,lon function, of chains C and C is defined as 

^cc ^ J) ) cos(ci-c|+^? 0<J<N'-N-1 

i = l " 4 

-1 < $ <i - cc - x 

is a measu^ of the mean coherence between the elements of chains 

C and C. j is the relative displacement between the elements of the two 

till 
chains; the i element of chain C is compared to the (i+j)th element of 

chain C', 

A çhajji autocorrelation function, ¢^, can be formed as follows. 

ÏM 

WJ> 1¾- y 0; J s 
1=1 

In this case chain C is compared to a version of itself displaced by J 

elements. A peak or series of equally spaced peaks at which J) > Dj, 

where D$ is some threshold, indicates that C is periodic. (The period of 

C is the value of J, j > 0, at the first peak in Qj.) This algorithm can 

detect chains of arbitrary period and can be executed by a LBA. If the 

language ly is defined as consiting of all periodic chains of bounded 

period f^c then by a slight modification of the algorithm Just given, 

B 
Lp' can be detected by a finite state device. The summation in the auto¬ 

correlation function, *cc(j) is evaluated over intervals of length M. A 

chain, C, is accepted as being periodic if and only if_?cc(j) > D$ over 

all intervals of length M. 
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Various complications arise in the detection of periodic curves 

using chain correlation. Identical curves encoded at different positions 

on a grid usually result in chains that differ somewhat. Such chains 

often have slightly different numbers of elements. Differences in the 

number of elements of drains of identical curves cause a difficulty in 

drain correlation known as displacement error. A more complete descrip¬ 

tion of chain correlation including a discussion of the problem of dis¬ 

placement error and seme solutions is given in a separate report. 

A second method for comparing curves and for detecting periodic 

chains is called coordinate matching. The coordinate matching function, 

ice i>°f chains C and C is given by 

^yi'yo> - íd.yyjh ‘CC ,;ji = [( Xi-x0) (x L+yxô'j 

where (x0,y0) and(x^y^) are the coordinates of the beginning of chains 

C and C, and (x^y^ and (xj,y£) are the coordinates of elements and 

c|, of chains C and C', respectively. This method recognizes a periodic 

chain by comparing the chain to a displaced version of itself. A chain 

is accepted as periodic if there is a J, 0 < J < N/2, such that 

(xuj-xj >T yi"yo* (y i+J 

for all i, where D, is some threshold. The required calculations can be 

carried out for chains of arbitrary period on a LBA. Displacement error 

problems also exist for coordinate matching methods and can seriously 

downgrade the results obtained. 
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B 
The languages Lpi and Lpi unlike Lp are dependent on the algo¬ 

rithm used for their detection. The choice of detection method and 

threshold affect which chains are and are not included in these languages. 
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V. PATTERN LANGUAGES CONSISTING OF CHAINS THAT ARE SIMILAR 

IN SOME SENSE TO A GIVEN CHAIN 

This section considers pattem languages consisting of chains 

that are similar in some sense to an arbitrary given chain, C. The chain 

obtained from a given curve generally depends on the position of the 

curve vitv respect to the encoding grid; identical curves can often en¬ 

code to quite a number of different chains. Differences between chains 

of identical curves are considered to be manifestations of a form of 

IT 18 
"noise." * The strictest notion of chain similarity that can be 

formed requires the chains involved to be identical. Because of noise, 

however, the use of this notion of strict similarity is limited. 

It is desirable to have notions of similarity that require the chains in¬ 

volved to be alike in size, shape and orientation, and yet allow for the 

presence of noise and slight pattern distortions Four definitions of 

similarity that require chains to conform in size, shape and orientation 

aie given. 

(i) ^ C = C* if and only if C and C are identical. 

j 2 
(ü) = C = C if and only if there exists a curve 

that can encode to both C and C. 

(iii) = (chain correlation - See Section 4.4.) c ■ C 

if and only if for seme chosen D- 

N 

$cc' C ^ Z cos^-c’Æ > D$ 
i=l 



( iv) - (cpordinate matching - See Section U. C 

If and only If for domo choeen and ail 1. 

W'= (^ ‘ x,i)2= (yi 'yl)2 - D- 

It Is acs^ied that (xq^q) = (xqiVq) 

Section 5.1 examines languages consisting of chains that are alike 

in size, shape and orientation. In Section 5. 2 the concepts of similarity 

are relaxed somewhat. 

5.1 Pattern languages Consisting of Chains Similar in Similar in Size, 

Shane and Orientation 

Given an arbitrary chain, C, the language can be defined to 

consist of those chains, C, satisfying C ^ C, where 1< J< 4. There are 

two basic types of automata that can be used for the recognition of such 

languages. Automata of the first type are constructed about the particu¬ 

lar chain, C. Since A(C) is finite and known in advance the chains i: 

Lç can be placed in a finite list. Recognition is accomplished by 

comparing an input chain to this list. The device is a K-limited 

automaton with K equal to the length of the longest chain in 

Of far more interest are recognition devices of the second type, 

in which the chain, C, appears on the input tape preceding the chain to be 

tested. In this case a single device or program is used for the recog¬ 

nition of Lc ihr all C. The remainder of Section V ic concerned with 

devices of this second type. 



If the restriction is nude that for bcoc bounds ’s ¿(C) < W, then 

fer .1-1,2,2,4 and all Ç the length of the chains in is bounded. % 

Ilieorem 9> Lc is a finite luncuage and can be detected by a K-limited 

automaton. If no such oound is assumed then the must be examined 

separately for each J. The language, is the least interesting 

since it consists of only the single chain, Ç. Detection of this 

language can be accomplished by a PESA provided that the elements of C 

appear on the input tape in reversed order. Ihe reversed version of C 

is stored in the stack of the automaton and then unstack;d elenent by 

element for comparison with the chain being tested. 

2 
The detection of L- can be accomplished by superimposing 

u 15 the mazes defined by £ and the chain being tested. If there exist 

relative positions of the two mazes that permit a curve to be drawn between 

them, then the curve will encode to both C and the chain being tested. 

Numerous problems arise in reducing this procedure to an algorithm, a 

major problem being the necessity for trying all relative positions of 

the two mazes before some input chains can be rejected. The defection 
2 

of Lç is not further examined in this report. 

l| can be detected by a PD6A. Hie chain, C, appears on the 

input tape with elements in reversed order. The chain correlation 

summation is performed over intervals so that the sum obtained does not 

become too large. The acceptance criterion is that $qC(J)>D| over all 

the intervals. If chain correlation is not done over intervals then a 

LBA can be used for the detection of . can be detected by a LBA. 

Hie automata for the detection of the are summarized in Table I. 



1 Automata for detection | Automata for detection 

1 Of as whole string 1 Of os a substring 
~ — 

' Longuaße i(ç) 5^1 C not 

bounded i(£) 51 
C not 
bounded 

L1 
Ç 

IÇ-limited *PDSA K- limited LBA 

L2 
c 

K-limited K-limited 

3 
L 
C 

K-limited **PD6A 

LBA 
K-limited LBA 

4 K-limited LBA 
-—a. 

K-limited LBA 

* C must appear on input tape with elements in reversed order 

■* Chain correlation over intervals. C must appear on input tape 
with elements in reversed order. "* 

TABLE I 

AUTOMATA FOR THE DETECTION OF 
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Consider now the problem of recognizing the chains, C", such 

that Cf d.'-, is a substring of C". Some of the general aspects of such 

recognition have been discussed in Section 2.6. This problem is related 

to the so called "segment fitting problem" which involves the determination 

of the point at which a short curve (the "segment") "best" fits a longer 

curve (the "curve"). The results of the application of chain correlation 

to this problem (including the effects of noise and displacement error) are 

V, 18 
given in a separate report. The solution to this problem involves 

"sliding" the segment along the curve and evaluating the chain correlation 

coefficient at each point. The point at which the chain correlation 

coefficient is greatest is considered to be the point at which the segment 

fits best. If the chain correlation coefficient at this point is below a 

certain threshold then the segment is considered not to fit the curve at 

all. The recognition of the chains, C ", such that C'cLjî is a substring 

of C" is accomplished in a similar manner using the index of chain 

similarity associated with the particular j. The automata for such 

recognition are given in Table I. as can be seen, the classes of automata 

used for the detection of whole strings also suffice when the 

strings appear as substrings of other strings, except in cases where the 

whole strings would be detected by PDSa. In these cases LBA are now 

required. 

3 4 
It must be borne in mind that L^, and Lr are dependent on the 

thresholds, and , rerpectively. The definitions of similarity for 

j = 3 and 4 were devised because of the limited usefulness of the 

similarity definition for j = 1, and the intractability of the definition 

for ,) = 2. The similarity definitions for J = 3 and 4 are both affected 
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by displacement error, although this error can be minimized by modifying 

the definitions of these forms of similarity somewhat. 

5-2 Pattern Languages Based on Other Definitions of Similarity 

This section examines the formation of pattern languages when 

the notion of similarity is viewed in a broader sense than in the previous 

section. The existence of algorithms for rotating, scaling and performing 

other operations on chain encoded curves simplifies the detection of such 

languages. Chain operators can be defined that alter the pattern repre¬ 

sented by a chain in some manner and then recode the result using grid- 

intersect chain encoding." In this manner the following chain operators 

are defined. 

VO) rotation by angle 0 

TSU0 scale change by factor k 

Ts' V scale change by factors k^ and k in x 
and y directions, respectively ^ 

Tp(n) periodic repetition n times 

The use of an operator r on a chain C is denoted t'C. Using 

the above operators, languages can be defined consisting of the chains, C, 

such that for an arbitrary given chain, Ç, the following relations are 

satisfied. 

(i) C ^ Tr(0)‘C (chains alike except for angle) 

(ii) C * Ts(k)*C (chains alike except for size) 



(iii) C = T8,(kx,k I'C (chains alike except for nonunifora 

size change in x and y directions) 

( iv) C = Tp(n)*_C (chains alike except in the number 

of repetitions that appear) 

This language specification format is quite flexible. By placing 

restrictions on the permissible values of 0, k, k , k , and n, the class 
x y 

of languages that can be defined is made considerably richer. It is 

possible to comoine operators in defining languages. Thus the language 

defined by C ¿ Tr(0). Tg(k)-Ç contains chains alike in shape but differing 

in size and orientation. Additional operators can be defined to augment 

the class of languages that can be specified. 

The linguistic classification of the languages that Eire defined 

is dependent on j and the particular operator, t. Unfortunately the detec¬ 

tion of many of these languages is difficult especially when the strings 

of the languages appear as substrings of larger strings. 
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VI. OTHER METHODS OF PATTERN ENCODING 

Chain coding ic a convenient method for putting danses of patterns 

into string form for linguistic examination. The linguistic results obtained 

for classes of chain encoded patterns can be extended to the same pattern 

classes encoded using other methods. This report restricts consideration to 

pattern codes obtainable from chains using a translating device known as a 

finite transducer. A finite transducer, T, is a pushdovm store device sat¬ 

isfying the additional restriction that the storage tape can only move in one 

direction. The storage tape is used as an output tape and plays no essen¬ 

tial role in determining the course of the computation. The set of strings, 

V, such that for some ueL, T maps u into v is designated by T(L). A de¬ 

tailed description of finite transducers can be found in the literature.^^ 

THEOREM 23. (Schützenberger and Chomsky)^'^ If T is a finite transducer 
that maps L onto L' (T(L) « L'), then 

(i) If L is a regular language, then L' is a regular language. 

(ii) If L is a context-free language, then L' is a context-free 
language. 

Therefore, given another method, E, of encoding patterns, if there 

exists a finite transducer, T, that will translate chains cL into strings 

in 2, then for regular and context-free languages, the language class mem¬ 

bership of T(L) is the same as that of L. Furthermore, let Lj, be a pattern 

« 
language in E. If there exists a finite transducer, T , that can translate 

from E into chain code, and if T" (l^.) = L' is a chain pattern language that 

has been shown in this report to be not regular, or not context-free, then 
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the Game result holds for Lg. 

If the finite transducer translating chain code into £ effects 

a one-to-one mapping then results for context-sensitive languages as well 

as results for regular and conte:rt-free chain languages apply to the cor¬ 

responding pattern languages in E. Further investigation is needed of the 

effects of different pattern codes on the pattern languages obtained for 

various classée of patterns, and of the linguistic aspects of different 

methods of translating between pattern codes. 
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VII. CONCLUSIONS 

By encoding patterns into string form it is possible to place 

them in a conventional linguistic framework. The correspondence between 

the hierarchies of string language and automata classifications can be 

used to determine the computation power required to detect various classes 

of patterns. Pattern languages can be placed within the existing structure 

of string language classifications. Although the patterns considered in 

this report have been relatively simple ones, it should be possible by 

means of the language rules of the table-driven pattern analyzer to ex¬ 

tend the approach to treat pattern classes containing much more complex 

patterns. 

A great deal of work remains to be done. Only the most important 

classes of languages and automata were related to patterns. The placement 

of pattern languages in a more complete language-automata hierarchy would 

be Interesting, as would a linguistic examination of additional pattern 

classes. The effects of pattern coding on linguistic classification need 

more study. Further investigations should lead to new methods for pattern 

recognition and analysis and an increased understanding of patterns in 

general. 
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APPENDIX 

Theorem 2 A LBA has sufficient storage for the execution of a program 

if there exist integers, b,m, such that for all inputs, z, the 

storage of no more than m integers is required, and none of these 

integers is larger than b^\z) -1. 

Proof: An m+1 tape automaton will be given that fulfills the necessary stor 

age requirements. It will then be shown that there exists a one-tape LBA 

that can perform the same computations. 

Consider an automaton that has an input tape plus m storage tapes 

that operates on an alphabet, containing b symbols. The use of no more 

than £(z) locations on any of the tapes is permitted. The m storage tapes 

H( z ) 
can store m integers any of which may be as large as b ' -1. 

To store this information on a single tape, the position of the 

read-write heads on.the m+1 tapes must be stored in addition to the symbols 

appearing on these tapes. Let denote the contents of the square 

of the ith tape. Hie j**1 square of the one-tape machine must store a 

2(m+1)-tuple of the form 

(a0J,flag0J, Q1j»flag1j, ••• / a^flag^) 

The flags store the position of the tape head. Flag is set if and only if 

the read-write head of the tape is scanning the i1-*1 square. If an al¬ 

phabet containing bra+1x2m+^ symbols is chosen for the LBA then all tape- 

machine configurations of the m+1 tape machine can be represented; the LBA 

need use only £(z) squares of its tape. At the expense of a more complex 

control unit and greater computation time the single-tape LBA can duplicate 

the computations of the m+1 tape device and fulfill the conditions of the 

theorem. 
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