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Summary 

This Is a discussion of some one-line random number 

generators, that Is, generators requiring a single FORTRAN 

Instruction, together with a description of some short 

FORTRAN programs which mix several such generators.  Evidence 

suggesting that the simple congruentlal generators are 

unsatisfactory continues to grow; one of the most promising 

alternatives is to mix several simple generators. These 

composite generators do better in various tests for randomness 

than do the simple congruentlal generators used at many 

computer centers.  If you wish to experiment with generators, 

or perhaps develop a more reliable generator than those 

currently available, you may  want to consider some of the 

simple FORTRAN programs discussed here. 



1.  Introduction 

If you need a random number in a computer, chances are you will 

call to a library subroutine which has coded, In machine language, a 

precise version of one of the simple congruentlal generators*, for 

13 35 
example, x . « 5 x, modulo 2  .  By a precise version, we mean that 

35  32 
the program Is coded to give exact arithmetic modulo 2  , 2  , or 

whatever, with tests for overflow or sign bits, and appropriate 

adjustments. Alternatively, you may write your own generator in 

FORTRAN, carefully meeting the congruence relations with tests and 

adjustments for negative Integers. 

We would like to point out that one can take advantage of the 

way that FORTRAN handles Integers in each particular computer to simplify 

congruentlal generators—in effect, generating random integers by means 

of a single FORTRAN instruction of the form I - I*K. Examples will 

follow for some particular computers with large numbers of users—IBM 360, 

IBM 709A and SRU (Unlvac) 1108. If your computer is not one of those, 

you can easily make the necessary adjustments if you know details of hov 

FORTRAN multiplies Integers in your computer. 

While a simplified FORTRAN generator which is faster and more 

convenient than the usual machine-language subroutines is an advantage 

in Itself, the principal advantage seems to be the ease with which the 

one-line generators can be combined to produce composite generators. 

These will be discussed in Section 3. 

*A11 of the references at the end of this article discuss congruentlal 
generators.  Particularly good reviews are the book by Jansson [6], 
and papers by Chambers [1], and Hull and Dobell [5]. 
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2.  One-Line Generators 

Consider first the IBM 360. Here FORTRAN Integers are stored as 

32 binary digits and multiplication of two Integers produces a 32 bit 

32 
Integer which Is the ordinary product modulo 2  . However, when used 

In algebraic expressions, a stored Integer I Is considered positive 

or negative according to the relation 

i      ii    u < i < / 

M(I) - 
32 11       32 

-2  +1   if   2 * <_l <_2*    - 1. 

32 
Now if I is uniformly distributed over the interval 0 < I < 2  - 1, 

then the piecewise linear function M(I) will be uniform over its range, 

-231 to 231 - 1.  It follows that in the IBM 360 the single FORTRAN 

31 
Instruction I • K*I will, for each random Integer I on -2  < I < 

31 
2  - 1, produce a new random integer in that Interval, with cycle length 

and randomness or lack of randomness according to the standard properties 

32 
of the congruential generator x.... - kx. modulo 2 

Combining a float instruction with our one-line generator, we then 

have this simple FORTRAN program for producing random uniform variates in 

the IBM 360: 

Let   I   be the current random integer, and   U    the curren-, random 

uniform variate.    Then new values of   I   and    U   are given by: 

I = I*K 

U = .5+FLOAT(I)*.2328306E-9. 

-32 
The constant in the second instruction is 2    in declmaj form. 

The constant integer K can be chosen for maximum cycle length in the 
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form    K - 8m ± 3.    The references contain suggestions on the choice of 

K.     Almost any choice of odd    K   will serve when this generator Is to be 

mixed with others In a composite generator. 

For the IBM 7094,  the situation Is slightly simpler.    There, 

positive Integers are stored In FORTRAN In 35 bits, and multiplication 

35 of two positive Integers Is ordinary multiplication modulo    2    .    Thus 

these two FORTRAN instructions will successively generate random integers 

I   and random uniform variates    U   in the IBM 7094: 

I = I*K 

U = FLOAT(I)*.292038S0SE-10. 

-35 
The constant In the second Instruction Is 2    In decimal form. 

Remarks In the previous paragraph apply to the choice of K. 

For the SRU 1108, the situation Is again changed. There, FORTRAN 

Integers are stored as 36 bits, and the product Is as In ordinary 

36 
arithmetic modulo 2 , but when used In algebraic expressions or 

output, a 36 bit Integer I Is viewed as positive or negative according 

to the function 

i        ii   u ^ i < / 

M(I) 

I -236 + 1 + 1   If   I >_ 235. 

Thus these two FORTRAN instructions will successively generate random 

integers    I   and random uniform variates    U   in the SRU 2108: 

I « I*K 

U* .5+FLOAT(I)*.145619152E-10. 

—36 
The constant In the second Instruction is 2    and remarks above apply 

to the choice of K. 
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If you want one-line random integer generators, or two-line uniform 

variable generators. In computers other than those mentioned here, you must 

find out what happens in FORTRAN integer multiplication. You may be able 

to figure this out from a manual; we have found the easiest, and most 

2  3  4 
foolproof, way is to merely compute, say, 3, 3 , 3 , 3 ,... in FORTRAN 

and have the results printed out. It is then easy to see what is going on; 

the reassuring fact is that in most computers the FORTRAN recurrence 

relation I « I*K will produce a full period of residues relatively prime 

^2   IS   16 
to some modulus, 2 ,2 ,2 , etc., and this set of residues can be 

appropriately adjusted with a float instruction. After all, the theory of 

congruentlal generators is based on equivalence classes of residues, and 

there is no need to use machine language subroutines or positive-negative 

teste to ensure that the representatives of the residue classes are the 

familiar least-positive ones. 
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3. Composite Generators 

Numerous papers [1], [2], [4], [5], (6], [7], and [8] have reported 

unsatisfactory results for various simple congruentlal generators of the 

k      k 
type x. . ■ ax. or x. . - ax. + b modulo 2  or 10  or some prime. 

While the search continues for simple generators which will pass 

Increasingly more stringent batteries of tests, there are some who 

believe, (and we are among them), that no simple congruentlal generator 

Is reliable enough to serve as the standard generator for a computer 

Installation. A promising means of providing Improved generators lies 

In mixing two simple generators, as suggested by MacLaren and Marsaglla 

[7], who used one generator to choose from 128 storage locations kept 

filled by a second generator; by Westlake [10], who wished to avoid the 

storage requirements of that method and instead used the sum of two 

generators after using a portion of one output for a random cyclic 

permutation of the bits of another. Then Gebhardt, [3], used the method 

of M and M, [7], but got good results with only 16 storage locations 

and a single Fibonacci sequence, x1+2 - xi+1 + xi  mod 2 , to both fill 

the storage locations and select them. 

By using the one-line FORTRAN generators discussed above, we can 

develop FORTRAN composite generators in a variety of ways. Short and fast 

programs will result even if three generators are mixed—one to fill, say, 

128 storage locations; one to choose a location from the 128; and a 

2 
third thrown In Just to appease the gods of chance. Why be half (or y) 

safe? 
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Here are sample composite generators for the three computers 

mentioned above.    In each case,  assume we have assigned Initial odd 

Integer values to    N(1),N(2) N(128),L,M,    and    K.    Then these 

FORTRAN Instructions will provide uniform random variables    U    on 

the Interval    0 < U < 1: 

IBM 360, 

L - L*ML 

M ■ M"MM 

J - 1+IABS(L)/16777216 

U -  .5+FLOAT(N(J)+L4M)*.2328306E-9 

K - K*MK 

N(J)  • K 

IBM 7094, 

L - L*ML 

M ■ M*MM 

J - 1+L/268435A56 

U - FLOAT(N(J)+L+M)*.291038305E-10 

K - K*MK 

N(J)   - K 

SRU 1108, 

L ■ L*ML 

M ■ M"MM 

J - 1+IABS(L)7268435456 

U -  .5+FLOAT(N(J)+L4M)*.145519152E-10 

K - K*MK 

N(J)   - K 
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In these programs,  the Integer   J    is used to choose from   N(l) 

to    N(128);    J    comes from the random Integer    L    after division by the 

appropriate power of    2.     In forming    U,    the argument of the float 

32      35 36 function is the sum (modulo    2     , 2    ,    or    2    )  of the randomly chosen 

N(J),    the random integer    L    used to find    J,    and a third (gratuitous?) 

random integer   M. 

The random integers    L, M    and   K   are the outputs of the three 

one-line generators;  constants    ML, MM    and    MK    can be chosen in the 

form    8m ± 3    to ensure long periods.    Chances are that randomly choosing 

six-to eight-octal-digit integers ending in    3    or    5    will provide 

satisfactory multipliers.    Van Gelder [9], found that these octal 

multipliers were promising:    10405, 20005, 105005,    while we got excellent 

test results with decimal integers   ML - 65539, MM * 33554433,    and 

MK - 362436069. 

The composite generator described above is short and easy to 

program in FORTRAN.    Since the statistical properties of composite 

generators appear to be better than those of simple generators, the 

only drawbacks would seem to be storage requirements and speed. 

The programs above require stored values    N(1),N(2),...,N(128).    For 

modem computers,  this seems a trifling requirement.    How often do you, 

or your associates,  run a Monte Carlo problem so big that you can't 

afford 128 storage locations?    For such unusual situations, or for small 

special purpose computers where one still demands a generator beyond 

suspicion, the stoiage requirements can be reduced to    64,  32    or    16. 

As for speed    even though the composite generator mixes 3 congruential 
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generators and uses a float Instruction, the program is still fast 

enough to produce huge quantities of uniform variates should they be 

needed: 

Rates for Producing Uniform Variates 

Composite   Composite 
Computer     Two-Line     (In-line)   (Subprogram) 

IBM 360/44    7,200/8ec    3,500/sec    2,000/8ec 

IBM 7094     18,800/sec    6,700/sec    4,900/sec 

SRU 1108     86,100/8ec   25,000/sec   19,200/sec 

The composite generator (listed on page 6) has two rates—as a 

6-line generator incorporated in a FORTRAN program, or as a separate 

FORTRAN subprogram. 
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