:
!
:

i

w
w
- |
o
T
o
z
o«
<
w
-
v

for Federal Scientific & Technical
Information Springfield Va 22151




AD

DA-1N222901A301

HDL Proj: 39800

TM.67-18
SHOCK SPECTRA

by
Paul G. Hershall

Janvary 1968

I:... U.S. ARMY MATERIEL COMMAND
‘ _’ HARRY DIAMOND LABORATORIES
H = [ o]

WASHINGTON. DcC. 20438

DISTRIBUTION OF THIS DOCUMENT 1t UNLIMITED



CONTENTS

ABSTR.ACT......................-......
l.INTRODUCTION.........................
2, GENERAL DEVELOPMENT OF SOLUTION ¢ v 4 4 o v 00 o s
3. HALF-:SINE-PULSE-TYPE FORCING FUNCTIONS , . . ., . .

4, FORCING FUNCTION OF THE TYPE taexp(-st) I
4. 1 Partial Fraction Me'.hod A I I I I T T R S P,
4,2 Convolution Method A I S

5. PROGRAM FOR HALF-SINE - PULSE FUNCTIONS .., ..,.,.

6. PROGRAMMING THE fexp(-Bt) CASE , . ... ... ot e
6.1 Amlcg Computer Analylil LA I A A I O I I T N
6.2 Digit.l Compute! Progrlm L I T P

5
5
7
10

11
12
12

13

18
18
19

7.RESULTSO.'.O'.O'........l....'.....zo
8.REFERENCES....O....O'.....O..U..Q..zl

APPENDIX A,—Evaluation of Coefficients of Partial Fraction
Expanlion......o....-....-....

APPENDIX B.-Integration by Parts of the Convolution Integral ,

33
34

APPENDIX C,~Scale Factors of Analog Circuite o« o o o o o o & & 35
APPENDIX D,~Table of Symbols. , , . e e o s s e s s e 0o e 36

FIGURES

l. ForCingfunCtion....'....Q.‘l....'l......
2, Physical model of generalized ODOF system ,, , , ., , . o

6
7

3. Program MAXU and subroutise PLIOPT . . . . . wowowow ey

L !:.lrr-uln-; computer circull for undamped ODOT system lorced

L1

L L T I LI I I i I R R I S l-lle
% Reprasawistive response carves for low, mediun’ &ed high

F 4

v.-i“-!—‘:a---ooo...u..o.!.occc'.l.o.o-zj

6. ProgrlmTSEXP....-........--.....-.24-25

7. Forced vibration spectra of five positive impulses on a

half-sine pulse driving an ODOF system. . , . s e e e o 00 ab

8. Forced vibration spectra of ten alternating impulses on a

half-sine pulse driving an ODOF system. , . , . P §

9. Free vibration spectra of five positive impulses on a half-

sine pulse driving an ODOF system , . , . ® v s 0 s e s e o28

10, Free vibration spectra of ten alternating impulses on a

half-sine pulse driving an ODOF SYSLEM: & 4 s 4 0 s s 0 o o o 29

11, Comparison of forced and free vibration spectra for ten

altermtingimpullel:R=0.01.. L 11}

12, Spectrum of t? exp (-Bt)-type function driving an ODOF

lyltem..........-............o.....31

“RECEDING
#AGE BLANK




ABSTRACT

Numerical solutions in graphical form are presented for the shock
spectra of a one-degree-of-freedom system subjected to some ideal-
ized forcing functions. Elementary procedures are outlined for
developing the solutions. Analog and digital computer progrinis are
submitted where applicable.

1. INTRODUCTION

In some applications of engineering, knowledge of the maximum dis-
placement of a driven member of a system is desired as a function
of a characteristic frequency of the system. This spectrum is called
a shock spectrum (ref 1, 2) when transient-type forces, such as in

an explosion, are applied to the system,

The system of interest in this report is a one-degree-of-freedom
{ODOF) undamped system with a linear restoring force, i.e., a
simple mass-spring system. The interest lies in the effect of dif-
ferent driving functions, The study is further limited to a system
initially at rest., Ground accelerations and velocities are not consid-
ered,

It is not irrelevant whether the maximum displacement occurs in
the positive or the negative direction. A structural member gener=
ally has different values of Young's modulus in tension and compression,
In the situation chosen, the positive maximum is usually larger, but
the exceptions will be noted,

Two chief types of forcing functions are considered:

(1) A half-sine pulse with superimposed Dirac impulses
and
{2} A ¢ exp(-8t) function,

Pulse (1) will have impulses of two types:

(la) five equispaced, equistrength, positive Dirac
impulses with the first at time zero and

(lb) the pPreceding with five additional negative impulses
symmetrically interspersed (alternating impulses).

A Dirac iinmpulse of strengih F; will be one for which

J‘Fi S(t)dt = Fy

The scope of this report is limited to pPresenting the mathe-
matical detaiis used in evaluating particular shock spectra, Their
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relevance will not be pursued here but will be treated in a later
Teport (ref 3), However, one may posit the forcing function having
Dirac impulges superimposed

idealization of the hiqh-frequency oscillations often observed on shock
pulses (ref 4), Moreover, the pPenetration resistance of certain
Jjectiles striking steel Plates (ref 5) ig nearly of the form t°

In section 2, the Procldures used to evaluate the shock spectra
are described, and general equations are developed, In sections 3

i in section 7 the

mx" 4 kx = F(t)
The rest conditions assumed are
x(0) = 0, x(0) =0

The forcing functions F(t) considered are illustrated in figure 1,

(1)
(2)

The deletion of ground accelerations in our ODOF system is not
a serious specialization, To clarify this, consider the generalization
given in figure 2, Let x be defined by y-z, where y and z are changes
in position experienced by the mass m and the ground, respectively,
in relation to their rest or reference positions, Then the equation of
motion of the 8ystem may be written

mx” + kx = F(t) - mz” (3)
A ground force mz” is thus equivalent to a force F(t) of opposite sign
applied to mass m,

e

F(t)

Figure 2, Physical model of generalized ODOF systes
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Normalization of the variables in (1) will have two advantages:
(1) the equations to be solved are easier to manipulate, having a
minimum number of essential variables and parameters; (2) the
solutions represent many cases resulting in economy of computation
and representation, The first step is to normalize these variables.

One may define

F(t) = F,f(t) (4)

where Fo is the peak value of the forcing function excluding impulse
components (fig. 1). 1’ we further defire

'IZN? =k/im, x4 = Fo/k, u= x/x. (5)
equation (1) reduces to
u”fup? + u = (t) (6)

Derivatives so far have been with respect to L, In (6}, my is the
natural frequency of the system, x4 the static displacement, and u the
response factor, We have yet to normalize time; one may, in general,
define a unit of time t. and let

T =t/ (7
Examining figures la and 1b, we see that it is most natural to define
':Ftc =w (8)

where r is a frequency characteristic of the driving function. To
allow (Brto represent the situation in figure lc, we may allow

8 ='DF/'|'|' = l/tc 9

The characteristic forcing frequency is thus w8 and th2 peak value
occurs at 2tc. Furthe'more, we normalize the natural frequency as

y = '"N/'"F (10)
With these relations, (6) becomes
u’ (T)/v*n” 4 u(7) = f(7) (11)

Without ambiguity, derivatives of normalized variables are with respect
to r. In addition, some liberty has been taken with the symbols u and

f; as functions, they are not the same functions of * that they are of t.
The symbols in (11) will, with no real ambiguity, represent the new
functions, See appendix D for a table of symbols.

The next step in the analysis is the solution of (11) for u. For
the functions presented in figure 1, the solution may be carried out
explicitly., There are several known ways of achieving this, The
author has chosen the Laplace transform method, but any of the other
standard methods are equa lly quick.
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1 1 »
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(12)
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3, HALF-SINE-PULSE-TYPE FORCING FUNCTIONS

As a {irst specialization of equation (11), let us consider driving
functions of the type given in figures la and Ib. Since we are dealing
with a linear system, we may find the responses to the pure half-sine
pulse and the delta function train separately, then add the two pro-
portionately to obtain the total response. (We may not, however, add
their separate spectra to find the total spectrum,)

Since we use (13) to obtain upq directly in the free era, the response
is needed oaly for 7 < 1, The normalized half-sine pulse may therefore
be written as

fas(T) = sinTw (14)
and the equation of motion reads

u/y?n*+ u = sinTw (15)
By standard methods we obtaaina from (15) the transfer function

Uysl(s) = 5 Loy rrv (16)

With the aid of a partial-fraction expansion, one obtains the desired
inverse transform

upg(T) = T%T., (sin ytmw - y8inTwW) (17)
Next, for the finite train of positive delta functions, we have
fpa(7) = B(T)+5(T =Ye) e « o4 5(r -MY) (18)

whose transform is
Fpyls) = l4e 40 o o4 e-(m=1) 8/s (19)
The function (Ri’; represents the situation after the mth impulse and
’

before the m+ wherem =1, 2, 3, 4, 5. The train of negative
impulses is represented by

fp.(7) = 'fD..,(T - Y5) (20)
and has a transform
Fp(s) = -e”% 1" Fp (s) (21)

It follows that the transfer functions for these cases —-the left side
of (15) being still valid —are

Upys) = y°n°/(s” +v°°) F pyfs) (22)
Upds) = ~e~¥1"Up(s) (23)

whose inverse transforms become

and
upylT) = ~ynisinyTw+siny(r Ve)wt oot siny(T=(my -)yn} (24)

10




and

UpdT) = ~yn{siny(r - o)n 4 siny(t-Ho)w+ e+ et siny(r - (2m. - hm)) (25)

T2

where my and m_ have the significance of m in (19) and also either
my =m_ or else my =m_+1 holds,

The summations over the sine terms in (24) or (25) may be com-
bined by trigonometric identities such as

8in0 + sin (0-a)4e.. m terms = gin{Q-. (m«1)34 }sin(moy Ycoc(%y)

However, this will not be done; the number of terms in the sum is
never greater than five, and the lumped term artificially introduces
poles for certain values of y which require separate handling in a
digital program.,

Thus the final expression for the forced response to the half.
sine pulse reads
u = upe + R(uD+ + LuD_) {26)

Here R = |y /Fo, the ratio of the strength of a delta function to the
amplitude of the pure half-gine pulse; L = 0 for the pulse of figure la,
and L = 1 for that of Ib. The Programming is discussed in section 5,

The specialization of equation (13) to the response discursed in
this section represented by (26) yields for the free-vibration maximax

um =V Tuys (i) ¥ Rl up, (1) + Lup (107 + fuji(1 J+Rup M+ Lup (IHVeZ (13a)
The substitution of (17), (24), (25), and their derivatives evaluated

at 7= 1 into (13a) was carried out in order to Program the residual
spectrum,

4. FORCING FUNCTION OF THE TYPE taexp(-ﬁt)

The t-dependent function may be written, G being an arbitrary constant, as

F(t) = Cot2e-Bt (27)
The peak value of F(t) is found to be

Fy = 4C, /p%? (28)
Consequently B2

fle) == 12 =Bt (29)
and e?

f(r) = 1—’12e"r {29a)

when we use (7) and (9), which together imply that r = Bt,

11




The usual liberties have been taken with the symbol f. It is con-
venient to rescale uand yas

usz=ew/4, E=vyrw (30)
Then equation (11) becomes
w e +w =TT (31)

Using the Laplace tranlaform, one readily obtains

Wis) = G+ 17 (32)

One may proceed now by two different paths, The partial fraction

expansion may be effected and the inverse transform obtained from
the fragments; or the convolution theorem may be applied followed
by an integration by parts.

4,1 Partial Fraction Method

Writing
1 As+B , C D E
FTETIr oA teelt GFIF TR (33)
one obtains by standard methods (apx A)
2
A= &.;_%,,F (34a)
_1-3¢?
B = IT¥ e (34b)
C=-A (34c)
- 2
and D=2/(1+%) (34d)
E=1/(1+£?) (34e)

The solution follows by substitution of these coefficients into the in-
verse transform obtained from (32) and (33):

w(t) = 2%(Acos €1 +(B/£) sin £7 +(C+Dr +E%2/2)e""} (35)

4.2 Convolution Method

Applying the convolution theorem to equation (32), one obtains the
solution to (31) in the form

r
w(T) = §.§‘vae'vsin F{T - v)dv (36)
0

12




a8 may be readily verified by direct substitution, This elegant solution
is, however, decidedly inconvenient for computation, As a check on the
partial fraction method, one may convert (36) into the form of (35),
More details on this are furpished in appendix B, In any case, equation
(B-13) developed there is seen to be equivalent to (35),

For reference, the explicit solution is Biven below as

WUT) = rrpop (136 sin £ - £(3-€%) con SIHE0(3-6%) + 2(14£2)r 4
1 242 .29 o7
Ve(1472)3r2]e~7 ) (37)

5. PROGRAM FOR HALF-SINE-PULSE FUNCTIONS

The FORTRAN IV Program does the following:

(1) The response factor u is calculated for 0 <+ < 1 and
tabled,

(2) The values of u are simultaneocusly compared to
determine the maximaxes UM in both positive and negative senses,

(3) These up's are tabled as a function of v, the normal-
ized natural frequency,

(4) Tae positive uM's are graphed against vy,
(5) The residual upg's are tabled and graphed,

For ease of program checkout, options have been incorporated
which, among other Possibilities, allow the Preceding items to be
selected individually, These are noted briefly in the comments to the
Program MAXU in figure 3. These comments show, moreover, that
the positive impulse case can be selected by letting M1 be nol-unity;
that special test values of v may be read in when M5 =1 (used with
M2 = 1); and that tables for a reduced number of R values may be
chosen when KTEST < KK. The particular values of R desired are
represented by the KT array,

A selected number of curves may be plotted by using the feature
contained in the linking subroutine PLTOPT: the number of plots
is read in; for each Plot {indexed by K}, M values are read into the
ICURVE array; these values represent the M values of R chosen to
make up a family of curves,

SCALE6 —~ a subroutine modified from A, Hausner's SCALE2* —
scales the family of curves for each graph., Thus one may plot five

curves on one graph, then re-plot three of these, which are scaled
independent of the five,

#Une of several subroutines documented at HDL for internal use,

13
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DINENSION TAUI1C00) o TAUPT{1000) 4 STAUPT(1000)+SGTP1(1200),U(1300+3)
I.CTAU’I(IOOODnUNAllS).UIlN(ShM”ol'(ihullil'CGNNHIMSH
2 UMINA(S) ,URAXA(S)
OIMENSION G(300),UM{300,5),URESHISC0,5)
1 PORMATIL61S)
11 FORMAT(8F10.5)
T2 PORMATL 20X6NR = FT.4,10X0HGAMMA = Fo.2s10XTHUMAX = 1PELS.T,

1 1027
12 FORMA
22 FORNA
32 FORMA
42 FORNMA
52 FORMA

1 Fl.6
62 FORMA
72 FORMA
02 FORMA
92 FORMA
102 FORNMA
112 FORMA

1 F1.4
122 FORMA
132 FORMA

1!
3
KK
"
"2
"3
ne
NS
ne
Nt =

KTE ST

READ(
READ(
READ(
READL
(4
EL =
1F(nl
00 11
Ke K
119 RAIKA
00 9
Fl »
TAUlL
TAUP]
STAUP
(TauP
9 CONTI
1F{NS
00 19

OO OBDONO
- s g 4 o P 0

Figure 3.

HUMIN = 1PE1S.T77/710X6( TXINTI2X1HU9X))
TC(10X414XOPF 6.3+ 1PE20.T)))

" L1 2XSHGANPASI TRTHUMAX RuFé . 4))

T(/11X0PF6.241P3E27.7)

T(1TX1PSERC.T)

T 30X39HPOSITIVE IMPULSES RESIDUAL SPECTRUMIOXAHR =
"1

TLILIXI(2XSHGAMMAGXSHURMAXAX ) ) )

T((1SXI(OPFOB.143PELG.T)))

TI20X25MFORCED VIBRATION SPECTRUN//)

TI2CXASHTEN ALTERNATING IMPULSES ON A MALF=SINE PULSE//)
TU20X4INFIVE POSITIVE INPULSES CN A HALF=SINE PULSE//}
TIIIXGZNALTERNATING IMPULSES RESICUAL SPECTRUMLIAOXAHR = o
111

TILPXS(TXTHUMIN Refb.4))

T{lrd}

NUMBER NF TAU VALUES
NLMBER NF GAPMA VALUES
NUMBER OF R VALUSS
ALTERNAT ING IMPULSES
WAITE TABLE OF U VS TAU (FORCED ERA)
WRITE TABLE OF UMAX,UMIN VS GAMMA (FORCED ERA)
PLOT UMAX VS GAMMA (FORCED &RA)
READ GAMMA IN (READ CARC)
WRITE TABLE OF URESYM VS GAMMA (RESIOUAL ERA)
PLOT URESM VS GAMMA (RESICUAL ERA)
s AUMBER OF VALUES OF R FOR wHICH TABLES ARE WANTED

Se1) 114JJoRK
8,10 ML M2 M3 Me WS, N6, NT,KTEST
8,110 DTAULDG,{RIR) 4Kl ,KK}
8p1) (KTIK) K21, KTEST)
3.1419%927
()}
NEJL) EL2C,
9 KA®]l,KTEST
T(KA)
)} = R(K)
fel,1!
1
) = FleCTAV
(1) = PleTaUL])
163) = SINGTAUPILL]))
1(1) = COS(TAUPI(I))
NUE
.EQ.1) GO YO &0
Jsledd

Progrdm MA XU and subroutine PL TOPT,

e
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19

60
70

15

110
23

120
33

130
43

140
33

150
[ 1]

160

FJ oy

Gld) o Fyepg
CONTINVE

GO 70 70

WARNING « READ STATEMEAY CONTROLLEC ay I STATEMENT

READIS.11) (GUd),ge1,yy)
00 39 Jay,y,
00 29 Kep,kK

UMAX(K) o 0,0

UMINIK) « 0.9

CONTINE

€1 = GlUI/11.=6() 060y

€2 = PleGiy)

00 89 Mel,10

FN s u

FGP = FNsc2/10,

€GP M) o Cas(Fsp)

CONTINUE

D0 49 je1,qy

SCTPI(L) « SIN(GIJ)eTAUPI(]))
PAREN + SCTPIII) - GlaresTAUPI(])
IF(2.67.100) Go 1o s

BRICK = 0,0

60 10 1¢

1F13.67.200) Gn 1y 29

IFIN1.€Q.1) 6O 1D ;10
60 10 10

BRICK = $GTPI(1~133)
6o 70 to

1F11.67.300) co 1o a5
IFin1.£0.1) 6o 10 129
60 10 20

BRICK « SGTPI(1-103)
60 T0 20

IF11.67.400) Go 19 45
IF(M1.€Q.1) Go Tn ;3n
G0 70 20

oNICK » SCTPII1=102) o SGYPI(1-300)

60 To 29

IF11.67.500) 6n 1o g

1FINL.EQ.L) GO TO 140

60 70 30

BRICK = $GTPI(1-100) o SGTPI(1-330)

G0 T0 30

IF(1.5T.400) 60 1o o

TF(NL.£Q.1) GO 1o 18n

G0 rn 3

SOICK = SGTPI(I-103) + $GTPI(1-390) , SCTPI(1-500)
60 70 30

1F(1.G74703) 6o 10 75

IFINl.£Q.1) GO 10 ;49

GO TO &3

SAICK = SGTPIII-100) + $61P1(1-300) , SCTPI(1-509)
G0 10 40

Figure 3, Program MAXU and subroutine PLTOPT,
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73

170

IFI1.GT.000) GO TO 85

1FIN1.EQ.1) GO TO LTO

GO TO 40

BALCK = SGTPII{1=100) ¢ SGTPII1-300) ¢ SGTP1{1=300) ¢ SGTPI{[-T00)

GO TO 4C

83 1F(1.67.990) GO TO 9%

180
9

1F({M1.EQ.1) GO TO 189

GO 10 50

BRICK = SGTPI(1~100) ¢ SGVPI({I=300) ¢ SGTPI(I=-500) ¢ SGTPL(1=T00)
GO 10 50

1FINL .EQ.1) GO TU t90

GO TO %0

190 BRICK = SGTPL(1-100) ¢ SGTPI(1-370) ¢ SGTPIL1=5GI) + SGTPI(1-TOO)

L ¢ SGTPL(1=-9%0)
GO TO 50

10 BRACK = SGTPI(I}

G0 10 103

Q
20 BRACK o SGTPIII) ¢ SGTPLII1-200)

GO 70 10¢

30 BRACK = ;GYPI(!) * SGTPI(1-203) + SGTPI{1-400)

GO0 70 100

40 BAACK = SGTPI(T) ¢ SGTPI(1-200) o SGTPI(1-400) ¢ SGTP1{1-600)

G0 7O 10¢

30 BRACK = SGTPI(D) ¢ SGTPI{1-20D) SGTPI(1=400) ¢ SGTPI(1-690) ¢

1 S6TP1{1-0833)

100 HS = ClePAREN

TF(ABS(GIJI=147) LT 1 E=3) HS3).Se(STAUPLLT)-TAUPTI(1)eCTAUPL(T))
DELTP = C2eBRACK

DELTM = C2eBRICK

00 59 Ksel,KK

UlI+K) = HS ¢ R(K)e{DELTP - ELODELIR)

TFIUCT oK) GELUMAXIKY) UMAXIK)eULT,K)

TFIUCT K} LELUVINIK)) UNINIKISULT KD

LML JoK) & UMAX(K)

59 CONTINUVE
49 CONTINVE

00 99 KslykRK

UR(K) = Cle(CGP(101+1.) o C28R(K)SICCPIL)4CGP(B)4CGPIOICGPILI
1 CGP(z’-!LOlCG°l9)‘CG'(7)OCG'(QDOCGP(3lOCG'lll)D

URESM{J K) s SORTIUITIKISULIL,K) ¢ URIK)OURIK))

99 CONTINUE

D0 69 KAl ,KTEST
Ko KTIKA)

UMAXA(KA) = UMAX(K}
UMINAIKA) ® UKINIK)
IF(M2.NEJ1) GO TO 69
C=0

1
7 WRITE(6,132)

IF(ML.EQ.L) SRITEL6,92)

TF(ML NEJL) WRITES64102)

WRITE(6,82)

WRITE(642) RIK)GLI)JUNAXIK) oUMINIK)

11 = 1 ¢ 1Ce200

12 = 11 ¢ 49

MRITE(6,12) (!IU!l).U(IvK).YAU(loscloU(IOSO.K!|!AullblcC)'
1 U(IOIJO-K!c'l“(l‘lSOl-U(l'lSO.lD.l-ll.lZl

Figure 3, Program MAXU and subroutine PLTOPT.



AU b oot -

IFIIC.GE.4) GO T0 s9
1C = IC o}
Goror
69 CONTINUE
IF(M3 . NE, 1) GO 1o 39 .
lF(AOD(Jol?).N?.lD GO 710 17
WRITE(64832)
WRITE(S,02)
IF(NI.EQ.ID WRITE(s,92)
HAL T WRITE(0,102)
WRITEI16,22) lntlxn.x-x.xrssr)
WRITE(6,122) (RA(K)'K-lpKlESY)
17 wRITE(8,32) G(Jl.(unuux).x-l.xnsn
WRITE(4,42) (unxxntx).x-l.xresri
39 COvTINUE
IFtN6.NEL L) GO T0 12%
Co 139 KAs]l,KTEST
K s KT(xs)
ICE « 9
200 (] = 1 o 18Cegce
L2 = (1 ¢ 49
WRITE(L,232)
TF{M1.E0.1) WRITE(6,122) RIK)
IFIM]l.NE. 1) WRITE(6,52) RiK)
WRITE(6,62)
WRITE(5,72) IG(LI-URESF(L.K)-GItOSCD.URESM(L‘SO.K).GILOXCOI.
1 URESlILOIOO'K).t-Ll.LZD
1CE = ICE o ]
IF(ICE.LT.3) Go TO 299
109 CONTINUE

WARNING**¢s0p  1Opy HAS READ CaRD

[a X ¥ .Y

12% I1F(me.z2q,.1) CALL PLTO’Y(I.G:UH.JJ:KK)
IF(MY,2Q.0) caLL PLYOPT(ZvG»URESNoJJo&KP
REWIND 9
ST0P
EnD

SUBRUIT I 1iE DLTDPY(L'XpV'JJvKK)

DIMENS [ON X(500),v(500,%)

CONMOV/DIHENS/N.H'K.ICURVE(E.F).XAHIﬂ.thAI
1 FCRMAT(161S)

N gy

READ(S41) Nnwe T}

DC 9 Kal,AQPL TS

READ(S,1)

REAL(S,1) llCURVF(K.JI.J'lv”)

IF(LEQ 1) CaLt SCALEb(l'V'7plOcl-2.0l

TFIL.BQ.2) caLy SC‘LEb(l|Vu7ul0'?vZ-UD
9 CCONT INUE

RETURN

END

Figure 3, Program MaXxuy and subroutine PLTOPT,



The calculations in the bulk of the program are done so as to
avoid repetitious calculations of the sine and cosine; arrays such as
TAUPI, STAUPI, SGTPI are precalculated, keeping the running time
to a reasonable 5 to 8 min on the 7094, A better method, though,
uses recurrence formulas (ref 8) to generate all but the first members
of the circular functions with multiplications.

When y = 1, equation (17) has a pole; thus C,,after statement 29,
becomes zero on the 7094; HS in 100 is thus zero, but the IF state-
ment following it -~— allowing for binary roundoff —- calculates the

limiting value obtained by L'Hopital's rule.
Many of the variables have names suggestive of their counter-

parts in the previous sections; hence most of the arithmetic can be
followed easily.

6. PROGRAMMING THE t°exp(-8t) CASE

A simple analysis of the limiting behavior of equation (31) shows

that as £ =@, w —=T°e¢" , 7 x— 2, andw x——r4/e2=0.54134“'.
When £ = 0, w — 0, and méreover, from (Mf: when £ 1,
w ~ 28(sin €~ = 3E cos §7) 4 FA(6+ 4T +1%)e” (38)

which is a sinusoid with a small contribution from the transient term,

It is clear then that for large £ we may be certain to find the
maximax upon scanning the domain of £ between 1 and 3; likewise, for
small £, we may expect the first peak to be the maximax. The
situation for intermediate values of € is not clarified by a brief
additional analysis: e,g., the transient term has no relative maximum
at the level of approximation given in equation (38). Practically, this
question is readily solved by the analog computer, The results of
this study (details are furnished in section 6, 1) show that for
£ < 3, the first-peak criterion is valid, Also the criterion for € > 3
is that 1 < Tysax <3.

Based on these two criteria, a straightforward digital program
was written in FORTRAN to calculate and plot the shock spectrum,
A short explanation of the program is given in section 6, 2.

6.1 Analog Computer Analysis

An elementary circuit is sufficient for generating w(7), All the inter-
mediate functions required can be generated by linear equipment
(ref 9). The unscaled equations are;

18
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s

G =e-7

Gy’ = -kG,

G2’ k(G - G;)
Gy’ = k(2G; - G,)
H) = kE*( G, -w)
w’ = kH,

T’ =k =dr/ds

where all derivatives are with respect to s, the machine time, The
scaled circuit is given in figure 4, inwhich S, and Cw are unknown
scaling factors that dependon g, A table giving suitable values of

these factors ig given in appendix C. The constant ¢ determines the

Representative response curves for low, intermediate, and
high values of ¥ are given in figure 5,

The ease of Programming the differential €quation leading 10
these response curves Suggests the use of the repetitive operation
feature available on the EAI 231R analog computecr, (The 131R was
used here.) In this P EPOP technique, the differentia] ¢quation would
be solved in fast time, and the pParameter f swept in slow time. The
dynamic range of € and a fortiorj T unfortunately too great for
the analog €omputer; scaling Problems arise, Iy appears one can do
no better than divide the L-axis into sections and scale each section
separately, This naturally vitiates much of the attractiveness of
the method, which was therefore not pursued,

6.2 Digital Computer Program

The FORTRAN 1v pProgram to calculate the shock spectrum is pPre=
sented in figure 6, The main branch statement after DO 29 allows

calculation and search for a maximym for 1< <3 when £ >3, stor-
ing the maximaxesg in WMAX(J)., 11 £<, asemiglobal algorithm jg
chosen, which, starting from - = 0, Sweeps past the first maximum
in fairly large steps, reverses two steps, cutg the interval by five,

The shock S8pectra for all the forcing functions are presented and
discussed in section 7.

¥ One of several subroutines documented by HDL for internal use,
19



7. RESULTS

The chicf results of this study are the shock spectra shown in figures
7 through 12, As can be seen, figure 7 illustrates a family of forced-
vibration spectra for different values of R corresponding to the forcing
faunction of figure la, Figure 8 is the analogous family corresponding
to figur» lb, Figures 9 and 10 are the free-vibration spectra for the
same two cases, Figure 11 shows a forced- and a free-vibration
spectrum on tne same graph for R - 0,0l, These are the upper
curves in figures 7 and 9, Finally, figure 12 is the spectrum for the
forcing function of figure lcs These results have not been observed

in the literature,

The important features of figures 7 through 11 are the resonance
peaks near v = 1,5, 10, 20, and 30. If we were to ''continue' the
half-sine pulse to a continuous monotonic frequency, theny would
measure the natural frequency of the system with respect to the
former frequency, When there are five positive impulses per half-
sine pulse, the system responds to this repetition rate of ten per
"cycle'" in giving the resonances at 10, 20, and 30 with negligible
augmentation of the major peak of the pure half-sine pulse spectrum
(R = 0), Additional energy is fed into the system when interspersed,
negative impulses are added; the amplitude of the spectrum is thus
larger except for suppression at values of v at even multiples of 10.
The suppression is due to the cancellation of the kinetic energy of
the system oscillations by the forcing function, This happens when
the system has just completed an oscillation cycle and is then
s, ruck" by a negative impulse. The velocity at this moment is
maximum in the positive direction, but the force is in the negative
direction,

In figure 11, we see how the residual spectrum may predominate
for certain values of -, in this case for v < 1; one must in general
then consider both the forced and the free era,

The tabular data, not given here, show that in no case is the
negative maximax larger than the positive for the forced vibrations,
(They are equal in the residual era.) The trend of the data, however,
strongly suggests that for resonances at larger v, the negative
maximaxes may become larger than the positive, Moreover, some
results generated for R = 0,2 with the earlier program showed that
for the alternating impulse case, negative maximaxes were larger
near and at the resonances for = 10 and 30, Thus, although not
investigated here, negative maximaxes may be very significant
for large v and large R.

20
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39
100

80

OIMENSION TAU(1000), TAUS(1000)9EXMTAUIL1000) o XI(350) ,WNAXI350),
1 A(330),A1(350),A20330),811250),820123¢C),83(35%0)

FCRMAT(LOIS)

FCAMAT(0F10,.5)

FORMAT(LH])

FCRMAT((2CK2(TX2HX L LIXGFUNARSGX))//)
FCAMAT{{2CX2(0PF10.2,1PE20,.7)))

FCRMAT(ITXSHIL o [4y5N5KJ) o [3)

FCRMAT(3TXOHCXT » FS5.2,5SKTHDOTAU = FT,4/3TXOHDELTAM o FS,2,35X4H2 »
1 Fl.8/77)

READASE) T10JdJedloT2NReNY, INENT,ICOCE

KEAD(SoL1) OXIoNTAU,DELTAM,Z

IT = NUMBER CF VALUES COMPUTED JF caCH RESPONSE FUNCTION
JJd o NUMBER CF POINTS [N THE SPECTALM

11 = PLOTTING OPTICN (PLOT WHEY lls))

12 = WRITING CPTION (WRITE TAALS T RESULTS WHEN 12s1)
Ox1 = XI INCREMEAT

DTAU = TAL INCREMENY

DELTAM = INITIAL INCREMENT [N TAW REPRESENTING TaU
DELTAM = LPOATEN [INCREMENT

t = cAROR CRITEICN IN TAY

OC LUOP 9 GENERATES ARRAYS RASEN ON 1,LT.TAU,LT,2

DC 9 fsl,ll
Fl = |

TAULL) = FleCTAU ¢ 1,
TAUSEI) = TAL(TI)eTRULD)
EXMNTAU(L) = EXP(~TAULL))
CONT {NUS

0C 19 Jsl,JJ

WPAX(J) & 0.0

Fd =)

XI(4) = FJeOx|

X1S = XI{J)ex1{(J)

ONEPXS ® |, ¢ XTS

OKPXSS = CNCPXSeLNEPXS
ONPXSC = CNPXSS®CNEPYS
AlJ) = 2,ex1(J)/70MPXSC
AlLL)) le = ?,0X18

A20J) “xl(Jlef2,=x]S)
BitJ) = =A{})ea2(y)

B2(J) = 4,0X]S/INPXSS
83(J) = XIS/CNEOXS

CONT [wut

0C 29 Jot,4)
IFIXI(J)eLlTo2,0) GO TO 100
DC 29 sel,11

SINKET o SINIXIIJ)eTAULT))
CCSXIT o CCS(XItJ)eTAUCTD))
Woa A(D)elALEIIOSINKIT ¢ A2€J)sCUSKXIT) ¢ (DBL1€J) ¢ B2UIIeTAUL]) o
L E3(JVeTALS(I))oCXMTAL(])
TFL AeGZoaMAXIJY) WHAX( ) ) oW
CONT [MUyS

60 TG 29

Taw o O4v

DELTA: o CELTAM

WFOLOL = C.O

WHOLN2 s C.0

Figure 6. Program TSEXP,




RO n toa, e

60

50

70

29

10

30

20

TAM = TAM ¢ CELTAN
XITAM & XJ(J)eTaM

Woe ALJ)elALLJ)OSINIXITAN) o A20J)eCOSIXITAM)Ie (BRLJ) o B2(J)eTAM
L ¢ 83(J)eTAMaTAV)eEXP(=TAN)
IF{W.LT.wCLCL) GO TO SO

WMOLD2 = WHOLC]

WHOLDL =

GC T0 00

TFIOELTANGLT.2) GO TO 7¢C

TAM = TAM = 2,00ELTAN

WHOLOL = wWOLE2

DELTAN = CELTAN/S,

GC To &0

WHMAX(J) = WHCLDL

CONT INUE

IF(I1.NELL) GC Y 10

CaLL SC‘LI'(XI.HPAK.JJnNI.NV.IOENY,ICCDE)
REWIND 3

TIFL12.N6,1) STOP

JCOUNT s ¢

WRITclo,2)

WRITE(Ly32) 11,04

WRITE(0e02) CX1oDLTAU,DELTAM,2

J1 = 1 ¢ 100e4CUNT

J2 = Jl ¢+ &9

WRITE(6,12)

WRITE(6,22) ‘XllJ)cH"ll(J’vKllJ050,'HPAK(J‘SO’vJ'JloJZl
JCOUNT = JCOUNT o )

IF(JJ.L2.10069CAUNT) GO TO 20

WRITE(Gy2)

6C Tu 30

sTor

ENC

Figure 6. Program TSEXP,
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Figure 7. Forced vibration spectra of five positive impulses on a half-
sine pulse driving an ODOF system,
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Figure 10. Free vibration spectra of ten alternating impulses on a

half-sine pulse driving an ODO

F system,
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Figure 11, Comparison of forced and free vibration spectra for ten
alternating impulses; R = 0,01,
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APPENDIX A.— EVALUATION OF COEFFICIENTS OF PARTIAL
FRACTION EXPANSION

If in (33) we multiply by s and let s -,

A+C=0 (A-1)
If we let s — 0,

B/ +C+D+E =1/¢? (A-2)
If we multiply (33) by {s+1)® and let s — -1,

E=1/(1+£") (A-3)
If we multiply by s +°° and let s —i*,

Aif+ B = 1/(1 + ig)f (A-4)
Equation (A-4) yields

(AT + B)(1 + 3i% - 327 . eg?) =] {A-5)

which upon expansion and equating real and imaginary parts yields the
pair of equations

(1-37)B-€7(3-7)A =1 (A-6)
and
(3-°)B+ (1 -389A=0 (A-7)

The determinant of the coefficient matrix reduces to (1 + °}*, The
solutions are readily found to be those given in (34a) and(34b)., Finally
D is obtained from (A-2)
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APPENDIX B - INTEGRATION BY PARTS OF THE CONVOLUTION

INTEGRAL
One defines .
I= ve Vging(r-v)dv (B-1)
o}
J= _,' vve VcosF(1-v)dv (B-2)
a
-
K=6j ve~"Vsinf(r-v)dv (B-3)
L=I ve~Vcos #(t-v)dv (B-4)
'r'"'
M= e Vsing(r-v)dv (B-5)
o]
v ,
N=_,) e~Vcos F(-~v)dv (B=6)

where w = 21, Integration by parts, retaining e~V under the differential
each time, yields th¢ relations

I =2K-*¢J (B-7)
J=«"e"" ¢+ 2L+¢l (B-8)
K=M-rfL (B-9)
L =--e"" 4+ N+EK (B-10)
M = sin%- - N (B-11)
N =-e"" 4+cos® +fM (B-12)

whose solution for I may be given as
1487 = (1467 " e~ 4+ 4F (145 )re™" + 27(3-%"Je~"+

2(1-3%F")sin? - 2%(3-%" )cos?- (B-13)
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APPENDIX C. -~ SCALE FACTORS OF ANALOG CIRCUIT

Table CI summarizes the essential, approximate scaling data
obtained by trial using the circuit in figure 4. The potentiometer num-
bers in the five columns at the right are, of course, arbitrary. The
circled numbers denote gains on the EAI 131-R analog computer. The
values and gains are easily translated into corresponding values for
computers having different gains available,

Table Cl. Scale Factors and Potentiometer Settings for Analog Circuit

e [k C S 42 24 45 48 52
0.2 |2 [500/2500 |.5437 YO [.1259 {9 | .54132 [,4 | .4
0.5 | 1 '125]| 250 | ,2718 10 {.6796 2. | .3383 5 | .5
.o 1 "100| 100 |.2718 10 |.6796 2 | .5413 1 1
V3 11 (100 100 |.2718 40 |.6796 2 | .8120:2 ® [.6%
2,0 (1 (100 100 |,2718 10 |.6796 Q' | .4331 L] .875
3.0 01 [100| 100 {.2718 1) |.6796.2 | .9744 D |.910
4.0 ' 1 |100] 100 2718 £0 | .6796 2 | 866110 | U .8@
5.0  0.2|125| 100 | .5437 .2718 .5413(5; .25 | .8(5
0.0 . 0.1{125| 100 | .2718 . 1359 .5413 {0 |.125 | .8 I'fo
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APPENDIX D.—TABLE OF SYMBOLS

mass

spring constant (on analog diagram, used as time scale
factor)

displacement
time
forcing function

maximum value of half-sine pulse forcing function
(excluding impulses)

given decay constant of one forcing function

natural frequency of system
static displacenent

response factor

duration of half-sine pulse

normalized time

angular frequency characteristic of forcing function

normalized natural frequency

time at which u reaches a global maximum
value of u at its global maximum

strength of Delta impulse function

ratio of impulse strength to half-sine pulse peak

scaled response factor

scaled normalized natural frequency
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