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ABSTRACT 

I^f«    / »olauor.. in graphical form are pre.ented for the .hock 
spectra of a one-degree-of-freedom system .ubjectcd to some ideal- 
ized forcxng functions.    Elementary procedures are outlined for 

^r^trriÄur ^and digitai com^" ™'™ - 

1.    INTRODUCTION 

5acementPof f HHn'       en«}.neer »«' knowledge of the maximum dis- 
of a characUri.ticVfe«member.0fua 8y'tem " de8ired " a '™*™ 
a .hock .tectrum /"f n^0f ** 'y8tem-   Thi8 »P^trum is called a SHOCK spectrum (ref 1, 2) when transient-type forces,  such as in 
an explosion, are applied to the system. 

mnnpi* '^*tem !Jf intere8t in ^i» 'epo" is a one-degree-of-freedom 
(pDOF) undamped system with a linear restoring force,  i e      a

eetl0m 

feÄ"1"8"?"^ 8y',tem'    The intere"t lie» fn tte effe'ct'of dif- 
imtülly atTe'st   -Gr'H  The .'^^ i8 ^^ limited to a '^ ered. accelerations and velocities are not consid- 

th. no.^n0t ir"levant aether the maximum displacement occurs in 
^lvPl,a. i f.

0' Ae negative direction.   A structural member gener- 

Two chief types of forcing functions are considered: 

(1) iid*"'81116 PUl8e With suPerimP08ed Dirac impulses 
(2) A tsexp(-Pt) function. 

Pulse (1) will have impulses of two types: 

(la)   five equispaced.   equistrength,  positive Dirac 
impulses with the first at time zero and 

(lb)   the preceding with five additional negative impulses 
symmetrically interspersed (alternating impulses). 

A Dirac impulse of strength F, will be one for which 

JF, 5(t)dt   = Fj 

The scope of this report is limited to presentine the mathe- 
matical detail, used in evaluating particular shock s^ectrT.    Their 
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ttrac impulse, superim^.ed Tnl hlu    ■ e f0r.Cin8 fun"ion having 

through 6 more detailed information <.       developed.   In .ections 3 
result, for „veral ca.e. are^ivS      pre8ent^; in .ection 7 the 

i^-GENERAL DEVELOPj^r OF 701 n 

We are concerned with ODOF svstem«    * 
the equation U* systems,  i.e..  systems described by 

mx" + kx = F(t) 
The rest conditions assumed are 

x(0) =0,   x'(0) = 0 
The forcing functions K(t) Con.idered are ^^ ^ ^ ^ 

a .e^/^-^^^celerations in our ODOP system ia not 

fnVpeonsi?tnioigUre 2 •    Let X ^ deSed by^y1!; Ther'" the «-"alization in position experienced by the ma«, m y  ^' ^here / and z are chanees 
in relation to their rest or refe^no       and.the «round.  'espectivelv 
motion of the system mayVe iritt« P08,ti0n8-    Then ** ^A 

+ kx 

(1) 

(2) 

mx F(t) - mz' —    \ " / SKA 

(3) 

F(t) 

^"^    ^-^-ode.org.nera,^, d ODOF sysu-.-n. 



Normalization of the variables in (1) will have two advantage!: 
(1) the equations to be solved are easier to manipulate, having a 
minimum number of essential variables and parameters; (2) the 
solutions represent many cases resulting in economy of computation 
and representation.   The first step is to normalize these variables. 

One may define 

F(t)   = FufU) (4) 

where Fo is the peak value of the forcing function excluding impulse 
components (fig. 1).    T we further defir» 

i:N
s = k/m,   xs = Fo/k,    u = x/x, (5) 

equation (1) reduces to 

u" /'i)N
2 + u = f(t) (6) 

Derivatives so far have been with respect to I,    In (6), m^ is the 
natural frequency of the system,  xs the static displacement,  and u the 
response factor.   We have yet to normalize tine; one may,  in general, 
define a unit of time tc and let 

T =t/tc (7) 
Examining figures la and lb, we see that it is most natural to define 

• Ftc = ir (8) 

where i p is a frequency characteristic of the driving function.    To 
allow (8) to represent the situation in figure 1c, we may allow 

S = J)F/ir = l/tc (9) 

The characteristic forcing frequency is thus wB and th? peak value 
occurs at 2tc.    Furthe» more, we normalize the natural frequency as 

V=V"F (10) 

With these relations,  (6) becomes 

U"(T)/VV, + u(-r) = f{T) (11) 

Without ambiguity, derivatives of normalized variables are with respect 
to T.    In addition,  some liberty has been taken with the symbols u and 
f; as functions, they are not the same functions of T that they are of t. 
The symbols in (11) will, with no real ambiguity,   represent the new 
functions.    See appendix D for a table of symbols. 

The next step in the analysis is the solution of (11) for u.    For 
the functions presented in figure 1,  the solution may be carried out 
explicitly.    There are several known ways of achieving this.    The 
author has chosen the Laplace transform method,  but any of the other 
standard methods are equally quick. 



or ft^^^ for each value 
^ the expllcJt 8olution u may V d^f:;en^e--d very .i^e runction. 

where  TM is the solution of u'M - 0      T. . 
case» because of the presence of ,™..V T        l8 n0t fea«ihle in our 
to be no better recourse th^J   mult>Ple peak« in u.    There aoDear- 
o/vaiue,s of r. ^tZ^tlli'^U^^ l0r a '»^"^r 

with expeHmental tor^tt^Z^rT™ " """ib^d to leal 

an^th. virtue of ad/ed S^^X: «^ ^r^ 

Except for large values of v    tk 

not seem worthwhile to improve the accur*.      K   he reSUltS'  * d°e* 
gence algorithms. H e accuracy by use of local conver- 

rorce^viKro'n^r^t isVeS'   ^ ge?era1'  t0 findi"8 uM i„ the 
free-vibration era (AsJdüal^e"^,' a^^'  t0 "^ the "M^" "he 
may be larger than the uw in thelZ?L C,erUin vaJu«8 "^ ■•  it 
trans ent-like functions (^f fig    Ic^no fr6"- J" the ca8e ot s°™ 
strictly speaking.    In tho^ cf^t ih^      f^16""0" era e^tS. 
may be simply derived from the fo"ced era     ^    eXi8t'  the "P-trum 
dampmg is absent.    Thus    from Z      ^      * response factor u.  when 
we must have S'  fr0m ""«"deration of constant energy. 

2kx?(tc)+7mxX)---ikxM- 
where t is chosen to be t    to h» = u (1^ 
to the 8y8tem by the ll^luoZ*  ThltL1,1' ^"^ haS be- *<"** 
to the maximum potential enercv in'.hr ' """^ i8 ^'^ equated 
^auon of (12) results in the expression   free-Vlbrat'°n era.    NormaU- 

k.  u . UM =^'(l)+ru'(i)/vF]p- 

o. obtaming the free era spectrum ^ ^anrjf't^'r lterna,iVe "^ 
be ml* ■-.related by a constant factor^th.   1 ^ntivr spectrum be more direct. "cior to the free spectrum — may 

d^) 

(13) 



3.    HALF-SINE-PULSE-TYPE  FORCING FUNCTIONS 

As a first specialization of equation (11), let us consider driving 
functions of the type given in figures la and lb.   Since we are dealing 
with a linear system, we may find the responses to the pure half-sine 
pulse and the delta function train separately, then add the two pro- 
portionately to obtain the total response.    (We may not, however, add 
their separate spectra to find the total spectrum.) 

Since we use (13) to obtain uM directly in the free era,  the response 
is needed only for T s 1.    The normalised half-sine pulse may therefore 
be written as 

fHS('r) = •inT1T ^     ' 
and the equation of motion reads 

u"/v2w2+ u = sinxir (l5) 

By standard methods we obtain from (15) the transfer function 

"HS(')=(.g+ffs^vV) (16) 

With the aid of a partial-fraction expansion, one obtains the desired 
inverse transform 

UHS(T) =-^^5 (sin vTir - Ysinrir) (17) 

Next,  for the finite train of positive delta functions, we have 

fD+(T)=MT) + MT-VB) + - •  •+MT-<rn-%) (18) 

whose transform is 
FD+(s) = l + e-**+-  •   • + e-^-y"* (19) 

The function fD+ represents the situation after the mth impulse and 
brfore the m+fth, where m = 1,  2,   3, 4,  5.    The train of negative 
impulses is  represented by 

fD-(T) = -fD+<T-,/^ (20) 

and has a transform 
FD.(s) = -e-8/1"FI>)Js) (21) 

It follows that the transfer functions for these cases —the left side 
of (15) being still valid — are 

Uu^s^ fvVV^+WJlFD^8) (22) 

^ üD.(s) = -e-^ U^s) (") 

whose inverse transforms become 

UD^T) = -viTfsinvTir + 8inv(T - VR)I,+...+sin v(T-("H "^ )"' (24) 

10 



^)»-vW.inv(T.Ho), + .inY(T.,?t0)lr + inv(T.(2m..^)ir),   ^ 

t-TCel.^-^; tÄ-ce or m in (19) and aI.0 ,,„ 

Mne/S; ^^^^i--- ^ <"> or (2S, may be com. 

However.  toi^m^^Z 7^' ' '^ " ^ ,'^ ^«^ > «c^) 
never greater than five. aÄe liL^ »     0f term' in the •"«« i» 
pole, for ceruin value, of y whiÄauirtT artificially introduce, 
digital program. Y        Ch require .eparate handling in a 

.ineSr/e'reVJr1 eXPre'8i0n for th« ^rced re.pon.e to the half. 
u = UHS + »(uj^ + LuD  ) 

The substitution of (17M241    /7ei . u- »     »; 

f.  FORCING ^trN^T^o^, OF^HE TYPE t^.*. 

The t-dependent function may be written    r   h 

F(t)=C0tV6t ^   ^ ^-—V constant. a8 

The peak value of F(t) i. found to be U7) 

Fa = 4C0/B8ea 

Consequently (28) 

when we use (7, and ,9,. which together impiy that T = et. 
(^9a, 

11 



The usual liberties have been taken with the symbol f.    It is con- 
venient to rescale u and y as 

u = e3w/4,    5 = 7' 

Then equation (11) becomes 

w«/52+w =T8e-T 

Using the Laplace transform, one readily obtains 

W(') = (sg+g'?(s+1F 
One may proceed now by two different paths.    The partial fraction 
expansion may be effected and the inverse transform obtained from 
the fragments; or the convolution theorem may be applied followed 
by an integration by parts. 

4. 1   Partial Fraction Method 

Writing 
 1 
(8s+?9)(s+ll? 

one obtains by standard methods (apx A) 

(30) 

(31) 

(32) 

^7ll*(7V*(7fiP 

B = 

g2-3 
(TTTT 
1-3^ 
TTTtT 

and 

C = -A 

D = 2/(l + f)s 

E = l/d + l3) 
The  solution follows by substitution of these coefficients into the in- 
verse transform obtained from (32) and (33): 

W(T) = 2FafAcosf7+(B/?)sin?T+(C + DT+EsTa/2)e-T} 

(33) 

(34a) 

(34b) 

(34c) 

(34d) 

(34e) 

(35) 

4. 2   Convolution Method 

Applying the convolution theorem to equation (32).  one obtains the 
solution to (31) in the form 

T 

W(T ) = 5 j vae"vsin l-(T - v) dv 
o 

(36) 

12 



i..^^;^^^;^^^^--^.    Thi, elegant .oiution 

K^ntn reit -:JEr*°:r^^ ^ intirthe 
(B.I3, developed th^Vu^^^Knt^ £?* ""'  ^™ 

For reference, the explicit .olution i, given belw a8 

w<T)=TT7^F{L(l-3^)8in5T.?(3.;a)co85T]+5[(3.53) + 2(l+?2)T + 

'/*(l + F=)Vje-T3     (37, 

5.    PROGRAM FOR HALF.STMP--pULSE FImrT^KTC 

The FORTRAN IV program does the following: 

tabled. (1)   The re8p0n8e factor u " calculated for 0 < T < i and 

iZed natural /requ^cyT UM,8 "' ^^ " a funCtion of >.   the normal- 

(4) Tne positive uM's are graphed against v. 

(5) The residual uM-s are tabled and graphed. 

^ich^irorgÄjribiutie'r^irrhave brn --^p—ea 
selected individuallyf   These Ire'no^T,        ^reCeding item8 t0 ^ 
program MAXU in «^ure 3.    The8e cornmem ' T ^ COmm^ to the 
the positive impulse case can be sel^,  ^!    f 8h0W'  mo^over,  that 
that special test values of vmav be r^H -^  u tting  M1 be "°^nity: 
M2 = 1); and that tables for a reduced n.^ ^^ M5 = ' (u^d with 
chosen when KTEST < KK     The n.A   n,^be'of R values may be 
represented by the KT a/r'ay!      partlcular v^ues of R desired are 

contaVedtreSing1 ^brr^e^T^"^ ^ U8ing the f— 
is read in; for each plot (indexed bvK»M       .    e nUmber o£ Plot8 

ICURVE array; these values represent M  ^ '" read int0 the 

make up a family of curves.     epre8ent the M v^^ of R chosen to 

.cale^^fLli; ifZT^oT^VlT ^^"^ ^ALEZ* _ 

^p-ndeTo^hT^"--^" 

77jne ^ 8eVeral 8«b-«ine, documented at HDL for internal use. 

13 



DINENSIM  T»U(lCOOItT»U»HlOOOIt$T«UMaaOOIi$GTH«HOOItUUOO0i5» 
l,CT»üMlllOO0I.UH»KI5),U«IH«»l.mJI,»Tt5I.U«l5l,CCm0l.«*«»I. 
2 UNINAISItUM*X>(5l 

OINENSIOK  CCS0ei.UHI500.SliUM$N<5CO.SI 
i rmMTiuisi 

'll '2"*TI"15OUMR  ■   FT.*,lOX»HC*t««*   •  FO.2.10KTMUMX  .  IPClt.l, 
l  lOKTHÜNIN •   1»E15.7//10X*(TXIHT12XIHU9XM 

12 M«M*T(tlOX*14WM*.9tl«20.7»n 
22 PORMTt        mSHCMMUSmTHUlUX  ».Ft.*) I 
32  FWN«T(/llXOFF6.2ti"E29.T) 

si FS**TIITI<JOX"MJOSITI« IMPULSES «ESIOUU SI«EC«UNICX*M« . , 
1 FT.«///) 

«2  F(*N*TtCl»X9«2X9MC*"»W«X»MUM*X*X))) 
T2 F0«N»T((l»XSI9PF0S.ltlFEU.T))) 
■2 F(»»»»TI20X2»HF0I»CE0 Vie»«TIOM SFECTrtUM//) 
«2  FoJ»WTl«xJ5HT<:N  ALTERNATING   IMPULSES  ON  A  HALF-SINE  PULSE//) 

102 F0«NATI20XOHFIVE   POSITIVE   IMPULSES  CN A HALF-SINE PULSE//) 
112  FSMATIIOXMHALTEPNATING  IMPULSES AESICÜAL   SPECTAUMIOX^HM   .   , 

I FT.*///) 
122  F0HMATI1TX5ITXTHUMIN R'F6.*)) 
192 FORMAT) 1»-1) 

|| NLMBER  OF   TAU VALUES 
JJ NLMBER OF  GAMMA VALUES 
KK NLMBER OF   R  VALUES 
Ml   ■  1 ALTERNATING  IMPULSES 
P2   •   1 MRITE   TABLE  OF  U  VS  TAU   IFORCEO  ERA) 
M9  •  1 «ITS   TABLE  OF  UMAX,UM|N   VS GAMMA   IFORCEO ERA) 
MA   •  1 PLOT  UMAX  VS  GAMMA   IFORCEO  eRA) 
MS   •  1 READ GAMMA  IN  IREAO CARCI 
M«  -  1 MRITE   TABLE  OF  URESM  VS  GAMMA   (RESIDUAL  ERA) 
NT •  1 PLOT  URESM VS GAMMA  (RESIDUAL  ERA) 
«TEST  •  KUMBER  OF   VALUES  OF  R  FOR  dMICM  TABLES  ARE  «ANTED 

REAOIS.l)   IIiJJfKK 
REAO(till   M1,M2,MJ,MA,P».M6.MT,KTE$T 
REAOISfll)   DTAUt06i(RIRIfK«ltKKI 
REAOIStl)   (KT(R)tK>l.KTEST) 
PI   • 9.1A199IT 
EL  ■ Ml 
IF(Ml.NE.l)   EL'C. 
DO  114 M>1«KT«ST 
K  •   KT(KA) 

119 RA(RA)   ■   R(K) 
DO  9     1*1 ill 
FI   •   I 
TAU(I)   •   FI«OTAU 
TAUPKI)   •   PUTAUIII 
STAUPKI)   ■   SINITAUPKII) 
CTAUPKI)   • CO^ITAUPKD) 

9 CONTINUE 
IF(MS.EO.l)   GO  TO  60 
DO  19     J'liJJ 

Figure 3.    Progräm MA XU and subroutine PLTOPT. 
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'WiPIUWWliiiiiin  

FJ  ■ J 
GUI   * fj,0li 

»• coNTiiiue 
CO  TO TO 

c       «MM« . M10 $T4TMeM CO((T(IOUEC 

UMINIKI   .  0.0 
>« CONTINUE 

00 19    H.1,10 

*GP   m FN>C{/10. 

•' CONTINUE 
JO ♦•     I'litl 

r"Kc;.o6 ^'Tö?^-"^"«. 
•«ICK  .  fl.o 
CO  TO IC 

15  irii;"'200'  0"  TO 2S «M«.eo.ii eo ro uo 
CO TO 10 

GO TO 10 

IF.NI.|0.„  G0 T0 120 

uoG'S,5s;oSCTp,"-lo9.' 
iFiHi.eoa, oo TO i,n 

1,0 c'S'fS ;,'"""-'"• *s«TFn,.Mo. 

IF.J.1.|0.I,  60 TO  UO 

140c'S,5SJV0m,,-,M'*«TFI„.,M) 
" {»Ji.*8!;*?01 ^ T0 " Ml?'1'60" »»" 

1,0 c'S'fS  Jo""""^,   ♦   SCTFIMODO,   ,  SCTPM.-SOO, 

«F.Nl.fO.I.   00  10  i», 

U0 c'S'fS Co""'"-"«»  *   SCTFM.OOO,   .   SCTFMI.,0,, 

Figure 3.    Program MAXU a^      L 
MAXU and subroutine PLTOPT. 
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TS   mi.CT.SOO)   GO TO »5 
IFIN1.EQ.1I   CO  TO  1T9 

ITC  Ml« "SCTP111-1001  ♦  SGTMII-JOOI   ♦   SCTPHI-SOOI   ♦ SOTMU-TOO. 
GO TO «C 

»i   im.ST.900»   CO TO «9 
IFIMl.Eg.ll   CO  TO  IM 

ito ISICK "SGTPHI-IOO» ♦ somn-jooi ♦ SGTPHI-JOO> ♦ SCTMII-TOOI 

GO TO  SO 
9S   IFINl.EQ.l)   CG  TU   190 

140  «1«  "sGTPIC 1-100)  ♦  SGTM« 1-300)   ♦   SCTPin.563)   ♦ SGTPK t-TOO) 
I ♦ S6THII-M0) 

60 TO SO 
10  BRACK   •  SCTPIII) 

<•" T"  »OS .  ,. 
20 »WCK   •  SGTPIII)   ♦  SCTPI(I-200I 

)0 SS*«  "sGTPKD   ♦  SGTPMI-IOJ)   ♦  SCTPIII-*00) 

*0 IMI*  i^OTPIM)   ♦  SGTPICI-200)   .  SGTPI.I-OO)  ♦   SGTPHI-600) 

50 52*«  "«TPim  ♦  SCTPm-203)   ♦  SGTPHI-400)  4   5GTPni-60C)   ♦ 
1   SGTP|II-I)3> 

X007p.;B"GÜ?-t.-)).lT.l.e-S)HS.S.S..SUUPl(n-TAUPI.I..CT*üPm)) 

DELTP   ■ C2»S«*CK 
OELTM  •  C2*BRICK 
00 59  K>1|KK 
UlltK)   «HS   *   <IK)*(0ELTP -  EL*0EL1NI 
IFtUn,K).GE.UM*«(K)l   UH»X(K)«UII,KI 
IPIUIltK).tE.U»tIN«K))   U«IMU)-UII.K) 
IMIJ.Kl   •  UHAXIK) 

59 CONTINUE 
«9  CONTINUE 

SSiIu /eii'iccpiicin.i ♦ c2.«in).iccpaoi*ccpisi*ccp«6)«ccPU)* 
1 CGPC2)-EL.ICG»(9).CGP«7)*CGPI5)»CCP«J)*CGP(ll)) 
UMsitj.M   •   $Q«Tluni.«»»Uin.KI   ♦  URU)»U»UII 

99  CONTINUE 
00  69     M-liKTfST 
K •   KTIMI 
UMXAIKA)   •   UH4X(K) 
UMINAIKA)   ■   UNIN(K) 
IMM2.NE.1)   GO  TO  69 
IC   >  0 

T  kRITEI6il32) 
IFIMl.EQ.ll   IRITEI*,«) 
IFIN1.NE.1)   MNITE'.6tl02l 

MRITEI6I2I   RIK)tG(J)fUNAXIK)iU<4|NIK) 
II   ■   1   *   IC*20I> 

IR|TEI».1**,«T»UII).UII,R),TAU«I»50I,ü«I*S0,X|,TAU(I*ICC), 

1 uCI*lDOiR)|TAII(I»UO)tUll«lSliXliI«ll.UI 

Figure 3.    Program MAXU and subroutine PLTOPT. 

16 



miC.Ge.»!   GO  TO 69 

GO TO 7 
•» CONTINUE 

IMM.«l£.ll   CO   TO  J9 

MiTei»,««) 

IFINl.NE.ll   N«IT«(o,l02l 

::i«r^iS:'S;  
ifiNö.Nt.n GO TO m 
CO IJ»    M.l.KTEST 
"  •  KT(R«) 
ICE   •  9 

»00  U   . l  ♦   is-,,Cj 
L2  • Lt   *  49 
««ITEU.UJ» 

Iwe   ■   ICC   ♦   I 
i«.   ''""•'•T.Jl   GO   TO  200 109  CONTINUE 

C """"^ "-"PT  H«  «e4o CMD 

«Et-INO  9 P,-T0*T,a«6.URE$N,JJ,|,K( 
STOP 
EM) 

N  .  JJ 

«E«0(S,n nop' T^ 
OC 9 «•l,\OPiT^ 
KfWIb.l)   M 

C 

CCNT1N0E :'',l-t*",<Y>M0,;,;,[,, CCNTlNue 
PETUHN 
tNO 

Figure 3.    program MAXU ^ ^^ ^^^^ 
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The calculations in the bulk of the program are done so as to 
avoid repetitious calculations of the sine and cosine; arrays such as 
TAUP1, STAUPI,  SGTPI are precalculated, keeping the running time 
to a reasonable 5 to 8 min on the 7094.    A better method,  though, 
uses recurrence formulas (ref 8) to generate all but the first members 
of the circular functions with multiplications. 

When >  = 1,  equation (17) has a pole; thus d,after statement 29, 
becomes zero on the 7094; HS in 100 is thus zero,  but the IF state- 
ment following it — allowing for binary roundoff — calculates the 
limiting value obtained by L'Hopital's rule. 

Many of the variables have names suggestive of their counter- 
parts in the previous sections; hence most of the arithmetic can be 
followed easily. 

6.    PROGRAMMING THE tEexp(-8t) CASE 

A simple analysis of the limiting behavior of equation (31) shows 
thatas f-oo, W-TV .    ^MAx—2.    and wMAX — 4/e' = 0. 54134'••. 
When ? -> 0, w - 0,  and moreover,   from {17). when 5« 1, 

w - 2?(8in?- -3?co8?T)+ea(6 + 4- + Tz)e-' (38) 

which is a sinusoid with a small contribution from the transient term. 

It is clear then that for large ? we may be certain to find the 
maximax upon scanning the domain of I between 1 and 3; likewise,  for 
small ?, we may expect the first peak to be the maximax.    The 
situation for intermediate values of I is not clarified by a brief 
additional analysis:   e.g.,  the transient term has no relative maximum 
at the level of approximation given in equation (38).    Practically,  this 
question is readily solved by the ana)og computer.    The results of 
this study (details are furnished in section 6. 1) show that for 
1 < 3,   the first-peak criterion is valid.    Also the criterion for ? > 3 
is that 1 <^MAx<3- 

Based on these two criteria,  a straightforward digital program 
was written in FORTRAN to calculate and plot the shock spectrum. 
A short explanation of the program is given in section 6. 2. 

6. 1   Analog Computer Analysis 

An elementary circuit is sufficient for generating W(T).    All the inter- 
mediate functions required can be generated by linear equipment 
(ref 9).    The unsealed equations are: 
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G:   = e-T 

Oj' = -kGj 

G2' = k(G1 - Qp) 

Ga' = k(2GE-G3) 

Hi' = k5B(Ga-w) 

w'   = kH! 

k = dT/ds 

*^^£::;:^p^ - 8> ^ machine time> Th^ 
scaling factors thi, depend ^5 'A'^^^. 

S3 and ^ are unknown 
the8e factors is given in append x C     Th   8,Vlng 8Uitablt- values of 

a- speed of the -corder^d^s0^^^^^?^;;-8 lhe 

Mgh^irrr^-rrf^^/- '-•   ^-r^ate.  and 

)h"-e%^e0^^^Tug^8
g
t8

thtehe
diuf;erefnti

1f
1 e(JUali0" '-^^ - 

feature available on the EAI 2  1R an^       '^ rePeti^e ope rflion 
usedhere.)   In this P!-POP te'hni 8uCOmputcr-    (TheUlRwas 
be solved in fast time; a^^Ja ^t^^-"'-1 ^uatioJ ^id 
dynamo range of ? and a fortiori ™T»f f       ept ln slow li™-    The 
noeha?fl0guC0rnputer: ""ling p/obfems a;£rtUnftely t00 ßrea, for 

no better than divide the 5-axis into^f ? '    It aPPe^S one can do 
separately.    This naturally"1."° 8ec,

u
10"8 a"d scale each section 

^e method, which was theLfo^e „o.Turs^ed^ ^^^^ °' 

<>.*   Digital Computer Prograrn 

sTehneteFd°?ffgreTPTrrain0bCra
a
1CUiate the 8hock 8P-trum is pre- 

calculation and search foTa"^ statement after DO 29 ä!low  " 
ing the maximaxes i^W^TT" ^ ' < ' < 3

I
Whe'1 ? > ^   "or- 

chosen   which,  starting from   ' - 0    .1   '  a8emi81°bai algorithm is 
in fa.rly large steps.   Reverses ^o'stZ^ ^V^ ""« ^ximum 
resweeps and repeats until the im^rtl? '   CUtS the interval by five 
WMAV th

T
eu0ther Path o{ »he p'    am    a

S ^ T*^ ^ lo^SV 
WMAX.    The SCALIT subroutine   w^-'-.u   St0rin8 the re*^* in 
x-versus-y plotting>  scales TAu'andWMAv' A-  "au8""* for simpl, 
tape (in low density).                              d WMAX.  and writes them on 

*.c"^r.k.xr,!'" *" "■• "■""■' '"""■>»..«p.. d .nd 

^^^- ^roul,„„ <tecl.mcmc<, bv HDL for rMi uii 
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7.    RESULTS 

The chief results of this study are the shock spectra shown in figures 
7 through  \l.    As can be seen,   figure 7 illustrates a family of forced- 
vibration spectra for different values of R corresponding to the forcing 
function of figure  la.    Figure 8 is the analogous family corresponding 
to figui •■ lb.    Figures 9 and 10 are the free-vibration spectra for the 
jame two cases.    Figure  11 shows a  forced- and a free-Vibration 
spectrum on tne saVne graph for R -   0.01.    These are the upper 
curves in figures 7 and 9.    Finally,   figure  12 is the spectrum for the 
forcing function of figure  1c.    These  results have not been observed 
in the literature. 

The important features of figures 7 through 11 are the resonance 
peaks near -y = 1.5,   10,  20, and 30.    If we were to "continue" the 
half-sine pulse to a continuous monotonic frequency,   then v would 
measure the natural frequency of the system with respect to the 
former frequency.    When there are five positive impulses per half- 
sine pulse,   the system responds to this  repetition rate of ten per 
"cycle" in giving the resonances at 10,   20, and 30 with negligible 
augmentation of the major peak of the pure half-sine pulse spectrum 
(R = 0).    Additional energy is fed into the system when interspersed, 
negative impulses are added;   the amplitude of the spectrum is thus 
larger except for suppression at values of  y at even multiples of 10. 
The suppression is due to the cancellation of the kinetic energy of 
the system oscillations by the forcing function.    This happens when 
the system has just completed an oscillation cycle and is then 
"sruck" by a negative impulse.    The velocity at this moment is 
maximum in the positive direction,  but the force is in the negative 
direction. 

In figure 11, we see how the residual spectrum may predominate 
for certain values of ■,,  in this case for v < 1;   one must in general 
then consider both the forced and the free era. 

The tabular data,  not given here,   show that in no case is the 
negative maximax larger than the positive for the forced vibrations. 
(They are equal in the residual era. )   The trend of the data,  however, 
strongly suggests that for resonances at larger y,  the negative 
maximaxes may become larger than the positive.    Moreover,  some 
results generated for R = 0. 2 with the earlier program showed that 
for the alternating impulse case,  negative maximaxes were larger 
near and at the resonances for  ,  = 10 and 30,    Thus,  although not 
investigated here,   negative maximaxes may be very significant 
for large y and large R. 
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(^dD^^HiI>h!H> 

I       "-^ kCw/S, 

-[c..] 

e/100 
Figure 4.    Analog computer circuit for undamped ODOF system 

forced by T'e"T. 
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DIMENSION  TAUtlOOOl.TAUSIIOOOI^XNT'kUllOOOI.XIDSOI.rfNAxOiOl, 
I   *l3}0l.*U}S0l««2|]«O),ai(]S0liU2(>S(;I.B3n:0l 

1 FCRNATIUItl 
11 FC»N»T(«F10.»I 
2 FnRNATIIHII 

12 FCRMAT1120X21 TX7HX11 JX«»-MMAX*X11// I 
22   FCII*UTH2CX2IOPF|0.2tlM20.TMI 
92  FOUMATOTXtflll   •   H.ftit-JJ  *   \il 
«2  F»<t«T(3T<6HCXI   •   F5.2, «XTH0T4U  •  Fr.«/3TX«HDELT*M   •  Ft.2iSX«HZ   • 

i fi.snn 
READ (5, II   n.JJtII,l2i*X,Ny,rnENT,ICOCE 
MEADI'tlll   OXI.DTAUtnCLTAH.I 

If  •   NUN&ER  CF  VALUES  COHPUTFO   }F  t«CH  «ESPCNSE   FONCriON 
JJ  •   NUMBER  CF   POINTS   IN   THE   SPECTRl* 
11 •   PLOTTING  OPTICN   IPLQT  WHE'l   It'll 
12 •   WKlTINtt  CPTION   (M^ITS   TARLü   IF  RESULTS   MHEN   I2«ll 
OXI   •   XI   INCREMENT 
DTAJ   •   TAL   INCREMENT 
CELT AM  •   INITIAL   INCRFMeNT   IN  TA« REPRESENTING   TAU 
OELTAM  •  LPOATEO   INCR^Mf^T 
I   •   eRROi«  CRITERION   IN   TAJ 

OC  LUOP  9 GENERATES   ARRAYS  BASEO  ON   1.LT.TAU.LT.? 

DC  9     I>1.II 
Fl   •   I 
TAUIII   •  fI.CTAU   *   1. 
TAUSIII   •  TAL(ll«TAUIIt 
EXMTAUIII   •  EXP(-TAUIIII 

9  CCNTINUC 
DC I« J>I.JJ 
hFAXIJI • 0..0 
FJ  •   J 
XKJI   •   FJ«OXI 
XIS  •   XHJMKKJ» 
ONLPXS  ■   I.   *   X»$ 
ONPXSS   •  CNEP«S*LNLPXS 
ONPXSC   •  CNPX$S»CNEP<(S 
AUI   •  2.«XI<Jt/ONPXSC 
AIIJI   •   I.  -  «.«XIS 
A2IJI • -«im.c.-mi 
BIIJI   •  -A(J|«A2<J) 
a2IJI   •  «.«XIS/ONPXSS 
BSIJI   •  XIS/CNE'XS 

19  CCNTINUC 
OC  29     JMtJJ 
IFUIUI.LT.S.ni   r,Q  TO   100 
DC   >'»     I'lill 
SIMIT   •   SINimUltTAOl Ml 
CCSXIT   •  CCSIKII JI*TAUI ID 
M  <   AIJI>lAIIJI*SINXtT   «   A2(JI*CüSxm   *   IDIU)   *   B2IJ)«T*U(1I   ♦ 

I   F3IJI*TALSim*CXMTA(l| || 
IF(    4.ü;.kPAX( Jl|   MCAXIJI^M 

»9 CONTIMJ: 
CO  TO  2) 

100   T»»   •   ü.o 
DELTA.;   •   CiLTAM 
MKULOl   •  CO 

80   WHUL02   •  CO 

Figure 6.    Program TSEXP. 
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60 TAN • T«H 4 CEITAN 
XITAM ■ XI(J|«T*H 

IFU.LT.H^CLCl) CO TO 50 
HNOLO; • kHOLCl 
MHOLOt • k 
CC  TO 60 

JO   mutlTAN.LT.n   CO  TO  7C 
T*M   .   r«M -  2..0HT»N 
MH0C01   •   kHOLCZ 
OELTA*  •   CSLTAN/5. 
GC  TO  60 

70  K«*X(J»   •  MHCLOI 
24  CCNTINUE 

IFII1.NE.II   GC   TC   10 
It^ ?c*llT"t|»,l'^*x'JJ«Nx.Nr,iOcNT,iccne) RENl W  9 

10   IFIIZ.NC.l)   STOP 
JCOUNT   •   C 
MITtl6«2| 
MMITEI6.32I   II,JJ 
WRITcl6.«2l   CXI.rTAU.OElTAM,/ 

30  Jl  •   t   *   100»JC1U4T 
J2  •   Jl   *   A9 
HR1TEI6,I<| 

üSiINl4:"cnt^T,♦,;WH"'J),,("J*!0',t"'ixu,so,•J•J,•J^, 

IF(JJ.L3.IOO*JCnuNTI   GO  TO  20 
MKITEI6.2I 
CC  Til  30 

20   STOP 
EKC 

Figure 6.   Program TSEXP. 
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Figure 7. 

26 

Forced vibration spectra of five positive impulses 
sine pulse driving an ODOF system. 

on a half- 



20 y       « «9 30 

half-sin. pu.s. dri.
Pi„, .ln ODOFt'luT' :m,>"IS,,S '■ll " 
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Figure 9.    Free vibration spectra of five positive impulses on a half- 
sine pulse driving an ODOF system. 
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Figure 10.    Free vibration spectra of ten alternatin„ ■ 
half-sine pulse driving an ODOF 8ystet8.      P ^ * 
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Figure 11.    Comparison of forced and free vibration spectra for ten 
alternating impulses; R = 0.01. 
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APPENDIX A.— EVALUATION OF COEFFICIENTS OF PARTIAL 
FRACf ION fcXPANSlON  

If in (33) wc multiply by s and let s —oo, 

A + C  = 0 

If we let s — O, 

B/r + C + D + E = l/ff 

If wc multiply (33) by (s4 I)3 and let s —-1, 

E = 1/(1+ ?:') 

If we multiply by s   + *'  and let s — i*, 

Ai- + B =  1/(1 + Hf 

Equation (A-4) yields 

(Ai-  + B)(l + 3if - 3»J  - ef) = 1 

(A-l) 

(A-2) 

(A.3) 

(A-4) 

{A-5) 

which upon expansion and equating real and imaginary parts yields the 
pair of equations 

and 
(1-3^)6 - er(3 - ep)A = 1 

(3 - f:>)B + (1  - 3f)A = 0 

The determinant of the coefficient matrix reduces to (1 + '^f.    The 
solutions are readily found to be those given in (34a) and(34b).    Finally 
D is obtained from (A-2) 

(A-6) 

(A-?) 
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APPENDIX K— INTEGRATION RY PARTS OF THE CONVOLUTION 
INTEGRAL 

One defines   T 

I =j  v'!e"v8in;(T.v)dv (B-l) 
o 

T 

J=     v:'e'vcos ff'-vldv (B-2) 

T 

K= j  ve"v8in?(T-v)dv (B-3) 

L=J   ve"vco8 »(T-v)dv (B-4) 

T 

M = j   e"v8in?{T-v)dv (B-5) 

f 
N = ,   e-vcos ^l'-v)dv (B-6) 

where w = f I.    Integration by parts,   retaining e"v under the dilfereiitial 
each time,  yields the relations 

I  = 2K-  -J (B-7) 

J  = --re-' + 2L+ ?I (B-8) 

K = M - FL (B-9) 

L = --e" + N + ?K (B-IO) 

M = sin : -  - ^N (B- 1 1) 

N = -e" + cos ^- + ?M (B-12) 

whose solution for I may be given as 

I(l + f T = :(l + e:');'-:e-' +4F(l + 'r)-e-T + 2F(3-f: )e-' + 

2(l-3Fr)sinf   -2»(3-f )cos?-    (B-1J) 
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APPENDIX C. — SCALE FACTORS OF ANALOG CIRCUIT 

Table CI 8ummarize8 the essential,  approximate scaling data 
obtained by trial using the circuit in figure 4.    The potentiometer num- 
bers in the five columns at the right are,  of course, arbitrary.    The 
circled numbers denote gains on the EAI 131-R analog computer.    The 
values and gains are easily translated into corresponding values for 
computers having different gains available. 

Table CI.   Scale Factors and Potentiometer Settings for Analog Ci rcuit 

? k , CW Si 42 44 46 48 52 
0.2 
0.5 
1.0 

2 
1 

500 
125 
100 

2500 
250 
100 

.5437 ra 

.2718 ll) 

.2718 fb 

.1259 Ö 

.6796 2' 

.6796(2 

.5413 T 

.3383 

.5413 

.4 

.5 
T 

.4 

.5 
1 

2.0 
3.0 

100 
100 
100 

100 
100 
100 

.2718 (TO 

.2718 fb 

.2718 O 

.b796C2} 

.6796(2' 

.6796 ,,2 

.8120 1 

.4331 © 

.9744(5) 

.6$ 

.8 5, 

.9 )D 
4.0 
5.0 

10.0 

1 
0.2 
0.1 

100 
125 
125 

100 
100 
100 

.2718 O 

.5437 

.2718 

.6796'2s 

.2718 

.1359 

.8661 fö 

.5413® 

.5413 y 
.25 
.125 

.8@ 

.8® 

.80 
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APPENDIX P.—TABLE OF SYMBOLS 

m mass 
k spring constant (on analog diagram,  used as time scale 

factor) 

x displacement 
' time 

f{t) forcing function 
Fc maximum value of half-sine pulse forcing function 

(excluding impulses) 

B given decay constant of one forcing function 

""N = .y m natural frequency of system 

F- xs = -jf static displacement 

response factor 

duration of half-sine pulse 

normalized time 

angular frequency characteristic of forcing function 

normalized natural frequency 

time at which u reaches a global maximum 

value of u at its global maximum 

strength of Delta impulse function 

ratio of impulse strength to half-sine pulse peak 

scaled response factor 

Vf scaled normalized natural frequency 

u = X 

Xs 

tc 
t 

tc 
IT 

'Up = tc 

■y = 'N 
F 

TM 
UM 
F: 

R = F; 
F, 

4 
it = —r-U 
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