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ABSTRACT 

An analytical, nonlinear apaca charge wave theory is given 

for the velocity modulated, confined electron beam of finite radial 

extension. The present theory gives a more accurate nonlinear 

description of the electron velocities and the ac current amplitudes 

at the fundamental and harmonic frequencies than earlier space 

charge wave type theories do. Although the theory is not strictly 

valid after electron overtaking has occurred, a formulation is used 

which allows the electron velocities to be multt-valued functions of 

the space coordinatee. Therefore reasonably good results should 

be expected also in the overtaking range. For very large signals 

the results transform to those of Webster's ballistic theory. The 

analytical resulte obtained agree well with computer experiments. 



-2- 

I. INTRODUCTION AND SUMMARY 

Webster [l] developed, ignoring apace charge forces, an 

elementary theory of the velocity modulated (klystron) electron 

beam. Thus, with the velocity modulation VjSinwt^ imposed on a 

beam with the initial velocity Vq, Webster writes for the electron 

drift distance z, measured from the modulation grids, 

z = ( V +v^3inu>t ) (t-t ) 
o 1 o o (1) 

For the infinitely wide klystron beam Olving [2], taking the 

space charge debunching forces into account, obtained 

o 

1 * v0{l-lo) * ^r*in[u,p(t-,on*,n'rt1> 

or 

4 Aoain[«)p(t.to) ]sinu»to (2b) 

where ^ is the angular plasma frequency of the beam electrons, 

e - ^ j a * <*< g-and A --, 
e V o v u; f 

o op 

Eq. (2) exactly accounts for the space charge effects, but, 

unlike Eq. (1), it is not valid after electron overtaking has 

occurred. By Fourier analysis Webster and Olving found for the 

ac beam current 1 (dc current I ) 
ac o 

uo 

v-1 
J ( vX ) cosv ( uit-B z) 

V e (3) 

where J^is the Bessel function. In Weoster’s case the bunching 

parameter 
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o 
V^*U) U) z 

O V 

while in Giving*• caee 

u> z 
X = A • Bin(—^-) . 

o V 
o 

Eq. (3) decribes the current nonlinearitiee and harmonic frequen¬ 

cy components. 

For the radially finite electron beam, as opposed to the Infinite 

beam, the space charge debunching forces become nonlinear 

which is bound to complicate the analysis. Retaining terms only 

of ths three lowest orders, instead of Eq. (2b), one now ex¬ 

pecte to obtain an equation of the form 

0 z * iu(t—t ) + A[sine (t-t )-AZF ]sintut 
e o Q o 1 o 

2 3 
- A F_sin 2u>t - A F sin 3u»t 

2 o 3 o 

(4) 

where w ie the reduced angular plaema frequency, the drive 
q 

parameter 

o 
Vjtt» 

A =* - 
V ID 

o q 

and F . F and F„ are some functions of u> (t-t ) . The first 
1*23 q o 

step of the present work is to express these functions in Lag- 

rangian variables. By Fourier analyste an equation correspon¬ 

ding to Eq. (3) will then be derived for the ac beam currents. 

This equation should givs the nonlinearities and high harmonic 

frequency components with good accuracy. The accuracy 

should aleo be reasonable in the range where overtaking has 

occurred . 

SUrting from the linear space charge wave theory of Hahn 

and Ramo [3], Paschke [4, 5] developed for the klystron case 
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a noiJinear theory which describes the first nonlinearities at 

small signal levels. Similar methods were used by Giving and 

Wallander [ti, 7] on the klystron and by Nilsson [8] on the 

rIWT. For the ac beam currents in a klystron these methods 

give equations, containing terms to the third order, of the type 

^ ac . . 2 
- ain(~-)+A r. ]cGs(i«t-e z) 

o o 1 e 

2 3 <5) 
+ A T cos 2(uA-ß z) + A r cos 3(uut-6 z) 

*■ ® 3 e 

where , and ^ are functions of *qz/vQ. It is hardly feasable 

to calculate terms of higher order because of the amount of work 

required. Another drawback is that Eulerian formulation is used, 

that is electron velocities and other beam quantities are considered 

functions of present time and space coordinates. These functions 

are single-valued even when the velocity is actually many-valued, 

which means that the analysis deteriorates very fast when elec¬ 

tron overtaking occurs. The theory of the present report is essen 

tiall\ l.agrangian which allows many-valued velocities to be taken 

into account. 

In the present work the beam model used is the hydrodyna¬ 

mic disc-electron beam [?]. The beam is supposed to consist of 

an infinite number of rigid, charged, infinitesimal discs (Fig. l). 
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Oiher means for electron beam studies are offered by com¬ 

puter experiments [9, 10], in which Newton's equation of motion 

is solved on a digital computer for a finite number of discs. 

Thereby no restrictions are imposed by electron overtaking. The 

results of the present analytical theory are in good agreement 

with the numerical computer theories [10]. 
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II. THE NONLINEAR SPACE CHARGE WAVE EQUATIONS 

In this section nonlinear differential equations will be derived 

for longitudinal space charge waves on the disc-electron beam. 

An essentially Lagrangian formulation wUl be used. The equa¬ 

tions are exacUy valid provided no overtaking has occurred. The 

linear and nonlinear solutions will be given in Sections III and 

IV respectively. 

Th. homo,.n.ou., confln.d .l.clron b.»m .nd th. coordi¬ 

nate ayntem or. ahown in FI*, i. Wa introducá tha following 

notations 

t = time 

* “ *o+*d P°*ltion oí electron disc 

V - vo+vd velocity of an electron disc 

1 “ io+id convecMon current density 

p = po+pd electron space charge density 

Here vo, iQ and pQ are the quantities in the absence of 

modulation, while Vj, id and pd are corrections due to the disc 

displacements *d which are caused by the modulation. Actually 

2 can be taken as v (t-t ). 
° o o 

Ez' Hcd fieid coinPon®nts due to the modulation 
T -1 /2 

c & ^*0^0^ velocity of light in vacuum 

m, -s' electron mass and charge 

All the modulation dependent quantities, including the electro¬ 

magnetic fields, are considered as functions of the time t and the 

undisturbed electron position zq. The field quantities are also 

functions of the radial coordinate r. 

The modulation dependent beam quantities will now be ex¬ 

pressed in terms of the displacement z . 
d 
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From the definition of velocity one has 

dz 
dt 

dz 
c 

dt 
i2c 
dt (0 a,b, c) 

v/here the time derivative is the linear operator 

! - d 4. Ô — = — -f -1» II— 

dt dt o dz 

Charge conservation yields 

P_ 

dz 
__< 

dz (7) 

“o+ pd ‘ jr 
dz 

or -r- d o dz 
1 + 

dz 

For the current density correction i. one has 
d 

i - i pv - P V 
o o P v. + v p . + p.v, o d o d d d (8) 

Introduction of Eqs. (6c) and (7) into Eq. (8) yields 

dz 
__c 
dt 

1 + 
dz 
_c 
dz 

(9) 

The beam quantities are connected to the field quantities 

through Maxwell’s equations and Newton’s equation of motion. 

Maxwell’s equations are usually formulated in the Eulerian vari¬ 

ables t, z and r and contain partial derivatives. For these deriva¬ 

tives we use the notations and —. These operators have 
At As 6r 

to be expreseed in the form of partial derivativee in the variablee 

t, zo and r. The following relations are derived in Appendix I. 
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Operator in independent 
variables t, z and r 

Corresponding operator in inde¬ 
pendent variables t, Zjjand r 

6t 
d dt d 
Ôt ÒZ ÒZ 

i+—^ ° 
»Z 

o 

_6_ 

bz 

Ò 
ÒZ 

o 

1+ ÒZ 
o 

_6_ 

6r ôr 

With the quaaiatatic approximation and with no azimuthal 

variation, Maxwell*a equationa immediately yield the following 

equations in t, z and r variables 

(H) 

where the Bessel operator 

P 16 6 . 
- — r— ( 
r 6r 6r 

1 J_ 
r òr 

and 
2 2 

6 E 6 H 
c -- + -ï 
° 6r6t 6z2 

0 (12) 
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Since E , H and p . are functions of t, a and r the ex- 
*’ <p d o 

pressiona (10) must be used for the derivatives. Simultaneous 

introduction of Eq. (7) for into Eq. (il) yields (~ P0*<|= 

(P-O2) (E +-2 * ) = 0 
z € a 

o 

0E* 2 « n -r-=- 0 H = 0 
o òr 9 

where O and fl are the operators 

(13) 

(14) 

Ò 
dz 

a 
dz 

_a_ 

dz 

1 + Üí 
dz 

1 + ÜS 
dz 

dz. 2 

«‘V' o 

_ä_ 
. 2 dz 
dz o 

o 

and 

0 = 7t “ 

!!i 
at 

i + 
dz. dz 

d o 
dz 

Since the disce must move under the influence of the inte¬ 

gral of the longitudinal electric field E^ over the disc surface one 

has from Newton’s equation of motion 

d2z 

dt 

d 
2 

e 
m 

E 2nr dr 

tt b 
2 

(15) 

where 

<T .a , __d_» 2 
2 * dt Vo dz 

dt o 

For longitudinal space charge waves Eqs. (13) and (15) 

have to be salved simultaneously with initial conditions and boundary 



-10- 

conditions taken into account. Nonlinearitiea in the equations arise 

due to the nonlinearities in the operators Q2 and The equa¬ 

tions are exactly valid as long as no overtaking occurs, that is 
« ° zd * 

as long as After overtaking has occurred, Eq. (13) 

will give the wrong field since Eqs. (7) and (10) are no 

longer valid. 
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III. THE LINEAR SOLUTION 

We now consider the linearized displacement wave z^ pro¬ 

pagating on the beam together with the linearized longitudinal 

electric field • The quantities z^ and E^ satisfy the linearized 

Eq. ( 13) , viz. 

O 

2 . 2 
where Q is the linearized operator O 

(16) 

Let Zj and E^ be waves of the angular frequency u>. Only 

beams with v° <K VQ and < < uu are dealt with in the present 

report. For such beams it is well known that the wave pattern 

moves very slowly relative to the electrons in the beam (velo- 

city Vo) and that the amplitude does not change appreciably over 

a distance of one beam wavelength. Thus we can write 

J_ ò_ 
2 2 

V dt 
o 

Then the solutions of Eq, (16) become 

PQ 
E, * B.I (0 r) - — r<b (inside the beam) (17) 

1 loe cl 
o 

E. * B [I (0 r) + oK(0 r) ] b < r < a ( outside the beam ) (18) 
1 ¿ o e o e 

and Eq. (14) gives for the magnetic field H 
<P 
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0 H* * V».0,1,'V r < b (19) 

° H<p ‘ ,onS.B2tIl(,.r)-*Ki<“.r>] b<r< (20) 

where 1 q, Kq and are modified Beeeel functione and 

Blf B2 and or are integration coefficiente. Now Ej and H muet 

be continuas ecroe. the beam eurfac. (r-b) and Ei muet^die. 

appear at the eurface of the conducting tube (r = a). These 

boundary conditione determine the coefficient B , viz. 

'i - V-V«.»» Ki(t.b) K0«e.*» 

+ 1 «».•> 

"o 
r*i 

o 

For *^ one then gets from Eq. (15) 

d2*. 

dt 

2 2 
- w R z, 

P 1 
2 . id * 
q i 

where 

(21) 

d) = i JL -Si1/2 
P " m « angular plasma frequency 

o 

R(B.b,f) K.I8 »I 
. 2y2_î_ Ij< J b)l 

o e J 

plasma frequency reduction factor and 

1/2 

^q reduced angular plasma frequency 

Assume now that the beam is given a pure velocity modula¬ 

tion v°sinuA in the plane * = 0. Since the beam is undisplaced 

( *1* 0) in Plftn* **0 the solution of Eq. (21) becomes 
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B *4=* A «ini—^---)«tníuiUB z ) (22) 
0 1 V 0 O 

O 

The velocity caueed by the modulation, Eq. (6c)t ta 

<u z 
y, “ v°coa(-^-2)ain(<ut-| z ) (23) 

a 1 V e o 
o 

By Eq. (22) one immediately obtaina the linear term of 

Eq. (4) since z=z+z4 and z s v (t-t ). 
o 1 o o o 

As one should expect, the linearized solutions, Eqa. (22) 

and (23), are the same as those obtained by the Eulerian ana¬ 

lysis [7] except for the fact that z has been replaced by z . 
o 

With both analyses the same expression is obtained for the reduc 

lion factor R which is depicted in Fig. 2. This also shows the 

reduction factor, calculated by Branch and Mihran [ll], for the 

fundamental mode of propagation in the ueual"point-electron" beam 

Fig. 2. The plasma frequency reduction factor R(B b, ~) for 
0 D 

the disc-electron beam and the point-electron beam. 
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IV. THE NONLINEAR SOLUTION 

Fir»t we rewrite Eq. (13) in the form 

o o 

The method oí aucceeaive approxlmationa will be uaed to 

solve Eq. (24). The electric field E^ and the diaplacement zd 

are expanded in power aeriea which, retaining only the firat three 

terme, can be written 

z 
d 

where E^ and z^ are the linear aolutiona already calculated. 

The second order aolutiona E2 and z,, are proportional to A2 

and the third order aolutiona E3 and z3 arc proportional to A3. 

From Eqa. (15) an<i (24) we tho following differential 

equations for the terme oí the three loweat ordere. 

(25a) 

0 

b 
p 

E.2nrdr e 

dt 
2 m 2 

o 

(25b) 
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P + 
dz 2 

1 b 
bz ^ 2 

O bz 
o 

(26a) 

_e_ 

m 

b 
n 

o 
O 

E 2nrdr 
m 

(26 b) 

(p+¿5)[*3-'+r*3««> 
o 

+ ^P+' 
dz 

E3(3u))+—z3(3a>) 
o 

òzA bz. 2 b z 
0 

- (3TTptãr 
> r% n 

2 2 
o dz dz o 

o o 
rirXvK) 

x r\ ' 

(27a) 

« - 

dz 2 

3r^ + 3(T^) dz dz 
O O J 

p+ 2 d 
dz 2 d z 

¿ 0 __ __ 
dz . 2 .2 dz 

o dz dz o 
o o 

' (vv.) 

d 23(im) 

~nr 

e 
m 

1 E3( «>) 2Tirdr 

d z3( 3u>) 
e 
m 

E3 ( 3(i») 2nrdr 

(27b) 

(27c) 

It haa been aaaumed that the second order quantities E and 

z0 in Eqs. (26) consist of terms with frequency 2u) (i.e. no 

dc terms). This is true for cases with <*> < < ui and v° . 
q 1 o 



-16- 

The third order quantities in Eqa. (27) are assumed to con¬ 

sist oí terms with frequencies uu and Sw. 

In a beam that is given the velocity modulation v^sinurt in 

the plane z*0 one gets the following initial conditions (for* = 0) 

* 0, (28 a, b, c) 

and 

simut, ( 29 a, b, c) 

The procedure to solve Eqs. (26) and (27) is as follows. 

The solutions [Eqs. (17), (18), (22)] of the first order equation 

[Eq. (2¾)] are inserted into the r.h.s. of Eq. (26a). This equa¬ 

tion then becomes a linear differential equation with a drive term 

that is a known function of t, and r. The simultaneous solution 

of Eq.s (26a) and (26b), with the initial conditions at z = 0 and 
o 

the boundary conditions at the beam and tube surfaces taken into 

account, gives the second order displacement z and field E . 
2 2 

To find the third order quantities the first and second order solu¬ 

tions are used in the r.h.s. of Eq. (27a) and the procedure is 

repeated. 

The quantities of interest in a klystron analysis are first 

the displacement *^, from which the beam ac currents can be 

calculated, and second the velocity vd, which given the modula¬ 

tion dependent velocity spread in the beam. Using the notations 

m 

Rie.b, £)’ 

R<3».b'f> 
Ria.b.ft’ 

where R(2B b, —) and R(3ß b, •£) are the reduction factors for 
0 D 0 D 

waves of the frequencies 2u> and 3ut, 

are as follows. 

the results for z. and vJ 
d d 
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The nonlinear displacement 

B z, * B (z+z+z.) = [AsinZ -A F ( Z ) ]sin( (ut-B * ) + 
e d e 1 ¿ d ° io eu 

- A F (Z )sin2(uüt-B * ) - A^F ( Z )sin3(uut-B * ) (30) ¿ o © o 3 o 0 Q 

where 

. 4 1 (1-m2) T» 2 , 3„ 16+12m2-m4_,_ „ 
pi<zo) -re —r-r [3m ,ln z0 - ——2—,lnZo+ 

( 4m -m ) u 4-m 

2 2 
+ (8+m2)Z cosZ - 8 1~m sin( l^m) Z + 8 r sin( 1-m) Z 

0 0 _ . 2 o _ ¿ 0 
2m+m 2m-m 

F2(Zo' 
1-m 2 2 

2 4 [-1+—«in Zo+cosmZo] 

(31) 

(32) 
4m -m 

_ , _ V 1 1-m 
F ~ (z) - ñ —;—7 3 0 8 2 4 

4m -m [ 
2 4 2 

48-30m +9m 8+m 

4( 1-m2) 1-n 
■InZ + 

0 

3(5m2^-m4) 3(2m2-*-m4) 1 + 

- ( 1-m2) (9-n2) 4( 1-m2) ^ 

+ 2tto2-6n3 .t ) z +2^-to2-6n2 .ln(1-m)z + 
2., .2 o2.. .2 0 

n - ( 1+m) n -(1-m)4 

+ i 
8+m2 9(5m2+m4) . 4+12m+2m2 

nl-i-n2 (l-m2)(9-n2) n2-(l+m) 
(1+m) + 

+ 4-12m+g2L-(1.m) 

n2- ( 1-m) 
sin nZ 

0 
(33) 
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With Eq. (30) one ixnxnedi&tely obtains Eq. (4) since 

z»2 + z, and z “v (t-t ). 
o d 000 

The nonlinear velocity 

dz dz 
"d '‘“d 

d dt q dZ q dZ l 
0 0 

dF <Z 
cosZ -A * 

0 dZ 
ilfo’l 

z„ J 
sin(ii)t-ß z ) 

e 0 

0 dF2(Zo) Q odFVZJ 
“ viA-dZ •in2(«t-a#*o) - ViA —-sin3(wt-B_z_) (34) 

0 r\ e 0 

where 

dF ÍZ ) 
—1—a. ; 

dZ 

O 4« ^ 2 9 4 2 r lo-7xn - -Tn jL i-m r io-7m -7 
Í6 2 4 2 

4m -m u 4-m 

« 9 2 
cosZ - — m cos3Z + 

0 4 0 

- (a-fm2) Zo.lnZo- cam{l+m)z, a(ljn.m^n3)oo.(i.in)zJ 

2m+m 2m-m 

(35) 

dF ( Z ) 
2 0 

dZ 
4 2 2 * ■" f TCÏ -   _ ^ 
r" [ -r— «1022 -znsinznZ ] 

4m -m4 2 0 0 
(36) 

dI!VZJ 1 4 2 _3 o _ 1 1-m 
dZ 8 2 4 

4m -m 

48-30m^+9m4 

L 4(l-m2) 

8+mf I 

‘ 1-n2 J 
cos Z + 

0 

. F 9(5m2+m4) 9(2m2+m4)l 2+4 

L(l-m2)(9-n2) 4( 1-m2) -> 0 n2- 

2 2 
2+4m - 6n 

( 1+m)4 
(1+m) cos(l+m)Z + 

2 2 
2+4m -6n ,. . 

+ -.. ( 1-m) cos( 1-m) Z 
2/4 i2 n -(1-m) 

z Jitg. .lil 
0 Ll.n2 (I- 

2 2 4 
9 ( 5m +m ) 

( 1-m2) (9-n2) 

, 4+12m+2m2 ,. , v . 4-12+2m2 .... 
+ 2 2 ( 1+m) + g 2 ^ co* nZ0 

n -( 1+m) n - ( 1-m ) 
L-m)j (37) 



-19- 

The nonlinear displacement expreaaions can be transformed 

to those obtained from the Eulerian analysis [7] by replacing * 
o 

with * - *d and then retaining all terms to the third order. 

In Fig. 3 the ratios m and n are depicted for various 

beam geometries. The functions F,, and F3 and their deri¬ 

vatives are depicted in Figs. 4 and 5 versus normalized drift 

length Z . 

R(2B b,£) 
Fig* 3« Th© ratios xn * 11 ... ^ " " and nŒ 

R (30 b,i) 

S) 
*9 

normalized beam radius for some values of 5. 
D 

versus 
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J 

m «20 

015 

01 ■ 

005 - 

® : m*l93, n»2.75. ß#b«03, a/b=l25 
(J):m«V65. n>219. ß#b = 0i7. a/b>0D 
(J) m * 178. n«2.30. ß,b«06. o/b*125 
(J) ro*l53, n«187, ß(b ==04, a/b> (b 
<S) m» 1.38. n«155, ßtb*08, a/b*œ 
(D :rT»«1.21, n«128. ß(b«16, a/b* œ 

Fig. 4. The functions F (Z ), F. (Z ) and F.(Z )inEq. (30) 
1 o ’ 2 o 3 o ^ 
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04 ■ 

03 - 

02 

01 

(D m>1.93. 012.75. ß#b«03 a/b«V25 
(2):m>l65. n>219. ß#b>0.17. o/b« 00 
(S) m>l7B. o>2.30. ßcb>06. o/b«l25 
(S) m>l53, n>1.87. ß(b>0.4. o/b* CD 
(5) m>l38. n«1». ßfb>0.8, a/b« œ 
(D : m«1.21, n * 1.28. ßcb>1.6, a/b s 00 

dF4 dF_ 
1 2 

dF. 
Fig. 5. The derivatives , ^ and in Eq. (34J 
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For the infinitely wide beam (m = 1 and n=l) F F 
_ 1 ' 2 
F3 and the,r derivative« equal «ero. In that case the linear 

terme of Eqs. (30) and (34) are the exact solution« [2]. 

and 
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V . THE D ISC-EL EC TRO N DISPLACEMENT AND VELOCITY 

The theory of the preceding chapters is not strictly valid after 

overtaking has occurred. To investigate the practical validity of 

the third order displacement expression, Eq. (30), after over¬ 

taking the electron phase position 0 z-uit is depicted in Fig. 6 
© 

versus the undisturbed phase position 0 z -iiA that an electron would 
© o 

have in a case with zero modulation. The following relation is used 

0 Z-ttlt “ 0 Z — U)t+0 z . 
e e o e d 

Comparison is made with computer experiments [ 10] and the 

third order Eulerian theory [?]. The curves are for the infini¬ 

tely wide beam and for a thin beam, 0 b = 0.17 and - * oo. Over- 
e b 

taking has occurred in all the diagrams with the exception of 6d. 

For the cases in 6a and 6d the present theory and the computer 

experiments agree completely. The diagrams 6b and 6e depict the 

situation at the distances where, according to the computer ex¬ 

periments, the amplitude of the fundamental frequency current 

should have its first maximum. 

Assuming that the computer experiments are accurate it is 

evident from Fig. 6 that the present third order theory gives a 

good description of the physical situation also somewhat beyond 

overtaking. Apparently this is not true for the Eulerian analysis. 

The difference between the two theories is due to the fact that 

the displacement after overtaking, is a multi-valued function 

of z while it is still a single-valued function of z . The Eulerian 
o 

analysis always gives single-valued functions of z. Even our so¬ 

lution for z^ is incorrect after overtaking since Eq. (13) gives 

the wrong electric field E . However, the displacement is ob- 

tained upon integrating the field twice [Eq. (15)] which makes 

the error less critical. 
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F*. 6. Disc-eleclron ph... pos,Mon verso. undi.U,rb.d phe.n 

,0r ‘W0 kly,lr°n b,am* normsliied drift length, z . 
present Analysis __-_ ° 

.computar exp. [lO] 

Eulerian theory [7] 
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The velocity deviations v^ maximize the ac voltage that can 

be applied over the output gap and thus set a limit on the output 

power from a klystron. It is important to minimize v^ in the gap. 

Mihran [l2l has studied this problem with computer experiments 

on disc-electron beams. In Fig. 7 the velocity v^, Eq. (34), is 

depicted versus normalized drift length for some of the discs in 

a period. The velocity deviations of the slowest and fastest elec¬ 

trons are shown in Fig. 8 for two cases. These velocity devia¬ 

tions pass through a distinct minimum, the velocity neck [12]. At 

least for the case A= 1.7 the present theory predicts the velocity 

neck in good agreement with Mihran* s computer experiment de¬ 

spite the fact that overtaking already occurs in the vicinity of 

Z = 0.2n. 
o 

The location Z of the velocity neck is the location where 
on 

the fundamental frequency component of the velocity deviation v^, 

Eq. (34), is equal to zero, viz. 

cos Z 
on 

0 (38) 

o on 

Since the 3u> component in Eq. (34) generally is quite small 

(cf. Fig. 5) the maximum velocity deviation v^ at the velocity 

neck obeys 

o on 

Figs. 9 and 10 show Z and v. . The lines are broken in 
• on dn o 

the regions with overtaking. Due to the aeeumptione v^ « vq and 

ui « (V the curvee are strictly valid only for cases with 
^ o 2 o 

Vj /v » ( v./v ) and v. /v » ( v./v ) ( w /«#) . Fig. 10 aleo 
dn o 1' o dn o 1 o q 

showe some reeults from Mihran’s computer calculationa. The 

discrepancies for large valuee of A are due to overtaking. 

One concludes that the velocity deviation v increases with 
an 

the parameter m. This means (cf. Fig. 3) that the velocity spread 

at the velocity neck in general is larger in thin beams inside 

narrow conducting tubes than it is in wide beams with large spacing 

between the tube and the beam. 



-26- 

-Mihron [12] 
- prtttnt theory 

Fig. 7. Velocity deviations vd versus normalized drift length Z 

for a few electrons. The picture is asymmetrical around the 

horisontal axis due to the fact that the positive and negative initial 

velocities chosen are unequal. 

Fig. 8. Velocity deviation vd of fastest and slowest electrons 

versus normalized drift length Z . 
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Fig. 10. The maximum velocity deviation v^ at the velocity neck. 
dn ’ 

The dote are from Mihran’e [l2] computer calculations on abeam 

with 8 b = 0.71, a/b=1.22, m = 1.7 and uu /0) = 0.123. 
e q 

; 
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VI. THE HKJH FREQUENCY CURRENT AMPLITUDES 

In this chapter we will use Eqs. (30) through (33) to find 

analytical expressions for the ac currents of the fundamental 

frequency and of the harmonic frequencies. 

One can expand the beam convection current I(z, t) in the 

following Fourier series 

oo 

lU,t)=I J I cos v(uut-0 z) 
° V=1 v e 

where I is the beam dc current and I the amplitude of the vth 
o v 

harmonic frequency current. For beams with v° « v and 
1 o 

0)^ « tu the amplitudes 1^ are slowly varying functions of z. 

The amplitudes are found from the Fourier integral 
n 

1 = 
v 

I cos v( uut-ß z) duut 
e 

-n 

Charge conservation implies 

(40) 

I dt = I I dt 
o i o I r 

(41) 

The relation z = v (t-t ) and Eq. (30) yield 
o o o 

(ut-ßz^urt - X ( Z )sin art + X_( Z ) sin 2u)t 
e olo o2o o 

+ X ( Z ) sin 3(«t ( 42) 
3 o o 

where 

X (Z ) = A[ sin Z -A2F (Z )] 
J. o o 1 o 

X ( z ) = a2fo(z ) 
2 o 2 o 

X ( Z ) = A3 F (Z ) 
3 o 3 o 

By the use of Eqs. (41) and (42) one can write Eq. (40) 

in the form 
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n 

-n 

Thi« integral ia to be performed for conatant z. Using the 

assumptions v << v and ui « one has Z ~ Z — v z in the 
* 1 o q ° O 

arguments of X2 and X3< Then the solution for the current 

amplitudes is (Appendix II) 

oo OD 

ï ï 
X=- ao oo 

J ( v 
v+2\+3¿ xi' Vv 

x2) J (v 
» V 

(44) 

where J denotes Bessel functions and » ^2 An<* ^3 are 

functions X^(Z)t X2(Z) and X3(Z). 

For the inñnitely wide beam F^ and 0 and Eq. (44) 

reduces to 

I 
= 2J (vAsinZ) (45) 

I v 
0 

This is as expected from Eq. (3). 

Eq. (45) also is the result for beams with finite transverse 

dimensions when the nonlinearities F f F and F are ignored. 

This equation is commonly used in klystron analysis [ 12, 13, 14]. 

When ^ 0 the space charge forces disappear and forX^, 

X2 and X^ we get the following limit values 

0 

0 

For negligible space charge forces Eq. (44) therefore 

transforms to Webster's ballistic analysis [l], viz. 

I 
= 2J (vAZ) 

I v 
0 

(46) 
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Firet we will study the fundamental frequency current ampli¬ 

tude I around its first maximum. By the use of Eq. (43) the 

ratio y~ has been depicted in Fig. 11 versus the normalized 
o 

drift length Z for a few beams with A as parameter. Compari¬ 

son is made with results from computer experiments [ lO] and 

in Fig. lib with the third order Eulerian analysis [?]. The pre¬ 

sent theory agrees very well with computer experiments for the 

thin beam, Fig. 11a, while the agreement is less for the infinitely 

wide beam, Fig. 11c. This is due to the fact that electron over¬ 

taking occurs at higher A-values for thinner beams. The over¬ 

taking points are shown in Fig. 11. For the beam in Fig. Ha 

overtaking occurs only for the curves with A >2 while in Figs. 

11b and 11c it already occurs for the curves with A - —. In fact 
3 

for the infinitely wide beam [2] in Fig. He overtaking is just 

about to occur when A®1 and Z--. 
2 

From Fig. Hb it can be concluded that the present theory 

is significantly more accurate than the third order Eulerian theory. 

The reason is, of course, that the method used to calculate z is 
d 

more accurate. However, for smaller values of A than those used 

in Fig. H, say A- 0.7, the two theories agree. 

In the regions of Fig. H where the present theory agrees 

with the computer experiments, X is less than a few times lO*1 
_ 1 * 

while Xg is less than 10 . For these values of X and X most 
2 3 

terms in the series, Eq. (44), for the fundamental frequency cur¬ 

rent amplitude are negligible and it is sufficient to retain only two 

terms, viz. 

I 
1 - 

--- 23i{X1)[]JX2) +Jl(X2)] (47) 

For beams with finite transverse dimensions Eq. (47) con¬ 

tains more information about the nonlinearities than Eq. (45). Note 
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Fig. 11. Fundamental frecjuency current amplitude versus nor¬ 

malized drift length Z( = -^z) for three beams. 
o 

- .—--- present theory ---computer exp. [lO] 

— . — . Eulerian theory [7] 

• denotes first overtaking location 
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that Eq. (47) contains only the quantities X and X and not the 

quantity X3< This means that when using Eq. (47) one only has 

to know m, which is the ratto of the plasma frequency reduction 

factors for the fundamental frequency w and the second harmonic 

frequency 2uu . 

The amplitudes of the second, third and fifth harmonic cur¬ 

rents are depic,ed in Fig. 12 for a beam with ß b = 0.8 and 
a _ e " 
“ = ao. The figures show close agreement between the present 

theory and the computer experiments for medium and very high 

values of the drive parameter A. The results of the third order 

Eulerian theory for the second and third harmonic currents are 

depicted for A = 1. The deviations are due to the fact that the 

third order Eulerian theory does not contain any information on 

the nonlinear depression which is an effect of higher older than 

the third. To give any information on the fifth harmonic, the 

Eulerian theory would have to be extended to the fifth order. 

Though the displacement *d has been calculated only to the 

third order the current expression, Eq. (44), apparenUy con¬ 

tains a considerable part of the higher order effects. This means 

that these effects are mainly due to the transformation from the 

Lagrangian independent variables t and t to the laboratory 

variables t and t. This transformation is done exactly in Eq.(43). 

The results of the third order Eulerian theory are obtained if 

effects only to the third order are retained in the transformation. 
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Fig. 12. Amplitude of second, third and fifth harmonic currents 
ii) 

versus normalized drift length Z(-~z). 
o 

■ — present theory --- computer exp. [ 10] 

— . — — Eulerian theory [7] 

• denotes first overtaking location 
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VII. CONCLUDING REMARKS 

It is well known [2] that the electron displacement 

z-v^(t-to) for space charge waves in an infinitely wide elec¬ 

tron beam klystron can be expressed simply and exactly in 

Lagrangian variables [Eq. (2)]. By the use of Fourier ana¬ 

lysis one can, from this expression, calculate the ac current 

in Eulerian variables. The result is an infinite series which con¬ 

tains all harmonic frequencies [Eq. (3)J. 

The simplicity of the expression for the electron displace¬ 

ment in the above case suggests the use of Lagrangian variables 

also for the radially finite beam caee. Although the electron dis¬ 

placement now, by necessity, becomes an infinite power series 

in modulation amplitude, one can expect the aeries to converge 

much more rapidly than the corresponding series in Eulerian 

formulation. In the present work the first three displacement 

terms are calculated in Lagrangian variables [Eqs. (4) and 

(30)]. Fourier analysis is then used to express the ac current 

in Eulerian variables [Eq. (44)]. The ac current series again 

contains all harmonics. The point is now that, in spite of the 

fact that a third order electron displacement forms the basis of 

the theory, the current harmonice are described to a higher 

order than the third. The fifth harmonic is shown in Fig. 12. 

Thus the present method givee rather aofieticated information 

about the nonlinearities within the frame of a third order theory. 

Another basic advantage of the Lagrangian formulation is 

that electron overtaking is taken into account. Even though the 

theory still is strictly valid only before overtaking occurs we 

bave found that it can be used with good accuracy up to the 

saturation level. 
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The general conclueion ie that the present theory can be 

used for larger modulations and contains more information about 

the nonlinearities than the earlier nonlinear space charge wave 

theories in Eulerian formulation [4, 5, 6, 7] which involve about 

the same amount of labour. 
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APPENDIX I 

Assume a function X(t, zq) . Then we get 

6X _ dX | ÒX _ 6Zo = ÒX ÒX t 6zi 

6t ôz0 at àt dzQ Jt 

Let X(t, zq) =z1(t, zq) in Eq. (AI.l). Then 

» âz. 
àz^ _1_ 

_ = òt 

6t à*. 

1 + dl" 
o 

which inserted into Eq. (AI.l) yields 

(AI.l) 

(AI.2) 

For the derivative one similarly gets 

6X _ ax 6zo _ ax . i 
¿z òz 6z òz ò z 

O o — 
dz 

o 
that is 

(AI.3) 
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APPENDIX II 

The solution of the integral, Eq. (43), can be found by 

the following procedure. By the use of simple trigonometric for¬ 

mulas the integrand is rewritten 

cos V( int -X sinuA +X sin2ujt +X„sin3uut ) = 
ox o ¿ o 3 o 

- [cosviut • cos( vX sin uut ) + sinvuut ‘sinlvX sinwt)] • 
o 1 o o 1 o 

L cos ( vX2Sin2uA^) • cos ( vX^sinSurt^) - sin( vX.)sin2ajt ) • sin(vXgSin3ujt ) ] + 

+ [ cos V mt • sin( vX sin wt ) - sinvuA ‘cosivX siniut )1 • 
o 1 o o 1 o 

[ cos(vX2sin2(*ito) ‘»ini vX3 sinSwt^) + sin(vX2sin2(x>to)*cos( vX^inSuut )] 

( AI 1.1 ) 

Now one has the following series [15] 

QO 

I cos(xsine) = J (x) + 2 Zj J_, (x) cos2kG 
o 2k 

k=l 

oo 

sin(xsine) = 2 1 J x (x) sin[ ( 2k+l ) 6 ] 
k=o 2k+1 

(All.2) 

The introduction of the series (AH.2) into the integrand 

AII.l makes the Fourier integral, Eq. (43). trivial and the result, 

Eq. (44), follows after some rearranging. 
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