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IRSTRkCT

The validation of predictor weights, derivod in one

sample, by computing the correlation of the -oightcd sum

nf the predictors uith the criterion in new samples it

called cross-validation. The technique applies to any

method of calculating the predictor toights. In this

study three prediction methods qere compared by cross-

validation--multiple regression on the predictors, on the

principal components of the predictors, and on the prin-

cipal predictors. Prediction from the principal predictors

is only possible ifhen there nre several criterion variables.

In order to discover the parameters of the multivariate

distribution uhich affect the choice of prediction method

and the number of principal components or principal pro-

dictors to include in the regression, a large number of

distributions uiere simulated on a computer and samples

generated from these distributions. The population dis-

tributions varied in the following parameters: n, the

2
number of predictois, mi, the number of ci-iteria, p , the

squared multiple correlation in the case of one criterion

or the average squared multiple correlation of m criteria

2
when m > 1; and w , the average predictor variance related

to the criteria.



I typical calculation consisted of the following

steps: generation of a population distribution for a set

b of values of the parameters; genration of t%,o samples of

size T from this population; calculation, in one sample,

of the predictor weights for one or nore prediction mettods;

and validation of these weights in the second sample.

A large number of populations were generated, varying in

the values of the parameters.

In cross-validating one criterion vasiable, it tas

shotn that the optimil number of principal components to
2 2

include in the regression is a function of n, p , ,

and 1. Por several criterion variables, the relative

effectiveness of prediction from the principal components

of the predictors and from the principal predictors depends

2
on w and on the order of dependence of the predictors

on the principal predictors.

The simulation calculations were compared with cal-

culations in real samples; a close correspondence between

real and simulated data was found. This comparison and

other calculations with the simulated distributions showed

that the simulation was accurate.

or
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CHAPTER 1

INTRODUCTION

1.1. Multiple Regression and Cross-Validation

A problem common to many areas of psychology is the

prediction of a person's score on one variable from his

scores on a number of other variables. The variable that

is to be predicted is called the criterion and the other

variables are called predictors. Many methods have been

developed to combine predictor scores in order to optimize

the prediction of the criterion. A common procedure is to

obtaina sample of subjects with known predictor and

criterion scores (the derivation sample) and to calculate

the linear combination of the predictor scores that best

predicts the criterion scores. By "best'" is usually meant

"least squared error", which means that the sum (over

subjects) of the squared deviations of the observed from

the predicted criterion score is a minimum. The optimizing

coefficients of the predictor scores are called the multiple

regression weights and are calculated from the normal

equations which express the minimization conditions

(Anderson, 1958, Kendall and Stuart, 1961).

When multiple regression is used to compute predictor
*i

weights a multiple correlation may be calculated. The

multiple correlation is the Pearson product-moment correl-

ation, in the sample, between the optimal linear combination

of the predictors and the criterion variable. The multiple
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correlation is thus a measure of the degree cf relationship

between the predictors and the criterion. However the

multiple correlation.is a biased estimate of this relation-

ship and is generally larger than the true population

multiple correlation. The bias occurs because the process

of minimizing the average squared error iA prediction

is equivalent to maximizing the correlation between the

linear combination of the predictors and the criterion.

Due to the finite size of the sample, the optimizing linear

combination will be fitted to the idiosyncracies of the

sample .and will generally result in a higher multiple

correlation than the population multiple correlation.

One problem in the application of multiple correlation-

techniques is therefore the estimation of the true multiple

correlation from the biased sample multiple correlation.

In the next section it will be shown that there are two

population correlations which must be distinguished. A

number of formulas for correcting the sample multiple

correlation are known. However these formulas require

assumptions which are oftenidifficult to satisfy and

therefore many early investigators estimated the population

correlation by applying to a second sample the regression

weights calculated in an original sample. They found that

4r the correlation between the regression function and the

criterion in the second sample was less than the original

sample multiple correlation. This technique became known

as cross-validation of the predictor weights or simply as

cross-validation (Mosier, 1951). The correlation in the
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second sample is called the cross-validity. The first

sample is known as the derivation sample. the second is

the validation sample. An obvious addition to the cross-

validation method is to repeat the calculations inter-

changing the roles of the first and second sample. We

shall call this technique double cross-validation.

This study was designed to investigate:

(a) the accuracy of the cross-validity as an estimate of

the population correlation,

(b) the effectiveness of two reduced rank methods for

estimating predictor weights, and

(c) the effect of the variation of some parameters of the

population distribution on the results of (a) and (b).

The estimation of the population correlation is described

in Moredetail in Section 1.2. The reduced rank methods

are introduced in Section 1.3. Finally, the study of the

effect of variation of population parameters by a simulation

technique is introduced in Section 1.4.

1.2. Estimates of Validity

Let the predictor variables be xl, x2, ... , x and

let the criterion variable be y. Then the regression function

in the population is

(1.2.1) B1 x1 + 82 X2 + ... + 
8n xn + a0.

The constant term in the equation is Po; the 0, are called

the regression weights. Two models for the predictors are

possible, the regression model and the correlation model

(Ezekiel and Fox, 1959, pp. 279-281). In the regression
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model, the values of the predictor variables are fixed and

only the criterion is a random variable. A more realistic

model for most multivariatework in psychology is to assume

that both the predictors and the criterion are random

variables (the correlation model). Under the null hypothesis

of zero multiple correlation the distributional theory is

identical for the two models. However when the null hypo-

thesis is not true the distributions are different under

the two models. Since the distributional theory is much

more complicated under the correlation model, most invest-

igators in psychology (e.g. Burket, 1964) have continued

to use the regression model hoping that there will be

little practical difference between the two models.

Regression equations can also differ in whether the

constant term, 0, is included. In the case of the regres-

sion model, the constant term is really indistinguishable

from the other terms in the equation since a predictor

variable, x0 , may be defined as the constant 1.0. Then

the constant term may be written as %0 x0 . Therefore,

formulas developed for the constant = 0 case

(1.2.2) 1 x1 + 2 x 2 + ... + 8n xn

may be modified for the constant X 0 case (1.2.1) by

simply replacing n by n + 1.

In the correlation model this simple correspondence

between the zero and non-zero constant cases does not hold

since xl, ..., xn are random variables while x0 is fixed.

Inclusion of\a constant term does not affect the multiple

correlation or the correlation between the regression
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function and any other variable. Thus in:studies such as

the preser; one which.emphasize correlation measures, it

is simplest to set the constant term to zero. However if

the mean squared error of prediction is used as a measure

of accuracy of prediction it is very important to state

whether the constant term is included in the regression.

Let p be the population multiple correlation, y

the population standard deviation of y, and a(y _ )ttbe

population standard deviation of the error in prediction

(y , 9) where 9 is the regression function (1.2.1) with

weights calculated from the normal equations. Then

22(1.2.3) p2 =I -_ .

Oy

A similar equation holds in the sample, relating the

squared sample correlation, r2, to the mean squared error

of prediction, MSE, and the standard deviation of the

sample, s

MSE
(1.2.4) r 1

Sy

The first estimation of p2 in the psychological literature

(Larson, 1931) is by the following formula:
N

2 N2
(1.2.5) Est(p) 1 ------ (1 - r 2 )

N - n

where N is the sample size. Larson does not give a der-

ivation of this formula but Wherry (1931) showed that

it follows (in the regression model) from estimating
2by s2 and estimating 2by (MSE) N(N - n).

y y (y _ ) $

The substitution of these two estimates into (1.2.3) and
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the use of (1.2.4) gives (1.2.5). In order to improve

this estimate, Wherry (1931) estimated J by s2 N/(N - 1)
y

rather than by s2 . The resulting formula is
y N - 1222

(1.2.6) Est(p 2) = 1 ---- - r
N -

j Larson and Wherry compared their estimates with cross-

validities and Wherry showed that (1.2.6) is superior

to (1.2.5).

It is not entirely clear how Larson and Wherry

handled the constant term in the regression function.

Formula (1.2.6) is strictly applicable to a zero constant

term. When the constant term is not zero, the unbiased

estimate of y _ ) is (MSE) N/(N - n - 1) so that the

estimate of p is

N - 1

(1.2.7) Est(p 2) = 1-(i - r2)
N - n - 1

Formula (1.2.7) is often referred to as Wherry's formula

even though his original formula was (1.2.6). Formula

2
(1.2.7) is not an unbiased estimate of p since the ratio

of two unbiased estimates is not unbiased. However, unbiased

2estimates of p are not always desirable, for, if the true

p2 = 0, an unbiased estimate must take on both negative

and positive values even though a multiple correlation is

always positive.

The multiple correlation, p, is the correlation, in

the population, nf the criterion and the regression function

calculated in the population. In applications, the popul-

ation regression function can never be known and one is
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more interested in how effective the sample regression

function is in other samples. A measure of this effect-

iveness is r., the sample cross-validity. For any given

regression function, rc will vary from validation sample

to validation sample. The average value of rcwill be approx-

imately equal to the correlation, in the population, of

the sample regression function with the criterion. This

correlation is the population cross-validity, pc" Wherry's

formulatetimates p rather than pc" Lord (1950) and Nichol-

son (1960) derived an unbiased estimate of the population

mean square error of a sample regression function. Using

2
this estimate of MSE, an estimate of Pcis

2 N-I N+n+l(1.2.8) Est(p ) = 1-------- - --------- ( - r2)CN-n-I N

This formula applies to the regression model with a constant

term. Darlington (1967) modified this formula for the

correlation model with a constant term. His formula is

(1.2.9) Est(p 2 ) = i-

N -/l N - 2 N + 12
----------------------- (- r)
N-n- 1 N-n- 2 N

This formula is based on the assumption that the predictors

and criterion have a multivariate normal distribution.

It would be possible to cerive a similar formula for

Est(p 2) in the multivariate normal case with no constant
c

term. It is not, however, the purpose of this study to
2

derive the best estimate of p c for it is not clear what

properties such an estimator should have, particularly

since an unbiased estimator has the defects mentioned
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above. It is more interesting to study the accuracy of

the cross-validity as an estimate of pc and p.

Returning to estimating p, Wishart (1931) calculated

2the moments of the distribution of r for the multivariate

2normal distribution. The expected value of r is

N - n - 1(1.2.10) E(r2) = - - i - p2 ) x

N - 1

F(I, 1, (N + 1)12, P2)

where F(a, b, c, x) is the hypergeometric function.

Using the first two terms of the expansion of this function,

equat*6h (1.2.10) reduces to

2N - n - 1
(1.2.11) E(r2 ) i -(1 - p2)

N- 1

N-n-1 2
N2 

(1 
N +)

----------
-------

--------- 
------ -p 2-P 

2
N-I N+I

01kin and Pratt (1958) showed that an unbiased estimate

of p2 is

2N - 3 2(1.2.12) Est(p) = 1--------- ( - r) x
N - n -1

2F(i, 1, (N n + 1)/2, 1 - r),
/2

which, neglecting terms in I , is

N - 3
(1.2.13) Est(p2) = 1 ---------- ( r2)

N -n - 1

N-3 2
--------------- ------------------------- r12r 2
N - n - i N - n + 1

(1-r

The Wherry estimate (1.2.7) is almost identical to the first

two terms of this series.

Darlington (1967) has carefully distinguished the
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four correlations p, p., r, and rc . The smallest of these,

P and r., are the validity of the sample regression function

in the population and another sample, respectively. The

average, over many samples, of the cross-validity, r., will

be approximately equal to pc" The next smallest correlation

is p, the population multiple correlation or the validity

of the population regression function in the population.

The largest correlation is the sample multiple correlation,

r, which is the validity of the sample regression function

in the derivation sample. These relationships may be sum-

marized as follows:

(1.2.14) E(rc) Pc < p < r

Empirical confirmation of (1.2.14) is presented in

Section 3.3.

1.3. Improvement of Prediction

It is well known that adding predictors to a regres-

sion equation increases both the sample and population

multiple correlations. However the greater the number of

predictors, n, the more unstable are the sample regression

weights and the lower are the sample cross-validity, rc,

and the population cross-validity, Pc" The decrease in

estimated Pc follows from (1.2.9).

A second difficulty with a large number of predictors

in multiple regression is that a subset of them would

probably do just as well, if the subset could be deter-

mined. For predictions in applied psychology, e.g. per-

sonnel selection, it is undesirable to have to make a
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large number of mt v_ _; nts on each individual in order

to make accurate predictions. Furthermore, the weights

for a subset of predictors would be more stable in future

samples due to the smaller n.

There are several ways to select a subset of predictors.

The best selection procedure is stepwise regression in

-which predictors are added to the regression, one at a

time, until there is no significant additional prediction.

'Other selection procedures are shown by Darlington (1967)

to be inferior te the stepwise method.

Another way to reduce the number of predictors in the

regression function is to use a few linear combinations

of the predictors rather than the predictors themselves.

Two such methods, called reduced rank methods, are con-

sidered in this study. In the first method (Horst, 1941),

the largest principal components of the predictors (Anderson,

1958) are entered in the regression function. Since the

principal components may be expressed as linear combinations

of the predictors, the regression function may be trans-

formed to a linear combination of the predictors. Hence

the full set Of predictor variables is used but only through

the intermediary of a few principal components. These

components may be interpreted psychologically and it may

be possible to select predictors loading highly on the

components as a subset to use in future prediction. In

this way reduced rank prediction can lead to a reduction of

the size of the predictor battery.



In his 1941 paper, Horst also suggested that the

predictors could be represented as a linear function of

common and unique factors rather than as a linear function

of the principal components. This factor analytic model

is more difficult to treat because of the difficulty of

estimating the factors as linear combinations of the

predictors. Unlike Horst's first method, factor analysis

is not a reduced rank method. The factor analytic model

for regression calculations was studied by Leiman (1951)

with some success but will not be considered further in

this study.

Before outlining the second reduced rank procedure,

let us consider a study by Burket (1964) comparing a number

of regression methods in a large data sample. He compared

two stepwise selection procedures (Efroymson, 1960; Horst

and MacEwan, 1960), the largest principal components method,

the smallest principal components method (Guttman, 1958)

and the criterion-related principal components method

(Hotelling, 1957; Massy, 1965). Guttman proposed the u~e

of the smallest principal components since the solution for

the multiple regression weights depends on the inverse

of the predictor intercorrelation matrix, and the largest

components of the inverse are the smallest components of

the original matrix. Hotelling and Massy suggested that

the principal components which are entered into the regres-

sion function should be those components correlating max-

imally with the criterion rather than those of largest

variance, Burket compared these five methods for several
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criteria and in several subsamples of his total sample.

He found that the largest principal components method was

consistently superior to the other four methods. One purpose

of the present study is to show under wiat conditions this

superiority can be expected to hold.

The second reduced rank method, prediction from the

principal predictors, was developed from the following

considerations. The principal components of the predictors

may not be highly related to the criterion since the com-

ponents are determined solely from the intercorrelations

of the predictors. It would be desirable to find linear

combinations of the predictors which are strongly related

to the criterion. The Hotelling and Massy method employed

by Burket finds these linear combinations by computing

the correlation of each principal component with the

criterion and entering into the multiple regression only

those components with the highest correlations, However

a moreeffective procedure might be to find those linear

combinations of the predictors (not necessarily the principal

components of the predictors) which are maximally correl-

ated with the criterion.

In the single criterion case, this problem is trivial

since there is only one linear combination of the predictors

maximally correlated with the criterion and all other

orthogonal combinations are uncorrelated with the criterion.

This combination is simply the regression function, i.e.

the predicted criterion, using multiple regression on all

the predictors. Therefore, in the single criterion case,
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nothing new is found by considering linear combinations of

the predictors maximally correlated with the criterion.

Consider, however, prediction of severa. criteria

from a common set of predictors. Examples of such multiple

criteria are the prediction of success in several academic

curricula by using a bhttery of aptitude tests or the

prediction of-a number of social criteria using scales

from a personality test (Hase and Goldberg, 1966). In

particular, let us suppose that we wish to predict each

of the criteria equally well. Then Tucker (1957) has

developed a method which discovers those linear combinations

of the predictors maximally related to the set of criteria.

These combinations are called the principal predictors.

The largest of the principal predictors may be entered

into the regression equations for each criterion. The

principal predictors have the property that, for a fixed

number of linear combinations entered into each regression,

the average squared multiple correlation is greater for

the principal predictors than for any other linear com-.

binations entered into the regression.

The principal predictors were developed by Tucker

as a convenient way to summarize a large number of pre-

dictor scores by a few criterion-related predictor scores.

The principal predictors also provide a useful concep-

tualizatlon of the relationship of a set of predictors

to a set of criteria. In the present study, on the other

hand, the principal predictors are compared with the

principal components as reduced rank prediction methods.
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In any prediction calculation, each criterion variable

may be divided into two parts--one part is predictable

from the set of predictors and the other part is unpre-

dictable from these predictors. When there are several

criteria the predictable parts of the criteria are them-

selves a set of variables which have principal components.

These principal components are the principal predictors.

It is important not to confuse the principal components

of the predictors, previously discussed, with the prin-

cipal components of the predictable parts of the criteria,

which are called the principal predictors, The largest

principal predictor accounts for the largest portion of

the predictable variation in the criteria. The next

largest principal predictor accounts for the next largest

portion, and so on. Therefore a few of the principal

predictors account for most of the predictable variation

in the criteria.

The largest principal predictors may be used as pre-

dictors themselves. Then the principal predictors, .ike

the principal components of the predictors, can be expressed

in terms of the original predictors. The weights for the

original predictors can therefore be calculated. Also,

the principal predictors may be interpreted psychologically,

which may lead to greater understanding of the relation-

ship between the predictors and the criteria, The principal

predictors, unlike the principal components of the predict-

ors, are criterion-related so that variation in the predict-

ors which is unrelated to the criteria is not represented
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in the principal predictors. In some cases, the predictor

variation which is unrelated to the criteria could be large

enough to dominate the principal components of the pre-

dictors. But this variation is not useful for prediction.

This is the reason that prediction from the largest principal

predictors may be superior to prediction from the largest

principal components.

The two methods, prediction from the principal compon-

ents of the predictors and from the principal predictors,

are called reduced rank methods since, in both cases, a

correlation matrix may be approximated by a matrix of

lower rank using the largest principal components or the

largest principal predictors. In the first method, the

correlation matrix of the predictors is approximated while

in the second method, the correlation matrix of the pre-

dictable parts of the criteria is approximated. These

statements are made more precise in Chapter 2.

Of the prediction methods discussed in this section

only three will be considered further in this study:

(a) prediction from the full set of predictors,

(b) prediction from the largest principal components of

the predictors, and

(c) prediction from the largest principal predictors;

The last method is possible only when there are several

criteria. The first two methods may be used for one or

several criteria.

: 4
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1.4. The Comparison of Prediction Methods

In order to evaluate and compare the prediction

methods described in the preceding section it would be

desirable to employ mathematical techniques. However the

problems are so complex that multivariate statistical

theory is unable to solve most of them.

Another approach to these problems has been to apply

the different prediction methods to a common body of data

and to compare the results (Burket, 1964; Leiman, 1951).

There are definite advantages to this approach. Any

conclusions are based on real data and do not depend on

the assumptions in a theoretical development being valid.

However, there is a major drawback to such empirical

techniques. If two or more studies, using different data,

disagree in their conclusions, it is difficult to determine

what properties of the data sets differed enough between

the studies to produce the varied conclusions. Similarly,

it is difficult to evaluate the generality of conclusions

found in a single study using one set of data.

It is therefore desirable to compare the prediction

methods on a wide variety of data sets, differing in a

known way in certain parameters. Since it is hard to sat-

isfy this condition with real data, it is proposed that some

useful conclusions may be made from the study of artificial

or simulated data sets. Such data sets can be readily

generated on a computer. The parameters specifying the

properties of a data set can be input to the computer and

a wide variety of data sets can be generated by varying



17

these input parameters. The prediction methods can then

be compared in these data. Such a simulation p-,ooedure

is described in this study.

The simulation experiments consist of four states of

calculations;

Generation of the model. A combined predictor

and criterion population covariance matrix is generated

subject to certain input parameters. The population model

and its parameters are described in Sections 2.2 and 2.3.

In the model the predictors and criteria are expressed

in terms of the principal predictors.

Generation of two samples. Two samples, each of

size N, are obtained from the population generated in the

preceding stage. The samples are obtained by generating

sample covariance matrices; the method is outlinEji.

Section 2.4. The two samples are used in double cross-

validation.

Calculation of predictor weights. The predictor

weights are calculated, in each sample, by one or more

of the following methods--(a) multiple regression on the

predictors, (b) multiple regression on the principal com-

ponents, and (c) multiple regression on the principal

predictors. The calculation of these weights is described

in Sections 2.5, 2.6, and 2.7, respectively.

Cross-validation of the weights. The weights for each

sample (and each method) are cross-validated on the other

-Tple (r c ) and on the population itself (p c). The for-
mulas for the validities are presented in Section 2.8.
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CHAPTER 2

THE MATHEMATICAL MODEL AND SAMPLE CALCULATIONS

2.1. Notation

Scalars are denoted by lower case letters (m, p).

The only exceptions to this convention are N for sample

size and the elements of matrices. Scalars may be either

numbers or random variables. Column vectors are denoted

by lower case underlined letters (x, a). These vectors

may be either random variable vectors or vectors of numbers.

Row vectors are transposed column vectors, transposition

being 'Mdicated by priming (x?, a'). Matrices are denoted

by upper case letters (A, Z). Transposed matrices are

indicated by a prime (A', '). The (k, j) element of a

matrix is denoted by Aj. The identity matrix is I.

The matrix consisting of the first t columns of a

matrix A is denoted by (A)t . The first t rows of A are t(A).

The vector consisting of the first t elements of a vector b

is denoted by t(b).

The population covariance matrix of two random vectors

xand y is denoted by Z xy The corresponding sample

covariance matrix is C xy When y is known to have only one

component, the covariance matrices are column vectors

denoted by axy and c . The variance of a scalar y is

denoted by a or c yy. The abbreviation Var( ) is used
yy y

to denote the variance of the random variable enclosed

in parentheses.

U _
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The Greek letters E, a, p, and 7T are regularly used

to denote population parameters. E and a are population

covariances as stated above. p denotes a population

multiple correlation. w is a population parameter defined

in Section 2.2. 8 and Q are also used as population

parameters. All other population parameters are denoted

by Latin letters as are all sample quantities.

The univariate normal distribution with mean = m and

variance = v is denoted by N(m, v). The multivariate

normal distribution with mean vector = a and covariance

matrix = £ is represented by N(a, Z). Fisher's F distribu-

tion with n1 and n2 degrees of freedom is denoted by

F(nl, n2 ). Finally, the chi distribution with n degrees

of freedom is denoted by X(n). This is the square root of

the chi-squared distribution.

A list of symbol definitions appears in Appendix F.

2.2. The General Model for Predictors and Criteria

Let x (n components) be n random variables, called

predictors, and let y (m components) be m random variables,

called criteria. Let m be less than n as is usually the

case in practice. For convenience, normalize all variables

x and y to unit variance. Let x and y have a joint multi-

variate normal distribution with null mean vector and

arbitrary covariance matrix

(2.2.1) E = Lxx Zxy
]

yx yyl

It is shown in Appendix A that x and can be written in
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a special way in terms of (n + m) independent unit variance

random variables w. Let w be partitioned as

(2.2.2) w' = (1l- w

where !i has m components, !2 has (n - m) components and

w has m components. Then

m (n-m) m

n[ I- = 1 2 -
(2.2.3) n S I0

m F 0 E !2

(The number of rows or columns in the partitioned matrices

are appended to the matrix expression above).

Thus the submatrices forming Z may be written as

(2.2.4) Exx = S1 S, + S2 S

(2.2.5) Z = ' S F'
xy yx = 1

(2.2.6) = F F' + E E'

This representation of x and y can be understood in

the following way. Let each of the y variables be pre-

dicted from a linear combination of the x variables.

The best least squar s prediction (multiple regression)

of Y is
-i

(2.2.7) E = B' x = Zyx Exx X

The weight matrix is written as B' rather than B so that

when i = 1, B' = b', the transpose of a column vectol.

Each component of the predictable part is the best

predictor of the corresponding component of y. The squared

thmultiple correlation of the J criterion yj with the n

predictors is then (recall that yj has unit variance)
2j

(2.2.8) p Var(9~ (B' Ex B)~
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Now the variables [ may be transformed to independent

unit variance variables !1 by

(2.2.9) F

where F is orthogonal by columns, so that

(2.2.10) F' F = D2 (diagonal)

with the diagonal elements of D2 in descending order.

The m variables t1 are the principal predictors (see Appen-

dix A, equations (A.6) to (A.10)). The principal predictors

are numbered in order so that the first accounts for the

largest proportion of the variance of the Y- variables,

the second accounts for the next largest proportion, and

so on.

On referring back to the model (2.2.3) one sees

that the criteria y are written as the sum of a linear

transformation of the principal predictors wl and a trans-

formation of m other independent variables w-. Similarly,

the predictors x are written as the sum of a linear trans-

formation of the same principal predictors wl and a trans-

formation of (n - m) other independent variables w2 . The

association between y and x is expressed through their

dependence on the principal predictors wl. The non-assoc-

iated parts of x and y are expressed in terms of indep-

endent variables w2 (for x) and w3 (for y). The

total set of variables w' = (w{ wl w') are independent

unit variance normal.

The matrices S and F are central to the description

of the dependence of the criteria on the predictors.

Let us first consider F. The dependence of the m criteria
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kthon the k principal predictor is given by the sum of

the squares of the elements in the kth column of F. Let
2  ( t h 2this quantity be D (kk th element of the diagonal matrix D2):

(2.2.11) D k m F

D is the kth eigenvalue of = F F' (see Appendix A,

Li 2equations (A.6) and (A.7)). The auantities Dk are thus

monotonically decreasing numbers. If, in a certain populat-

ion, the first eigenvalue D-1 is very large and the others

small, this indicates that most of the prediction of y

from x is derived from only one linear combination of the

x variables, namely the first principal predictor. On

2
the other hand, if several of the Dkk are large, then

several independent linear combinations of the predictors

are needed in order to get maximum prediction of y from x.

The average, over criteria, of the squared multiple

correlations is simply related to the D2  (see equation
kk

(A.12)):

2m 2 m 2

(2.2.12) p2= (1/m) ;m = (1/m) I D2
j~l klk=

The relation of the predictors x to the principal

predictors w1 through the matrix S1 is quite independent

of the matrix F and the quantities D 2 For convenience,Dkk. o oveine

let us suppose that the variables are normalized to unit

variance. Let us define the (n x n) matrix S as the

super-matrix

(2.2.13) S = (S1 S2)

_1_2
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Thus

(2.2.214) x =S (l

Since the w variables are independent and of unit variance,

the sum of squares of each row is 1.0. The sum of squares

thof the i h row of S1 is then less than 1.0 and represents

the magnitude of the dependence of the ith predictor on
2

the principal predictors. Let q (k = 1, ... , m) denote

the sum of squares of the kth column of S:

2 n 2

(2.2.15) q2 nS
k ik

q2 is a measure of the average dependence or relation of
qk

the x variables to the kth principal predictor. The q 2

2
are analogous to the D2 since they represent, respectively,kk

the average dependence of the predictors and the criteria

on the kth principal predictor.

We may average the q in the same way as the Dk are

averaged in (2.2.12):

2m 2 m n$

(2.2.16) T (1/n) f q = (1/n. L L ik
k=l k=l i=l

Note that the division is by n, not m, in order to get a

2 2
parameter Tr with maximum value 1.0. v represents the

average, over predictors, of the predictor variance related

to the principal predictors. It is a measure of the

dependence of the predictors on the principal predictors.

For brevity, w 2will be called the average criterion-

related predictor variance. This description does not

imply that 712 is an average multiple correlation of x
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predicted from y (roles of prdictors and criteria reversed).
~2

w is, however, the average multiple correlation of the x! .-
variables predicted from the principal predictors wI"

Another way to interpret w2 is to define A as the

parts of x linearly predictable from I

(2.2.17) 2 = S1 w

Then the variance of 21, the predictable part of the ith

predictor, is

m

(2.2.18) Var(i) = S2

k=l

The average of these variances is

2 n

(2.2.19) w = (1/n) Var(ti)
i=l

n m m
(1/n) ' ' S2  = (1/n) q 2

~. ik ki=i k=l k 1

Consider now two populations, each with the same

2average squared multiple correlation o . One population

might have a small value of r- and the second a large value

2
of 7r . In the first population the predictors depend

very little on the principal predictors while in the second

the dependence is greater. Nevertheless the prediction of

the criteria is the same in each population. This par-a-

doxical sit'ation can be understood by first noting that

we are considering for the moment prediction in the popula-

tion, not in finite samples. The prediction of y is solely

via the principal predictors wi and the random vector w

is an exact linear combination of the predictors x since
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S is square and non-singular:

(2.2.20) Xl =S

As additional verification that the average multiple

2 2correlation is independent of w , note that p depends

only on F in (2.2.11) and (2.2.12).

2
The parameter w will have an effect on prediction

in finite samples however. Consider prediction from the

principal components of the predictors. When w2 is large,

the largest principal component will be largely in the

space of the principal predictors and will contribute to

prediction. However, when 2 is small, the first principal

component will be unrelated to the principal predictor

space and will be a very poor predictor. The effectiveness

of ptediction from the principal components will thus K
depend on the size of w 2. Empirical confirmation of this

phenomenon will be demonstrated in Section 3.4.

2.3. Computer Generation of the Model

Since any set of n predictors and m criteria may be

written in the form (2.2.3), it is possible to generate

an arbitrary population distribution by specifying the

matrices S, F,and E. The covariance matrices Exx' Ixy'

and Z may then be calculated by (2.2.4) to (2.2.6) whereYY

S is related to S1 and S2 by (2.2.13).

Rather than allowing the matrices S, F,and E to be

completely arbitrary, a few basic parameters may be fixed

arbitrarily and the matrices then generated essentially
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randomly subject to these given parameters. These arbi-

trary parameters are called "input parameters" since they
I

are input to the computer program that generates the model.

The major input parameters are:

1. n = number of predictors.

2. m = number of criteria.

23. (D 2 k = 1, ..., m), the eigenvalues of Z

4- (q , k = 1, ..., m), the dependencies of the

predictors on the principal predictors.
' ot tatone 2 2

Note that once Dkk and q are specified for all k,

the average squared multiple correlation p2 and the average

criterion-related predictor variance 2 are fixed by

(2.2.12) and (2.2-16). In particular, when m = 1 as in

Chapter 3, p2:Dlan2 (1/) 2= DII and n2= (1/n) ql"

Two additional parameters, related to n and m, are:

la. n5 = number of columns of S.

2a. md = number of duplicate criteria.

In the model described in Section 2.2, S = (S S2 ) is an

(n x n) square matrix. S1 has m columns and S2 has (n - m)

columns. In some of the experiments described in Sections

3.1 and 3.2, S has more than n columns, namely nS columns,

so that S2 has (ns - m) columns and Sl still has m columns.

All the experiments in Chapter 3 involve only one

criterion (m = 1). However several duplicate criteria are

allowed and the number of such duplicate criteria is

denoted by md. Duplicate criteria are described further

in Chapter 3 and Appendix D.
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Four minor parameters are needed to complete the

input for the model:

5. vx = variance of the generated Var(2i).

6. ex  tolerance on this variance.

7. v = variance of the generated multipleY

correlations p.

8. e = tolerance on this variance.

The computer program generates matrices F and E so V

that the m squared multiple correlations p2 calculated
a2

from them have mean exactly equal to the average of the D k

and variance equal to vy within a maximum error of ey.

That is,

(2.3.1) p2 = (1/m) pi = (1/m) D D

J=l k=l k

and

2m 2 2)2
(2.3.2) IVar(P ) - V y = 1(I/m) I (pj -p - vj=lY

< e

y

Matrix S, composed of SI and $2, is generated so that the

mean of the variances of 2j calculated from S1 is exactly

m 2

equal to (1/n) I qk and the variance of these vaoiances
k=1

is equal to vx within a maximum error of ex. That is,

2n m 2

(2.3.3) w = (1/n) I Var( i) = (1/n) 0 2
i=l k=l

and

(2.3.4) IVar[Var(gi)] - VxI < ex '

The two occurrences of "Var" in the preceding formula
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refer to different types of variances. Var(Ri) means the

variance of the random variable 2i in the population.

Let the constants Var(2i) = vi temporarily. Then Var(vi)

is simply shorthand notation for

n 22
(2.3.5) Var(vi) = (1/n) (v i )

i=l

Note that w2 is the mean of the vi.

Generation of F

The matrix F is the product of an orthonormal matrix

V.and a diagonal matrix D consisting of the square roots

2
of the eigenvalues D2 (equation (A.8)):kk

(2.3.6) F = V D

The matrix D2 is input so that generation of F reduces to

the generation of an orthonormal V satisfying the two

restrictions (2.3.1) and (2.3.2) on the squared multiple
2 2

correlations pj. Pj may be expressed in terms of V and D by

(2.3.7 p = Var(j) (F F')j= (V D2 V')

m v2 2

k=1 jk kk

When p2 is calculated in this way with V orthonormal,

equation (2.3.1) is automatically satisfied. The restrict-

ions on V are then

(a) V must be orthonormal,

(b) all p calculated from (2.3.7) must be less than

1.0, and

(c) the variance of the p must satisfy equation

(2.3.2).

An algorithmic procedure to generate a V satisfying these
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three conditions, for arbitrary parameters m, (D2 k 1,

Dkk, =1

... , in), vy, and ey, is outlined in Appendix C.

Generation of E

The elements of the (in x m) matrix E are first gener-

ated randomly from N(O, 1) and then the rows of E are

normalized so that, for all J,

m3
(2.3.8) (E E') E 1 2

(2.3.8) k = 1 - p2k k l

2where the p3 are calculated from (2.3.7). This normali-

zation ensures that the criteria y are normalized to unit

variance. The methods used to generate normal random

numbers as well as other random numbers discussed in this

chapter are given in Appendix B.

Generation of S

Two different methods for generating S were developed

for the experiments described in Chapters 3 and 4. The

first is called the ex = 0 metnod since the variance of

Var(Ri) is exactly equal to vx. This method was used for

the single criterion cise (m = 1) in Chapter 3. The

method does not generalize well to the in > 1 case and

therefore a second method, called the ex # 0 method was

used for the several criterion calculations in Chapter 4.

This latter method could have been employed in Chapter 3

e'xcept that ex cannot be set to zero in this method.
2

When in = 1, ir can be calculated directly from the

input parameters as

(2.3.9) 72 = (1/n) q2

Then, in the ex = 0 method, n numbers are generated randomly
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from N(7 2 vx ) subject to the restriction that no number

be more than 1.0 or less than 0.0. The numbers are re-

2
scaled after generation so that their mean is exactly wr

and their variance is v If one of the numbers is now

more than 1.0 or less than 0.0, the number is discarded

and a new attempt is made to satisfy the conditions. These

n numbers are the variances of 2i, denoted by vi = Var(2i )

in equation (2.3.5). When this step is completed equations

(2.3.3) and (2.3.4) are exactly satisfied with ex = 0.

Now S1 is a single column, 1 and its elements are

defined as the square roots of (v,, i = 1, ..., n), with

their signs chosen randomly. The elements of the last

(ns - 1) columns of S, namely S2 , are generated randomly

from N(0, 1) and then rescaled, by rows, so that the row

sum of squares of the whole S matrix is unity. This

rescaling ensures that all x variables have unit variance.

The generation of S by the ex = 0 method is now complete.

The e x # 0 method of generating S is very similar

to the method of generating F. In analogy to (2.3.6) in

which all matrices are (m x m), S1 is written as

(2.3.10) Sl = T Q

where S1 and T are (n x m) and Q is diagonal (m x m) with

diagonal elements = (qk' k = 1, ... , i). T (like V) is

orthonormal by columns. The Var( i ) may be written in

terms of T and Q as

(2.3.11) Var(2 (S St) 2 2 2(2..11 1a(i  =( 1 S1)1 (T Q2 T,)i i  T ik q k
k=l
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Since T is orthonormal it follows that the average of

m 2 2
these variances is exactly (1/n) v q = v so that (2.3.3)

k=l

is exactly satisfied. The remaining restrictions on T

(as on V) are then

(a) T must be orthonormal by columns,

(b) all Var(Ri) calculated from (2.3.11) must be

less than 1.0, and

(c) the variance of the Var(2i) must satisfy (2.3.4).

The algorithmic procedure for generating V (Appendix C)

may be also used to generate a T satisfying the above three

* 2conditions ior arbitrary n, m, (q , k = 1, ... , m), vx ,

and e

After Sl is generated, S2 (n x (ns - m)) is generated

in the same way as in the ex = 0 method. First the ele-

ments of S2 are generated as N(O, 1) random numbers.

The rows of S2 are rescaled so that each row sum of squares

of S = (S S2 ) is unity, resulting in unit variance x

variables. This completes the ex # 0 method for gener-

ating S.

2.4. Computer Generation of Data Samples

x and y are (n + m) random variables with a joint

multivariate normal distribution. The mean vector is the

null vector and the covariance matrix is E as given in

eauation (2.2.1). In order to draw samples from. this

distribution, it would be a straightforward procedure to

use equation (2.2.3) which expresses x and in terms of

ii3



32

independent N(O, 1) variables w. For each simulated

subject it would be necessary to generate (n + m) indepen-

dent N(O, 1) numbers and to place these in equation

(2.2.3) as the w values. The sample x and y vectors would

then be found by matrix multiplication.

This proceudre, while conceptually simple, has the

disadvantage that the computer time required increases

linearly with N, the sample size. The method is thus

impossible to use for all but small sample sizes.

Another procedure was chosen instead. It is not

based on generating sample vectors x and y at all but on

generating a sample covariance matrix

(2.4.1) C = [xx Cjyx

xy Cyyi

The method is the Bartlett decomposition of the Wishart

distribution (Bartlett, 1933; Kshirsagar, 1959; Wijsman,

1957). The covariance matrix C has a Wishart distribution

depending solely on the population covariance matrix Z,

the sample size N, and the number of variables which

is (n + in).

Let the population covariance matrix Z be written as

(2.4.2) E = 0 Q .

This may be done in a variety of ways. The Gauss-Doolittle

method for computing a triangular Q was used.

Let an ((n + in) x (n + in)) matrix A be defined as

(2.4.3) A = (1/N) T T'

where T is a lower triangular ((n + m) x (n + m)) matrix
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whose lower triangular elements are 
independent random

variables:

Tij (i >) are N(O, 1)

(2.4.4) Tii are X(N - i)

Ti =O0(i< J) .

Then, if we compute

(2.4.5) C = 0 A ' = (1/N) 9 T T' R' ,

C will have a Wishart distribution as desired. Equation

(2.4.5) is the Bartlett decomposition of the Wishart

matrix C. A is a sample covariance matrix from a population

with identity covariance matrix. The letter A is used

as a temporary symbol in this paragraph and is reserved

for another use in Section 2.6. The generation of normal

and chi variables is described in Appendix B.

2.5. Multiple Regression on the Predictors

The most widely used method for prediction is multiple

regression. This least squares method ensures that, in

the derivation sample, the correlation between the predicted

score and the observed criterion score is a maximum.

The maximum correlation is the multiple correlation.

Let the covariance matrix of the n predictors in the

the derivation sample (of size N) be Cxx (n x n) and let

the column vector cxy (n x 1) be the covariance between each

predictor and the single criterion (m = 1). Let the

coefficients of the multiple regression combination of the

predictors be b1 (n x 1), the subscript indicating that the

first method of prediction, multiple regression on the



34

predictors, is being used. The linear combination of the

predictors is then b1 x.

The solution for k1 is well known to be
--- ic

(2.5.1) b -x

The correlation between 9 = b x and y is the multiple
-l

correlation. The square of this correlation is

b' c(2 _1 -x

(2.5.2) 2 --
C
yy

where c is the sample variance of the criterion. The

proof of this formula is presented in Appendix E. The

subscript on r2 is only used in this chapter to distin-

guish the three methods of prediction. The subscript is

dropped in later chapters.

2.6. Multiple Regression on the Principal Components

As an alternative to the original predictors one

can use the largest principal components of the predictors

in the regression function. The scores on the principal

components are first estimated from the predictor scores.

The following calculations are made in the derivation

sample. The characteristic roots and vectors of the

covariance matrix of the predictors, Cxx (n x n), are

calculated. Let the roots be written in descending order

on the diagonal of a diagonal matrix U2 and the vectors

in corresponding order as the columns of an orthonormal

matrix W. Then Cxx may be written as

(2.6.1) C = W U2 W'xx

where all matrices are (n x n). The characteristic vectors
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are the coefficients for relating the principal components,

f, to the predictors, i.e.

(2.6.2) f = W' x

where x is the (n x 1) column vector of one subject's scores

on the predictors and f is the (n x 1) column vector of the

principal component scores (Anderson, 1958, pp. 273-277).

We wish to use the t largest principal components

in the regression function. From (2.6.2), the scores on

these t principal components are estimated by

(2.6.3) t(f) = t(W') x

where t(f) Is (t x 1) and is the vector of the first t

elements of f. t(W') is the matrix consisting of the

first t rows of W'.

The prediction equation, using the t largest principal

components, is

(2.6.4) 9 (t) = dt, t(f)

where d is a temporary symbol representing the t-vector

of weights for the principal components. The multiple

regression solution for d is

(2.6.5) d = Cf 1fy

in analogy to the solution (2.5.1). In (2.6.5), Cff is

(t x t) and Efy is (t x 1). The covariance matrix of

the u principal components is, from (2.6.3), (2.6.1), and

the orthonormality of W,

(2.6.6) Cff = t(W') Cxx (W)t = t(U2 )t

and the covariance of the t principal components and the

criterion is

(2.6.7) c fy = t(W') c '
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Therefore the weight vector is

(2.6.8) = t(U-2 )t t(W') y

Substituting (2.6.3) and (2.6.8) into (2.6.4), we find

that

(2.6.9) (t) = c CW)t (U- 2)t t(W') x
--xy (Wt tu)

is the equation for predicting y from x using regression

on the t largest principal components of the predictors.

This equation may be simplified slightly by writing

(2.6.10) A = W U

so that (2.6.1) becomes

(2.6.11) Cx = A A'

Then (2.6.9) becomes

(2.6.12) = (A'- (A- 1 X
-xy t t

Equation (2.6.12) is the formula for predicting

y from x using regression on the t largest principal

components. If we express the right hand side of this

equation as D [ x, then the weight vector is

(2.6.13) b~t) = (A') I  (A- 1 ) c .
2 t txy

It Is shown in Appendix E that the squared multiple cor-

relation is

(2.6.14) [r 2 I -2 c
C

yy

which is identical in form to (2.5.2) but of course in-

(t)volves b ) instead of b1i It is important to note that

(t)r ) is not the multiple correlation of y with the

predictors x. The latter multiple correlation is rI.

(t)The symbol r2 represents the multiple correlation of y
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and the t largest principal components of the predictors

(t)and therefore r t must be less than rI unless t = n.

The subscript 2 is dropped in later chapters when the con-

text makes clear which method of prediction is used.

Multiple regression on the principal components may

be called a reduced rank method since the use of the

t largest principal components instead of the original

predictors is equivalent to approximating the matrix Cxx

by the matrix

(2.6.15) Cxx = (A)t t(A')

The matrix C is of reduced rank t < n.
xx

2.7. Multiple Regression on the Principal Predictors

Another method of calculating independent scores in

the derivation sample is the method of principal predictors.

Scores on the largest principal predictors are used in

the regression equation. The method is only applicable

if there are several criteria (m > 1).

Let the scores of a subject on the m criteria be

Ylp ' Ym' which may be placed in a column vector Y

(m x 1). Each criterion, yj, has a part, 9P linearly

predictable from the n predictors, x, in the derivation

sample:

(2.7.i) = c? C xj -xyj xx -

where c (n x 1) is the covariance of yj with the

n predictors x and C is the covariance of the predictors.
x

The mn predictable parts of the criteria may be written
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as a column vector (m x 1). Then equation (2.7.1) may

be rewritten as

(2.7.2) C, c-i Cy C - x" "xy xx -=  x xx-

where C (m x n) is the covariance matrix of the m criteriayx

with the n predictors. The covariance of the predictable

parts is the (m x m) matrix C

(2.7.3) C = C- C'
(.C yx xx yx

Let us diagonalize C in analogy to the way that

C was written in (2.6.1) and (2.6.11):xx

(2.7.4) C = V D2 V' = G G'

The matrices V and D are sample estimates of the corres-

ponding population matrices denoted by the same symbols

in Sections 2.2 and 2.3. The eigenvalues D2 are written

in decreasing order in the diagonal of D2 and the eigen-

vectors are written in the corresponding order as columns

of V. The rows of G are the coefficients for relating

the predictable parts of the criteria and the principal

predictors, i.e.

(2.7.5) G w

Thus the equation for estimating the scores on the m

principal predictors (column vector w (m x 1)) from the

predictable parts is

(2.7.6) w = G-1

which, combined with equation (2.7.2), gives

(2.7.7) w = G-1 C C- x
y - xx

as the equation for estimating w from x.
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The equation for estimating the t largest principal

predictors t(w) is
_ (-1 )  -1

(2.7.8) t(w) = Cy 1 xxt t ~yx x
-1 -1where t(G) is the first t rows of G

Note that w is a vector of numbers which can be

calculated for each subject. The use here of w for the

estimated principal predictor score vector should not be

confused with the use of W, in Section 2.2, for the prin-

cipal predictors, a random vector in the population.

Since the principal predictors are uncorrelated

in the derivation sample the multiple regression weights

for predicting each yj from the principal predictors are

simply the rows of the pattern matrix G as shown in (2.7.5).

Each row of G is the weight vector for one criterion variable.

The coefficients G are still the correct weights when only

some of the principal predictors are included in the

regression. If the t largest principal predictors are in-

cluded, the predicted parts of the criteria are

(2.7.9) (t) = (G)t ()

In order to express this equation in terms of the original

predictor scores as

(2.7.10) (t) B=

equations (2.7.9) and (2.7.8) may be combined, yielding

(2.7.11)xx Cxy (G')t t(G')

It is shown in Appendix E that the squared multiple cor-

relation of the i th criterion variable yj is

(BI Cx j
(2.7.12) [r(t) 12= ( C )

3J C
YJYJ 

!
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which is identical in form to (2.5.2) and (2.6.11) except

that there is one such equation for each criterion var.

iable yj. As was the case with regression on the principal

components, the multiple correlation r(t) is not the
3j

multiple correlation of yj with x but is the multiple

correlation of yj and the t largest principal predictors.

The correlation r(t) is always less than or equal to rI.3J

The subscript 3 is dropped in later chapters.

Multiple regression on the principal predictors,^

as on the principal components, is a reduced rank method.

The use of the t largest principal predictors instead

of all m principal predictors is equivalent to approx-

imating the matrix C by the matrix

(2.7.13) = )t t(G')

The matrix C is of reauced rank t < n.

It was pointed out after equation (2.7.4) that the

eigenvalues of C are estimates of the population par--

ameters (D2k 2ameers(Dk, k = 1, ... , in). In order to estimate i

and (q , k = , ..., m) it is natural to require that the

covariance matrices be change' to correlation matrices.

The correlations of the predictors x and the principal

predictors w are given by the (n x m) sample matrix

S1 = Cxw. S1 may be written as
(2- -14 S = C 'C 1  C (G ') ".l = C (Q ) -i1

(2.7.14) Sl = Cxw = Cxx xx xy xy

by equation (2.7.7).

The sample quantity q" is the average dependence

of the predictors on the kth principal predictor and is
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therefore, since the predictors have unit variance by the

use of correlation matrices, given by
n

(2.7.15) sample q= S 2
k ik

2
Similarly the sample estimate of 'IT , the average criterion-.

related predictor variance is the sum of the squares of

all the elements of S1 divided by n and is
ni n $

(2.7.16) sample 2 = (i/n) Lii ik
k=l i=l

m

(1/n) r sample q
k=l

2.8. Cross-Validities

The calculation of correlations in the validation

sample is identical for all three weight computational

methods. Given the weight vector b from the derivation

sample, the square of the correlation between b' x and

a criterion variable y in the validation sample is
)2

(2.8.1) r2  (- -c

(LCxx ) yy

where Sxy' C and c are covariances computed in the-y xx yy

validation sample. The proof of this formula is given in

Appendix E. The quantity rc is called the sample cross-

validity and may be negative or positive. The sign of rc

is equal to the sign of b' c . The sign of r is also... . .-xyc

affixed to r2 when averages of several r 2 are taken.c C

The predictor weight vector b, calculated in the

derivation sample, may also be applied to the populati3n

*1
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itself. The souare of the corre]ation between b' x and

the criterion variable y in the population is

th, 1 2
2 "b' xy

(2.8.2) P 2
(b' Z xx b) a yy

This formula is identical to (2.8.1) except for the use

of population covariances instead of sample covariances.

Pc is called the population cross-validity. A sign is
2 2

affixed to c in the same way as to r .

2The three statistics, r (in its several forms),

2 2
rc, and pc are called the correlation statistics. These

statistics are the principal quantities computed in the

experiments described in Chapters 3 and 4.
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CIAPTER 3

SIMULATION RESULTS WITH ONE CRITERION VARIABLE

A number of experiments were performed using a single

criterion variable. The two methods of prediction used

were multiple regression on the predictors and on the

principal components of the predictors. The model and

sample generation methods described in Sections 2.2 and

2.3 are applicable to the single criterion case (m = 1).

However, in order to generate many samples without exces-

sive use of computer time, a special procedure for the

m = 1 case was developed. This procedure, described in

detail in Appendix D, allows any number of criterion vari-

ables to be generated, each with the same population

multiple correlation and each with the same relation to

the predictors. The criterion variables are thus all

duplicates of the single criterion of interest. The

number of such duplicates is denoted by md.

As an example, suppose that there are five predictors

and ten duplicate criteria. Then, in a sample, one can

compute ten multiple correlations, one for each criterion.

These ten correlations are all based on one sample (size N)

of five predictor scores but on ten different samples of

single criterion scores.

Each calculation described in this chapter is based

on one or more populations (E) generated for each combin-

ation of th- input parameters. For each E tht was generated,

_ _
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sample covariance matrices were generated in pair; (CI, C2 ),

representing the two samples needed for double cross-

validation. E, C1 , and C2 are the covariance matrices of

(n + md) variables--n predictors and md duplicate criteria.

Except in Section 3.4, at least two such pairs of sample

covariance matrices were generated. This allowed variation

in the predictor sample covariance matrices.

The results using the simulation program described

in this chapter are:

(a) When p = 0, the sample multiple correlation follows

the known theoretical law. (Section 3.1)

(b) When p Y 0, variation in E produced by change in

the number of columns of S does not affect the correl.-

2 2 2ation statistics r , rc, and pc. (Section 3.2)
2

(c) The correlation statistics depend on n, Nand p

in theoretically understandable ways. Tables are

presented which may be used to interpret sample mul--

tiple correlations and cross-validities. (Section 3.3)

(d) The optimuri, number of principal components to include,.

in the regression function depends on the parameters
n, , 2 2

n, N, p2 , and w (Section 3.4)

3.1. ,Distribution of the Correlation Statistics When p = 0

It is useful to study populations in which the multiple

correlation (p) is zero even though such populations are of

little practical significance. Firstly, the distributions

of the correlation statistics when p = 0 provide a baseline

against which to compare the distributions obtained for
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non-zero p. Secondly, some prope rties of the distributions

for p = 0 are known theoretically and a comparison of the

distributions obtained from the computer model for p = 0

with the theoretical predictions provides a check of the

wodel and the computer calculations.

Fisher (1928) showed that, if r is the sample multiple

correlation,

r 2 N -n-i1(3.1.1) n-

1-r n

is alstributed as F(n, N - n - 1) when p = 0. This dis-

tribution has the important property that it is independent

of the covariance matrix of the predictors, xx. The

distribution of the sample cross-validity, rc.; is not known

but its expected value is zero and its distribution is

symmetric. Presumably its distribution is also independent

of Exx* Finally, the population cross-validity, pc' is

exactly zero since o = 0.

An effective simulation of multiple regression should

be able to reproduce these properties. The distributions

of r2 and r2 were studied for two different sample sizes, N,

and for predictor covariance matrices, Zxx, varying in
2

two ways, namely in the values of the parameters 2 and n .

2 is the average of the variances of the part of each

predictor dependent on the principal predictor; ns is the

number of c-cdumns of the S matrix. Two values of n were

used--n s = 10 implies a square S matrix since n = 10

and n = 20 implies a non-square S matrix.

The input parameters which were constant for all
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the calculations in this section are shown in Table 1.

Table 2 shows the variable model parameters and sample

sizes and also the total number of populations and samples

calculated for each model. According to Table 2 four dif-

ferent Es were generated for each model, and for each E

generated, three double cross-validations were performed.

Since ten duplicate criteria were used throughout (md = 10),
d1

there were altogether 10 x 4 - 3 x 2 = 240 sample multiple

correlations and cross-validities computed for each model.

The final factor of two in the preceding expression repre-

sents the two samples (Cl C2 ) which were generated for

each double cross-validation.
2

In order to test whether r satisfies the Fisher

distribution law (3.1.1), it is necessary to have a tab-

ulation of F(10, 39) for Models 1 and 2 and F(10, 130)

for Models 3 and I4. These distributions were obtained

directly, or by interpolation, from Owen (1962). From

(3.1.1), r2 is distributed as

n F(n, N - n - 1)
(N - n - 1) + n F(n, N - n - 1)

The percentage points used (those available in Owen) and

the corresponding percentile points of the F and r2 dis-

tributions are shown in Tables 3 and 4.

The four Es and associated samples for each model

were divided equally into two sets, chosen in the order

that they were computed. The cumulative frequency distri.

bution of the 120 sample squared multiple correlations,

2r * are presented in Tables 3 and 4. Each set of 120
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Table 1

Constant Parameters for Section 3.1

n =10

md = 10 (m = 1)

p2 =0.0

v= 0.01

e 0.0x

Vy, ey inapplicable since m =1

Table 2

Variable Parameters for Section 3.1

Model 1 Model 2 Model 3 Model 4

n 10 20 10 20

IT .2 .2 .5 .5

number of Es 4 4 4 )4

N 50 50 131 131

number of C, C2

pairs perE 3 3 3 3
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Table 3

Distribution of r2 for Models 1 and 2

Prob- F(10, 39) r2  Cumulative Frequencies
abil-
ity Model 1 Model 2

Expected Set 1 Set 2 Set 1 Set 2

1.030 1.000 120 120 120 120 120

.975 2.401 .381 117 117 116 117 117

.95 2.086 .348 114 115 114 11 114

.90 1.769 .312 108 103 107 108 112

.75 1.329 .254 90 85 80 98 91

.50 .951 .196 60 50 52 60 59

.25 .664 .145 30 25 23 30 26

.10 .469 .107 12 16 12 11 9

.05 .375 .0878 6 5 6 5 6

.025 .307 .0729 3 1 3 4 4

.000 .000 .0000 0 0 0 0 0

MD = maximum absolute difference
(observed - expected) 10 10 8 4

Kolmogorov-Smirnov D = MD/120 .083 .083 .067 .033
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Table 4

Distribution of r2 for Models 3 and 4

2
Prob- F(10,120) r Cumulative Frequencies
abil-

ity Model 3 Model 4
Expected Set 1 Set 2 Set 1 Set 2

1.000 1.0000 120 120 120 120 120

.975 2.157 .1524 117 120 115 119 117

.95 1.911 .1373 114 119 ill 113 113

.90 1.652 .1210 108 114 107 106 109

.75 1.279 .0963 90 95 96 88 95

.50 .939 .0726 60 65 69 60 69

.25 .670 .0529 30 27 39 33 32

.10 .480 .0385 12 7 18 13 13

.05 .388 .0313 6 6 9 7 5

.025 .318 .0259 3 4 2 5 3

.000 .000 .0000 0 0 0 0 0

MD = maximum absolute difference
(observed - expected) 6 9 3 9

Kolmogorov-Smirnov D = MD/120 .050 .075 .025 .075
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squared multiple correlations originated in six sample

covariance matrices for each of two Es. There werc ten

duplicate criteria in each sample.

The observed frequency distributions were compared

with the expected distributions by the Kolmogorov-Smirnov

one sample test (Siegel, 1956). MD is the maximum absolute

difference between observed and expected cumulative fre-

quencies and D = MD/120 is the Kolmogorov-Smirnov statistic.

Both values are presented in the tables. The critical D

for the one sample, two tailed test is 0.12 (a = 0.05,

N = 120). None of the Ds in Tables 3 and 4 exceeds this

value. There is therefore good evidence that the multiple

correlations generated by the simulation program satisfy

the Fisher law.

The means and standard deviations of the eight sets

of cross-validities (120 in each set) are presented in

Table 5. The t values are also shown. The critical t for

a two tailed test is 1.98 (a = 0.05, df = 119). The cross-

validities do not have mean zero by this test since two

of the ts exceed the critical value and onie other is almost

at the critical value. If the models with the same sample

size are combined the ts are +1.38 (Models 1 and 2) and

-1.49 (Models 3 and 4). The critical t is now 1.96 (df =

479). It is apparent that the powerful t test is able to

show small imperfections in the simulation procedure,

The calculations in this section have shown that when

the population multiple correlation is zero, the sample

statistics obey, at least to a certain extent, the
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Table 5

Cross-Validities f'or Models I to 14

Moe1 StMa 2 Standard t
Mode Se !len r Deviation

1 1 .00168 .01402 .146

1 2 .001439 .0222 2.1L6*

2 1 .00232 .01405 .63

2 2 .00068 .0378 .20

3 1 -.00232 .0095 -2.66*

3 2 .00228 .0129 1.94

14 1 -.001146 .01147 -1.0

14 2 -.00213 .01149 -1.56

Note: Each r2 entering into the mean has the same sign

as the corresponding rc

*p < .05
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theoretically known distributions. The function (3.1.1)

of the sample multiple correlation has an F distribution and

the mean value of the cross-validity is approximately zero.

3.2. Dependence of the Correlation Statistics on Zxx

When p ' 0

It was shown in Section 2.2 and Appendix A that the
2

average squared population multiple correlation, p ,

2
depends only on the (Dkk, k = 1, ..., m) (equation 2.2.11)

and not on matrix S. In particular, when there is only

one criterion (m = 1), the squared population multiple

correlation of the criterion with the predictors is

2=2(3.2.1) p = D2

Sne iSince D is an input parameter it is therefore straight-
2

forward to specify an arbitrary p for a desired population.

Unfortunately this simple specification of p2 is

only possible when the matrix S is square. When S is non-

square, say with ns columns, then p2 is given by

2 =' -l(3.2.2) p D 11 ( S s

which depends on the matrix S. The vector s is the first

column of S (equation 2.2.13). Since S is generated to

some extent randomly by the population generation pro-

cedure, it is impossible to specify by input parameters

what the population multiple correlation will be. This is

a severe limitation on the model if S is not square.
2

Because ot" the ease in specifying p , The models

in the remaining sections of this study all employ square

S matrices. In order to show, at least to a certain extent,

that this does not effect the generality of the conclusions,
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some experiments are described in this section which compare

the correlation statistics of square S and non-square S

models. A further comparison is made of two models which
2

differ only in the parameter 1 2

The input parameters which were constant for all

the calculations in this section are shown in Table 6.

Table 6

Constant Parameters for Section 3.2

n= 5

md = 10 (m = 1)

v= 0.01x

e= 0.00x

Vy, ey inapplicable since m = 1

N = 40

Table 7 shows the vari'able parameters and the total number

of populations and samples calculated for each of the ten

models. Models 5 and 6 are square S models differing only
2

in 2  Two populations were generated for each model and

three sample pairs for each population. This results in

10 x 2 x 3 x 2 = 120 sample correlations for each model.

Each of the four remaining model pairs differ only

in ns, one model of each pair has square S and the other

model has non-square S. The squared population multiple

correlation, p , is identical for the model in each pair.

The identity holds to six or seven decimal places even
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though only three are shown in Table 7. The identity was
2

produced in the following way. As explained above, p

is not an input parameter. The input D2 is equal to p2

11
only for square S models. The non-square S Models 8, 10,

212, and 14I were generated using DII = 0.5. The population

squared multiple correlation, p2 , was calculated for each

model by (3.2.2). These are the values in Table 7. These

2computed values were used as the input DII for the square S

Models 7, 9, 11, and 13. Since only one I could be gener-

ated for each set of parameters, six Cl, C2 pairs were

generated instead of three. This means that 10 x 1 x

6 x 2 = 120 sample correlations were generated, the same

number as for Models 5 and 6.

The frequency distributions of the 120 correlations

2 2for each model are presented in Tables 8 (r ), 9 (rc),

and 10 (pg). The maximum absolute difference, MD, and

the Kolmogorov-Smirnov statistic D are also presented for

each pair of models. The critical D for the two sample

test, two tailed, is 0.18 (a = 0.05, N = 120). None of

the sample values exceeds this value although two approach

it. It can be safely stated that for these examples the

variation in Z has not produced differences in the observed

distributions of the correlation statistics. This conclusion

is further confirmed by the comparison of the means of the

pairs of distributions as shown in Table 1i. The critical

t value for a two tailed test is 1.98 (a = 0.05, df = 119)

and none of the sample ts exceeds this value.
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Table 8

Cumulative Frequency Distribution of r

for Models 5 to 14

Model

r2  5 6 7 8 9 10 11 12 13 14

.85 120 120 120

.80 120 120 120 119 119 119

.75 i19 118 119 119 117 115

.70 108 ll 120 120 115 119 113 109

.65 101 93 120 119 119 102 114 94 98

.60 76 68 119 120 116 115 90 97 68 71

.55 44 48 118 117 111 111 73 73 49 51

.50 31 29 115 113 99 96 48 50 27 29

.45 18 17 104 105 69 77 30 30 13 19

.40 8 4 89 92 53 60 13 20 5 10

.35 3 1 74 85 28 41 4 12 4 3

.30 1 0 45 66 15 28 2 7 1 1

.25 0 26 46 10 21 1 4 1 0

.20 11 21 4 10 0 1 0

.15 9 12 1 6 0

.10 2 3 0 1

.05 0 1 0

.00 0

MD 8 21 13 12 6

D .067 .175 .109 .100 .050
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Table 9

Cumulative Frequency Distribution of r

for Models 5 to 14

Model

r 5 6 7 8 9 10 11 12 13 14
C

.75 120 120 120

.70 120 119 119 117

.65 119 115 120 120 120 115 115

.60 112 105 119 112 114 110 106

.55 102 83 120 119 120 99 1G8 91 93

.50 72 68 120 119 116 118 85 94 66 71

.45 55 56 118 118 113 110 74 82 51 47

.40 38 29 112 113 104 100 59 61 26 32

.35 27 18 106 11 88 86 43 42 13 24

.30 14 10 99 102 64 68 25 26 8 15

.25 8 4 88 98 44 53 13 17 4 8

.20 2 2 66 81 22 35 7 7 2 3

.15 0 0 54 52 12 25 5 3 0 0

.10 31 36 7 18 3 0

.05 15 16 3 6 0

.00 2 1 0 2
-.05 0 1 0
-.10 0

MD 19 15 13 9 11

D .158 .125 .109 .075 .092



58

Table 10
2

Cumulative Frequency Distribution of p2

for Models 5 to 14

Model

p2 5 6 7 8 9 10 11 12 13 14

.500 120 120 120 120

.475 82 93 94 99

.450 53 56 120 120 59 61

.425 31 33 113 107 29 26

.400 18 16 78 71 18 6

.375 13 7 47 37 9 3
• 350 8 3 28 21 4 1
.325 6 2 120 120 14 11 2 0
.300 3 0 108 114 9 6 2
.275 1 82 81 4 3 0
.250 1 120 120 57 52 1 1
.225 1 118 113 24 32 1 0
.200 1 88 91 14 14 1
•175 1 65 65 5 10 0
.150 1 37 45 2 5
.125 0 18 32 2 3
.100 9 15 1 3
•075 4 10 0 1
.050 3 4 1
.025 2 4 1
.000 0 1 0

-.025 0

MD ii 14 8 10 12

D .092 .117 .067 .083 .100
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In the simulation model, the population multiple

correlation is independent of 7r2, the average predictor

variance related to the criteria. The comparison of

Models 5 and 6 confirmed that the sample statistics are

2independent of R . Even though the poptulation multiple

correlation does depend on the matrix S if it is not square,

it was shown that the correlation statistics are not affected

by the matrix S for the models considered in this section.

All further calculations in this study invlove square S

models only.

3.3. Dependence of the Correlation Statistics on n,
2

N, and P

The cross-validation technique was developed as a

way to correct a sample multiple correlation (Mosier,

1951). The purpose of the calculations described in this

section was to investigate empirically the relationship

of the sample multiple correlation and the cross-validities

to the population multiple correlation.

The parameters which were constant for all the cal-

culations in this section are shown in Table 12. Table 13

indicates the values of the three parameters which were

varied. All possible comoinations of squared multiple

2
correlations, p , number of predictors, n, and sample size,

N, were used except for those combinations with (n, N) =

(15, 16). A different model was generated for each com-

2
bination of (p , n, N) so that the models for combinations

differing only in N are different models.
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Table 12

Constant Parameters for Section 3.3

M =1

* = n (square S matrix)s
2

* 2 = 0.5

v = 0.01
x
e 0.0

V e inapplicable since m =1
y .

Table 13

Variable Parameters for Section 3.3

n = 2, 5, 10, 15

p = 0.0, 0.1, 0.25, 0.5, 0.75

N = 16, 26, 50, 131

models with (n, N) =

(15, 16) (10, 16) all others

md 5 10

number of Es not done 1 1

number of C1 , C2

pairs per Z 2
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In all cases 40 sample correlations were obtained.
The means of the 40 correlations of each type (r2  c,

2
and p ) are shown in Tables 14 to 17. The expected values

2E(r2 ) as calculated from (1.2.10) are also shown in these

tables. The standard errors of the correlation means

2 2
range from 0.0- to 0.02 for r and r2 and somewhat less

2c
for p 2 However, this standard error does not take into

account variation which would be produced by another pop-

ulation generated from the same parameters. Table 13

indicates that only one Z was generated for each parameter

combination. Nevertheless the tables give a useful picture

of the dependence of the three correlation statistics

2
on p N, and n.

The following observations may be made from the tables:

(a) The squared sample multiple correlation, r , is an

2 2 2overeb.Amate of p2 The expected values of r , E(r2 )

from (1.2.10) match the observed r2 values very well.

The first two terms of the expansion (1.2.11) may be

2rearranged to show that the bias in E(r )is a simple

function of n, N, and p2 :

(3.3.1) E(r2) p 2 n 2

N - 1

The match of E(r2 ) and r2 shows that formulas (1.2.13)

and (1.2.7), which are essentially backward solutions

of (1.2.10), provide reasonable estimates of the

squared population multiple correlation.,

2
(b) The squared sample cross-validity, rc, is generally

an underestimate of p2 and thls bias (except for
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Table 14

Correlation Statistics for Sample Size N 15I

p2 .00 .10 .25 .50 .75

n=2

E(r2)  .133 .211 .331 .54l .763

r2  .16o .189 .329 .593 .805
r r2  .029 .121 .217 .534 .763

PC .000 .056 .191 .468 .731

n=5

E(r2)  .333 .393 .485 .647 .818

r2 .307 .409 .450 .669 .866

r2 .014 .086 .104 .372 .691

P2P .000 .027 .107 .351 .0148

n =10

E(r2)  .667 .696 .743 .823 .909

r 2  .680 .666 .744 .821 .908

r 2 -035 .003 .047 .300 .523

P2 .000 .009 .041 .217 .489
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Table 15

Correlation Statistics for Sample Size N = 26

2p .00 .10 .25 .50 .75

n= 2

E(r2) .080 .166 .297 .523 .757

r .073 .183 .372 .542 .805
2

r .016 .125 .317 .491 .7882
P .000 .076 .226 .480 .738

C

n=5

2E(r ).200 .275 .389 .585 .789

r .188 .277 .400 .565 .733

r2  -.013 .059 .204 .384 .642

2
Pc .000 .046 .161 .413 .710

n = 10

E(r 2 ) .400 .456 .5142 .689 .841

r2  .a09 .455 .567 .685 .855
2

r -.010 .012 .145 .335 .642c
P2 .000 .016 .102 .311 .629

C

n = 15

2E(r 2) .600 .637 .6941 .792 .8941

r .604 .648 .669 .804 .888

r2  .009 .030 .050 .252 .425
C
2

P2 .000 .012 .050 .199 .476
C
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Table 16

Correlation Statistics for Sample Size N = 5C

2
p .00 .10 .25 .50 .75

n = 2
2l

E(r 2 ) .041 .133 .274 .511 .753

r2  .037 .139 .276 .524 .738

* .002 .107 .239 .496 .733
c2
p .000 .079 .233 .485 .746

C

n= 5

E(r2) .102 .189 .320 .542 .769

r2  .092 .182 .350 .547 .765

r2  .037 .079 .218 .468 .720c2
pe  .000 .057 .198 .453 .725

C

n = 10

E(r ) .204 .281 .397 .594 .795

r .202 .263 .399 .634 .790

2 .005 .063 .137 .476 .694
2

Pc .000 .042 .136 .418 .693
C

n = 15

E(r ) .306 .373 .474 .646 .821

r2  .327 .353 .483 .659 .806

2 -.003 .033 .160 .350 .666
c

p2 .000 .027 .116 .350 .671C

I
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Table 17

I *Correlation Statistics for Sample Size N = 131

p2 .00 .10 .25 .50 .75

n= 2

E(r2) .015 .113 .259 .504 .751I2
r .014 .I18 .241 .526 .764

r2  .001 .101 .235 .515 .761
C2

Pc .000 .091 .246 .496 .748
C

n=5

E(r2) .038 .133 .276 .516 .757

r2  .040 .127 .299 .500 .769
i 2  -.001 .075 .2145 .1465 .7149

~C 2P .000 .076 .227 .483 .742
C

n = 10

2E(r2 ) .077 .168 .305 .534 .767

r2  .085 .178 .295 .537 .767
2

r2 .002 .078 .209 .473 .7302

P2 .000 .061 .205 .464 .730
C

n = 15

E(r2) .115 .203 .334 .554 .776

r .116 .202 .325 .573 .799

r2 -.000 .037 .174 .463 .753
2c

P2 .000 .08 .181 .1449 .722
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2
p = 0.0) tends to be approximately the same for

all values of p2 for fixed (n, N). As with r 2 , the

bias of the cross-validity decreases with N and in-

2
creases with n for fixed p

(c) The squared population cross-validity, pc" is the

squared cross-validity using the derived weights on

a validation sample of infinite size. The tables

show that p2 has similar values to r2 and the samec c22
comments apply to p c as were applied to r2 above.

2c

Looked at another way, r 2 is an unbiased estimatec

of p 2

The tables confirm the known properties of multiple

regression and cross-validation as summarized in

(1.2.14). The sample multiple correlation is an overest-

imate of the population value since the sample weights are

chosen to optimize the correlation in the derivation sample.

These weights are not the optimum weights in either the

population or another sample and the consequence is that

both p rc are biased low. With repeated samplings

the values of r2 cluster around p2 since some weights are
c c

better for the validation sample than the population

(rc > p2)and other weights are worse (r2 < P2

These tables can, perhaps, be useful in estimating

the population p2 from sample r2 and r2 values obtained

from real data. If the values of (n, N) correspond to

one of the tables and if r2 and rc match the values in

2 c2
the tables for a value of p , then this value of p is
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the estimate of the population multiple correlation.

3.4. Prediction from the Principal Components

Burket (1964) showed that cross-validities can be

increased by using only a few principal components of

the predictors in the prediction function. The formulas

for such prediction were presented in Section 2.6. The

4 calculations described in the present section demonstrate

the improvement of prediction by using the largest prin-

cipal components in the simulation data and show how

variation in some parameters can change t%,he effect.

Sixty models were generated varying in four para-

2meters: n, the number of predictors; p , the squared

24
multiple correlation; w2 , the average criterion-related

predictor variance; and N, the sample size. The constant

parameters are listed in Table 18. All combinations of

the variable parameters listed in Table 19 were used.

2 2
A new model was generated for each (n, p , 7r , N) combin-

ation so that here, as in Section 33, combinations dif-

fering only in N are different models.

For each simulation model two sample covariance

matrices, C1 and C2, were generated, both with the same

sample size N. The covariance matrix of the first sample

predictors, (C )xx, was diagonalized and the weights for

predicting each of the ten duplicate criteria from the

largest principal components were calculated. These

*., weights were validated on C2 and the cross-validities

r(I ) were calculated for each criterion, the superscript

(1) indicating that one component was included in the
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Table 18

Constant Parameters for Section 3.4

md = 10 (m = 1)

n = n (square S matrix)

v = 0.01
x

e* = 0.0

y , ey inapplicable since m =1

number of Es per model = 1

number of CI, C2 pairs per £ = 1

Table 19

Variable Parameters for Section 3.4

n 5, 10
2p = 0.25, 0.50, 0.75
2
2= 0.20, 0.35, 0.50, 0.65. 0.80

N = 21, 100 for n = 5 and N = 25, 105 for n = 10
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regression. The weights were then recomputed for prediction

from the two largest principal components resulting in

* (2)
cross-validities rc . This procedure was continued until

all components had been included in the regression. In

general. the t largest principal components resulted in

ten cross-validities r(t) for each t (t = 1, ..., n).c

The average of the squares of the ten cross-validities

for each t was calculated. The largest of these averages

is called r2(max) and occurs for t = ta. The symbolc max

tmax represents the number of components producing the

largest average squared cross-validity. (When r(t) was
c

negative, a negative sign ias.afrixed to its square before

the averages were calculated).

The above procedure was repeated for validating the

principal components of (C2 )x on CI. The quantities

r2(max) and tmax were again calculated. As a result,

there are twc values of r2 (max) and t for each modelc max

generated. these values are listed in Appendix I.

In Section 3.3 it was shown that the squared cross-

v2
validity rc (when all variables or principal components

are included in the regression) underestimates the squared

2population multiple correlation p The result was con-

firmed with the 60 new models since only 14 out of the

F 120 values of r (n)]2 exceeded p 2. Recall that r(n ) is- C C

the same a rc The r(max) were less biased as 30 out of

120 values exceeded p . Thus r2 (max) is still an underest-
c

imate of the squared population multiple correlation.
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Averaging the squared correlations before calculating
2 (max)

tmax has the disadvantage of reducing rc from what it
2

would be if the maximum r 2 was found for each criterion andc

then these maxima averaged. These maxima will occur for

different t for the different criteria, in general.

In several cases which were examined, however, it was found

that most maxima occurred for the same t. Since some

averaging had to be done to comprehend the results, the

method previously described was used for simplicity.

There are a number of ways in which the results in

Appendix I may be summarized. Table 20 show how tmax
2 2

varies as a function of p , w , and N for each of the two

values of n. For example, the first section of Table 20
2

shows that for all ten models with p =0.25 and n = 5

(two values of tmax per model), tmax = 1 occurred five

times, tmax = 2 occurred four times, etc. This section of

the table shows that tmax tended to increase as p increased.
2

This increase is reflected in the correlation between p

and t of 0.157.max

A summary of the correlations of tmax with the parameters

is given in Table 21. The last column in the table shows

the correlations when the data for n = 5 and n = 10 are

combined. Before these correlations could be computed

the values of tm for n = 10 (which range from 1 to 10)

had to be converted to the same range as the values of

t max for i. = 5 (which range from 1 to 5). This was done
by recoding tma 1 or 2 as 1, t max  _3 or, etc.,

for n = 10. The first three correlations in the last
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Table 21

Correlations of tmax (for r and Parameters

Correlation
of t and n =5 n =10 All n

2P .157 .467 .302

2
-.593 -.497 -.524

N .346 .394 .361

n -.251

number of samples 60 60 120

The correlations in the last column were computed
after the values of tma for n = 10 were recoded in pairs
as values from I to 5.

Table 22

Correlations of tma (for p ) and Parameters

Correlation
of t and n = 5 n =0 All n

max
P2 .217 .325 .261

7r2  -.679 -.566 -. 608

N .364 .514 .434

n -.186

number of samples 60 60 120

The correlations in the last column were computed
after the values of tmax for n = 10 were recoded in pairs
as values from 1 to 5.



74

column are, in effect, an average of the correlations in

the first two columns. The last correlation in the column

shows the correlation of n and t

The size of the correlations shows that each of the

*2 2
parameters p w , N, and n has a substantial main effect

on tmax . These effects may be summarized as follows:

(a) An increase in the number of predictors, n, produces

a decrease in tmax when the values of tmax are con-

verted (standardized) to a common scale with the same

maximun for each n. In other words, an increase in
i I I n produces a decrease in t a/n.

(b) An increase in the sample size, N, produces an increase

in tmax*

(c) An increase in the average criterion-related predictor

variance, w , produces a decrease in tmax

2
(d) An increase in the squared multiple correlation, p2,

produces an increase in tmax

These results may be explained in the following way.

When N is small and n is large, the regression weights

are very unstable and the weights for a few principal

components cress-validate better than the weights for

many principal components. However as the sample size,

N., increases or the number of predictors, n, decreases,

the weights become stable enough that several components,

accounting for more predictor variance, cross-validate

better than a few components.

When r2, the average criterion-related predictor

variance, iz increased, one linear combination of the
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predictors, nwely w., the first principal predictor,

is increasee in variance. The result is that the largest

principal component of the predictors beco=es Increasingly

collinear with w. as x2 Increases. ?his means that a

single principal component can produce better prediction

tha several components. Hence tmax decreases (becomes

closer to unityi as x2 increases.

The eiFect of p2 on t = x is not as strong as t-he ef-

fect o the other three parameters. However the increase

of t ClUEwith increasing p may perhaps be explained as

follows. As p2 increases, the correlation of each principal

component of the predictors with the criterion increases.

The larger this correlation is, the less likely it is to

vanish on cross-validation. Hence as p2 increases, more

components have correlations with the criterion which do

not vanish on cross-validation. Hence tmax, which is

approximately the number of such components, increases
2

as p increases.

The population cross-validity, pc' reflects valid-

ation of weights in the population or an infinitely sized

sample. When the weights for all the previous samples

were calculated, they were also validated on Z. The

same analysis as previously carried out on r2 was done
2 2(max)

Oil PC" The values of pc and tmax are given in

Appendix I. Table 22 summarizes the correlations of

tnax computed from p0 with the parameters. The correl-
2

ations are very similar to those obtained for rc.

lC
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The effect of ! and n on "', the optial nu-be: of

principal components to include in prediction, has been

1:nown as long as reduced rank prediction has been studied.

S-udles such as those of Burket (196t) have shouls this

U.eno-enon. The effects of p 2 an, 2 are new, however,

for only in si=ulation can these para=eters be syste=at-

ically varied.

11!
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C H A P. 11"E.

STUDIES WITH SEVERAL CRITIA

The generation of populations with several criterion

variables permits the principal predictors to be used in

ultiple regression. In the first section of this chapter,

simulation experiments with several criteria are described.

The two reduced rank methods of prediction (multiple re-

gression on the principal components and on the principal

predictors) are compared. In the next section, some studies

are described using real data from igh school students.

Firally, in the last section, an attempt is made to sim-

ulate the real data with the computer program.

4.1. Simulation Results

The purpose of this section is to compare the principal

component and principal predictor methods of prediction

in a number of nodels which differ. in the distribution
2  

=2of (qk, k = 1, ..., m) and v . The importance of the

parameter v2, the average criterion-related predictor

variance, in prediction from the principal components of

the predictors, has already been shown in the single crf-

teron case (Section 3.4). When m = 1, there is only one
2 2 2

q and it is directly related to w2 (q2 = n w2). However

when there are several criteria, there are several q2

each oa representing the average dependence of the Dre-

dictors on the kth principal predictor. The sum of the

q2 is equal to n w
k -
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Similarly, the (Dk, k = 1, ... , m) are the average

dependence of the criteria on each principal predictor.

2Since the Dkk are eigenvalues (of En), they are always

considered In descending order. In this section, the

D 2 distrioution was kept constant. By varying the order
kk

2
of the it is possible to vary the relative dependence

of the predictors and criteria on the principal predictors.

This variation will produce differences in the effective-

ness of the two methods of prediction.

Eighteen models were studied. The constant input

parameters are shown in Table 23 and the variable para-

meters in Table 24. For each value of w2 , three different

2q. distributions were used, called decreasing, level, and

increasing. The same distributions, except for scaling

were used for all three values of 2. Two models,

differing only in sample size, were generated for each

combination of 2 and 02 distribution. A pair of samples-k

of size 20 (small N) was generated from one model and

a pair of sample of size 75 (large N) was generated from

the second model.

In the decreasin q 2 distribution, half the depend-

ence of the predictors on the principal predictors is

2dependence on the first principal predictor. When ir = 0.8,

this means that 40% of the total variance of the predictors

is linearly dependent on the first principal predictor.

The contribution of the succeeding principal predictors
22

is progressively smaller. When n = 0.2 and the q are

again decreasing, the first principal predictor accounts
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Table 23

Constant Parameters for Section 4.1

n =10

m=5

n = 10

p2 0.6

D2 1 = 1.2, D22 = 0.8, D23 = 0.6,

D2 = 0.3, D = 0.1
44 55

v = 0.01
x

e= 0.005

v = 0.01y

e = 0.005Y

number of £s per model = 1

number of Cl, C2 pairs per Z = 1

Table 24

Variable Parameters for Section 4.1

2Ir= 0.2, 0.5, 0.8

q2 distribution--decreasing, level, increasingas shown below

N = 20, 75

decreasing level increasing

2 2 2 2
ql 5.0 7r 2.0 7 0.625 7r

2 2 22
q2 2.5 72 2.0 2 0.625 r2

2 2 2

q 1.25 Tr 2.0 iT 1.25

2 2 2 2
q4 0.625 w 2.0 ir 2.5 ?r22 2 2

q2 0.625w 2 2.0 5.07q5
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for only 10% of -... ctor variance and the other

principal predictors account for less, with a total of 20%

of the variance of the predictors explained by the prin-

cipal predictors.

In the level qk2 distribution, each principal pre-

dictor contributes equally to the predictors, the con-

tribution of each varying from 16% when w 2 0.8 to 4%

when w = 0.2.

When the (4, k =1,..., m) are increasing the

dependence is exactly reversed from the decreasing case.

Most of the dependence of the predictors on the principal

predictors is dependence on the fifth (last) principal

p-edictor. The dependence on the first principal predictor

is very small.

One change was made in the generation of samples for

the calculations in this chapter. The sample covariance

matrices, C1 and C2, were changed to correlation matrices

2in order to make possible the calculation of a sample w
•2

and sample 2qk" k = 1, ..., m).

The calculations performed on the sample correlation

matrices were similar to the calculations in Section 3.4

except that two methods of prediction were compared and

the criteria were no longer duplicate criteria. Multiple

regression on the principal components of the predictors

was done first. The correlation matrix of the predictors,

(Cl)xx , was diagonalized and the weights for predicting

each of the five criteria from- the largest component were

calculated. The cross-validities for each criterion in



the second sample were calculated. The average, over

criteria, of the squares of these validities was calculated

and is presented in Tables 25 to 30 in the "r2" columnsc

under "P. C." for t = 1 (one component). The weights were

then recomputed for the two largest components (t = 2)

and the average squared cross-validity calculated,. This

was repeated for t = 3, ..., 10. The whole rocedure was

repeated again for validating the weights derived in C2

on C. but these results are not reproduced in the tables

as they are very similar to the validation of C1 on C2.

Prediction from the principal predictors was then

performed following the method given in Section 2.7.

The weights in equation (2.7.11) were calculated in the

first sample for each value of t (t = 1, .. , 5) and the

weights were cross-validated in the second sample. The

average of the cross-validities for each value of t was

calculated and is given in Tables 25 to 30 in the "r
2 ",
c

columns under "P. P." for each t. The validation of

sample 2 on sample 1 is not reported here.

In the derivation sample the following sample stat-

istics were calculated: sample (q2, k = 1, ..., 5),
2 2 2

sample 2, sample (Dk k = 1, ..., 5),and sample p

For the calculation of the sample (q2, k = 1, ..., 5)

and the sample w 2 see equations (2.7.15) and (2.7.16).

The D a2  the eigenvalues of C and the sample p is r 2
kk am

the average squared multiple correlation using all predict-

2 D 2
ors. The sample p is the average of the (D kk' k 1,

•.., 5).
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Conider first N = 75 fTables 28 to 30.. When -2 =

0.2, the first few Drincal oredictors are far superior

to the first few Drincioal components in average cross-

validity. This is trewhether the a distributiop is de-

creasing, level, or increasing. The reason is that the

principal predictors account for on!y 20' of the predictor

variance khen = 0.2. The largest principal components

therefore reflect variance mostly i.ndependent of the

principal oredictors and therefore the largest principal

components are not good predictors. The principal predict-

or's, though of small variance, are goe predictors and

multiple regression on them cross-validates well.

The situation changes, however, as r 2 increases to

0.5 and 0.8. When x2 = 0.8 and the c distribution is

decreasing or level (not increasing), there is practically

no difference between the two prediction methods in the

average cross-validity for t = 1, , 5. When 2 -0.8

the five principal predictors account for a tosal of 8Ov

of the predictor .tria..ce and therebre the orincipal

components of the predictors are very similar to the

DrinciDal predictors. Therefore the orncipal coponents

and principal predictors cross-validate equally well.

An excetion occurs for the increasin- 2

bution when 2 = 0.8 (7able 30). Hjere the -rincl pal

predictors cross-validate much better than the first few

principa! compLonents. The reason is that the first prin-

ciDal redictor (larcest jar2 hence :rezlczon)

is the smallest orincipal predictor in terns of associated



89

oredicLor variaznce (cl is the snallest ae). pne orincipal

predictor ne-hod of regression properly picks this first

princioal oredlctor as the best predictor. The principal

conponent =ethod of predict ion however chooses the prin-

cipal predicors in reverse order s-nce the principal pre-

dictor iEth largest predictor variance (40') is the fifth

princ iza! oredictor an.d the fourth principal predictor has

-he- next largest variance (20'5, etc. Nose that there

is a lage increase in average cross-validity between t =

and t = 5 principal co=. nents In this case. The fifth

principa. cooponent is approxziately collinear with the

first principal predictor which Is the best predictor.

On the other hand, when - = 0.2, the large increase in

average cross-validity using princ!pal co-ponents does

not occur u- i! t = or 9-

The re-.lt. chen z= 0.5 are Intermediate between

those for w2 = . 2 2 = 0.8. Further ore, the results

for N .= 20 (TbeS 27r. to >71 are simmIar to the = 75

results just described except that the effects are not

as clear due to instability of the weights with small 11.

An interesting effect -i shown in two cases, however

(Table 25, 1 = 0.5 ana Table 27, n = 0.2). This effect

is not dependent on samole size and could have occurred

for H = 75. in both cares the average cross-validity when

all factors are included in the regression is essentially

zero since the oredictors are dependent. The population

zn which was geneated in these two cases was almost

singular. This was shown by the difficulty in inverting
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it. Every time a matrix is inverted in the sinu2ation

program, the result is checked by multiplying the inverse

by the original matrix and comparing the result with

the identity matrix. The largest difference, in absolute

v:.iue, between corresponding elements in the two matrices

zs printed as W1.01. ost genera.ed £ matrices yield
xx

= 0.00001 or less. in the two cases mentioned above,

.!!T = 0.003 and 0.0001, respectively, indicating approx-

imate dependence of the predictors in the population.

This dependence appears in the generated samples as well.

in the two singular cases, prediction from the prin-

cipal co=-onents, for t < 10, is successful. However,

for all values of t, the cross-validities usinF the o-n-

cipal predictors as predictors are uractically zero.

The t largest principal components (t < 10) are independent

and their weights cross-validate well. This is an advantage

of prediction from the principal components of the pre-

dictors--the effect of dependence of the predictors can

be eliminated. However the weights on the principal pre-

dictors are not stable in the singular case, regardless

of the number of principal predictors included in the

regression.

Even though variation of the pooulation parameters

has an aDreciatle effect or. creaiction iv t:e two reduced

raik :iethctus, "or DriCt c:± :c.t i Of t. :;e i'ets"
-or ~~.. n-"" "C -,n .' C ~_L

it would be riecessar to deter-ine -from sa:.,]ef .... the

population para::eiers are. ('r these parameters [e estihated?

2

The sample (qk k 1 ~ , 1-0 and 7r are esti-mates ofIk
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the corresponding population parameters and are shown

in Tables 25 to 30. In general the sample q distribution

is similar to the population distribution. This is shown

most clearly for large sample size (N = 75). When the

population q2 distribution is decreasing, the largest
2 2dsr-

sample q2 generally occurs for k = 1. When the qdistri-

bution is level, the sample q2 are approximately equal.

When the distribution is increasing, the largest sample

q normally occurs for k = 5. it is therefore possible

to decide, on the basis of the (q2, k = 1, ..., m) in

the derivation sample, whether the principal predictors

cross-validate better than the principal components or

whether there will be little difference between the two

methods.

As an additional aid in making this determination,

2
it is important to estimate w . This may be done from

the value of 2 computed in the derivation sample. It

can be seen from the tables that the sample 2 is a rough

measure of the population value, there is a tendency for

the sample value to shift nearer 0.5 than the population

value.
2

Since the population (Dk , k = 1, ..., 5) wei-e not
varied in these simulation studies, the sample D 2 shown

kk

in the tables are relatively constant from sample to

sample. These parameters will be discussed further in the

next section.

This section has shown that prediction from the

principal predictors is an effective method of prediction,
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2
particularly when the q distribution is increasing or

2k

w is small. In other cases prediction from the prin-

cipal components is almost as successful as prediction

from the principal predictors. The only case in which

prediction from the principal components is superior to

prediction from the principal predictors is when the

predictors are dependent.

4.2. Study of Real Data

The calculations described in the preceding section

were also performed on some samples of real data. The

data were coliected in 1961 by the Educ.ational Testing

Service, Princeton, N. J., from 1205 boys in academic

high schools. The 21 variables employed intthe multiple

regression calculations are listed in Table 31. There

are two sets of eight predictors each and one set of

five criterion variables. The first set of predictors,

called the S-predictors, consists of six variables from

the Sequential Tests of Educational Progress (STEP) and

two variables from the School and College Ability Tests

(SCAT). The second set of predi(.tors, called the T-pre-

dictors, consists of eight variaoles from the Tests of Gen-

eral Interest (TGI). The critei-ion variables are two

variables from the Scholastic Prtituue Test (SAT), two

variables fTOM the College Entrance Examination Board

(CEEB), and the rank in the high school class.

Eight samples were drawn at random from the pool

of 1205 subjects. Four of ;he samples were of size N = 20

L7
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Table 31

E. T. S. Variables

S-predictors

STEP Mathematics
STEP Science
STEP Social Studies
STEP Reading
STEP Listening
STEP Writing
SCAT Verbal
SCAT Quantitative

T-predictors

TGI Industrial Arts
TGI Home Arts
TGI Physical Education
TGI Biological Science
TGI Music and Art
TGI History-Literature
TGI Entertainment
TGI Public Affairs

Criteria

SAT Verbal
SAT Mathematical
CEEB English Composition
CEEB American History
Rank in High School Class
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("'amples 1, 2, 3, h~) and the other four samples were of

size N1 = 75 (Samples 5, 6, 7, 8). Four double cross-vali-

dations were performed (two for each saMple size) using

the z0-predictors. Then the same samples were used in

four double cross-validations using the T-predictors.

-Tables 32 (N = 20) and 33 (N = 75) are a sumunary

of the calculations made on these samples; the calculations

were the same as those made on the simulation samples in

Section 41.1. Correlation matrices were used. Again,

only the validation of C Ion C 2i eotd

In most of the samples, the principal predictors

(P. P.) validate more poorly than the principal components

(P. C.) and in the two cases where the first principal

* p~redictor validates better tha t A is ric~lcm

ponent, the improvement is not great. AnOther feature

of these data is the nearly cornstant average cross-validity

of the principal predictors for tL = 1, ... , 5. Even though,

in some cases, a few principal components are far superior

to including all predictors in #the regression, in no

case is the first principal Predictor significantly better

than all predictors.

These findings can be understood by considering the

estimates of the nar:.-:etc;r3 P 2, WT 2 K i.. ,5)

and (a? 2I, = 1, . .- 5). in a1l four derivation samples,

the sample nr 2 is at least 0.87 for the 8-predictors an,-'

at least 0.78 for the T_-rire(ictors. T.herefore these samples

correspond approximately to tne IT= 0.8 -ases of :eto

1I .1. l'urthornore the sainnle a 2 d ist.r11.u t on s ar~ oi al
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Table 32

E. T. S. _,mples (N = 20)

Sample 1 validated Sample 3 validated
on Sample 2 on Sample 4

P.C. P.P. Sample P.C. P.P. Sample
t or k 2 2 2 2 P 2 2 2

re c kk qk r c Dkk k

S-predictors

1 .56 .41 3.15 4.68 .47 .42 3.93 5.83
2 .55 .42 .40 .83 .47 .41 .28 .34
3 .56 .46 .24 .59 .42 .39 .11 .35
4 .53 .44 .11 .41 .44 .36 .03 .43
5 .52 .44 .02 .46 .45 .37 .01 .26
6 .52 .44
7 .51 .40
8 .44 .372

Sample p .78 .87

Sample w 2 .87 .90

T-predictors
1 .26 .09 2.16 1.69 .28 .35 3.51 4.31
2 .27 .06 .27 .68 .31 .32 .25 .42
3 .27 .08 .16 1.93 .33 .32 .09 .,U7
4 .27 .07 .06 1.57 .32 .35 .04 .68
5 .15 .08 .02 .37 .32 .34 .01 .51
6 .13 .30
7 .12 .32
8 .08 .34

Sample p2  .54 .78

Sample 7 .78 .80



Table 33

E. T. S. Samples ( = 75)

Sample 5 validated Sample 7 validated

on Sample 6 on Sample 8
t kP.C. P.p. S:a nole P.C. P.l) t or k .. . . Sa .p.) e

2 2 2rc c D r2 k
c c k

S-predictors

1 .65 .61 3.28 5.55 .64 .o6 3.29 5.872 .66 .63 .13 .57 .66 .69 . 09 .3 .66 .63 .07 .40 .67 .69 .06 .27
4 .64 .63 .02 .27 .67 .69 .03 .365 .64 .63 .01 .24 .67 .69 .03 .22
6 .64 .687 .63 .688 .63 .69

Saraple p2  .70 .70

Sample r .88

T-predicto-s

1 .49 .37 2.47 3.51 -1:8 -116 2.09 :
2 .119 .37 .04 .82 .27 .5 .09 .53
3 .48 .37 .02 .62 .45 .144 .o1 ,  .51
4 .44 .37 .0 .6L, .116 .113 .02 .765 .44 .37 .00 .62 .46 .143 .Oi6 .40 .45
7 .39 .14
8 .37 .1 3

S .a. ple p2 .51•

Sample w .78 .83
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2

cases but one heavily weighted on ql, thus indicating an

2
extremely decreasing q distribution. Returning to the

corresponding simulation examples in Section 4.1, it is

seen that the E. T. S. results do not differ greatly from

the last columns of Tables 25 (N-= 20) and 28 (N = 75).

The failure of the principal predictors in the E. T. S.

2samples can be further explained by the sample Dkk distri-

bution. In all cases, Dl 2is at least 80% of the total

predictable variance and therefore the D2 distribution in
kk

2
the E. T. S. data is weighted more in favor of D than

the populations considered in Section 4.1. This means

that the first principal component is very similar to the

first principal predictor and hence prediction from the

principal components is effective.

In the next section some simulation models will be

considered that more closely match the E. T. S. data,

particularly in the Dkk distribution.

4.3. Simulation of Real Data

The E. T. S. data samples differ from the simulated

data in Section 4.1 in several respects. The (2 2, k

1; ..., 5) distributicn is much more concentrated on Dll

in the E. T. S. data than in Section 4.1. where the population

Dkk2 distribution was fixed as (1.2, 0.8, 0.6, 0.3, 0.1).

The distribution of (q 2, k = 1, ..., 5) in the E. T. S.
2

data is similar to the decreasing qk distribution in

Section 4.1 although, in most cases, the E. T. S. data
2

had an even largerq 1 .
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The S-predictors were superior to the T-predictors;
2

the approximate population p for the S-predictors might

be estimated to be 0.65 and for the T-predictors about

0.-45. Other Daraneters were roughly estimated for the

two sets of predictors and are shown in Table 34. These

parameters were used to generate population and sample

correlation matrices using the simulation program. Two

populations (First E and Second E) were generated for

the S-predictor simulation and two populations (Third Z

and Fourth £) ware generated for the T-predictor simul-

ation. One pair of sample correlation matrices was gen-

erated for each population (N = 75 in all cases). The

results of the validation of Cl on C2 for each of the

four populations are shown in Table 35.

If these tables are compared with the corresponding

Table 33 for the real data, it will be seen that the

real and simulation results correspond closely. By adjust-

ing the parameters it would be possible to make the match

even better, but the simulation using the parameters in

Table 34 is presented here since this simulation was the

first attempted. The close similarity of the simulation

results to the results from the E. ". S. data shows that

the simulation model is basically sound.
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Table 34

Estimated Parameters Used to Simulate E. T. S. Dat-a

n=

m=5

n =8
S

v = 0.01x

e = 0.005

v= 0.01

e= 0.005: y

1 =75

number of Es per predictor type = 2

number of C C2 pairs per E = 1

S-predictors (First E and Second E)

2 = 0.65

D 2 3.0O, D 2 = 0.12 D33 = 0.05,-01 = 0.05
11J !J 2 * 33D2 = 0.05, D 52 0.05

,2 = 0.85

2 5.0, 2 2 2 2
5= 0 a= 0.6, ;= =. .a,- 0. 4

T-predictors (Third E and Fourth Z)

2P= 0.415

D 2 2.G, D 2 0.,1 22 33 =  0.05,
2) 2D2 = 0.05, D =.C5

2 = 0.75

h.5 =2 0.5, q2 -0.4 0s 2 =.,0.3

_ 2 3 2

[I= 5q 3 = . 4 = 03o .
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Table 35

!=iulation of E. T. S. SaPles (N = 75)

S-predictors

First E Second £
Sarple ZA validated Sa=ple C val.dated

cn Sample B on Saple D

P. C. P. P. r" =-P, E I. C. P.P. Sam ple

fork 2 2 2 2 2 2 2

"c c c c -k

1 .56 .57 3-2'" 5.C5 -59 .57 3.27 5.2
2 .58 .58 .15 .-0 .59 .60 .16 .56
3 .60 .60 .12 .38 .61 -59 .11 .32
4 .60 .61 .03 .45 .63 .60 .05 tl
5 .61 .62 .02 .56 .6 .61 .0 .55
6 .6o .61
7 .61 .
8 .62 .61

22aple p .71 .72

5._pe2 .P6-eSaple ir

?-predictors

Third Z Fourth 7
Sample E validated Sa=mple C validated

on !e F on Sample 1H

P.C. P.P. Sample P.C. P.P. Sample
t cr k -2 2 2 2 72 D2 02

c &c kk -k c -c kk qk
1 .39 .41 2.04 4.21 .51 .54 1. 67 4.1-4
2 .39 .37 .34 .27 .51 .55 .20 .41

.40 .36 .i9 .51 .52 .53 .13 .86

.40 .38 .12 .51 .52 .52 .09 .28
5 ai 39 .03 -57 .51 .52 .03 .35
6 .42 .52
7 .44 .53
8 .39 .52

2
Sample o .54 .42

Sample w2 .76 .75
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SUMEARY AND COICLUSIONS

The several methods of multiple regression discussed

in this studv are designed to provide optimal weights

for predictor variables. The weights are optimal in the

sense that, in new samples, the weighted linear combin-

ation of the predictors has the highest possible correlation

with the criterion variable. By means of cross-validation,

it is oossible to estimate the correla ion in new samples

using only data in a (divided) original samDle.

For any given problem it is important to decide which

prediction method gives the best weights. if one exnaust-

ively tries all prediction methods it is straightforward,

usJng cross-validation, to pick the best linear combination

of the predictors. But there are some disadvantages to

this procedure. It is lengthy even with a computer; there

is capitalization on chance results; and the procedure

does not provide a way to generalize to new variables or

new populations.

it is apparent that no one method of prediction will

be optimal for all possible predictor and criterion distri-

butions. Even if one method, for example prediction from

the principal components, were superior, it would still

be necessary to decide the number of components to include

in the regression. Burket's (1964) work included the com-

putation of statistics which were of some assistance in
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deciding how many principal compenents to include in the

regression. The present study considered some fundamental

Darameters of the population distribution which are relevant

to the choice of prediction method and the number of

components to include in the regression.

In order to study the effect of these parameters

on prediction, the distributions were simulated on a com-

puter. The parameters were systematically varied and the

prediction methods were compared for each parameter set

by applying the weights to cross-validation samples.

In Section 3.3 the accuracy of the sample multiple

correlation and cross-validity as measures of the popu-

lation multiple correlation and cross-validity were studied.
2.

The squared sample multiple correlation, r , is an over-
2

estimate of the squared population multiple correlation, p

The bias tends to decrease with increasing sample size

and to increase with increasing number of predictors and
2

increasing p The bias is correctly estimated by formulas

of Wishart (1931) and Wherry (1931). The sample and

population cross-validities a.e approximately equal and

2
underestimate p The sample cross-validity is there-

fore a good estimate of the population cross-validity

but not of the population multiple correlation.

The dependence of the cross-validation of the prin-

cipal components of the predictors on the distribution

parameters was considered in Section 3.4. The technique

used was to calculate the number of principal components

which produce maximum cross-validity. This number, called
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Lmax, was studied as a function of four parameters--the

sample size, N, the number of predictors, n, the squared
2

population multiple correlation, p , and the average cri-

2tcrion-related-predictor variance, n It was found

tha. tmax is an increasing function of N and p2 and a

2
decreasing function of n and n . This means that a few

(1 or 2, say) principal components will be more effective
2

than many components when N is small, n is large, p is

small, and 7t2 is large.

Many prediction problems in psychology involve multiple

criteria, no one of which can be considered to be the

criterion. A convenient way to avoid choosing one criterion,

and at the same time, achieve some synthesis of the cri-

teria, is to weight each standardized criterion equally

and to optimize the prediction of all criteria simultan-

eously. The effectiveness of any prediction method can

then be estimated from the average squared cross-validity.

Two prediction methods were compared in this way.

The first, prediction from the largest principal components

of the predictors, does not use criterion information in

the selection of the components and may be used for one

or several criteria. The second, prediction from the

principal predictors, uses criterion information to calcul--

ate the principal predictors themselves. This method

optimizes the average squared multiple correlation in

the derivation sample.

It was found, for the distributions studied, that

the principal predictors had superior or equal cross-
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valiaities to the principal coji!ponents except when the

predictors were approximately dependent. The superiority

of principal predictors was particularly evident when

2 was small and the q distribution was increasing, meaning

that the first principal predictor accounted for much less

of the predictor variance than the last principal predictor.

2However this combination of parameters--n small and

the q distribution increasing--may occur rarely, if at

all, in real multivariate distributions. In the sample

of real ability and interest data from the Educational
2 2

Testing Service, n2 was very large and the q distribution

2
was decreasing with heavy concentration on ql" In these

data, as in the corresponding simulation data, the principal

components were superior to the principal predictors.

This result is similar to Burket's (1964) finding

that the principal components correlating greatest with

the criterion do not validate as well as the largest prin-

cipal components. It appears to be an advantage to select

linear combinations of the predictors independently of

criterion information in order to maximize cross-validity.

In order for the conclusions of a simulation study

to apply to real prediction situations, it must be shown

that the simulated distributions are similar to real dis-

tributions in relevant characteristics. Several sections

of this study were concerned with this demonstration.

In Section 3.1 it was shown that, when the population mul-

tiple correlation is zero, the simulation sample statistics

(multiple correlation and cross-validity) obey known
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statistical laws. In Section 3.2 it was shown that changes

in the covariance matrix of the predictors, keeping the

multiple correlation constant, have no effect on the

correlation statistics. Finally, in Section 4.3, several

models and samples were generated in order to match the

E. T. S. data more closely. The results from this simu-

lation were almost identical to the E. T. S. results.

It would be interesting to determine if other real

data have different values of w 2 and different q distri-

butions than the E. T. S. data and to see if calculations

using these variables obey the laws discovered in sim-

ulation. It is also necessary to extend the calculations

to larger numbers of predictors and criteria. Such work

would be a further check on the effectiveness of the

simulation model which was used in this study.
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