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ARSTRACT

7he validation of predictor weights, decrived in one
sample, by computing the correlation of the weighted sum
nf the predictors gith the criterion/in ney samples is
called cross-validation. The technique applies to any
riecthod of calculating the predictor weights. In this
study three prediction methods ucre compared by cross-
validation--multiple regressicn on the predictors, on the
principal components of the predictors, and on the'prin-
cipal predictors. Prsdiction from the principal predictors

is only possible wthen there are several criterion variables.

In order to discover the parameters of the multivariate

Aistribution which affect the choice of prediction method
and the number of principal components or principal pre-~
dictors to include in the regression, a large number of
distributions were simulated on 2 computer and samples
generated from these distributions, The population dis-
tributions varied in the following parameters: n, the
number of predictors, m, the number of criteria, pz, the
squared multiple correlation in the case of one criterion
or the average squared multiple correlation of m criteria
when m > 1; and wz, the average predictor variance related

to the criteria,
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1 typical calculation consisted of the following

steps: generation of a population distribution for a set

| of values of the parameters; gen2ration of two samples of

Fé size 7 from this population;’calculation, in one sample,

of the predictor weights for one or more prediction methods;
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and validation of these weights in the second sample.

1 large number of populations were generated, varying in

R e

the values of the parameters.
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In cross-validating one criterion variable, it was

showm that the optimi) number of principal components to

include in the regression is a function of n, pz, ,2,

and iI. For several criterion variables, the relative
effectiveness of prediction from the principal compopents
of the predictors and from the principal predictors depends

2 -
on » and on the order of dependence of the predictors

on the principal predictors,

The simulation calculations were compared with cal-
culations in real samples; 2 close correspondence between
real and simulated data was found, This comparison and

other calculations with the simulated distributions showed ?

that the simulation was sccurate.
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CHAPTER 1

INTRODUCTION

1.1. Multiple Regression and Cross-Validation

k]

A problem common to many areas of psychology is the &i
prediction of a person's score on one varlable from his
scores on a number of other variabies. The variable that

is to be predicted is called the criterion and the other

variables are called predictors. Many methods have been
developed to combine predictor scores in order to optimize
L ‘ the prediction of the criterion. A common procedure is to | i
obtain:ia sample of sﬁbJects‘with known predictor and
¢ criterion scores (the derivation sample) and to calculate

the 1inqg£ combination of the predictor scores that best

predicts the criterion scores. By "best” is usually meant
"least squared error", which means that the sum (over
subjects) of the squared deviations of the observed from
the predicted criterion score is a minimum. The optimizing
coefficients of the predictor scores are called the multiple

regression weightis and are calculated from the normal

equations which express the minimization conditions
(Anderson, 1958, Kendall and Stuart, 1961).
When multiple regression is used to compute predictor

welghts a multiple correlation may be calculated. The

»

multiple correlation is the Pearson product-moment correl-
¥ ation, in the sample, between the optimal linear combination

of the predictcors and the criterion variable. The multiple
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correlation is thus a measure of the degree cf relationship

between the predictors and the criterion. However the
multiple cocrrelation’is a blased estimate of this relation-
ship and is generally larger than the true population
multiple correlation. The blas occurs because the process
of minimizing the average squared error in prediction

is equivalent to maximizing the ccrrelation between the
linear ¢ombination of the predictors and the criterion.

Due to the finite size of the sample, the optimizing linear
combination will be fitted to the idiosyncracies of the
sample:and will generally result in a higher multiple
correlation than the population multiple correlation.

: Oqe problem in the application of multiple correlation-
techniques 1is therefore the estimatién of the true multiple
correlation from the biased sample multiple correlation.

In the next section it will be shown that there are two
population correlations which must be distinguished. A
number of formulas for correcting the sample multiple
correlation are known. However these formulas require
assumptions which are often:difficult to satisfy and
therefore many early investigators estimated the population
correlation by appiying to a second sample the regression
weights calculated in an original sample. They found that
the correlation between the regression function and the
criterion in the second sample was less fhan the original
sample multiple correlation. This technique became known
as cross-validation of the predictor weights or simply as

cross-validation (Mosier, 1951). The correlation in the
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second sample is called the cross-validity. The first
sample is known as the derivation sample. the second is
the validation sample. An obvicus addition tg the cross-
validation method is to repeat the calculations inter-
changing the roles of the first and second sample. We
shall call this technique double cross-validation.
. This study was designed to investigate:
(a) the accuracy of the cross-validity as an estimate of
the population correiation,
(b) the effegtiveness of two reduced rank methods for .
estimating predictor weights, and
(c) the effect of the variation of some parameters of the
population distribution on the results of (a) and {b).
The estimation of the population correlation is deécribed
in moredetail in Section 1.2. The reduced rank methods
are introduced in Section 1.3. Finally, the study of the
effect of variation of population parameters by a simulation

technique is introduced in Section 1.4,

1.2. Estimates of Validity

Let the predictor variables be X15 Xg5 ooy X and
let the criterion variable be y. Then the regression function
in the population is
(1.2.1) By Xg * By X5 + ou ¥ B, X, * Bg
The constant term in the equation is BO; the Bi are called
the regression weights. Two models for the predictors are
possible, the regression mcdel and the correlation modeil

(Ezekiel and Fox, 1959, pp. 279-281). 1In the regression
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model. the values of the predictor variables are fixed and
only the criterion is a random variable. A more realistic
model fdf most multivariatecwork in psychology is to assune
that both the predictors and the criterion are random
variables (the correlation model). Under the null hypothesis
of zero multiple correlation the distributional theory is
identical for the two models. However when the null hypo-
thesis is not true the distributions are different under
the two modéls; Since the distributional theory is much
more complicated under the correlation model, most invest-
igators in péychology ?e.g. Burket, 1964) have continued
to use the regression model hoping that there will be
little practical differenqe between the two models.

_ Regression equations can also differ in whether the
constant term, BO’ is included. In the case of the regres-
sion model, the constant term is really indistinguishable
from the other terms in the equation since a predictor
variable, Xys may be defined as the constant 1.0. Then
the constant term may be written as 60 Xge Therefore,
formulas developed for the constant = 0 case
(1.2.2) By Xq + By X5 + ... + B X,
may be modified for the constant # 0 case (1.2.1) by
simply replacing n by n + 1.

In the correlation model this simple correspondence
between the zero and non-zerc constant cases does not hold

since Xys +ev5 X, are random variables while x, is fixed.

0
Inclusion of \a constant term does not affect the multiple

correlation or the correlation between the regression
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function and any other variable. Thu§ in:studies such as
the preser. one which emphasize correlation measures, it
is simplest to set the constant term to zero. However if
the mean squared error of prediction is used as a measure
of accuracy of prediction it is very important to state
whether the constant term is included in the regression.
Let p be the population multiple correlation, °y

the population standard deviation of y, and o(y - 9)tbhe
pépulation standard deviation of the error in prediction
(y ~ §) where § is the regression function (1.2.1) with

weights calculated from the normal equations. Then

o
(1.2.3) p2 =1 -3z 9

A similar equation holds in the sample, relating the
squared sample correlation, rz, to the mean squared error

df prediction, MSE, and the standard deviation of the

1 :
sample, sy
2 MSE
(1.2.4) r =1 - -=%
s
y

The first estimation of p2 in the psychological literature
(Larson, 1931) is by the following formula:

2 N 2
(1.2.5) Est(p”) = 1 = —===- (1 -r7)

N-n

where N is the sample size. Larson does not give a der-
ivation of this formula but Wherry (1931) showed that
it follows (in the regression model) from estimating
03 by s§ and estimating o%y -9 by (MSE) N/(N - n).

The substitution of these two estimates into (1.2.3) and

°
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the use of (1.2.4) gives (1.2.5). 1In order to improve
this estimate, Wherry (1931) estimated o§ by 5321 N/(N - 1)
rather than by 35' The resulting formula is

2 N -1 2
(1.2.6) Est(p®) = 1 =« ~cem= (1 - r%) .

N-u

Larson and Wherry compared their estimates with cross-
validities and Wherry showed that (1.2.6) is superior
to (1.2.5).

It is not entirely clear how Larson and Wherry -.
handled the constant term in the regression function.
Formula (1.2.6) is strictly applicable to a zero constant
term. When the constant term is not zero, the unbiased
estimate of G%y -9 is (MSE) N/(N - n - 1) so that the
estimate of p2 is

2 N -1 2
(1.2.7) Est(p”) =1 = =wcmeeuu- (1 - r°) .

N-n-1

Formula (1.2.7) is often referred to as Wherry's formula
even though his original formula was (1.2.6). Formula
(1.2.7) 1s not an unbiased estimate of 92 since the ratio
of two unbiased estimates is not unbilased. However, unbiased
estimates of p2 are not always desirable, for, if the true
p2 = 0, an unbiased estimate must take on both negative
and positive values even though a multiple correlation is
always positive.

The multiple correlation, p, is the correlation, in
the population, ~f the criterion and the regression function

calculated in the population. In applications, the popul-

ation regression function can never be known and one is
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more interested in how effective the sample regression
function is in other samples. A measure of this effect-
iveness 1is r.s the sample cross-validity. For any given

regression function, r, will vary from validation sample

to validation sample. °The average value of rcwill be approx-

imately equal to the correlation, in the population, of

the sample regression fuaction with tne criterion. This
correlation is the populztion cross-~validity, Pee Wherry's
formulawestimates p rather than Pos Lord (1950) and Nichol-
son (1960) derived an unbiased estimate of the population
mean square error of a sample regressicn function. Using

2

c is

N-1 N+n+1 )

this estimate of MSE, an estimate of P

(1.2.8) Est(pd) =1 - -

N-n-1 N
This formula applies to the regression model with a constant
term. Darlington (1967) modified this formula for the

corrglation model with a constant term. His formula is

(1.2.9) Est(pd) =1 -

N -1 N -2 N +1

This formula is based on the assumption that the predictors
and criterion have a multivariate normal distribution.

It would be possible to derive a similar formula for
Est(pi) in the multivariate normal case with no constant
term. It 1is not, however, the purpose of this study to
derive the best estimate of pg for it 1s not clear what
properties such an estimator should have, particularly

since an unbiased estimator has the defects mentioned
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above. It is more: interesting to study the accuracy of
the cross-validity as an estimate of Pe and p.

Returning to estimating p, Wishart (1931) calculated
the moments of the distribution of r2 for the multivariate

normal distribution. The expected value of r2 is

F(1, 1, (N + 1)/2, p2)

where F(a, b, ¢, x) is the hypergeometric function.

Using the first two terms of the expansion of this function,

equation (1.2.10) reduces to

. N-n-1
(1.2.11) E(r?) = 1 = mmmmemmee (1 - p2)
N -1

N-n-1 2
- 92 1 - 02)
N -1 N +1

Olkin and Pratt (1958) showed that an unbiased estimate

of p° is

2 N -3 2
(1.2.12) Est(p®) =1 = ccmmmmmeee (1 - r°) x
N-n-1
F(1, 1, (N - n + 1)/2, 1 - r?),
2
which, neglecting terms in 1/N7, is
5 N -3
(1.2.13) Est(p) = 1 = cocmmmeae (1 - r%)

N -3 2
- e ———————— (1 - r'2)2
N-n-1N-n=+1

The Wherry estimate (1.2.7) is almost identical to the first

two terms of this series.

Darlington (1967) has carefully distinguished the
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four correlations p, Pos Ts and r,- The smallest of these,

Pe and r_, are the validity of the sample regression function

c
in the population and another sample, respectively. The

" average, over many samples, bf the cross-validity, Tys will
be approximately equal to Peoe The next smallest correlation
is p, the population multiple correlation or the validity

of the population regression function in the population.

The largest correlation is the sample multiple correlation,
r, which is the validity of the sample regression function
in the derivation sample. These relationships may be sum-
marized as follows:

(1.2.14) E(rc) = p <p<r .

[
Empirical confirmation of (1.2.14) is presented in

Section 3.12.

1.3. Improvement of Prediction

It is well known that adding predictors to a regres-
sion equation lIncreases both the sample and population
multiple correlations. However the greater the number of
predictors, n, the more unstable are the sample regression
weights and the lower are the sample cross-validity, Ty
and the population cross-validity, P The decrease in
estimated Pe follows from (1.2.9).

A second difficulty with a large number of predictors
in multiple regression is that a subset of them would
probably do Just as well, if the subset could be deter-
mined. For predictions in applied psychology, e.g. per-

sonnel selection, it is undesirable to have to make a

il i
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large number of Meacw....2nts on each individual in order
to make accurate predictions. Furthermore, the weights
for a subset of predictors would be more stable in future
samples due to the smaller n.

There are several ways to select a subset of predictors.
The best selection procedure is stepwise regression in
‘which predictors are added to the regression, one at a
time, until there is no significant additional prediction.
‘Dther selection procedures are shown by Darlington (1967)
to be inferior tc the stepwise method.

Another way to reduce the number of predictors in the
regression function is to use a few linear combinations
of the predictors rather than the predictors themselves.
Two such methods, called reduced rank methods, are con-
sidered in this study. In the first method (Horst, 1941),
the largest principal components of the predictors (Anderson,
1958) are entered in the regression function. Since the
principal components may be expressed as linear combinations
of the predictors, the regression function may be trans-
formed to a linear combination of the predictors. Hence
the full set of predictor variables is used but only through
the intermediary of a few principal components. These
components may be interpreted psychologically and it may
be possible to select predictors loading highly on the
components as a subset to use in future prediction. In
this way reduced rank prediction can lead to a reduction of

the size of the predictor battery.
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In his 1941 paper, Horst also suggestea that the
predictors could be represented as a iinear function of
common and unique factors rather than as a linear function

of the principal components. This factor analytic model

is more difficult to treat because of the difficulty of

estimating the factors as linear combinations of the
predictors. Unlike Horst's first method, factor analysis
is not a reduced rank method. The factor analytic model
for regression calculations was studied by Leiman (1951)
with some success but will not be considered further in
this study.

Before outlinirg the second reduced rank procedure,
let us consider a study by Burket (196#) comparing a number
of regression methods in a large data sample. He compared
two stepwise selection procedures (Efroymson, 1960; Horst
and MacEwan, 1960C), the largest principal components method,
the smaileét principal components method (Guttman, 1958)
and the criterion-related principal components method
(Hotelling, 1957; Massy, 1965). Guttman proposed the use
of the smallest principal components since fhe solution for
the multiple regression weights depends on the inverse
of the predictor intercorrelation matrix, and the largest
components of the inverse are the smallest components of
the original matrix. Hotelling and Massy suggested that
the principal components which are entered into the regres-
sion function should be those components correlating max-
imally with the criterion rather than those of largest

variance. Burket compared these five methods for several

s

R
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criteria and in several subsamples of his total sample.
He found that the largest principal components method was
consistently superior to the other four methods. One purpose
of the present study is to show under wiiat conditions this
superiority can be expected to hold. *

The second reduced rank method, prediction from the
principal predictors, was develop:d from the following
considerations. The principal components of the predictors
may not be highly related to the criterion since the com-
ponents are determined solely from the intercorrelations
of the predictors. It would be desirable to find linear
combinations of the predictoré which are strongly related
to the criterion. The Hotelling and Massy method employed
by Burket finds these linear combinations by computing
the correlation of each principal component with the
criterionrand entering into the multiple regression only
those components with the highest correlations. However
a moresffective procedure might be to find those linear
combinations of the predictors (not necessarily the principal
components of the predictors) which are maximally correl-
ated with the criterion.

In the single criterion case, this problem is trivial
since there is only one linear combination of the predictors
maximally correlated with the criterion and all other
orthogonal combinations are uncorrelated with the criterion.
This combination is simply the regression function, i.e.
the predicted criterion, using multiple regression on all

the predictors. Therefore, in the single criterion case,

s it 5 *‘“
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nothing new is found by considering linear combinations of
the predictors maximally correlated with the criterion.

.Consider, however, prediction of several criteria
from a common set of predictors. Examples of such multiple
criteria are the prediction of success in several academic
curricula by using a btittery of aptitude tests or the
prediction of a nuﬁber of social criteria using scales
from a personality test (Hase and Goldberg, 1966). In
particular, let us suppose that we wish to predict each
of the criteria equally well. Then Tucker (1957) has
deJ;loped a method which discovers those linear combinations

of the predictors maximally related to the set of criteria.

These combinations are called the principal predictors.

The largest of the principal predictors may be entered
into the regression equations for each criterion. The
principal predictors have the property that, for a fixed
number of linear comblnations entered into each regression,
the average squared multiple correlation is greater for
the principal predictors than for any other linear com-.
binations entered into the regression.

The principal predictors were developed by Tucker
as a convenient way to summarize a large number of pre-
dictor scores by a few criterion-related predictor scores.
The principal predictors also provide a useful concep-
tualization of the relationship of a set of predictors
to a set of criteria. In the present study, on the other
hand, the principal predictors are compared with the

principal components as reduced rank prediction methods.
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In any prediction calculation, each criterion variable
may be divided into two parts--one part is predictable
from the set of predictors and the cther part is unpre-
dictable frcm these predictors. When there are several
criteria the predictable parts of the criteria are them-
selves a set of variables which have principal components.
These principal components are the principal predictors.
It is important not to confuse the principal components
of the predictors, previously discussed, with the prin-
cipal components of the predictable parts of the criteria,
which are called the principal predictors. The largest
principal predictor accounts for the largest portion of
the predictable variation in the criterié. The next
largest principal predictor accounts for the next largest
portlion, and<so on. Therefore a few of the principal
predictors account for most of the predictabie variation
in the criteria.

The largest principal predictors may be used as pre-
dictors themselves. Then the principal predictors, like
the principal components of the predictors, can be expressed
in terms of the original predictors. The weights for the
original predictors can therefore be calculated. Also,
the principal predictors may be interpreted psychologically,
which may lead to greater understanding of the relation-
ship between the predictors and the criteria. The principzl
predictors, unlike the principal components of the predict-
ors, are criterion-related so that variation in the predict-

ors which is unrelated to the criteria is not represented
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in the principal predictors. In some cases, the predictor
variation which is unrelated to the criteria could be large
enough to dominate the principal components of the pre-
dictors. But this variation is not useful for prediction.
This is the reason that prediction from the largest principal
predictors may be superior to prediction from the largest
principal components. '

The two methods, prediction from the principal compon-
ents of the predictors and from the principal predictors,
are called reduced rank methods since, in both cases, a
correlation matrix may be anproximated by a matrix of
lower rank using the largest principal components or the
largest principal predictors. In the first method, the
correlation matrix of the predictors is approximafed ﬁhile
in the second ﬁethod, the correlation matrix of the pre-
dictable parts of the criteria is approximated. These
statements are made more preclse in Chapter 2.

Of the prediction methods discussed in this section
only three will be considered further in this study:

(a) prediction from the full set of predictors,

(b) prediction from the largest principal components of
the predictors, and

(¢) prediction from the largest principal predictors:.

The last method 1s possible only when there are several

criteria. The first two methods may be used for one or

several criteria.
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1.4, The Comparison of Prediction Methods

In order to evaluate and compare the prediction
methods described in the preceding section it would be
desirable to empioy mathematical techniques. However the
problems are so complex that multivariate statistical
theory is unable to solve most of them.

Another approach to these problems has been to apply
the different prediction methods to a common body of data'
and to compare the results (Burket, 1964; Leiman, 1951).
There are definite advantages to this approach. Any
conclusions are based on real data and do not depend on
the assumptions in a theoretical development being valid.
However, there is a major drawback to such empirical
techniques. If two or more studies, using different data,
disagree in their conclusions, it 1is difficult to determine
what properties of the data sets differed enough between
the studies to produce thé varied conclusions. Similarly,
it is difficult to evaluate the generality oflconclusions
found in a single study using one set of data.

It is therefore desirable to compare the prediction
methods on a wide variety of data sets, differing in a
known way in certain parameters. Since it is hard to sat-
isfy this condition with real data, it 1s propcosed that some
useful conclusions may be made from the study of artificial
or simulated data sets. Such data sets can be readily
generated on a computer. The parameters specifying the
propertles of a data set can be input to the computer and

a wide variety of data sets can be generated by varying

i gt
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these input parameters. The prediction methods can then
be compared in these data. Such z simulatier s Gcedure
1s described in this study.

The simulation experiments consist of four states of
calculations;

Generation of the model. A combined predictor
and criterion population covariance matrix is generated
subject to certain irput parameters. The population model
and its parameters are described in Sections 2.2 and 2.3.
In the model the predictors and criteria are expressed
in terms of the principal predictors.

Generation of two samples. Two samples, each of

size N, are obtained from the population generated in the
preceding stage. The samples are obtained by generating
sample covariance matrices; the method is outlinga ir.
Section 2.4. The two samples are used in double cross-
validation.

Calculation of predictor weights. The predictor

weights are calculated, in each sample, by one or more

of the following methods--(a) multiple regression on the
predictors, (b) multiple regression on the principal com-
ponents, and (c¢) multiple regression on the principal
predictors. The calculation of these weights is described
in Sections 2.5, 2.6, and 2.7, respectively.

Cross-validation of the welghts. The weights for each

sample (and each method) are cross-validated on the other
~mple (rc) and on the population itself (pc). The for-

mulas for the validities are presented in Section 2.8.

b b
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CHAPTER 2

THE MATHEMATICAL MODEL AND SAMPLE CALCULATIONS

2.1. Notation

Scalars are denoted by lower case letters (m, p).
The only exceptions to this convention are N for sample
size and the elements of matrices. Scalars may be either
numbers or random variables. Column vectors are denoted
by lower case underlined letters (x, a). These vectors
may be either random variable vectors or vectors of numbers.
Row vectors are transposed column vectors, transposition
beingindicated by priming (x', a'). Matrices are denoted
by upper case letters (A, I). Transposed matrices are
indicated by a prime (A', IZ'). The (b, j) element of a
matrix is denoted by Aij' The idgntity matrix is I.

The matrix consisting of the first t columns of a
matrix A is denoted by (A)t‘ The first t rows of A are t(A).
The vector consisting of the first t elements of a vector b

is denoted by . (b).

The population covariance matrix ot two random vectors

x and y is denoted by Zx The corresponding sample

g’
covariance matrix is ny. When y is known to have only one

component, the covariance matrices are column vectors

denoted by Iy and Cyy- The variance of a scalar y is

denoted by oyy or cyy’ The abbreviation Var( ) is used

to denote the variance of the random variable enclosed

in parentheses.
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The Greek letters I, o, p, and ©® are regularly used
to denote population parameters. I and o are population
covariances as stated above. p denotes a population
multiple correlation. = is a population parameter defined
in Section 2.2. B and QR are also used as population
parameters. All other population parameters are denoted
by Latin letters as are all sample quantities.

The univariate normal distribution with mean = m and
variance = v is denoted by N(m, v). The multivariate
normal distribution with mean vector = a and covariance
matrix = I is represented by N(a, I). Fisher's F distribu-
tion with n, and n, degrees of freedom is denoted by
F(nl, n2). Finally, the chi distribution with n degrees
of freedom is denoted by x(n). This is the square root of
the chi-squared distribution.

A 1list of symbol definitions appears in Appendix F.

2.2. The General Model for Predictors and Criteria

Let x (n components) be n random variables, called
predictors, and let y (m components) be m random variables,
called criteria. Let m be less than n as is usually the
case in practice. For convenience, normalize all variables
x and y to unit variance. Let x and y have a joint multi-
variate normal distribution with null mean vector and
arbitrary covariance matrix

[
(2.2.1) I = [ZXX ny‘

yx Pyy’

It 1s shown in Appendix A that X and y can be written in
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a special way in terms of (n + m) independent unit wvariance
rardom variables w. Let w be partitioned as
t = ! ] 1
(2.2.2) w (W) w5 W3)
vhere W, has m components, w, has (n - m) compcnents and

3 has m components. Then

m (n-m) m

nix S S 0 w
(2.2.3) =11 2 =1
m F 0 E EQ

3
(The number of rows or columns in the partitioned matrices
are appended to the matrix expression above).
Thus the submatrices forming I may be written as

(2.2.4) z

XX sl Si + S2 Sé

(2.2.5) ny = Z&x = Ql F!

(2.2.6) Iy =FF' +EE .

This representation of x and y can be understood in
the following way. Let each of the y variables be pre-
dicted from a linear combination of the x variables.

The best least squar:s prediction (multiple regression)

of y is

(2.2.7) §=B'x =1, g

The weight matrix is written as B' rather than B so that
whenm = 1, B' = b', the transpose of a column vecto:.

Each component of the predictable part § is the best
predictor of the corresponding component of y. The squared
multiple correlation of the Jth criterion yJ with the n

predictors is then (recall that yJ has unit variance)

(2.2.8) p§ = Var(g,) = (B' I, B),,
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Now the variables § may be transformed to independent

unit variance variables ¥ by

(2.2.9) §=F W

where F 1s orthogonal by columns, so that
(2.2.10) F' F = D° (dlagonal)

with the diagonal elements of D2 in descending order.

The m variables W, are the principal predictors (see Appen-

dix A, equations (A.6) to (A.10)). The principal predictors

are numbered in order so that the first accounts for the
largest proportion of the variance of the y variables,
the second accounts for the next largest proportion, and
SO on.

On referring back to the model (2.2.3) one sees
that the criteria y are written as the sum of a linear
transformation of the principal predictors W, and a trans-
formation of m other independent variables 53. Similarly,
the predictors x are written as the sum of a linear trans-
formation of the same principal predictors Wy and a trans-

formation of (n - m) other independent variables w The

5
association between y and x is expressed through their
devendence on the principal predictors W, The non-assoc-
iated parts of x and y are expressed in terms of indep-
endent variables W, (for x) and wy (for y). The

total set of variables w' = (gi w5 ﬂé) are independent
unit variance normal.

The matrices Sl and F are central to the description

of the dependence of the criteria on the predictors.

Let us first consider F. The dependence of the m criteria y
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on the kth princiral predictor is given by the sum of

the squares of the elements in the kth column of F. Let

2 th

this quantity be Dkk

(k

2 ? 2
(2.2.11) D¢, = F )
kk T L) Tik

Dik is the kth eigenvalue of 299 = F F' (see Appendix A,

equations (A.6) and (A.7)). The quantities Dik are thus

monotonically decreasing numbers. If, in a certain populat-

ion, the first eigenvalue Dil is very large and the others

small, this indicates that most of the prediction of y

from x is derived from only one linear combination of the

X variables, namely the first principal predictor. On

the other hand, if several of the Dik are large, then

seaveral independent linear combinations of the predictors

are needed in order to get maximum prediction of y from x.
The average, over criteria, of the squared multiple

correlations is simply related to the Dik (see equation

(A.12)):

m

(2.2.12) 0% = (I/m) § 0% = (1/m)

2
p
j=1 9 K

kk

3

D
1

The relation of the predictors x to the principal

predictors ¥ through the matrix S, is guite independent

of the matrix F and the gquantities Dik. For convenience,
let us suppose that the variables are normalized to unit
variance. Let us define the (n x n) matrix S as the
super-matrix

(2.2.13) s = (Sl 52) .

element of the diagonal matrix D2):
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Thus

w
(2.2.14) x =S {‘1] .
¥

Since the w variables are independent and of unit variance,

the sum of squares of each row is 1.0. The sum of squares

of the ith row of S, 1s then less than 1.0 and represents

1
the magnitude of the dependence of the ith predictor on

the principal predictors. Let qi (k =1, ..., m) denote

the sum of squares of the kth column of S:

n
(2.2.15) qi = 121 sik .

qi is a measure of the average dependence or relation of

th 2

the x variables to the k principal predictor. The Q.

are analogous to the Dik since they represent, respectively,

the average dependence of the predictors and the criteria

th

on the k” principal predictor.

are

N

We may average the qﬁ in the same way as the D "

averaged in (2.2.12):

2 _ . omo2
(2.2.16) = = (1/n} |} q = (1/n} ] Sik -

Note that the division is by n, not m, in order to get a
parameter w% with maximum value 1.0. n2 represents the
average, over predictors, of the predictor variance related
to the principal predictors. It is a measure of the
dependence of the predictors on the principal precdictors.

2

For brevity, m~ will be called the average criterion-

related predictor variance. This description does not

2

imply that n~ is an average multiple correlation of x
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predicted from y (roles of prdictors and criteria reversed).

w2 is, however, the average multiple correlation of the x

variables predicted from the principal predictors LIE
Another way to interpret n2 is to define £ as the

parts of x linearly predictable from w,:

(2.2.17) -& = Sl ¥,

Then the variance of ﬁi, the predictable part of the ith

predictor, is

T2
(2.2.18) Var(g;) = | 3 .
The average of these variances 1is

(2.2.19) #°

n
(1/n) }

Var(R,)
i i

1

: n m 2
(1/n) [ I 8% = (/n)
i=1 k=1 k

q
1

He~g
ol )

Consider now two populations, each with the same
averagze squared multiple correlation 02. One population
might have a small value of n2 and the second a large vealue
of "2. In the first population the predictors depend
very little on the principal predictors while in the second
the dependence is greater. Nevertheless the prediction of
the criteria is the same in each population. This para-
doxical situation can be understood by first noting that
we are considering for the moment prediction in the popula-
tion, not in finite samples. The prediction of y is solely
via the principal predictors Loy and the random vector w

1
is an exact linear combination of the predictors x since
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S is square and non-singular:
lﬂl} _ o1
(2.2.20) =S " x .
LP)
As additional verification that the average multiple
correlation 1s independent of “2, note that p2 depends
only on F in (2.2.11) and (2.2.12).
The parameter n2 vill have an effect on prediction
in finite samples however. Consider prediction from the
principal components of the predictors. When n2 is large,
the largest principal component will be largely in the
space of the principal predictors and will contribute to
prediction. However, when n2 is small, the first principal
component will be unrelated to the principal predictor
space and will be a very poor predictor. The effectiveness
of prediction from the principal components will thus
depend on the size of n2. Empirical confirmation of this

phenomenon will be demonstrated in Section 3.4.

2.3. Computer Generation of the Model

Since any set of n predictors and m criteria may be
written in the form (2.2.3), it is possible to generate

an arbitrary population distribution by specifying the

=

matrices S, F,and E. The covariance matrices zxx’ ny,

and Zyy may then be calculated by (2.2.4) to (2.2.6) where

S is related to S; and S, by (2.2.13).

1
Rather than allowing the matrices S, F,and E to be
completely arbitrary, a few basic parameters may be fixed

arbitrarily and the matrices then generated essentially

G
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randomly subject to these given parameters. These arbi-
trary parameters are called "input parameters" since they
are input to the computer program that generates the model.

The major input parameters are:

1. n = number of predictors.
2. m = number of criteria.
3. (Dik’ k=1, ..., m), the eigenvalues of 299.

. (qi, k=1, ..., m), the dependencies of the
predictors on the principal predictors.

Note that once D2 and qi are specified for all k,

kk
the average squared multiple correlation p2 and the average
critefion—related predictor variance n2 are fixed by
(2.2.12) and (2.2-16). 1In particular, whenm = 1 as in
2 _ ne . 2 _ 2

= D11 and - = (1/n) Qi -

Two additional parameters, related to n and m, are:

Chapter 3, p

la. ns = number of columns of S.

2a. my = number of duplicate criteria.

In the model described in Section 2.2, S = (Sl 82) is an

(n x n) square matrix. S1 has m columns and 52 has (n - m)
columns. In some of the experiments described in Sections
3.1 and 3.2, S has more than n columns, namely ns columns,

so that 82 has (ns - m) columns and S, still has m columns.

1
All the experiments in Chapter 3 involve only one
criterion (m = 1). However several duplicate criteria are

allowed and the number of such duplicate criteria is

denoted by my . Duplicate criteria are described further

in Chapter 3 and Appendix D.

gl AT e e




27
Four minor parameters are needed to complete.the

input for the model:

5. v

x variance of the generated Var(R

L)

6. ex = tolerance on this variance.

7. vy

correlations p?.

variance of the generated multiple

8. ey = tolerance on this variance.
The computer program generates matrices F and E so

that the m squared multiple correlations p§ calculated

from them have mean exactly equal to the average of the Dik

and variance equal to vy within a maximum error of ey.

That is,

' 2 _ T2 noo2
(2.3.1) o = (1/m) } py = (1/m) I Dy
=1 k=1

and

m
(2.3.2) |Var(p§) - vyl = lG/m) le <p§ - p%)2

- vyl

< e
y

Matrix S, composed of S1 and S2, is generated so that the

mean of the variances of 23 calculated from S1 is exactly

m
equal to (1/n) ] qi and the variance of these vasiances
k=1

is equal to Vy within a maximum error of e, Thav is,

n m
(2.3.3) 7%= (1/n) ] Var() = (i/n) ] of
121 k=1

and
(2.3.4) IVar[Var(Ri)] - vl < e,
The two occurrences of "Var" in the preceding formula
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refer to different types of variances. Var(xi) means the
variance of the random variable 21 in the population.

Let the constants Var(xi) = vy temporarily. Then Var(vi)

is simply shorthand notation for

9 2,2
(2.3.5) Var(v,) = (/n) [ (v, = 7%)

Note that “2 is the mean of the Vi‘

Generation of F

The matrix F 1s the product of an orthonormal matrix
V .and a dlagonal matrix D consisting of the square roots
of the eigenvalues Dik (equation (A.8)):
(2.3.6) F=VD
The matrix D2 is input so that generation of F reduces to
the generation of an orthonormal V satisfying the two
restrictions (2.3.1) and (2.3.2) on the squared multiple

correlations p2. pé may be expressed in terms of V and D by
J J

2 — = 1 - 2 !
(2.3.7) Py = Var(9j) (F F )JJ (VD°vV )JJ
T2 2
= kzl Vik Pkk

When p2 is calculated in this way with V orthonormal,
J

equation (2.3.1) is automatically satisfied. The restrict-
ions on V are then
(a) V must be orthonormal,
(b) all p§ calculated from (2.3.7) must be less than
1.0, and
(¢) the variance of the p§ must satisfy equation
(2.3.2).

An algorithmic procedure to generate a V satisfying these
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three conditions, for arbitrary parameters m, (D2 k=1,

kk?
ceey, M), Vys and eys is outlined in Appendix C.
Generation of E

The elements of the (m x m) matrix E are first gener-
ated randomly from N(O, 1) and then the rows of E are

normalized so that, for all j,

g

(2.3.8) (EE"),, = L E?k =1 - p§

It~

where the p§ are calculated from (2.3.7). This normali-
zation ensures that the criteria y are normalized to unit
variance. The methods used to generate normal random
numbers as well as other random numbers discussed in this
chapter are given in Appendix B.
Generation of S

Two different methods for generating S were developed
for the experiments described in Chapters 3 and 4. The
first is called the e, = 0 method since the variance of
Var(ﬁi) 1s exactly equal to Ve This method was used for
the single criterion cise (m = 1) in Chapter 3. The
method does not generalize well to the m > 1 case and
therefore a second method, called the ey # 0 method was
used for the several criterion calculations in Chapter 4.
This latter method could have been employed in Chapter 3
2xcept that ey cannot be set to zero in this method.

Whenm = 1, n2 can be calculated directly from the
input param

(2.3.9) %= (/m) o .

Then, in the e, = 0 method, n numbers are generated randomly

St
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from N(nz, vx) subject to the restriction that no number
be more than 1.0 or less than 0.0. The numbers are re-
scaled after generation so that their mean is exactly n2
and their variance is Ve If one of the numbers is now
more than 1.0 or less than 0.0, the number is discarded
and a new attempt is made to satisfy the conditions. These
n numbers are the varlances of 21, denoted by v, = Var(ﬁi)
in equation (2.3.5). When this step 1s completed equations
(2.3.3) and (2.3.4) are exactly satisfied with e, = 0.

Now Sl is a single column, §l,and its elements are
defined as the square roots of (Vi’ i=1, ..., n), with
their signs chosen randomly. The elements of the last
(ns - 1) columns of S, namely 82, are generated randomly
from N(O, 1) and then rescaled, by rows, so that the row
sum of squares of the whole S matrix is unity. This
rescaling ensures that all x variables have unit variance.
The generation of S by the e, = 0 method is now complete.

The e, # 0 method of generating S is very similar
to the method of generating F. In analogy to (2.3.6) in
which all matrices are (m x m), Sl is written as
(2.3.10) Sl =T Q
where S1 and T are (n x m) and Q is diagonal (m x m) with
diagonal elements = (qk, k=1, ..., m). T (like V) is
orthonormal by columns. The Var(ﬁi) may be written in

terms of T and Q as

= = 2 my - 2 2
(2.3.11) Var(ﬁi) = (Sl Si)ii = (T Q" T )ii = ) Tik Q,

I ~—5
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Since T is orthonormal it follows that the average of

2

these variances is exactly (1/n) qi =17

He~3

k=1

is exactly satisflied. The remaining restrictions on T
(as on V) are then

(a) T must be orthonormal by columns,

(b) all Var(ﬁi) calculated from (2.3.11) must be

liess than 1.0, and

(¢) the variance of the Var(ﬁi) must satisfy (2.3.4).
The algorithmic procedure for generating V (Appendix C)
may be also used to generate a T satisfying the above three
conditions for arbitrary n, m, (qi, k=1, ..., m), v_,

X

d .
and e,

After S; is generated, S, (n x (ns - m)) 1s generated
in the same way as in the e, = 0 method. First the ele-
ments of 82 are generated as N(0, 1) random numbers.

The rows of S2 are rescaled so that each row sum of squares
of S = (Sl 82) is unity, resulting in unit variance x
variables. This completes the e, # 0 method for gener-

ating S.

2.4, Computer Generation of Data Samples

X and y are (n + m) random variables with a joint
multivariate normal distribution. The mean vector is the
null vector and the covariance matrix is I as given in
eguation (2.2.1). 1In order to draw samples from. this
distraibution, it would be a straightforward procedure to

use equation (2.2.3) which expresses x and y in terms of

so that (2.3.3)
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independent N(O, 1) variables w. For each simulated
subject it would be necessary to generate (n + m) indepen-
dent N(0, 1) numbers and to place these in equation
(2.2.3) as the w values. The sample x and y vectors would
then be found by matrix multiplication.

This proceudre, while conceptually simple, has the
disadvantage that the computer time required increases
linearly with N, the sample size. The method 1is thus
impossible to use for all but small sample sizes.

Another procedure was chosen instead. It is not
based on generating sample vectors x and y at all but on

generating a sample covariance matrix

C C
(2.4.1) C = [’“‘ y"] .
C C
xy “yy’
The method is the Bartlett decomposition of the Wishart

distribution (Bartlett, 1933; Kshirsagar, 1959; Wijsman,
1957). The covariance matrix C has a Wishart distribution
depending solely on the population covariance matrix I,
the sample size N, and the number of variables which
is (n + m).

Let the population covariance matrix I be written as
(2.4.2) £=0Q
This may be done in a variety of ways. The Gauss-Doolittle
method for computing a triangular @ was used.

Let an ((n + m) x (n + m)) matrix A be defined as
(2.4.3) A= (/) TT!

where T is a lower triangular ((n + m) x (n + m)) matrix

. f vt admesfasdat (RS ERS
RIS A
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whose lower triangular elements are independent random

variables:
Tij (1 > 3) are N(O0, 1)
(2.4.4) T,; are x(N - 1)
Tij=0(i<J).

Ther, if we compute

(2.4.5) C=QAQ = (1/N) QT T Q" s

C will have a Wishart distribution as desired. Equation
(2.4.5) is the Bartlett decomposition of the Wishart

matrix C. A is a sample covariance matrix from a population
with identity covariance matrix. The letter A is used

as a temporary symbol in this paragraph and is reserved

for another use in Section 2.6. The generation of normal

and chi variables is described in Appendix B.

2.5. Multiple Regression on the Predictors

The most widely used method for prediction is multiple
regression. This least squares method ensures that, in
the derivation sample, the correlation between the predicted
score and the cbserved criterion score is a maximum.
The maximum correlation is the multiple correlation.

Let the covariance matrix of the n predictors in the
the derivation sample (of size N) be Cxx (n x n) and let
the column vector Cxy (n x 1) be the covariance between each
predictor and the single criterion (m = 1). Let the
coefficients of the multiple regression combination of the
predictors be gl (n x 1), the subscript indicating that the

first method of prediction, multiple regression on the
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predictors, is being used. The lirear combination of the
predictors is then b, x.

The soluticn for b, is well known to be

- .-.-1
(2.5.1) by =y 0

The correlation between § = b) x and y 1s the multiple

correlation. The square of this correlation is

b! ¢
(2.5.2) rf = Ti2xy
Cyy

where cyy is the sample variance of the criterion. The
proof of this formula is presented in Appendix E. The

subscript on r2 is only used in this chapter to distin-
guish the three methods of prediction. The subscript is

dropped in later chapters.

2.6. Multiple Regression on the Principal Components

As an alternative to the original predictors one
can use the largest principal components of the predictors
in the regression function. The scores on the principal
components are first estimated from the predictor scores.

The following calculations are made in the derivation
sample. The characteristic roots and vectors of the
covariance matrix of the predictors, Cxx (n x n), are
calculated. Let the roots be written in descending order
on the diagonal of a diagonal matrix U2 and the vectors
in corresponding order as the columns of an orthonormal
matrix W. Then Cxx may be written as

2

= ZERT
(2.6.1) Cxx WU W

where all matrices are (n x n). The characteristic vectors

P I
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are the coefficients for relating the principal components,
f, to the predictors, i.e.
(2.6.2) f£=W'x
where x is the {(n x 1) column vector of one subject's scores
on the predictors and f is the (n x 1) column vector of the
principal component scores (Anderson, 1958, pp. 273-277).
We wish to use the t largest principal components
in the regression function. From (2.6.2), the scores on
these t principal components are estimated by
(2.6.3)  (£) = (W) x
where . (f)"&s (t x 1) and is the vector of the first ¢
elements of f. t(W') is the matrix consisting of the
first t rows of W'.
The prediction equation, using the t largest principal
components, 1is
(2.6.0) 9% =a ()
where d 1s a temporary symbol representing the t-vector
of weights for the principal components. The multiple

regression solution for d is

-1
£e Sey

in analogy to the solution (2.5.1). In (2.6.5), C

(2.6.5) d=¢

is

ff
(t x t) and Cey is (¢t x 1). The covariance matrix of

the t principal components is, from (2.6.3), (2.6.1), and

the orthonormality of W,

_ _ 2
(2.6.6) Cop= (W) C . (W), = (U°),

and the covariance of the t principal components and the

criterion is

(2.6.7)  gp, = (') gy
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Therefore the weight vector is

-2 ,
(2.6.8) d = (U7%) ((W)e. .

Substituting (2.6.3) and (2.6.8) into (2.6.4), we find
that

(2.6.9) 98 = o1, (TR L) x
is the equation for predicting y from x using regression
on the t largest principal components of the predictors.
This equation may be simplified slightly by writing
(2.6.10) A =WU

so that (2.6.1) becomes

(2.6.11) ¢ x = A A’ .

X
Then (2.6.9) becomes
(2.6.12) 9% = angt @™ x

Equation (2.6.12) is the formula for predicting
y from x using regression on the t largest principal

components. If we express the right hand side of this

equation as [gét)}' X, then the weight vector is

(t) _ -1 -1

It s shown in Appendix E that the squared multiple cor-

relation is

(2.6.14) [r§t>]2 -T2 =Xy

which is identical in form to (2.5.2) but of course in-

volves ggt) inst~ad of b,. It is important to note that

rét) is not the multiple correlation of y with the

predictors x. The latter multiple correlation is r

1
(t)

The symbol ry represents the multiple correlation of y

e e s
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and the t largest principal components of the predictors

(t)
2

and therefore r must be less than r., unless t = n.

1

The subscript 2 is dropped in later chapters when the con-

text makes clear which method of prediction is used.
flultiple regressicn on the principal components may

be called a reduced rank method since the use of the

t largest principal components instead of the original

predictors 1is equivalent to approximating the matrix Cxx

by the matrix

(2.6.15) € = (A), (A") .

The matrix Exx is of reduced rank t < n.

2.7. Multiple Regression on the Principal Predictors

Another method of calculating independent scores in
the derivation sample is the method of principal predictors.
Scores on the largest principal predictors are used in
the regression equation. The method is only applicable
if there are several criteria (m > 1).

Let the scores of a subject on the m criteria be

Yys coes Yoo which may be placed in a column vector y

(m x 1). Each criterion, Yy has a part, 91, linearly
predictable from the n predictors, X, in the derivation
sample:

(2.7.1) 9, = ¢; ¢l

XY xx £

where Cxy (n x 1) is the covariance of Yy with the

J

n predictors x and Cxx is the covariance of the predictors.

B ¢

The m predictable parts of the criteria may be written
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as a column vector ¢ (m x 1). Then equation (2.7.1) may
be rewritten as

_ -1 -1
(2.7.2) g=Cr Clux=C, Cx

vhere ny (m x n) is the covariance matrix of the m criteria

with the n predictors. The covariance of the predictable
parts is the (m x m) matrix ngz

- -1 '
(2.7.3) ny = ny Cxx ny .

Let us diagonalize ng in analogy to the way that

Cxx was written in (2.6.1) and {(2.6.11):
2

(2.7.4) Cop = VD™ V' =G G .

99

The matrices V and D2 are sample estimates of the corres-
ponding population matrices denoted by the same symbols

in Sections 2.2 and 2.3. The eigenvalues Di
in decreasing order in the diagonal of D2 and the eigen-

K are written

vectors are written in the corresponding order as columns
of V. The rows of G are the coefficients for relating
the predictable parts of the criteria and the principal
predictors, 1i.e.

(2.7.5) g=Gw .

Thus the equation for estimating the scores on the n
principal predictors {(column vector w (m x 1)) from the
predictable parts is

(2.7.6) w=06"1g

which, combined with equation (2.7.2), gives

(2.7.7) w=6"tc, _ cIlx

yx xx =
as the eguation for estimating w from x.

LORTRL TP
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The equation for estimating the t largest principal
predictors . (w) is
(2.7.8) (W) = (671) Cyx co;x
vhere t(G'l) is the first t rows of G L.

Note that w is a vector of numbers which can be
calculated for each subject. The use here of w for the
estimated principal predictor score vector should not be
confused with the use of w, in Section 2.2, for the prin-
cipal predictors, a random vector in the population.

Since the principal predictors are uncorrelated
in the derivation sample the multiple regression weights
for predicting each yJ from the principal predictors are
simply the rows of the pattern matrix G as shown in (2.7.5).
Each row of G 1s the weight vector for one criterion variable.
The coefficients G are sti1ll the correct weights when only
some of the principal predictors are included in the
regression. If the t largest principal predictors are in-
cluded, the predicted parts of the criteria are
(2.7.9)  95*) = (o) (W
In order to express this equation in terms of the original
predictor scores as
3%

equations (2.7.9) and (2.7.8) may be combined, yielding

- -1 1
(2.7.11) B3 = Cxx ny (G )t t(G')

(2.7.10) ggt) = B!

It is shown in Appendix E that the squared multiple cor-
relation of the Jth criterion variable yJ is
P (BY C__)

(t)q2 [ -3 _“xy’dd
(2.7.12) [r3j J

bt
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wvhich 1s identical in form to (2.5.2) and (2.6.14) except
that there is one such equation for each criterion var-
iable yJ. As was the case with regression on the prineipal
components, the multiple correlation rgg) is not the

multiple correlation of yJ with x but is the multiple

correlation of y, and the t largest principal predictors.
J

(t)
3J
The subscript 3 is dropped in later chapters.

The correlation r is always less than or equal to r

l.
Multiple regression on the principal predictors,’
as on the principal components, is a reduced rank method.
The use of the t largest principal predictors instead
of all m principal predictors is equivalent to approx-
imating the matrix ny by the matrix
Lrd A - '
(2.7.13) Cgg = (6) ((6")
The matrix 599 is of reuuced rank t < n.

It was pointed out after equation (2.7.4) that the

eigenvalues of C are estimates of the population par--
g9 )

°

ameters (Dik, k=1, ..., m). In order to estimate =
and (qi, k=1, ..., m) it is natural to require that the
covariance matrices be change”™ to correlatlion matrices,
The correlations of the predictors x and the principal

predictors w are given by the (n x m) sample matrix

S1 = Cxw' Sl may be written as
_ _ -1 N |
(2.7.14) Sl = Cxw = Cxx CXx ny (G") = ny (')

by equation (2.7.7).

o]
The sample quantity q; is the average dependence

h

of the predictors on the kt principal predictor and is

EPEe.
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therefore, since the predictors have unit variance by the

use of correlation matrices, given by

2

Sik .

1

e

(2.7.15) sample qi =
i

Similarly the sample estimate of "2, the average criterion-
related predictor variance is the sum of the squares of

all the elements of Sl divided by n and is

1l

(l/n) ¥
k=1 i=1

n
12
L Sik

(2.7.16) sample n2

(1/n)

1

e

2
sample qQy .

k=1

2.8. Cross-Validities

The calculation of correlations in the validation
sample is identical for all three weight computational
methods. Given the weight vecor b from the derivation
sample, the square of the correlation between b' X and

a criterion variable y in the validation sample is

2
(o' ¢ )
(2.8.1)  rl = ——oZo-D Xyl -
t
(b Cyx B gy
where Cxy? Crx @nd cyy are covariances computed in the

validation sample. The proof of this formula is given in

Appendix E. The quantity r, is called the sample cross-

validity and may be negative or positive. The sign of Pc
is equal to the sign of b’ Cxy The sign of r, is also
affixed to rg wnen agverages of several rg are taken.

The predictor weight vector b, calculated in the

derivation sample, may also be applied to the population




S

b2
itsclf. The souare of the correlation between b' X and

the criterion variable y in the population is

(2.8.2) pg = e XYL .

This formula is identical to (2.8.1) except for the use
of population covariances instead of sample covariances.

p_ is called the population cross-validity. A sign is

c

2
affixed to pg in the same way as to r;.
The three statistics, r2 (in its several forms),

rg, and pg are called the correlation statistics. These

statistics are the principal quantities computed in the

experiments described in Chapters 3 and 4.
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CEAPTER 3

SIMULATION RESULTS WITH ONE CRITERION VAR1ABLE

A number of experiments were performed using a single
criterion variable. The two methods of prediction used
were nmultiple regression on the predictors and on the
principal components of the predictors. The model and
sample generation methods described in Sections 2.2 and
2.3 are applicable to the single criterion case {(m = 1).
However, in order to generate many samples without exces-
sive use of computer time, a special procedure for the
n = 1 case was developed. This procedure, described in
detail in Appendix D, allows any number of criterion vari-
ables to be generated, each with the same population
multiple correlation and each with the same relation to
the predictors. The criterion variables are thus all
duplicates of the single criterion of interest. The
number of such duplicates is denoted by My e
As an example, suppose that there are flve predictors

and ten duplicate criteria. Then, in a sample, one can
compute ten multiple correlations, one for each criterion.
‘“hese ten correlations are all based on one sample (size N)
of five predictor scores but on ten different samples of
single criterion scores.

Each calculation described in this chapter 1is based
on one or more populations (Z) generated for each combin-

ation of th~ input parameters. Ior each I tha was generated,
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sample covariance matrices were generated in pairs (C c

1° 2)’

representing the two samples needed for double cross-
validation. Z, Cl’ and C2 are the covariance matrices of
(n + md) variables--n predictors and ms duplicate criteria.
Except in Section 3.4, at least two such pairs of samnple
covariance matrices were generated. This allowed varlation
in the predictor sample covariance mnatrices.
The results using the simulation program described
in this chapter are:
(a) When p = 0, the sample multiple correlation follows
the known theoretical law. (Section 3.1)
(b) When p # 0, variation in zxx produced by change in
the number of columns of S does not affect the correl-

ation statistics r2, rg, and pi. (Section 3.2)

(¢) The correlation statistics depend on n, N, and p2
in theoretically understandable ways. Tables are
presented which may be used to interpret sample mul-
tiple correlations and cross-validities. (Section 3.3)

{(d) The optimum number of principal components to include..

in the regression function depends on the parameters

n, N, p2, anrda n2. (Section 3.4)

3.1. ,Distribution of the Correlation Statistics When p = 0

It is useful to study populations in which the multiple
correlation (p) is zero even though such populations are of
little practical significance. Firstly, the distributions
of the correlation statistics when p = 0 provide a baseline

against which to compare the distributions obtained for

bt dden Lo e Ladind
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non-zero p. Secondly, some prop~<rties of the distributions
for p = 0 are known theoretically and a comparison of the
distributions obtained from the computer model for p = 0
with the theoretical preéictions provides a check of the
model and the computer calculations.

Fisher (1928) showed that, if r is the sample multiple

correlation,

(3.1.1) e B

is aistributed as F(n, N - n -~ 1) when p = 0. This dis-
tribution has the important rcroperty that it is independent

of the covariance matrix of the predictors, zxx‘ The

distribution of the sample cross-validity, r is not known

c;
but its expected value is zero and its distribution is
symmetric. Presumably its daistribution is also independent

of zxx’ Finally, the population cross-validity, p is

c?
exactly zero since Ixy = 0.

An effective simulation of multiple regression should
be able to reproduce these properties. The dlstributions
of r2 and rg were studied for two different sample sizes, ﬁ,
and for predictor covarlance matrices, zxx’ varying in
two ways. namely in the values of the parameters n2 and ng.
n2 1s the average of the variances of the part of each
predictor dependent on the principal predictor; ng is the
number of cslumns of the S matrix. Two values of n, were
used--—nS = 10 implies a square S matrix since n = 10
and ng = 20 implies a non-square S matrix.

The input parameters which were constant for all
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the calculations in this section are shown in Table 1.
Table 2 shows the variable model parameters and sample
sizes and also the total number of populations and samples
calculated for each model. According to Table 2 four dif-
ferent Is were generated for each model, and for each I
generated, three double cross-validations were performed.
Since ten duplicate criteria were used throughout (md = 10),
there were altogether 10 x 4 ~ 3 x 2 = 240 sample multiple
correlations and cross-validities computed for each model.
The final factor of two in the preceding expression repre-
sents the two samples (01/ C2) which were generated for
each double cross-validation.

In order to test whether r2 satisfies the Fisher
distribution law (3.1.1), it is necessary to have a tab-
ulation of F(10, 39) for Models 1 and 2 and F(10, 130)
for Models 3 and 4. These distributions were obtained
directly, or by interpolation, from Owen (1962). From

(3.1.1), r°

is distributed as

n F(n, N -n - 1)

(N-n-1) + n®Pn, N-n-1)

The percentage points used (those available in Owen) and
the corresponding percentile points of the F and r2 dis-
tributions are shown in Tables 3 and 4.

The four Is and associated samples for each model
were divided equally into two sets, chosen in the order

that they were computed. The cumulative frequency distri.

bution of the 120 sample squared multiple correlations,

r2, are presented in Tables 3 and 4. FEach set of 120

W S
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Table 1

Constzant Parameters for Section 3.1

. n =10
my = 10 (m = 1)
0% = 0.0
Ve = 0.01
e, = 0.0
vy, ey inapplicable since m = 1

Table 2

Variable Parameters for Section 3.1

Model 1  Model 2 Model 3 Model 4

ng 10 20 10 20
n° 2 .2 5 .5
number of Is b y 4 l
N 50 50 131 131

number of Cl’ C2
pairs per I 3 3 3 3
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Table 3 -

Distribution of r2 for Models 1 and 2

Prob- F(10, 39) r° Cumulative Freguencies
?:;1- Model 1 Model 2
Expected Set 1 Set 2 Set 1 Set 2
1.050 1.000 120 120 120 120 120
.975 2.401 .381 117 117 116 117 117
.95 2.086 .348 114 115 114 115 114
.90 1.769 .312 108 103 107 108 112
' .75  1.329  .254 90 85 80 98 91
.50 .951 .196 60 50 £2 60 59
.25 .664 145 30 25 23 30 26
.10 .469 .107 12 16 12 11 9
.05 .375 .0878 6 5 6 5 6
.025 . 307 .0729 3 1 3 4 it
.000 .000 .0000 0 0 0 0 0
MD = maximum absolute difference
(observed - expected) 10 10 8 b
Kolmogorov-Smirnov D = MD/120 .083 .083 .067 .033
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Table 4

Distribution of r2 for Models 3 and 4

Prob- F(10,120) r2 Cumulative Frequencies
?2;12; Model 3 Model 4
Expected Set 1 Set 2 Set 1 Set 2
1.000 1.0000 120 120 120 120 120
975 2.157 .1524 117 120 115 119 117
<95 1.911 .1373 114 119 111 113 113
.90 1.652 .1210 108 114 107 106 109
.75  1.279  .0963 g0 95 96 88 95
.50 .939  .0726 60 65 69 60 69
.25 .670  .0529 30 27 39 33 32
.10 480 .0385 12 7 18 13 13
.05 .388 .0313 6 6 9 7 5
.025 .318 .0259 3 b 2 5 3
.000 .000 .0000 0 0 0 0 0
MD = maximum absolute difference
(observed - expected) 6 9 3 9

Kolmogorov-Smirnov D = MD/120 .050 .075 .025 .075
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squared multiple correlations originated in six sample
covariance matrices for each of two Is. There werc ten
duplicate criteria in each sample.

The observed frequency distributions were compared
with the expected distributions by the Xclmogorov-Smirnov
one sample test (Siegel, 1956). MD is the maximum absolute
difference between observed and expected cumulative fre-
quencies and D = MD/120 is the Kolmogorov=Smirnov statistic.
Both values are presented in the tables. The critical D
for the one sample, two tailed test is 0.12 (a = 0.05,

N = 120). None of the Ds in Tables 3 and U4 exceeds this
value. There 1s therefore good evidence that the multiple
correlations generated by the simulation program satisfy
the Fisher law.

The means and standard deviations of the eight sets
of cross-validities (120 in each set) are presented in
Table 5. The t values are also shown. The critical t for
a two tailed test is 1.98 (o = 0.05, df = 119). The cross-
validities do not have mean zero by this test since two
of the ts exceed the critical value and one other is almost
at the critical value. If the models with the same sample
size are combined the ts are +1.38 {Models 1 and 2) and
-1.49 (Models 3 and 4). The critical t is now 1.96 (df =
479). It is apparent that the powerful t test is able to
show small imperfections in the simulation procedure.

The calculations in this section have shown that when
the population multiple correlation is zero, the sample

statistics obey, at least to a certain extent, the

ILNUDE LI NY




Table 5

Cross-Validities for Models 1 to U

Model Set HMean rg

.00168
.00439
.00232

ACTE ORI

.00068

.00232

.00228
.00146

NI e I SR ) T I \C R o

= W W

.00213

Standard
Deviation

. 0402
.0222
.0405
.0378
.0095
.0129
. 0147
.0149

51

R
2.16%

.63

.20
~-2.66%

Note: Each rg entering into the mean has the same sign

as the corresponding r..

*p < .05
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theoretically known distributions. The function (3.1.1)
ol the sample multiple correlation has an F distribution and

the mean value of the cross-validity is approximately zero.

3.2. Dependence of the Correlation Statistics on zxx

When p # 0
It was shown in Section 2.2 and Appendix A that the
average squared population multiple correlation, p2,

2
kk’

and not on matrix S. In particular, when there is only

depends only on the (D k=1, ..., m) (eguation 2.2.11)
one criterion (m = 1), the squared population multiple
correlatinn of the criterion with the predictors is

2 _ n2
(3.2.1) p° = Dy
Since Dil is an input parameter it is therefore straight-
forward to specify an arbitrary p2 for a desired population.

Unfortunately this simple specification of p2 is

only possible when the matrix S is square. When S is non-
square, say with ng columns, then p2 is given by

2 -1

2
(3.2.2)  p° =DJ; s} (88)7" 5

which depends on the matrix S. The vector s, is the first

1
column of S (equation 2.2.13). Since S is generated to
some extvent randomly by the population generation pro-
cedure, it is impossible to specify by input parameters
what the population muitiple correlation will be. This is
a severe limitation on the model if S is not square.
Because of the ease in specifying p2, the models
in the remaining sections of this study all employ square

S matrices. In order to show, at least to a certain extent,

that this does not effect tne generality of the conclusions,
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come experiments are described ir. this section which compare
the correlation statistics of square S and non-square S
models. A further comparison 1s made of two models which
differ.only in the parameter n2.

The input parameters which were constant for all

the calculations in this section are shown in Table 6.

Table 6

Constant Parameters for Section-3.2

n=>5

my = 10 (m = 1)

v, = 0.01

e, = 0.00

vy, ey inappiicable sincem =1
N = 40

Table 7 shows the varl'lable parameters and the total number
of populations and samples calculated for each of the ten
models. Models 5 and 6 are square S models differing only
in n2. Two populations were generated for each model and
three sample pairs for each population. This results in
10 x 2 x 3 x 2 = 120 sample correlations for each model.

Each of the four remaining model pairs differ only
in ng, one model of esch pair has square S and the other
model has non-square S. The squared population multiple

2

correlation, p~, is identical for the model in each pair.

The identity holds to six or seven decimal places even
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tlhioush only three are shown in Table 7. The identity was

produced in the following way. As explained above, p2

is not an input parameter. The input Dil is equal to p2
only for sguare S models. The non-square S Models 8, 10,
12, and 14 were generated usi-g Dil = 0.5. The population
squared multiple correlation, 92, was calculated for each
model by (3.2.2). These are the values in Table 7. These
computed values were used as the input Dil for the square S
Models 7, 9, 11, and 13. Since only one I could be gener-
ated for each‘set of parameters, six Cl’ 02 pairs were
generated instead of three. This means that 10 x 1 x
6 x 2 = 120 sample correlations were generated, the same
number as for Models 5 and 6.

The frequency distributions of the 120 correlations
for each model are presented in Tables 8 (r2), 9 (ri),
and 10 (pg). The maximum absolute difference, MD, and
the Kolmogorov-=Smirnov statistic D are also presented for
each palr of models. The critical D for the two sample
test, two tailed, is 0.18 (a = 0.05, N = 120). None of
the sample values exceeds this value although two approach
it. It can be safely stated that for these examples the
variation in Zxx has not produced differences in the observed
distributions of the correlation statistics. This conclusion
is further confirmed by the comparison of the means of the
pairs of distributions as shown in Table 1i. The critical
t value for a two tailed test is 1.98 (o = 0.05, df = 119)

and none of the sample ts exceéds this value.

P B Pk Bemteb .
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Tatle 8
Cumulative Frequency Distribution of r2

for HModels 5 to 1l

Model
5 6 7 8 g 10 11 12 13 14
126 120 120

120 120 220 119 119 119
119 118 119 119 117 115
108 111 120 120 115 119 113 109
101 93 120 119 119 102 114 94 98

76 68 119 120 116 115 g0 97 68 71
Ly 43 118 117 111 111 73 73 49 51
31 29 115 113 99 96 L8 50 27 29
18 17 104 105 69 77 30 30 13 19

8 4 89 92 53 60 13 20 5 10
3 1 T4 85 28 41 4 12 it 3
1 0 45 66 15 28 2 7 1 1
0 26 46 10 21 1 ! 1 0
11 21 4 10 0 1 0

9 12 1 6 0

2 3 0 1

0 1 0

0
8 21 13 12 6

.067 175 .109 .100 .050

SRALE
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Table 9
2
Cumuliative Frequency Distribution of r;

for Models 5 to 14

Model

rg 5 6 7 8 9 10 11 12 13 14
.75 120 120 120
.70 120 119 119 117
.65 119 115 120 120 120 115 115
.60 112 105 119 11z 114 110 106
.55 102 83 120 119 120 99 ios 91 93
.50 72 68 120 119 116 118 85 9% 66 71
A5 55 56 118 118 113 110 74 82 51 47
40 38 29 112 113 10§ 100 59 61 26 32
.35 27 18 106 111 88 86 43 42 13 24
.30 14 10 99 102 64 68 25 26 B8 15
.25 8 4 88 98 44 53 13 17 4 8
.20 > 2 66 B8 22 3% 71 1 2 3
.15 O 0 54 52 12 25 5 3 0

210 31 36 7 1B 3 0

.05 i5 16 3 6 0

.00 > 1 ¢ 2

-.05 ] 0o 1 0

-.10 0

MD 19 15 13 9 11

D .158 .125 .109 .075 .092

O .

PR Ve
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Table 10
Cumiylative Frequency Distribution of pg
for Models 5 to 14

Model

5 6 7 8 9 10 11 12

.400
375
.350
.325

120 120

.300
275
.250
.225
.200
.175
.150
<125
.100
.075
.050
.025
.000
~-.025

MD

108 114

82
120 120
118 113

81
52
32

88
65
37
18

O W VOO

O DWW =\O0

11
.092

91
65
55
32
15
10

4

4

1

0
14
<117

14
10

O M =W\

.067

10
.083

12

.100
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In the simulation model, the populatior multiple
correlation is independent of n2, the average predictor
variance related to the criteria. The comparison of
lModels 5 and 6 confirmed that the sample statistics are
independent of n2. Even though the pop::lation multiple
correlation does depend on the matrix S if it is not square,
it was shown that the correlation statistics are not affected
by the matrix S for the models considered in this section.

All further calculations in this study invlove square S

models only.

3.3. Dependence of the Correlation Statistics on n,
2

N, and p

The cross-validation technique was developed as a
way to correct a sample multiple correlation (Mosier,
1951). The purpose of the calculations described in this
section was to investigate empirically the relationship
of the sample multiple correlation and the cross-validities
to the popufation multiple correlation.

The parameters which were constant for all the cal-
culations in this section are shown in Table 12. Table 13
indicates the values of the three parameters which were
varied. All possible compbinations of squared multiple
correlations, p2, number of predictors, n, and sample size,
N, were used except for those combinations with (n, N) =
(15, 16). A different model was generated for ecach com-
bination of (92, n, N) so that the models for combinations

differing only in N are different models.
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Table 12

Constant Parameters for Section 3.3

m=1
n, =n (square S matrix)
n2 = 0.5
v, = 0.01
X
e. = 0.0
X
vy, ey inapplicable since m =1

Table 13

Variable Pafameters for Section 3.3

n=2, 5, 10, 15
0% = 0.0, 0.1, 0.25, 0.5, 0.75
N = 16, 26, 50, 131

models with (n, N)

(15, 16) (10, 16) all others

my 5
number of Is not done 1
number of Cl’ 02

pairs per £ 4

10
1

it i 5
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In all cases 40 sample correlations were obtained.
The means of the 40 correlations of each type (r2, rg,
and pi) are shown in Tables 14 to 17. The expected values
E(rz) as calculated from (1.2.10) are alsc shown in these
tables. The standard errors of the correlation means
range from 0.0. to 0.02 for r2 and rg and somewhat less
for pg. However, this standard error does not take into
account variation which would be produced by another pop-
ulation generated from the same parameters. Table 13
indicates that only one I was generated for each parameter
combination. Nevertheless the tables give 'a useful picture

of the dependence of the three correlation statistics

on p2, N, and n.

The following observations may be made from the tables:

(a) The squared sample multiple correlation, r2, is an
overescimate of p2. The expected values of r2, E(r2),
from (1.2.10) match the observed r2 values very well.
The first two terms of the expansion (1.2.11) may be
rearranged to show that the bias in E(r2) is a simple

function of n, N, and p2:

n
2 n e (1= 09
N -1

(3.3.1) E{r°) - p

The match of E(r) and r’ shows that formulas (1.2.13)
and (1.2.7), which are essentially backward solutions
of (1.2.10), provide reasonable estimates of the
squared population multiple correlation.

(b) The squared sample cross-validity, rg, is generally

an underestimate of p2 and this blas (except for

"
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Correlation

.00

-133
.160
.029
.000

-233
.307
.014
.G00

.657
.680
-.035
.000

Table 14

Statistics for Sample Size N = 15

-10 .25
n=2
.211 -331
.189 -329
121 .217
.056 .191
n=5
-393 -485
-409 .450
.086 .104
.027 -107
n =10
.6G6 743
.666 .744
.003 .047
.009 .041

.50

.541
-593
.534
.468

.823
.821
-300
.217

.15

.763
.805
.763
.731

-909
.908

.489
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Correliation

.00

.080
.073
.016
.000

.200
.188
.013
.000

.600
.604
.009
.000

Table 15

Statistics for Sample Size N = 26

.10 .25
n=2
.166 .297
.183 .372
.125 .317
.076 .226
n=>5
.275 -389
277 .4%00
.059 .204
.0l6 .161
n =10
.U56 L5842
.bs5 .567
.012 .145
.016 .102
n =15
.637 .694
.648 .669
.030 .050
.012 .050

.50

.523
.542
.491
.u80

-585
.565
.384
.u13

.689
.685
.335
.311

.7192
.304
.252
.199

.15

.7157
.805
.788
.738

.789
.733
.642
.710

.881
-855
.642
.629

.894
.888
425
476
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Correlation

.00

.ol
.037
.002
.000

.1c2
.092
.07
.000

.204
.202
.005
.0C0

-306
.327
-.003
.000

Table 16

Statistics for

.10 .25
n=2
.133 .2Th
-139 .276
.107 .239
.079 .233
n=>5
.189 .320
.182 .350
.079 .218
. 057 .198
n = 10
.281 -397
.263 -399
.063 137
.042 .136
n =15
.373 47k
-353 .483
.033 .160
.027 .116

Sample Size N = 5C

.50

.511
.524
.496
485

.542
.547
.468
-453

.594
.634
LU76
.418

.6U6
.659
.350
.350

.75

-753
.738
.733
LTU6

.769
.765
.720
.725

-795
.790
.694
.693

.821
.806
.666
.671

65
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Table 17

Correlation Statistics for Sample Size N = 131

.00

.015
.014
5001
.000

.077
.085
.002
.000

.115
.116
-.000
.000

.10

.113
.118
.101
.091

.133
127
.075
.076

.168
.178
.078
.061

.203
.202
.037
.048

L}

.25

-?259
.2u1
.235
.246

"
N

.276
-299
.245
.227

.305
.295
.209
.205

15
.334
.325

.174
.181

.50

.50k
.526
-515
.196

.516
.500
U465
.483

.534
.537
473
464

.554
.573
.463
449

.15

.751
.764
.761
.748

757
.769
-749
LT42

767
.730
.730

L7176
.799
.753
.722
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p2 = 0.0) tends to be approximately the same for

all values of p2 for fixed (n, N). As with r2, the

bias of the cross-validity decreases with N and in-

creases with n for fixed p2.

2

s 1s the

(¢) The squared population cross-validity, p
squared cross-validity using the derived weights on
a validation sample of infinite size. The tables
show that pg has similar values to rg and the same
comments apply to pg as were applied to rg above.
Looked at another way, rz is an unbiased estimate
of pi.
The tables confirm the known properties of multiple
regression and cross-validation as summarized in
(1.2.14). The sample multiple correlation is an overest-
imate of thz population value since the sample weights are
chosen to optimize the correlation in the derivation sample.
These weights are not the optimum weights in either the
population or another sample and the consequence is that
both pg and rg are biased low. With repeated samplings
the values of rg cluster around pg since some weights are
better for the validation sample than the population

2 2y,

(rc > pi) and other weights are worse (rg <0,

These tables can, perhaps, be useful in estimating

the population p2 from sample r2 and rg values obtained

from real data. If the values of (n, N) correspond to

one of the tables and if r2 and rg match the values in

the tables for a value of pz, then this value of p2 is

(PR
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the estimate of the populatior multiple correlation.

3.4. Prediction from the Principal Components

Burket (1964) showed that c¢ross-validities can be
incieased by using only a few principal components of
the predictors in the prediction function. The formulas
for such prediction wvere presented in Section 2.6. The
calculations deseribed in the present section demonstrate
the improvement of prediction by using the largest prin-
cipal components in the simulation data and show how
variation in some parameters can change the effect.

Sixty models were generated varying in four para-
meters: n, the number of predictors; p2, the squared
multiple correlation; n2, the average criterion-related
predictor variance; and N, the sample size. The constant
parameters are listed in Table 18. All combinations of
the variable parameters listed in Table 19 were used.

A new model was generated for each (n, p2, nz, N) combin-
ation so that here, as in Section 3., combinations dif-
fering only in N are different models.

For each simulation model two sample covariance
matrices, Cl and 02, were generated, both with the same
sample size N. The covariance matrix of the first sample
predictors, (Cl)xx’ was diagonalized and the weights for
predicting each of the ten duplicate criteria from the
largest principal components were calculated. These
weights were validated on C2 and the cross-validities
rél) vwere calculated for each criterion, the superscript

(1) indicating that one component was included in the

[NEIR PSR!

NPT P LT

s

wae

FORIPY DERE IR P Y




Table 18

Constant Parameters for Section 3.4

my = 10 (m = 1)

n. =n (square S matrix)

vx = 0.01

e, = 0.0

vy, ey inapplicable since m = 1

number of Is per model =1

number of Cl’ 02 pairs per £ =1

Table 19

Variable Parameters for Section 3.4

n=25, 10

p° = 0.25, 0.50, 0.75

7% = 0.20, 0.35, 0.50, 0.65, 0.80

N=2,, 100 for n =5 and N = 25, 105 for n

69
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regression. The weights were then recomputed for prediction

from the two largest principal components resulting in

(2)
c

cross-validities r . This procedure was continued until

all components had been included in the regression. 1In

general the t largest principal components resulted in

ten cross-validities rét) for each t (t =1, ..., n).

-3
The average of the squares of the ten crcss-validities
for each t was calculated. The largest of these averages

is called ri(max) and occurs for t = tmax' The symbol

tmax represents the number of components producing the

largest average squared cross-validity. (When rét) was
negative, a negative signwas.affixed to its square before

the averages were calculated).

The above procedure was repeated for validating the

principal components of (C°)xx on C,. The quantities

1
rg(max) and tmax were again calculated. As a result,

2(max)

there are twce values of rc and tm for each model

ax
generated  these values are listed in Appendix I.

In Section 3.3 it was shown that the sqguared cross-
validity rg (when all variables or principal components
are included in the regression) underestimates the squared
population multiple correlation p2. The result was con-
firmed with the 60 new models since only 14 out of the

120 values of [rén)]a exceeded p2. Recall that rén) is

The rZ(max)

t same as r .
he sa a e c

were less biased as 30 out of

120 values exceeded p2. Thus rg(max) is still an underest-

imate of the squared population multiple correlation.

el
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Averaging the squared correlations before calculating

2{max)

c from what it

tmax has the disadvantage of reducing r
would be if the maximum rg was found for each criterion and
then these maxima averaged. These maxima will occur for
different t for thne different criteria, in general.
In several cases which were examined, however, it was found
that most maxima occurred for the same t. Since some
averaging had to be done to comprehaend the results, the
method previously described was used for simplicity.

There are a number of ways in which the results in
Appendix I may be summarized. Table 20 show how %t

varies as a function of p2, n2, and N for each of the two

max

values of n. For example, the first section of Table 20 .
shows that for all ten models with p2 = 0.25and n =5 f

(two values of tmax per model), tmax = 1 occurrad five

times, t = 2 occurred four times, etc. This section of

max
the table shows that tmax tended to increase as p‘ increased.

This increase 1s reflected in the correlation between p2

and tmax of 0.157.

A summary of the correlations of tmax with the parameters
is given in Table 21. The last column in the table shows
the correlations when the data for n = 5 and n = 10 are
combined. Before these correlations could be computed i

the values of Cnax for n = 10 (which range from 1 to 10)

had to be converted to the same range as the values of

tmax for 1. = 5 (which range from 1 to 5). This was done

by recoding tm .=1or 2asl, t

ax = 3 or 4 as 2, etc.,

max

for n = 10, The first three correlations in the last
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Table 21
Correlations of t_ _ (for ra) and Parameters
maX e

Correlation

of tmax and n=25 n =10 All n
02 .157 467 .302
7’ -.593 -.hg7 -.524
N .346 <394 .361
n ~.251

number of samples 60 60 120

The correlations in the
after the values of tm for n

ax
as values from 1 to 5.

last column were computed

= 10 were recoded in pairs

Table 22

2
Correlations of tmax (for pc) and Parameters

Correlation
of tmax and n=25 n =10 All n
02 .217 .325 .261
x° -.679 -.566 -.608
N .364 .514 434
n ~-.186
number of samples 60 60 120

The correlations in the last column were computed

after the values of tmax for n = 10 were recoded in pairs
as values from 1 to 5.

T
23 SRR
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column are, in effect, an average of the correlations in

the first two columns. The last correlation in the column

shows the correlation of n and tmax’

The size of the correlations shows that each of the

parameters p2, n2, N, and n has a substantial main effect

on tmax' These effects may be summarized as follows:

(a) An increase in the number of predictors, n, produces

a decrease in tm x when the values of ¢ are con-

a max
verted (standardized) to a common scale with the same

maximun for each n. In other words, an incresse in

n produces a decrease in tmax/n.

(b) An increase in the sample size, N, produces an increase

in tmax

(¢) An increase in the average criterion-related predictor

.

ax
(d} An increase in the squared multiple correlation, p2,

variance, nz, produces a decrease in tm

t
produces an increase in max

These results may be explained in the following way.
When N is small and n is large, the regresslon weights
are very unstable and the weights for a few principal
components crcss-~validate better than the weights for
many principal components. However as the sample size,
N, increases or the number of predicfors, n, decreases,
the weights become stable enough that several components,
accounting for more predictor variance, cross-validate
better than a few ccmponents.

When n2, the average criterion-related predictor

variance, iz increased, one linear combination of the
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predictors. pramely w., the first principal predictor,

it

is increaser in variance. The result is that the largest

't
'y
beie
>
X}
e

N*)
Y
Jomi
8

X
(1]
3
ct
=]
L}
ct
ty
o

predictors becoxss increasingly
coilinezr xith W, as xz increases. This =eans that a
sinzle principal cozponent can produce better prediction

g

tian several components. Hence t__ _ decreases (becexes
closer to uplitiy)} as mz increases.

-

The elfect of 92 on taax is not as strong as the ef-
fect or the other three paraceters. However the increase
of taax with irncreasing 92 may perhaps be explainea as
foilows. &s 92 increases, the correlaticr of each principal
cozponent of the predictors with the criterion increases.
The larger this correiation is, the less likely it is to

. vanish on cross-valication. Hence as p2 increases, nrore
components have correlations with the criterion which do
not vanish on cross-validation. Hence tmax’ which is
approximately the number of such components, increases

2
as p increases.

The population cress-validity, Fos reflects valid-

ation of weights in the population or an infinitely sized
sample. When the weights for all the previous samples
were calculated, they were also valldated on L. The

. 2
same analysis as previously carried out on r, was done

2(max)

on pg. The values of Pe

and tm are given in

ax
3 Appendix I. Table 22 summarizes the correlations of

tmax computed from pg with the parameters. The correl-

ations are very similar to those cbtained for rg.
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The effect of Y anéd non ¢ s the optimal nu=bexr of
principal coxponents to include in predietion, has been

iroxn zs long as reguced rang prediction has been studied.

%
on

uéies such zs those of Surket (166%) have shown this

. 2 < .
phrenozenon. The effects of p and mz are new, howxever,
for only in simulation czn these para—eters te systexmat-

ically veried.
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CHAPTER 3

STUDIES WiITi SEVERAL CRITERIA

The generation of populations with several criterion
variables permits the principal predictors to be used in
multiple regression. 1In the first section of this chapter,
simulation experiments with several criteria are described.
The two reducéd rank methods of prediction (multiple re-
gression on the principal components and on the principal
predictors) are compared. In the next section, sozme studies
are described using real data from high school students.
Firally, in the last section, an attempt 1is made to sim-

ulate the real data with the cozmputer program.

B.1. Sirulation Results

The purpose of this section is to compare the principal
component and principal predictor methods of prediction
in a number of models which differ. ip the distribution
of (qi, k=1, ..., ») and x2. The importance of the
parameter 12, the average criterion-related predictor
variance, in prediction from the principal components of
the predictors, has already been shown in the single crf-
terion case (Section 3.4). Whenm = 1, there is only one
qi and it is directly related to 12 (qi =n 12). However
when there are several criteria, there are several qi,
each qi
dicters on the kth principal predictor. The sum of the

representing the average dependence of the pre-

2
q2 is equal to n ©~.

k
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Similarly, the (Dik, k=1, ..., m) are the average
dependence of the criteria on each principal predictor.
Since the Dik re eigenvalues (of 299), they are always
considered in descending order. In this section, the
Dik distrioution was kept constant. By varying the order
of the qi it is possible to vary the relative dependence
of the predictors and criteria or the principal predictors.
This variation will produce @ifferences in the effective-
ness of the two methods of prediction.

Eighteen models were studied. The constant input
varameters are shown in Tzble 23 and the varizble para-
meters in Table 24. Por each value of 12, three different
qi Gistributions were useé, called decreasing, level, and
increasing. The same distributioné, except for scaling

2 < . 2 o -
by 77, were used for 211 three values of a~. Two models,

< >

differing only in sample size, were generated for each
combination of n2 and qi distribution. A pair of samples
of size 20 (small H) was generated from one model and

a pair of sample of size 75 (large H) was generated from
the second model.

In the decreasing qi distribution, half the depend-
ence of the predictors on the principal predictors is
dependence on the first principal predictor. Wher n2 = 0.8,
this means that U0% of the total variance of the predictors
is linearly dependent on the first principal predictor.

The contribution of the succeeding principal predictors
2 2

is progressively smaller. Vhen 7~ = 0.2 and the q

again decreasing, the first principal predictor accounts

are
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Table 23

Constant Parameters for Section 4.1

n =10

m=25

n, = 10

92 = 0.6

pd, = 1.2, D3, = 0.8, D§3 = 0.6,
Di, = 0.3, D§5 = 0.1

v_ = 0.01

e, = 0.005

vy = 0.01

ey = 0.005

number of Is per model = 1

number of Ci, C2 pairs per £ =1

Table 24

Variable Parameters for Section 4.1

2% = 0.2, 0.5, 0.8

qi distribution--decreasing, level, increasing
as shown below

N = 20, 75
decreasing level increasing
5.0 75 2.0 n°  0.625 7°
2.5 12 2.0 m°  0.625 w2
1.25 1 2.0 1°  1.25 n°
0.625 1° 2.0 71° 2.5 x°
0.625 1° 2.0 1° 5.0 w2
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for only i0%2 of 1> - -—edicior variance and the other
principal predictors account for less, with a total of 20%
cf the varliance of the predictors explained by the prin-
cipal predictors.

In the level qi distribution, each principal pre-
dictor contributes equally to the predictors, the con-
tribution of each varying frcm 16% when n2 = 0.8 to 4%
when 12 = 0.2.

When the (qi, k=1, ..., m) are increasing the
dependence is exactly reversed from the decreasing case.
Most of the dependence of the predictors on the principal
predictors is dependence on the fifth {last) principal
predictor. The dependence on the first principal predictor
is very small.

One change was made in the generation of samples for

the calculations in this chapter. The sample covariance

matrices, C1 and C2, were changed to correlation matrices

in order to make possible the calculation of a sample n2
and sample (qi, k=1, ..., m).

The calculations performed on the sample correlation
matrices were similar to the calculations in Section 3.4
except that two methods of prediction were compared and
the criteria were no longer duplicate criteria. Multiple
regression on the principal components of the predictors
was done first. The correlation matrix of the predictors,
(Cl)xx’ was diagonalized and the weights for predicting

each of the five criteria from.the largest compconent were

calculated. The cross-validities for each criterion in

akdaidi




ithe second sample were calculated. Tne average, over
criteria, of the squares of these validities was calculated
and is presented in Tables 25 to 30 in the "ri" columns
under "P. C." for ¢ = 1 (one component). The weights were
then recomputed for the two largest components ££ = 2)

% and the average sqﬁared cross-validity calculéted, This
was repeated for t = 3, ..., 10. The wholefﬁ%ocedure was
repeated again for validating the welights derived in 02
on Cl but these results are not reproduced in the tables

as they are very similar to the validation of C, on C,.

1 2
Prediction from the principal predictors was then
performed following the method given in Section 2.7.
The weights in equation (2.7.11) were calculated in the
: first sample for each value of t (t = i, ..., 5) and the

weights were cross-validated in the second sample. The

average of the cross-validities for each value of t was

2y
c

columns under "P. P." for each t. The validation of

calculated and is given in Tables 25 to 30 in the "r

sample 2 cn sample 1 is not reported here.
In the derivation sample the following sample stat-

2
istics were calculated: sample (q., k = 1, ..., 5),

sample n2, sample (Dﬁk, k=1, ..., 5) and sample p2.
ﬂ For the calculation of the sample (qi, k=1, ..., 5)

and the sample n° see equations (2.7.15) and (2.7.16).

2 2 2

The Dkk are the eigenvalues of 099 and the sample p is r -,

the average squared multiple correlation using all predict-

2

(]
H crs. The sample p2 is the average of the (Dkk’

. 9).

k = 1,

[

[T ———
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Concider first % = 75 {Tzbles 28 to 306}!. whern " =
0.2, the first few principal predictors are far superior

to the first few principzl components in averzge <ross-

crzasing, level, or increzsing. The reason is that the
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The situaticn changes, however, as © Increases to

decreasing or level {not increasing), there is practiczlly

no difference between the tx0 prediction methods in the

average cross-validity for ¢ =1, ..., 5. T%hen s~ = 0.8,
the five prineipzl predictors account for z tozl of 50Z
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bution when 7° = §.8 {

predictors cross-validatie much Letter than the first few

principal componerntis. The reason is that the first prin-
-4 T o - 4 -~ 92 - N v o~ r e 4 -
cipal predictor {largest L, ant¢ hence test irexlicior)

is the smallest principal predictor in termns of associated




predictor var:iance (g

[y}
g
'Q
Q
e}
1
]
ct
J
1)
ot
:
Q
1=
[&)
3
o
n
Jude
Q
1
19}
»
1
<
1]
4]
Iy)
o
Q
U
o
(7]
et
::i
®
‘0
"
P

o
l"
H1
)

ext izrgest variance {(20%), e2tc. lote that thera

is 2 large increase inp averzge cross-validity betxeen t = &
and ¢ = 5 prircipal coz=ponsnts in this case. The Fifth
principal coz=ponent is approximztely collinear with the

first principzi predictor whichk is the best predictor.
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On the other hané, when ©° = 8.2, the large increase

Jobe

n
average cross-validity using pr:incipzl components dees
not occur uw* il t = 8 or 9.

The re.alt. <hen 1 = 0.5 are intercedizte between
those for 2 = 8.2 _ & 2% = 0.8, Furtherzore, the results
for X = 2€ (Tzbles 25 tg 27) are simiizr to the ¥ = 75
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z whnich was generated in these two cases was almost

singular. This was shown by the difficulty in inverting
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i kvery time 2 matrix is inverted in the simulaticn
progran, the result is checied by ltiplying the inverse
by the oraginal mztrix ang comparing the result with

v.:ue, petween corresponiing elenents in the two matrices
:S printed as ¥iIXV. Yost genera.ed zrx natrices yileld

6001 or less. 1In the two casss mentioneé abeve,

N
[
l;?-‘
s
[i]
L]
(1] @

03 and 0.6001, respectively, indicating approx-

imate depsndence of the predictors in the population.

This dependence appears in the generated samples as well.
in the two sinpgular cases, prediction from the prin-

cipal coxponencs, for t < 10, is sueccessful. iowever,
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or 211 waiues of t, the cross-validitie
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pal predictors as predictors are practically zero.
The t largest principzl components (t < 10) are independent

and their weignts cross-validate well. This is an advantage
4 g

o

f prediction from the principal compeonents of the pre-

be eliminated. However the w2ights on the principal pre-
dictors are not stable in the singular case, regardless
of the number of principal predictors included in the
regression.

Even through variation of the population parameters

has an appreciatle effect on rreuliction Ly tie i1uwo reduced

it would e necessar: to deter-ine

populatior. parameters are. C(Czn these parameters te estimated?

n

}

2 . .
The sample (aq k=1, ..., 5 and 1° are estimaiecs of
- .k’ 3
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the corresponding population parameters and are shown
in Tables 25 to 30. In genc<ral the sample qi distribution
is similar to the population distribution. This is shown
most clearly for large sample size (N = 75). When the
population qi distribution is decreasing, the largest
sample qi generally occurs for k = 1. When the qi distri-
bution is level, the sample qi are approximately equal.

When the qi distribution is increasing, the largest sample

qi normally occurs for k 5. It is therefcre possible
tc decide, on the basis of the (a2, k = 1, ..., m) in
the derivation sample, whether the principal predictors
cross-validate better than the principal components or
whether there will be iittle difference between the two
methods.

As an additional aid in making this determination,
it is important to estimate n2. This may be done from
the value of n2 computed in the derivation sample. It
can be seen from the tables that the sample w2 is a rough
measure of the population value, there is a tendency for
the sample value to shift nearer 0.5 than the population
value.

Since the population (Dik, k=1, ..., 5) wcre not
varied in these simulation studies, the sample Dik shown
in the tables are relatively constant from sample to
sample. These parameters will be discussed further in the
next section.

This section has shown that prediction from the

principal predictors is an effective method of prediction,
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particularly when the qi distribution is increasing or
n2 is small. In other cases prediction from the prin-
cipal components is almost as successful as prediction
from the principal predictors. The only case in which
prediction from the principal components is superior to
prediction from the principal predictors is when the

predictors are dependent.

h.2. Study of Real Data

The calculations described in the preceding section
were also performed on some samples of real data. The
data were coliected in 1961 by the Educational Testing
Service, Princeton, N. J., from 1205 boys 1in academic
high schools. The 21 variables employed intthe multiple
regression calculations are listed in Table 31. There
are two sets of eight predictors each and one set of .
five criterion variables. The first set of predictors,
called the S-predictors, consists of six variables from
the Sequential Tests of Educationil Progress (STEP) and
two variables from the School and College Ability Tests
(SCAT). The second set of predictors, called the T-pre-
dictors, consists of eight variaoles from the Tests of Gen-
eral Interest (TGI). The criterion variables are two
variables from the Scholastic fptituce Test (SAT), two
variables from the College Entrance Examination Board
(CEEB), and the rank in the high school class.

Eight samples were drawa at random from the pool

of 1205 subjects. Four of :>he samples were of size N = 20

FPI T PRV T AT 7
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Table 31

E. T. S. Variables

S-predictors

STEP Mathematics
STEP Science

STEP Social Studies
STEP Reading

STEP Listening
STEP Writing

SCAT Verbal

SCAT Quantitative

T-predictors

TGI Industrial Arts
TGI Home Arts

TGI Physical Education
TGI Biological Science
TGI Music and Art

TGI History-Literature
TGI Entertainment

TGI Public Affairs

Criteria

SAT Verbal

SAT Mathematical

CEEB English Composition
CEEB American History
Rank in High School Class
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(Samples 1, 2, 3, &) and the sther four samples were of
size H = 75 (Samples 5, 6, 7, 8). Four double cross-vali-
dations were performed (two for each sample size) using
the S-predictors. Then the same samples were used in
four double cross-validations using the T-predictors.

Tables 32 (Y = 20) and 33 (¥ = 75) are a summary
of the calculations macde on these samples; the calculations
were the same as those made on the simulation samples in
Section 4.1. Correlation matrices were used. Again,
only the validation of C1 on 02 is reported.

In most of the samples, the principal predictors
(P. P.) validate more poorly than the principzl components
{P. C.) and in the two cases where the frirst principal

predictor validates better than th

a

first principal com-
ponent, the improvement is not grezt. Ancther featiure

of these data is the nearly constant average cross-validity
of the principal predictors for ¢t = 1, ..., 5. Even though,
in some cases, a few principal componerts are far superior
to including 2ll predictors in the resgression, in no

case is the first principal predictor significantly better
than all predictors.

These findings can be understcod by considering thne

. Z 2
estimates of ithc parareters p |, no, i“z k=1 ..., 5),

n
kk? .

) ; < s .
and (qy, k=1, ..., 5). In all four derivation sanples,

)

<

2 . . . s .
the sample n1° is at least 0.87 for the S-predictors anc
at least 0.78 for the "T-predictors. 'Therefore these samples

correspond approximately to the n2 = 0.

o

zases of leciiorn

2 .. . .
h. 1. TI'urthermore the sanmple q distratutiors are i

Lo

OTR LI

fa

AL

KT

syciafe




95

Table 32

E. T. S. _.mples (N = 20)

Sample 1 validated Sample 3 validated
on Sample 2 on Sample 4
P.C. P.P. Sanmple P.C. P.P. Sample
tork .
2 2 2 2 2 2 2 2
Te  Te Dy 9 e Too D 9
S-predictors
1 .56 41 3.15 .68 .47 42 3.93 5.83
2 .55 42 4o .83 A7 L1 .28 .34
3 .56 .u6 .24 .59 .42 -39 .11 .35
g .53 L4y .11 .41 Juy .36 .03 .43
5 .52 .ih .02 U6 .us .37 .01 .26
6 .52 by
7 .51 .bo
8 .4y .37
Sample p2 .78 .87
Sample “2 .87 .90
T-predictors
] .26 .09 2.16 1.69 .28 .35 3.51 4.31
2 .27 .06 .27 .68 .31 .32 .25 42
3 27 .08 .16 1.93 .33 .32 .09 .27
] .27 .07 .06 1.57 .32 -35 .04 .68
5 .15 .08 .02 .37 .32 .34 .01 .51
6 .13 .30
7 .12 .32
8 .08 .34
Sample p2 .54 .78

Sample 2 .78 .80
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Table 33
]
| E. T. S. Samples (i = 75) ;
Sample 5 validated Sample 7 validated 3
on Sample 6 on Sample 8
P.C. P.pP, Sample P.C. p.p, Sample B
t or k ~
2z 2 2 2 2 2 2
Te ‘e Dkk 9 To Te Dkk ey
S-predictors
1 .65 .61 3.28 5.55 -6k 06  3.26 5.37 :
2 .66 .63 .13 5T .66 .59 .00 by
3 .66 .63 .07 .40 .67 .69 .06 .27
L .64 .63 .02 .27 .67 .€9 .03 .36
5 .68 .63  .e1 .24 67 .89 .01 .2 :
6 .64 .68 ‘
? 063 .68 .j
8 .63 .69 1
Sample p2 .76 .70 5
Sample 22 .88 =0
PT-precictors 3
1 .49 .37 2.47 3.54 LBG J4¢ 2.09 k. i5
2 Jhg .3 .04 .82 iy s .C9 .53
3 .48 .37 .02 .62 .lg ] .0k .51
L Lug .37 .01 .ok JUe i3 .02 .7¢
5 .k 37 00 ez 46 43 01 gy !
6 .40 .45 i
7 -39 Ll 1
8 .37 i3 !
1
Sample p2 .51 .45 5
Sample 72 .78 .83
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cases but one heavily weighted on qi, thus indicating an
extremely decreasing qi distribution. Returning to the
corresponding simulation examples in Section 4.1, it is
seen that the E. T. S. results do not differ greatly from
the last columns of Tables 25 (N = 20) aand 28 (N = 75).

The failure of the principal predictors in the E. T. S.

samples can be further explained by the sample D2 distri-

kk
bution. 1In all cases, Dil is at least 80% of the total

predictatle variance and therefore the D2 distribution in

kk

the E. T. S. data is weighted more in favor of Dil

the populations considered in Section 4.1. This means

than

that the first principal component is very similar to the
first principal predictor and hence prediction from the
principal components is effective.

In the next section some simulation models will be
considered that more closely match the E. T. S. data,

particularly in the D2 distribution.

kk

4.3. Simulation of Real Data

The E. T. S. data samples differ from the simulated

2
kk?

1, ..., 5) distributicn is much more concentrated on D

P

k =
2
11
in the E. T. S. data than ir Section 4.). where the population

Dik distribution was fixed as (1.2, 0.8, 0.6, 0.3, 0.1).

The distribution of (qi, k=1, ..., 5) in the E. T. S.

data in Section 4.1 in several respects. The (D

data is similar to the decreasing qi distribution in
Section 4.1 although, in most cases, the E. T. S. data

had an even larger'qi.

TR L PP R
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The S-predictors were superior to the T-predictors;
the approximate population p2 for the S-predictors might

be estimated to be 0.65 and for the T-predictors about

0.45. Other paraneters were roughly estimated for the
two sets of predictors and are shown in Table 34. These
parameters were used to generate population and sample
correlation matrices using the simulation program. Two
populations (First I and Second I) were generated for 3
the S-predictor simulation and two populations (Third I
and Fourth I) were generated for the T-predictor simul-
ation. One pair of sample correlation matrices was gen-
erated for each population (N = 75 in all cases). The
results of the validation of Cl on 02 for each of the

. four populations are shown in Table 35.

wb by ik ap s

If these tables are compared with the corresponding

IO I LS IIR

Table 33 for the real data, it will be seen that the

real and simulation results correspond closely. By adjust-
ing the parameters it would be possible to make the match
even better, but the simulation using the parameters in
Table 34 is presented here since this simulation was the
first attempted. The close similarity of the simulation

results to the results from the E. . S. data shows that

the simulation model is basically scund.




Table 34

EFstimated Parzameters Used to Simuiate E. T. S. Da‘a

n =\
- m=5
n_ = 8
v, = 0.01
: e, = 9.905
i v. = 0.01
f ¥
' e = 0.00
v 5
P _ =175
nunber of Is per predictor type = 2

nunber of Cl, C2 pairs per ¥ =1

S-predictors (Pirst I and Second %)

2
p- = 0.565
2 -2 2 ~
Dll = 3.0, D55 = 0.1, 933 = 0.05,
2 _ e
Dyy = 0.05, DL = 0.05
22 = 0.85
he J
Q§ = 5.0, Qg = 9.9, Qg = 0.5, Qg = 0.5, Qg
T-predictors (Third I and Fourth Z)
2
p- = 0.%5
2 2
D, = 2.6, 33, = 0.1, D2, = 0.0,
~2 - 2 _
Dyy = 0.05, DL = 0.05
7% = 0.75
2 2 2 2 2
q; = h.s, 3 = 0.5, QB = 0.4, ay = 0.3, QS
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T2abl

Si=yulation of =Z. 7.

e 35

S. Sa=ples (X = 75)

S—-predictors
First ¢ Secong T
Sa=pie & valiidated Sarmpie € wvalidated
cn: Saeple 3 on Saz=ple D
?.C. 2.7, Sampis P.C. P.P. Sample
Tt or &
N 2 2 2 2 4 2 2 2
‘e e aﬁk S ‘e Te Dzk €y
1 .56 57 3.28 5.65 -5¢ =T 3.27 5.25
2 .58 .58 .15 -5 -3¢ .éC .16 .56
3 .50 .69 .12 .38 .61 -5¢ 1 .32
5 .60 .61 .03 -85 .63 .60 -85 22
5 .61 .62 .02 .56 .68 .63 .01 .55
6 .60 3
7 .61 .6x
g .62 .61
Sample p°. .73 .72
Sample 7° .86 .89
T-predictors
Thirg ¥ Tourth ¥
Sample = validated Sampie & valigdated
on Szmple ¥ on Sample E
F.C. P.P. Sample P.C. P.P. Sample
t cr k .
2 22 2 2 2 22 2 2
e Te Ppx ¢ Te  Te Dy 9
i .39 R3] 2.05L .21 .51 .55 1.57 5.14
2 -3¢ -37 .32 27 .51 .55 .20 .41
3 .ho .36 .10 51 .52 .53 .13 .86
g 4o .38 .12 .51 .52 .32 .06 .28
5 LBl -39 .03 57 .51 .52 -03 .35
6 .&2 .52
7 bk .53
8 -39 .52
Sample 02 .58 .42
Sample 22 .76 .75




101

SUXMARY AXD COKCLUSIOXNS

The several zethods of muelliiple regression discussed

fure

n this study are cdesigred to provide optimal weignts
for predictor varizbles. The weignts are optimal in the

sense that, in new samples, the weighted linear cox=tin-
ation of the predictors has the highest possible correlation

with the criterion variabvle. 3By means of cross-validation,

b

t is possibie to estimate the correlaiion in new saaples

using only data in z (divided) original sampie.

For any given problen it is important to decide which

I=q

prediction nethoé¢ gives the best weights. f one exnaust-
ively tries all predicticn methods it is straightforward,
using cross-valigation, to pick the best linear combination
of the predictors. But there are some disadvantages to
this procedure. It 1is lengthy even with a computer; there
is capitzlization on chance results; and the procedure

does not provide a way to generalize to new variables or
new populations.

It is apparent that no one method of prediction will
be optimal for all possible predictor and criterion distri-
butions. Even if one method, for example prediction from
the principal components, were superior, it would still
be necessary to decide the number of components to include

in the regression. Burket's (1964) work included the com-

putation of statistics which were of some assistance in
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deciding now many principal compenents to include in the
regression. The present study considered some fundamental
parameters of the population distribution which are relevant
to the choice of prediction method and the number of
comnponents to include in the regression.

In order to study the eff'ect of these parameters
on prediction, the distributions were simulated on a com-

uter. The parameters were systematically varied and the

o)

prediction methods were comparec for each parameter set
by applying the weights to cross-validation samples.

In Section 3.3 the accuracy of the sampie multiple
correlation and cross-validity as measures of the popu-
lation multiple correlation and cross-validity were studiled.
The squared sample multiple correlation, r2, is an over-
estimate of thc squared population multiple correlation, p~.
The bias tends to decrease with increasing sample size
and to increase with increasing number of predictors and
increasing 92. The bias is correctly estimated by formulas
of #ishart (1931) and Wherry (1931). The sample and
population cross-validities are approximately equal and
underestimate p2. The.sample cross-vélidity is there-
fore a good estimate of the popuiation cross-validity
but not of the population multiple correlation.

The dependence of the cross-validation of the prin-
cipal components of the predictors on the distribution
parameters was considered in Section 3.4. The technique
used was to calculate the number of principal components

which produce maximum cross-validity. This number, called
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Lmax’ was studied as a function cf four parameters--—the
sample size, N, the number of predictors, n, the squared
pcpulation multiple correlation, 02, and the average cri-
terion-related- predictor variance, n2. It was found

is an increasing function of N and p2 and a

that tmax
Jdecreasing function of n and n2. This means that a few
(1 or 2, say) principal components will be more effective
than many components when N is small, n is large, p2 is
small, and n2 is large.
ilany prediction problems in psychology involve multiple
criteria, no one of which can be considered to be the
criterion. A convenient way to avoid choosing one criterion,
and at the same time, achieve some synthesis of the cri-
teria, is to weight each standardized criterion equally
and to optimize the prediction of all criteria simultan-
eously. The effectiveness of any prediction method can
then be estimated from the average squared cross-validity.
Two prediction methods were compared in this way.
The {'irst, prediction from the largest principal components
of the predictors, does not use criterion information in
the selection of the componerits and may be used for one
or several criteria. The second, prediction {rom the
principal predictors, uses criterion information to calcul-
ate the principal predictors themselves. This method
optimizes the average sguared multiple correlation in

the derivation sanmple.

It was lfound, for the distributions studied, that

the principal predictors had superior or equal cross-
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valiaities to the principal components except when the
predictors were approximately dependent. The superiority

of principal predictors was particularly evident when

“2 was small and the qi distribution was increasing, meaning
that the first principal predictor accounted for much less
of the predictor variance than the last principal predictor.
However this combination of parameters--n2 small and

the qi distribution increasing--may occur rarely, if at

all, in real multivariate distributions. 1In the sample

of real ability and interest data from the Educational

Testing Service, na was very large and the qi distribution i

was decreasing with heavy concentration on qi. In these ;

data, as in the corresponding simulation data, the principal ;

JENTL T

components were superior to the principal predictors.

This result is similar to Burket's (1964) finding
that the principal components correlating greatest with
the criterion do not validate as well as the largest prin-
cipal components. It appears to be an advantage to select
linear combinations of the predictors independently of
criterion information in order to maximize cross-validity.

In order for the conclusions of a simulation study
to apply to real prediction situations, it must be shown
that the simulated distributions are similar to real dis-
tributions in relevant characteristics. Several sections
of this study were concerned with this demonstration.

In Section 3.1 it was shown that, when the population mul-
tiple correlation is zero, the simulation sample statistics

(multiple correlation and cross-validity) obey known
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statistical laws. In Section 3.2 it was shown that changes
in the covarlance matrix of the predictors, keeping the
multiple correlation constant, have no effect on the
correlation statisties. Finally, in Section 4.3, several
models and samples were generated in order to match the
E. T. S. data more closely. The results from this simu-
lation were almost identical to the E. T. S. results.

It would be interesting to determine if other real
data have different values of n2 and different qi distri-
butions than the E. T. S. data and to see if calculations

using these variables obey the laws discovered in sim-

v 1,

ulation. It is also necessary to extend the calculations
to larger numbers of predictors and criteria. Such work
' would be a further check on the effectiveness of the

simulation model which was used in this study.




166
REFERENCES

Anderson, T. W. An introduction to multivariate stat-
istical analysis. New York: Wiley, 195¢.

Bartlett, M. S. On the theory of statistical regression.
Proc. roy. Soc. Edinburgh, 1933, 53, 260-283.

Box, G. E. P. & Muller, M. E. A note on the generation
of random normal deviates. Ann. math. Statist.,
1958, 29, 610-611.

Burket, G. R. A study of reduced rank models for mul-
tiple prediction. Psychometr. Monogr., 1964, No. 12.

Darlington, R. B. Multiple regression in psychological
research and practice. Psychol. Bull., 1967, in press.

Efroymson, M. A. Multiple regression analysis. 1In
A. Ralston & H. S. Wilf (Eds.), Mathematical methods
for digital computers. New York: Viley, 13960. Pp.
191-203.

Ezekiel, M. & Fox, K. A. Methods of correlation and
regression analysis. (3rd ed.) New York: Wiley,
1959.

Fisher, R. A. The general sampling distribution of the
multiple correlation coefficient. Proc. roy. Soc.,
1928, A, 121, 654-673.

Guttman, L. To what extent can communalities reduce rank?
Psychometrika, 1958, 23, 297-308.

Hase, H. D. & Goldberg, L. R. Comparative validity of
different strategies of constructing personality
inventory scales. Psychol. Bull., 1967, 67, 231-248,

Horst, P. The prediction of personal adjustment. New
York: Soc. Sci. Res. Council, 1941.

Horst, P. & MacEwan, Charlotte. Predictor-elimination
techniques for determining multiple prediction bat-
teries. Psychol. Reports, 1960, 7, 19-50.

Hotelling, H. The relations of the newer multivariate
statistical methods to factor analysis. Brit. J.
statist. Psychol., 1957, 10, 69-79.

Hull, T. E. Review No. 7725. Comput. Rev., 1965, 6, 207.

%




57 R R TVLY

107

Huli, T. E. & Dobell, A. R. Random number generators.
SIAM Rev., 1962, 4, 230-254.

Hull, T. E. & Dobell, A. R. Mixed congruential random
number generators for binary machines. J. Ass.
comput. Machin., 1964, 11, 31-40.

Kendall, M. G. & Stuart, A. The advanced theory of stat-
- istics. Vol. 2. London: Griffin, 1961.

Kshirsagar, A. 1. Bartlett decomposition and Wishart
distribution. Ann. math. Statist., 1959, 30, 239-241.

Larson, S. C. The slhirinkage of the coefficient of mul-
ﬁiple correlation. J. educ. Psychol., 1931, 22,
5-55.

Lehmer, D. H. Mathematical methods in large-scale com-
puting units. Ann. Comput. Lab. Harvard Univer.,
1951, 26, 141-1T06.

Leiman, J. M. The calculation of regression weights from
common factor loadings. Unpublished doctoral dis-
sertation, Univer. of Washington, 1951.

Lord, F. M. Efficiency of prediction when a regression
equation from one sanple is used in a new sample.
Research Bulletin 50-40. Princeton, N. J.: Educ.
Test. Serv., 1950.

MacLaren, M. D. & Marsaglia, G. Uniform random number
generators. J. Ass. comput. Machin., 1965, 12, 83-89.

Massy, W. F. Principal components regression in explor-
atory statistical research. J. Amer. statist. Ass.,
1965, 60, 234-256.

Mosier, C. I. Problems and designs of cross-validation.
Educ. psychol. Measmt, 1951, 11, 5-11.

Muller, M. E. An inverse method for the generation of
random normal deviates on large scale computers.
Math. Tables Aids Comput., 1958, 12, 167-174.

Muller, M. E. A comparison of methods for generating
normal deviates on digital computers. J. Ass. comput.
Machin., 1959, 6, 376-383.

Nicholson, G. E. Prediction in future samples. In
I. Olkin, et al. (Eds.), Contributions to probability
and statistics. Palo Alto, Calif.: Stanford, 1960,
Pp. 322-330.

A




108

Olkin, I. & Pratt, J. W. Unbilased estimation of certain
correlation coefficients. Ann. math. Statist.,
1958, 29, 201-211.

Owen, D. B. Handbook of statistical tables. Reading,
Mass.: Addison-Wesley, 1962.

Siegel, S. Norparametric statistics for the behavioral
sciences. New Yoik: McGraw-:ili, 1950.

Tucker, L. R. Transformation of predictor variables to
a simplified regression structure. Unpublished
report. Princeton, N. J.: Ecuc. Test. Serv., 1957.

Wherry, R. J. A new formula for predicting the shrinkage
of the coefficient of multiple correlation. Ann.
math. Statist., 1931, 2, 440-457.

Wijsman. R. A. Random orthogonal transformations. Ann.
math. Statist., 1957, 28, 415-423.

Wilson, E. B. & Hilferty, M. M. The distribution of chi-
square. Proc. Nat. Acad. Sci. U. S. &., 19321, 17,
684-688.

ishart, J. The mean and second moment of the muitiple
correlation coefficient in samples from a normal
population. Biometrika, 1931, 22, 353-361.




s£iad

Secunty Classification

DOCUMENT CONTROL DATA - R& D j
Sccurty classification of ttle. body of ad<trac: and indewng annotetin ntst be entered when the vicerall repott 14 classiftedd
1 TRICINATING ACTIVITY (Corporate author) 28. REFORTY SECURITY CLAZSIFICATION
Department of Psychology Unclassified
University of Illinois 26, cROUP
Urbana, Illinois

3 RMEPORTY TITLE

THE PARAMETERS OF CROSS-VALIDATION

4. DESCRIPTIVE NOTES (Type of report and, inclustve dates)

Technical

S. AUTHGRIS) (First neme, middle initial, [ast name)

Paul A. Herzberg

8. REPORY DATE 7@. TOTAL NO. OF PAGES 7b. NO OF REFS
December, 1967 108 36
8. CONTRACT OR GRANT NO S8, ORIGINATOR'S REPORT NUMBER(S)

US HAVY / 00014-67-A-0305-0003

5. PROJECT NO

c. 9. OTHER REPORT NO{S) (Any other numbers that may be assigned
this report)

d.

10. DISTRIAUTION STATEMENT

This document has been cleared for open publication,

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Personnel and Training Branch

i

13, A./S?RAC T

The validation of predictor weights, derived in one sample, by computing the
correlation of :he weighted sum of the predictors with the criterion in new samples
is called cross-validation. The technique applies to any method of calculating the
predictor weights. In this study three prediction methods were compared by cross-
validation--multiple regression on the predictors, on the principal components of
the predictors, and on the principal predictors. Prediction from the principal
predictors is only possible when there are several criterion variables,

In order to discover the parameters of the multivariate distribution which affect
the choice of prediction method and the number of principal components or principal
predictors to include in the regression, a large number of distributions were simu-
lated on a computer and samples generated from these distributions, The population
distributions varied in the following parameters: n, the number cf predictors, m,
the number of criteria, p2, the squared multiple correlation in the case of one
criterion or the average squared multiple correlation of m criteria when m > 1; and
#2,Fthé average predictor variance related to the criteria,

*"A typical calculation consisted of the following steps: generation of a population
distribution for a set of values of the parameters; generation of two samples of size
N from this population; calculation, in one sample, of the predictor weights for one or
more prediction methods; and validation of these weights in the second sample, A large
number of populations were generated, varying in the values of the parameters.

DD fo™*.,1473 (PAcE 1)

S/N 0101-807-6811 Security Classification

A-31408




TR T e el el <

Unclagsified

Security Classification

KEY WORCS

LINK A LINK B

LINK C

ROLE wY ROLE

ROLE wT

Cross-validation
Predictors

Hultiple regression
Criterion variables

Simulation

DD 2™ .1473 (8ack)

’e,

UI0Ye 07887

Unclasgified

Secunty Classification

A- ctanu

S etk

I

IS,




