

UNCLASSIFIED

AD 667 414

THE ZONAL DISTRIBUTION OF RADIATION REFLECTED FROM VARIOUS NATURAL SURFACES

N. I. Goisa, et al

American Meteorological Society Boston, Massachusetts

January 1868

Processed for ...

DEFENSE DOCUMENTATION CENTER DEFENSE SUPPLY AGENCY

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

AMERICAN METEOROLOGICAL SOCIETY 45 BEACON STREET BOSTON, MASSACHUSETTS 02108

R

THE ZONAL DISTRIBUTION OF RADIATION REFLECTED FROM VARIOUS NATURAL SURFACES

Translation of

Zonal'noe raspredelenie radiatsii, otrazhennoi razlichnymi estestvennymi poverkhnostiami

by

N. I. Goisa and M. P. Fedorova

Kiev. Ukrainskil Nauchno-Issledovatel'skil Gidrometeorologicheskil Institut, Trudy, No. 48: 113-120, 1965.

This translation was produced by the American Meteorological Society under Contract AF 19(628)-3880, through the support and sponsorship of the

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH L. G. HANSCOM FIELP BEDFORD, MASSACHUSETTS 01731

T-R-566

- 1. The zonal distribution of radiation reflected from various natural surfaces
- 2. Goĭsa, N. I. and M. P. Fedorova. Zonal'noe raspredelenie radiatsii, otrazhennoĭ razlichnymi estestvennymi poverkhnostiami, <u>Kiev. Ukrainskiĭ Nauchno-Issledovatel'skiĭ Gid-</u> <u>rometeorologicheskiĭ Institut, Trudy</u>, No. 48: 113-120, 1965 [in Russian].
- 3. 10 typewritten pages
- 4. Date of translation: August 1967
- 5. Translator: George E. Brady, Jr.
- 6. Produced for Air Force Cambridge Research Laboratories, Office of Aerospace Research, United States Air Force, L. G. Hanscom Field, Bedford, Massachusetts, by the American Meteorological Society, Contract number AF 19(628)-3880.
- 7. Unclassified and complete

THE ZONAL DISTRIBUTION OF RADIATION REFLECTED FROM VARIOUS NATURAL SURFACES

by

N. I. Goïsa and M. P. Fedorova

Data are presented on the zonal distribution of radiation reflected by a field of barley in the ear formation stage, a field of barley in the stage of waxy maturity, barley stubble, Sudan grass, dry snow, snow covered with an ice crust, and stratus cloud cover.

Research on the angular distribution of the intensity of reflected short-wave radiation [1] showed that radiation reflected from natural underlying surfaces is essentially anisotropic. In this connection, data on the angular distribution of the intensity of reflected radiation are required to solve many practical problems in meteorology other than the albedo magnitude. These data permit one, for example, to determine the zonal distribution of reflected radiation. The zonal distribution must be known in order to determine the correction factor to the response of the instrument measuring the reflected radiation and also to work out other procedural problems of actinometric observations.

The purpose of the present paper is to determine the zonal distribution of radiation reflected by various natural surfaces based on the data of measurements of the angular distribution of its intensity.

The intensity of reflected radiation from various directions was measured with the vacuum thermocouple of Professor B. P. Kozyrev's system. The radiation thermoelement is a Chromel-Copel thermocouple whose "hot" junction is placed in the focus of a metallic aluminized mirror and whose "cold" junction is placed behind the mirror. The instrument's angle of vision is 10° . The thermoelement is placed in a glass bulb and, thus, it measures the same short-wave radiation as the fanishevskil pyranometer. The sensitivity of the radiation thermoelement is 1.25 v/w and the lag is 12 sec. The thermoelement with the galvanometer was not graduated. The intensity of the reflected radiation was determined in relative units, taking the intensity of reflected radiation at the nadir as a unit.

The thermoelement was attached to a theodolite and mounted on a level platform where the underlying surface was uniform in nature. Measurements were made in the direction of the nadir and at vertical angles of 25, 50, and 75° reckoned from the nadir, every 30° of azimuth from 0 to 360°. Thus, the reflected radiation was measured in 37 directions. The instrument was mounted at a height of 1.5 m. Here the required radius of the platform was 8.5 m. In all the measurements, the size of the platform was considerably larger than necessary.

The measurements were made using a barley field during ear formation and in waxy maturity, barley stubble, Sudan grass, dry snow, and snow covered with an ice crust. Measurements were mainly carried out when the sky was cloudless and when there was total overcast cloud cover at various elevations of the sun. A single series of measurements took 10-12 min. The results obtained are analyzed in [1].

From the data of measurements, a graph was plotted for each series showing the relative values of the intensity of reflected radiation

-2-

Figure 1. The relative intensity of radiation reflected in different zones by a barley field in the ear formation stage versus the elevation of the sun h_{\odot} (clear sky).

versus the azimuth \forall and the sighting angle α . In this case, for the sake of convenience, the latter was reckoned from the horizontal plane rather than from the nadir, which is the usual practice.

On the basis of these graphs, the flux of the reflected radiation was integrated and its relative values were determined from the individual

-3-

9.

Q.

-

ring-shaped zones $r_{K,\Delta\alpha}$. The width of the zone of $\Delta\alpha$ was taken to be 10° (0-10, 10-20, 20-30°, etc.).

Figure 2. The zonal distribution of the relative intensity of radiation reflected by a barley field in the ear formation stage, measured at different elevations of the sun h_0 . (Clear sky; the dashed line shows the isotropic distribution.)

Then, the values of $r_{K,\Delta\alpha}$ were plotted with respect to the elevation of the sun h_0 for each type of surface. When this plotting was done, the measurements were averaged and the effect of extraneous factors on the final results was eliminated. Figure 1 gives an example of $r_{K,\Delta\alpha}$ versus h_0 for a barley field when sky is clear. This figure

-4-

shows that an increase in the elevation of the sun leads to a substantial redistribution of the values of $r_{K,\Delta\alpha}$ over the individual zones. For zones in the interval of 0.40° , the relative values of the reflected radiation fluxes decrease as h_{\odot} increases, but for zones above 50° the reverse pattern is observed. The magnitude of $r_{K,\Delta\alpha}$ in the central zone of $40-50^{\circ}$ is practically independent of the elevation of the sun.

The values of $r_{K,\Delta\alpha}$ for the individual zones of $\Delta\alpha$ and elevations of the sun h_{\odot} were plotted from the graphs of the function $r_{K,\Delta\alpha} = f(h_{\odot})$. Table 1 presents the corresponding data for various types of surfaces. Figure 2 also gives $r_{K,\Delta\alpha}$ versus α at various elevations of the sun for a barley field in the ear formation stage. Table 1 and Figure 2 show that the nature of the zonal distribution of reflected radiation is essentially dependent on the irradiation conditions (on the elevation of the sun and the presence of clouds). The greatest deviation from an isotropic distribution of $r_{K,\Delta\alpha}$ over the zones occurs at small elevations of the sun. When h_{\odot} $\geq 50^{\circ}$, the zonal distribution of $r_{K,\Delta\alpha}$ becomes close to isotropic.

Figure 2 shows that the sighting angle at which the maximum values of $r_{K,\Delta\alpha}(a_{max})$ are observed, is also determined by the elevation of the sun. Table 2 gives a_{max} versus h_0 for different types of natural surfaces. From Table 2, it follows that the values of a_{max} at the same elevation of the sun are close to each other for almost all the types of surfaces studied, except for dry snow. The structure of the irradiating flux (the presence or absence of direct solar radiation in this flux) has a substantial effect on the position of the zone with the maximum values of $r_{K,\Delta\alpha}$. Thus, the data on the zonal distribution of radiation reflected by dry snow when the sky is cloudy shows that even when $h_0 = 5^0$, the maximum values of $r_{K,\Delta\alpha}$ fit into the central zonc. This fact indicates that when the underlying

-5-

Table 1

The Zonal Distribution of Radiation Reflected by Various Natural Surfaces

x

Elevation of the	Zone, degrees										
sun, degrees	0-10	1020	20-30	00-10	40 -50	50-60	60 -70	70	.0 90		
Karadag Barley field in the set for the set of the set											
Barley	field	in the	ear fo	ormati	on sta	ge, cl	ear sk	y. Ju	ine 1956		
5 10 15 20 25 30	0,077 067 059 052 046 043	0,178 164 151 140 130 121	0,229 213 198 186 176 167	0,194 190 187 185 183 181	0,144 152 159 164 169 172	0,092 105 118 127 135 140	0,052 065 075 085 093	0,027 034 041 046 051	0,007 010 012 015 017		
35 40 45 50 55 60	011 039 038 037 035 032	114 108 105 101 100 097	$161 \\ 156 \\ 152 \\ 149 \\ 146 \\ 143 $	179 178 176 174 172 170	175 176 178 178 178 178	145 150 152 155 156 159	107 111 114 117 120 123	059 062 065 068 071 075	019 020 021 021 022 024		
Barley fiel	029 026 d in th	093 089 ne stag	138 133 e of e	169 168 ar for :	178 177 matior	161 163 1. Clo	126 130 udy sl	080 085 (y, 8/	026 029 0-10/0 Ci		
				June	1956						
5 10 15 20 25 30 35 40 45 50 55 60 65 70 Barley f	0,058 071 061 056 050 046 040 037 036 033 032 031 030 ield in	0,198 177 158 145 145 145 145 16 116 103 099 093 088 084 082 1 the st	0.231 216 200 189 179 174 165 163 158 155 148 143 140 136 136	0,159 168 173 175 177 176 177 176 174 172 170 170 164 168 166 164	0,119 131 136 154 160 161 167 170 173 176 177 178 178 178 178	0,079 102 123 136 147 152 157 158 161 163 164 163 163 162	0,0,33 070 076 076 070 056 092 099 105 112 118 121 127 132 138	0,043 044 046 049 051 055 059 063 066 069 073 066 069 073 076 080 064	0,015 015 016 017 017 017 018 019 020 021 023 024 026 028 July 1956		
5 10 15 20 25 30 35 40 45 50 55 60 65 70	0,071 064 058 053 044 041 038 037 035 035 035 036 030 030 029	0, 167 157 143 140 132 123 115 110 104 100 096 093 090 0%6	0,211 201 193 184 175 169 163 157 151 147 143 140 138 136	0, 177 182 185 187 186 184 180 177 175 173 172 171 170 170	0, 138 146 152 159 164 167 171 173 176 178 179 180 182 184	0, 106 113 120 125 132 137 144 149 154 157 160 162 165 167	0,074 076 079 083 090 100 108 115 120 154 127 130 132 134	0,041 045 051 054 057 059 061 063 065 067 068 069 071	0,015 016 017 017 018 019 019 020 020 020 020 021 022 023 024 024		

-6-

Table 1 (Continued)

Elevation of the		Zone, degrees										
degrees	grees 0-10 10-20 20-30		30-40 40-50		50-60	60-70	70-50	80 —90				
Barley stubble. Clear sky. August 1956												
5 10 15 20 25 30 35 40 45 55 65 70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 ,219 265 191 180 161 155 149 145 140 125 132 130 128	0,177 179 180 180 179 176 175 174 174 174 172 170 168 164 160 157	6,143 149 155 160 105 170 172 175 176 177 178 179 181 182	0 , 692 101 116 127 136 144 150 154 161 164 166 169 172	0,004 075 054 093 101 107 112 116 120 124 128 133 155 137	0,015 050 057 062 067 070 073 076 079 081 084 086 087	$\begin{array}{c} 0,013\\ 614\\ 016\\ 017\\ 018\\ 019\\ 020\\ 022\\ 023\\ 024\\ 026\\ 027\\ 028\\ 029\\ \end{array}$			
Sudan grass. Clear sky. July-August 1956												
5 10 15 20 35 40 55 60 55 70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2.1 193 181 172 165 160 156 152 147 143 140 159 137 135	0 , 181 180 180 179 179 178 174 174 174 169 166 163 161	0,138 150 157 162 166 169 171 173 171 175 175 175 176 176 176 176	$\begin{array}{c} 0.095\\ 115\\ 127\\ 133\\ 138\\ 142\\ 145\\ 151\\ 154\\ 156\\ 158\\ 159\\ 160\\ \end{array}$	0,065 090 090 098 104 109 114 119 121 124 127 128 130 132	0,048 050 054 057 060 062 066 069 073 076 079 081 082 083	0,016 017 018 020 021 022 023 024 025 026 027 028 029 030			
Dur		01-	V	oeĭko	vo							
5 0	snow.	119 ± 0	r sky	De	cember	r 1955	, Mar	ch 195	6			
$ \begin{bmatrix} 10 \\ 15 \\ 20 \\ 25 \end{bmatrix} $	038 035 035 034	169 103 699 096	155 149 145 145 143	170 170 169 168	170 171 172 175	146 150 153 155	111 115 117 117	071 0 076 0 078 0 080 0 081 0	024 027 029 030 031			
Dry snow. Cloudy sky. December 1955 - March 1956												
Snow with	032 029	096 059 059	140 140 129 Clea	168 169 170 170	0,170 0 179 186	0,149 0 157 163	119 0, 123 139 1055	076 0. 077 0 077 0	027 027 027			
15 0,	055 0,	147 0,	182 0	.181 (). 161 : 0	125 150	1900 -		2n 1956			
25 30 35	049 043 037 033	135 122 168 694	172 165 158 150	178 176 177 181	162 166 172 181	132 139 145 150	094 102 110 114	058 0,0 058 0 055 0 070 0 072 0)22)22)23)25			

ŝ

-7-

Table 2

The Values of α_{\max} (in Degrees of Sighting Angle for Which Maximum Values of $r_{K,\Delta\alpha}$ are Observed) for Various Elevations of the Sun

•	Elevation of sun, degrees										
Type of surface	5	10	15	20	25	30	35	40	50	60	70
Barley in the ear for- mation stage. Clear sky	23,5	25,0	27,0	29,0	31,0	33,5	35,5	38,0	42,0	44,5	46,0
Barley in the ear for- mation stage. Sky cov- ered by Ci	21,5	24,0	25,0	26,5	28,5	31,0	34,0	37,0	43,0	45 ,5	48,0
Barley in the stage of waxy maturity. Clear sky	23,5	25,0	27,0	29,0	31,0	33,5	35,5	38,0	42,0	44,5	46,0
Barley stubble. Clear sky Sudan grass. Clear	23,5 24,0	25,0 26,5	27,5 29,0	30,0 32,0	34,0 34,5	37,0 36,5	40,0 38,5	42,0 40,0	44,0 43,0	46,0 45,0	46,5 46,0
sky Dry snow. Clear sky Dry snow. Cloudy	36,0 43,0	40,0 45,0	43,0 45,0	44,0 —	45.0	-	Ξ	-	-	-	
sky Snow with an ice crust. Clear sky	-	-	29,0 —	33,5 28,0	35,0 —	39,0 	40,0 —	-	-	-	
Top of St layer (sky clear above clouds)						1					

surface is irradiated by diffuse radiation (direct solar radiation was absent when the sky was cloudy), the zonal distribution of reflected radiation is close to the isotropic distribution for any elevation of the sun.

On the basis of Figure 3, one can see how the zonal distribution of reflected radiation is dependent on the type of natural surface. Figure 3 gives the zonal distribution of $r_{K,\Delta\alpha}$ for different types of surfaces at an elevation of the sun of 20[°].

The curve for St was computed from data obtained by V. P. Kozlov and E. O. Fedorova on measurements of the distribution of the luminance of clouds [2]. These measurements were made by a photoelectric recording

-8-

1. Isotropic distribution; 2. St, $h_{\odot} = 20^{\circ}$, sky clear above clouds; 3. snow with ice crust, $h_{\odot} = 20^{\circ}$, clear sky; 4. pure, dry snow, $h_{\odot} = 15^{\circ}$, cloudy sky; 5. pure, dry snow, $h_{\odot} = 20^{\circ}$; 6. barley in the ear formation stage, $h_{\odot} = 20^{\circ}$, clear sky; 7. Sudan grass, $h_{\odot} = 20^{\circ}$, clear sky

photometer installed in an airplane. The airplane flew at an altitude of 100 m above the top of the cloud layer. The measurements were made in the spectral range $\Delta \alpha = 50$ millimicron with $\lambda_{max} = 800$ millimicron.

ŝ

-9-

In this connection, the data are not completely comparable to the data obtained in ref. [1]. However, the practically complete absence of other data on the angular distribution of radiation reflected by clouds forces us to use the indicated measurement results so as to obtain at least an approximate pattern. The object measured was an St cloud that was 150-200 m thick and had its base at 600-700 m. The elevation of the sun was about 20° .

Of all the vegetation covers investigated, data are presented in Figure 3 only for barley in the ear formation stage and Sudan grass as the greatest divergence was observed for these. If Figure 3 is analyzed, the following conclusion can be drawn.

The zonal distributions of radiation reflected by plant covers of various structure, St clouds, and snow cover with an ice crust are close to each other under the same irradiation conditions. The zonal distribution $r_{K,\Delta\alpha}$ of snow cover is quite variable. Considerably less anisotropy is inherent in pure, dry snow than in snow covered with an ice crust (at the same elevation of the sun and with a clear sky). When the weather is cloudy (and, obviously, in all cases where there is no direct solar radiation), the zonal distribution $r_{K,\Delta\alpha}$ approaches an isotropic distribution.

References

- 1. Kondrat'ev, K. Ia. and M. P. Manolova. The angular distribution of the intensity of radiation reflected by the natural underlying surface, <u>Vestnik LGU</u>, Ser. Fiziki i Khimii, 2(10):52-58, 1957[in Russian].
- 2. Koslov, V. P. and E. O. Fedorova. The spatial distribution of the brightness of low clouds, <u>Izv. AN SSSR</u>, ser.geofiz. 7:971-973,1962[in Russian].