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DISSIPATION OF STR/TUS CLOUDS 
IN A TURBULENT ATMOSPHERE 

by 

lu. V. Shuiepov and M. V. Buikov 

Wc examine the horizontal dissipation of a spa¬ 
tially homogeneous stratus cloud in a turbuleiit atmos¬ 
phere, in which isothermy, an inversion in the supracloud 
layer, and downdrafts are present; the time required for 
total dissipation of the cloud is computed. 

Stratus clouds can dissipate not only by gravitational fall-out of 

the droplets (descent and evaporation of droplets in the unsaturated 

layer of air beneath the cloud), but by the transport of cloud droplets 

out of the saturation zone by turbulent pulsations with subsequent evap¬ 

oration of the droplets. 

As in the absence of turbulence, evaporation of droplets outside 

the cloud leads to complete saturation of the air layers adjacent to the 

top and base of the cloud, i. e., in this case, too, allowance for the col¬ 

lective nature of the evaporation proc**3s indicates that the time required 

for evaporation of the entire cloud will be many times greater than that 

required for the evaporation of a single drop. Actually, cloud dissipa¬ 

tion is caused simultaneously by turbulence and semmentation mechanisms, 

and by other mechanisms, such as coagulation. However, one of these 

mechanisms may prove to be stronger, depending on the physical condi¬ 

tions (cloud droplet spectrum, turbulence level, extent of undersaturation 

below the cloud, etc. ). Therefore, the simultaneous examination of both 

mechanisms involves quite serious mathematical difficulties. 

The problem of cloud dissipation in a turbulent atmosphere has not 

been examined, essentially, in the manner in which we have formulated it. 

L. T. Matveev [ 1] noted that a stratus cloud is relatively stable colloi¬ 

dally. Milburn [ 2) took up the problem of the dissipation of a stratus 

cloud in a turbulent atmosphere. As in [ 3] , which he devoted to the 



dissipation of a stratus cloud in a non-turbulent atmosphere, in [ 2] 

Milburn chose a physically false model of a cloud, considering that 

unde,saturation takes place in it. In deriving the equation for the 

water content of the cloud, he made unfounded assumptions concern¬ 

ing the relation between factors of different orderjor the function of 

drop-size distribution, e. g. , he states that F- Furthermore, 

m [ 2] he does not pose the question of computing the time required 

for complete dissipation and he solves the derived system of equations 

for short time spans, which in general has no practical meaning. 

The problem of stratus cloud dissipation in a nonturbulent atmos¬ 

phere can be formulated within the formalism of the kinetic equation 

for describing cloud processes. 

Let us examine two cases of dissipation: 1) n an isothermal at¬ 

mosphere, and 2) for a linear lapse rate with an inversion above the 

cloud. Although isothermy is rarely encountered in nature, it is use¬ 

ful to examine it not only from the standpoint of methodology, but for 

estimating the dissipation time of the clou 1 if complete information is 

not available on the lapse rate; it may be maintained, approximately, 

that dissipation occurs in an atmosphere having some constant meat/ 

temperature. It should also be noted that we are not speaking of iso¬ 

thermy for the whole atmosphere, but only of isothermy in the rela¬ 

tively narrow layer where dissipation occurs. 

Since the solution to the problem has certain properties that depend 

on the presence or ab.enco of ordered downdraft., we .hall examine the.e 
two cases separately. 

Let u. turn to the mathematical formulation of the problem and be¬ 

gin with the kinetic equation for the function of the drop-.i.e di.tribution 

Hr, a, t) which, with allowance for the conden.ation proce.ae., convec- 

tiue and turbulent tran.fer and sedimentation of cloud droplets, ha. the 
form 

'i/ D(q-qAT)) [>)f 
{,/• ( ,tr ) (V-+ a A) d-L 'ILL 

ot¡ • (1) 
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where D is the diffusivity of water vapor f in air), - is the density of 

water, q(z,t) and qg(T) are the vapor density and sf.turated vapor den¬ 

sity at temperature T, v is the velocity of the ordered downdrafts, k 

is the eddy diffusivity, and ar' is the fall speed of * cloud droplet in 

stationary air (in what follows we shall neglect sedimentation and 

omit that term). 

Our method does not require finding the distribution function in 

explicit form, therefore we shall proceed from eq. (1) to the equation 

for liquid-water content, for which we multiply both sides of (1) by 
4tt s . 
5“0r % and 'nt*Z**e over r from 0 to ®. After simple transformation, 
for the liquid-water content 

<x> 

w= J drr* f (r, z, /) 
0 

(N0 is the number of droplets in a unit volume) and on the assumption 

that f -* 0 when r -* ®, we get the following equations 

civ , civ , d-a* 

<*> 

t) = AKDSa(q - qt(T)) 1 drr j\r.z, /). 

(2) 

The equations for vapor density and temperature are: 

òt ^ ^ di ' * di¡ ~ 1 '• 

àT , tàT \ , ,\:t 
’dTirV ~ W ^ * Ti'J - 110. 

(4) 

where a = ^,/Cp0ajr: t*le latent heat of vaporization, c is the spe 

is the density of air, an cific heat of the air at constant pressure 

va = sAp i» the adiabatic lapse .-ate. 

Let us assume that at the initial moment a cloud of infinite hori¬ 

zontal extent is 2H thick, has a constant liquid-water content w„ , and 

has known vapor density q and temperature T at t = 0. However, sine 
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these conditions are written differently for isothermy and linear lapse 

rate, we shall not give them here, but will formulate the basic prem¬ 

ises of the approximation method of solving the dissipation problem. 

Let us note that linear combinations of the functions w, q, T, S = 

w *q, and Í = T - aw satisfy the following equations, as cm easily be 

seen from (2), (3), and (4): 

oï V >)• ' * ~<)P ~ 

The initial and boundary conditions for these equations follow 

from the corresponding conditions for the functions q, w, and T. Equa¬ 

tions (5) and (6) are simpler than (2), (3), and (4), but they cannot pro¬ 

vide a complete solution to the problem, because one cannot determine 

w, q, and T from S and ¢. To find them, one must solve one of the 

equations (2), (3), or (4), but this cannot be done if we limit ourselves 

to an approximate solution to the problem, considering only the phys¬ 

ical essence of the phenomenon. 

Let us note, first of all, that theoretically ofie may determine 

the cloud boundaries in two ways. They can be regarded as a surface 

where the liquid-water content becomes vanishingly small (w* 0), or 

they may be regarded as a surface where q(z,t) = qg[ T (z,t)], since 

usually there is saturation within the cloud while there is a moisture 

deficit outside it. Naturally, cloud boundaries determined from the 

liquid-water content will differ from those determined from the vapor 

density, since cloud droplets may exist for a time in the presence of a 

moisture deficit, therefore cloud boundaries determined from the con¬ 

dition w « 0 will show a somewhat larger cloud thickness than those de¬ 

termined from the other condition. It follows from the physical basis 

of the problem that the difference between the cloud boundaries found 

by the two methods will be of the order of \ÍW0 , where t = pr^ /2D 

(q8(T)-% ) is the evaporation time of a cloud droplet of mean statistical 

(5) 

(6) 
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radius for a characteristic non-cloud undersaturation q (T) - This 

difference in determining the boundary may be ignored if it is much 

smaller than the cloud thickness. This condition is not applicable to 

thin clouds and undersaturation, but is fulfilled in most real cases. 

For example, for rQ * 6p, qg(T) - q = 10‘7 g/cm* , „20 m, which 

is less than the actual cloud thicknesses. 

However, if we consider that the cloud boundaries determined by 

the conditions w = 0 and q = qg(T) are equivalent, it follows from this 

equivalency that the following equality will be fulfilled at the boundary 

for our S function 

S(r, 0*9. in*. 01- (7) 

The temperature in the right-hand side of this equality may be 

found by the second auxiliary function $. Determining $ for w * 0, we 

find T (z,t)= ¢, The equation for determining the moving boundaries 

of a dissipating cloud has the form 

S (r(/)./)=<7.[<l)U(0\/)]. (8) 

Thus, the entire kinetics of cloud dissipation can be described 

on the basis of S and ¢, We shall now seek S and # for specific cloud 

models and solve eq. (8). 

We consider the function q^T) to be known and take it in the form 

¢, (T) _ Q (Tn)T, 
‘ r 

0,-77 
c 
T 

(9) 

where E = Lp/R is the molecular weight of water, R is the gas con¬ 

stant), T^ is a characteristic temperature whose specific meaning will 

depend on the model. 

The time of total evaporation of all the cloud droplets (t. is the 
d 

dissipation time) may be determined from (3) as follows. By the time 

all the cloud droplets have evaporated, the size of the saturation zone 

\ 

I 
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will have approached zero. This can eaiiily be demonstrated by the 

opposite case. Since in the case of turbulent transfer, streams of 

droplets and vapor come from a region of saturation, it follows that 

the existence of a zone of saturation would infer the existence of a 

zone with unevaporated droplets. It is physically evident that eq. (8) 

has two solutions, z, (t) and zp(t), for the motion of the cloud top and 

base. The cloud thickness for each moment of time is I Zj (t) - z^ft)! 

and, in agreement with what has been said, the total dissipation time 

may be determined from the equation (td) = zs (td). If there is sym¬ 

metry with respect to the center of the cloud, z^t) , -z3(t), when de¬ 

termining the dissipation time one may assume that z s 0 in (8) (since 

Vtd}= 0) 

S(0. 1,,)= q. |(I>(0, td)]. 
(10) 

In the further computations, it will be more convenient to use 

the moving system of coordinates z — z - vt in eqs. (5) and (6): 

(11) 

(12) 

Thus, the existence of downdrafts in the moving system of co¬ 

ordinates is equivalent to the existence of heat sources with an intensity 

of vy . 
a 

1, Isothermy 

Given constant atmospheric temperature at the initial moment of 

time, the following formulas obtain for the initial values of liquid-water 

content and vapor density 

I q (/■,.). ic: <//. 

I </o. kl >//. I) - r, / = 0 
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whence for S and i we get the following initial conditions: 

t‘><* 
1 ^ 1 To. Ir|>//; f=*0 

It is evident that the solutions of (11/ and (12) for these initial 
conditions will be 

where 

"-T.«< + r„^[£(|^)+£(^)] 

£ (5) = vfe J r’djc; = ft Fo) - Ço- 

(13) 

Substituting the expressions for S and ♦ in eq. (8) to determine 

the moving cloud boundaries, we get the equation 

T K’+Af i [f (^rr)+f +»; TO 
(14) 

where 
V = (r0)). 

In deriving this equation, we assumed that qs(T) could be expanded in 

a series. Inasmuch as this equation is invariant for the substitution of 

-s for z, we shall consider the case z > 0. Given H/2 sfW« 1, from 

(14) we get the following equation for the motion of the cloud boundary 

*(0 = 2 \ f kt In-W ^ 
V + q,' (To) 7. vt) yitAt (15) 

This formula implies that the motion decreases with time, in con¬ 

nection with the evaporation of the moisture stored in the dissipating cloud. 

From *(td)= 0, we can find the equation for deternvning the total dissipa¬ 
tion time of the cloud from (15) 

l=lL(l+aJiY 
'«/' (16) 
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where 
a ^) 7. vt,t„ 

^ ~ 

‘f; H’/''k,W’** is dissipation t'me in ,ho ab.ence 
o downdrafts. As shown by da.ermination. of,hr paramo,or. (H. w 

,, % ) over a broad range of variations and for ali v > 1 cm/sec a >> 1 

Consequently, eq. (16) may be solved approximately 

—23 

' (17) 

valid i"™5’ for ,he m0,Í0n 0fthe b0Undar'r ia asymptotically 
or t > H. For this inequality to be satisfied, 2 •JTT must 

e greater than H. This inequality will be fulfilled if Í 

1 C V''-)V' 
which will be satisfied when w, » Aq, i. e. , if the initial liquid-water 

conten, of the cloud is greater than the und.r.aturation below the cloud. 

I, follow, from (15) tha, a, certain moments the thickness of ,h. 

dissipating cloud wiU exceed the initial thickness of the cloud. z(t) > H. 

or flq > w, , as qualitative analysis of eq. (14) shows, a(t) < H. Thu. 

upon dissipating the cloud will either expand a, firs, and then contract ’ 

and disappear (Aq < w„ ) or i, will begin "melt. ■■ i.e., diminish from 

the very star, of dissipation, depending on the relation between w and 

Aq. I, may also be shown tha, in the case of cloud "melting. " the’cloud 

boundaries move more rapidly than strictly by diffusion 2 VtT. because 

of the intensive removal of vapor from the cloud, i.e., by diffusion of 
the undersaturation into the cloud. V * 

To determine the dissipation time, we set r(t.) = 0 in eq (14) 

and allowing that H » 2 ,or E we tak. the a.ympotic expression 
tor large values of the argument 

wo* -<// (T0) 7, vtd 
l'n (±<i + w0*). (18) 



The second term in the left-hand side of (18) describes the evap¬ 

oration of cloud moisture resulting from the temperature increase dur¬ 

ing adiabatic compression. If this quantity of moisture is small (w„ » 

^s <To ^a^d^* *rom formula (18), taking its logarithm and omitting the 

terms of the next order of smallness, we get the following equation for 

d 

(19) 

This formula has rather limited application, since in deriving it 

we assumed that H» 2 \l kt^, which can be ensured for a large value 

of the logarithm. Therefore, we shall also give the expression for the 

dissipation time when Aq = w0 *. In particular, for v = 0, the dissipatic 

time is determined from the equation 

whence 
1.1//2 

* 

The presence of downdrafts reduces the dissipation time in the 

last two cases; it is difficult to obtain the analytic formulas but the 

dissipation time td may be determined from (14) with z = 0 by numeri¬ 

cal methods. 

Let us cite some numerical examples that illustrate the resulting 

formulas. For w8 =^1°/cm8, Aq = lO^g/cm*, 2H = 500 m, k = 10* 

cm /sec, qg(Tq )= 10 g/cm from formula (16), we get t^ = lO* sec. 

For v= 10 cm/sec and these same values, from formula (17) we get 

td = 104 sec. For Aq = 10^ g/cm* , 2H = 500 m, w0 = 10-7 g/cm , from 

formula (19) we get td * 3 x 108 sec. From this it is evident that the dis¬ 

sipation time decreases with increasing under saturation below the cloud 

and increasing downdraft velocity. 
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2- Rale below the Cloud and Inver.ion it 

Now let us examine the case where the temperature is constant 

within the cloud at the initial moment of time, but increases above the 

cloud and decreases linearly below the cloud, i. e., when t = 0 the cloud 

is bounded by the lines q = q8<T). The initial values for liquid-water 

content, vapor density, and temperature are the following (here, as 

before, it is assumed that the origin of the selected coordinate system 

(a = 0) is in the center of the moving cloud): 

T (a, <) = 

îfl (Z. t) = j 
/"o-:- Yi (2-//), 
To, I i I <//; 
To — y¿ U -f- //) ; 

ÍC’n, !*!•<//; 

o. \Z\>H- 

z>H, 

<? =<M7V). 
z<—H: 

/=0. 

The initial conditions for S and î are: 

5(2,/)= I + '/'(To), I 2 ¡ <//; 
1 </*<To), I r I > //; 

( To -f- Yl (< — //), i>//; 
<D(2,/)= To—aa’n, 2 I < //; 

I To-Y:(2 -f//), 2<-H, 
/ = 0. 

The solutions of eqs. (11) and (12) with these initial conditions are 

"• (--. 0 » _ Ex 

X + f (wj (^ - j!i£^iL)+ 

-f -4(-, 
1//-O' 

4*/ 

ß . Ï21 ^/ c 4*< -r f,vi). 
i//+*)» 

4*; 
( 20) 

We substitute these expressions for S and ♦ into eq. (8) to determine 

the moving boundaries of the cloud: 

w [£ (w)+£ (w)] - - (^)+ 

m- 
+ 1-^Lei 
^ 4 vît c Yr. 

/ - (// +i)», 
[e «' -j-i 4*f J + 

-)-Ili'.._i_ <7) — 7a) (r -t *H) /, H \\ — y 

'¿hV*t ( ( 2V*r))+ 2Kk'v'i 
_ (4+//)» 

V . 

(21) 
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In this equation, as before, it is assumed that q (T) can be ex¬ 

pandedin a series with respect to the difference T - (which places 

some limitations on td) and the equation reduced to dimensionless 

form, and the terms that are dependent on the difference v, - v? are 

ected. If we set y3 - yt the resulting equation is invariant 

when -z is substituted for z, the two boundaries move symmetrically, 

and the dissipation time is determined from the condition z(t ) = 0. If 

H <•< 2 \J ktj and | y1 - y3 /Zy^ | <■< 1, it is natural to expect that for times 

close to the dissipation time, both boundaries will be near the point 

z = 0, i. e. , z 2 \TW. Then the equation of motion of the boundaries 

will have the following form (we discard the terms of the next order of 
smallness ) 

ax2 + bx + c = 0, 

where 

, c = -L -J VI 

V* y kt 
Am 

2 V*‘ t 
A — ^° (1 ~ aM To) ) 

(22) 

As this equation shows, there will be two boundaries, and the 

criterion for satisfaction of inequality z « 2 ^will be, as is to be 

expected, | y, - ys I <r< 2Yl. The moment the two boundaries fuse may 

be regarded as the dissipation time, i. e. , the moment when the two 

root, of the equation are equal (b?= 4ac), which yields the following ap¬ 

proximate equation for determining t^: 

J _i t'/,/ _ AH* 
V* 2v Vhd \^k,d ■ (23) 

For small vertical velocities 

the dissipation time becomes 

(v <i< 4 I JS_ 
va nTSTT 

),the formula for 

*4 
Vg*H 

•»?/ (h) y* • 
(24a) 
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However, in this case the velocity canno, exceed i cm/.ec (or the 

c aractertst.c values of the parameter.. However, for v > 1 cm/.ec in 

eq. (23), we may neglect the first term and then we will get the follow- 

ing expression for the dissipation time 

J U'<2 »'Vj • (24) 

This formula hold, if H ,, 2 ^ which give, the upper limit of 

V lthe lower hm.t .. determined from the exce.s of the .econd term on 

t e left-hand side of (23 ) over the first term), therefore the region of 
change is determined by the inequality 

1 7* 4-' , 

4 7.//A 

Obviously, this inequality is not contradictory when A » 1. 

The examined case is completely analogous to that given earlier 

for w0 > Aq; the smallness of the termperature gradient (q* (T ) yH) 

is substituted here for the smallness of the subcloud under saturations. 

When A <• 1, by qualitative analysis of en. (21) we can also show that 

the cloud dimensions begin to decrease from the very beginning of the 

dissipation process and that the cloud boundaries move at a greater 

speed than indicated by the purely diffusion law. To determine the 

dissipation time in this case, we should consider H » 2 «v/ETin (21) 

on the assumption that | y, - Y, I ^ 2Vl , naturally again assuming 

that z 2 Expanaing the integrals asymptotically and again 

omitting the terms of the next order of smallness, we get 

n‘ 

Neglecting the term with v, for td we get 

U l 2ÿi( U'0» J 

(25) 

(26} 
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Let ue compare thi. equation with (19). The remarks on the 

limitations of (19) also apply to (26). Let us give some numerical ex- 

amples. For w%= 10 g/cm" , H = 200 m, qg(T, ) = lo"’ g/Cm’. v = ,0 

cm/sec, k = 10 cm /sec, from (24) we get td = 3. 5 x 10* sec = 1. 0 hr. 

For these same values of the parameters, but with v = ¡O'* deg/cm 

and v » 0, from (24a) we get td = 10* sec, i. e. , a value three times 
larger. 

Thus, downdrafts also reduce the dissipation time. 

3?_Conclusion 

The dissipation times for the most characteristic cases are 
given in table 1. 

10‘ 

10 

Table 1 

Dissipation Time (hr) of a Cloud 

10' 

10 
-4 

w„= 10-7 g/cm* 

0. 25 0. 2 o.l 

°* 7 0.4 0. 14 

% = 5 X 10 g/cm 

0 0.8 0. 3 

1.2 o. 4 

Owmg to a number of mathematical difficulties, we have made 

a separate study of stratus-cloud dissipation due to sedimentation of 

the cloud droplet, and that due to their removal from the -loud by tur¬ 

bulent pulsations, even though these mechanisms operate simultaneous 

m actual Situation». I, is interesting to compare the results obtained a 

to determine which of these mechanism, play, the decisive role in vari 
situations. 
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It ¡s natural to assume that the mechanism which causes dissi¬ 

pation in the shortest time is the dominant mechanism. First let u. 

compare the formulas obtained for the dissipation time for the cases 

of turbulent and nonturbulent atmospheres. In a nonturbulent atmos¬ 

phere, the dissipation time is expressed through the characteristics 
of the cloud and the atmosphere 

for 

Comparing (27) with (16) for the case w0 » we get 

Jjlc _ 
,J”‘ //KV) ’ 

<27) 

from which it is evident that with small cloud thickness and large 

eddy diffusivity, the removal of droplets by turbulent pulsations will 

be the dominant factor (with k = lo’cm’/sec, H = 500 m, ¿q/w = 10’1 

r’=VW 6>‘ 
The relationship for dissipation times resulting from the sedi¬ 

mentation and turbulence mechanism may be obtained in a similar 

manner for another limiting case, w0 « ¿q. Comparing (2 7) with 
(19) for this case, we get 

turn 

HiiMii h u\, 
aril! 

In contrast to the preceding formula, here k/dr^ H is multiplied 

by a number much larger than unity, therefore a situation may arise 

where turbulence will play a role given these same values of the para. 

mete*"8 and this same limiting case. 

The dissipation-time formulas for sedimentation and turbulence 

may also be compared for the case of a linear lapse rate, in which case 

the expression qj (T„)vH/w, should be substituted for Aq/w0 in the re¬ 

lations obtained for the dissipation time. The quantitative conclusions 

regarding the relation between the sedimentation and turbulence mech- 
anism remain as before. 
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Given downdraft velocities (v /0) for the most characterisi:c 

cases in which turbulence is absent, the dissipation of a cloud is de¬ 

termined by evaporation, given a steady temperature increase due to 

adiabatic compression. 

In the case of turbulence, the cloud will evaporate more rapidlv, 

because the cloud droplets will be transported by turbulent pulsations 

into a region of greater undersaturations than those which exist inside 

the cloud. 

The various mechanisms of stratus-cloud dissipation examined 

here show that a cloud is a stable colloidal system and that it may exist 

for several hours after its moisture supply has been curtailed. 
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