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REPRESENTING FINITELY ADDITIVE INVARIANT PROBABILITIES 

By 

Richard A. OLshen 
Stanford University 

1.  Introduction. 

Hewitt and Savage [6] have shown that finitely additive exchangeable 

probabilities on a product space are integral averages of power product 

probabilities. They prove this result as a corollary to their theorems 

on the countably additive case.  This note adapts their technique to the 

study of more ..general invariant probabilities.  Prom results of Farrell 

[k]  and Choquet and Feldman ([7]; Section 10) it is concluded that 

finitely additive invariant probabilities are averages of finitely addi- 

tive ergodic probabilities. 

In a countably additive context it seems necessary to impose restric- 

tions on the Borel field being studied and on the maps used to define 

invariance and ergodicity. Relaxing the assumptions of one type must be 

balanced by strengthening those of the other (in addition to [k]  and [7], 

see [l] and [12]).  Here, however, the field of sets can be arbitrary, 

and the maps are assumed only to be measurable. Rather than state a 

host of theorems which can be proved, one particular case is proved in 

detail.  Later on it is explained how the techniques can be applied to 

other problems.  Several definitions of ergodicity are proposed and related 

to the one used.  The final section contains a subjective probability 

interpretation of invariance and ergodicity. 

Prepared with partial support of U.S. Army Research Office Grant 
DA-ARO(D)-31- 124-G726. 



2.  A Representation Theorem 

A homomorphism from one field of sets to another is a map -which pre- 

serves finite unions, finite intersections, and complements-  The notions 

of isomorphism and automorphism are defined in the obvious ways. A 

a-homomorphism (isomorphism, automorphism) in addition preserves countable 

unions and intersections. 

Assume Q    is a set, J-   a field of subsets of Q,     and T a 1-1 

bi-J^-measurable map of ft onto ft.  T and its powers can be viewed as 

automorphisms of ?. A finitely additive probability u on 1    is said 

to be invariant if u(A) = u(T-1A) [= u(TnA), n = +1,±2...]  for all A e 3-, 

u is ergodic if there do not exist 5 > 0 and A ,Ap, . . . e J    for which 

S < u(A ) < 1 - 5,  lim  u(A A A ) = 0,  and  u.(A A T_1 A ) ^ 0 
m, n-»<» 

(A denotes symmetric difference).  Let v4(^)[g(3")] be the set of finitely 

additive invariant [ergodic] probabilities on J     and let o   be the smallest 

cr-field of subsets of &(J~)     containing all sets of the form 

{v[v e e(^), v(A) < a),    where 0 < a. <  1,  and A is a fixed set in 3~. 

(1) THEOREM. vJ/(^)  is not empty. For each u e <£{$•)     there is a unique 

countably additive probability X on ~ß    satisfying 

(2) u(A)  =  f    v(A) d\(v) 
^e(^) 

for all A e v/.  (it is clear that, conversely, if for a finitely additive 

probability \±    on <7~   there exists a X    on $   satisfying (2) for all 

A e 3-,    then u e <S(J-).) 

PROOF. By Stone's representation theorem for Boolean algebras 

([11], Section 8) there is an isomorphism tp of ^ onto the field 

of compact open subsets of some compact, totally disconnected Hausdorff 
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space S.  Call S  "the" Stone space of 3",     any two such are homeomorphic, 

For B e O   define UB = 9fT (cp T3)J .  Of course U and its powers are 

automorphisms of U.    Moreover, there exists a homeomorphism f    of S 

with itself for which \|r_1B = UB for all B e Cf   ([11], Section ll) . 

Let a(0)    be the ff-field generated by Cf;     it is essential to notice 

that a(0)  is the Baire cr-field of S  ([5], p. 221). Because f    and 

\|r   take Baire sets to Baire sets,  U can be extended uniquely to a 

cr-automorphism of a(p) • \S)(J~)     an(i S(^)  are in obvious  1-1 corres- 

pondence with **$(&)     and cf(0^ respectively. Each finitely additive 

probability r\    on G    is in fact countably additive, and so admits 

unique extension to a countably additive probability on cr(0) .  To see 

this, it is enough to demonstrate that B ,B~,...  in Ö   and 

B 3B 3 ..., n B. =0 imply TJ(B ) - 0 ([5], pp. 39 and 5k).    But 

this condition is trivially satisfied, for since the B's  are compact 

and have void intersection, some B.  is already void. 

Recall that if T\    is any countably additive probability on a(O) 

and for A,B e a(0),  the distance from A to B is defined to be 

T](A A B),  then cr(Q)  is a complete semi-metric space, and moreover that 

every member of the space is the limit of a Cauchy sequence of elements 

of (j.    Easy consequences of these facts are as follows: 

(a) J(O) = J(a(p)) ;     (b) if veisf?))  then v e e(O) iff there 

does not exist B e ff(O)  for which v(B A UB) =0,  0 < V(B) < 1.  The 

existence of such a B implies that of a C satisfying UC = C, 

0 < v(C) < 1 -- for example, take C = limsup U B. 

An argument given by Choquet (see [7], pp. 8l-2) and (a) imply J!(J~) 
) 

is nonempty. Briefly, the set of all finite, signed, countably additive 

Baire measures on S can be viewed as the dual space of the Banach space 
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of continuous, real-valued functions on S. With those measures given 

n 
the weak* topology, the maps U , n = 0,+l,.+2, .... induce continuous 

linear transformations of the (compact, convex) set of countably additive 

probabilities, 1°, onto itself. . And <J(a(0)J  is the subset of ^P 

consisting of fixed points for the maps U .. The Markov-Kakutanl fixed 

point theorem ([3], p. 456) implies «rßu^OOj  is not empty, and hence 

that vi>(J?)  is not empty. 

In view of the existence of \|r,  (a), the remark following (b), and 

a theorem of Farrell ([4], p. 46o), for each |a e J(0)     there exists a 

unique (countably additive) probability \    on the  a-field of subsets of 

e(O')  generated by sets of the form 

{TJ|T| e e(ö), T](C). < a;     0 < a < 1, C e a(0)}    satisfying 

(3) n(B)  = f TI(B) d\(ii) 

for each B e o(0).  In particular (3) holds for each B e O,    Yet for 

such B,  T)(B) viewed as a function of rj e &(0)     is measurable with 

respect to the a-field 5? generated by sets of the form 

{T]|TI e Z{&),   T)(C) <a;  0 < a < 1, C e &].     Thus for B e <%    \    can be 

cut down to ~&,     and (3) still holds. But now (l) follows in view of 

the correspondence between g? and $,    >J)(&)     and *J(*7),  and e(0)  and 

e(7).| 

Of course the definition of S(-?)  is contrived so that S(^) 

corresponds to countably additive probabilities on o{&)     which are 

ergodic in the usual way. And it is implicit in (2) that &{3)     is the 

set of extreme points of •*${•$) •    Yet it may be of interest to see what 



becomes of other definitions of ergodicity when applied to  (ft,J)• For 

example,  u e J>(-J)    might be called ergodic if there does not exist 

A e J   for -which A = T~ A,  0 < \±(A)  < 1.  That this would have been 

ridiculous is clear from the following example.  Let ft be the set of 

bilateral sequences of O's and l's, J'    be the smallest field contain- 

ing the cylinders, and T be the shift.  It is easy to verify that ft 

and 0 are the only members of 3"   in variant under T ,  and so every 

member of J^(3)     would be ergodic by this -definition.  (With ft given 

the ordinary product.topology, J1 is a base of compact open sets, and 

so ft is its own Stone space.) 

It may seem reasonable to call u e J(^)     ergodic if there does not 

exist B e 2   for which u(B A T~^) =0,  0 < U(B) < 1. Unlike the 

case with cr(O)  and U,  this definition is not identical to the one just 

discussed, and-it. is true that a u not ergodic in this sense is not 

ergodic according to the definition adopted.  Probabilities ergodic in 

this sense need not be extreme, in J?(^),  however, as is illustrated by 

an example.  Let  (ft.,^?) be as in the previous paragraph.  Suppose u 

is a measure on J-    induced by any sequence of exchangeable random 

variables which are neither independent nor with probability one either 

identically 0 or identically 1.  Then it follows from deFinetti's 

theorem ([2], Chapter K;   [6], p. kd6)  that the only sets B e -J   satis- 

fying u(B A T a)   = 0 are ft and 0,  and that \JL    is not extreme in 

the power product probabilities on ft,  let alone in J}(3') . 

3.  Generalizations. 

Apparently several times in Section 2 T~  or \J/~  -was considered 

when reference to the inverse was unnecessary.  The reason for this was 



to keep notation consistent with that of more general problems than the 

one being studied. What follows is an outline of several results similar 

to (l), some generalizations and some not comparable.  The interested 

reader will have no trouble filling in the details himself. 

Suppose fl is a set, J a field of subsets, and ^/   a family of 

/-measurable maps of Q    into itself.  Then T 6 •J   implies T   can be 

viewed as a homomorphism of S     (though the same is not necessarily true 

of T) . A finitely additive probability u on -J     is in J)(j)     if 

u(A) = |_I(T"" A)  for each T e J" and A e J   ;     it is in e(v7)  if there 

do not exist S > 0 and .. A-..A-,... e 3-   for which 8 < u(A ) < 1-5, 1'  2 n      ' 

lim u(A A A ) = 0,  and u(A A T~ A ) -» 0 for each TeJ. 
m,n-»   n   m n      n 

Again the Stone space argument can be employed.  If U on O    cor- 

responds to T ,T e 3,     there may not be a homeomorphism of the Stone 

space corresponding to U,  but at least there is a unique continuous 

map i    of S into S  satisfying IB = *i~S    for each B e &  ([ll], 

p. 32).  Hence the results of Farrell ([4], p. k6o)  and Choquet and Feld- 

man ([7], pp. 82-3) apply to yield a number of theorems similar to (l). 

Of course, that d?(«^)  is not empty does not follow from the Markov- 

Kakutani fixed point theorem unless the maps in ^7 commute under composi- 

tion. Yet other fixed point theorems can be employed in specific situa- 

tions (see [8], Section 5; [3] P- ^57)- 

With the definition of ergodicity given in this section, every member 

of e(iO  is an extreme point of ^0(^9).    And the present definition is 

analogous to that of Phelps ([7], P« 8l).  Farrell's definition would 

have u e d(J)     ergodic if there does not exist B e o{&)     satisfying 

both B = UB for each U on a(ö)     (corresponding to a T~ )  and 



0 < V(B) < 1,  where V on a{0)     corresponds to u e J>(^) . For con- 

ditions that a [x    ergodic in Farrell's sense be in S(J)  see ([4], 

p. 452j [12]; pp. 196-7)«  In general his definition is not equivalent to 

either definition mentioned in the last section. 

It seems pointless to present a catalogue of representation theorems 

including results on the nonemptiness of J>(S)     and the uniqueness of the 

representation. But perhaps one striking fact deserves mention. Namely, 

the existence of a representation of the form (2) requires not only no 

assumptions on ti    and J,     but also no assumptions on the maps J    other 

than their measurability.  The only qualification is this. If &(&)     is 

not weak* closed in J2\a{0)\ ,  the a-field £> in (l) must be enlarged 

in a manner similar to that described by Bishop and deLeeuw (see [7], 

pp. 31 and 83; [6], p. 481). 

k-.      An Interpretation. 

One reason for being interested in finitely additive probabilities 

is a sympathy with the notion of subjective probability ([2]; [lO]). 

Thus it may seem interesting that the definitions of invariance and ergo- 

dicity used here have subjective interpretations.  For purposes of 

illustration, assume again that Q,    3~,  and T are as in the examples 

of Section 2.  Each u on J   determines a law for the coordinate pro- 

cess X (w) = w(n),  the n-th coordinate of oo„  If u represents your 

beliefs about X ,  then u is invariant for you if the probability 

X (w) = 0  (and hence the probability X ((A)) = l)  does not depend on n. 

u is ergodic for you if there is an £ > 0 for which no pattern of 0!s 

and l's of finite length j  (j = 1,2,...)  has the following property. 

Your probability that  (X, ,X , . . . ,X.)  exhibits the pattern is strictly 



between 0 and 1. But you are sure to -within probability £ that 

(X, ,X , . . .,X.)  will exhibit the pattern iff  (X ,L,...,X. J will also. 

By contrast, the frequentistic notion of ergodicity ([9]; PP» 10^-5) 

involving averages, figuring, in the ergodic theorem does not fit comfortably 

into the framework of subjective probability (cf. [2],   Chapter VI; [10], 

Chapter J). 
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