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155 Introduction.

Hewitt and Savage [6] have shown that finitely additive exchangeable
probabilities on a product space are integral averages of power product
probabilities. They prove this result as a corocllary to their theorems
on the countably additive case. This note adapts their technique to the
study of more.general invariant probabilities. From results of Farrell
[4] and Choguet and Feldman ([T], Section 10) it is concluded that
finitely additive invariant probabilities are averages of finitely addi-
tive ergodic probabilities.

In a countably additive context it seems necessary to impose restric-
tions on the Borel field being studied and on the maps used to define
invariance and. ergodicity. Relaxing the assumptions of one type must be
balanced by strengthening those of the other (in éddition to [4k] and [7],
see [1] and [12]). Here, however, the field of sets can be arbitrary,
and the maps are assumed only to be measurable. Rather than state a
host of theorems which can be proved, one particular case is proved in
detail. Later on it is explained how the techniques can be applied to
other problems. Several definitions of ergodicity are proposed and related
to the one used. The final section contains a subJjective probability.

interpretation of invariance and ergodicity.

Prepared with partial support of U.S. Army Research Office Grant
DA-ARO(D)-31-124-G726.



2. A Representation Theorem

A homomorphism from one field of sets to another is a map which pre-
gerves finite unions, finite intersections, and complements. The notions
of isomorphism and automorphism are defined in the obvious ways. A
o-homomorphism (isomorphism, automorphism) in addition preserves countable
unions and intersections.

Assume Q 1is a set, F a field of subsets of Q, and T a 1-1
bi-Fmeasurable map of £ onto Q. T and its powers can be viewed as
automorphisms of 7. A finifely additive probability p on F is said
to be invariant if p(A) = p(T_l )[= p(T°A), n = +1,+2...] for all A e %
i is ergodic if there do not exist & > 0 and Al’Ag"" e J for which

i -1
8 < p(An) <1-9%, Llim “(An A Am) = 0, and H_.(.An_A i

m, n->o
(A denotes symmetric difference). Iet A (F)[e(F)] be the set of finitely

An) -+ 0

additive invariant [ergodic] probabilities on K and let Z? be the smallest
o-field of subsets of &{(F) containing all sets of the form

(vlv e e, v(a) <a), where 0<a<1l, and A is a fixed set in J.

(1) THEOREM. \Y(#) 1is not empty. For each u e U(#) there is a unique

countably additive probability A on é satisfying

(2) o u(a) = fe 2 v(a) an(v)

for all A e J (It is clear that, conversely, if for a finitely additive
probability p on F there exists a A on & satisfying (2) for all
Ae F, then ued(F.)

PROOF. By Stone's representation theorem for Boolean algebras
({11], Section 8) there is an isomorphism @ of 7 onto the field
of compact open subsets of some compact, totally disconnected Hausdorff
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space S. Call S "the" Stone space of F; any two such are homeomorphic.
For B € U define UB =<p(T-l(@-;B)). Of course U and its powers are
avtomorphisms of a. Moreover, there exists a homeomorphism ¢ of S
with itself for which w-lB =UB for all B e (O ([11], Section 11).
let o(0) be the o-field generated by U; it is essential to notice
that o(0®) is the Baire o-field of S ([5], p. 221). Because V¥ and
w—l take Baire sets to Baire sets, U can be extended uniquely to a
g-automorphism of of®). W(F) and e(F) are in obvious 1-1 corres-
pondence with 0(9) and o(0) respectively. Each finitely additive
probability 1 on O is in fact countably additive, and so admits
unigque extension to a countably additive probability on 6«3). To see
this, it is enough to demonstrate that Bl’BQ"'° in O and
B, 3B, ..., irojl B, =@ dmply n(B,) -0 ([5], pp. 39 and 54). But
this condition is trivially satisfied, for since the B's are compact
and have void intersection, some Bi is already wvoid.

Recall that if n is any countably additive probability on o(0)
and for A,B ¢ o{(0), the distance from A to B is defined to be
n(A AB), then o(0®) is a complete semi-metric space, and moreover that
every member of the space is the limit of a Cauchy sequence of elements
of Cﬁ. Iiasy consequences of these facts are as follows:
(a) HO) =E9(c((3)); (b) if v eJ(a(@)) then v ¢ €(0) iff there
does not exist B € ¢(0) for which v(B A UB) =0, 0<v(B) <1l. The
existence of such a B implies that of a C satisfying UC = C,
0<v(C) <1 -- for example, take C = limsup U B.

An argument given by Choquet (see EY], pp. 81-2) and (a) imply U(F)
i1s nonempty. Briefly, the set of all finite, signed, countably additive

Baire measures on 8 can be viewed as the dual space of the Banach space
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of continuous, real-valued functions on S. With those measures given
the weak* topology, the maps Un, n=0,+1,+,... induce continuous
linear transformations of the (compact, convex) set of countably additive
probabilities, ®, onto itself.. And G(O)) is the subset of P
consisting of fixed points for the maps Un,. The Markov-Kakutani fixed
point theorem ([3], p. 456) implies J(c(ﬁ)) is not empty, and hence
that V(F) is not empty.

In view of the existence of V¥, (a), the remark following (b), and
a theorem of Farrell ([4], p. 460), for each u € J(O) there exists a
unique (countably additive) probability A on the o-field of subsets of
€(®) generated by sets of the form

{nln ee(@), n(C) < 0<a<1l, Ceo(®) satisfying

(5) a®) = [ @) &

e(0)
for each B € o(0). 1In particular (3) holds for each B e @. Yet for
such B, n(B) viewed as a function of 17 ¢ £€(0) is measurable with
respect to the o-field & generated by sets of the form

{nln e e©®), n(c) < o; 0<a<1l, CeOl. Thus for B e ( A can be
cuf down to &, and (3) still holds. But now (1) follows in view of
the correspondence between & and &, JO) and J(F), and €(O) and

el . |

Of course the definition of €(J) is contrived so that €&(%)
corresponds to countably additive probabilities on o(®) which are
ergodic in the usual way. And it is implicit in (2) that €(F) is the

set of extreme points of #(#). Yet it may be of interest to see what
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becomes of other definitions of ergodicity when applied to (Q,¥). For
example, e J(F) might be called ergodic if there does not exist

A ¢ F for which A = T—¥A, 0 < u(A) < 1. That this would have been
ridiculous is clear from the following example. Let O be the set of
bilateral sequences of O's and 1's, # 7be the smallest field contain-
ing the cylinders, and T be the shift. It is easy to verify that
and ¢ are the only members of F in variant under T—l, and so every
member of L(#) would be ergodic by this definition. (With @ given
the ordinary product.topology, F is a base of compact open sets, and

so ) is its own Stone space.)

It may seem reasonable to call p € M(F) ergodic if there does not
exist B e F for which u(B A T']B) =0, 0<u(B) <1l. Unlike the
case with o(®) and U, this definition is not identical to the one Jjust
discussed, and.it is true that a  not ergodic in this sense is nof
ergodic according to the definition adopted. Probabilities ergodic in
this sense need not be extreme in L(&F), however, as is illustrated by
an example. Let (Q,F) be as in the previous paragraph. Suppose u
is a measure on F induced by any sequence of exchangeable random
variables which are neither independent nor with probability one either
identically O or identically 1. Then it follows from deFinetti's
theorem ([2], Chapter 4; [6], p. 486) that the only sets B e J satis-
fying u(B A T?;B) =0 are O and ¢, and that wn 1is not extreme in

the power product probabilities on §, let alone in ~ﬂ(5?.

3. Generalizations.

Apparently several times in Section 2 T-l or W—l .was considered

when reference to the inverse was unnecessary. The reason for this was



to keep notation consistent with that of more general problems than the
one being studied. What follows is an outline of several results similar
to (1), some generalizations and some not comparable. The interested
reader will have no trouble filling in the details himself.

Suppose Q is a set, F a field of subsets, and </ a family of
# -measurable maps of £ into itself. Then T e <J implies 71 can be
viewed as a homomorphism of J (though the same is not necessarily true
of T). A finitely additive probebility u on < 1is in J(F) if
u(a) = p(TﬁlA) for each Te J and Ae¢ F ; it is in €(F) if there
do not exist 8 >0 .and Aj,A,,... € F for which & < u(h ) < 1-8,
] WA AA ) =0, and u(A_ A T‘lAn) >0 for each T edJ.

Again the Stone space argument can be employed. If U on O cor-
responds to T-l,T € J, there may not be a homeomorphism of the Stone
space corresponding to U, but at least there is a unique continuous
map & of S into S satisfying UB = g']B for each B ¢ O ([11],

p. 32). Hence the results of Farrell ([4], p. ﬁ60) and Choquet and Feld-
man ([7], pp. 82-3) apply to yield a number of theorems similar to (1).

Of course, that U(F) is not empty does not follow from the Markov-
Kakutani fixed point theorem unless the maps in </ commute under composi-
tion. Yet other fixed point theorems can be employed in specific situa-
tions (see [8], Section 5; [3] p. 457).

With the definition of ergodicity given in this section, every member
of €(F) is an extreme point of V(F). And the present definition is
analogous to that of Phelps ([7], p. 81). Farrell's definition would
have p € () ergodic if there does not exist B e o(®) satisfying
Y

both B =UB for each U on o(0) (corresponding to a T and



0<v(B) <1, where v on o(@) corresponds to p e HF . For con-
ditions that a u ergodic in Farrell's sense be in &(JF) see ([4],

p. 452; [12], pp. 196-T). In general his definition is not equivalent to
either definition mentioned in the last section.

It seems pointless to present a catalogue of representation theorems
including results on the nonemptiness of I(F) and the uniqueness of the
representation. But perhaps one striking fact deserves mention. Namely,
the existence of a representation of the form (2) requires not only no
assumptions on £ and jﬂ but also no assumptions on the maps J other
than their measurability. The only qualification is this. If €(0Q) is
not weak¥* closed in gQG(CO), the o-field 'Z? in (1) must be enlarged
in a manner similar to that deécribed by Bishop and deleeuw (see [T7],

pp. 31 and 83; [6], p. 481).

L.  An Interpretation.

One reason for being interested in finitely additive probabilities
is a sympathy with the notion of subjective probability ([2]; [10]).
Thus it may seem interesting that the definitions of invariance and ergo-
dicity used here have subjective interpretations. For purposes of
illustration, assume again that Q, :?, and T are as in the examples
of Section 2. Each u on SZ determines a law.for the coordinate pro-~
cess Xn(w) = w(n), the n-th coordinate of w. If u represents your
beliefs about Xn, then ¢ is invariant for you if the probability
Xn(w) = 0 (and hence the probability Xn(w) = 1) does not depend on n.
g 1is ergodic for you if there is an & > 0O for which no pattern of O's
and 1's of finite length j (J = 1,2,...) has the following property.

Your probability that (Xl’xé”"°’xj) exhibits the pattern is strictly
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between O and 1. But you are sure to within probability ¢ that

(X,,%.,...,X,) will exhibit the pattern iff (¥X.,X,,...,X. will also.
72 J 273’

J+l)
By contrast, the frequentistic notion of ergodicity ([9], pp. 10L-5)

involving averages figuring in the ergodic theorem does not fit comfortably

into the framework of subjective probability (cf. [2], Chapter VI; [10],

Chapter 3).
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