DECISION studies group
TWO PAPERS ON ADAPTIVE INVENTORY CONTROL

By

Robert Glier

January, 1968

Prepared Under Contract Nonr 4457(00)(NR 347-001)

for

Office of Naval Research

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

DECISION STUDIES GROUP
845 Page Mill Road
Palo Alto, California 94304
Summary

In this final report for the contract year we present two papers on adaptive inventory control. The first entitled

An Adaptive Inventory Model with Lead Time

employs process control techniques, developed by G. E. P. Box and G. Jenkins [1] to obtain an optimal order procedure for a multiperiod inventory problem. At the start of each of an infinite number of periods an order may be placed to adjust the inventory level in anticipation of future demands. The cost of ordering is a fixed cost C_1 which is to be balanced against a loss proportional to the square of the on-hand inventory (or inventory shortage).

The paper first considers the problem in which there are a finite number of periods and in which the lead time between an order and its delivery is T units. The results obtained are then extended to the case in which the number of periods approaches infinity. The optimal order procedure is adaptive in the sense that it uses information on past demand to forecast future requirements.

The second paper

A Bayesian Approach to an Inventory Problem

based on the work of Jacob Marschak [2] considers a similar problem; orders to satisfy anticipated demand are to be placed at the start of each of a finite number of periods. If too many units are ordered each unit of surplus at the end of the period incurs a cost C_1 while if too
few units are ordered each unit of shortage results in a cost C_2.

The optimal procedure is adaptive in that Bayesian procedures are used with the accumulated demand data to estimate the unknown parameters of the demand distribution.
AN ADAPTIVE INVENTORY MODEL WITH LEAD TIME

1. Introduction

In this note we consider an inventory process at discrete time points $0, 1, 2, \ldots, p, p+1, \ldots$. Let d_p be the demand in the interval $[p, p+1]$, and let x^*_p be the amount of inventory ordered at time p. Then $z_p = \sum_{i=0}^{p} d_i$ represents the cumulative demand at the end of period $[p, p+1]$ and $X^*_p = \sum_{i=0}^{p} x^*_i$ represents the cumulative orders by time p. We assume a leadtime of T units, that an order placed at time p will not arrive until time $p+T$. Let $x^*_p(T) = x^*_p$ represent the amount of inventory which arrive at time $p+T$ but which was ordered at time p. Let $X^*_p(T) = \sum_{i=0}^{p} x^*_i(T)$.

$X^*_p(T)$ then represents the total inventory that has arrived by time $p+T$.

There is a fixed administrative cost C of placing an order and at each time p we loose an amount $a(z^*_p - X^*_p - T(T))^2$, $a > 0$. The quantity $|z^*_p - X^*_p - T(T)|$ is the magnitude of a shortage or a surplus the end of the p^{th} period. At each time p we must decide on one of two actions, to order or not to order. If we decide to order we must know the quantity to order. Since there is a leadtime of T units, our ordering policy of time p will not become effective until time $p+T$. Suppose that at time p we place an order for an amount x^*_p. In time period $p+T$ we can therefore expect to loose an amount $C + a(z^*_p + T(T))^2$. If we place no order at time p, we will loose an amount $a(z^*_{p+T} - X^*_p(T))^2$. Hence if we decide to order at time p, we should order an amount x^*_p.
such that

$$E(a(z_{p+T}-X_p(T))^2|z_1,...,z_p) = E(a|z_{p+T}-(x*p+X_{p-1}(T))^2|z_1,...,z_p)$$

is a minimum.

If we decide not to order, the expected cost of not ordering should be less than the expected cost of ordering the optimal amount, that is

$$E(a(z_{p+T}-X_{p-1}(T))^2|z_1,...,z_p) < E(a(z_{p+T}-X_p(T))^2|z_1,...,z_p) .$$

2. Cumulative demand model

We assume that $z_{p+1} = g_0S_{p} + \alpha_{p+1}$, where $S_p = \sum_{i=1}^{p} \alpha_i$ and the α_p are independent normally distributed random variables with mean 0 and variance σ^2. Hence

$$z_{p+T} = g_0S_{p+T-1} + \alpha_{p+T} .$$

The minimum variance estimate of z_{p+T} at time p is given by

$$\hat{z}_p(T) = E(z_{p+T}|z_1,z_2,...,z_p) = g_0S_{p} .$$

Suppose that we have observed the z process up to time p and must decide whether or not to place a final order at time p. If we order an amount x^*_p, then we want to insure that

$$E(a(z_p(T)-X_p(T))^2|z_1,...,z_p)$$

is a minimum. Since

$$X_p(T) = x^*_p + X_{p-1}(T)$$

...
we choose

\[x^*_p = \mathbb{E}_p(T) - X_{p-1}(T) \]

so that

\[X_p(T) = \mathbb{E}_p(T). \]

Let

\[L_0^0(\mathbb{E}_p(T)) = \text{the time expected loss if we do not place an order at time } p, \]

and

\[L_1^1(\mathbb{E}_p(T)) = \text{the expected loss if an order is placed}.* \]

We have

\[L_0^0(\mathbb{E}_p(T)) = E(a(z_{p+T}^p-X_{p-1}(T))^2|z_1, \ldots, z_p) \]

and

\[z_{p+T} = \mathbb{E}_p(T) + \alpha_p + \gamma_0 \sum_{i=1}^{T-1} \alpha_{p+1} = \mathbb{E}_p(T) + \sigma_C u \]

where \(C_T = \sqrt{1+\gamma_0^2(T-1)} \) and \(u \) is a unit normal random variable independent of \(\mathbb{E}_p(T) \). Therefore

* The losses are really a function of the variable \(|\mathbb{E}_p(T)-X_{p-1}(T)| \) although in keeping with Box's notation we have suppressed the dependence on the \(X \)'s.
L^0_p(T) = E[a(\hat{\xi}_p(T) + C_T T - \chi_{p-1}(T))^2| z_1, \ldots, z_p] \\
= a(\hat{\xi}_p(T) - \chi_{p-1}(T))^2 + a C_T^2.

Similarly

L^1_p(T) = E(a(z_p+1 - \hat{\xi}_p(T))^2| z_1, \ldots, z_p) + C \\
= E(a(\sigma^2 C_T^2 u^2)) + C = a\sigma^2 C_T^2 + C.

Hence we order if and only if \(L^1_p(T) \leq L^0_p(T) \) or equivalently

if and only if \(|\hat{\xi}_p(T) - \chi_{p-1}(T)| \geq \sqrt{\frac{C}{a}} = \lambda_1 \). The loss for this case is

L^1_p(T) = \min\{ L^0_p(T), L^1_p(T) \} = \min\{ a\sigma^2 C_T^2 + C, a\sigma^2 C_T^2 + a(\hat{\xi}_p(T) - \chi_{p-1}(T))^2 \}

Now suppose that we can observe the \(z \) process from time \(p \) to time \(p+N-1 \). We must make \(N \) decisions, one at each of time points \(p, p+1, \ldots, p+N-1 \). Let

\(L^0_p(T) = \) the expected loss if we do not order at time \(p \)

and

\(L^1_p(T) = \) the expected loss if we order at time \(p \).

For the case of \(N=2 \) we have

\[L^0_p(T) = a(\hat{\xi}_p(T) - \chi_{p-1}(T))^2 + a C_T^2 \]

\[+ \int \min\{a^2 C_T^2 + C, a(\hat{\xi}_{p+1}(T) - \chi_{p-1}(T))^2 + a C_T^2\} dF(\hat{\xi}_{p+1}(T)| z_1, \ldots, z_p) \]
where $F(z_{p+1}(T)|z_1, ..., z_p)$ represents the conditional distribution of $z_{p+1}(T)$ given $z_1, ..., z_p$. But

$$
\hat{z}_{p+1}(T) = \gamma_0 \sigma_{p+1} + \hat{z}_p(T) = \gamma_0 \sigma u + \hat{z}_p(T)
$$

where

$$
u \sim N(0,1).
$$

So

$$
L_0^2(z_p(T)) = aC_T^2 + a(\hat{z}_p(T) - X_{p-1}(T))^2
$$

$$
+ \int \min\{aC_T^2 + C, a(\hat{z}_p(T) + \gamma_0 \sigma u - X_{p-1}(T))^2 + aC_T^2\} \frac{e^{-u^2/2}}{\sqrt{2\pi}} \, du
$$

Similarly

$$
L_1^2(z_p(T)) = aC_T^2 + C + \int \min\{aC_T^2 + C, a(\sigma u)^2\} \frac{e^{-u^2/2}}{\sqrt{2\pi}} \, du
$$

Because of the symmetry of the normal distribution

$$
L_2^1(\hat{z}_p(T)) \geq L_2^0(\hat{z}_p(T)) \text{ if and only if } |\hat{z}_p(T) - X_{p-1}(T)| \leq \lambda_2
$$

In general

$$
L_N^0(\hat{z}_p(T)) = aC_T^2 + a(\hat{z}_p(T) - X_{p-1}(T))^2 + \int L_N-1(\hat{z}_p(T) + \gamma_0 \sigma u) \frac{e^{-u^2/2}}{\sqrt{2\pi}} \, du
$$

and

7
The last terms of these expressions depend on $X_p(T)$, and, in general, are different because they depend on which action was taken at time p. By symmetry it follows that $L_N^o(\xi_p(T)) \geq L_N^d(\xi_p(T))$ if and only if $|\xi_p(T) - X_p(T)| = |\xi_p(T) - X_{p-1}(T)| \geq \lambda_N$. The λ_N form a decreasing sequence of numbers and hence $\lambda = \lim \lambda_N$ exists. λ corresponds to the case where we observe the process at infinitely many time points. Summarizing, our decision rule is the following: Order an amount

$$x^* = \xi_p(T) - X_{p-1}(T) \text{ if } |\xi_p(T) - X_{p-1}(T)| \geq \lambda$$

and do not order if

$$|\xi_p(T) - X_{p-1}(T)| < \lambda.$$
represents the loss within a run and \(C \) is the cost of placing the one order. Hence the average loss per period may be written as

\[
L = \frac{C}{E(h)} + \frac{E(S_h)}{E(h)}.
\]

\[
E(S_h) = E(E(S_h|\hat{h})) \quad \text{and} \quad E(S_h|\hat{h}) = \sum_{i=0}^{n-1} aE[(z_{p+T+i} - z_p(T))^2 | z_1, z_2, \ldots, z_{p+1}].
\]

Using the relation

\[
z_{p+T+i} = z_{p+1}(T) + \gamma_i \sum_{j=1}^{T-1} \alpha_{p+j+i} + \alpha_{p+T+i}
\]

and substituting into the previous expression yields,

\[
E(S_h|\hat{h}) = \sum_{i=0}^{n-1} a(z_{p+1}(T) - z_p(T))^2 + \sigma^2\theta h.
\]

Hence the average loss per observation may be written as

\[
L = \frac{C}{E(h)} + \frac{E(\sum_{i=1}^{n-1} a(z_{p+1}(T) - z_p(T))^2)}{E(h)}
\]

For any \(i \) we have \((z_{p+1}(T) - z_p(T)) = \gamma_i \sigma (u_{p+1} + u_{p+2} + \ldots + u_{p+1})\) where the \(u \)'s are independent normal random variables with mean 0 and variance 1. It suffices to know the value of \(\lambda \) if \(\gamma_0 = \sigma = 1 \) since \(|z_{p+1}(T) - z_p(T)| > \lambda \) if and only if \(|\sum_{i=1}^{n} u_{p+1}| > \lambda/\gamma_0 \sigma = \Lambda \). Hence if
we can find Λ we obtain λ by multiplication. So assume that

$\gamma_0 = \sigma = 1$. The procedure for computing Λ is to pick a Λ compute

the loss $L(\Lambda)$ associated with it and use for the optimum Λ the number

Λ_{opt} such that $L(\Lambda_{\text{opt}}) = \inf L(\Lambda)$.

Suppose that Λ is chosen. Compute quantities $\hat{a}_1, \ldots, \hat{a}_n$ by

the following method. For each $j = 1, 2, \ldots, h$ draw from the unit

normal distribution $u_1, u_2, \ldots, u_{\Lambda_j}$ where $|\sum_{i=1}^{\hat{a}_j} u_i| > \Lambda$, and $K < \hat{a}_j$

implies that $|\sum_{i=1}^{K} u_i| \leq \Lambda$. Hence each \hat{a}_j is a value of the run length.

The estimate $\hat{E}(\hat{a})$ of $E(\hat{a})$ is given by $\frac{1}{n} \sum_{j=1}^{h} \hat{a}_j$. To estimate

$$E(\sum_{i=1}^{\hat{a}_j} \sum_{k=1}^{\hat{a}_j} a(\hat{a}_{p+1}(T) - \hat{a}_p(T))^2$$

we proceed as follows.

For each \hat{a}_j and for each $k < \hat{a}_j$ we draw the sample

$u_1, u_2, \ldots, u_{\hat{a}_j}$ from the unit normal distribution, and compute the

quantities $\left(\sum_{k=1}^{\hat{a}_j} u_{j,k}^2\right)$ and $\sum_{k=1}^{\hat{a}_j} a(\sum_{k=1}^{\hat{a}_j} u_{j,k})^2$. It should be emphasized

that for each $k < \hat{a}_j$ a different sample is drawn from the unit normal

distribution. The quantity

$$\sum_{k=1}^{\hat{a}_j} a(\sum_{k=1}^{\hat{a}_j} u_{j,k})^2$$

is equal to

$$\sum_{i=1}^{\hat{a}_j} a(\hat{a}_{p+1}(T) - \hat{a}_p(T))^2$$
by relation (1). Our estimate $\hat{E}(S_n)$ of $E(S_n)$ is given by

$$\frac{1}{N} \sum_{j=1}^{h} \left(\sum_{i=1}^{i} \alpha(\sum_{n=1}^{n} u_{n,j}^{j})^2 \right) + C_{2}\hat{E}(\hat{n}) .$$

Hence

$$L(\Lambda) = \frac{C}{\hat{E}(\hat{n})} + \frac{\hat{E}(S_n)}{\hat{E}(\hat{n})} .$$

We repeat this process until we find a Λ_{opt} which minimizes $L(\Lambda)$.
1.0 Introduction

Suppose we are observing a finite discrete stochastic process X_t, $0 \leq t \leq T$ where $X_0 = 0$ and X_t represents cumulative loss by the end of the period $(t-1,t)$ for $1 \leq t \leq T$. In time period $(t, t+1)$ there is a demand d_t and a stock level Y_t. The quantity $|d_t - Y_t|$ represents the magnitude of either a shortage or a surplus which we measure in dollars. We assume that there is a cost C_1 associated with over ordering and a cost C_2 associated with not ordering enough. That is, if we have a surplus of one unit we pay C_1, and if we have a shortage of 1 unit we are penalized an amount C_2.

Assume that

$$X_t = X_{t-1} + C_1(Y_{t-1} - d_{t-1})^+ + C_2(Y_{t-1} - d_{t-1})^-$$

where

$$(Y_{t-1} - d_{t-1})^+ = \max(0, Y_{t-1} - d_{t-1})$$ and

$$(Y_{t-1} - d_{t-1})^- = \max(0, d_{t-1} - Y_{t-1})$$.

The cumulative loss at time t is equal to the cumulative loss at time $t-1$ plus a loss due to having a surplus or a shortage. The demands d_t are independent, identically distributed random variables and each assumes a finite number of values $0, 1, 2, \ldots, N$. Let

$$\pi_k = P(d_t = k), \quad k = 0, 1, \ldots, N.$$
We assume that the α_k have a joint prior distribution P_0. Let

$$\tilde{\alpha}_j = \int \alpha_j dP_0$$

and

$$\tilde{\alpha}_j(d_0, \ldots, d_t) = \int \alpha_j dP_1[d_0, d_1, \ldots, d_t]$$

where $P_1[d_0, d_1, \ldots, d_t]$ is the posterior distribution of the α's given the demands d_0, d_1, \ldots, d_t.

It is desired to choose an inventory policy $(Y_0^*, Y_1^*, \ldots, Y_{T-1}^*)$ such that the expected value of X_T, the cumulative loss at time T is a minimum. Each Y_t^* will represent the optimum stock level at the beginning of the time period $(t, t+1)$, time period t. The policy $(Y_0^*, Y_1^*, \ldots, Y_{T-1}^*)$ will be adaptive in the sense that the choice of Y_t^* will depend upon the previous demands $d_0, d_1, d_2, \ldots, d_{t-1}$.

2.0 Example

Consider N identical systems which will become obsolete after T quarters. Assume that orders can be placed for spare parts quarterly up until the units are scrapped. For a given part which is used k times in each system we wish to know how many spare parts to order in each of the quarters. Since the systems are to be scrapped, it would be desirable to order in such a way as to minimize the total cumulative loss at time T associated with this particular part. Let X_T denote the accumulation of losses incurred in each quarter due to having a surplus or shortage of units. The model yields an ordering policy.
(W^*, W^*_1, ..., W^*_T-1) for which X^*_T is a minimum. W^*_t, the number of units ordered at the start of the t**th** quarter, depends upon previous demands through the **a posteriori** probability distribution on the parameters of the demand distribution.

3.0 Case 1: T=2 and Bernoulli Demand

Assume now that T=2 and P[d_i=1] = \(\alpha\) and P[d_i=0] = 1-\(\alpha\) for \(i = 0,1,2\). Let \(P_o\) be the prior distribution of the \(\alpha_i\). \(P_o\) is assumed to be discrete and

\[P_k = P[\alpha = \alpha_k] \quad k = 1,2,\ldots,M \]

In this case the posterior distribution of \(\alpha\) given \(d_0\) is

\[P_1[d_0] = \{P_1(d_0), \ldots, P_M(d_0)\} \]

where, for \(j = 1,2,\ldots,M\)

\[P_j(d_0) = \begin{cases} \frac{\alpha_j P_j}{\sum_{k=1}^{M} \alpha_k P_k} & \text{if } d_0 = 1 \\ \frac{(1-\alpha_j) P_j}{\sum_{k=1}^{M} (1-\alpha_k) P_k} & \text{if } d_0 = 0 \end{cases} \]

We first want to choose \(y^*_1\) to minimize

\[E_{P_1[d_0]} E_{d_1} X_2 = E_{P_1[d_0]} E_{d_1} [X_1 + C_1(Y_1-d_1)^+ + C_2(Y_1-d_1)^-] \]

\[= X_1 + E_{P_1[d_0]} E_{d_1} [C_1(Y_1-d_1)^+ + C_2(Y_1-d_1)^-] \]

14
where E_{d_1} denotes an expectation taken with respect to d_1 and $E_{P_1[d_0]}$ denotes an expectation taken with respect to the posterior distribution of α given d_0. Therefore

$$E_{d_1}[C_1(Y_1-d_1)^+ + C_2(Y_1-d_1)^-]$$

$$= \alpha[C_1(Y_1-1)^+ + C_2(Y_1-1)^- - C_1Y_1^+ - C_2Y_1^-] + C_1Y_1^+ + C_2Y_1^-$$

and hence

$$E_{P_1[d_0]}E_{d_1}[C_1(Y_1-d_1)^+ + C_2(Y_1-d_1)^-]$$

$$= \tilde{a}(d_0)[C_1(Y_1-1)^+ + C_2(Y_1-1)^- - C_1Y_1^+ - C_2Y_1^-] + C_1Y_1^+ + C_2Y_1^-.$$

The value Y_1^* which minimizes this expression is

$$0 \text{ if } \tilde{a}(d_0)C_2 < (1-\tilde{a}(d_0))C_1$$

and

$$1 \text{ if } \tilde{a}(d_0)C_2 > (1-\tilde{a}(d_0))C_1.$$

Hence the loss will be

$$\min\{\tilde{a}(d_0)C_2, (1-\tilde{a}(d_0))C_1\}.$$

Therefore

$$\min_{Y_1}[E_{P_1[d_0]}E_{d_1}X_2] = x_1 + \min\{\tilde{a}(d_0)C_2, (1-\tilde{a}(d_0))C_1\}$$

$$= x_0 + C_1(Y_o-d_0)^+ + C_2(Y_o-d_0)^- + \min\{\tilde{a}(d_0)C_2, (1-\tilde{a}(d_0))C_1\}$$

15
Now we wish to choose the value of Y^* to minimize the expression

$$
E_p E_d \left[C_1(Y_o - d_o)^+ + C_2(Y_o - d_o)^- \right]
$$

$$
= G(C_1(Y_o - 1)^+ + C_2(Y_o - 1)^-) + C_1Y^- + C_2Y^+ .
$$

The value of Y^* is

- 0 if $\delta c_2 < (1-\delta)c_1$
- 1 if $\delta c_2 > (1-\delta)c_1$

Hence, the optimal procedure is to choose

$$
Y^*_o = \begin{cases}
0 & \text{if } \delta c_2 < (1-\delta)c_1 \\
1 & \text{if } \delta c_2 > (1-\delta)c_1
\end{cases}
$$

and

$$
Y^*_1 = \begin{cases}
0 & \text{if } \delta(d_o)c_2 < (1-\delta(d_o))c_1 \\
1 & \text{if } \delta(d_o)c_2 > (1-\delta(d_o))c_1
\end{cases}
$$

The minimal expected loss is given by

$$
X_o + \min(\delta c_2, (1-\delta)c_1) + \delta \min(\delta(1)c_2, (1-\delta(1))c_1) + (1-\delta) \min(\delta(0)c_2, (1-\delta(0))c_1) .
$$
At each time point we order an amount \(W_t^* \) where \(t = 0,1 \). \(W_t^* \) is determined by \(Y_{t-1}^* \) and \(d_{t-1} \) in the sense that we order an amount necessary to bring the stock level up to \(Y_t^* \). It should be noted that this allows the possibility of negative orders which would be the case if the cost of holding inventory is too high. Clearly,

\[
W_0^* = Y_0^* \quad \text{and} \quad W_1^* = Y_1^* - Y_0^* + d_0 .
\]

4. Case 2: General Case

In general, let

\[
X_t = X_{t-1} + C_1(Y_{t-1} - d_{t-1})^+ + C_2(Y_{t-1} - d_{t-1})^-
\]

and let demand during each period be characterized by independent, identically distributed discrete random variables with probability function

\[
P[d_t = k] = \alpha_k \quad k = 0,1,2,\ldots,N
\]

Let

\[
g(k,d_0,d_1,\ldots,d_{T-j}) = k[C_1 \sum_{i=0}^{k} \tilde{a}_1(d_0,\ldots,d_{T-j}) - C_2 \sum_{i=k+1}^{N} \tilde{a}_1(d_0,\ldots,d_{T-j})]
\]

and let

\[
f(d_0,d_1,\ldots,d_{T-j}) = \min_{0 \leq k \leq N} g(k,d_0,d_1,\ldots,d_{T-j}) .
\]
We first choose Y_{T-1} in order to minimize

$$E_P[d_0, d_1, \ldots, d_{T-2}]E_{d_{T-1}} X_T = X_{T-1} + E_P[d_0, \ldots, d_{T-2}]E_{d_{T-1}} (C_1(Y_{T-1}-d_{T-1})^+$$

$$+ C_2(Y_{T-1}-d_{T-1})^-)$$

$$= X_{T-1} + \sum_{i=0}^{N} \bar{\alpha}_i(d_0, \ldots, d_{T-2})[C_1(Y_{T-1}-i)^+ + C_2(Y_{T-1}-i)^-]$$

$$= X_{T-1} + Y_{T-1}(C_1 \sum_{i=0}^{k} \bar{\alpha}_i(d_0, \ldots, d_{T-2})$$

$$- C_2 \sum_{i=k+1}^{N} \bar{\alpha}_i(d_0, \ldots, d_{T-2}) + C_2 \sum_{i=0}^{k} \bar{\alpha}_i(d_0, \ldots, d_{T-2})$$

$$- C_1 \sum_{i=k+1}^{N} \bar{\alpha}_i(d_0, \ldots, d_{T-2})$$

for $k \leq Y_{T-1} \leq k+1; \quad k = 0, \ldots, N-1$.

This function is continuous and piecewise linear in the intervals $(k, k+1)$. The value of the function at the end point k of the interval $(k, k+1)$ is given by

$$X_{T-1} + g(k, d_0, \ldots, d_{T-2})$$

and the minimum value is given by

$$X_{T-1} + f(d_0, d_1, \ldots, d_{T-2}).$$

Then, choose
\[Y_{T-1}^* = k^* \]

where

\[g(k^*, d_o, \ldots, d_{T-2}) = f(d_o, d_1, \ldots, d_{T-2}) \]

Hence

\[\text{Min } E_p \{ d_o, \ldots, d_{T-2} \} E_{d_{T-1}} X_{T-1} = X_{T-1} + f(d_o, d_1, \ldots, d_{T-2}) \]

\[= X_{T-2} + C_1 (Y_{T-2} - d_{T-2})^+ + C_2 (Y_{T-2} - d_{T-2})^- + f(d_o, d_1, \ldots, d_{T-2}) \]

Now choose \(Y_{T-2} \) to minimize \(E_p \{ d_o, \ldots, d_{T-3} \} E_{d_{T-2}} X_{T-1} \). This value is

\[Y_{T-2}^* = k^* \]

where

\[g(k^*, d_o, \ldots, d_{T-3}) = f(d_o, \ldots, d_{T-3}) \]

and

\[\text{Min } E_p \{ d_o, \ldots, d_{T-3} \} E_{d_{T-2}} X_{T-1} = X_{T-2} + f(d_o, \ldots, d_{T-3}) \]

Hence

\[\text{Min } \{ E_p \{ d_o, \ldots, d_{T-3} \} E_{d_{T-2}} Y_{T-1} \} = \text{Min } E_p \{ d_o, \ldots, d_{T-2} \} E_{d_{T-1}} \]

\[= X_{T-2} + f(d_o, d_1, \ldots, d_{T-3}) + \sum_{j=0}^{N} \tilde{g}_j(d_o, \ldots, d_{T-3}) f(d_o, \ldots, d_{T-3}, j) \]

19
We continue in this fashion each time choosing \(Y^*_j = k^* \) such that

\[
g(k^*, d_0, \ldots, d_{T-j-1}) = f(d_0, \ldots, d_{T-j-1})
\]

This holds for \(j = 1, 2, \ldots, N \). We pick \(Y^*_0 \) to minimize

\[
E_{d_0} E_{d} (X_0 + C_1(Y_0 - d_0)^+ + C_2(Y_0 - d_0)^-)
\]

The required value of \(Y^*_0 \) will be that \(k^* \) such that the quantity

\[
k^* (C_1 \sum_{i=0}^{k^*} \bar{a}_1 - C_2 \sum_{i=k^*+1}^{N} \tilde{a}_1) + C_2 \sum_{i=0}^{k^*} \bar{a}_1 - C_1 \sum_{i=k^*+1}^{N} \tilde{a}_1
\]

is a minimum.

We have now chosen a sequence \(Y^*_0, Y^*_1, Y^*_j, \ldots, Y^*_{T-1} \) with the property that

\[
E_{d_j} X_{j+1} = E_{d_j} [X_j + C_1(Y^*_j - d_j)^+ + C_2(Y^*_j - d_j)^-]
\]

is a minimum and the parameters of the distribution of \(d_j \) are the posterior means of the \(\alpha_k \) given the demands \(d_0, \ldots, d_{j-1} \). In this sense the procedure uses the information provided by the previous demands.

Having determined the optimal stock levels \((Y^*_0, Y^*_1, \ldots, Y^*_{T-1}) \) we can determine our ordering policy \((W^*_0, W^*_1, \ldots, W^*_{T-1}) \) by the following recursive formula

\[
W^*_0 = Y^*_0
\]
\[W_k^* = y_k^* - y_{k-1}^* + d_{k-1} \quad \text{for} \quad k = 1, 2, \ldots, T-1. \]
REFERENCES

Two papers on adaptive inventory control are presented. The first uses process control techniques to obtain an optimal policy for an inventory problem in which orders are placed at the start of each of an infinite number of intervals. The cost of ordering is C and is balanced against a cost proportional to the square of the on-hand inventory (or shortage). Delivery lead time is T units.

The second paper considers a similar multiperiod problem in which there is a holding cost and shortage cost. The inventory procedure is adaptive in that Bayesian procedures are used with the accumulated demand data to estimate the unknown parameters of the demand distribution.
1. Inventory Policy
2. Dynamic Programming
3. Adaptive Control