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ABSTRACT

A zero-one (0-1) linear programming formulation of
multiproject and job-shop scheduling problems is presented
that is more general and computationally tractable than
other known formulations. It can accomodate a wide range
of iwal-world situations including multiple resource c'.n-
straints, due dates, job splitting, resource substitut-
abiilty, and concurrency and nonconcurrency of job per-
formance requirements. Three possible objective functions
are discussed: minimizing total throughput time for all
projects: minimizing the time by which all projects are
completed (i.e., minimizing makespan); and minimizing
total lateness or lateness penalty for all projects.

INTRODUCTION

Several years have passed since the pioneering work of Bownwri

[3], Wagner [24], and Ma-'ie C13] with their mathematical programming

formulations of scheduling problems. These and other mathematical

scheduling models are discussed by Sisson [22], by Conway, Maxwell,

and Miller [4], and by Muth and Thompson L17]. Recent research efforts

have concentrated on simulation approaches to scheduling L4, 6 ,8,15,2 6 ,2 7];

however, another look at the problem from a mathematical programming

point of view seems in order, especially in light of recent develop-

ments in 0-I programming [7,9,18,25].



The -;chcduling problens cunsidered here deal with det,,idnng

when a job should be processed, given limited e'.ailabilitius of

rcources, e.g., rmen, equiptwnL, and facilities. The words .ob adI

project will be used Lhvuugliout to denote the two levels of work

aggregation being considered. A project consOi.tr of a set of jobs.

In Luthei literaturc describing acht-d4ling research, the following

equivalent descriptors way be found:

Job Project

task product

operation job

project progrim

The model considers only the job level and the project level. Con-

sideration of three or tire levels, e.g., operation, job, and project,

only complicates the notational problem.

The I anne 113] formulation uses integer variables to indicate in

which time period the job is started, and the Wagner [24] formulation

uses 0-1 variables to indicate whether or not a job is assigned to a

specific order-pooition on a specific machine. Neither formulation,

however, accommodates multiple resource constraints. The Bowman 13]

formulation uses 0-1 variables to indicate for each period over a

scheduling horizon whether or no a job is being processed. His

formulation does not expressly provide for multiple resource constraints,

Alt ough such an extension could be made. The resultine formulation

would be larger (in terms of the number of variables and cistraints

involved) than the one presented here. The following formulation upeA
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0-1 variables to indicate for select periods (depending upon job

arrival time, due date, sequencing relationships, etc.) whether or

not a job in rompleted -, tho-e Wlodv. A @imtiler tormulatton L19]

usis 0-I variables to indicate for 6elect periods whether or not a

job has been cvmpleted plior to those periods. For a given type of1scheadulint environe=nt, alterutLive formulations often nwy be devised.

An efficient formulation, however, will depend upon a judicious choice

of definition for the variables. Indeed, the selection of a definition

for the variables and the synthesis of objective functions and con-

straLnts constitute a challenging problem in design. The design

capocts of wathematicai furmulation are discussed in [20].

Determining when the jobs should be processed depends upon the

desired objective. Three are considered here:

1. Minimize total throughput time (time in the shop) for all

projects;

2. Minimize the time by which all projects are completed (i.e,,

minimize makespan); and

3. Minimize total lateness or lateness penalty for all projects.

Equations are developed to ensure that a schedule meets the foliowing

constraints when they are imposed:

1. Limited resources;

2. Precedence relations between Jobs;

3. Job splitting possibilities;

4. Project and job duc dates;

5. Substitution of resources to perfor the Jobs-

6. Concurrent and nonconcurrent Job perlorrawnc rtocpi retnret I

If
p I i
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DEFINITIONS

i - project number, i - 1,2....I; I - number of projects.

- Job number, I 1,2..... N. N. - number of lobs in project i.

t time period, t - 1,2,.,. max Gi; C, - ab.olute due date, Project

. must be completed in or before period C,. If an abnolutoe duc

date is not specified, G, becomes the lzat psriod la the acicd-

uling horizon.

- desired due date. Project I is not late i it is completed in or

before period g C

e - earliest pousible period by which project i could be completed.

aij - arrival period of job j, project i. Arrivals occur at the

beginning of periods.

d j - number of periods required to perform job j of project i. It

is assumed to be known with certainty.

Iij - the earliest possible period in which job j could be completed.

U ij " the latest possible period in which job j could be completed;

viz., an absolute job due date.

k - reaource or facility number, k a 1,2,...,K; K - number of

different res- urce types.

r j k - amount of type k resource required on job J of project i.

Rkt - amount of type k resource available in period t.

xij t - a variable which is I if job j of project i is completed in

period t; 0 otherwise. x jt need not be tr~ated as a variable

in all periods, since it equals 0 for t < Zi2" atid for t > uij.

Kit - a variable which s I in period t if all jobs of project i

have been completed by period t (i.e., completed in or before



pW1014i i-lVI 0 Otherwise, i need riot be treoted an I

varlable iii all p.uriods, sinxe it equals 0 for t < ci and I

for t I
To illustrate the nattirp of the 'Jetiitionw, the Scheduling of

ive, joq, belonging to two. projects requiring two rcsourcv t slbw1 ill

Fig. 1. The iigure depicts arrival periods, job durations, due dates,

precedence requirements, and values of xj t and xi vai'ables, The re

is one unit of resource available for each of the two typeu of resources;

i.e., Rktl for k-1, 2 and for all t. The resource requirements, rijk,

for each job are assumed to be:

Resource Requirements, rij k

. 1 0 1
2 1 01 1 0

As an example of the calculations of Iij and u j for sequenced jobs,

Ul -G d13 11

and

i 13-maxa 11+d 1 1+d 13'1, a1 3 +d 13-1) 9.

The infurtatioi, depicted in Fig. I represents known inputs at the

time of scheduling. (In a job-shop environment where additional pro-

jects arrive, rescheduling could take place when such inputs bacomc

known.)
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O ECiIVE FUUICTIONS

Jobs are to bc sLncdulcd in a manier th-It optimilze ,OIn meV i

of p frn~irw'-: 'r objective functlotn, ubjert to rprtoin enviroinental

requirement.s and limitations. The choice of an appropriate: objective

luncLtion inay diLfer for various scheduling ervironmcnts. Sevetal coliwion

onei are sclected for explicit formulation.

M-inimizink Total Project Throughput Time

Individual project throughput time is defined as Lthe elapsed time

aetween project arrival and project completion, where project completion

Lccurs when all lobs of the project are completed. If a. is the arrival

period of the It h project, throughput tire fuv that project is

'Gi

Z + - i

tae i

K i (For example, throughput times for Projects I and 2 in Fig, I are 13
* and 10, respectively.) Minimizing throughput time for a -inglIe project

is equivaLent to maximizing the number of periods remaining after tht!
Gti

project is completed, where this number of periods is 1 x1 t. There-
t Ne. i

2.

fore, the objective function for minimizing the sum of the thrugIhput

times for all projects can be written as

I G

(l) Maximize z - Z/ xit

i' l i

" I m a a mI



Iii
-8--

Ordtnarily, jobs are started as soon as possible if doing so does not

increase throtigtitut time. This can be accomplished by tximaizing

(2) Z " L /"L.i L" tAiJt'

ijl twe i-I J4- t-4

where M is a positive number sufficiently large to ensure that the

contribution of the additional term i. less than that of any x it. A

suitable choice for M would be

I Ni

i-I J-1

Minimizing Makespan

An alternativc objective function li to minimize the time ',y which

all projects are completed; i.e., minimize makespan. Define a variable

x as follows:
t

I if all projects are completed by period t,

0 otherwise.

Minimizing makespan then corresponds to maximizing

max Gi

(3) z Z x t

twrnax e

This objective funct1on could also be augmented to start jobs as soon

as possible, thus making the desired objective function
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max Gi I N u

(4) 2Y Y tX
Z t -~ 4 L~ L ij

t-max e i=1 J1 tnL1 4

Minimizinx Total Lateness or. Lateness Penalty

A project is late if it is completed after the desired due-date

period, g1 ' Equivalently, the project is late if xit - 0 in those

periods t where gi < t S Gi . If total project lateness is to be

m4nimized, this lateness can be written as

I G,2.

L , (l'xt)."

i-I t-gi+1

If a penalty of pit is assessed when the project is not completed by

period t, the total £aieness penalty; can be written as

I Gi

i-l t-gi+l

This expression for total lateness penalty reduces to total project

lateness if all pit are 1. Thus for both cases an equivalent form of

the objective function is the maximization of

I G

i

(5) z - Ptit.

L=1 t-gi+1



The formulation can accommodate a rather wide range of environ-

meIILAL requiremeni and limiLations. Some of these are now discussed.

Job Completion

Each job has exactly one completion period.

u j

(6) X t - 1 (1 1,2.... ; j = 1,2..... ).
/ ij

t-I ij

Notice that in each constraint, the value of any one xij t can be deter-

mined by the values of the others in that constraint. To use this

relationship to full advantage, replace Constraint (6) by

u ij'lI

(7) x t
L ijt

t-Lij

and define

u j-l1

x Ij (u ij) I x it

t =ti j

Replacing xij(j) by its definitional equivalence can be used to reduce

the total number of viriables in the formulation.

Proiect Completion

Formulations involving x t variables (e.g., objective functions

(1), (2), and (5)) require that the x vt ariables for each project be



I

zero until all of its jobs have been completed. That is, project it-l=

cannot be completed by periud L until E xij q  I tor all N i jobs
I of project i. This requirement can be written asN tjq

i

e N t-l

(X) x-! it N XiJq
I. j-1 q-4t

I jj

i i=1,r.,I eil~e +l,..,G d.
4

In formulations involving xt variables (e.g., objective functions (3)

and (4)), the above constraints are replaced by

I NI t-1

t - L L Z Xijq
. N i-l j=l q-i

i-l

(t - max el,..., max G).

Sequencing

A sequencing constraint is required when a job "annot be started

until one or more other jobs have been completed. For example, on

project i, assume job m must precede job n. If t and tn denote

the completion periods of jobs m and n respectively, then

t + d t

im in in

U izn U i

Note that tim E tx and t E L Therefore, the appro-Noe ha tm timt an in t

im in

priate sequencing constraint becomes
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uim Un

ximt + din L txint .

m t£in

Sequencing reiatio:nships'reduce the number of x variables for

which it is necessary to obtain values from the formulation, since

(1) X - 0 for t < maxtan + d - 1; max (aij + dis + d - 1))
JEP ~ iJin

where Pin is the set containing other jobs of project

i that must precede job n, and

(2) xim t  O for t > min [ri - d iI where Fim is the set con-
jEF in ~

taining other jobs of project i that must follow

job m.

The number of x variables might also be reduced, since ei might be

increased as a result of sequencing relationships.

Resource Constraints

The value rijk specifies the numoer of resource units of type k

required for the performance of job J, project i. Thus if r a 3

and rjJ2 - 2, then 3 units of type I are used in conjunction with 2

units of type 2 during those periods when the job is being performed.

Resources required on a job are assumed in use until the job ends.

If this assumption is not appropriate, slight reformulation is required.

For example, if a certain resource is in use only during the first p

periods of the job where p < dij, then treat the job as two sequenced

"subjobs" with differing resource requirements and with durations of

p and dij - p, respectively. If the subjobs are to be performed



contiguously, replace the by in Constraint (10). The approach can

apply to any division of a job into two or more subjobs.

In any given period, the suount of renurr-e k ued on all Jobs

cannot exceed the amount of resource k available. A Job is being

proceased in period t if thr job is completed in period q where

t ; q t + d - 1. Tehrefore the resoutee constrairt can be wriLten

as

I Ni t+di "I

(I1 I Z r rljk X jq kt

i-1 Jol qwt

(t -. in a ij . . max Gi; k - 1,2.. .K).

Implementation of this constraint necessitates recognizing predetermined

values of xijt, (Nanely, xij t 0 0 for t < tij and x J 0 for t > uij

If the availability of a resource is constant over the scheduling

horizon, then some periods may involve redundant resource constraints.

Using the scheduling situation described by Fig. I as an example, the

resource constraints associated with periods 1, 2, and 3 (viz.,

t < mintaii + d - 1) would be redundant with those of period 4, and

therefore removable. A more general observation is that if the resource

availability, Rkt, is constant for the first t' periodi' where

min (aij + d "-j t' 5 max Gil then Constraint (11) need not be

iiirtijk>O

imposed for periods t < min (aij + d ij I. Oi, the oither haad
i,Jir ijk >0

if R is constant for the first t' periods where min (a. ti
ij rljk>O

min (a + d I, then Constraint (11) need not be imposed for

i,Jo rjk>O

periods t < t' - 1.
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Substitutability of Resources

It may be possible to use alternative resources to accomplish

some jobs. For example a amn with a higher skill can be substituted

tor a man with a lower skill on particular jobs.

If resource substltution is permitted on job J, project i, then

Constraint (11) must be n'difit to rount for the resource subati-

tution and potential differences in job durations when the job is

performed by different resources. To handle this condition, define

the job duration when done by resource k as dijk. Only the case where

the job can be done with either resource k1 with duration dijk , or

k2 with duration d Jk2 w ill be considered. Both k and k2 could be

considered as resource eets in which case each constraint involving

the resources of the resource set requires modification. Assume

dtjkI <dij2 . Let

0 if resource k2 is used

I if resource k1 is used

and add the following constraint:

a +j4 ijk 2 -2at 2

(12) (1 - 6ij) x jt - 0.

taij +dijk 1

Constraint (12) requires x j t a 0 for ae + d -ljk 1 5 t iaj +

dtjk2 - 2 if 6 - 0 (i.e., it prevents the job completion from

occurring prior to period ate + diJk2 - I if resource k2 is used),

-.- 2E2
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but doea not restrict xlj t if 6j - 1, Constraint (11) must be altered

to indicate whether resource k or k2 is employed to perform the job,

For resources kI and k2' the term in Constraint (11) amsocLated with

the job becomms

j(13 rjk>ijq

for resource kl, and

t 4d ij

(14) (1- 6 1) , riJk2ijq

qt

for resource k

The above constraints can be put into a linear form by defining

I if 6 ix ijt 1

t f 0 otherwime.

Using a technique Wattera [25) developed, the following constraints

are obtained to inaure that the conditions imposed on yljt are

satisfied:

(15) Yi1 t k j + - Ji . and
i(6 Yiit 6J + xj

(i + xijt)

Constraint (12), in terms of YiJt' becomes
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aij +d ijk 2"2

7d-2

(17) (Xijt " yiJt )  0.

Relationships (13) and (14) become

t+d jkI- I

('18) r rJk YtJq and

qmt

~d iJk 2- 1

(19) / rijk2(xijq- Yijq).

qat

Another approach to permitting a resource substitution is to

define a set of mutually exclusive jobs, only one of which must be

performed. For example, itf two alternative methods (or resource

combinations) exist for performing job j', define the two alternatives
as jobs Jl and J2 with durations dj and d and with uJ m

u Require completion of either J. or J2' but not both, anytimeu1 2•

before the end of period uj 1. To do this, replace Constraint (7) by

u~ij

(20) Z (XJjq + xJjq)z 'Jnlqt+ x'Jj2

and retain x j(u) in the formulation (I.e., do not replace x

by its definitional equivalent). The modified project completion

constraint corresponding to Constraint (8) would be
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(21) i L = 
("Nt 
(X + j2 q)'L - t q'emrnjL

1 , 'jj J

A similar mudifLcation could be made to Constraint (9),

Concur-ency and Noncpncurrency ,f Jobe

A concurrency constraint on jobs w and n ensures that they
Must be performed simultaneously. It can be obtainod by requiring
X mt 0 xin t , or by combining reaource requirements and treating rA

and n as a single job.

A nonconcurrency constraint on jobs m and n ensures thst
they must not be performed simultaneously, but permits them to be
performed in any order. Job m Is being performed in period t if

and only if

r+d m-

Ximq 1,
q-t

and similarly for job n. Thus the desired constraint is

t+d im-1 t+d in. 1

(22) i xLmq + I Xinq

q-t q-t

(t m xtim)i in -.... minluimUin),

Job Sittink

Theoretically, total job-splitting capability could be accomplshed
by treating each job as dij subjobs (each subjoh livng one period



Ju1:4L L.i) aid by imposing appropr~atr sequencing constraints on these

subjobs. Pragmatically, however, job-splitting capability would seldom

be fully exerrtsed because of setup coats, the deLabillity of main-

taining job continuity, etc, 1--ce , definini aibantially fewer titan

dii subjobs for a particular job may provide sufficient splitting

flexibility without requiring an inordinate number of subJobs.

-uppose Jo j can bc split, and [L6 vubjobs are sequenced in

accordance with Constraint (10). When two of its sequenced subjobs,

say m and n, are not performed contiguously (i.e., when the larger

job of which they are a part is allowed to split), then

Uin uim

(23) T - z tXint - tx it - din

t-kin t-1im

represents the duration of the split. T is the slack variable of

Constraint (10).

Penalty Costs. If a penalty cost, cn, is incurred per time period

of split, then cT is the job-splitting penalty cost. If a penalty

cost, Cn, is incurred for the split regardless of split duration, then

C r is the job-splitting penalty cost where T is a 0-1 variable suchnn n

that

l if a split occurs; i.e., T > 0

0n otherwise.

The appropriate value of T is obtained by requiring

(24) T ZT /G and

n wn
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T -1

(25) T I + m
n C1i

B th types of job-splitting penalty costs can be used with a cost

objective lonction.

Duration Extension. If -.et job duration increases as the reault

of a spli., the T variable can be used to modify the resoucce con-
n

straints using a technique similar to that used in considering resource

substitutions. If w1  is the duration penalty when subjob n does

not immediately follow subjob m, then the terms in the appropriate

resource constraints for subjob n become

t4d in. 1  t+din+ in- 1

(26) (1 - T L x ri(26 I- n )  /.Xin q + "n / inq rink'

qwt q-t

Again the quadratic terms would have to be replaced by their linear

equivalents as described previously.

EXMPLE SCREDULING PROBLEM

A three-project, eight-job, three-resource-type problem will be

formulated using the job completion, project completion, sequencing,

and resource constraints. Jobs are to be scheduled so as to minimize

total project throughput time. In addition, jobs are to be started

as soon as possible if doing so does not increase total project through-

put time. Table I contains sequencing relationships, job arrival and

duration times, due dates, resource requirements, and resource avail-

abilities. For comparative purposes, solutions provided by several

standard dispatching rules are presented.
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Table I

SEQUENCING, ARFIVAL TIMES, JOB DURATIONS, DUE DATES,
AN) RESOURCE REQUIREMENTS

I Resource krqu irement.

rrcedence Arrival Absolute r___
Project Jot- Relations Time Duration Due Date
(L) (J) (t,j) _ (. ) (d 1) (Gi) k - I k 2 k - 3

l N. 14 a 5 3 2
1 2 (l,l) 1 3 8 0 1 1
1 3 None 1 3 F 2 0 2

2 1 None 2 3 9 1 1 1
2 2 None 2 2 9 2 0 0
2 3 (2,1) 2 2 9 2 2 0
3 1 None 3 5 9 2 1 1
3 . 2 None 3 1 9 1 3 0

Amount of resource k available in each time period 8 5 4
(Rk)

kt ___

Dispatching Rules

Resource requirements for jobs and limited rescurce availability

preclude jobs from being started iediately. Immediate didpatch,

as depicted by the schedule in Fig. 2, would cause resource require-

ments to exceed resource availability. As seen from Fig. 2, rainimum

throughput times for Projects 1, 2, and 3 are seven time units, five time

units, and five time units, respectively. Thus, any feasible nolution

to the scheduling problem could not yield a total throughput time of

less than 11 time units. The fc,"..wing dispatch examples obsere

arrival and sequencing constraints as resource conflicts are resolved.

In some cases, the due dates are not met.

First-Come-First-Served. Figure 3 indicates a Rchedule obtained

when the jobs are processed on a first-come-first-served ba.Lai, arrival
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Resource
Avat labiLLty

k 1 7 10 1.3 8 4 4 2 o 0

k-2 3 4 a 5 4 4 2 0 0 5
k. 3 4 5 6 4- 2 .2 2 0 .

c, e

(2,2) , G2 -9

p._(2,3) ,

(3, ~ -~G -9

!3

4 3 4 5 6 7 8 9 i

aij a2j a3j

Fig. 2 -- Earlieat start and completion timaj, unlimited resources
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ties are broken by processing the shortest job first. This rule

produces a schedule for completing Projects I and 2 on time, but

Project 3 is late by one time unit. Total throughput time is 22 time

units. If ties are broken by processing the longest job first instead

of the shortest job, the schedule in Fig. 4 results. No lateness

occurs, and total throughput time i 21 time units.

Minimum-Proiect-Slack-First. Priority is determined by project

slack (the time between the earliest and the latest permissible project

completion time). From Fig. 2,

Project I slack - one time unit;

Project 2 slack - three time units;

Project 3 slack - two time units.

Therefore, under the minimum-project-slack-first dispatch rule, jobs

of Project I are scheduled first, then those of Project 3, and finally

those of Project 2. Figure 5 depicts the resulting schedule. Projects

1 and 3 are completed on time, but Project 2 is late by three time

units. Total throughput time is 24 time units.

Formulation of Example

Variables required in the formulation are numbered as follows:

Variable No. 1 2 3 4 5 6 7 8 9 10

Variable X11 4 x127 x133 x134 x135 x136 x137 x214 x215 x216

Variable No. 11 12 13 14 15 16 17 18 19 20

Variable x 2 2 3 x2 2 4 x 2 2 5 x2 2 6 x 2 2 7 x2 28  x 2 3 6 x2 37 x2 38 x 31 7

Variable No. 21 22 23 24 25 26 27 28 29 30

Variable x3 18 x32 3 x324 x3 25 x326 x327  x328 x18  x2 7  x28

Variable No. 31 32 33

Variable x29 x38 x39 --
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R esou'ce age
k 1, 7 7 7 8 4 3 4 4 2 2

k- 2 3 3 3 4 5 3 4 3
-3 4 4 4 3 2 3 2 1 1

(1,2) C - 9

2 -3) I 
G

(34

n039

7 8 9 10

Fig. 3 -- FCFS, breaking ties with shortest job first

Reeource Usage

k 17 4 4 1
k=2 3 3 3 5 3 3 4 3 3
k- 4 4 4 4 3 3 2 1 0

((2,1)

(1,2) 2z " 8

(2 ,t'02, I

. (2.3)

(3(2) G 9

t It 2 3 4 5 6 7 8 9 10

a ai '2 a i
J 2 b3l

Fig. 4 -- FCFS, breaking leu with longest lob first
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Resou'ce Usage
k-1 7 7 7 7 5 5 3 3 1 1 2 2
k.2 3 3 3 4 5 4, 5 2 1 1 2 2
k.3 4 4 4 3 2 2 2 2 1 1 0 0

((,,) .
8

,_ (1,2) : G1  B

(1,3)

(2,1)i

(2,2) 2 -9

(2,3)

(3,1)

G3"9

aI a 2J a3

Fig. 5 -- Minimum project slack first
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All. x J(uj ) variables (viz., x115 , x 12 8 ' 138' x 217' x2 2 9 ' x2 3 91 x 3 19 '
ij~j

x329 ) ate expressed in terms of their definitional equivalents.

haximizing objective function (2) provides minimum total through-

put time and starts jobs as soon an pnsible withtut otherwise affecting

Lhroughput time, provided

M > UL m 64.

i-I -i

The value F - 65 will be used.

Table 2 contains the coefficients of the objective function

(multiplied by M so that they are all integer) and the constraints. The

constraints are arranged as follows:

1-8 are job completion constraints;

9-14 are proj :t completion constraints;

15-16 are sequencing constraints; and

17-37 are resource constraints for periods

t a minaij + d j} - I - 3.

Note that some constraints in Table 2 are nonbinding (viz., 1, 2, 34,

35, and 37) and may be deleted from the formulation.

Solution Uhink a 0-I Code

The problem was solved with a 0-1 integer linear programming code

developed by Geoffrion [73 and programmed for RAND's IBM 7044. Execu-

tLon time is 2.3 seconds. The optimal solution is presented in Table 3.
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Table 3

SOLUTION TO EXAMLE

Varlai~o 1 2 3 4 5 t6 7 8 9

lit

x -- 0 0 0 1 0

Xlt

- - I 0 0 0 - -

x21t

x22 t  -0 0 1 0 0 0

x23 t  1 0 0 0

X2t

31t 4 - - I1 1

x 3 2 t - 0 0 0 1 0 0

X.. . 1 1

(-) indicates the variable is predetermined to equal zero.

The optimum schedule thus determined is presented in Fig. 6. Projects

1, 2 and 3 are completed one, three, and two time periods ahead of their

respective due dates. Total throughput time is 17 time units.

For this example the mathematical programming solution represents

a substantial improvement over the solutions obtained from the first-

come-first-served and minimum-project-slack-first dispatch rules. One

dispatch rule that did yield the optimal solution was a minimum-job-
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f

Re_source U~agg

k 1 5 6 8 8 8 8 5 0 0

k 2 3 4 5 5 4 4 5 0 0

k 3 2 3 4 4 4 4 4 0

0 8

, (2 .1)

. (3.1-

G3 9

t 1 t 213 4 5 6 7 8 9
a '

j '2j a3J

Fig. 6 -- Optimal solution
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slack-first rule that deLerminer priority as the time betweell the

earliest and the latest permnLsiblv job completion timn. However, no

attempt vas m ade tn tent or evaludtu dispatch rulc. exhaustively.

ThO' problem, when formulated in terms of the v iables Bowman

Dj u ses and extended to accommodate ultiple reaources, wtiuJd involve

72 variables and L25 constraints. If predetermined variables are

eliminated, the Bowman formulation could be reduced to 50 variables

and 94 Lonstraints, still larger than the 33-variable, 37-constraint

formulation presented here.

CONCLUSION

A zero-one linear programing formulation of scheduling problems

has been developed which can accommodate a wide range of conditions.

The formulation is more efficient than previously reported models in

terms of the number of variables and the number of constraints required

to model a scheduling situation. One general comment on the size of

the formulation is that it is favorably affected by an increased amount

of sequencing, by relatively long jobs, and by close proximity of the

scheduling horizon (or absolute due date) to the optimal project com-

pletion date. This research coupled with the immense research on zero-

one programming codes should yield practical procedures for obtaining

optiMAl solutions to scheduling problems.
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