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ABSTRACT

A zero-one (0-1) linear programming formulation of
multiproject and job-shop scheduling problems i3 presented
that is more genersl and computationally tractable cthan
other known formulations., It can accommodate a wide range
of teal-world situations including multiple resource cun-
straints, due dates, job splitting, resource substitut-
ability, and concurrency and nonconcurrency of job per-
formance requirements. Three possible objective functions
are discussed: wminimizing total throughput time for all
projects: minimizing the time by which all projects are
completed (i.e., minimizing makespan); and minimizing
total lateness or lateness penalty for all projects,

INTRODUCTION

Several years have passed since the ploneering work of Bowman

wagner [24], and Manne [ 13] with their mathematical programming

formulations of scheduling problems. These and other mathematical
scheduling models 2re discussed by Sisson [22), by Conway, Maxwell,

and Miller {4], and by Muth and Thompson [17]. Recent research efforts

concentrated on simulation approaches to scheduling ([4,6,8,15,26,273;

? however, another look at the problem from a mathematical programming
4

of view seems in order, especially in light of recent develop-

in 0-1 programming (7,9,18,25].
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The scheduling problems constdered here deual with deteruining
when a Job should be processed, given limited w.allabilities of
rcsources, e.g., men, equipment, and facilitfes. The words job and
profect will be used througloul to denote the two levels of work
aggregation being cunsidered, A project consisrs of a4 set of jobs,
In other literature describing scheduling research, the following

equivalent dJescriptors may be found:

.

Job Project

task product

operation | job

pgpject program

The model cornsiders only the job level and th; project level. Con-
sideration of three or more levels, e.g., operation, job, and project,
only complicates the notational problem.

The Manne [13] formulation uses integer variables to indicate in
vhich time period the job is started, and the Wagner [24] formulation
uses 0-1 variables to indicate whether or not a job is assigned to a
gnecific order-poaition on a specific machine. Nefther formulation,
however, accommodates multiple resource constraints. The Bowman [ 3]
formilation uses (-1 variables to ind{cate for each period over a
scheduling horizon whether or not a job f{s being processed., His
formulation does not expressly provide for multiple resource constraints,
alt ough such an extension could be wmade, The resultiny formulation
would be larger (In terms of the number of variables and constraints

involved) than the one presented here. The following formulation ures




R e L F L R

Ceaw e

e AR T T R D T

-3-

0-1 varisbles to indicaie for select period:s (depending upon job
arrival time, due dates, sequencing relationships, etc.) whether or
not a job im complarad &5 those peviode. A simiier formulation [ 19]
usss 0-1 varlables to indicate for select perfods whether or not a

job has been completed prior to those periods. For a gilven type of

acheduling envifomment, alternative formulations often may be devised,
An efficient formulation, however, will depend upon a judicious chotlce
of definition for the varfables, Indeed, the selection of a definition
for the variables and the synthesis of objective functions and con-
straints constitute @ challenging problem in design. The design
Gepacte of mathematical furmulation are discussed tn ([20].
Determining when the jobs should be processed depends upon the
desired objective, Three are considered here:
1. Minf{migze total throughput time (time in the shop) for all
projects;
2, Minimize the time by which all projects are completed ({.,e,,
minimize makespan); and

3. Minimize total lateness or lateness penalty for all projects,

Equations are developed to ensure that a schedule meets the foliowing
congtraints when they are imposed:

1. Limited resources;

2, Precedence relations between jobs;

3. Job splitting possibilities;

4. Project and job due dates;

5. Substitution of resources to perform the Jobs;

6. Concurrent and nonconcurvent job performince requirements,
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DEFINITIONS

project number, ft = |,2,,.,,I; I = number of projects,
job number, | = 1,2.....Ni; Ni » number of jobs {n project {,

time pericd, t = 1,2,.., max Ci; G, = absolute dus date, Project

i
1 must be completed in or before period Gi' I1f an abaolute duc
date is not specified, Gi becomes the last period 1u the ached-
uling horizun,.

desired due date. Project { is not late ‘i 1t it completed in or
before period 8

earliest poussible period by which project { could be completed,
arrival period of job j, project L. Arrivals occur at the
beginning of periods,

number of periods required to perform job j of project i, It

is assumed to be known with certainty,

the earliest possible period in which juob j could be completed.
the latest possible period in which job j could be completed;
viz., an absolute job due date.

resource or facility aumber, k = 1,2,...,K; K = pumber of

di fferent res.urce types,

= amount of type k resource required on job j of project {.

amount of type k resource available in period t.
a variable which is 1 L{f job J of project { is completed in

period t; O otherwise. need not be trcated as a variable

*1yt

in a2ll periods, since it equals 0 for t < El. dud for t > Uij'
J

a variable which .8 | in perwod t {f all jobs of project L

have been completed by period t (i.e., completed in or before
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pariad i=1), § orhervise, LT need not be treated a3s a2

variable L{n all periods, since {¢ equals 0 for ¢ « < and 1

for ¢ - bi,

To fllustrate the nature of the detinttionz, the scheduling of
five johs belonging to two projects requiring two resaurces {6 shown in
Filg. 1. The figure depicts arrival perlods, job duratiuns, due datces,
precedence requirements, and vdlues of xljl and Xt variables, There
15 one unit of resovurce available for each of the two types of resources;

i.e., Rkt-l for k=1, 2 and {for all t. The resource requirements,

ik
for each job are assumed to be:

Resource Requirements, rijk

K ‘_11 12 [13]21]22
1{ 1] o) of 1
2 1l o] 1] 1} o

As an example of the calculations of Ei and u, . for sequenced jobs,

3 1)

upp "6 gy it

and

i) gemaxfa ) +d) )+ o

The informatior depicted in Fig. 1 represents known inputs at the
time of scheduling. (In a job-shop environment where additional pro-
Jects arrive, rescheduling could take place when such inputs become

kKnown.)
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OBJECTIVE FUNCTIONS

Jobs are to bu scneduled {n a manner that optimizes some meastre

wr pEIlOY Taed 304

of performance, or oblective function, sublect tn certain environmental
requirements aod limitattons, The choice of an appropriate objective
tunction wmay diifer for various scheduling ervironments. Several common

ones are selected for explicit formulation.

Minimizing Total Project Throughput Time

Individual project throughput time is defined as Lhe ¢lapsed time
vetween project arrival and project completion, where project completion
cecurs when all jobe of the project are completed. 1f a is the arrival

period of the lth project, throughput tire fur that project is

Gi
Gi- Zx“+l-ai.
t-ei

(For example, throughput times for Projects | and 2 in Fig. 1 are 13
? and 10, respectively.) Minimizing throughput time for a single project
o
L is equivalent to maximizing the number of periods remaining after the
: G
_ project is completed, where this number of periods is Zixit. There-
: tre,
fore, the objective function for minimizing the sum of the throughput
times for all projects can be written as
I GL
z <
g (1) Maximize 2 = é‘ L %
i=1 L-eL
}
&
f
A

.
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Ordinarily, jobs are started as scvon as possible Lf doing so does not

Increase throughput time. This can be accomplished by wiximizing

L . it 21y
2 2R L L et }: L e
im=] tee, im] =1 :-=£“

where M {8 a positive number sufficiently large to ensure that the
contribution of the additional term is less than that of any Xige A

suitable choice for M would be

Ly
M> L z; ulj‘
ful §ml

Minimizing Makespan

An altemmativc objective function {3 to minimize the time .y which
all projects are completed; 1.e., minimize makespan, Define a variable

xt as follows:

1 i1f all projects are completed by period t,

¢ otherwise,
Minimizing makespan then corresponds to maximlzing
max G

(3) z = E: X,

This objective function could also be augmented to start jobs as soon

as possible, thus making the desired objective function

LS
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-
max Gl 1 N’ uij
\ L ¥ z .
(4) em ) K, - 5 L Lty
t=max e i=1 jwl t=i
i i3

Minimizing Total Lateness or lateness Penalty

A project is late if it is completed after the desired due-date
period, g - Equivalently, the project is late if X ™ 0 in those
periods t where By <t = Gi' If total project lateness ig to be

m'nimized, this lateness can be written as

1 G,
1
- o y
L L Urx)e
f=] t-gl+1

If a penalty of Pie is assessed when the project is not completed by

period t, the total Lateness penalt: can be written as

1 Gi

-
2 L Pie(lmsge)-
im] t-8i+1

This expression for total lateness penalty reduces to total project

lateness if all P, are 1. Thus for both cases an equivalent form of

the objective function is the maximization of

1 6,
(3) = Z 2 Pic*ie:
i=] t-gi+l
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CONSTRALNIS

The formulation can accommodate a rather wide range of environ-

wéntal requirements and limitations. Some of these are now discussed.

Job Completion

Each job has exactly one completion period.

uij
(6) zz xijt =1 (L «1,2,...,1; §= 1'2""'N1)'

t-EU
Notice that in each constraint, the value of any one x can be deter-

ijt
mined by the values of the others in that constraint. To use this

relationship to full advantage, replace Conetraint 76) by

uij-l
‘ Y
(7 L g = b
:-zij
and define
ulj'l
"u(u“) 1~ Z X e
:-zij

Replacing x ) by ita definitional equivalence can be used to reduce

lj(uij
the total number of variables in the formulation.

Project Completion

Formulations involving X e variables (e.g., objective functions

(1), (2), and (5)) require that the x _ variables for each project be

it
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zero until all of ite jobs have been completed, That is, project {
t-1

cannot be completed by perivd t until T x
A=k

of project {, This requirement can be written as

1)q » 1 tor all N‘ jobs

t~
N l
» - l, E E

i,
=1 q ‘13

(L= 1,2,...,I; t = e e +1""’G1)'

i

In formulations involving Xe variables (e.g., objective functions (3)

and (4)), the above conatraints are replaced by

I N, t-1

{
1 L
(9) X 71 L L 2 *i3q
LELN‘ t=l §=1 qut

(t = max et,..., max Gi)'

Sequencing

A sequencing constraint is required when a job rannot be started
until one or more other jobs have been completed. For example, on
project i, assume job m must precede job n. If tim and tin denote

the completion periods of jobs m and n respectively, then

t +d st

im in in'
“im “in
Note that tim ™ Z X, e and tln = T tx Therefore, the appro-
t-!'im t-l'in

priate sequencing constraint becomes
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“im uln
Zt +d ‘vt
(10) *imt in L Fne
L-Lin L-LLn
Sequencing relationships reduce the number of x variables for

13t

which it is necessary to obtain values from the formulation, since

() %, =0 fort< max{ain +d, - 1; oax (a,_j + dij +d, - Dl
jGPin
where Pin is the set containing other jobs of project

i that must precede job n, and

(2) gt " 0 for t > min {G1 - dij] where F
jeFL-

taining other jobs of project i that must follow

is the set con-
im

job m.

The number of Xy variables might also be reduced, since € might be

t

increased as a result of sequencing relationships.

[ ce Copstraints

The value rijk specifies the numver of resource units of type k

required for the performance of jaob j, project {. Thus if r 3

131
and ’1]2 = 2, then 3 units of type 1 are used i{n conjunction with 2
units of type 2 during those periods when the job is being performed.
Resources required on a job are assumed in use until the job ends,

If this assumption is not appropriate, slight reformulation is required.
For example, 1f & certain rescurce is in use only during the first p

periods of the job where p < d ,, then treat the job as two sequenced

i}

"subjobs' with differing resource requirements and with durations of

p and dU - p, respectively, If the subjobs are to be performed
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contf{guously, replace the % by = in Constraint (10). The approach can
apply to any division of & job finto two or more subjobe,

In any given period, the amount of resource ¥ wused on 311 jobs
cannot exceed the amount of resource k available. A job i# being
processed in period t {f thz job {5 completed in period q where
t = q=¢t+d - 1. Therefure the resource congtrairt can be wifiien

i)

t+dlj~l

LN
(11) Z z L kg Rke
{ml jul qet

(t = min a o, max G, ; kK« 1,2,,..,K).

1y L

Implementation of this constraint necessitates recognizing predetermined

values of x (Namely, x & 0 for t and x %0 fort>u ).

. < f
ijt Lit 1) Ljt 1]
If the availability of a resource is constant over the scheduling
horizon, then some periods may involve redundant resource constraints.
Using the scheduling situation described by Fig. 1 as an example, the
resource constraints associated with periods 1, 2, and 3 (viz.,

t < minla - 1) would be redundant with those of period 4, and

" + dij]

therefore removable, A more general observation is that if the resource

avallability, Rkt' is constant for the first t' perlods where

min {a,, +d4, ) % t'smaxoe , then Consatraint (11) need not be

{,4or, >0 ot i
' 1k
lmposed ior periods ¢ < min {a + d ] L. 0Ou the other haand
i, for, >0 4
! i1k
if Rkt is constant for the first t' perioda where min {“i Joat =
L7, 20 )
min la,, + 4 .}, then Coustraint (11) need not be impesed for
i3 1

1'j’rtjk>0

periods t <t' - 1.
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Substitutablility of Respurces

It may be possible to use alternative resources to accomplish
some jobs, For example a man with a higher skill can be substituted
for a man with & lowvar skill on particular jobs.

If resoutce substitution is perwmitted on job j, project i, then
Constraint (11) must be sod{fied to account for the resource subati-
tution and potential differences in job durations when the job e
performed by different regsources, To handle this condition, define

the job duration when done by resource k as d Only the case where

ik’
the job cen be done with elther resource kl with duration dij , OF
1
k., with duration d will be considered, Both k, and k, could be
2 ljkz 1 2

considared as resource sets in which case each constraint involving

the remources of the resource set requires modification, Assume

d Let

1jk1<dtjk2'

0 1f resource k2 is used
5 -
13 1 Lf resource kl ies used

and add the following constraint:

.1j+dljk2-2
- - 0
(12) (-8 z X e
t-lij+dijkl-l
Constraint (12) requires %gye = 0 for atj + dijkl - 1s¢t< a, +

d -~ 214f6 = 0 (i.e., Lt prevents the job completion from
L)k, 1)

occurring prior to period a4, + d

13 ijz ~ 1 {f resource k

2 is umsed),
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but does not restrict xljt Lf 6U = 1, Constraint (11) must be altered
to indicate whether resource kl or kz is employed tu perform the job.
For resources kl and kz, the term in Constraint (11) assoclated with

the job becomes

t+dtjk1~1
<
{13y cij ZL leklxijq
q=t
fur resource kl' and
t+d -1
&lkz
(14) (1 - 6Lj) ZL rljkzxijq
g=t

for resource kz.

The above constraints can be put into a linear form by defining

1 Lf =1

8 %

y ]
L3¢ ] otherwise.

Using a technique Watters [25] developed, the following constraints

are obtained to i{naure that the conditfons imposed on yUt are

satisfied:

2 -
(15) yth 61] + xijt 1, and
(16) yijt s ’:.(6ij + xtjt)'

Coustratnt (12), in terms of ytjt' becomes




(n L (xijt - yijt) =0,

Relationships (13) and (l4) becomz

|
|
|

t+d13k1-l
(18) 2; rijklytjq and
q=t .
t+dljk2-1
(19) Z‘ rijkz(xijq - yijq)'

Another approach toc permitting & resource substitution is to

define a set of mutuslly exclusive jobs, only one of which must be
performed. For example, Lf two alternative methods (or resource

combinations) exi{st for performing job j', define the twc alternatives

as jobs nd with durations d and d , and with u =y -
jobs §, and ), i, i1, WEER Sy, T M,

uij" Requivre completion of either Jl or jz, but not both, anytime
before the end of period uij" To do this, replace Constraint (7) by

1 u '

i 4

3

i 20 z: + - ],

£ (20 (xijlq xiqu)

L q-min[t Ny

L 1"1 lJ2

{ and retain x

i 1j(utj') lj(uij')
by its definitional equivalent). The modified project completion

in the formulation (iL.e., do not replace x

constraint corresponding to Constraint (8) wouid be
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Ni &51 t-1
L
=1 qul q~ain , J
[TIE 1),

A similar modification could be made to Constraint (9),

Concurrency and N currency of Jabs

A concurrency constraint op jobs w and n  ensures that they
zust be performed sfmultanecusly. It can be obtained by requiring
ximt - xint' or by combining resource requiresents and treating mn
and n ss a single job.

A nRonconcurrency constraint on Joba m and n  ensures ‘hat
they must not be performed simultaneously, but permits them to be
performed in any order. Job m fs being performed in period t {f

and only 1f

and eimilarly for Job n. Thus the desired constraint is

t+diE-1 t+d£n-l
%
(22) Z *log ¥ E *fng * 1
q-t q-t
(t = maxlllm,l‘n}..... mtn{ulm.uinJ).

Job Sgllttlng

Thtorettcally, total job-splitiing capability could be daccomplished

by treating each Job as dU subjubs (each subjob lving une perfod
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duration) and by imposing appropriate sequencing constraintes on these
subjobs, Pragmatically, however, job-splitting capability would seldom
be fully exercised because of setup costs, the deslvabllity of main-
taining Job continuiry, sete, Hence, defining subsiantially fewer than
du subjobs for a particular job way provide sufficient spiitting
flaxibtlity without requiring 4n {nordinate number of subjobs.

Suppose Job 3 can be split, and {18 subjobs are sequenced in
accordance with Constraint (l0). When two of fts sequenced subjobs,
say m and n, are not performed contiguously (i.s., when the larger

job of which they are a part is allowed to split), then

) u

in ia
(23) Tan " z it ~ z Emt ~ Y0
tui twf
in im

represents the duration of the split. T ant is the slack variable of
Conatraint (10).

Penalty Costs., If a penalty cost, € i8 incurred per time period
of split, then ¢ Tan is the job-splitting penalty cost. If a penalty
cost, Cn, f9 incurred for the split regardless of split duration, then

Cn‘rn is the job-aplitting penalty cost where Tn is a 0-1 variable such

that

. . 1 Lf a eplit occurs; 1.e., Tt >0

n 0 otherwise.
The appropriate value of T“ is obtained by requiring

(24) Ty F Tmn/ct and

|
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(25) Tos ] 4 -

Both types of job-seplitting penaity costs can be used with a cost

objective iunction.

bDuration Extension, If uet job duration increases as the reault

of a spliv, the T variable can be used to modlfy the resource con-
straints using a technique similar to that used in constdering resource
substitutions. If LI is the duration penalty when subjob n doms

not iomediately follow subjob m, then the terms in the appropriate

resource constraints for subjob n become

t+d1n'1 t+din+“in'1
- o
(26) a- Tn) L anq T L x1nq Tink’
q-[ q-t

Again the quadratic terms would have to be replaced by their linear

equivalents as described previously,

EXAMPLE SCHEDULING PROBLEM

A three-project, eight-job, three-resource-type problem will be
formulated using the job completion, project completion, sequencing,
and resource constraints. Jobs are to be scheduled so as to minimize
total project throughput time, In addition, jobs are to be started
as soon as possible Lf doing so does not increase total project through-
put time. Table 1 contains sequencing relat{onshipa, job arrival and
duration times, due dates, resource requirements, and resource avail-
abilities. For comparative purposes, solutions provided by several

standard dispatching rules are presented,

e Lo v

JERR ameiat b s
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Table 1

SEQUENCING, ARFIVAL TIMES, JOB DURATIONS, DUE DATES,
AND KESOURCE REQUIREMENTS

Resource Kequivemsnt:
(r, ..}
Precedence | Arrival Absolute ik
Project | Jot | Relations Time Ducation| Due Date
{ & = - =
(L) &) (i,3) ( ij) (dij) (Gt) k=1l{k=2{k=3] _
1 1 None 1 4 8 ] 3 2
1 2 (1,1 1 3 8 ¢ 1 1
1 3 None 1 3 a 2 0 2
2 1 None 2 k] 9 1 1 1
2 2 Norne 2 2 g 2 0 V]
Z k] (2,1) 2 2 9 2 2 0
3 1 None 3 5 9 2 1 1
3 2 None 3 1 9 1 ‘3 0
Amount of regource k available in each time period 8 5 4
(R )
kt

Dispatching Rules

Resource requirements for jobs and limited rescurce avallability
preclude jobs from being started immediately. Immediate dispatch,
us depicted by the schedule in Fig. 2, would cause resource require-
menta to éxceed resource availabllity. As seen from Fig. 2, uinimum
throughput times for Projects 1, 2, and 3 are seven time unite, five time
units, and five time units, respectively. Thus, any feasible golution
to the scheduling problem could not yleld a total throughput time of
leas than 1/ time units. The fo!.owing dispatcn examples observe
arrival and sequencing constraints as resource conflicts &re resolved.
In some cases, the due dates are not met.

First-Come~First-Served. Figure 3 indicates a cchedule obtained

when the jobs sre processed on a first~come-first-served basias, arrival
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Fig. 2 -- Eavliest start and completion times, unlimited resources
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ties are broken by processing the shortest job first, This rule
produces & schedule for completing Projects )l and 2 on time, but
Project 3 {8 late by one time unit. Total throughput time is 22 time
units. If ties are broken by processing the longest job first tnatead
of the shortest job, the schedule in Fig. 4 results. No lateness
occurs, and total throughput time ig 21 time units,
Minipum-Project-Slack-First., Priority is determined by project
slack (the time between the earliest and the latest permissible project

completion time). From Fig. 2,

Project 1 slack ~ one time unit;
Project 2 slack » three time units;

Project 3 slack = two time units,

Therefore, under the minimum-project-slack-first dispatch rule, jobs

of Project 1 are scheduled first, then those of Project 3, and finally
those of Project 2, Figure 5 depicts the resulting schedule. Projects
1 and 3 are completed on time, but Project 2 is late by three time

units, Total throughput time is 24 time units.

Formulation of Example

Variables required in the formulation are numbered as follows:

Variable No. 1 2 3 4 3 6 7 8 9 10

Variable X114 | *127 { %133 { %134 | %135 | %136 | *137 | *214 | *215 | *216

Variable No. 11 12 13 14 15 16 17 18 19 20
YVariable

X X X

¥223 | *224 | *225 [*226 228 | ®236 | *237 | *238 | *317
variable No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
Variable

X

X318 | ®323 | *324 [®325 | *326 | *327 | ®*328 | *18 | *27 [ *28

Variable No. 31 32 33

Vartiable X5 X3 X139
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Rasource lUsage
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Resource Usage
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All xij(uij) variables (viz., xllS’ X198 :138, Xy190 %3090 x239, x319,
x329) dite expressed in terms of their definitional equivalents.
Maximizing objective function (2) provides wminimum total through-

throughput time, provided

|4 N,
i
M>z 2u1j~64.

{=1 j=]

The value M = 65 will be used.

Table 2 contains the coefficients of the objective function
(multiplied by M so that they are all integer) and the constraints. The
constraints are arranged as follows:

1-8 are job completion constraints;

9-14 are projc :t completion constraints;
15-16 are sequencing constraints; and
17-37 are resource constraints for periods

< - =
t mm[aij+dij} 1 = 3.

Note that some constraints in Table 2 are nonbinding (viz., 1, 2, 34,

35, and 37) and may be deleted from the formulation.

Solution Using a 0-1 Code
The problem was solved with a 0-1 integer linear programning code
developed by Geoffrion [7]) and programmed for RAND's IBM 7044. Execu-

tion time i8 2.3 seconds. The optimal solution i{s presented in Table 3.
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Table 3

~\\\\\\\ SOLUTION TO EXAMPLE

Variabie~r 1 2 3 4 5 & 7 8 9

e 1T fe -]
*12t el el Bl I L

LI =1=1-109j0ojotil|0

e S S e R R

X51¢ -fj=f={1j0f0j0|~{~
X50¢ -(~|-{0{011f0o 0|0
Xyqp e d= =L I0 1010
x2t “te|=|=l=]« L1 |1
x31t~" - - -] 1j0!to0
X39¢ = |~{=-{01010([L |0 g—-
Xap -t~ f-|=t111

(=) indicatea the variable is predetermined to equal zero.

The optimum schedule thus determined is presented in Fig. 6. Projects
1, 2 and 3 are cowpleted one, three, and two time periods ahead of their
respective due dates. Total throughput time is 17 time units.

For this example the mathematical programming solution represents
a substantial improvement over the solutions obtained from the first-
come-first-served and minimum-project-slack-firat dispatch rules. One

dispatch rule that did yield the optimal solution was 4 minimum-job-
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Rescurce Usage
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slack-first rule that determinee priority as the tiwe between Lhe
edrliest and the latest permissible job completion time. However, no
gttempt vas made to test or evaludte dispatch rules exhaustively,

Thi# pxoblem, when formulated in terms of tlie veriables Bowman
{3] uses and extended to accommodate wmultiple resources, would involve
72 variables and 125 constraints, If predetermined variables are
eliminated, the Bowman formulatfion could be reduced to 50 variables
and 94 constraints, still larger than the 33-varjable, 37-~constraint

formulation presented here.

CONCLUSION

A zerc-one linear programming formulation of scheduling problems
has been developed which can accommudate a wide range of conditions.
The formulation is more efficient than previously reported models in
terms of the number of variables and the number of constraints requircd
to model a scheduling situation. One general comment on the size of
the formulation is that {t is favorably affected by an increased amount
of sequencing, by relatively long jobs, and by close proximity of the
scheduling horizon (or absolute due date) to the optimal project com-
pletion date. This research coupled with the immense research on zero-
one programming codes should yield practical procedures for obtaining

optimal solutions to scheduling problems.
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