
F ERRO-GE ERCORAMMING APTEDACH

> A. Alan B. Wratakez Lavrence J. Watcora Yhisp M. Wolte

Eatruary 1060

MULTLROJECT SCHEDULLNG WITH LIMITED RESOURCES:

A ZERO-ONE PROCRAMIIING APPROACII

A. Alan B. Pritsker*
Consultant to The RAND Corporation, Santa Monica, California
Lawrence J. Watters*
- ie RAND Corporation, Santa Monica, Callfornia
Philip M. Wolfe
University of Arizona

${ }^{*}$ Any views expressed in this paper are those of the author. They should not be interpseted as reflecting the views of The RAND Corporation or the official opinion or policy of any of its governmental or private research sponsors. Papers are reproduced by The RAND Corporation as a courtesy to members of its staff.

MULTIPROJECT SCHEDULING HITH LIMITED RESOURCES:

A 2ERO-ONE PROGRAMAING APPROACA

A. Alan B. Pritaker, Arizona State University; Consultant to The RAND Curpuration, Santa Monica, Galifornia

Lawrence J. Watters, The RAND Corporation
Philip M. Hulfe, Artann Etate Univeremty

Abstract

A zero-one ($0-1$) linear programing formulation of multiproject and job-shop scheduling problems is presented that is more general and computationally tractable than other known formulations. It can accommodate a wide range of ledl-world situations including multiple resource cunatraints, due dates, job splitting, resource substitutability, and concurrency and nonconcurrency of job performance requirements. Three possible objective functions are discussed: minimizing total throughput time for all projects: minimizing the time by which all projects are completed (i.e., minimizing makespan); and minimizing totel lateness or lateness penalty for all projects.

INTRODUCIION

Several years have passed since the ploneering work of Bowman
Wagner [24], and Mave [13] with their mathematical programing formulations of scheduling problems. These and other mathematical acheduling models ere discussed by Sisson $122 〕$, by Conway, Maxwell, and Miller [4], and by Muth and Thompson [17]. Recent research efforts have concentrated on simulation approaches to acheduling $[4,6,8,15,26,27$; ;
however, another look at the probiem from a mathematical programing point of view seems in order, especially in light of recent developments in $0-1$ programing $[7,9,18,25]$.

The :jcheduling problems cunsidered here deal with detemining when a job should be processed, fiven liaited avallabillties of repources, e.g., men, equipment, and facilities. The words job and project will be used thouglout to denote the two levels of work aggregation being considered. A project conalista of a eet of jobs. In other literature describing acheduting research, the following equivalent dencriptors may be found:

Job	Project
task	product
operation	job
project	program

The model considers only the job level and the project level. Consideration of three or more levels, e.8., operation, job, and project, only complicates the notational problem.

The Manne [13] formilation uses integer variables to indicate in which time period the job is started, and the Wagner [24] formalation uses $0-1$ variables to indicate whether or not job is assigned to a epecific order-position on specific machine. Neither formulation, however, accommodates multiple renource conatrainta. The Bowman [3] formation umen $0-1$ variables to indicate for each pertod over a echeduling horizon whether or not a job ia being processed. His formation does not expressly provide for mitiple resource contraints, alt Jugh such an extension could be made. The resulting formulation would be larger (in terms of the number of variables and cunstraints involved) than the one presented here. The foliowing formulution upes

O-1 variablea to indicace for alect periods (depending upon joh arrival time, due dateg, sequencing relationahipa, etc.) whether or
 uens $0-1$ vartebles to indicate for select perioda whether or not a gob has been completed gator to those periods. For a given type of achedultag envifonment, altemative formulations often may be devibed. An efficient formulation, however, will depend upon a judicious choice of definition for the variablea. Indeed, the selection of definition for the variablea and the sythesis of objective functions and conetralnte conetitute a challenging problem in design. The design sopecta of mathematical furmulation are discussed in [20].

Determining when the jobs should be processed depends upon the desired objective. Three are considered here:

1. Minimize total throughpul time (time in the shop) for all projecte:
2. Minimize the time by which all projects are completed (i.e., minimize makespan); and
3. Minimize total lateness or lateness penalty for all projects.

Equations are developed to ensure that a schedule meets the fuliowing constraints when they are imposed:

1. Limited resources;
2. Precedence relations between jobs;
3. Job aplitting possibilities;
4. Project and job due dates;
5. Substitution of resources to perforn the jobs;
6. Concurrent and nonconcurrent job pertomance requirenents.

DEFINITIONS

1 - project number, $1=1,2, \ldots, r ; \mathfrak{l}$ number of projects.
1 - job number, $f=1,2 \ldots, N_{1} ; N_{i}=$ number of jobs in project 1.
$t \quad-\quad t$ me perfrd, $t=1,2, \ldots \max G_{i} ; G_{1}$ absolute dup date, Project 1 mut be completed in or before periud G_{i}. If an abrolute duc date 15 not spectfied, G becomes the layt period hit the acheduling horizun.
$E_{i}=$ desired due date. Project 1 is not late :i it is completed in or before period 8_{1}.
$e_{i}=e a r l i e s t$ posibie period by which project i could be completed.
$a_{i j}=a r r i v a l$ period of job j, project 1 . Arrivals occur at the beginnlag of periods.
$d_{1 j}$ - number of periods required to perform job j of project 1 . It is assumed to be known with certainty.
$\mathcal{L}_{1 j}$ = the earliest posaible period in which jub i could be completed.
$u_{i, 1}$ - the latest possible period in which job j could be completed; viz., an absolute job due date.
$k \quad=$ conource or facility number, $k=1,2, \ldots, k ; k=$ number of different res.urce types.
$r_{i j k}=$ amount of type k resource requifed on job j of project 1.
$R_{k t}=$ amount of type k resource available in perioc t.
$x_{\text {ijt }}=$ a variable which is 1 if job j of project i is completed in period $t ; 0$ otherwise. $x_{i j t}$ need not be trated as a vartable In all periods, since it equals 0 for $t<i_{i j}$ dud for $t>u_{i j}$.
$x_{\text {it }}$ - a variable which is 1 in periud t if all jobs of project i have been completed by period t (i.e., completed in or before
furiadi-ij, fotherwige, x_{1} need not be tranted as a varbable in all perlous, olnce it equals ofor $\therefore e_{1}$ and 1 for $\mathrm{L}=\mathrm{C}_{1}$,

To fllustrate the nature of the dethitione, the acheduling of five join belonging to two projects requiring two resources if simwill in Fig. L. The figure depicts arrival periods, job Jurations, due dates, precedence requirements, and values of $x_{i j l}$ and $x_{i t}$ variables. There Is one unit of resurce available for each of the two types of resources; i.e., $R_{k t}{ }^{-1}$ for $k=1,2$ and for all t. The resource requirements, ${ }_{i j k}{ }^{\prime}$ for each job are assumed to be:
Hesource Requifements, $r_{\text {i }} \mathrm{jk}$

k	11	12	13	21	22
1	1	1	0	0	1
2	1	0	1	1	0

As an example of the calculations of $\ell_{i j}$ and $u_{i j}$ for sequenced jobs,

$$
u_{11}=G_{1}-d_{13}=11
$$

and

$$
i_{13}-\max \left\{a_{11}+d_{11}+d_{13^{-1}} a_{13}+d_{13}-1\right\}=9 .
$$

The infurmatior depicted in Fig. l represents knomi inputs at the time of scheduling. (In a job-shop environment where aditional proJects arrive, reschedullng could take place when such inputa become known.)

OBJECIIVE FUUCTIONS

Jobs are to be scneduled in a manaer that optimizes some mearire of performane, or objective functon, gubjert torertan environmental requitements abd limitations. The choice of an appropriate objective lunction inay difer for various scheduling ervi rommets. Several connon uneb ate selected for ceplictt formulation.

Minimizing Total Project Throughput Time

Individual project throughput time is defined as the elapsed time wetween project arrival and project completion, where project completion cocurs when all lobs of the project are completed. If a is the arrival pertod of the $i^{\text {th }}$ project, throughput tire for that project is

$$
G_{i}-\sum_{t=e_{i}}^{G_{i}} x_{i t}+1-a_{i} .
$$

(For example, throughput times for Projects 1 and 2 in fig. 1 are 13 and 10 , respectively.) Minimizing rhroughput time for a single project is equivalent to maximizing the number of periods remaning after the project is completed, where this number of periods is $\mathcal{E}_{i \mathrm{Me}_{i}}^{\mathrm{X}_{i t}}$. Therefore, the obfective function for minimizing the sum of the throughpat times for all projects can be written as

$$
\begin{equation*}
\operatorname{Maximize} z=\varlimsup_{i=1}^{I}{\underset{i=e_{i}}{G} x_{i l} .}_{L_{i}} \tag{1}
\end{equation*}
$$

Ordinarily, fobs are started as soon as possible if doing so does not Increase throughput time. This can be accomplisied by maximizing

$$
\begin{equation*}
z=\sum_{i=1}^{i} \sum_{t=e_{i}}^{C} x_{i t}-\frac{1}{M} \sum_{i=1}^{I} \sum_{j=1}^{N} \sum_{i=i}^{i} i j, t x_{i j t}, \tag{2}
\end{equation*}
$$

where M is a positive number sufficiently large to ensure that the contribution of the additional term is iess than that of any $x_{i t}$. A suitable choice for M would be

$$
M>\sum_{i=1}^{I} \sum_{j=1}^{N} u_{i j} .
$$

Minimizing Makespan

An alternativc objective function is to minimize the time $\cdot y$ which all projects are completed; i.e., minimize makespan. Define a variable x_{t} as follows:
$x_{t}= \begin{cases}1 & \text { if all projects are completed by period } t, \\ 0 & \text { otherwise. }\end{cases}$

Minimizing makespan then corresponds to maximizing
(3)

$$
z=\sum_{t \max e_{1}}^{\max G_{1}}
$$

This objective function could also be augmented to start jobs as soon as possible, thus making the desired objective function
(4)

$$
z=\sum_{t=\max e_{i}}^{\max G_{i}} x_{t} \frac{1}{M} \sum_{i=1}^{I} \sum_{j=1}^{N_{i}} \sum_{t=\ell_{i j}}^{u_{i j}} t x_{i j t} .
$$

Minimizing Total Latencss or Lateness Penalty

A project is late if it is completed after the desired due-date period, $g_{\mathbb{L}}$. Equivalently, the project is late if $x_{i t}=0$ in those periods t where $g_{i}<t \leq G_{i}$. If total project lateness is to be mintaized, chis lateness can be written as

If a penalty of $P_{i t}$ is assessed when the project is not completed by period t, the total daceness penalt \because can be written as

This expression for total lateness penalty reduces to total project lateness if all $P_{\text {it }}$ are 1 . Thus for boch cases an equivalent form of the objective function is the maximization of

$$
\begin{equation*}
z=\sum_{i=1}^{I} \sum_{t=g_{i}+1}^{G_{i}} p_{i t^{\prime}} x_{i t} . \tag{5}
\end{equation*}
$$

CONSTRALNTS

The formulacion can accomodate a rather wide range of environwental requirements and limitations. Some of these are now discused.

Job Completion

Each fob has exactly one completion pexiod.

Notice that in each constraint, the value of any one $x_{i j t}$ can be determined by the values of the others in that constraint. To use this relationship to full advantage, replace Conctraint (6) by

$$
\begin{equation*}
\sum_{t=\ell}^{u_{i j}-1} x_{i j t} \leq 1 \tag{7}
\end{equation*}
$$

and define

$$
x_{i j\left(u_{i j}\right)} \equiv 1-\sum_{t=\ell_{i j}}^{u_{i j}^{-1}} x_{i j t} .
$$

Replacing $x_{i j\left(u_{i j}\right)}$ by ita definitional equivalence can be used to reduce the total number of variables in the formulation.

Project Completion
Formulations involving $x_{i t}$ variables (e.g., objecrive functions
(1), (2), and (5)) require that the $x_{i t}$ variables for each project be
zero until all of its jobs have been completed. That is, project i t-1
cannot be completed by perivi l until $\underset{q=\ell}{\sum_{i j}} x_{i / q}=1$ tor all N_{i} fobs of project i. This requirement can be written as
(8)

$$
\begin{aligned}
& x_{i t} \leq \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \sum_{q=i_{i j}}^{t-1} x_{i j q} \\
&\left(i=1,2, \ldots, I ; c=e_{i}, e_{i}+1, \ldots, G_{i}\right)
\end{aligned}
$$

In formulations involving x_{t} variables (e.g., objective functions (3) and (4)), the above conatraints are replaced by

$$
\begin{align*}
x_{t} \leq & \frac{1}{I} \sum_{i=1}^{I} \sum_{i=1} \sum_{i=1}^{N} \sum_{q=\ell}^{t-1} x_{i j q} \tag{9}\\
& \left(t=\max e_{i}, \ldots . \max G_{i}\right) .
\end{align*}
$$

Sequencing

A sequencing constraint is required when a job cannot be started until one or more ocher jobs have been completed. For example, on project i, assume job m must precede job n. If $t_{i m}$ and $t_{i n}$ denote the completion periods of jobs m and n respectively, then

$$
t_{i m}+d_{i n} s_{i n} .
$$

Note that $t_{i m}=\sum_{t-L_{i m}}^{u_{i m}} t x_{i m t}$ and $t_{i n}=\sum_{t=L_{i n}}^{u_{i n}} t \lambda_{1 i} \quad$ Therefore, the appropriate sequencing constraint becomes

Sequencing reiationohipareduce the number of $x_{\text {jf }}$ variables for which it is neceseary to obtain values from the formiation, since
(1) $x_{i n t}-0$ for $t<\max \left\{a_{i n}+d_{i n}-1 ; \operatorname{mix}_{j \in P_{i n}}\left(a_{i j}+d_{i j}+d_{i n}-1\right)\right\}$
where $\mathrm{P}_{\text {in }}$ ia the eet containing other jobs of project
1 that mat precede job n, and
(2) $x_{i m t}-0$ for $t>\min _{j \in F_{i m}}\left\{G_{i}-d_{i j}\right\}$ where $F_{i m}$ is the set containing other jobs of project i that must follow job̀ m.

The number of $X_{i t}$ variablea might also be reduced, aince e_{i} wight be increased as result of sequencing relationships.

Respurce Constrainte

The value $r_{i j k}$ epecifies the number of resource units of type k required for the performance of jab J, project 1 . Thus if $r_{1 j 1}=3$ and $r_{i j 2}=2$, then 3 units of type 1 are used in conjunction with 2 unds of type 2 during those perioda when the job in being performed. Resources required on a job are assumed in use until the job ends. If this assumption 1 n not appropriate, slight reformulation is required. For example, if certain resolirce ia in use only during the first p periode of the job where $p<d_{L j}$, then treat the job an two equenced "eubjoba" whth differing resource requiremente and with durations of p and $d_{i j}$ - p, respectively. If the subjobs are to be performed
contiguousiy, replace the sy in Constraint (LO). The approach can apply to any diviaion of job finto two or more subjobe.

In any given period, the grount of resource x used on all jobs cannot exceed the amount of renource k aviliable. A job is being procesed in period t if the job is completed in period q where $t \leq q \leq t+d_{i j}-1$. Therefure the resource congtrairt can be wrilien as

Implementation of this conatralnt necessitaten recognizing predetermined values of $x_{i j t}$ (Namely, $x_{i j t} 0$ for $t<\ell_{i j}$ and $x_{i j t} 0$ for $t>u_{i j}$). If the avallability of a resource is constant over the scheduling horizon, then some periods may involve redundant resource constraints. Using the scheduling situation described by Fig, 1 as an example, the resource constraints assochated with perlods 1,2 , and 3 (viz., $\left.t<\min \left(a_{1 j}+d_{i j}\right\}-1\right)$ would be redundane with those of period 4, and therefore removable. A more general observation is that if the resource availability, $R_{k t}$, is constant for the first t^{\prime} periods where $\min _{1, j \rightarrow r_{i j k} \cdot 0}\left\{a_{i j}+d_{i j}\right\}: t^{\prime} \leq \max G_{i}$, then Constraint (11) need not be Imposed ior periods $:<m_{i n}\left\{a_{1 j}+d_{1 j}\right\} \quad \therefore \quad 0 \%$ the other hand If $R_{k t}$ is constant for the firat t periods where $\min _{i, j \neq r_{i j k}>0}\left\{a_{i j}\right\}$: t :
min $\left.>a_{i j}+d_{i j}\right]$, then Conatraint (11) need not be impnsed for 1, jor $\mathrm{r}_{1 j \mathrm{k}}>0$
periods $t<t^{\prime}-1$.

Subatitutablility of Remourcas

It may be posible to use alternative renourcee to accompliah some jobs. For cxample man with higher akill can be abstituted for ean with lowar aklll on particular jobe.

If resource eubatitution ia parmitted on job j, profect 1 , then Conetraint (ll) wist be modiged to acrount for the resource substitution and potential differences in job durations when the job ia performed by different resources. To handle this condition, define the job duration when done by resource k as $d_{j j k}$. Only the case where the job can be done with either resource k_{1} with duration $d_{i j k}$, or k_{2} with duration $d_{1 j k_{2}}$ will be conoldered. Both k_{1} and k_{2} could be considered as resource sets in which case each constraint Involving the resources of the resource set requires modification. Assume $d_{i j k_{1}}<d_{i j k_{2}}$ Let

$$
\delta_{1 j}= \begin{cases}0 & \text { if resource } k_{2} \text { is used } \\ 1 & \text { if resource } k_{1} \text { is used }\end{cases}
$$

and add the following constraint:

$$
\begin{equation*}
\left(1-\delta_{1 j}\right) \sum_{t=a_{i j}+d}^{i j k_{1}-1} x_{i j t}^{+d}-0 \tag{12}
\end{equation*}
$$

Conatraint (12) requirev $x_{i j t}=0$ for $a_{i f}+d_{i j k}-1 \leq t \leq a_{i j}+$ $d_{i j k_{2}}-2$ if $b_{i j}=0$ (i.e., it prevente the job completion from occurting prior to period $k_{i j}+d_{i j k_{2}}-1$ if resource k_{2} is used),
but does not reatrict $x_{i j t}\left\{ \pm b_{i j}=1\right.$. Conetraint (11) wutt be altered to indicate whether resource k_{1} or k_{2} is employed to perfoxm che job. For resourcea k_{1} and k_{2}, the term in Conatraint (ll) associated with the job becomes
(13)

$$
t_{i j} \sum_{q=t}^{t+d_{i j k}}{ }^{-1} \mathrm{r}_{i j k_{1}}{ }^{x_{1 j q}}
$$

for resource k_{1}, and
(14)

for resource k_{2}.
The above conatrainta can be put into a linear form by defining

$$
y_{i j t}= \begin{cases}1 & \text { if } b_{i j} x_{i j t}=1 \\ 0 & \text { otherwiae. }\end{cases}
$$

Uaing a technique Watters [25] developed, the following constraints are obtained to insure that the condichons imposed on yige are satisfled:

$$
\begin{equation*}
y_{i j t} \geq \delta_{i j}+x_{i j t}-1, \quad \text { and } \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
y_{i j t} \leq \frac{1}{2}\left(\delta_{i j}+x_{i j t}\right) \tag{16}
\end{equation*}
$$

Constraint (12), in terms of $y_{i j t}$, becomes
(17)

$$
\sum_{i=a}^{i j} \sum_{i j}^{+d_{i j k}-1}\left(x_{i j t}-y_{i j t}\right)=0 .
$$

Relationship: (13) and (14) become

$$
\sum_{q=t}^{t+d i j k_{1}^{-2}} r_{i j k_{1}}^{y_{i j q}}
$$

$$
{ }^{t+d_{1}} \mathrm{jk}_{2}-1
$$

$$
\begin{equation*}
\bar{L}_{q=t} r_{i j k_{2}}\left(x_{i j q}-y_{i j q}\right) . \tag{19}
\end{equation*}
$$

Another approach to permitting a remource abstitution to to define at of matually exclusive jobs, only one of which mast be performed. For example, if two altamative methode (or resource combinationa) exlet for performing job j^{4}, define the two alternatives as jobs j_{1} and j_{2} with durations $d_{i j}$ and $d_{i j_{2}}$, and with $u_{i j_{1}}=u_{i j_{2}}=$ $u_{i j}$ ', Kequire completion of either j_{1} or j_{2}, but not both, anytime before the end of period $u_{i j}$ '. To do thia, replace Constralint (7) by

$$
\begin{equation*}
\sum_{\operatorname{qamin}\left\{\ell_{i j_{1}}, \ell_{i j_{2}}\right)}^{u_{i j}^{\prime}}\left(x_{i j_{1 q} q}+x_{i j_{2} q}\right)=1 \tag{20}
\end{equation*}
$$

and retaln $x_{i j}\left(u_{i j}{ }^{\prime}\right.$) in the formulation (i.e., do not replace $x_{i j}\left(u_{i j}{ }^{\prime}\right)$ by ita definitional equivalent). The modified project completion conetraint corresponding to Constralnt (8) wouid be
(21)

A similar modification could be made to Constralnt (9).

Concurrency and Nonconcurrency of Iabs

A concurkency constraint on fobs a and n eneures that chey guat be performed aimultanecualy. It can be obtained by requiring $x_{i m t} x_{i n t}$ or by combining resource requirementa and treating ra and n as aingle job.

A nonconcurtency conetraint on joba m and 11 enaures that they gunt not be performed simultaneously, but permits them to be performed in any order. Job a in being performed in period t it and only $1 f$

$$
\sum_{q=t}^{t+q^{-1}} x_{i=q}=1
$$

and imilariy for job n. Thus the desired constraint is
(22)

$$
\begin{aligned}
& \sum_{q=t}^{t+d_{i q^{-1}}} x_{i m q}+\sum_{q=t}^{t+d_{i n}}{ }^{-1} x_{i n q} \leq 1 \\
&\left.\left(t=\operatorname{maxi\ell } \ell_{i m}, \ell_{i n}\right), \ldots \min \left(u_{i m}, u_{i n}\right\}\right) .
\end{aligned}
$$

Job Splicting
Theoretically, total job-splitilng capabilily could be accomplished by creating each fob as dy abjubs (each subjuh lioving one period
 ubbjobs. Pragmatically, however, job-aplitting capability would eeldoa be fully exerrled because of sctup coats, the desitability of mancolning fob rontinuify, ete. Hence, defining eubaiantiaily fewer than $d_{i j}$ ubjobs for a particular job any provide sufficient piltting flaxibility without requiring an inordinate number of subjobi.
suppoef fot j can be aplit, and theubjobe are aequenced in accordance with Constraint (10). When two of its aquanced subjobe, bay m and n, are not performed contiguously (i.e., when the larger job of which they are a part is allowed to eplit), then

$$
\begin{equation*}
T_{\operatorname{mn}}=\sum_{t=i}^{1 n} t x_{i n t}-\sum_{t=i n}^{i_{i m}} t x_{i m t}-d_{i n} \tag{23}
\end{equation*}
$$

repreaents the duration of the split. $\tau_{\text {wn }}$ is the slack variable of Constraint (10).

Penalty Costas. If a penalty cost, C_{n}, in incurred per time period of split, then $c_{n}{ }^{\top}$ ran is the job-splitting penalty cost. If a penalty cost, C_{n}, is incurred for the eplit regardiess of split duration, then $C_{n}{ }^{\top}{ }_{n}$ is the job-splitting penalty cost where T_{n} ia a 0 - 1 viniable such thet

$$
\tau_{n}= \begin{cases}1 & \text { LE eplit occurs; 1.e., } T_{\operatorname{man}}>0 \\ 0 & \text { otherwise. }\end{cases}
$$

The appropriate value of ${ }^{\text {n }}$ is obtained by requiring

$$
\begin{equation*}
T_{n}=T_{m n} / G_{i} \quad \text { and } \tag{24}
\end{equation*}
$$

$$
T_{n} \leq 1+\frac{T_{\operatorname{mn}}-1}{G_{i}} .
$$

Both types of job-eplitting penaity cots can be used with a cost objective function.

Duration Extension. If act Job duration increases as the reault of a spll:, the T_{n} variable can be used to modify the resouice constrairts using a technique similar to that uad in considering resource substitutions. If $w_{i n}$ is the duration penalty when subjob n doas not iomediately follow subjob m, then the terms in the appropriate resource constraints for subjob n become

Again the quadratic terms would have to be replaced by their linear equivalents as described previously.

EXAMPLE SCHEDULING PROBLEM

A three-project, eight-job, chree-resource-type problem will be formuleted using the job completion, project completion, sequencing, and resource constraints. Jobs are to be scheduled so as to minimize total project throughput time. In addition, jobs are to be started as soon as possible if doing so does not increase total project throughput time. Table 1 contains sequencing relationshipa, job arrival and duration times, due dates, resource requirements, and resource avallabilities. For comparative purposes, solutions provided by several standard dispatching rules are presented.

Table
SEQUENCING, ARPIVAL TIMES, JOE DURATIONS, DUE DATES, AND KESOURCE REQUIREMENTS

Project (1)	Jol (J)	Precedence Relations ($1, j$)	$\begin{gathered} \text { Arrival } \\ \text { Time } \\ \left(a_{i j}\right) \end{gathered}$	Duration$\left(d_{i j}\right)$	Absolute Due Date (G)	Reaource kequirements$\left(r_{i, j k}\right)$		
						$k=1$	$k=2$	$k=3$
1	1	None	1	4	8	5	3	2
1	2	$(1,1)$	1	3	8	0	1	1
1	3	None	1	3	8	2	0	2
2	1	None	2	3	9	1	1	1
2	2	Norie	2	2	9	2	0	0
2	3	$(2,1)$	2	2	9	2	2	0
3	1	None	3	5	9	2	1	1
3	2	None	3	1	9	1	3	0
Amount of reocurce k available in each time period ($R_{k t}$)						8	5	4

Dispatching Rules

Resource requirements for jobs and limited rescurce avallebility
preclude jobs from being atarted immediately. Imediate diopatch, an depicted by the schadule in Fig. 2, would cause retource requirements to exceed resource avaliability. As seen from Fig. 2, winimum throughnut times for Projects 1,2 , and 3 are seven time units, five time undis, and five time units, respectively. Thus, any femable oolution to the cheduling problem could not yield a cotal throughput time of lese than $1 /$ time unito. The fe: ..owing diapatcil examples observe arrival and eequencing constraints as resource conflicta are resolved. In some cases, the due datea are not met.

Firat-Come-First-Served. Figure 3 indicates echedule obtained when the jobs are processed on a firat-come-first-Eerved bania; arxival

Fig. 2 -- Earlieat atare and completion times, unlimited reatourcea
ties are broken by processing the shortest job first. This rule produces a schedule for completing Projects 1 and 2 on time, but Project 3 is late by one time unit. Total throughput time is 22 time units. If tics are broken by processing the longest job first instead of the shortest job, the schedule in Fig. 4 results. No lateneas occurs, and total throughput time in 21 time units.

Minimum-Prolect-Slack-First. Priority is determined by project slack (the time between the earliest and the latest permisalble project completion time). From Fig. 2,

$$
\begin{aligned}
& \text { Project } 1 \text { slack : one time unit; } \\
& \text { Project } 2 \text { slack = three time units; } \\
& \text { Project } 3 \text { slack = two time units. }
\end{aligned}
$$

Therefort, under the minimum-project-slack-first dispateh rule, jobs of Project 1 are scheduled first, then those of Project 3, and finally those of Project 2. Figure 5 depicis the resulting schedule. Projects 1 and 3 are completed on time, but Project 2 is late by three time units. Total throughput time is 24 time units.

Formulation of Example

Variables required in the formulation are numbered as follows:

Variable No.	1	2	3	4	5	6	7	8	9	10
Variable	x_{114}	x_{127}	x_{133}	x_{134}	x_{135}	x_{136}	x_{137}	x_{214}	x_{215}	x_{216}
Variable No.	11	12	13	14	15	16	17	18	19	20
Variable	x_{223}	x_{224}	x_{225}	x_{226}	x_{227}	x_{228}	x_{236}	x_{237}	x_{238}	x_{317}
Variable No.	21	22	23	24	25	26	27	28	29	30
Variable	x_{318}	x_{323}	x_{324}	x_{325}	x_{326}	x_{327}	x_{328}	x_{18}	x_{27}	x_{28}
Variable No.	31	32	33							
Variable	x_{29}	x_{38}	x_{39}							

Fig. 3 -- FCFS, breaking tics with shortest job first

Fig. 4 -- FCFS, breaking tie: with longett lob first

Regource Usage

Fig. 5 -- Minimum project slack first

All $x_{i j\left(u_{1 j}\right)}$ variables (viz., $x_{115}, x_{128}, \because_{138}, x_{217}, x_{229}, x_{239}, x_{319}$, x_{329}) ate expressed in terms of theit definitional equivalents.

Maximizing objective function (2) provides minimum total through-
put time and starts jobs as son as possible without otherwige affecting throughput time, provided

$$
M>\sum_{i=1}^{i} \sum_{j=1}^{N u_{i j}}=64 .
$$

The value $M=65$ will be used.
Table 2 contains the coefficients of the objective function (multiplied by M so that they are all integer) and the constraints. The constraints are arranged as follows:

$$
\begin{aligned}
& 1-8 \text { are job completion constraints; } \\
& 9-14 \text { are proje } t \text { completion constraints; } \\
& 15-16 \text { are sequencing constraints; and } \\
& 17-37 \text { are resource constraints for periods } \\
& t \geq \min \left(a_{i j}+d_{i j}\right)-1=3 .
\end{aligned}
$$

Note that some constraints in Table 2 are nonbinding (viz., 1, 2, 34, 35, and 37) and may be deleted from the formulation.

Solution Ueing a $0-1$ Code

The problem was solved with a $0-1$ integer linear programing code developed by Geoffition [7] and programmed for RAND's IBM 7044. Execution time is 2.3 seconds. The optimal solution is presented in Table 3.

Table 3

(-) indicatea tite variable ia predetermined to equal zero.

The optimum schedule thus determined is presented in Fig. 6. Projects 2, 2 and 3 are completed one, three, and two time periods ahead of their respective due dates. Total throughput time is 17 time units.

For this example the mathematical programing solution represents a substantial improvement over the solutions obtained from the first-come-first-served and minimum-project-slack-£irst dispatch rules. One dispatch rule that did yield the optimal solution was a minimum-job-

Fig. 6 -- Optimal solution
black-firet rule that determinee prionity as the the between the earllest and the latest permissible job completion time. However, no attempt vas made in tent or evaluate dispatch rules exhaustively.

Thin problem, when formelated in terms of Che validules Bowan [3] uses and extended to accomodate multiple resources, mond involve 72 variables and 125 constraints. If predetermined variables are ellmanated, the Bowman fomulation could be reduced to 50 varlables and 94 constraints, atill larger than the 39 -variable, 37 -constralnt formulation presented here.

CONCLUSION

A zero-one linear programing formulation of scheduling problems has been developed which can accommotate a wide range of conditions. The formulation is more efficient than previousiy reported models in terms of the number of variables and the number of constraints required to model a scheduling situation. One general comment on the size of the formulation is that it is favorably affected by an increased amount of sequencing, by relatively long jobs, and by close proximity of the scheduling horizon (or absolute due date) to the optimal project completion date. This research coupled with the immense research on zeroone programing codes should yield practical procedures for obtaining optimal solutions to scheduling problems.

REFERENCES

1. Halas, E., "An Additive Algorithm for Solving Linear Programs with
 517-546.
2. Balinski, M. L., "Integer Progzaming: Methods, Usas, Coraputation," Manerement Sclence, Vol. 12, No. 3, November 1965, pp. 253-313.
3. Bowman, E. H., "The Schedule-Sequencing Problem," Oparations Research. Vol, 7. 1959, pp. G21-624.
4. Convay, R. W., W. L. Maxwell, and L. W. Miller, Theory of Schedyling, Addison-Wesiey Publishing Co., Inc., Reading, Kasachusetes, 1967.
5. Davin, E. W., "Resource Allocation In Project Network Models-A Survey," Journal of Industrial Engineering, Vol. 17. April 1966, PP. 177-188.
6. Fendley, L. G., "The Development of Complete Multi-Project Scheduling System Uiing a Forecasting and Sequencing Technique," Ph.D. Disaertation, Arixone 1959. Univeraity, 1967.
7. Geoffrion, A. M., Implicit Enumeration Using an Imbedded Linear Frogram, The RAND Corporation, RM-5406-PR, September 1967.
8. Gere, H., "Heuristics in Job-Shop Schedulifg," Manazement Science, Vo1. 13, No. 3, November 1966. Pp. 167-190.
9. Glover, F., "A Multiphase-Dual Algorithm for the Zero-One Integer Programing Problem," Operations Research. Vol. 13, 1965, pp. 879-919.
10. Hillier, F. S., Chance-Conetrained Programing with Zero-one or Bounded Decision Variables, Technical Report 4, Contract NONR-225 (89), Stanford University, Stanford, California, August, 1966.
11. Lambourn, S., "RAMPS--A New Tool in Planning and Control," The Computer Journal, Vol. 5, 1963, pp. 300-304.
12. Lawler, E. L., "On Scheduling Problems with Deferral Costs," Management Science, Vol. 11. No. 2, November 1964, pp. 280-288.
13. Manne, A. S., "On the Job-Shop Scheduling Problem," Operations Research, Vol. 8, 1960, pp. 219-223.
14. HeNaughton, Robert, "Scheduling with Deadlines and Lose Functions," Munagement Science, Vol. 6, No. 1, October State
15. Mize, J. H., "A Heuriatic Scheduling Model for Multi-Project Organizations," Ph.D. Thesis, Purdue Univeraity, 1964.
16. Moder, J. J., and C. R. Phillipa, Pralect Management With CPM and PERT, Reinhold Publiahing Company, New York, 1964.
17. Nath, J. F., and G. L. Thompson (eds.), Lndustrial Scheduling. Prentice-Hall, Inc., Englewood Cifffs, New Jersey, 1963.
18. Petersen, C. C., "Computational Experience with Variantia of the Bulas Algorithm Applied to the Selectbon of RoD Projects," Monagement Sclence. Vol, 13. 1967, pp. 736-745.
19. Pritsker, A.A.B., and L, J. Watters, A Zero-One Programing Approach to Scheduling with Limited Resources, The RAND Corporation, RM-5561-PR, Januexy 1968.
20. Pritsker, A.A.B., L. J. Watcers, and P. M. Wolfe, "Machematical Formalation: A Probiew in Design," Procepdings of the 19th Annual Institute Conference of AIIE, Tampa, Florida, May 1968.
21. Root, J. G., "Scheduling with Deadlines and Loss Functions on k Parallel Machines," Manayenent Science, Vol. Il, No. 3, January 1965, pp. 460-47.5.
22. Sisson, R, L., "Sequenciag Theory" in Progress in Operations Research, Vol. I, R. L. Ackoff (ed.), John Wiley and Sone, Inc., New York, 1961.
23. Smith, R. D., and R. A. Dudek, "A General Algorithm for Solution of the n-Job, M-Machine Sequencing Problem of the Flow Shop," Operations Research, Vol. 15, No. 1, January-February 1967, PP. 71-82.
24. Wagner, H., "An Integer Linear Programing Model for Machine Scheduling," Naval Research Logis+ics Quarterly, Voi. 6, 1959, PP. 131-140.
25. Watters. L. J., "Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programing Problems," Operationa Research, Vol. 15, No. 6, November-December 1967, pp. 1171-1174.
26. Wieat, J. D., "Some rroperties of Schedules for Large Projects with Limited Resources," Operations Research, Vol. 12, May-June 1964. Pp. 395-418.
27. --․-., "A Heuristic Model for Scheduling Lorge Projects with Limited Resources," Management Science, Vol. 13, No. 6, February 1967, pp. B-359-377.
