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ABSTRACT 

A quantitative analysis of th~ Cut-Bar method of measuring the thermal con

ductivity of solids is performed. The mathematical model, which corrects for the 

difference in heat flux in the specimen and reference standard, is that of the two 

dimensional steady heat conduction equation applied to an annulus of insulation. The 

solution is presented in detail and found to be comprised of two physically distinct parts, 

a conductiv_ity factor and a geometrical factor. A number of charts and graphs are 

presented for clarification as to the nature and magnitude the relative sizes of the 

various components will have on the accuracy over different conductivity ranges. The 

complexity of the geometrical factor required a digital computer programs which 

are included. 

Reference is made to a similar study, performed by researchers at the 

National Bureau of Standards. It is found that the differences in the guard tempera

ture distribution results in a substantial change in the geometrical factor. 
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I. INTRODUCTION 

The "Cut-Bar" technique of measuring thermal conductivity is a steady state 

comparative method which is most accurate in the low and intermed~ate temperature 

ranges for highly conductive materials. The schematic of the elements of a typical 

apparatus is illustrated in Figure 1. It consists of a pair of meter bars or discs 

between which a specimen is interposed. This composite bar is surrounded by an 

annulus of powder insulation which, in turn, is encased in a heated metal cylinder 

acting as a guard against extraneous heat losses. An axial heat flux is established 

by an isothermal source and sink at either end of the assembly. 

For a first approximation, the determination of the specimen's conductivity is 

rather straightforward. Fourier's equation is written once for the average of 

the meter bar valves and once for the specimen: 

Q/AI m 

Q/A Is 

K S m m 

where Q/ A is the heat flux, k the thermal conductivity, and S the te~perature 

gradient in the axial direction. By assuming the heat flow and cross-sectional 

areas constant throughout the composite bar the following relationship exists: 

where the temperature gradients are measured and the conductivity of the meter 

bar is known either by using a known standard material for the meter bar or by 

previous calibration with known standards as specimens. 

(1) 

(2) 

(3) 

Actually, the constant heat flow assumption is in error for two, reasons; the 

radial heat exchange with the guard and the axial shunting exchange: with the powder 

insulation caused by the difference in conductivities between the meter bars and 

specimen (Figure 2). A more realistic expression of the relative heat fluxes is: 

(4) 

1 
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where y is the ratio of the heat flow crossing the interface of the bar and insulation 

to the longitudinal heat flow in the bar if there were no losses (value in the bar 

a differential distance from the source). The evaluation of 'Y for a particular set of 

conditions may be done either analytically or experimentally. This report is con

cerned with an analytical solution. 

2 
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FIGURE 1. 3 

CUT-BAR APPARATUS WITH A LINEAR GUARD 
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FIGURE 2 

TKMPERATURES ON THE BOUNDARY SURF ACES OF 

THE POWDER INSULATION ANNULUS 
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II. ANALYSIS 

A theoritical evaluation of y may be obtained by determining the heat flow across 

the interface of the bar and powder insulation. The heat conduction equation and 

boundary conditions for the annulus of insulation are assumed to be: 

a 29 1 a9 0 
2

9 
0 + - + = 

0 p2 p a P a J.J.z 
(5) 

e G(z) - u 2 
\)1-\)2 P = a 

p b 9 = H(z) - u 2 

1.)1-tl2 (6) 

iJ. 0 e = 1 

iJ. = 1 e = 0 

Where the notation may be realized by reference to Figure 3 and the nomenclature section. 

The general solution to equation (5) is of course known (Reference [1]) and when applied to 

the particular boundary conditions the temperature distribution throughout the insulation 

is obtained. This distribution expression may be differentiated to obtain the radial 

gradient which in turn may be evaluated at the A radius boundary and then integrated 

along the A axis to get the total heat flow crossing the bar-insulation interface. 

Dividing this result by the longitudinal heat flow in the bar (assuming no losses) 

results in the following expression: 

5 

SIN ( m7T L) 
w 

(7) 
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where the complete details of the above mentioned steps are presented in Appendix A. 

Equation (7) may be seperated into two terms of. independent physical meaning, the 

conductivity and geometrical factors: 

- +s) (8) 

Thus 

"Y (10) 

Because of its complexity equation (9) has been programmed and is usually found to 

converge on a sufficiently accurate value in less than 150 terms. The flow chart and 

programs are presented in Appendix B. For a given apparatus F is seen to be a 
g 

function of z only. However since the specimen length (L) effects the overall length 

(w) the actual values ofF (z) must be determined for each test. In Figure 4 a curve 
g 

for particular inputs of w = 9.5 inches, A = 1 inch, B = 3 inches, L = 2 inches, 

represents the variation of the geometrical factor (F g) with dimensionless distance (J.L ) • 

·, A reproduction of the computer program output can be seen in Figure 5 for one

half of the cut-bar. Sinc.e the ends of the cut-bar and guard are matched, the 

radial losses and gains are symmetrical about the center of the apparatus; the 

geometrical factor F g(Z) plotted over one-half of the cut-bar is a mirror image for 

the other half. 

Finding F k for the apparatus from equation (8) and using F g(Z) from the com

puter, the same curve with different ordinate scale will represent y (Z). 

6 
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In an earlier work (Reference 2), Flynn carried out an analysis for the case of the 

outer boundary temperature distribution equal to the inner boundary; that is, H(Z) = G(Z). 

A comparison with this ideal case is made in Figure 6. The cut-bar apparatus with a 

matched guard has smaller geometrical factors compared with a similar apparatus and 

a linear guard matched at the ends, (Figure 6). The two cut-bar apparatus have the 

same dimensionless ratios,__!:__= 3 and~= 4, and differ only in the thermal 
w A 

guarding. The relative flatness of the matched guard's correction curves, has the 

advantage of not having to average the correction factor between thermocouples 

discussed in the example in Chapter III. Furthermore, as the ratio! decreases in 

the linear guard apparatus, the geometrical factor will increase to a very large number. 

Conversely, letting ~ decrease in the matched guard apparatus, the ·geometrical factor 

will decrease, and in the limit as ~ approaches one, F g approaches zero. There phenomena 

are better illustrated in Figure 7, which is a plot of the maximum geometrical factors (at 

the mid-horizontal plane) against the ratio of the guard and bar radii. The linear guard's 

increasing geometrical factor with decrease of -j may be explained with the decreasing 

insulating resistance, the radial losses begin to approach the axial flux. The matched 

guard apparatus has a minimum of radial losses; thus, letting ~ _, 1 decreases the shunting 

loss by decreasing the medium through which it takes place. The conditions of the zero 

limit are, of course, quite impractical. 

It may be concluded that although the errors associated with the linear guard are of 

greater magnitude and variation along the longitudinal axis, than that for a matched guard, 

they are not excessive for large 1i ratios. Consequently, this method may still be the 
A 

preferred technique; particularly, when considering the additional complexity and cost 

of the matched guard's experimental apparatus. The details of how to design and 

correct a linear guard apparatus are discussed in Chapter III. 

7 
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FIGURE 3 

SHUNTING OF HEAT FLUX IN A 

CUT-BAR APPARATUS 
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PWT OF THE GEOMETRICAL FACTOR ON THE LEF;T SCALE AND 
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FIGURE 5 10 

COMPUTER OUTPUT 

RESULTS OF POWER LOSS OVER LENGTH OF METER-BAR 

F VERSUS Z FOR 20 POINTS FROM Z=O TO END 
g 

w A B L TEST p M F 
9.50000 1.00000 3.00000 2.00000 .00010 20 150 19 

POINT z KL SI::R Fg t:El ~Q 
1 .23750 3 .0057214 .0110143 
2 .47500 59 .0228464 .0439817 
3 .71250 3 .0514361 .0990198 
4 .95000 3 .0915257 .1761964 
5 1.187 50 21 .1433035 .2758740 
6 1.42500 3 .2069009 .3983055 
7 1.66250 21 .2825233 .5438862 

I 8 1.90000 3 .3706142 .7134703 
9 2.t3750 21 .4717329 .9081341 

10 2.23750 21 .586 7708 1.1295939 

I 1l 2.61250 21 .7170570 1.3804081 
12 2.85000 J .8646966 1.6646296 
13 3.08750 1 1. 0334212 1. 9894417 

I 
14 3.32500 2 1.2303858 2.3686188 
15 3.56250 0 1.4725646 2.8348377 
16 3.80000 0 1.8485560 3.5586596 
17 4.03750 0 2.1179562 4.0772827 

I 18 4.27500 2 2.2792856 4.3878582 
19 4.51250 0 2.3698414 4.5621874 
20 4.75000 2 2.3992300 4.6187635 
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FIGURE Q ll. 
COMPARISON OF TilE GEOMETRICAL FACTORS FOR A CUT-BAR 
APPARATUS HAVING A MATCHED GUARD WITH AN APPARATUS 

HAVING A LINEAR GUARD MATCllED AT TI1E ENDS 
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FIGURE 7 

GEOMETRICAL FACTOR AS A FUNCTION OF THE RATIO 

OF APPARATUS DIAMETERS 

12 

Plot of the geometrical factor as a function of 

the ratio of guard and specimen diameters for a 

matched guard and a linear guard matched at ends . 
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III. DESIGN 

The computer results of equation (9) are also plotted as design charts. The 

design charts can be used to find optimum dimensions for a test setup. A larger than 

practical range of variables are shown, so that the designer can be sure of an optimum. 

It should be noted that in the development of the design charts, the only dimensionless 

parameters are those with physical implications. 

The design chart (Figure 8) plots the geometrical factor F g against the radii 

ratio of guard to barl , using specimen length to specimen radius ~ , and overall 

length iT, as parameters. The geometrical factor F g• should be kept to a minimum 

to obtain the optimum design. It is evident from equation (9) that as ! approaches 

1, F g approaches infinity as a limit for any ~ and ~ . However, as ! increases 

F g rapidly settles down to various asymptotic values. An arbitrary curve designated 

Be is drawn from a locus of points in the family of curves for Z and ; where 

the slope of these curves have an absolute value of 0. 01. An increase in the ratio 

-~' passed the ratio :c does not significantly decrease F g· Thus, :c may be 

considered as points of diminishing return and are the recommended value for 

optimum design. 
L L · Figure 9 is a plot of F g against w for an A family of curves. It also has a 

scale on the right ordinate of :c . If the designer uses :c as the sizing of the 

annulus, he may immediately find the minimum geometrical factor F g' for whatever 

values of ~ and ~ he desires. It may be seeri'Jn Figure 9, that as ~- approaches 

the limit ~ = 1, Fg- 0 for all values of Z. When ~ = 1, the cut-bar is a solid 

bar composed of the specimen material; similarly, when L = 0, the cut-bar is a solid 

bar, but composed of meter bar material. In both cases, there is an axial temperature 

gradient in the cut-bar which matches the axial temperature gradient in the guard. 

Therefore, F must be zero, because there is neither a radial heat flow nor a shunting 
. g . 

flow in the annulus . 

The effect of varying the specimen thermal conductivity on the thermal con

ductivity factor, Fk, (Figure 10) can be seen by using equation (8) to plot Fk against 

Ks 
-K· for various ratios of 

1 . 

then approach co as :.s 
1 

Ks becomes large. 

K. 
1 

. The plotted quantities go through zero at 
Ki 

- Kl· becomes small, and asymptotically approach 

Km 

13 
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Since a designer would choose a geometrical factor which would be small, he could 

multiply the ordinary scale of Figure 10 to obtain 'Y • The ordinate would be the 

measure of thermal conductivity of materials in terms of fractional power gained or 

lost in the cut-bar apparatus. 

If it is necessary tO measure a large range of specimen thermal conductivities 

with a single pair of meter-bars, the conductivity of the meter-bar should be in the 

lower end of the range. To have a minimal thermal conductivity factor range, for a 

given range of specimen materials using only a single pair of meter-bars, it is 

necessary to find the arithmetic average of the resistance of the specimen range. 

The arithmetic average of the maximum and minimum of the specimen resistance 

range will be used as the optimum resistance for the meter-bar. 

Therefore, 

= 1/2 (11) 

1 Substituting the equivalent thermal conductivity for resistance, that is, R -R' 
into equation (ll) 

it becomes, 

max 
+ max 

min 
min 

(12) 

(Ks) and (K8 ) . are the maximum and minimum specimen thermal con-max mm 

ductivities to be measured. 

The maximum fractional power is approximately, 

K. [ 1 
'Y max = .±. T (K ) . 

s mm 
(13) 

When (K ) is very large relative to (K ) . , equation ( 12) is approximately, s max s mm 

(14) 

For the maximum fractional power change over the range, equation (13) becomes, 

K. F 
y max = ± --:::---::-=-.....::..

1 
--- g 

2 (Ks) min 

14 

(15) 
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Figure 11 shows the table with several ranges of thermal conductivity; the pre

ferred meter-bar for each range, and the maximum fractional power change associated 

for a given geometrical factor of 1. 0, and an insulation thermal conductivity of 

.058 
BTU 

To illustrate the fractional power change that would arise if a range of materials 

for the specimen bar were measured using the same meter-bar and insulation annulus, 

"Y is plotted against dimensionless length in Figure 12. The geometrical dimensions of 

the cut-bar apparatus in Figure 12 are the dimensions used for the F g values to obtain 

a plot of "Y versus the dimensionless length u. The quantity y (u) is shown for specimens 

having.a thermal conductivity ranging from one-tenth to ten times that of the meters. 

The following is an example problem, illustrating the use of the design charts and 

equations of a cut-bar apparatus having an optimal design using a minimal fractional 

power change. The fractional power change is dependent on both the geometrical factor 

and the thermal conductivity factor, while the geometrical and thermal conductivity 

factors are independent of one another. Thus, these factors are each minimized 

separately. 

Assuming that the particular design requirements are limited to an overall length of 

w equal to 9.5 inches, with the specimen dimensions of length L equal to 2 inches, and 

specimen radius A equal to 1 inch, the specimen thermal conductivity will have a range 

from a minimum of 4. 5 BTU to a maximun of 242 

of most metals). HR-FTOF 

L 
From the above known dimensions: A = 2 and 

chart in Figure 9 indicates the dimensionless ratio Be 
A 

BTU 
HR-FTOF 

L 
w = .2111. 

is found to be 

(the range 

The design 

Be = 4. 06 
A 

or B
0 

= 4. 06 inches. Thus, the guard diameter should be at least 4 inches or greater. 

The computer program in Appendix B is used to calculate the geometrical factor for 

20 points along the cut-bar. The computer program stops when the geometrical factor 

has converged within the test range of . 0001 or reaches the maximum number of series 

terms of M equal to 15 0. The frequency F of the test for convergency occurs every 7 

terms in the series. 

The inputs into the computer program are: W = 9. 5 inches; A = 1. 0 inch; 

B = 4.06inches;L = 2.0inches; Test .0001; P = 20 points; M = 150 

15 
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terms, and F == 7. The resulting output from the computer program is illustrated in Figure 

13. Calculated for each point is the distance Z of that point in inches from the reference end, 

the number of KL terms before the last term in the series is calculated, the value of the 

SER ~eries swnmation, and the value for the geometrical factor F g . The resulting 

output for 20 points along one symmetrical half of the cut-bar is presented in Figure 13. 

From this output of the computer program, a graph (Figure 14) is drawn for F g versus Z. 

In Figure 14, F is on the left scale of the ordinate axis and its maximum value at the 
g 

center of the cut-bar is 4. 31. 
' 

Since the apparatus is to be used to measure the thermal conductivity of specimens 

ranging from Bismuth to that of Silver, the limiting conductivity values are (K ) . == 4. 5 s mm 
BTU and (K8 ) = 242 BTU The insulation best suited for the appa-

HR-FT0F max HR-FT°F . 

ratus has a value of Ki = .1 BTU Using equation (12), Km is calculated as 9 
HR-FT°F 

BTU , which is in the range of stainless steels. Using the above values for K., 
HR-FT°F 1 

(Ks) . , (K ) and (F ) and substituting these values into equation (13), the mm s max g max 

maximum value of the fractional power change is -. 047 which is at the center of the 

specimen bar. 

To calculate the fractional power change for a specific test the apparent con

ductivity is first used, for instance K
8 

== 90 H~=~ToF . Knowing Ki and Km the 

conductivity factor F k is found to be . 01 from equation (8). Since the geometrical 

factor has been plotted for the apparatus in Figure 14, the fractional power change 

can be found by changing the scale on the axis of the ordinate by a factor of . 01, and 

this scale is shown on the right scale on the axis of the ordinate. 

Since the temperature gradients are calculated between two thermocouples placed 

a finite distance apart, tjle fractional power changes y and y which are used in 
m s 

equation (4) represent the average fractional power changes between the measuring 

stations, this average y can be calculated as, 

y aver 
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To find the average y to be used for y in this example, (referring to Figure 14) m 
the cross-hatched area under the curve from z

1 
= 1.1875 to z2 = 3.325 inches, is 

measured by counting graph squares with the result that y = • 01025. 
m ' 

y s is calculated by using the same graphical procedure with the two measuring 

thermocouples being at points Z 1 = 4. 037 and Z 2 = 5.463 on the specimen bar; thus 

y s is . 0414. 

The fractional power change for y and 'Y- is then substituted into equation (4), 
m s 

BTU 
where Km = 9 HR-FToF The resulting equation, to find the thermal conduc-

tivity of the specimen for the example problem, is, 

sm 
8.72 ~ = 

S and S are determined from the measurements of the thermocouples. 
m s 

17 
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FIGURE 9 

DESIGN CHART FOR ftl OPTIMUM DIMENSIONLESS 

RATIO B , VARYING THE DIMENSIONLESS 
A 

VARIABLES L AND L 
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FIGURE 10 20 

EFFECT OF SPECIMEN THERMAL CONDUCTIVITY ON THE 

THERMAL CONDUcnVITY FACTOR FOR A RANGE OF 
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· FIGURE ll 

MAXIMUM ERRORS FOR VARIOUS RANGES OF 

SPECIMEN THERMAL CONDUCTIVITY 

Minimum Maximum Optimal K Maximum Error m in K Range 
s 

BTU BTU BTU 
HR-F 1°F HR-FT°F HR-FT°F + fo -

0.2889 0.5779 0.3872 5.0 

.5779 .8669 .6935 1.7 

.5779 1.1558 .7686 2.5 

.5779 2.8896 • 9651 4.0 

• 5779 5. 7793 1. 0518 4.5 

. 5779 57.7934 1.1443 5.0 

2.8896 5. 7793 3.8548 .so 

2.8899 28.8967 5.2534 .90 

5. 7793 28.8967 9.0753 .40 

5. 7793 57.7934 10.5183 .45 

5.7793 577.9340 11.4430 .50 

57.7934 577.9340 105.1839 .045 
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FIGURE 12 . 22 

PLOT OF FRACTIONAL POWER CHANGE FOR A RANGE OF SPECI~~ 
TIIERMAL CONDUCTIVITIES VERSUS DIMENSIONLESS LENGTH 

0 

Dimensionless ~rameters for this 
apparatus are: f = 2; ~ = • 2105; ~ = 3 

Ks = 1 
Km 
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FIGURE 13 

COMPUTER OUTPUT 

RESULTS OF POWER LOSS OVER LENGTH OF Jv!ETER-BAR 

F VERSUS Z FOR 20 POINTS FROM Z=O TO END 
g 
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A B 

1.00000 4.06000 
L 

2.00000 
TEST 

.00010 
P M F 

20 150 7 

z KL SER F M=150 g 

.23750 56 .0047517 .0091476 

.47500 35 • .• 0193526 .0372558 
• 71250 49 .0436508 .0840324 
.95000 35 • 0778525 .1498741 

1.18750 35 .1221891 .2352265 
1.42500 35 .1769584 .3406630 
1.66250 21 .2425952 .4670207 
1.90000 42 • 3197168 .6154876 
2.13750 42 .4089831 .7873344 
2.37500 21 • 5115743 .9848330 
2.61250 49 • 6291793 l. 2112346 
2.85000 21 .7643035 1. 4713626 
3.08750 7 .9209332 1. 7728908 
3.32500 2 1.1064501 2.1300297 
3.56250 1 1. 3382798 2.5763256 
3.80000 0 1.7053046 3.2828861 
4.03750 0 1.9674043 3.7874549 
4.27500 2 2.1233365 4.0876404 
4.51250 3 2. 2105791 4.2555913 
4.75000 7 2.2389335 4.3101764 



• 
I 
I 
I 
I 
I 
I 
I 

0 

24 

PLOT OF THE GEOMETRICAL FACTOR ON THE LEFT SCALE AND 

FRACTIONAL POWER CHANGE ON THE RIGHT SCALE OF THE 

ORDINATE AXIS VERSUS THE Z ON THE AXIS OF THE ABSCISSA 

Dimensions of ~his appmratus are: 

W = ~.5 in., A= 1 in.~ B a 4.06 in., L = 2.in., 

K1. = .01 BTU 9 K = 90 HR~~~oF' Km = 9 BTU 
liR-FTOF 5 HR-F 16 F 

-.04 

I 

.95 1.9 z.s5 3.s 4.75 5.7 6.65 7.6 s.55 . o~s 

2 

-.03 

-.02 

-.01 
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APPENDIX A 

MATHEMATICAL ANALYSIS OF GEOMETRICAL FACTOR 

It is important to note that this analysis is 

based on the change of heat flow in the annulus and 

through the boundaries of the annulus, so the equa

tions and solution are based only on the annulus, and 

not on the cut-bar or the cylindrical guard; 

however, the boundary conditions are based on the 

temperature distribution of the cut-bar, the cylindri-

cal guard, and the heater cooler system. 

Mathematical investigation of the powder insula-

tion annulus follows: 

Figure A-1 shows a schematic of the cut-bar 

apparatus. The two meter bars are of equal length 

M and of the same thermal conductivity K • m 

W - the overall length of the cut-bar 

M - the length of the meter-bar 

L - the length of the specimen bar 

A the radius of the cut-bar, or the inner 
radius of the powder insulation annulus 

B - the outer radius of the powder insulation 
annulus or the inner radius of the cylin
drical guard. 

K - the thermal conductivity of the meter-bar m 

26 



FIGURE A-1 

A SCHEMATIC OF THE CUT-BAR APPARATUS 
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K - the thermal conductivity of the specimen bar s 

K.- the thermal conductivity of the powder insu-
1 lation in the annulus 

V - the temperature variable 

The boundary conditions of the powder insulation 

annulus are: 

r =A 

r = B 0 !!!: z ~ w 

A = r = B z = 0 

z = w 

V = G (Z) 

V = H (Z) 

V1= V =Constant 
G(O) = H(O) = v1 

V = V2:Constant 

G(W) = H(W) = V2 (A-1) 

The above boundary conditions of the annulus may 

be reduced to dimensionless variables. 

The dimensionless variables are: 

u = z m = M i = L 
w w w 

.P= !. a = A b= ] 
'"f. w w 
v -V2 a-= Ks <1-:= K. 

e = s - 1 ....1 (A-2) 

Vt-V2 Km Km 
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The dimensionless bounda~y conditions are: 

f= a 0 ~ u ~ 1 6 = g(u) = G(Z)-V2 
vl - v2 

Y= b 0 ~ u ~ l Q = h(u) = H(Z)-V2 

a =..P = b 

a = f = b 

u = 0 

u ::: 1 

e = 1 

e = o 

vl - v2 

(A-3) 

The governing differential equation of heat flow 

in the annulus is Laplace's equation in cylindrical co

ordinates: 

Using dimensionless variables Laplace's equation 

is, 

(A-4) 

Using separation of variables, 

e = PE (A-5) 

Substituting equations (A-5) into (A-4): 

pn 
+ 1 P' + ];" = 0 p 1> p E 

Therefore, 
];II = - d-.2 
E 

(A-6) 

And' 
- ~2p pit + 1 p• = 0 p (A-7) 
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Solving equation (A-6), 

. E = c1 Sin(o<u) + C2Cos (o<u) 

Solving equation (A-7) the solution is in the 

form of Modified Bessel Functions: 

Substituting equations (A-8) and (A-9) into 

(A-5): 

(A-8) 

(A-9) 

Applying the last boundary condition to (A-10): 

a=.P=b u = 1 • = 0 

Then, 

SinD~.= 0 and d.= n1T 

Where, n = 0, 1, 2, ••• thus, equation (A-10) 

Using the other boundary conditions from equations 

(A-3): 

a ~j> !!:: b u = 0 e = 1 

a =f = b u = 1 e : 0 

Then, 
co = 1-u 
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(A-12) 

At the inner diameter of the annulus, using 

equation (A-12) the equation for the inner perimeter 

surface temperature is: 
00 

g(u)= (1-u)+n~ 1 [ Cni0 (n1Ta)+DnK0 (n1T'a ) J Sin(ntru) 
(A-13) 

Correspondingly at the outer diameter of the annu

lus using equation (A-12) the equation of the outer 

perimeter surface is: 

h(u)= (1-u)-\t~ 1 [cnr0 (nrrb)+DnK
0

(n1"rb)] Sin(n'tTu) 

(A-14) 

Letting, 

(A-15) 

(A-16) 

Solving Cn and Dn from equations (A-15) and (A-16): 

.an Ko(n1Ta) 

Ko (n nb) b c = n 
n (A-17) 

Io (n'!Ta) Ko (n 1ia) 
1o ( n -rr b) 1Za (n 'n"b) 

31 
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r0 (n 11' a) an 

r0(n 'l'l'b) bn 
Dn = (A-18) 

r0 (n 1Ta) Ka(n-rt a) 
r0 (n '\'rb) K0 (n1't b) 

Substituting equations (A-15) into (A-13) and 

(A-16) into (A-14) and arranging so that: 
00 

u-1+g(u)= L anSin(nrru) 
n=1 
00 

u-l+h( u)= )' b Sin(n '\ru) fr-'11 n 

(A-19) 

(A-20) 

Solving for the Euler coefficients an and bn' it 

is necessary to use Euler-Fourier formulas. 1 

The half-range sine expansion is based upon ex-

tending (u-l)+g(u) and (u-l)+h(u) over the interval u 

of (-1,0) by reflection in the origin. 

1: Drawing 

-:s 

0 ' p 

If BB1 is chosen as the vertical axis, the graph 

defines an odd function by the theorem only sine terms 
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If, 

p = 1 and u= t (from footnote 1) 

an and b are: n 

an = 2£1 [ ( u-1)+g( u) J Sin(n 'IT u)du ( A-21) 

b = 2£1 [<u-l)+h(u) J Sin( n 'rT"u)d u n 

Using the boundary conditions for a linear guard: 

Substituting into equation (A-23) the dimen

sionless variables of the equation (A-2) and the 

boundary condition h(u) of equations (A-3): 

V1-(v1-V
2
)u-V2 h( u) = -

Vl-V2 

Thus, 
h( u) = 1-u 

By substituting equation (A-24) into (A-22): 

bn = 0 

will appear in its expansion. 

(A-22) 

(A-23) 

(A-24) 

(A-25) 

Theorem: If f(t) is an odd periodic function, then the 
coefficients in the Fourier series f(t) are given by 
the formulas: 

The oddness depends upon the relation to the vertical 
axis of the coordjoate system which can be arbitrarily 
chosen. 
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Differentiating equation (A-12): 
CXl 

= L n'I'1Sin(ttitu) 
n=l 

~ = '£ Il.'t't'Sin(ntru) [ Cnll (n'll'~)-DnKl (n1T.P)J 

n=l 

(A-26) 

Let equation (A-26) define the surface of the annu-

lus at the inner diameter A. 

Substituting equations (A-17),(A-18),(A-25) 

into(A-26) the resulting equation for the inner 

The radial heat flow at the inner surface of the 

annulus, r = A, through a cylindrical surface ele

ment of length dZ is: 

dp = 2 TTA K-(~) dZ 
~ ar 

· r=A 

Using the dimensionless variables from the 

equations (A-2), equation (A-28) becomes: 

dp = 21TaG": (a.e) du 
1. a}\ p=a 

(A-28) 

(A-29) 

The total dimensionless radial heat flow across 

the inner cylindrical surface of the annulus is 

found by integrating equation (A-29) for limits 
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between u = u
1 

to u = ~ which are defined in the 

analysis subsequently, 

(A-30) 

Substituting equation (A-27) into (A-30) and inte~r~tin~ 
00 

p(u)i = L 2'TT'a <r1an[cos(nrru1 )-Cos(n11u2)) 
n =I 

[ 

K0 (n fT b) 11 (n 1T a)+I0 (n 'IT b)K1 (n 1T a)] 
R

0 
( n 1T b) t

0 
( n 1T' a)- 1

0 
( n rr b )K

0 
( n 1T' a) 

(A-31) 

It is necessary to define a temperature distribu-

tion along the inner surface of the annulus, which 

then defines an. 

Referring to Figure A-1: 

the matched end where Z = 0; 

V, is the temperature at 

S is the constant longis 

tudinal temperature gradient in the specimen bar; and 

sm is the constant longitudinal temperature gradient 

in the meter-bar. 

The boundary conditions of the cut-bar define the 

temperature distribution along the inner surface of 

the annulus. This temperature is constant around the 

perimeter which is equal distant from the ends. 
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0 ~ z ~ M v = T-S Z m 

M :!: z ~ M+L v = T-S M-S (Z-M) rn s 

m + L ~ z ~ w v = T-S M-S L-S (Z-M-L)=S (W-Z) rn s rn rn 

(A-32) 

Using the dimensionless variables of equations 

(A-2) the above boundary conditions (A-32) are re-

defined for a dimensionless temperature distribution 

g(u): 

rn :!: u :!: rn +~ 

Where, 

8 = 1- 'f u rn 

e =If (1-u) 
m 

s w 
w= 2....__ 
Is· T 

(A-33) 

(A-34) 

Using the above boundary conditions (A-33) and 

equation (A-21) the value for an can be defined as: 

a = a 1+a 2+a 3 n n n n 

a = 2 fm u(l- 'f )Sin(n 1Tu)du 
nl Jo rn 

anl = 2~ 1- 't'rn)fin(n 1'Tm) -n'TrmCos(nmn)J 
n 1T'2 

36 
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f +V 
a 

2 
= (- tp m+ 't' m)Sin(n 1iu)du 

n m s 
m 

1m+g 
+2 ( 1- lf )uSin(n "!T"u)du 

Ill s 

a.n2- Zm( q.' s- 'tim) [ Cos(rrtrm)-Cosn'tt' (m- .ll )] 
n1T 

2(1- 'f ) 
+ 2 ~ [sin(n'llm+n-rr..P)-nrr(m+..Q)Cos (n'fTm+111T~) 

n fT 

-Sin(nrrm)+n TT mCos (n't!'m)J 

an3=2('fm-l) l Cos [ n1'T (m+,R) J -Cos(n1T) ~ 
n1T' 

2( 1- ~ ) 
+ n2 rrZ [-n'tTCos(n'TT)-Sin(n1Tm+ntTR) 

+nTr(m+ .Q) Cos(n'Tfrn+n1T.I.)J 

(A-37) 

(A-38) 

Substitute equations (A-36), (~37), (A-38) 

into (A-35) and by arranging and reducing the Euler 

coefficients become: 

From equations (A-2) of dimensionless variables, 

a-s (A-40) 
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Assuming that there is no heat loss or gain in 

the cut-bar, it is possible to help reduce the 

mathematical analysis so that the resulting solution 

can be solved by computer with only a minor loss in 

the accuracy of the resulting data. 

Thus, 

Or, 

K S = K S m m s s 

s m = 
ss 

K 
s 

iZ 
m 

(A-41) 

From equations (A-34), and (A-41) it can be shown 

that, 

K 
m 

iZ s 
(A-42) 

Let Q represent the total Longitudinal heat flow 

through the cut-bar with the stipulation that there 

be no heat gained or lost through the surface between 

the cut-bar and the annulus. 

Thus, 

(A-43) 

Defining heat flow Q in dimensionless parameters: 

q = _9._ 
WTKm 

38 
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Using equations (A-34), (A-43) and (A-44), we 

have, 
(A-45) 

Defining the net fraction of power lost or gained 

in the annulus between u = 0 and u = u2 asJ1. Heat 

loss in the cut-bar is the heat gained in the annulus; 

thus, the fractional power change ~in the cut-bar is, 

-51= - .2 -q (A-46) 

Substituting in values for p, q into equation 

(A-46) by using equations (A-31), (A-39), (A-42), 

and (A-45): 

( .~ Loo [1-Cos(n11' u )] 
'lS = -~ L - L _:a_ 2 

K K 2 2 m s. a 
1 

n 
n= 

Cos ( nr) 

Substituting the dimensionless variables of 

equation (A-2) into equation (A-47), equation 

(A-47)becomes: 

~ = -Ki(~ _ k ) r tft-Co;(~)l 
s s 11 A n=l l n 'j 

(A-47) 

( 

In fT B) ( n1T'A\ (n-n-B) (~'] ( ) Kg w 11\wf+ 1o w- Kl w 1 sin(n'ft"L) Cos n;r 

K.h-n-B)r (~)-I (n-rrB) K (n1"rA) 
2
W 

~ 0 W 0 W 0 W (A-48) 
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lS is the per cent heat loss relative to the 

total heat flow in the cut-bar assuming that the 

total heat flow is the flow when there would be no 

loss or gain in the flow from or to the powder 

insulation annulus, 

~is called the fractional power change. 

Letting, 

~ = FkF g 

Where, 

Fkis the thermal conductivity factor of the 

tractional power change; 

And, 

F = §!d._ ~tl-Cos (~)~, 
g WAL..i 2 

n= n 

(A-49) 

(A-50) 

[

K (.nJ!.])I (n«A\+I (nrrB)K (D.!!.A)]. ( L\ fr1tL) 
0 W 1 W 1 0 w 1 W s~n ~}Cos~ 

K (n1TB)r (tJ.:\-rA) _ I {n1TE)!< (n1TA) 
0 W 0 W 0 W 0 W , (A-51) 

It is necessary to simplify equation (A-51) 

for computer analysis since, 

Cos(n~ ) = 0 when n is odd 

40 



Therefore, 
n 

(-1) 2 = Cos(n 
2
-rT ) when n is even (A-52) 

Letting, m = ~ (A-53) 

Substituting equations (A-53), (A-52) into 

equation (A-51), the index of equation (A-5t) can 

be changed with no loss to the equation. 

Therefore, 
00 

2: (-l)m [ 1-Cos~Zm] 
m=l,2,... m2 

Fg is the geometrical factor of the fra~tional 

change. 
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APPENDIX B 

COMPUTER PROGRAM OF GEOMETRICAL FACTOR 

A computer program was developed to calculate the 

large number of data points needed to plot the design 

charts. Also, this program was utilized in the error 

analysis of any particular apparatus. A particular 

range of design dimensions can be identified by the 

use of these charts. The exact error for a given set 

of dimensions can be found by using the program. 

In Appendix A, the resulting solution is described 

in a mathematical equation (A-54) for the geometrical 

factor_of the cut-bar apparatus. This equation is 

reproduced beL:l~w: m [l-Cos(21fmZ)j. 
F = 2W (-1) W 

g n2A 2 
m=l,2,.. m 

[

K ( 2m'!I'B) I ( 2mltA.) +I ( 2mJ B)K ( 2mJf A)] 
0 w .1 -w 0 1 . 

K (~)I (l!!!:!!'A) I (2m 'tfB)K (·2m '1T A) 
0 w 0 w - 0 w 0 w 

Sin (.!!!l!!::) w 

(B-1) 

Two computer programming approaches are obvious. 

The first approach uses a large memory bank where all 

of the Modified Bessel Function of the first and 

second kind, and of the first and second order, are 
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stored. Using this method, it is necessary to use 

approximation techniques to find the Modified Bessel 

Functions of fractional arguments. This method can 

be used only in a data reduction center having the 

necessary facilities. The second approach is to 

generate the Modified Bessel Function in a program 

when needed. 

The second approach was used in this thesis be-

cause the IBM 1620 Computer which was available was 

limited in size and speed, and the computer program 

using the Fortran language was efficient. The pro

gram can function in the Fortran II, Fortran IV, or 

Forgo language, and with a small change it can 

function in PDQ language. 

Inputs into the following programs are: W, A, 

B, CL, TEST, JA, MM, LP. 

W- length of the annulus. 

A - the diameter of the specimen bar and meter
bar, or the inner diameter of the annulus. 

B - the outer diameter of the annulus or the 
inner diameter of the cylindrical guard. 

CL-

TEST-

the longitudinal length of the specimen 
bar. It is represented by L in the 
equation (B-1). 

the accuracy of the resulting output Fg. 
TEST stops the program or truncates t~e 

series when it has converged so the Fg is 
varying within the range of the TEST input. 
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JA - the number of points for which Fg output 
is formed along one-half of the bar. It 
is the number of Z points into which one
half of the bar is dividided. 

MM - the limiting number of terms in the series. 
It represents the maximum number of terms 
at which the series or program will be 
truncated. At some points, the series will 
converge only at a very large number of 
terms. 

LP - the frequency of the test for convergence 
of the series. It must be an odd number 
and it is based on the 2W. With familiarity 

L 
in using the program, an engineer's intui-
tiveness can find a reasonable LP. 

Figure B-1 illustrates the flat\1-chart for the 

computer program. Three computer programs were 

developed based on this flow-chart and the available 

facilities. The computer program illustrated in 

Figure B-2 was developed for use on an IBM-1620 com-

puter. Using this program as a source deck, an 

objective deck can be compiled in Fortran II and PDQ. 

This program can be used directly in Forgo language. 

Figure B-3 illustrates a computer program which can 

be used on a time-sharing-computer system, using 

Fortran IV language, and this program can be modi

fied with the addition of the program statement lines 

illustrated in Figure B-4. This modification expands 

the program so that a large amount of data can be 

handled. 
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FIGURE B-1 

COMPUTER PROGRAM FLOW-CHART 

HEADING 

CONSTANTS 

SERIES 
IF LOOP 
M=M+l 
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FIGURE B-2 

COMPUTER PROGRAM FOR IBM-1620 COMPUTER 

DIMENSION FAB(20),FB(20),Z(20),FG(20),SER(20), 
BST(20),KL(20) 

PI=3 .1415927 



30 M=M+1 

DOG=DOG*ENT 

V=M 

XV=2.*V*PI/W 

RRI=V*Pl/CAT 

SIGN= -SIGN 

Y=SINF(V*PI*CL/W)*SIGN/(V*V) 

X=A*XV 

CKS=X 

KK=O 

40 NORD=O 

I 
500 BK=O.O 

FN=NORD 

I, IF(X-FN-6.)501,700,700 

501 XA=X/2. 

I XB=XA*XA 

I 
N=O 

503 AN=N 

I T=1~ 

S= -1. 

I 510 IF(AN)9999,520,512 

I' 
512 T=T*XA/AN 

AN=AN-1. 

I GO TO 510. 
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520 BIN=T 

DO 530 K=1,9999 

DEN=K*(K+N) 

T=T*XB/DEN 

IF((BIN+T)-BIN)525,550,525 

525 BIN=BIN+T 

530 CONfiNUE 

550 IF(N-1)575,630,555 
555 IF(X-FN-3.)1111,1111,700 
565 N=l 

BIO=BIN 

BKO=BK .. GO TO 503 

575 BK= -(GAM+LOGF(XA))*BIN 

T=XB 
-

' 

5=1. 

XI=l. 

DO 610 K=2,9999 

1: AK=K 

IF((BK+T*Xl)-BK)600,620,600 

I 600 BK=BK+T*XI 

I 
T=T*XB/ (AK*AK) 

XI=XI+l./AK 

I 610 CONfiNUE 

620 IF(NORD)9999,555,565 

I 
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630 BK=( l.IX- BIN>'~BKO) I BIO 

IF(NORD-1)9999,555f9999 

700 C=4>'<NORD>'<NORD 

D=8. >'<X 

CON2=l.ISQRTF( 2, >'<PI •'<X) 

CON3=SQRTF(Pli(2.*X)) 

AN=NORD 

PHI =x- ( 2. -I< AN+ l.) 14. *PI 

K=X+ 1. +SQRTF ( X>'<X+AN>'<AN) 

T=(C-1. )ID 

S=l. 

U=l. 

PN=l. 

QN=T 

BK=l.+T 

BI=l.-T 

DO 735 1=2,K 

AI=I 

T=( C- ( 2. -I<AI-1. )>'<>'<2) ID'"T I AI 

BK=BK+T 

BI=BI+T>'<S 

IF((BI+T)-BI)730,738,730 

730 S= -S 

735 CONTINUE 
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738 IF(CKS-7.)741,755,755 

741 BKuEXPF(-X)*CON3*BK 

IF(X-FN-6.)1111,750,750 

750 BIN=EXPF(X)*CON2*Bl 

GO TO 1111 

755 BK=CON3''~BK 

760 BIN=CON2''~BI 

EP=DOG 

1111 NORD=FN 

IF(NORD)9999,810,830 

810 IF(KK)9999,820,840 

820 GA=BIN 

GB=BK 

NORD=1 

GO TO 500 

830 GC=BIN 

GD=BK 

X=XV*B 

I KK='1 

GO TO 40 

I 840 GE=BIN 

GF=BK*EP 

I R=(GF*GC+GE*GD)/(GF*GA-GE*GB) 

I FA=Y*R 
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LPF=O 

DO 860 N=l,JA 

IF(KL(N)-3)845,850,858 

845 LPF=l 

850 ZA=N 

FB(N)=l.O-COSF(RRI*ZA) 

FAB(N)=FA*FB(N) 

SER(N)=SER(N)+FAB(N) 

IF(M/LP*LP-M)860,852,860 

852 IF(TEST-ABS(BST(N)-SER(N)))854,856,856 

854 KL(N)=O 

BST(N)=SER(N) 

GO TO 860 

I 856 BST(N)=SER(N) 

858 KL(N)=KL(N)+l 

I 860 CONTINUE 

I 
IF(LPF-1)890,888,9999 
' 

888 IF(M-MM)30,890,890 

I 890 PUNCH 960,M 

DO 900 J=l,JA 

I FG(J)=H*SER(J) 

900 PUNCH 940,J,Z (J),KL(J),SER(J),FG(J) 

I GO TO 10 

I 9999 PUNCH 9998 

GO TO 10 

I 905 FORMAT (5F10.5,3I5) 
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I 
I. 

910 FORMAT (///12X,46HRESULTS OF POWER LOSS OVER 
LENGTH OF METER-BAR//) 

920 FORMAT (///12X,l5HFG VERSUS Z FOR,I3,23H 
POINTS FROM Z=O TO END//) 

930 FORMAT (6X.lHW,9X,lHA,9X,lHB,9X,lHL,8X,4HTEST, 
5X,lHP,3X,lHM,4X,lHF) 

935 FORMAT (5·P'l.0.5,3I5/ / /) 

940 FORMAT (!10,Fl4.5,I8,3X,2Fl0.7) 

960 FORMAT (//7X,5HPOINT,BX,lHZ,9X,2HKL,7X,3HSER, 
8X,2HFG,5X,2HM=,I3) 

9998 FORMAT (//25X,SHERROR//) 

END 
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FIGURE B-3 

COMPUTER PROGRAM FOR TIME-SHARING COMPUTER 

10 DIMENSION FAB(30),FB(30),Z(30),FG(30),SER(30), 
BST(30) , KL( 30) 

20 PI=3.1415927 

30 GAM=.57721566 

40 PRINT 910 

50 10 INPUT,W,A,B,CL,TEST,JA,MM,LP 

60 PRINT 920,JA 

70 PRINT 930 

80 PRINT 935,W,A,B,CL,TEST,JA,MM,LP 

85 SIGN=l. 

90 EP=1. 

100 DOG=1. 

110 ENT=EXPF((-4.*(B-A)*PI)/W) 

120 H=(2.0*W)/(Pl*PI*A) 

130 CAT=JA 

140 DO 20 N•1,JA 

150 ZA=N 

160 Z(N)=ZA*W/(2o*CAT) 

170 SER(N)=O.O 

180 BST{N)=9999. 

190 KL(N)=O 

200 20 FAB(N)=l. 0 
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210 M=O 

220 30 M=M+1 

230 DOG=DOG*ENT 

240 V=M 

245 XV=2. *V*PI/W 

248 SIGN= -SIGN 

250 Y=SINF(V*PI*CL/W)*SIGN/(V*V) 

260 RRI=V*PI/CAT 

280 X=A*XV 

290 CKS•X 

300 KK=O 

330 40 NORD=O 

340 500 BK=O.O 

350 FN=NORD 

360 IF(X-FN-6~)501,700,700 

370 501 XA=X/2. 

380 XB=XA*XA 

390 N=O 

I 
400 503 AN=N 

405 T=l. 

I 410 S= -1. 

415 510 IF(AN)9999,520,512 

I 420 512 T=T*XA/ AN 

I 
425 AN=AN-1. 

430 GO TO 510 
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435 520 BIN=T 

440 DO 530 K=1,9999 

445 DEN=K·k(K +N) 

450 T=T*XB/DEN 

455 IF((BIN+T)-BIN)525i5,0;525 

460 525 BIN=BIN+T 

465 530 CONTINUE 

470 550 IF(N-1)575,630,555 

475 555 IF(X-FN-3.)1111,1111,700 

480 ' 565 N=1 

485 BIO:o:BIN 

490 BKO=BK 

495 GO TO 503 

500 575 BK= -(GAM+LOGF(XA))*BIN 

505 T=XB 

510 8•1. 

515 XI=l. 

520 DO 610 K=2,9999 

525 AK=K 

530 IF((BK+T*XI)-BK)600,620,600 

535 600 BK=BK+T*XI 

540 T=T*XB/ (AK~'<"AK) 

545 XI=XI+1./ AK 

550 610 CONTINUE 

555 620 IF(NORD)9999,555,565 

I 
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560 630 BK=(1./X-BIN*BKO)/BIO 

565 IF(NORD-1)9999,555,9999 

570 700 C=4*NORD*NORD 

575 D=8. ,'<X 

580 CON2=l./SQRTF(2.*PI*X) 

585 CON3=SQRTF(PI/(2.*X)) 

590 AN=NORD 

600 PHI=X-(2.*AN+1.)/4.*PI 

602 K=X+l.+~~RTF(X*X+AN*AN) 

604 T=(C-1. )/D 

606 S=l. 

608 U=l. -
610 PN=l. 

612 QN=T 

614 BK=l.+T 

616 BI=l. -T 

618 DO 7,5 I=2,K 

620 AI=I 

622 T=(C-(2.*AI-l.)**2)/D*T/AI 

I 624 BK=BK+T 

I 626 Bl=BI+T*S 

628 IF((BI+T)-BI)730,738,730 

I 630 730 S= -S 

632 735 CONTINUE 

I 
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634 738 IF(CKS-7.)741,755,755 

636 741 BK=EXPF(-X)·kCON3.,.~BK 

638 IF(X-FN-6,)1111,750,750 

640 750 BIN=EXPF(X)*CON2*BI 

642 GO TO 1111 

644 755 BK=CON3*BK 

646 760 BIN ::CON2.,.cBI 

648 EP=DOG 

650 1111 NORD=FN 

652 IF(NORD)9999,810,830 

654 810 IF(KK)9999,820,840 

656 820 GA=BIN 

658 GB=BK 

660 NORD=1 

662 GO TO 500 

664 830 GC=BIN 

666 GD=BK 

668 X=XV~'cB 

670 KK=1 

672 GO TO 40 

674 840 GE=BIN 

676 GF=BK~~EP 

6 7 8 R=( GP'rGC+GE~'rGD) I ( GF*GA-GE~'rGB) 

680 FA=Y*R 
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682 LPF=O 
1

' 684 DO 860 N=1,JA 

686 IF(KL(N)-3)845,850,858 

688 845 LPF=l 

690 850 ZA=N 

692 FB(N)=l.O-COSF(RRI*ZA) 

694 FAB(N)=FA*FB(N) 

696 SER(N)=SER(N)+FAB(N) 

698 IF(M/LP*LP-M)860,852,860 

700 852 IF(TEST-ABS(BST(N)-SER(N)))854,856,856 

702 854 KL(N) =0 

704 BST(N)=SER(N) 

706 GO TO 860 

I 
708 856 BST(N)=SER(N) 

710 858 KL(N)=KL(N)+1 

I 712 860 CONTINUE 

714 IF(LPF-1)890,888,9999 

I 716 888 IF(M-MM)30,890,890 

I 
718 890 PRINT 960,M 

720 DO 900 J=1,JA 

I 722 FG( J)=H>'<SER( J) 

724 900 PRINT 940,J,Z (J),KL(J),SER(J),FG(J) 

I 726 GO TO 10 

I 
728 9999 PRINT 9998 

58 

I 
I 



I 
I 
I 
I 
I 
I 
I 
I 

730 GO TO 10 

732 910 FORMAT (//12X~HRESULTS OF POWER LOSS 
OVER LENGTH OF ME -BAR//) 

734 920 FORMAT (///12X,15HFG VERSUS Z FOR, 13, 
23H POINTS FROM Z=O TO END//) 

736 930 FORMAT (6X,1HW,9X,1HA,9X,1HB,9X,1HL,8X, 
4HTEST,5X,1HP,3X,1HM;4X,1HF) 

738 935 FORMAT (5F10.5,3l5///) 

740 940 FORMAT (I10,F14.5,18,3X,2F10.7) 

742 960 FORMAT (//7X,SHPOINT,8X,lHZ,9X,2HKL,7X, 
3HSER, BX, 2HFG, SX, 2HM=, I3) 

744 9998 FORMAT (//25X,5HERROR//) 

746 END 
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FIGURE B-4 

COMPUTER PROGRAM FOR TIME-SHARING COMPUTER 

50 10 READ,W,A,B,CL,TEST,JA,MM,LP 

746 $DATA 
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There is no limitation on the length of the abstract. How
ever, the suggested length is from 150 ta 225 words. 

14. KEY WORDS: Key words are technically meaningful terms 
or short phrases that characterize a report and may be used as 
index entTies for cataloging the report. Key words must be 
selected so that no security classification is required. Identi
fiers, such as equiPment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con
text. The assignment a~ links, rales, and weights is op~ional. 
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