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ABSTRACT 

This paper discusses several approaches to scattering from 
slightly rough»  very rough,   composite,   and rough spherical surfaces. 

Average incoherent scattering cross sections for slightly rough 
surfaces are obtained using a perturbation technique for a perfect con- 
ductor,  and for a surface material which is homogeneous (with variable 
permeability,  \Lr,  as well as permittivity, «r)«    The results,   correct 
to the first order,  include polarization dependence,   and particular 
solutions with curves are presented for the vertical,   horizontal,   and 
circular states.   They are compared with measured data.    The scatter- 
ing process for this class of surfaces is interpreted physically. 

Three optics techniques yielding results for very rough surface 
scattering cross sections are presented,   and it is shown that they all 
give the same solution for Gaussian surfaces.   Both homogeneous and 
perfectly conducting surface materials are treated,   and polarization 
dependence is preserved.    The restrictions under which the solutions 
are valid are enumerated.    The physical interpretations of the scatter- 
ing mechanism for this class of surfaces are discussed and shed valuable 
insight on the process.    Curves are shown for backscattering,  employing 
two probability models. 

Surfaces consisting of both very rough and slightly rough 
structures together, termed conoposite surfaces,  are analyzed,  and an 
heuristic physical derivation of their scattering cross section is pre- 
sented.    Curves for backscattering cross section are shown,   and com- 
parison with measured results confirms the validity of this approach. 

Average backscattering cross sections for rough spherical sur- 
faces are presented.   Both the coherent and incoherent cross sections 
are given for slightly and very rough spheres.    These results have 
application to planetary surface radar scatter and to passive satellite 
communications. 

The large volume of published material on the subject is reviewed. 
The first two parts dealing with slightly rough and very rough surfaces, 
rather than retrace detailed mathematical derivations available elsewhere, 
attempt to accomplish five goals: (i) to compare the various analyses 
already available,   (ii) to elucidate    xplicitly the approximations involved 
in each approach,   (iii) to explain and interpret the physical process be- 
hind the mathematics producing the scattering,   (iv) to present meaningful 

n 



closed form mathematical solutions and curveSi  many of which have not 
appeared before,  for the scattering cross sections,  and (v) to compare 
theory with measurements.    The material in the last two sections, 
treating composite and rough spherical surfaces,  is new as far as the 
Western literature is concerned,   and is based directly on the results of 
the first two sections; physical interpretation of the scattering mechanism 
again is emphasized» 
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SCATTERING FROM  SURFACES  WITH DIFFERENT 
ROUGHNESS SCALES;  ANALYSIS /ND INTERPRETATION 

i 

I.    INTRODUCTION 

Serious attempts to analyze the scattering of electromagnetic 
waves by rough surfaces and interfaces did not begin until about 1950. 
Research on this subject was stimulated to a large extent by an ac- 
cumulation of measured data on radar scattering from terrain and the 
sea which was made during and immediately after World War II. 
Another stimulating factor was the significant expansion and dis- 
semination of knowledge in the area of applied statistics which took 
place in the decade before 1950. 

Since then,  analysis of rough surface scattering has made use of 
one of two classes of surface model.    The first, which we shall term 
the geometrical model,  deals with surfaces made up of given determin- 
istic shapes,  but arranged or distributed in a random fashion; distri- 
butions of hemispherical bosses on a plane is an example of such a 
model analyzed by Twer sky (1957).    The second which we shall call 
the statistical model,  treats the roughness height itself   as a random 
variable from the outset.    In the latter case,  one must choose or specify 
the surface probability distributions or correlation coefficient.    The 
statistical models seem more physically reasonable,  since nature 
rarely composes a surface of given deterministic shapes.    It is this 
second class of rough surface models which concerns us here.    A 
review of the literature covering many of the rough surface scattering 
investigations is given in each respective section.    More details,  and 
results on other geometrical and statistical models can be found in 
Radar Cross Section Handbook (1968). 

Statistically rough surfaces can be divided into three classes, 
distinguished by the relative roughness height compared to wavelength: 
slightly rough surfaces,  intermediate,  and very rough surfaces.    The 
intermediate class has roughness features which lie in a region where 
neither high nor low frequency approximations apply.    Only the slightly 
rough and very rough classes can be handled mathematically.    In 
general,  different techniques must be employed to solve these two 
classes.    Much information can be obtained about the scattering 
behavior of rough surfaces from a study of these two classes,  and 
it is not unreasonable to expect that extrapolation between them can 
give valuable insight into scatter from the intermediate class of rough 
surfaces. 



Unfortunately,   as with all new fields of investigation,   errors and 
oversights have occurred.   Soviet and Western developments in this 
area often paralleled each other;   most investigators' articles and 
results went unnoticed by their foreign counterparts.    Frequently, 
controversy in the literature over mistakes or minor details tended 
to obscure the positive and common points of agreement.   Most 
serious of all,  the emphasis on mathematical detail has in the 
majority of cases tended to obscure the simple physical concepts 
and processes producing the scattering.   Also,  many invetigators 
were not careful in stating the approximations and assumptions 
inherent in their analyses; this has often led to misinterpretation 
and misuse by others. 

We shall attempt here to emphasize the physical explanation 
of the scattering mechanism behind the mathematical formulations 
and solutions.   Care is taken to outline the approximations and 
restrictions which apply to each model.   Nonetheless results are 
presented in the most general form possible,  including the effects 
of polarization and surface constitutive parameters. Several new 
results and explanations are offered for slightly rough surfaces, 
surfaces consisting of composite roughnesses of several scales,  and 
rough spherical surfaces.   In the case of very rough surfaces several 
existing analyses based upon different physical formulations are 
compared and shown to give identical results. 

To introduce the terminology we shall use,  imagine that a 
perfectly smooth surface becomes slightly rough.    The average 
specularly reflected field present for the smooth surface decreases 
somewhat as the roughness grows; in addition there is a smaller 
amount of power scattered away from the specular direction due to 
the presence of the roughness.    The former we shall call the coherent 
component while the latter is termed the incoherent component of the 
scattered field.   More precisely,  if one surface of an ensemble is 
replaced by another statistically similar member,   or if the surface 
is translating slowly with respect to transmitter and receiver,  the 
coherent component is distinguished bv the fact that the average value 
of the complex field (existing   at and near the specular direction) is 
non-zero.    The incoherent field fluctuates,  however; its phase angle 
is uniformly distributed; its average value is zero.    On the other hand, 
the average scattered incoherent power (or incoherent field magnitude 
squared) is non-zero.    As the roughness size increases,   the coherent 
component decreases and the incoherent component increases.   In the 
very rough surface limit,  all of the scattered power is incoherent 
although it may be sharply beamed in the specular direction.   This paper 
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is concerned mainly with the incoherent scattered power,   except for 
the brief discussion below. 

The coherent field scattered from a slightly rough surface is 
computed in the same fashion as it is for a smooth surface.    In con- 
trast to the incoherent component,  it is highly dependent upon the 
shape of the illuminated area.    It exhibits the familiar lobed structure 
of a flat plate,   for example, while the incoherent component does not. 
Being concentrated around the specular direction,  it can often be ignored 
in other directions.    Experimentally,  one can isolate the component by 
averaging first and then squaring the received voltage.    The specular 
reflection coefficients for the slightly rough surface may be written in 
terms of the Fresnel coefficients for a smooth surface and a factor 
which accounts for roughness. 

This modification   is discussed in Radar Cross Section Handbook 
(1968)  and can be determined for a Gaussian surface height.    The result- 
ing electric field reflection coefficients for that case are 

(1) R^Oi)   ^„(Gi)   e-ZkoVcos'e^    ^   = R^) e^o H2 COS'G; > 

where Rn (9^)  and Rx(Gj)   are the usual Fresnel reflection coefficients for 
the smooth surface and are given in Eq.   (35) .    The quantity 6^ is the 
angle of incidence from normal,   k0 =  2TT/\ is the wave number,   and  h 
is the rms roughness height.    As can be seen from the above,   the effect 
of roughness on the coherent scattered field is contained in the ex- 
ponential factor.    It is this factor which quantitatively expresses the 
well-known Rayleigh criterion.    Clearly,   for k0h <  l/4,   the coherent 
component will be not significantly different from that of a smooth surface, 
and we call the surface "slightly rough11.     On the other hand if k0h cos 0i> 1, 
the coherent component will be insignificant,   and we call the surface 
"very rough".    The coherent component disappears as the roughness 
height,  h,   increases. 

II.    SLIGHTLY ROUGH PLANAR  SURFACE 

A.    Introduction 

In this section we will discuss an important class of random rough 
surfaces:   those having a small scale of roughness whose rms roughness 
height,  h,   is much less than wavelength.    In particular we shall obtain 
expressions for the incoherent average scattering cross sections per 
unit surface area, o-0,  for various polarization combinations.    As 
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mentioned in the introduction,   this cross section accounts for most of 
the scattered energy everywhere except in the neighborhood of the 
specular direction.   At and near this direction,  the coherent component 
is strong and cannot be neglected. 

Slightly rough surface models have been employed in the past 
based upon the tangent plane,   or Kirchhoff approximation.    The first 
such analysis was that of Davies (1954).   It has been discussed also by 
other workers,   and a readable treatment is found in Beckmann and 
Spizzichino (1963    Section 5.3).    It should be mentioned,   however,   that 
those models are often inapplicable to natural surfaces.    The reason is 
that the tangent plane approximation restricts one to surfaces having 1 
Zitfifk > > 1,  where p is the local radius of curvature of the surface 
at all points.    This requirement,   along with the defining requirement 
2irh/\  < < 1 generally describes a very smooth,  undulating surface with 
hills much less than wavelength in height and hundreds of wavelengths 
apart; the maximum slopes of these hills are infinitesimal.    What is 
more,   the model fails in the low frequency limit,   since wavelength 
eventually becomes larger than surface radii of curvature.   Also,   the 
model shows no polarization dependence for backscatter,   as is typical 
of models based upon the tangent plane approximation.    Experimental 
evidence shows that radar backscatter does depend upon polarization; j 
this will be discussed again later. 

For the above reasons,  we shall avoid use of the Kirchhoff ^ 
approximation for the slightly rough surface model.    Instead,  we will 
resort to a much less restrictive model,  but interestingly enough,   a 
model originally formulated before that of Davies by Rice (1951). 
Rice's formulation was later developed by Peake (1959) who derived 
the scattering cross-sections.    This model is based on a perturbation 
approach.   Since the tangent plane assumption is not employed,   all 
of the accompanying approximations such as neglect of multiple scat- 
tering and shadowing are avoided.    The model is therefore valid for 
grazing incidence and scattering angles,   and exhibits meaningful 
polarization dependence.   Most important,   it is valid in the low fre- 
quency limit and can apply to any of the class of very rough surfaces 
to be examined later when the frequency is low enough. 

Valenzuela (1967) recently extended the same technique to obtain 
expressions for the second order perturbation correction terms for 
backscatter from dielectric  and perfectly conducting surface.   Only the 
first order terms of the solution are obtained here. 

The following are the restrictions on the class of surfaces to which 
the model applies: 

] 
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(a) k0t((x, y) < 1.0, i.e., roughness height is small compared 
to wavelength, \; 4(x»y) is the height of the rough surface above the 
x-y plane, which is taken to be the mean surface plane. 

(b) dl,/dxt   dt,/by <  1.0,  i.e.,   surface slopes are relatively 
small. 

(c) <(9£)/9x,p   = ^i^/By*/*,   i.e.,   the   roughness is   Isotropie, 
Here,   the brackets < > indicate average over an ensemble of surfaces. 
This   restriction is   not essential  to the solution,  but is employed here 
for simplicity, 

(d) L >> i,\,   i.e.,   the dimension,   L,  of the illuminated area 
is much greater  than either the roughness correlation length, i,  or 
the wavelength. 

Since the tangent plane approximation is not employed,  the mutual 
interaction effects of shadowing and multiple scattering are not over- 
looked.    Hence the slightly rough surface solution includes these 
mechanisms.    In fact, mutual interaction between neighboring hills 
is an important contributor when the distance between them is less 
than a wavelength. 

We shall obtain first results for the average incoherent scat- 
tering cross section per unit surface area for a surface of homogeneous 
material having relative permeability, |i.r,  and permittivity, 6r,    In this 
respect our results differ from the analysis of Rice (1951),  Peake (1959), 
and Valenzuela (1967), who treat only dielectric surfaces.    The 
quantities |JLr and er may be real or complex, representing a lossless 
or lossy material.    Their magnitudes may be greater,  equal to,  or 
less than unity,  so that the important class of plasma media can be 
included.    As a special case,  the imaginary part of €r can approach 
infinity, yielding the proper results for a perfectly conducting surface. 
The notation of Rice (1951),  Peake (1959),  and Valenzuela (1967), will 

jig 

Also implied in the definition of scattering cross section is the restriction 
that the observation point must be in the far field of the surface.    In the 
absence of roughness, this requirement means that the distance to the 
observation point,  R, must satisfy the criterion R > 2LJ/\,    However, 
it can be shown (see Barrick,   1965)  that when one is considering the 
incoherent scattered power from a roughened surface»  this requirement 
reduces to R >  2i2A» where i is the roughness correlation length. 
Physically this means that one can be considerably closer to a rough 
surface than a smooth one,  since i << L by (d)  above. 



be employed as much as possible here,   so that readers wishing a more 
detailed derivation can refer to that work.    The solution for a horizintally 
polarized incident plane wave will be obtained here.    Similar results 
for vertical incident polarization will be then written from inspection 
by interchanging the roles of E and H,  €r and |i.r.    From these results, 
the pertinent values for the circular polarization states and for linear 
polarization states of arbitrary orientation will be given. 

B,    Analysis 

•icot The time convention used here will be e        ,     The analyses of 
Rice,   Peake,  and Valenzuela are compatible with this if one replaces 
i there by -i,  since they use the positive time convention.    Let us first 
consider one particular rough surface from an ensemble of statistically 
similar rough surfaces.    For convenience,  assume the surface to be 
square,  of length L,  centered about the origin and with its mean surface 
coinciding with the x-y plane (Fig.   1).    Later in the analysis,  the 
surface length will be permitted to approach infinity; the square shape 

SCATTERING 
DIRECTION 

\ 

INCIDENCE 
.        DIRECTION 

"| or ¥ 
AVST 

ILLUMINATED 
ROUGH SURFACE 

AREA 

Fig.  1.   Surface arrangement and scattering geometry. 
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of the surface is irrelevant to the results, but is a useful artifice in 
performing the derivation.    Under these conditions,  the surface height 
can be expanded in the following Fourier series: 

00 

(2) Ux,y)   =£ ^  P(m. n) e1*'™^) . 

m, n=-oo 

■u Zir where a = —   . 
L 

The real nature of the surface height requires that P(-m, -n) = 
P* (m, n)  where the asterisk denotes complex conjugate.    The trick in 
simplifying the analysis is to expand the scattered,  or perturbed,   field 
into a Fourier series with eigenfunctions eia'rnx+ny).    Physic.lly this 
means representing these fields as a superposition of plane waves in 
all directions.    Remembering that the incident field is horizontally 
polarized in the y-direction as shown in Fig,   1,  the total E-field in 
free space above the surface is then written as follows: 

(3a) E+ = E3
X 

(3b) Ey = E1 + Er + E^, 

(3c) E^ = E^ . 

where El is the incident field,  and Er is the reflected field from a 
perfectly smooth homogeneous surface.    The terms with the super- 
script,  s,   are then due solely to the presence of roughness,   and may 
be considered the incoherent scattered or perturbed fields.    These 
quantities are given as 

(4a) Ei = E°e-aax+(TyZ:   Er = R E0 e"^34"^. 

00 

(4b) 
Ex = II Amneia(mx+ny)  •   eib<m*n)z. 

m,n="» 



00 

(4c) Ey = ^   Bmrie
ia(mx+ny)  •   e

ib(m.n)z , 

m, n=-a' 

00 

(4d) Es = Vy       Cmneia(mx+ny)  .  eib(m, n) z^ 

m,n=-® 

In these equations,  a = -ik0 = iw\/ ^0^0, <*  = sin 6^, V = cos Sj, 
and E° is the electric field strength of the incident field.    R ia the 
Fresnel reflection coefficient for horizontal polarization,  and is 
given by 

1      ^ 
(4e) R = ttlL. t where T = ik0/rTI7 and V = -= L rfxr - a

2 

i   + _L_I!  V   r^ 

The function b(m, n)  is not independent of the wavenumbers in the 
x and y direction,  and is dictated by the requirement that each term of 
the above series must satisfy the wave equation.    This results in the 
following relationship: 

(5) b(m, n)  = J k* - a2 (m2 + n2)   = ij a2 + a2 (m2 + n2). 

The objective is to derive Amn,   Brnn,   and Cmn in terms of 
P(mJ n) and all of the above parameters.    This is done by a standard 
perturbation technique and the details are similar to those of Rice, 
Peake, and Valenzuela,    Briefly,  these three coefficients are obtained 
by expanding all quantities possible into series,  each term of which 
involves a higher power of the smallness parameters, which are taken 
to be \fi0t„  dt,/Bxt and St./Sy,    By assumptions (a)  and (b),  these 
quantities are small,   and consequently only the first term of these 
series need be retained.    The above three unknown coefficients (as 
well as three other unknown coefficients,  Gmn,  Hmn,  Ijnn which 
represent the scattered fields inside the surface material)  are 
obtained from six equations,  four of which come from the boundary 
conditions for the E and H fields at the interface z = £,» and two of 
which arise from the divergence conditions on each side of the interface, 

8 



The three desired coefficients Amn,  B    nf and Crnn are then 
correct to the first order,  i, e.,  the neglected terms are at least of 
order UQE,,   dt^/dx, or dt,/dy with respect to the result shown.    The 
terms of the next higher order are derived by Rice (1951) and 
Valenzuela (1967^  for perfectly conducting and dielectric surfaces, 
but they are not given here.    Also it should be noted that each of 
these coefficients is directly proportional to P(m-"tn),   the m-v, 
n-th coefficient in the Fourier expansion for the surface itself, 
(v s   k0 sin 9-/a, and is taken to be an integer here,  i, e, ,  the 
possible directions of incidence are quantized for the moment. 
However,  in the limit as  a = 2IT/L -• 0 with L -* «o,  v becomes 
large,  and thus it is possible to approximate it by the nearest integer 
with negligible error, ) 

Up to now,  no restrictions have been placed on the nature of 
the surface.    The surface may in fact be deterministic or periodic. 
For example in the case of a one-dimensional sinusoidal surface of 
period L,  the expansion for the surface, t,(x),  degenerates to the 
situation wher* P(j, k) S   0  for j /£  * 1 and V. ^ 0; this important 
case was solved long ago by Lord Rayleigh (Dover,   1945).    To gain 
insight into the scattering process for the slightly rough surface,  it 
is instructive to point out a fact about this surface.    The vanishing 
of all but two of the coefficients P(m-v, n)  means that the coefficients 
for the scattered field expansions of Eqs, (3b),  (3e),  i, e,,  Amn, 
^mn»  an^ ^-mn» a^ vanish except when n = 0 and m = v * 1,    In other 
words,  the scattered field consists of only two plane waves,  propa- 
gating in two directions determined by the direction of incidence and 
the wavelength-to-surface period.    These waves are both in the plane 
of incidence (i, e,, x-z plane) , and the scattering angle is determined 
by the equation sin 6g = sin 6j - X/L.    It is important to note that these 
waves exist physically only when | sin 9gl = ] sin 6^ - X/Ll <  1; when 
X/L is such that this inequality is not satisfied, the propagation number, 
b(m, n)  is pure imaginary,  indicating an evanescent or non-radiating 
mode.    For period much larger than wavelength,   scattering takes place 
close to the specular direction.    As X./L becomes larger,  the two 
scattered plane waves diverge from the specular direction until they 
reach grazing (| sin 0g |   = 1),  at which point the plane waves are cut 
off.    Hence the scattering directions are determined not by the ampli- 
tude of the sinusoidal surface (so long as it satisfies the "slightly rough" 
criterion) but by its period compared to wavelength.    This behavior is 
also exhibited by the random rough surface considered below. 

Before discussing the scattering,  let us discuss the parameters 
involved in the statistical description of the surface, ^(x, y).    Davenport 
and Root (1958)  employ Rice's earlier work (1944,   1945)  to show that 



(6a) <P(m, n)> = 0 

r 
0 for Ui v = rtii n 

(6b) <P(m,n) P(u,v)> »     ^     2 

77   W(piq) for u, v = m, n 

where p « am = Zirm/L and q = an = Zun/L.    The function W(p, q) is 
physically the roughness spectral density of the surface,  and p, q are 
radian wave numbers.   Using these equations, the following relation- 
ships are obtained. 

(7a) <C2 (x.y)> =   ^        <P(m.n) P(u.v)> eiax(m-u) + '^^-^ 

m,n,u,v 

=    /   <P(m, n) P(-m,-n)> -   \    dm \    dn ^7 W(P'q) 
^ -00 -00 

m.n 

= ^  J       J        W(p. q) dpdq S h2   . 

(7b) <;(x.y)Ux,,y,)>=   ^        <P(m.n)P(u.v)>eiamX+iaUX,+ iany+iaVy, 

m,n,u,v 

y^T->/ \ T5/ \>.    iam(x-xl) + ian(y-y') <P(m, n) P(-m,-n)> e        x        ' w   7 ' 

m,n 

-irr W(p. q) e P x      M Vdpdq i h2R(Tx, Ty) 

I 
I 

a random but periodic function of period L can be expanded in a S 
Fourier series such as Eq. (2), where the coefficients P(m, n) are 
random variables.    Going further, they show that these coefficients 
become uncorrelated in the limit as L -* 00 .    Practicallyi  it is 
necessary only that L> > I,  i.e., the total surface length must be 
much greater than the roughness correlation length; this is exactly 
restriction (d) above»   Nowt recalling that the mean value of the sur- 
face is zero,  these conditions become. 

I 
I 
1 
1 

i 

10 



I 
I 
I 
I 
I 
I 
! 

I 

where TX = x-x1,   and Ty - y-y'.    The quantity h2,   as mentioned earlier, 
is the surface mean square height,  and R(TX, Ty) is the surface height 
correlation coefficient.    Relationship (7b) merely states that the rough- 
ness height spectral density and the surface height correlation function 
are Fourier transforms. 

Now, let us determine the horizontal (h) and vertical (v) com- 
ponents of the plane wave scattered field in a given direction represented 
by the angles 6S, <$>8; first it is necessary to relate the wave numbers 
am and an of the exponentials of Eqs. (4b)-(4d) to the propagation con- 
stant of the plane waves in spherical coordinates .    This relationship 
is obvious: 

(8) am = k0 sin 6S cos ^s»   and  an = ^o s^n ^s s^n ^s* 

Then the horizontal and vertical components of the scattered plane 
wave in the direction corresponding to m,   n are 

/qi rrs , \     i    A L r, \    ia(mx+ ny) + ib(m, n)z (?) Eh(ni.n) = {-.Ajnn sin 4)s + Bmncos 4)s) e 71 \    >   i   t 

and 

(9b) Ej(m, n) = (Amn cos e8 cos $„ + Bmn cos es sin (t>s 

r       sin 8  \ J*imx + ny) + ib(m' n)z 
■ ^mn sin 0s/ e 

Let us redefine these relationships in terms of quantities 
tahh anc^ a'vh) which are directly proportional to scattering matrix 
elements, namely 

(10a) Eg(m.n) = 2k0 E° ahh cos ^ P(m-v,n) eiatmx + n^ + ^(m,n)z| 

and 
•r 

(10b) E*(m,n) s 2k0 E° avh cos Qi P(m-v,n) e^(mx + ny) + ib(mfn)z< 

The queuitities a^ and Oy^ are determinable from Eqs. (9) and the 
expressions for Ajnn»   Bmn,  Cjnn«    They will be given in simplified form 
subsequently,  along with expressions for the other two elements Qhv and 
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a.vv for vertical incident polarization.    Note that the random nature of 
the rough surface is reflected explicitly in the surface coefficients 
above,   P(m-v, n).    The factors ctj^ and cxvh are nonrandom,  known 
functions.    At this point!  the average scattering cross sections can be 
determined.   First,  let us find the increment in average field intensity 
in all of the plane waves between mj and m2i  nj  and n2.    For arbitrary 
polarizations, y,   6,  this is given by 

mz na 

(11) A<|E^(m.n)|2> = 4k0
2 lEgl'cos2^ ^ |aY6 

mi n! 

<P(m-v,n) P*(m-v,n)> 

where use is made of the orthogonal properties of the coefficients,  as -. 
stated in Eq. (6b).   If the length of the surface,   L,   is large compared 
to wavelength, X.,  there are many such plane waves between mi  and 
m2   (as well as between ni  and n2 )•    The terms in the summation are 
then nearly constant for mi < m < m2   (as well as ni < n < n2 ) for m2 
sufficiently near mi,  and the summation can be rewritten 

(12) A<|ES(m,n)|2> = 4k0
2  |Eg|2   cos2ei|aY5|

2 

<P(m-v, n) P*(m-v, n)> (m2-mi) (n2-ni) 

= 4ko   U   lE5rcos   ei laY6' 

W(am-aM an)AmAn, 

where Am = m2 - mi  and An = na - ni . 

Using the above expression,   the increment of intensity per unit 
of solid angle, ns>  is expressed in terms of the Jacobian, AmAn/Aßs 

A<|E?("s.»s)|'> ^«^   |Eo|z cosJ(j. |a     ,. 
A n. 

1 

W[ k0(sin Bs cos $s - sin 8^), k0 sin bs sin ct)sJ —-? 
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Noting thatßs = sin ös düs d(\>s, the Jacobian is 

k  2 L2 
(U) AmAn_ = ^o_ cos e        . 

Hence the average field intensity at the receiver,   or observation point, 
is the quantity in Eq. (13) multiplied by the solid angle subtended by the 
surface from the observation point.    This is 

Ans=  L2COSö
S 

R^ 

so that 

(is)      <|Ev
sr>=—:—* 

2       A<|E^(ÖS.<})S)|2>      L2coses 

Y1 Aßs R2 

The average scattering cross section per unit surface area at the 
observation point and for incidenti scattered polarization states B, y is 
given by 

o     />         v      <|E§|2>41rR2 

o-0^ (Ü„,4)R) = —!—LI  

or 

(16) (r°6(es,4)s) = 47Tko4cos2Öi cos2Ös  |aY&|
2 

W[ k0(sin Üs cos <j)s - cos t\),  k0 sin ös sin 4)SJ   . 

Restriction (c) assumed that the surface roughness is isotropic . 
This means that the height correlation function R(TX. Ty) is a function 
only of the separation,   r,  between the surface points x, y and x1, y', 

(i.e.,   r =  Rx-x')2 + (y-y1)*   = JTX
2
 + T   

2).   Hence,  define 

(17a) p(r) = R(Tx.Ty)I 

applicable when the roughness is isotropic.    This means that the rough- 
ness spectral density,  W(p, q),  is also symmetrical in p and q.    Define 
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t =   lp2 + q2   and 

(17b) w(t) = W(p.q), 

Then for an Isotropie surface the Fourier transformation between the 
roughness spectral density and the correlation function,  as given in 
Eq. (7b) reduces to the following Hankel transform pair. 

(18a) 4h2 p(r) = Zu   C tw(t)J0(rt) dt, 

and 

(18b) w(t) a    ^-   r   rp(r) J0(rt) dr   . 
wo 

Then Eq. (16) may be rewritten 

(19a) (r°   (9s,ct>s)=l k^cos^cos^s  |a   J2   .1 'YB^S-H'S/ - - ^o "   ^"=>   «i ^-"o   vs  I^Y5I 

where 

(19b) I =^ w(t) = 2ir  j   rp(r) J0(rt)dr , 

(19c) t = k0 Jsin2 6^ - 2 sin 6^ sin e8 cos <bs + sin2 ös 

When the average incoherent scattering cross section per unit 
surface area is written as in Eq. (19a),  the effect of the surface rough- 
ness is contained entirely in the factor h2 I.    The dependence upon 
incidence and scattering geometries,  polarization states,   and surface 
material properties is contained in the factors cos     0^ cos2 ös [0^61 2 • 
As with all objects whose size is small compared to wavelength,  the 
scattering cross section varies inversely as the fourth power of wave- 
length. 

Let us now interpret Eqs. (19) physically.    They indicate that the 
average intensity of the scattered field in a given direction varies indirect 
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proportion to the surface roughness spectral strength at surface rough- 
ness frequency,   t (radians/meter).    The quantity,  t,  in turn is a function 
of the incidence and scattering directions,   as given in Eq.  (19c).    For 
example,   for scattering near the specular direction,   t ^. 0,   the scatter- 
ing cross section is directly proportional to the roughness spectral 
strength at and near DC    On the other hand,   the highest roughness 
spectral frequencies which can affect the average incoherent scatter- 
ed power are tnose at t = 2k0.    This occurs where 9i = 9s = TT/Z and 
4)s = TT,   i.e.,   for backscattering near grazing.   Hence,   the only possible 
surface roughness spectral frequencies which affect the average scatter- 
ed power in any arbitrary direction occur in the range 0 < t <   2k0; any 
higher roughness spectral frequencies present '.n the surface can have 
no effect on the scattered power,   at least to the first order perturbation 
theory used here and subject to the restrictions listed above.    The 
physical interpretation of the scattering process is similar to that for 
the sinusoidal surface mentioned previously. 

Let us now examine two familar choices for the surface rough- 
ness correlation coefficient,   p(r),   and find the resulting spectral 
densities w(t) and the corresponding quantity I. 

(1)   Gaussian Surface Height Correlation Coefficient: 
p(r) = exp (-r2/i2 ) . 

Here,   i is referred to as the surface height correlation length. 
The quantity I for this case becomes 

(20) I = Tri2exp(-t2i2/4) 

= iri  exp [-(k0 i /4) X  (s{n   e. _ 2.sinSj sinös cos ej)s + sin  0S)]   . 

Surfaces having such a Gaussian surface height correlation coefficient 
are smoothly curving with derivatives at all points.    The total mean 
square slope of the surface at any point with the above correlation 
coefficient is 

z (21) sc  =  < 

(2)   Exponential Surface Height Correlation Coefficient: 
p(r) = exp (-|r|/i)    . 
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The quantity I in this case becomes: 

(22) 1 = 
21Ti2 21Ti2 

[1 +t2i2]V2       [i + k0
2i2(8in2 ei-2 sinSiSineg + si^ e S)J8/2 

Surfaces with exponential correlation coefficients are jagged and 
have many vertical facets.    The mean surface slopes and all higher sur- 
face derivatives are infinite,  obviously because of these vertical facets. 
As an example,  an urban area having buildings and houses comprising 
its scattering surface has a surface height correlation coefficient which 
behaves like the exponential,   especially near the origin. 

It should be noted that for 2k0i<l,   the behavior of I for the two 
correlation coefficients is not significantly different,   except for a 
factor of 2.    Nor are the above two correlation coefficient models 
necessarily the most applicable in all cases.    Peake (I960) found that 4 
a model which empirically fitted measured points for the correlation 
coefficient of an asphalt surface was 1 

p(r) = [ 1 + 20 r2Jj/2 I 

where r is in cm.   By the Hankel transformation between I and p(r), 
in this case I is an exponential function of t. 

C.    Results for Vertical and Horizontal 
Polarization States 

I 

1 

We obtained above the average incoherent scattering cross section | 
for a horizontally polarized incident plane wave and for the horizontally 
and vertically polarized scattered components.    We left them in terms 
of scattering matrix elements,  a^ and otvh,  which are determined by | 
Eqs. (9) and (10).    The resulting cross sections and scattering matrix 
elements,  ahv and avv,   for a vertically polarized incident plane wave ., 
may be found immediately by noting that a vertically polarized plane 
wave (vertical or o  directed   E-field) is identical to a horizontally 
directed H-field vector.   Hence the quantities a^v and a vv may be 
obtained from avh and a hh by interchanging the roles of the relative ,*. 
constitutive constants, < r and (ir,   and employing care in observing 
the resulting signs of the E-field vectors from a knowledge of the H- 
field vectors.    (The right subscript represents the polarization state 
of the incident wave and the left subscript represents the desired scat- 
tered wave.) 
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1.   Bistatic scattering matrix elements 
for homogeneous surface 

(23»)    "hh^ 
(fAr-lHjirSinüjsineg-cos^s >J«rHLr-sin2eiJ«r|Ar-sin206) + ^^(«r-Ucos 

[ fircosei+^r^r-sin2^ [ ^coses + J €r|Jir-sin2es J 

{23b)     avh= sin 4>s 
«r((ir-l) ^«riJir-sin2^ - fir(€r-l) > «rjir-sin2 9, 

(23c)     ahv=sin4)s 

{23d)     avv 

[jirCOB^+^rjir-si^ej [crcosös+ jt^T^sin1^ ] 

|Ar(<r-l) Jerlir-sin^ei - «r(Mr-U J «r^r-sin29s 

[ «j-cosBj +   |«r|ir-sin29iJ   [ M,rcos ös +   |crfir-sin29s J 

{«r-l){ersinüjsin9s-cos4)s  j€r|j.r-sin Qj ^«rjir-sin 9S)+er
2{jir" Ucos 

(.€rcos9i+ l«"rHir-sin29iJ   [ ercoses + ferfir-sin2 9SJ 

In the above expressions, «r and |jir.   the relative surface material 
permittivity and permeability,  may each be either real or complex 
{indicating lossless or lossy material),   and be either greater,   equal to, 
or less than unity in magnitude. 

2.   Backscattering matrix elements for 
homogeneous surface 

The above elements are readily reduced to the case of back- 
scattering where (jig = TT  and ös = 9^. 

(24a) 

{24b) 

and 

{24c) 

ahh = 
(Hr-U [(|ir-M sin2 % + <r|jLrJ - ^ («r-l) 

[ ,ir cos Qi + Jcrlir-sin^Qi] 

Q vh = Q hv = 0   • 

a 
_   («r-l)  [(«r-l) sin2^ +€rHLrJ    -«r

2{Hir-l) 
vv 

[«r cos 9i + J<rjir - sin2 biJ 
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3 .    Bistatic scattering matrix elements 
for perfectly conducting surface 

The scattering matrix elements for a perfectly conducting surface 
may be readily determined from Eqs. (23) by putting |ir = ^ and <r ~* «»I 
this is evident from consideration of the basic boundary conditions for 
the two cases. 

(25a) ahh = - cos <\>s   . 

sin 4)s 
(25b) avh= - 

(25c) ahv = + 

cos 0S 

sin «^s 
cos 6^ 

sin 6^ sin 6S - cos <bs 
(25d) avv=        cos ^ cos üs 

4 .    Backscattering matrix elements for 
perfectly conducting surface 

Here again, we set 4)S = IT  and ös ::: ei in the above equations 

(26a) ahh=1   - 

(26b) avh = ahv=0   , 

1 + sin2 öi 
(26c) a vv "    cos2 ^ 

Actually,   a perfectly conducting surface implies that the imaginary 
part of cp approaches infinity;   the same result is obtained for either 
limit,  however. 
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The average incoherent scattering cross section per unit surface 
area is now obtained using Eqs. (19) along with the proper scattering 
matrix elements,   aY5>   for the desired combination of vertical and 
horizontal polarization states.    These are given above.    The factor I 
used in Eq. (19a) is given in terms of the surface roughness spectral 
density,   as discussed previously and shown in Eq. (19b). 

Two outstanding facts are in evidence from the ahove equations 
for the important case of radar backscattering.   For one thing,  the 
cross polarized components are zero.    It should be pointed out,   how- 
ever,   that these components,   as indicated above,   are zero only to the 
first order.     The next order neglected terms in 0"°^ and o-^v are pro- 
portional to the mean square height and slope,  k0 h

2   and s2,  with 
respect to o-j^ and ^vv    An expression for these terms is derived by 
Valenzuela (1967).    The lowest order terms retained here vary with 
ko*   while the next order terms derived by Valenzuela are of order k0 

in frequency.    Thus our results indeed represant the solution in the low 
frequency limit.    The second fact is that backscatter differs for the 
vertical and horizontal states.    The vertical component is always 
greater than the horizontal for \*x\    > iHrl»    except at normal incidence 
where they are equal (i.e.,  9^ = 0).    This fact has been observed experi- 
mentally,  but previous theories based upon the less accurate tangent 
plane approximation have failed to show any such difference. 
(Davies,   ibid.). 

Plots showing the average incoherent backscattering cross section 
per unit surface area are presented in Fig. 2 for perfectly conducting 
surfaces along with dielectric surfaces.    The cross sections for both 
vertical and horizontal polarization states are given.    These cross 
sections are normalized by dividing by ko h2 .    The Gaussian correlation 
coefficient model given above was used with two relative correlation 
lengths (i.e.,   koi = 1.0 and k0i = 5.0).    The results for k0i < 1.0 are 
not significantly different in shape from those for k0i = 1.0,  but the 
magnitude of the cross section itself varies in direct proportion to k0 i , 
as seen from Eqs. (19a),  (20),   and (22).    Note that as correlation length 
(i.e.,  koO increases, more of the backscattered power is concentrated 
near the specular direction at normal incidence and less near grazing. 
This is physically reasonable,  because surfaces with a given mean 
roughness height,  h2,  are smoother when the roughness height corre- 
lation length,  i,  is longer.    This can be seen from Eq. (21) for the 
mean square slope of a rough surface. 
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Average incoherent backscattering cross sections per unit 
area with linear polarization states from slightly rough 
surface model vs. incidence angle for Gaussian surface 
height correlation coefficients,  normalized to ko2h . 
(1) k0l = 1,  vertical polarization states.   (2) k0i =1.0, 
horizontal polarization states,  (3)koi=5.0,  vertical 
polarization states,  (4)koi=5.0,  horizontal polarization 
states. 
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D.    Results for Circular Polarization States 

It is relatively easy to transform from the vertical and horizontal 
polarization states to the circular polarization states by using standard 
matrix methods.   As mentioned previously,  the elements avv.  ahh' 
ctyh»   and ahv are directly proportional to scattering matrix elements, 
preserving both proper relative amplitudes and phase differences. 
Hence,   a set of analogous elements applicable for circular polarization 
are determined and given below for use in Eq. (19a). 

1.   Bistatic scattering matrix elements 

(27a) aLR = 
ahh + avv + i(ahv - avh) 

i?iu\              o«« s 
ahh - avv + i(ahv + avh) (^7b) aRR  

(27c) aRL 

ahh + avv - U^hv " avh) 

,,_..  ahh - "vv - Uahv + Qvh) 
{eta) aLL £  

The quantities on the right side of these equations are given in 
Eqs. (23) for a homogeneous surface material or by Eqs. (25) for a 
perfectly conducting surface. 

The right subscript represents the polarization state of the incident 
wave and the left subscript represents that of the desired scattered 
wave. 
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2 .    Backscattering matrix elements 

In the case of backscattering,  it was shown in Eqs. (24) that 
avh = ahv = 0.   Hence the above elements reduce to the following: 

(28a) aLR = aRL = ^ll^OL      > 

(28b) QLL = aRR = ahh I avv        . c i 

In this case,  the elements on the right side are given by Eqs. (24) for \ 
a   homogeneous surface material and by Eq. (26) for a perfectly con- 
ducting surface. "7 

Physically,  CiRL and «LR represent the "polarized" components 
in the scattered field; for backscattering from a smooth surface or i 
symmetric object,  the scattered circular state is always opposite * 
sense from that of the incident circular state.    "Depolarization",   then, 
appears in the elements QLL and 0!RR,   representing the scattered 
circular state of the same sense as the incident state.   It is important 
to note that depolarization occurs for the circular states for back- 
scattering even though it does not occur for the linear state» (i.e., ♦ 
ahv ' avh = 0); this is due to the non-zero difference between aj^ 
and ctvv • 

! 

-. 

Curves showing the normalized average backscattering cross 
section per unit surface area as a function of incidence angle are 
presented in Fig. 3.    These represent perfectly conducting and dieldctric 
surfaces for both the "polarized" and "depolarized" components.    The I 
Gaussian surface height correlation coefficient model is used with two 
values of the correlation length,  kol = 1.0 and 5.0.   It must be 
emphasized again that all of these curves were derived from a first- 
order perturbation theory; higher order terms in k0h and s (rrlative 
rms roughness height and slope) have been neglected. 
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Average incoherent backscattering cross sections per 
unit area with circular polarization states from slightly 
rough surface model vs. incidence angle for Gaussian 
surface height correlation coefficient,  normalized to 

2    2 
k0 h   .   (1) koi = 1.0,  opposite sense polarization states, 
(2) koi = 1.0,   same sense polarization states, 
(3) koi =5.0,  opposite sense polarization states, 
(4) k0i = 5.0,  same sense polarization states. 
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E-    Results for Arbitrary Linear 
Polarization States 

In many experimental situations,  the transmitting and receiving 
antennas employ linear polarization states,  but they may not necessarily 
be oriented along either the vertical or the horizontal polarization 
directions defined by the surface coordinate system.    Define r]{ as the 
angle between the unit vector »{ and the desired incident E-field com- 
ponent in the direction toward the unit vector ${.    Define r]s in the same 
way with respect to 8S and ^s      Then the matrix element a for 
bistatic scattering can be written s x 

(29) aTisTv = avv cos TH cos TIS + avh sin ni cos TIS 

+ Othv cos ^i s^n ^s + OLy^ sin T|^ sin r\s 

1.    Backscattering with aligned and 
crossed linear polarized antenna 

Often the transmitter and receiver antennas are aligned so that 
tis = Tli'   For the receiver antenna polarization direction orthogonal to 
this,  Tis = rft + TT/Z.   Employing these angles and also the fact that 
avh = ahv = 0 for backscattering, we arrive at the following two elements. 

{30a) a^^ = avv cos2 ^+ahh 8in2 ^   , 

and 

(30b) aTii-Hr/Z.TH =-^vv ' ahh) 8in ^i C08 ^ 

These elements can be used in Eq. (19a) to determine the back- 
scattering cross section.    The elements ot^h and O^v to be used in the 
right side of the above are given in Eqs. (24) for a   homogeneous 
surface material and Eq. (26) for a perfectly conducting surface. 

24 



2 .    Angularly averaged backscattering 
with aligned and crossed linear 
polarized antennas 

In many cases aligned and crossed linear transmitting and 
receiving antennas may be employed,  but the antenna angle,   r^,  with 
respect to the surface vertical may be rotating and unknown at a given 
instant of time.    This may arise in the case of satellite observations 
of a planetary surface.    In other situations it can result from uncon- 
trollable Faraday rotation of polarization due to the ionosphere«    An- 
other situation where an average quantity is desired is the case where 
a relatively short pulse of linear polarization sweeps past a planetary 
surface,   illuminating an annular portion of the sphere.    The angle,   T^, 

between the linear direction and the local plane of incidence at a given 
point on the annulus varies continuously between 0 and ZTT  in this case. 

In the above cases, the quantities desired are |aT^ii. | and 
'aTli+Ti72 TV I • averaged by integrating over T^ from 0 to Ztr and 
dividing by 2ir .    These quantities become 

(31a) <|aTliTli|
2>  =  g[3|avv|

2+ 2Re(avvahh) + 3|ahh|
2 ]    . 

and 

a |avv - ahh|
2 

<31b) «Ki+WZ.nil >= —-8 

The notation Re(x) denotes the real part of x. 

F.    Comparison with Measured Results 

It is difficult to find measured data with which to compare the 
preceding theoretical results for a slightly rough surface for two reasons, 
(i) It is necessary that roughness height be everywhere small compared 
to wavelength,   (ii)   It is difficult experimentally to separate the average 
coherent scattered power from the incoherent; in most cases,   no attempt 
is made to do this.    For backscattering,  the coherent contribution to 
the total power dominates near normal incidence.    The results presented 
in this section apply only to the incoherent scattered power. 

Recently,  average backscattering cross section measurements 
were reported by Wright (1966) from a fresh water surface at X-band. 
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Capillary waves were generated under controlled conditions such that 
the wave amplitudes were small compared to radar wavelength.   Return 
for the both vertical and horizontal states were obtained,   and are shown 
in Fig. 4 as a function of incidence angle.    Along with these measured 
curves,  theoretical curves are drawn, using the equations derived above 
and the parameters of the water surface estimated by Wright.    These are 
«r - 55(1 + i.55),  k0h =  .05,   koi = 2.   It should be noted that the measured 
results were presented not in terms of backscattering cross section per 
unit area,  but backscattering cross section in square meters.    Since the 
area of the illuminated surface was not given,  the absolute value of crvv 

and crgk cannot be ascertained.    Hence,  the magnitudes shown in the 
figure are made to conform to the theoretical.    The significant observa- 
tion is the   agreement in functional dependence between the measured 
and theoretical curves. 

Another set of measurements on an asphalt surface at X- and 
K  -bands allow another comparison with the model.    (See Fig. 5). 
Actual measurements of surface statisitics and dielectric constant 
were made in this case and used to compute the curves for the slightly 
rough surface model,   (Cosgriff,   I960).    Again the functional dependence 
on frequency,   angle,   and polaxization is in good agreement.    Even the 
somewhat poorer agreement in absolute value is reasonable in view of 
the large number of surface parameters which had to be estimated 
from rather small samples. 

III.    VERY ROUGH PLANAR SURFACE 

A.    Introduction 

The remaining class of rough surfaces which can be treated 
analytically is the one whose memoers have a large scale roughness 
such that the local surface radii of curvature over nearly all surface 
regions are much greater than wavelength.   In most cases of practical 
interest,   the rms roughness height,  h,  will then also be larger than a 
wavelength.    Then all of the scattered power from such a surface is 
incoherent,    (i.e.,  the phase angle of the scattered field becomes 
uniformly distributed between 0 and ZTT,   and hence the average value of 
the scattered field is zero; only the average scattered power is non- 
zero .) 

When this radius of curvature criterion is satisfied,   the scatter- 
ing problem can be solved by several optics techniques.    If these are 
used properly,  they all lead to the same result.    The value of examining 
more than one approach to the problem lies in the physical insight into 
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Fig. 4.    Measured average back- 
scattering cross section 
per unit area from slightly 
rough fresh water surface 
atX-bandvs. incidence 
angle for vertical and hori- 
zontal polarization states. 
Dashed curves represent 
slightly rough surface model 
using parameters measured 
from fresh water surface . 
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10     20    50   40    90    60    70   80    90 

ANGLE   FROM  VERTICAL (DEGREES) 

Fig.  5.   Measured average backscattering cross section per 
unit area from slightly rough asphalt surface at X- 
and Ka-bands vs. incidence angle for linear polari- 
zation states.    Dashed curve is slightly rough sur- 
face model using measured parameters p(r) = (1+Z0r2)"3/2, 
where r is in cm; k0h = 0.085 at X-band and 0.30 at 
Ka-band;koi = 2. 0-48 at X-band and 1.7 at K^-band; 
«r ~ 4.3 + iO.l at X-band and 2.5 + i0.65 at Ka-band. 
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the scattering process which each provides.   At present,   three different 
optics approaches have appeared in the literature.    Rather than retrace 
a derivation in detail here,   a critique of these existing analyses will be 
made,   along with the physical explanation of each.    Finally,  the common 
results of these analyses will be presented and curves for two models 
will be shown for comparison. 

All of the three optics approaches apply to the class of rough 
surfaces which satisfy (at least) the following restrictions: 

(a) The local surface radii of curvature at nearly every point 
on the surface are considerably larger than wavelength. 

(b) 8£/8x,  d^/dyK 1.0,  i.e.,   surface slopes are relatively 
small.   Only when this is true can one neglect shadowing 
and multiple scattering over most of the range of incidence 
and scattering angles. 

(c) <(8C/9x)2> = <[d^/dy)2>>  i»e.,  the roughness is isotropic. 
The restriction is not necessary to obtain an answer, but is 
employed in this paper for simplicity. 

(d) L > > i > > X,  i.e.,  the dimensions of the illuminated area 
are much greater than the roughness correlation length,  i, 
which in turn is much greater than wavelength.    The second 
portion of the inequality is automatically fulfilled if (a) is 
true.    The first part of the inequality precludes the possibility 
of looking at only a part of a hill or wave,  but rather it de- 
mands that several hills or waves be included in the illuminated 
area» 

(e) k0
2h2  > > 1,  i.e., mean square roughness height, h2,  is of 

the order of,  or greater than, wavelength squared. 

(f) The surface height correlation coefficient,   p(r),  must be 
parabolic in behavior at the origin,  i.e., p(r)- ""■ j)l - r  /i   , 
where r is the separation between two points orTtne surface 
and i is termed here the correlation length. 

The first two restrictions above permit use of the tangent plane 
(or physical optics) approximation.   This approximation involves writing 
the scattered field at the surface as the product of the incident field and 
the proper reflection coefficient.   Restriction (f) is imposed in order to 
avoid mathematical difficulties which lead to erroneous results when 
one employs a correlation coefficient whose behavior is linear at the 
orig-.n,  (Barrick,   1968).    The second, third and fourth restrictions are 
identical to those given previously for the slightly rough surface. 
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Although the slightly rough surface analysis of the preceding part 
takes into account multiple scattering and shadowing,  the normal optics 
techniques used for very rough surfaces ignore these multiple inter- 
action effects.    Generally,  they are higher-order effects so long as the 
surface slopes are not too precipitous and the scattering angles are not 
too close to grazing.   No known correction factor for multiple scattering 
has been computed,  but shadowing corrections have been formulated 
recently.   Beckmann (1965) first formulated the "shadowing function." 
This was later revised by Brockelman and Hagfors (1966) and Wagner 
(1967).    The latter shows that the correction factor is less than 3 dB 
for angles of incidence and scattering more than 10° above grazing and 
an rms total surface slope,  tan^s = tan"1 (2h/jt),  of less than 27°.    In 
view of the restrictions placed upon the class of surfaces considered 
here,  shadowing corrections will not be introduced in this paper. 

B •   Review and Interpretation 

1.    Physical optics approach 

The first approach to appear historically is also probably the most 
mathematically thorough and satisfying.   By the same token,   it probably 
sheds the least physical insight on the scatter mechanism because of the 
mathematical detail.    This method employs a physical optics integral 
expression for the scattered field.    The total fields at the surface 
appearing in the integrand are determined from the tangent plane approxi- 
mation mentioned above.    The first comprehensive treatment of this 
problem for a perfectly conducting surface was made by Isakovich (1952) 
who employed a vector physical optics formulation.    This work appears 
to have been overlooked by Western investigators,  for Davies (1954) 
solves the same problem by the same techniques,  but employs a less 
complete scalar formulation.   Beginning about I960,  a variety of 
Western and Soviet investigators began to extend these results.   Among 
these are Hagfors (I960, 1964),  Beckmann (1963),  Hughes (1962),  Fung 
(1964),  Hay re (1961),   Daniels (1961),  Semenov (1965),   and Stogryn (1967) 
Semenov appears to have been the first to have solved the problem for 
scattering from a surface of homogeneous material, «r^r»  using a vector 
formulation,  which accounts properly for polarization.    The results of 
Semenov have been derived independently and simultaneously by Barrick, 
and the two are in agreement,  after some algebraic simplification of 
Semenov's results.   Stogryn's solution is the same as that of Semenov 
(although his notation is more complicated),  and hence serves as a third 
check on Semenov's analysis. 

Semenov expresses the scattered vector field (for both vertical 
and horizontal incident polarization directions) in terms of a physical 
optics integral.   For example,  for an incident plane wave whose E-field 
is horizontally polarized,  the integral,   after application of the tangent 
plane approximation, can be written as follows:   (See Fig. 1). 
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_ ik eikoRo pL/2   pL/2 _ iic   r^-     ^ 1   T 
(32) l8 = - ^^R— Eh J    J    F(^^y, e o[     s   ^y • 

where 

R0 = distance from origin to observation point, 

r     = xx + yy + t>(x>y)z = distance from origin to point 
on rough surface, 

kj, KS - unit constant vectors pointing in direction of 
incidence and scattering, 

£x'Cy - local surface slopes in x and y directions at 
surface point ^(x, y),  i.e.,   S^/Sx and 8^/8y. 

The factor F(£x, Z,   ) is a function of the local normal to the surface 
and of the local Fresnel reflection coefficients at each surface point.   It 
can be expressed as follows: 

2     >   2 

(33a) F{t,x,iy) =     3^*/   Y     • [y-A X n) Gx + y. (^ cos Yi + ^GJ . 

where 

{33b) Gx = [ cos Yi - cos Ys ^xlYi)] [ (^i X n) - ^s . (^ X n)^8] 
A A A 

+ [ 1 + Rx(Yi)]  ^s X (ki + n cos Yi), 

(33c)  G,,  = [1 + R|((Yi)] [(^i + n cos Yl) - ß8.(^i + n cos y^] 

+ [cos Yi - cos Ys Rii(Yi)] [ki cos Y8 - (ke-^) n]  , 

,   A       ,    A   .   A 
A "WC* " tvY   •   z 

(33d) n =      5*    = local unit normal vector to surface at 
JTHT+T"*"        point ;(x, y). 

Yi» Ys " local incidence and scattering angles in planes of incidence 
and scattering with respect to local surface normal, (i.e., 
cos Yi = " Ki.n,   cos Ys = ^8,n)» 
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Rx(Yi)i R. (Yi) ~ Fresnel reflection coefficients at local surface 
point C(x,y) with incidence angle,   Yi * 

As one can observe,   the integrand consists of the factor F(£x.£y), 
which varies with the local surface slopes from point to point on the 
surface,   and an exponential phase factor containing the phase difference 
between the local surface point and the scattered field point.    The first 
factor is to be removed from the integrand as a constant; the justification 
for this is the stationary phase (or specular point) argument.    This 
argument maintains that for large k0 in the exponential factor,  the only 
surface regions which contribute to the integral are those smoothly 
curving portions which are in a position to specularly reflect into the 
desired scattering direction.    The direction of the surface normal, 
ngp,   and the local incidence angle,   "Yi = Ys = L «  *t these specular points 
are readily determined by bisecting the angle between the incidence 
propagation direction and the desired scattering propagation direction. 
The constant factor,  F(JXg_, tyg-),   is then evaluated using the slopes 
of the surface at these specular points. 

The remaining integral containing the exponential phase factor 
is not solved by the same specular point or stationary phase approach, 
however; the scattered field is squared to give scattered power or 
intensity,   and then it is averaged.    Averaging consists of multiplying 
the double integral by the joint probability density functions for the 
surface height at two different surface points and then integrating over 
these two random variables.    The order of integration is interchanged, 
and the integrand of the former double integral is averaged first.    This 
interchange is justified mathematically (See Middleton,   I960) so long as 
restriction (f) is applied.   With the aid of restriction (e),  the remaining 
integral is solved in a straightforward manner; nearly all of the above 
mentioned references carry out this latter process correctly. 

The step of averaging under the integral sign,  though mathe- 
matically correct,   obscures the physical understanding of the scattering 
mechanism.    It is also somewhat less than satisfying to justify the 
removal of a complicated factor in the integrand by the specular point 
or stationary phase argument, but then never to actually employ this 
stationary phase principle to solve the remaining integral.   However, 
the two approaches to be discussed subsequently do justify the validity 
of this procedure by actually showing that the specular point theories 
give exactly the same result,  at least for a Gaussian distributed surface 
height. 

No one has yet justified correctly a more exact method of evaluating 
this integral than the stationary phase approach.   This is obviously due to 
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the extremely complicated form of the factor F^x'Cy)*   -^t least two 
previous analyses have proposed alternate schemes for evaluating the 
integral.   Barrick (1965) suggested averaging this factor independent 
of the exponential factor; hence,  F(Cx» {»y)_would be removed as a con- 
stant evaluated at the mean slopes,  i.e.,   F(0, 0).   Fung (1965) proposed 
expanding the factor in a series in ^x, ^ y,   and averaging each term 
separately.   One can show that the resultant series cannot be truncated, 
since higher order terms are of the same order as the first terms. 
This is true even for  vanishingly small values of surface slopes, ^x 
and ^y.   Both of these approaches are inconsistent with the stationary 
phase principle,   and therefore both can have no theoretical justification. 

Recently,  Kivelson and Moszkowski (1965) have shown that for 
backscattering one can reduce the physical optics integral directly to 
the probability density function for the surface normal; this thus 
provides a valuable connection to the ray optics approach of the next 
section.    Gaussian surface statistics are not necessary for their 
analysis,  but the generalized form selected for their conditional sur- 
face height probability density function is still somewhat restrictive. 
The joint probability density function which they form is then not 
symmetric in the two height random variables,  t,  and t,'•  as it must 
be,  except for the special case of Gaussian statistics. 

2.   Ray optics approach 

Recently,  Muhleman (1964) brought ein older - but better under- 
stood-theory to bear on the very rough surface problem.    The "ray 
optics" approach (following his terminology) provides a more readily 
and simply explainable interpretation of the scattering process,   even 
though mathematically it is less exact and elegant.    The rough surface 
is initially approximated by a grid of small flat planar elements,   all of 
which are connected to form the rough surface.   Each element reflects 
incident power specularly,  and the direction of reflection from a given 
facet is determined by the direction of its normal.   Hence the amount 
of power scattered into a given direction is directly proportional to the 
number of facets whose normals are pointed in the proper direction 
(i.e.,  the direction bisecting the angle between the incidence and scat- 
tering directions) divided by the total number of facets.    This quantity 
is the probability density function for the surface normal.   It is 
expressible in terms of the probability density function for the surface 
slopes,  siijice the surface slopes are perpendicular to the local normal. 

Muhleman dealt with the problem of bistatic scattering from a 
perfectly reflecting surface, but the problem of the homogeneous surface 
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material is just as easily solved.   Recall that in the latter case,  the 
components of the local E-field incident upon a planar facet in and 
perpendicular to the plane of incidence each have-different Fresnel 
reflection coefficients,  R,,  and Rx.   Referring to Fig.  1,  we can 
determine the vertical and horizontal reflection coefficients for a 
properly oriented •'acet which reflects power incident from direction 
Q{ into direction ös,<t)s.   Vertical and horizontal here refer to the 
polarization directions of incident and scattered fields with respect 
to the mean surface,  i.e.,   the x-y surface,   and not with respect to 
the local surface facet.    Let us define Rvh as the reflection coefficient 
between the horizontally polarized incident (right subscript) and the 
vertically polarized reflected (left subscript) E-field components with 
mean incidence and scattering angles 6^, 9s,<t>s.    The other three co- 
efficients are defined in the same manner.   Then assuming that scat- 
tering in these directions is produced by planar facets properly 
oriented to specularly reflect, these vertical and horizontal reflection 
coefficients are determined from straightforward geometrical con- 
siderations.    They are: 

sinSi sin ÖB sin2«j)8 RJi) + a2 a9R (i) 
(34a) Rhh » ; :  

4 sin2 t   cos2 i 

(34b) Rvh = - sin <|>s 

(34c) Rhv = - sin 4>8 

a.z sin es R||(i.) - a, sin 6^ R±(i) 

4 sin2 L  cos2 L 

ae sin e8 Rji) - a, sin 9^ R,, (i) 

4 sin2l cos2 i 

.2 
8in 6i 8in e8 8in  "^ RJ-^ " *»  8in ei Rit^ (34 a) Rvv = - — 

4 sin2 t   cos2 i 

where 

(35a) Ruh)* 
« r cos T\ - ^ «rnr - sin2 r| 

<r  cos r\ +   l«rjir - sin2 r\ 

and 

ur cos Ti - 
;35b) RJT!) = ^—    i 

Jir COS  1\ + y 

€rjir - sin2 r\ 

«rjir - sin2 r\ 
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and where i  is the local angle of incidence at the specular reflecting 
facets,   and is given by 

(36) cos   L   =  -r- ( 1 - sin 6^ sin es cos (j)s + cos 6^ cos es)    . 

The quantities az   and aj involve the scattering angles and are given 
subsequently in Eqs. (54).    As a check,   the above reflection coefficients 
for backscattering reduce to the following: 

(37) Rhh. Rw -* - R,, (0).   + Rx(0); Rhv, Rvh -* 0 • 

Since polarization differences were not considered by Muhleman, 
the above quantities squared must be inserted as factors in his results -* 
to obtain power scattering for the vertical and horizontal polarization ,, 
directions as defined in Fig. 1. 

Hagfors (1966) showed that the probability density function for T 
surface slopes appearing in Muhleman's result for scattered power ^ 
can be easily related to the surface height probability density function 
when the surfaces are Gaussian.   In doing so, he showed that for ] 
backscattering,  one obtains the same result as from the physical ^ 
optics analysis discussed above.   It is readily shown that the two T 

methods are equivalent for bistatic scattering also.   [Note,  it was ' 
pointed out by Hagfors that due to an oversight,  o:ie must divide 
Muhleman's result by the cosine of the angle between the local surface 
normal and the mean plane normal,  i.e., by X 

,„„. ,A A% COS  Qi  + COS  Qg - 
(38) cos (n, z) =        2clBi ^    . J 

The ray optics approach sheds much needed insight into the 
scattering process from a rough surface.   As a rigorous derivation, 
however,  the method can be seriously questioned.   Such an approach « 
considers only scattered energy or power,  and not the fields themselves; 
hence phase relationships between fields from different regions are 
ignored from the outset.   The ray optics method assumes specular 
reflection from a small planar facet in the form of a non-diverging 
tube or parallel rays.   Later when one permits the planar facet to 
shrink to zero,  the paradox between ray optics and modern geometrical 
optics theory becomes obvious.   Diffraction effects and patterns,  due to 
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phase interference,   and divergence of rays due to curved phase fronts 
are ignored.    The method,   nonetheless,   serves our purpose here be- 
cause, under the restrictions mentioned previously,  we are dealing 
with incoherent scattered power.    This means that it is sufficient to 
add power scattered from different portions of the surface,   rather 
than the fields themselves.    Hence ray optics is justified for this 
problem,   and provides needed insight into the scattering process. 

3.    Geometrical optics or stationary 
phase approach 

The third approach is the application of the stationary phase 
principle to the Kirchoff integral for the complex scattered field. 
The result shows that scattering from a portion of a quadric curving 
surface does indeed radiate specularly.    The scattering cross sections 
of such a curved surface is 

(39) ^=^^,^1 

where RiRz   is the product of the two principal radii of curvature at 
the specular or stationary phase point.   A very rough surface con- 
sists of many such specular points.    Everyone has observed the 
dancing specular points on a rippling lake surface on a moonlight night. 
However,  neither of the previous theories directly relate the total 
scattered power to the number of specular points and their radii of 
curvature,   even though the physical optics method justifies the 
simplification of the integrand on the basis that this stationary phase 
principle is valid.    It is therefore instructive to examine the scattering 
problem formulated on this basis and note that one arrives at the same 
result as the preceding two approaches.    In addition,  this third 
technique provides further insight by explicitly deriving the average 
number of specular points on a rough surface and their average 
Gaussian curvature,   Ri Rz * 

Kodis (1966) formulated the rough surface problem rigorously 
in this manner and showed by stationary phase that the scattering cross 
section for a rough surface can be expressed,   as one intuitively expects, 
as follows: 

N 
i (40) -=   /-     V    /iD.^.-Llp.^.-f^    ei(4>i-<t>j) =   <(*    I    (|RllRJi|.|RljR2j|)

i   e^i-^ 
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where the total number of specular points is N and the Gaussian cur- 
vature at the i-th points is RiiRzi«    The quantity <j^ - <t)j contains the 
path length difference between the i-th and j-th specular points. 
Employing the restriction p, h > X ,   one can show that for a very rough 
surface,   the specular points are randomly and widely separated in 
terms of wavelength,   and therefore,  (j>i and ^j are uniformly distri- 
buted.    Hence the average scattering cross section becomes 

N 

(41) <cr> = IT <   )     |RiiR2i|>      • 

i=l 

Assuming now that one can assign an average Gaussian curvature to 
the specular points,   one has 

(42) <a-> = ff <1SI> <|R1R2 |>   . 

which one expects for incoherent scattering.    The average scattering 
cross section per unit area,   0"°,- for incident and scattered polarization 
states & and y,   can now be expressed 

(43) <r°5 rirn   <|RiR2|> IR^'
2 

where 

/AAV <N> 
(44) n = ^y 

is the average number of specular points per unit area and R^g is the 
reflection coefficient fcr the surface at a specular point.    For the 
vertical and horizontal polarization states (i.e.,  y, & = v, h),  these 
coefficients are given in Eqs. (32). 

Barrick (1968) used the above formulation and obtained expressions 
for n and <[.R,iR2|>.   These results are identical to those of the previous 
two approaches.   While confirming the general validity of and similarity 
among the various high frequency optics techniques applied rough sur- 
faces this third approach also provides valuable insight into the scat- 
tering process,  which is complementary to that of the other two.   In 
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particular,  one finds that the average number of speculfu* points is 
proportional to the probability density function for the surface slopes 
evaluated at the required slopes at the specular point; this quantity 
is greatest where the local normal at the specular points (or bisector 
between incidence and scattering directions) is near the mean normal, 
or vertical.    This is reasonable from consideration of the moonlit lake 
example.    The mean value of the radii of curvature product at the 
specular points,   on the other hand,  becomes greater as the local 
normal is farther removed from the mean normal. 

C.   Results 

1.   General form 

Since the solutions for all three approaches are essentially the 
same for the Gaussian surface, we shall present one result here. 
It is expressed in a form which proceeds naturally from the physical 
optics approach and is obtained from the derivation of Semenov (1965). 
The average scattering cross section per unit surface area,  for 
incident polarization state 5 and scattered state y,  is written as follows; 

The quantity ^5 ^ias exactly the same significance as (Xyg for the 
slightly rough surface model:  it is directly proportional to the scatter- 
ing matrix element relating the incident field of polarization state 5 
to the scattered field component of polarization state y   These quantities 
will be given below for the vertical and horizontal as well as circular 
states. 

The factor J is related to the roughness statistics in the following 
manner: 

(46) J s 2k0
2    V     r J0(tr) M^(iu, -iu;r) dr. 

The quantity t is a function of the scattering angles and is given in 
£q. (19c).   The symbol u.  also a function of these angles,  is defined as 

(47) u = k0(co8 6! + cos e8) 
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The function Mrr i(iu, iv;r) is the characteristic function of the surface 
height random variables C   and £',  measured at surface points (x, y) 
and(x,,y,).   (Formally,   it is the double Fourier transform of the joint 
probability density function,   P(£,-r,'ir); r   is the horizontal distance 
between the surface points; 

(48) r = ^x-x'^ + ty-y')2 

Therefore,  in order to obtain a closed form result for the scattering 
cross section,  one must either know or assume a form for the surface 
height joint probability density function.   (For the slightly rough sur- 
face,   recall,  one has to choose a form for the surface height correlation 
coefficient.)   We shall select two common probability density function 
models for the sake of comparison and find the quantity J. 

(50) J=-i—  e' s2  ü1 

s2 u2 

where 

s2  = 
4h2 

T7" 

is the total mean square slope of the rough surface 
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a.    Gaussian surface height 1 
joint probability density 

Using the standard Gaussian joint probability density function t 

(49) PG(^)= *       —I-e ^[l^(r)J 
0 2iTh2[ 1 - p2(r)j2 

along with restriction (f) on the form of the form of the correlation X 
coefficient p(r) near the origin and restriction (e) on the size of the 
mean square roughness height,  h2,  compared to wavelength, we can 
readily solve Eq. (46) for J. 



b.    Exponential surface height 
joint probability density 

For the sake of comparison with the preceding model,   we select 
an exponential probability density model of the following form: 

(51)       ^^z.h'n-pW e Jh [1-P2(r)] 

^6 t 

J = 
12 

s^u2 

s e u 

Equation (46) for J is solved using the same restrictions as with the 
preceding model. 

(51) 

The optics techniques show that for very rough surfaces,  the 
only parameter reflecting the degree of roughness in the scattering 
cross section is s,  the rms roughness slope.   The rms roughness 
height,  h,   does not appear explicitly,   and as such is not easily 
determined from observations of average scattered power from such 
a surface. 

2.    Polarization dependence 

The elements ß^ will now be given for several polarization 
states. 

a.   Vertical and horizontal states 

For the vertical and horizontal polarization states,   the scattering 
matrix elements ßvv.  ßhh>  ßvh>   and ßhv may be fo^nd upon simplifi- 
cation of Semenov's results,   or from either of the other two approaches 
to the problem.    They are: 

. =       sin Qj sin es sin
2 $s RJL) + a2 asR^Q.) 

'       ' "vv      " «  « 

a2 sin es R (i) - a. sin 9. R  (i) 
(53b) ßhv = - sin 4.8    ^-^  
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_                     aa8ine8R1(t) - a, sinSiR^O 
v3Jc) pvh - - sm <t)s      

aia4 

sin Oi sin e8 8in2 4,8 R(((i) + a2 aj Rx(i) 
(53d) ßhh=     —      ■ 

where R||{TI). RX( il) and i  are defined previously in Eqs. (35) and (36) 
and ai, az»  a^,  34 are given below. 

(54a) 1 = 1 + sin b^ sin e8 cos «^s " cos ^i C08 ^s 

(54b) az ■ cos 6^ sin ös + sin 6^ cos 68 cos <t>8   , 

(54c) aj a sin 9i cos 6s + cos Q{ sin 9S cos ^B, 

i 
(54d) Pt = cos 6i + cos es 

From the above expressions and the two probability density 
models previously given,  one can substitute the ß's and J into Eq. (45) 
to obtain the average scattering cross section per unit area. 

b.   Circular states and arbitrary 
pol irized linear states 

The ß's given above for the vertical and horizontal states,  being 
directly proportional to the scattering matrix elements,  can be sub- 
stituted into Eqs. (27) of the preceding part to give the elements ßLR> 
PRR'  PRL'  an^ PLL ^or ^e circular polarization states.   Equations (29) 
and (30) of th^at section can be used to give ßr^rig for linear polarization 
states arbitrarily directed. 

3.    Results for backscattering 

Backscattering is the most important and commonly occurring 
situation for the radar engineer. As such, the above results will be 
specialized to this case,  and curves for the two probability density 
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models as a function of incidence angle will be presented.    The expres- 
sions for the ß's given in Eqs. (53) are allowed to approach the back- 
scattering limit (i.e., 68 —- 6^,  «^s "^ ■|I') to yield 

(55a) ßvv= ßhh -* - sec Qi R,, (0) a sec ei Rx(0) 

(55b) ßvh = Phv -* 0 

The circular polarization backscattering matrix elements found 
from substituting these expressions into Eqs. (27) are 

(55c) ßLR = ßRL s ßw = Phh -*   sec ^ R^ (0)    , 

(55d) PLL = ßRR^0   • 

The backscattering matrix element between arbitrary linear 
states as defined and given in Eq. (28) becomes 

(55e) Pti^g = Pw CO8(TI8 - lit) = - sec 8^ ^,(0) cos(ii8 - ni) 

The above equations demonstrate the claim of Hagfors and other 
investigators who note that optics techniques applied to very rough 
surfaces models predict no depolarization for backscattering.    The 
second and third optics models discussed previously clearly show that 
backscattering can come only from areas or facets on the rough surface 
which are oriented normal to the incidence direction.    This also 
accounts for the appearance of the Fresnel reflection coefficients for 
normal incidence in the above equations. 

Let us now give the results for average backscattering cross 
sections- per unit area for the two probability density models proposed 
above,   remembering that no depolarization is predicted. 
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a.   Gaussian surface height probability 
function model 

b.   Exponential surface height 
probability function model 

(") ff L = -Sh = -RL S ^LR = ^irii vv 

—,—i IR»«»)! • 

The first of the above equations has been given previously by 
Hagfors (1964) while the second is presented here for comparison. 
Curves illustrating the dependence of 

(r0 ; 

for the above two models upon angle of incidence,  9^,  for various values 
of rms roughness slope,  s,  are presented in Fig. 6. 

IV.   COMPOSITE SURFACES 

« A     Explanation 
|    I ^   
1 Natural forces seldom create a "very rough" surface satisfying 

L the restrictions of the preceding part.   Rough surfaces arising in nature 
having roughness whose height is large compared to wavelength almost 
always also possess smaller scale roughnesses,  such that the surface 
is not locally smooth.   As examples,  consider an area of mountainous 
terrain.   The mountains and valleys alone comprise a roughness large 
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compared to wavelength for frequencies of VHF or higher.    If no other 
smaller roughness were present,  the analysis of the preceding section 
might be applied.   However,  the trees,   rocks,  and grassy fields also 
present constitute a roughness whose scale compared to wavelength 
may be small.   Hence, the tangent plane restriction and optics approxi- 
mation of the preceding part cannot be used without closer examination. 
The type of surface described above,   characterized by both large and 
small scale roughnesses,  will be called a "composite" surface* 

Let us look again at the chief differences between the average 
incoherent backscattered power from the slightly rough surface and 
the very rough surface of the preceding parts.    The slightly rough 

43 



ilWt II.'LIIIMIW 

surface,   as shown in Fig. 2, produces a small backscattered field near 
normal incidence where t^ s 0, but this field may still be significant 
near grazing.   As discussed previously the scattered power near graz- 
ing is directly related to the amount of surface roughness spectral 
strength at higher spatial frequencies; in particular,  at and near 
frequency 2k0 radians/meter.   On the other hand, backscattering 
from very rough surfaces,  as seen in Fig. 6,  is much larger near 
normal incidence (6{ = 0) but falls off rapidly away from normal. 

The suggestion to be put forth here is that both the large scale 
and the small scale roughness contribute significantly to the scattering 
from natural,  composite surfaces.   Near the specular direction (i.e., 
ös s ®i» ^s s 0) scattering of the optics type,  predicted by the very 
rough surface theories* predominates.   At scattering angles consider- 
ably removed from this direction, however the smellier but persistent 
scattered power is due to the slight roughness present on top of the 
larger roughnesses. 

In fact, to a first approximation,  one may merely add the 
average incoherent scattering cross sections from the very rough 
surface model to that of the slightly rough surface model to obtain 
the total composite rough surface scattering cross section.   An 
heuristic and physically intuitive proof of this statement will be given 
here, but for a more exact-albeit mathematically involved-proof,  one 
can consult two recent Soviet articles of Ssmenov (1966) and Fuks (1966). 

i 

Consider first the very rough surface model of the preceding 
part.   The surface to which it applies is smooth over regions of the 
order of a wavelength.   The scattered power is incoherent and con- 
centrated near the specular direction because the surface slopes are 
generally small and the probability is great that the local normal of 
any surface point is within a few degrees of the vertical.   Now assume 
that a slight roughness "grows" on top of this very rough but locally 
smooth surface.    This slight roughness does not greatly diminish the 
large specular scattering of the very rough surface, just as it did not 
diminish greatly the coherent scatter of the smooth plane over which 
it was imposed in Part 2.   However,  in directions considerably away 
from the specular (e.g..  near grazing for backscatter), where the 
very rough surface model predicts very small scattered power, the 
slight roughness will produce an observable addition to the scattered 
power.   Since the "very rough" portion of the surface has small sur- 
face slopes, the slight roughness can be approximated to a first order 
as being distributed over a smooth plane in computing the local angle 
of incidence.   As seen in Figs. 2 and 3,  small changes (say 15* or 
less) in the local angle of incidence.  0^.  (due to local variations in the 
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underlying very rough surface slope) do not produce a marked change 
in backscattering cross section,   so long as the spectral strength of 
the superimposed slight roughness is fairly constant out to approxi- 
mately 2 k0 radians/meter.   Hence the two average incoherent scat- 
tering cross sections may be simply added together,   assuming the 
same incidence and scattering angles (t)p Qg^s) for both. 

Actually,  two averaging processes must take place.    The slight 
roughness height variable and the large roughness height variable are 
averaged separately.    This necessitates the additional restriction that 
the two different scales of roughness are statistically independent. 
Such is generally true when the two roughness scales are formed by 
different natural processes.   For example,  mountains and valleys 
are usually formed by an entirely different process than is the 
vegetation cover; hence the assumption of statistical independence 
between the distribution of these natural roughnesses,   although not 
perfect,   generally seems   reasonable.   Since the slight roughness and 
large roughness are statistically independent and each alone produces 
strictly an incoherent scattered power, we can perform the averaging 
of each separately and merely add the powers from each. 

The above explanation is meant to be intuitive rather than 
rigorous*    It is meant to provide physical insight rather than mathe- 
matical confusion.   Mathematical proof is satisfying,  however,  and 
can be found in the above mentioned Soviet references.    Generally 
the necessary restrictions are those given in the preceding two parts, 
along with the one mentioned in the preceding paragraphs.    Neglected 

1    in this explanation is any possible roughness scale which is of inter- 
mediate  size   such that it does not fall entirely either in the very 
rough or the slightly rough category.   Since most natural surfaces 
have a roughness component whose scale is of this order,  the model 
here muslj be expected to give results which deviate somewhat from 
measured values.   This deviation is expected for scattering geometries 
where the scattering cross section for the slight roughness alone is 
approximately equal to that for the large scale roughness.   In general 
the predicted result will be too small,  because any intermediate scale 
roughness will tend to add another scattered field component which 
will be significant in this region.   Since no known theory is valid for 
intermediate scale roughness,  this component cannot at present be 
taken into account quantitatively. 

Western writers have attempted to treat composite rough sur- 
faces.   Beckmann (1965) and Hayre and Kaufman (1965) both treat this 
problem by a physical optics model.    Their analysis does not truly 
apply to a slight roughness scale since it is based on an optics formulation. 
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This is evident from the results,  which are functionally the same as 
for the very rough surface with a single large scale of roughness.    The 
only difference is that the mean square slope,   s2,   appearing in their 
results for the composite surface is written in terms of the sum of the 
mean square slopes of each of the roughness scales present.    Their 
results are hence valid for all roughness scales down to those which 
can no longer be treated by their optics formulation (i.e.,  which no 
longer satisfy the restrictions of Part 3).    They cannot apply to sur- 
faces which include a true slight roughness component,  however. 

Radar experimentalists have in the past attempted to break the 
measured direct polarized backscatter cross section vs. incidence 
angle into two regions.   The region near normal was called the 
specular region,   and it was generally agreed to be predicted by the 
optics theories and results of Part 3.    The "tail" of the echo,  or that 
region near grazing was termed the "diffuse" region,   and there has 
been no general agreement to date on a satisfactory explanation for 
its existence.   Various investigators have  attempted to fit empirical 
curves to this component; among the postulated are cos 9i,   cos3'2 9^, 
and still others.   Hagfors (1967) has suggested a model consisting of 
randomly oriented dipoles as accounting for this component.    This 
is one of a large class of geometrical models with distributions of 
individual scatterers which lie outside the class of continuous sur- 
faces we have been considering.    (See Peakei   1967). 

We wish to suggest here that this "diffuse" component is pro- 
duced by the presence of slight and intermediate roughness scales 
and is predicted to a first order by the models of Part 2.   We offer 
predicted curves based on the composite model presented here and 
compare them with measured results for backscatter. 

The explanation for the depolarized backscattered component 
from composite surfaces is more complex,  however.    The optics 
theories predict no return.   To the first order,  the slightly rough 
model studied here also indicates no depolarized return for the verti- 
cal and horizontal states;  depolarization for the circular states does 
appear,  but is absent     at normal incidence.    The higher order terms, 
for example the second term as calculated by Valenzuela,  do show 
depolarization,  even for the vertical and horizontal states.   As the 
roughness scale increases with respect to wavelength from slight to 
intermediate,  these higher order terms containing depolarization 
effects become non-negligible.   Since the perturbation theory breaks 
down as the smallness parameters approach unity,  the contribution 
of the intermediate scale of roughness cannot be calculated.   It is clear 
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1 from the trend of the higher order terms,  however,   that they will con- 

tribute significantly to both the polarized and depolarized components. 
It is our conclusions,  therefore,  that depolarization for backscatter is 
produced by two mechanisms: (a) the slight and intermediate roughness 
scales just discussed,   and (b) multiple reflections from suitably 
oriented surface elements of the large scale roughness for surfaces 
where the reflection coefficients are polarization dependent. 

To illustrate the predictions of the composite surface model. 
Figs. 7 provide curves for horizontal and vertical polarization states 
for a variety of dielectric constants and model parameters.    They are 
made by simply adding the backscattering cross sections for the slightly 
rough model to those of the very rough model.   More curves of this type 
can be found in Radar Cross Section Handbook (1968).   Figure 8 shows 
the measured   cross section of the sea surface on a calm day made 
for the vertical and horizontal states; these are also taken from the 
above reference.    The similarity is convincing.    Note that none of 
these curves represents a depolarized component; the received 
polarization state is in each case the same as the transmitted. 

For the circular polarization states,  one can construct the 
same type of curves,  which results are sort of a superposition of the 
curves of Fig. 3 with those of Fig. 6.    They are not shown here but 
may be found in the preceding reference*   It should be noted,  however, 
that the curve representing the depolarized component is not actually 
a composite, because the very rough surface contribution to back- 
scattering in this case is zero: only the slight roughness produces de- 
polarization.     One set of curves for circular polarization is compared 
to a measured set from the lunar surface at X0 = 68 cm in Fig. 9« 
Measured results were taken from the work of Evans and Pettingill 
(1963),  and were normalized with respect to the measured cross section 
of the entire moon at this frequency.   The set of model curves was 
selected on the basis of best fit.   From the model for this best fit,  the 
following parameters for the lunar surface are indicated: (r = dielectric 
constant =2.9,  tan^si  » large scale roughness slope = 12°,  hz = rms 
slight roughness height = 2 cm,  tan"1 82 = slight roughness slope = 27°. 
The comparison of the measured and predicted depolarized components 
shows lack of agreement near normal incidence.    This is expected for 
the following reasons: (i) Hagfors (1967) reports that the ability to iso- 
late one measured circular state from the other was probably not 
greater than 18 dB.   Hence near normal where the polarized component 
is very strong,  most of the "measured" depolarized component may 
actually be the polarized component,   (ii) The intermediate scale rough- 
ness, which cannot be accounted for by the theory, most likely produces 
depolarization.   As mentioned previously, this effect is likely to appear 
further away from grazing,  i.e., near normal incidence. 
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Fig. 7a.    Average backscattering cress section per unit area for 
composite rough surface model vs. incidence angle for 
various large scale roughness parameters.   Si,   and 
small scale roughness parameters,  kc^ and k0h (or s2). 
Linear polarization states,    (a) Gaussian large scale 
roughness height probability density model. 
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Fig. 8, Measured average back- 
scattering cross section 
per unit area from re- 
latively calm sea surface 
at X-band vs. incidence 
angle for vertical and 
horizontal polarization 
states. 
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V.    ROUGH SPHERICAL SURFACE - 
BACKSCATITERING CROSS SECTION 

A.    Inlroduction 

The past sections have derived the average incoherent scattering 
cross section per unit area for a rough planar surface,  i.e.,   a surface 
whose mean value is a plane.   In this section we will extend these 
results to a rough spherical surface.   Such a situation is representa- 
tive,   for example,  of a planetary surface,  or of many spherical 
satellites of the Echo I and II variety whose surfaces are somewhat 
rough.    In defining the average backscattering cross section of a rough 
spherical surface,  we understand that the entire sphere is immersed 
simultaneously in the illuminating field.    This may not be the case,   for 
example,  in many of the planetary radar studies where a short pulse 
sweeps past the planet,   illuminating only an annular area at a time. 

1 
i 
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Fig. 9.   Measured average back- 
scattering cross section 
per unit area from lunar 
surface at UHF (X = 68 cm) 
vs . incidence angle with 
circular polarization states 
Dashed curves represent 
composite rough surface 
model, presented for com- 
parison.   Upper curves 
represent opposite sense 
polarization states,  lower 
curves - same sense. 
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The results of the preceding sections can be used to obtain the 
incoherent backscattering cross sections for both very rough and slightly 
rough spheres.    Furthermore,   for the slightly rough sphere,   there will 
be a significant coherent component due predominantly to reflection from 
the front cap.   and this will also be estimated. 

It is assumed that the radius of the sphere AR,  is much larger 
than both the wavelength, X,   and roughness height correlation length, 
i .    It is further assumed that the sphere is large enough and its 
material lossy enough that waves entering the sphere do not further 
contribute to the scattering.   In addition,   all of the restrictions of the 
preceding sections apply. | 

\ 
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B.    Coherent Backscattering Cross Section 

It was mentioned In Part I that the coherent scatter from any 
slightly rough surface is highly dependent upon the shape of the illumi- 
nated surface in the absence of roughness.    The presence of roughness 
is taken into account by modifying the Fresnel reflection coefficients at 
the surface,   as in Eq. (1).    The reflected complex fields in this case, 
being coherent and having a non-zero average value,  can be treated 
just as they would be from a smooth surface; stationary phase analysis 
predicts that nearly the entire coherent backscattered field in this case 
comes from the front specular cap.    Hence the average coherent back- 
scatter cross section from a slightly rough spherical surface becomes 

2    2 

(58) <r = 7r A^ ^(0)1'   e"4^ h        , 

where 

(59) R(0) =   JL.    ZL 

is the Fresnel reflection coefficient for a smooth planar surface at 
normal incidence.    The effect of surface roughness near the specular 
cap is accounted for by the exponential factor involving the mean square 
roughness height,  h2.    The above result,  having come from the use of 
the slightly rough surface reflection coefficients of Eq. (1) is valid for 
surfaces having a Gaussian distributed roughness height.   One sees 
that as rms roughness height increases to where k0h > 1,  the coherent 
cross section decreases rapidly. 

The polarization states of the scattered coherent field above is 
the same as it would be in the absence of roughness,  i.e.,  there is no 
depolarization predicted. 

C.    Average Incoherent Backscattering Cross 
Section - Slightly Rough Surface 

The average incoherent backscattering cross sections for a 
slightly rough spherical surface are computed from the preceding 
results for a rough planar surface.   Use is made of the property of 
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incoherent power which permits one to merely add the power backscat- 
tered from one portion of the surface to that from another portion, 
rather than adding the complex scattered fields themselves.   Recall 
that cr      is the average incoherent backscattered power per unit mean 
surface area (where 6S = 6^ and (j)8 = tr in the equations for o' y,^).    Then 
the backscaltering cross section for a mean spherical area element 
dA = A^ sin Q{ dö^ d<J) is the product of dA and a °B .    The total average 
backscattering cross section is then determined oy integrating over the 
entire illuminated hemisphere,  i.e., 

pir/2 
(60) (rYB   = AR   2TT    \ a °     sin Oi dOt 

o Y 

where the integration over <t> has been performed since the integrand is 
not a function of <t).    The spherical coordinate system has been chosen 
here so that the polar axis coincides with the direction of propagation, 
making the   polar angle 6^ also the angle of incidence upon the spherical 

| surface. 

. For the aligned and crossed incident and received linear polari- 
zation states,  the expressions which must be substituted into the above 
equation for cr 8p  are those given in Eqs. (19) and (31).   The integration 
over 4» corresponds to the integration over Tft which was already per- 

1 formed in deriving Eqs. (31).    The integration over Q{ demanded in the 
above equation can only be performed numerically.    The resulting cross 
sections normalized as 

TrA^^h2 

are plotted in Fig.  10 vs ko^ for various values of surface dielectric 
constant.   This is done for both the aligned and crossed linear states 
(representing the polarized and depolarized return) and for the Gaussian 
and exponential surface height correlation coefficient models. Note that 
as kol becomes larger the depolarized component becomes smaller. 
This is expected,  since larger koi corresponds to a smoother surface. 
Note that the terminology vertical and horizontal states have no signifi- 
cance when referred to a sphere. 

For the circular polarization states,  the appropriate curves are 
found in Radar Cross Section Handbook (1968).    They are nearly identical 
with those for the linear states in the cases of the polarized components; 
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Fig. 10a. Average incoherent backscattering cross section for 
slightly rough spherical surface of mean radians Ar 

as a function of koi. Cross section is normalized to 
TrAr ko2h2. Linear polarization states, upper curves 
represent same sense received as transmitted, lower 
curves - perpendicular sense received, (a) Gaussian 
height correlation coefficient model. 
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the depolarized component for the circular states is exactly twice that 
for the depolarized linear states,  as seen from Eqs. (31b) and (28b). 

D.   Average Incoherent Backscattering Cross 
Section - Very Rough Surface 

y 

The procedure to be followed to determine the backscattering 
cross section of a sphferical surface when the irregularity falls into the 
very rough category is the same as that of the preceding section.    The 
integral of Eq. (60) is solved (again numerically) using a0 predicted 
in Eqsi. (56) and (57) of Part III.   Recall that the backscattered power 
predicted in this case is not depolarized,   and the polarized component 
is the same for the aligned linear states as for the circular states. 
Hence only one set of curves need be plotted here. 

The average backscattering cross sections are shown in Fig, 
normalized as ^/(TTAR

2
 |R(0)1

2
 ) 

11, 

o 
b.JL 

Fig. 11 
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density function 
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density function 
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Average incoherent normalized backscattering 
cross section for a very rough spherical sur- 
face of mean radius  A^ as a function of tan"is, 
where s is the rms roughness slope cross 
section is normalized to ir AR

2
! R(0) |2, where 

R(0) is the Fresnel reflection coefficient for 
normal incidence. 
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and plotted as a function of the arctangent of the rms roughness slope, 
s (i.e.,   s = (2h/i)).    This function is sometimes referred to as the 
roughness gain ofthe sphere.    The two curves represent the two 
probability density function models discussed in Part III.    Noteworthy, 
however,  is the fact that as roughness increases,  the backscattering 
cross sections become larger than that for a smooth sphere. 

It is seen that as the surface becomes smooth (i.e., s -* 0),  the 
backs catte ring cross sections do indeed approach those for a smooth 
sphere i.e.,  a  = tr A^R |R(0)|2 .    The figures are of questionable. 
validity for tan"1  s > 45° because of the restrictions under which 
they were derived.   For typical surface slopes much beyond 45°, 
shadowing and multiple scattering are no longer negligible.    In the 
roughness slope region less them 45° the increase in scattering cross 
section from the smooth sphere limit is not appreciable.   Hence an 
important conclusion for planetary surface backscatter can be drawn: 

i 
Large scale surface roughness for all practical purposes 
can be neglected and the total average backscatte^iJLg cross 
section can be taken to be that for a smooth sphere,! 
o-  = irA^ |R(0)|2        . /     i 

/        i 

Consequently,  knowing the approximate radius of the body,   AR,   an 
estimate of the surface dielectric constant can be made from a 
measurement   of cr /ir Aj^ ; for the moon for the range 5 cm '.< X < 100 cm 
one obtains approximately |R(0)|

2
 = 0.07.   Such a value of JR(0)[

2 

implies an effective dielectric constant of «r = 2.9. 

E.    Average Incoherent Backscattering Cross 
Section - Composite Surface 

As mentioned previously,  most natural surfaces consists of 
roughness scales both larger and smaller than wavelength.    As shown 
in Part IV, one can add the incoherent backscattering cross sections of 
the preceding sections (presented in Figs.  10 and 11) to obtain the 
effective total backscattering cross section of the composite surface. 
However,  the backscattering cross section for the slight roughness, 
being proportional to ko2h ,  is small,  since this parameter is re- 
stricted to small values.   Hence only the large scale roughness contributes 
significantly to the backscattered power for the polarized received com- 
ponent.   On the other hand,  since only the slight roughness scale is 
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responsible for the depolarized component,   according to these models, 
it alone may be the best available estimate for this component. 

VI.   SUMMARY 

We have attempted to set forth what we believe to be the soundest 
analyses and solutions for rough surface scattering that are presently 
available.   In addition,  we have enumerated the restrictions under which 
the results are valid.    Finally,  we have interpreted physically the scat- 
tering mechanism behind the mathematics. 

, A slightly rough surface produces strong coherent reflection 
near the specular direction and a weaker incoherent scatter in other 
directions.   An estimate of the coherent reflection can be computed 
just as it is for a smooth surface,  making use of the reflection coef- 
ficients of Eq. (1);     the resulting scattering pattern is strongly de- 
pendent upon the shape of the illuminated area and exhibits a lobe 
structure.    The incoherent scatter was dealt with in more detail by 
a perturbation technique rather than the less valid tangent plane approxi- 
mation.   It was shown that incoherent scattered power from a slightly 
rough surface of either homogeneous material or a perfectly reflecting 
interface is directly proportional to the roughness spectral densities. 
The highest roughness spectral components which can affect the process 
are those near 2k0 radians/meters-   These are responsible for back- 
scatter near grazing incidence.    Lower roughness spectral frequencies 
produce scattering closer to the specular direction.   For the important 
case of backscatter,   significant differences exist between the cross 
sections near grazing for the vertical and horizontal states; vertical 
transmit and receive antennas produce considerably more return than 
horizontal,   a fact which is confirmed experimentally.    The solutions, 
including only the lowest order perturbation terms,  exhibit no de- 
polarization for the vertical and horizontal states.   From the solutions 
for vertical and horizontal polarizations,   results for the circular states 
and arbitrarily oriented linear transmit and receive states are given. 

The only presently satisfactory methods for treating very rough 
surfaces are optics techniques; basic to all of these is the tangent 
plane restriction.   A physical interpretation of the scattering process 
can be based upon any of the well known optics principles.    Three 
techniques (i.e.,  physical optics,  ray optics,   and the specular point or 
stationary phase principle) all give identically the same result.   Scatter- 
ing in a given direction takes place as a result of surface facets so oriented 
that they specularly reflect.   As would be expected from such a theory, 
backscattered power is not depolarized.    Two probability density function 



models are chosen for the surface height; for both,  the curves of bcick- 
scattered power show strong return near normal incidence (the specular 
direction) which falls off rapidly as grazing is approached.    The only- 
surface height correlation coefficient which can be employed with these 
techniques is one which is parabolic in behavior for small surface 
separations. 

Natural surfaces which are very rough in height compared to 
wavelength almost always have smaller scale roughnesses superimposed; 
these are called composite surfaces.   As one might expect,  the slightly 
rough and very rough surface scattering theories together account in 
part for the return.   In the case of backscatter near vertical,  for 
instance,  the return is dominated by the very rough surface predicted 
scatter.    Near grazing,  however,  the smaller roughness scales usually 
account for the return.    Curves for backscattering cross section are 
shown for these composite models at various set of parameters for the 
vertical and horizontal polarization states.    These are compared with 
measured data from the lunar and sea surface. 

Backscatter from roughened spherical surfaces,  which has 
application to planetary probing and passive satellite communitations, 
is treated in Part V.    The coherent and incoherent average backscat- 
tering cross sections are obtained,  the latter in graphical form resulting 
from a numerical integration.   Very rough spherical surfaces are also 
treated,  and it is shown that the roughness in this case has little effect 
on the backscatter relative to that of a smooth sphere; in reality, the 
roughness slightly increases the cross section. 
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