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ABSTRACT

An algorithm has been developed which uses the complementary slackness principle
to take completely arbitrary primal and dual solutions to a linear program with
doubly-bounded variables into the optimal solutions. The algorithm is not a

new method; viewed in the proper context, it can be thought of either as an
elaboration of the primal-dual, composite, breakpoint-tracing, or complementary
pivot algorithms: as an extension of the out-of-kilter or black-box methods for
network flows; or, finally, even as a special way of looking at the original
simplex algorithm. However, it possesses certain pedagogical advantages:

1. Proper emphasis is placed on complementary slackness as the fundamental
constructive principle of linear programming, and infeasibility and
unboundedness are related to secondary roles.

2. Arbitrary starting solutions are allowed, and arbitrary lower and
upper bounds on the variables are handled naturally.

3. One activity at a time is "worked on;" complementary slackness always
indicates what operations are necessary; no artificial distinction is
made between '"'real," "artificial," or "slack'" variables.

4. The imbedded linear program is of an extremely simple type, which
reveals the essential nature of simplifications which can be made in
models of special structure.

5. Very few set-theoretic proofs and tableaux rules are needed, almost
all operations being described on the optimality diagram for each
activity.

Almost all of the simpler procedures, such as Phase I, the dual gsimplex method,
parametric programming, the primal-dual algorithm, etc. can be viewed as special
cases of the complex algorithm which use special starting solutions and special

heuristics. -
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COMPLEX :

A COMPLEMENTARY SLACKNESS, OUT-OF-KILTER

ALGORITHM FOR LINEAR PROGRAMMING

by

) William S. Jewell
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The purpose of this paper is to present a complementary slackness, out-of-

kilter algorithm for the following dual linear programs: |

n
Hin:lmizee- 2 ch‘1
=1
)
(0.1) a, ,x, =b
. =1 1373 i
. by 2%y 2k
(1=1,2, ..., m)
(g=1,2, ..., n)
) E' b § ku, + § ORY
Maximize - y, - u
1=1 Y1 4o 33 45 W

g unrestricted

(0.2) ugvy 2.0

m
{yia -u, +w, =¢

RS o T I I

where no restriction is made on the constants except "j < kj for all j . (For
a symmetric form, see Section 9.)

The algorithm to be presentc;.d is not a2 new method; viewed in the proper light
it can be thought of either as an elaboration of the primal-dual, composite, break-

poirt tracing, or complementary pivot algorithms; as an extcnsion of the out-of-

g




kilter or black-box methods for network flows; or finally, even as a special way
of looking at the original s;mplex algorithm. 1In fact, each of these methods can
be produced by the use of appropriate heuristics within the procedure presented in
Section 6.
Why, then, another algorithm? When teaching linear programming, one is struck
by the fact that almost all "advanced" topics are merely repetitions of the same
basic concepts of pivoting (to move from one extreme poiné to another) and pricing-
out (to determine a desirable direction in which to move), with slightly different
emphasis on which variable is to be increased or decreased, and by how much that and
other variables are allowed to change. What is needed, it seems, is a general
algorithmic framework in which all the various extreme-point procedures can b;
explained as variants of a common procedure which ust¢ special heuristics.
In the author's opinion, such a common simplex procedure should emphasize the
following points:
(a) Much greater emphasis should be placed on the complementary-

slackness relationship as the fundamental working principle

of programming; questions of feasibility and boundedness

should be relegated to a secondary role;
(b) The eimplex procedure is a local, or incremental move in which

one basis change is made to improve some functional; the prob-

lem i8 to know how to make this one move and interpret the
results~-the remaining steps will always "look" identical;

(0.3)

(c) Arbitrary starting solutions should be allowed, and tedious
conventions on signs of variables and constants, form of con-
straints, "real" versus "artificial" variables, etc. should
be eliminated as much as possible;

(d) less emphasis needs to be given to tableaux and a variety
of formal rules for row and column manipulations; the
algorithm and the current "state" of the solution should
‘remind one of the correct rule to be used.
"Given that the elements for such a development have been available since 1959

[(7,8,11], it is remarkable how many variants and elaborations have been presented

(often with initriguing prior arguments for efficiency), but hov little unifying and
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synthesizing work has been done. We do not pretend that the algorithm presented
here will be a definitive one, but only hope that it will begin to reveal the
underlying coherence and harmony between the various approaches, and how simple
and straightforward a general theory is.

The report is in the following main groupings: the first four sections
examine the central ideas of the optimality diagram and the incremental linear
program subroutine; Sections 5-7 present the main algorithm and its proofs;
Section 8 p§esents some of the many options available in using the algorithm,
followed by a discussion of symmetric formulations in Section 9; Section 10 dis-
cusses the important special case of network flow problems; and Sections 11-13
conclude with a review of the basic ideas of the report, an appreciation of
J. B. Dennis' important work, and a survey of the extensions which are possible.

The Appendices present certain fine points, such as the organization of tableaux,

and the interpretation of classical algorithms as special cases of the common

procedure.




1, THE OPTIMALITY PRINCIPLE AND DIAGRAM

To fulfill point (0.33); we begin by defining the constructive principle which
will be used to solve (0.1) and (0.2) and express this principle as a set of n
diagrams in @2 , one for each activity.

Until Section 9, we assume:

every set of values of the primal variables xJ - xg (3=1,2, ..., n)

(1.1) :
will alwaye eatisfy the equality constraints ) aijx; - b:l. (1 =1,2, ..., m)

either by adjofning slack variables of any sign in the formulation, or by adjoining
error variables of any sign after the initial solution is chosen. These particular
constraints will never be violated during the algorithm and can henceforth be ignored;

o
however, x

5 may exceed either of its bounds kj or "j .

Let

m
(1.2) zy = ) Vg8 (3 =1,2, ..., n)

i=]1
be the profitability of activity J . For given initial values {xg;y:} of the
primal and dual variables satisfying (1.1), we define the state of activity J as

the pair of values (x;;zg) , and partition the state space as shown in (1.3).

° ° o o _ °
xj<!._1 x.‘l-"j|£3<xj<kj xj‘kj xj>k.1
z;’>cj jekK JeKk 3 ext
(1.3)
Bf=e | 1e® jeB jen
z;’<¢:-1 JjeLl | jelL yert
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For convenience, let

(1.4) U =L or B or K 41 U=L or B or K U+ - L+ or . B+ or ﬁ+ ;
The state {x;;z§} of a current solution at iteration t (t = 0,1,2, ...) can

be shown most clearly on an optimality diagram (xj;zj) for each activity J ,
shown in Figure 1.1; for example, U consists of the solid horizontal and vertical
lines. Some of the states may be missing in degenerate cases.

The following is just a restatement of what is usually called the weak theorem

of complementary slackness:

Optimality Principle
.5 For a set of values '{xj;’j} , 8atisfying ) ay4%; = by
(1=1, ..., m) to be optimal, it i8 necessary and suffioient

that § ¢ U for all activities j = 1, ..., n .

(The strong theorem of complementary slackness states that there is at lesst E
one optimal solution which does not have any activities on the cormer pointe,

= k,.) ; hovever, éc shall not need this fact in the

(B and x, = 2.) , (B and xj 5

] 3
sequel.)

An activity in U will be called conforming [14]; or in-kilter [9]; a "non-U"
activity in U or U’ 1s nonmoonforming, or out-of-kilten.

The basic idea of the algorithm to be presented in Section 6 is as follows:
The initial solution determines the state of all activities. An arbitrary non-
conforming activity is selected, and changes in the variables are made by a sub-
routine to make this selected activity more conforming (in a sense to be made
precise in Section 7); these changes leave all currently conforming activities
in-kilter, and no unselected nonconforming activity becomes more nonconforming,

The primary pedagogical advantage of the optimality diagram is that all features

of the algorithm can be explained directly on the diagram; this simplifies notation
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and provides a ready visualization and reminder of the rules of the algorithm,

as well as suggesting various heuristic procedures.

———




2. THE INCREMENTAL LINEAR PROGRAM

The key procedure in the algorithm is a subroutine which determines the

incremental changes to be made from the current solution. If {x§} are the values '

th

determined during the ¢t (t = 0,1,2, ...) iteration, the incremental displace-

ment, &, of activity j during the next iteration is

b

t
(2.1) Ej Xy - Xy

jgl’ -..,n i
The subroutine consists of the following <ncremental linear program:

Maximize A = tEB

a ,E, =0
IR I
(1 =1,2, ..., m)
(j =1,2, .e., n)
n
Minimize jzl (xjuj - Ajwj)
f 0 jfB
(2.3) n,a -v, +w, =¢
=1 +183 3 ) |51 s
uj >0, W, >0
hi unrestricted

The selected activity index, s , will be furnished to the subroutine, as will an
independent set of column vectors, J , from the matrix (aij) . The values of

the bounds provided will slways be such that
(2’4) . = ix i"'. . (J CJ 1.2’ ss ey n)

So that the incremental origin is always (bLosic) feae'ble.
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For the selected activity:

if the problem is to maximize ¢ ', A =0;0 <k <+4= ;
(2.5) S e -
0

if the problem is to minimize 58 y = :_A. <0 ; Kg ™

-
o

The optimality diagram for the incremental program,

(2.6) ‘j - z niaij versus EJ ’
for activity J is shown in Figure 2.1. Note that some activities may have part
or all of the cj-axis or the Ej-axis as conforming states.

It follows from (2.4) and (2.5) that:

. I IO A R S . Do

oy ,%ﬂ"w T

The values Ej =0 ,3 e¢d , constitute a basic feasible solution

) to (2.2) with ng =0, ({1 =12, ..., m) and ‘j =0,

2.7) (J =1,2, ..., n) as corresponding solutions to (2). (As usual,
%
not be optimal solutions to (2.2) and (2.3).

=0, 3 £d). Furthermore, this basis and these values can-

The initial incremental program is, in fact, in complementary pivot form

(Section 9B). There are four possibilities for the optimal solutions,
* ® *)
i} ad - )

®
(a) The optimal value of E‘ is unbounded (E' = 4o or -w) ,

(b) The optimal value of Ee reaches its nonzero bound

(E: - x or A.) s

(2.8) (c) The optimal value of Es is nonzero, and the displacement

. *
of some other activity reaches a bound (0 < Ec < kg oOr B

As < C: < 0, and E; = )\, or E; = g, for some j ¥ 8) .

b b
(d) The optimal value of E' is zero, but the given d 1s

not the index set of the ovpiimal basis.

bi. -
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Appendix A discusses ways in which this special linear program can be organized

in tableau form; Section 8 discusses simplifications which can be used for

problems of special structure, and the possibility of selecting several activities.

In all cases, except (2.8a), we know from the optimality diagrams in Figure 2.1: {

The finite optimal solutions to (2.2) and (2.3) satisfy: ‘ 1
If 2 E* o * ) * { 0 j¥s i 4
1 < < K » en C L] n,a - - . |
35555 3 143 131 ges .
(2.9)
0 J#s (x,)
* *
, +1  j=s 3
” |
Obvious modifications apply when Aj - KJ = 0 , or one or both of these is 1
o
infinite. i
® *
‘ In particular, we note that not both Es and g, can be simultaneously 4
t zero. In addition to providing the optimal displacement of the primal variables, f 1
| we shall see in Section 4 that the incremental subroutine also furnishes the

optimal gradient of dual displacement.

4




3. ACTIVITY SELECTION FOR THE INCREMENTAL LINEAR PROGRAM

The selected activity, s , which is to be "worked upon" in the incremental
subroutine can be chosen from among any of the nonconforming activities which vio-
late the Optimality Principle (1.5). Various heuristic procedures for this
selection are discussed in Section 8.

For “primal-infeasible" activities, it is clear that the rule

s ¢l > B~ » OF K -- maximize gs R
(3.1)
8 € L+ H B+ s OT K+ == minimize &s 5

will move the state of activity s chosen towards feasibility. However, this rule
is also correct if e S % < ks and s ¢ B , as we shall see in the next section.
How far should the {EJ} be allcwed to move? Clearly, a conforming activity
should not be allowed to leave U . Or, conversely, if some j £ U , the
incremental movement should be stopped when the activity reaches U . Finally, for
finiteness, it is desirable to prevent "non-U" activities from becoming more so by '
moving counter to the rule (3.1).
j’Kj} for the
(t+1)'t application of the subroutine, in terms of the current values {x;}

This leads to the following rules for specifying the bounds (A

P———

(t = 0,1,2, ...) .

IF: SET: Aj ”j
— t
jelL 0 lj - xJ
- - t
JeB ,K 0 kj - xj
(3.2) j €L ’ K 0 0 (j = 1. ceey n)
t t
jeB -(x.1 - lj) kJ - xj
+ 4+ t
jel , B -(xj - lj) 0
+ t
j ek -(xj - kj) o

Y p— e N i‘
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The directions of change and the allowed maximal increments are conveniently
summarized on the Optimality Diagram in Figure 3.1. There are no infinite dis-
placements allowed in the diagram as shown, but if kJ - ® , Or "j = -» for some

j , it would be possible to obtain the unbounded solution of (2.8a). 3

A et ek st s s B g
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FIGURE 3.1: OPTIMALITY DIAGRAM FOR ACTIVITY j , SHOWING DIRECTION AND
MAXTMAL PRIMAL DISPLACEMENTS ALLOWED FROM DIFFERENT STATES (@)
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4. BREAKPOINT STEPPING WITH THE INCREMENTAL LINEAR PROGRAM ]

*
From the above discussion, the new activity levels xt+1 - x; + Ej obtained.

]
by adding the optimal incremental values from the subroutine to the old activity

levels obviously keep all conforming activities so, and do not move nonconforming
points farther away from or through the optimality diagram (see Section 7 for a
discussion of conformity measures). Furthermore, the primal displacement only

permits the following limiting changes of state from iteration t to t + 1 :

(a) L™ » L @ v+t

— + 4¢U
(4.1) (b) B B (e) B B (at iteration t) !

(¢) K +K ) k¥ +x

or

: t t+l _
F “’(?1‘5)‘@1 H)

- JcB ‘
! (h) (x; > !.j)-» (x;'.'1 = zj) (at iteration t) é

At least one such change will occur, possibly at a zero-change level.
E Hopefully, the selected activity s might undergo a change of type (a) - (f),

E but in general, Ea may only move partway toward a conforming state, as shown by f:
the horizontal line in Figure 4.2. 1In fact, from (2.8d) it is possible that E: =0 .
I After these horizontal (primal) movements are made on the various diagrams, ‘?
i the dual solution to the incremental linéar program furnishes the appropriate

gradient for vertical (dual) changes through the formulae: ]

®
(4.2) yith =yt + ony =12 .., n

Ll L Lt

(4.3) j zy

+ec;' (g=1,2, ..., n)

¥

and appropriate selection of the gradient glep size, 6 .




Consider Figure 4.1, 1If the same requirements are placed on dual displacements
as for the primal ones (all conforming activities remain so, and displacement stops
when a nonconforming activity becomes conforming), then it follows from (2.9) and

Figure 2.1 that after the primal change (4.3) we have:

: *
et THEN: Cj 0
- a* = t+l
~L
(a) JeL ,B, or (K and Xy <£j) ;J:p unlimited
2t-c
- *
() Je(K” and £y< xI7hek,) or K I€ £y<0 | 6 must be < 15l
*
) (c) jc(L+ and x;+1>kj),B+, or K+ cjzp unlimited
(4.4 ..
t
c,-2
@ 3e@’ and lj<x;+1_<_ k,) or L 1f ;;>o 6 must be < ——1
*3
*
(e) 3¢eB and 9.:‘<x;*'1<1<J ¢y=0 unlimited
(f) JeB and zj-x§+1 c;§p unlimited
*
(g) jeB and x§+1-kj ngp unlimited

for every activity Jj . Changes which do not 1limit 6 are shown as dotted lines
in Figure 4.1. (In Section 7 it is shown that these displacements are also re-
ducing ;o;conformity in a certain sense.)

We conclude that all conditions (4.4) are satisfied for all activities for

1 every value of step size:

t
z2,-C t
(405) 0 <68 _f_ e* = min min _1—*1 : min cl-z!
4 *
peadtan VI eaPan\
(and C;‘o) (and c;>0)

*
By selecting 6 = & , we puarantee that at least one change of state
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FIGURE 4.1:

.

OPTIMALITY DIAGRAM FOR ACTIVITY J , SHOWING DIRECTION AND
MAXIMAL DUAL DISPLACEMENTS ALLOWED FOR DIFFERENT STATES (@)

e




(a) K -+ B (c) L B
(4.6) _ .
(b) X + B (d) L -+ B

occurs. If 8 becomes conforming, then all the ;;
*

@ can be set to zero. If the states referred to in (4.5) are nonexistent, and

may be zero, in which case :

8 1s nonconforming, then 6* = o , and the dual solution is unbounded. 1
Of particular interest is the trajectory traced out by (xs,zs) as it 1is |
"w?rked up?n" by the incremental linear program. Suppose first that (x:,zg) e U
as shown in Figure 4.2; then the subroutine will maximize Es . The result of
this subroutine will be A* = E: » creating a nonnegative displacement towards the {
right to (x:,z:) » possibly all the way to state K , (or unbounded if Kg = ®) ,
o

(For z < c s the first step might, of course, be stopped by entry into state L .)

k ®
Then calculation of the dual changes will change z by the amount 6 cs e

But, from (2.9) and (3.2), if the horizontal segment does not reach to state K
or L , then €: < Ky s and c: = -1 . In other words, the dual change moves the
trajectory downwards by a positive amount 9* to the point (x:.z:) . If 6* = o
then the trajectory moves downwards off the diagram, showing dual unboundedness
(i;e., primal infeasibility--there no basis change at any price which will bring
x, up to ls) 5

The net result is that, after successive appli;ations of the suproutine, the
trajectory of (x:,z:) describes what Dennis [8] calls the breakpoint curve, a
sequence of nonnegative horizontal segments and positive vertical segments which
leads either to unboundedness or infeasibility, or to an intersection with one of

the conforming "U" states. Similar remarks, "in reverse', apply to the trajectory

traced out by some activity in U+ » for which the subroutine would minimize EB =
(See also Section 8 for further possibilities.)
Unselected non-conforming activities also follow a breakpoint curve at each

application of (2.2) and (4.2) urtil conforming, or selected.
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5. GENERAL OUTLINE OF THE ALGORTITIIM

The general outline of the algorithm should now be apparent. Starting with
an arbitrary solution to the primal and dual, the states of each activity are
identified, using (1.3) and Figure 1.1. An arbitrary nonconforming activity, s ,
is selected and worked upon, using the incremental subroutine. By following the !
breakpoint curve, Figure (4.2) either unboundedness or infeasibility is shown, or
s 1s put in-kilter. Then another nonconforming activity is selected, and so on,
until all activities are in U , and an optimal solution is obtained.

There are still several points to be cleared up, such as the finiteness of
the procedure, both with the regard to the subroutine, and the main algorithm

(Section 7). In addition, there are various options available at each iteration

which can be used in devising various heuristic procedures; these will be

B

discussed in Section 8 and when comparing the algorithm with others in Appendix D. '

We now present the main algorithm.




6. COMPLEX: A COMPLEMENTARY SLACKNESS, OUT-OF-KILTER ALGORITHM FOR LINEAR

PROGRAMMING

0.

1.

(6.1)

Select arbitrary values of x,6 = x° (3 = 1,2, ..., n)

3 b
satisfying (1.1) and Yy = y: (1i=1,2, ..., m) . Select an
arbitrary set of m independent columns for the initial set

Jd= 9° (Appendix B). Set t =0 .

Identify current states (xt;z;) of activities as
+

Vel ,B ,orK ;U=L,B,ork;u =1, ", or xt

If all j € U , the current solution is optimal.
Otherwise, select an arbitrary nonconforming state s .

Solve the Incremental Linear Program

Maximize A = jil chj
s
121 "15% 7
Yty
(1 =1,2,
(- 1,2,

Minimize J§ (x,u, - A\, 0,)

m
) na,, - v, +w o=-c

Lo MMy T T TS

v, 20,0, > O

h | J -
n1 unrestricted
with initial basis 4% ; starting solution Ej =0

@ =13 .. vs )5

21
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0 j¥s
41 j=8¢€lU
(6.2) - € =
] or
-1 j=sceut
and {Aj,Kj} defined by (3.2).

. _
¥ 3. If A = += , the primal problem (0.1) is unbounded.

4. Otherwise, set

t+l1 t

(6.3) xg =%

+ ;; 3=1, ..., n)

*
5. Find the step size, 6 , from (4.5) and the related
discuscion.
*
6. 1f 0 = » , the primal problem (0.1) is infeasible.

7. Otherwise, set

(6.4) y oyt e oty (1=1,2, ..., m
tHl Lt ok k
(6.5) z 2 0Ly (4= 1,2, ..., n)

*
(retain the current optimal basis 4 as the starting basis &t+1

for the next iteration) and repeat Step 1.

.
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7. CONVERGENCE AND FINITENESS

e —

Assume temporarily that the current solution is "primal-feasible", i.e.,

C L, <x, <k . By direct substitution, the difference between the primal and

i—3 3

dual functionals is:

(7.1) 2 =C-B- r)f

u )
=1 3

n
Y+ ) w

(k, - x (x, - 2
h | h | §=1 J3 h |

which will be called the total deviation of the current solution.
In terms of the optimality diagrams, the total deviation is just the sum of
the individual activity deviations, which are the shaded areas shown in Figure 7.1.
Furthermore, this result does not require kj or lj to be finite, provided
one uses the usual "transfinite algebra'" in which the infinite bound is replaced ¢
by a number +M which will be considered larger than any number to which it is
‘ compared during the calculations. Thus to a point like @ in Figure 7.1, an
(M - x,) would be contributed to the total deviation 2 . This is just

b ]
the pricing-in term which would be added to force the point out of the "dual-

area u

infeasible" region above the line zj = cj .
A similar device can be used to make arbitrary points "primal-feasible" as

well. for'example, if the current x, > k or < zj » we may consider that xJ

3 3

is really an unbounded activity with piecewise linear cost structure

D B e o e i L

cjzj + M(zj - xj) - o :_xj < lj p
(7.2) cost of activity j = cj°xj lj j_xj :-kj ;

Cj'kj + M(xj - kj) k, < x io .

which gives the transfinite extensions to the optimality curves shown in Figure

7.2 (see also Chapter VI, i4}). b
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Direct calculation of-aﬂc-- 8 for the extended problem (7.2) leads again

to the conclusion that the area between the point (xj; zj) and the corresponding
diagram is the deviation due to activity j ; as shown in Figure 7.2, this

deviation may be transfinite only (@) , or may have both finite and transfinite
regions (@) .

Thus, as a given activity follows its breakpoint curve, as shown in Figure 7.3,

it follows from the algorithm that:

Every nonzero horizontal or vertical displacement permitted
by the algorithm gives a finite decrease to the total deviation
(7.3) 2=C0-8 s equal to the decrease in shaded area between the

points (x,3;z,) and the optimality curves, summed over all

3%
activities.

In classical terminology, the displacement from I to II in Figure 7.3
makes activity j "primal-feasible", and from II to III, "optimal" (if k:| was
4= , all vertical displacements reduced "dual-infeasibility", as well); however,
in our extended definitions, all horizontal displacements decrease C , and all
vertical displacements increase B .

Since the only displacements allowed decrease ‘2D , and since each non-

conforming activity is in the subroutine until it becomes conforming, it is clear

that the algorithm converges.

.

The pn.ly possible source of degeneracy occurs in the incremental subroutine,
where cycling can be avoided by the usual perturbation or lexicographic techniques[4].
Even if the maximal value of A 1s zero, 6 (2.8), the decrease in 22 will be positive,
and a new basis will be selected. Thus the algorithm is finite.

*
An alternate "finite" proof that an infinite number of steps with 6 finite
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*
and with A = 0 cannot occur is as follows:

(7.4)

(a)

(b)

(c)

(d)

Since A* = 0 , no changes of the type
(1) K -+K
(11) K - K
(144) L -+ 1L

(iv) L -»L

(v (JeB (xy = ) (x> 2)
(vi) (4 ¢ B) (x; < k) < Oy = k)

can occur.

If an activity moves from L - B or K -+ B during one
dual change, its index will enter the basic sgt 4 of
the subroutine and remain there as long as & = 0 .

*

Otherwise, 6 is determined by a transition L+ + B
or K -+ B decreasing the number of activities which
enter into (4.5).

Since there are a finite number of activities, there

can be gnly a finite number of dual changes until either
some A is finite ("breakthrough"), or the set in
(4.5) is empty (unbounded dual).




29

8. ALTERNATIVES FOR THE INCREMENTAL PROGRAM SUBROUTINE

The incremental linear program (2.2) can, of course, be solved by any method
available; a fairly compact tableau method which utilizes its homogeneous, double-
bounded structure is given in Appendix A. In this section, we indicate several

alternative approaches which may be used.

A. Working on Several Nonconforming Activities at the Same Time

1f, in fact, a general simplex tableau procedure, as outlined in Appendix A,
is being used to solve the incremental program, then one may wish to do more than
maximize (or minimize) the selected nonconforming activity. In particular, one

may work on all such activities at once, by setting

+1 if JeU
(8.1) e, = -1 1if jeu

0 otherwise

instead of (A.1) and (6.2). This does not complicate the subroutine outlined in
Appendix A and may make several activities conforming in one application (with
possibly more pivot steps) of the subroutine.

_ Or, one may select some of the nonconforming activities to work on--for example,
the activities with transfinite deviations may be worked on first, as in the usual
"Phase I"’pxocedures (Appendix D).

Finally, the magnitude of the coefficients cj is immaterial to convergence
of the algorithm, and one may choose to put more or less pressure on certain non-
conforming activities, based on some heuristic choice; this is the basis for most

proposals which combine "Phase I" and "Phase II".

B. Primal-Freezing Nonconforming Activities for Single-Step Subroutines

A possibility in the other direction i: to make the incremental program as

i i

b
t’
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simple as possible. One way to do this is to "freeze" all nonconforming variables,

other than the one selected, at their current values by setting

STy Dot e

(8.2) A, =x, =0 § £U + {8). '

instead of following (3.2). As or k_  are set as usual.

S R

In this way, as the subroutine (Appendix A) attempts to increase (or decrease)

Es » only two bounded possibilities occur:

(a) Ea reaches one of its own nonzero bounds; the

T e et d e it

subroutine terminates with 8 conforming and the
current basis 4 unchanged (but with possibly

. .
different EJ y J e4) ; all Cj + cj are un-

changed (equal to ej) 5

(8.3) or
(b) One (or more) basic Ez reaches a bound; s
replaces £ 1in the basis by making a pivot on

some a (A.6). The subroutine termminates after

is
* *
one pivot with g, + € (i) 0 , and all other

*®

) ;j.+e-0,jc.ﬂ+{s}.

3

(The usual remarks about ties apply.)

In this simpler, but more restricted procedure, it is clear that nn con-
trol is maintained over the sign of ;; » J £ U+ (8} . Thus, other nonconforming
activities may become more eo (i.e., their deviations may increase) at the dual-
changing step which follows. This gives some theoretical problems in convergcnce,

but in most cases, one can show that one of the functionals is moving in the

L. correct direction.




®
If the resulting value of C. from (8.3) were then such that x, were

"primal-feasible', then it would be desirable to choose 6 without regard to the

other nonconforming activities. This would then make s conforming in a single

pass through the algorithm, although other activities might "overshoot'--1i.e.,

conforming ones might become nonconforming (see D below). |
The above procedure is used in the primal simplex algorithm. If several

variables are brought in at once, the procedure is called "block-pivoting".

C. Dual-Freezing Certain Nonconforming Activities

i

*
In a similar way, one can dual-freeze up to m nonconforming variables cj

P——

by requiring that their indices be in any basis J of the incremental subroutine.

This restriction then means that the bounds )\ and « (3.2) for these

b J

variables cannot be effective, and the corresponding E; may have arbitrary sign;
thus these other nonconforming variables may have increasing deviations.

If an ;ttempt is made to make activity s conforming in one step, this may
drive some xj » J € B nonconforming. Thus, this possibility is usually followed

= 0) 1is moved towards its bound until some

in reverse; i.e., some jebd (2

I 3
positively or negatively priced C. reaches the appropriate bound. This "'row-

pivoting" is the procedure used in the dual simplex algorithm (Appendix D).

D. Overshooting Conforming Limite

In general, the limits on the ¢ » J £ U, have been chosen so

and 0O(

3 3

that:

(a) no conforming activity passes through a conforming ctate and
then becomes nonconforming again;

(b) no previously conforming activity becomes nonconforming.

As ve have seen above, however, when working on a particular activity, or

sct of activities, it may be desirable to get this activity conforming "at all
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costs'". This may conceptually be very bad if violating (3.2) or (4.5) makes more
activities nonconforming. However, in certain special cases, we may be able to

argue convergence on one of the functionals.

E. Special Structure Models

Actually, the incremental subroutine, as we see it, is a method for choosing

the direction of the vector {{,} which will maximize the rate of increase of 4 ,

3
subject to -Z aijgj = 0 , with certain directions "frozen"; the actual maximum dis-
placement in either primal or dual is of secondary importance.

In problems of special structure, it may be possible to follow through the
effect of changing one variable on the other variables explicitly; then the various
operations of "pivoting" can be carried out in sequential form, without continual
reduction of the matrix to get the current trade-off coefficients aij .
The most common example of this kind occurs in network flow models, where the

allowed changes in the {EJ} correspond to an incremental increase in arc flows

around a loop including arc s . (Section 10.)

F., Dual-Stepping

Nothing in the algorithm should be construed so as to give a special place to
the primﬁl problem. One can just as well define the {"1} as the absolute dis-
placements of the {yi} » and work on a selected Ng through a homogeneous dual
in the incremental subroutine. For example, the pivoting procedure may be clearer
in the traﬁsposed matrix (aij) 3 ‘

In this case, nonnegative vertical steps in Figure 4.2 are taken first,
followed by positive horizontal displacements, since all degeneracy (at the corner
points of Figure 1.1) arise in the subroutine. Thus, "row pivots' become the
natural changes, and "column pivots" would require léoking ahead to the "primal-"

changing step (6.4) and (6.5).

=

i i G P e . et —_— e - e — P - e ——




33

G. Bound-Tightening

When a given activity is made more conforming, it is possible some other
nonconforming variable may move coherently. If the incremental subroutine makes i
several basis changes, it may be worthwhile to '"tighten" the bounds on these other
variables as the pivoting progresses to prevent them from "slipping back".

Actually, except for didactic examples, this possibility is quite rare.

H. STARTING SOLUTIONS

In many problems, special starting solutions, basic or not, may be available.
If these are felt to be 'reasonable", or near optimal, they certainly should be {
used in place of a completely arbitrary solution. On the other hand, if one had

previously found a basic set 4° , and the related inverse basis 1n (aij) , then

one should use the corresponding basic solution, feasible or not, solely in the

. interest of efficiency. {

I. ARGUMENTS FOR EFFICIENCY

It should be clear from the discussion of this Section and Appendix D that

any prior arguments for efficiency of a certain heuristic, particularly those
based on whether one is moving "inside'", "outside" or "on" a certain convex poly-
tope, are doomed to failure.

The COMPLEX algorithm takes any starting solution, basic or not, feasible or |
not, and converts it into an extreme point by adding artificial bounds (2.4).
Thus all starting solutions "look alike", in a certain sense, and progress in the
same manner as a basic feasible solution would move over the original polytope. .
One would have to make extensive numerical trials for special classes of problems

in order to clearly demonstrate the superiority of one heuristic over another.

Most such experiments have concentrated on how to select a 1 -aconforming activity

when using the heuristic described in Section 8B above, and starting with Lasic

feasible solutions.
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9. SYMMETRIC FORMULATIONS

The problem (0.1) (0.2) has been stated as an equality primal with doubly-
bounded variables, since this is often thé formulation in real problems. On the
other hand, certain models, such as two-person games, look more natural in a
symmetric primal-dual format; this approach is often favored for aesthetic reasons,
as well. In this section, we modify the algorithm of Section 6 to a symmetric form.

Consider:

n
Minimize c- Z c,X
g2y 33

(9.1)

:
|

n
521 8ijxj > b:l

x, >0

(1=1,2, ..., m)
G =12, ..v53 n)

‘ Maximize 0 = 10 Y

§ i=1 i

9.2 y, 20

)
y.a,, <c
1=y "1 1] b

By defining nonnegative slack variables:

n
‘ (9.3) . ri-'jz1 8,4%y = by 20 1=1,2, 00, m)
¥
m

| -c; - = 1,2, ..oy
| 9.4) 8y = ¢ 121 Yidyy >0 (=1 n)
N

; -
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the constraints in (9.1) and (9.2) are changed to equalities; since they will
remain equalities during the algorithm, they are henceforth ignored, and all

attention is focussed on the ertended variables:

X (k = 1,2, ..., n)
(9.5)
zk & Fr-n (k = n+l, n+2, ..., n+m)
s (k =1,2, ..., n)
(9.6) k
?'k = Yiken (k = n+l, nt2, ..., n+m)

where k runs over the range (1,2, ..., n;n+l, nt2, ..., ntm) to take in the
appropriate real or slack variables. The extended constraint matrix of (9.1)

consists of ( ) augmented by an m x m negative identity matrix:

a4

9.7) (“ij) = ((a:lj): -I)

The restatement of the Optimality Principle (1.5) is:

Optimality Principle

A feasible solution of nonnegative values {z " yk} is

Y

‘optimal if and only if
(9.8)

Ao f-o0

The optimality diagrams corresponding to (9.7) are shown in Figure 9.1. Note
that this figure is reversed and normalized from Figure 1l.1. Thus, the breakpoint
trajectories will have reversed "dual" changes, increasing (decreasing) from left
to right (right to left). We keep the same states L , L, vt . B ,B, and

K as before {or the current extended state {2;. #k} .

35
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For completeness, we restate the algorithm_of Section 6 in symmetric form;

some details on the extended tableau are given in Appendix C. No proofs of the

! algorithm need be given, since the extended problem is exactly in the form (0.1)
and (0.2). However, some ''complementary pivot'" interpretations are given in sub-

section B.

A, Symmetric Form of the Complex Algorithm

0. Select arbitrary values of xj = x; (=12, ..., n) and
vy - y: ({1 =1,2, ..., m) and use (9.3)(9.4) to calculate
the remaining components of {23} and {%ﬁ} c
Select an arbitrary set of m independent columns Jo y in
" the extended constraint matrix, (aij) (say, the negative

identity matrix of the last m columns).

Set t=20.
t t 3
1. Identify the current states ( K’ yk) of all variables as
U =L ,B ,or K ;U=L or B;UT =Y., 1fan1
k ¢ U, the current solution is optimal.

2. Otherwise, solve the Incremental Linear Program:

Maximize A = 2 € £
k=1 k*k

mrin

(9.9) Ltk = 0

1d=1,2, ..., m)

(k - 1.2. evey M)

s

o T e




mn
Minimize Y (v = Ay )
k=1

m
2 a_—U+ s =€ ’
_1“11k " K

(1=1,2, ..., m)

W >03 4 20 .

(k = 1,2, ..., mtn)

i

ni unrestricted

with initial basis 4% » and starting solution £ = 0

(k = 1,2, ..., mn) .

| The coefficients in the functional have arbitrary value
and sign:
=0 k eU
(9.11) €320 kel ’

<0 keu

selected to work on one or several nonconforming variables at
the same time

The bounds are:

k “k

L 0 -Z:
- B- 0 a
(9.12) K 0 »
L 0 0

t
B - -
+ t ’

L - Zk 0

: '
3. If A = 4 , the primal problem (9.1) is unbourded.

4. Otherwvise, set:
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+ t * -
(9.13) - A e (k = 1,2, ..., mn)

*
5. Find the step size 6 from
* t /™ %
(9.14) 6 = min ] n,a
i b‘k 4oy 11k

vhere only indices k are allowed for which: :Yk
the denominator is nonzero; and the numerator and
denominator are of the same sign.

6. If the set of indices in (9.14) is empty, 6* = o . and
the primal problem (9.1) is infeasible.

7. Otherwise, set:

* T x
(9.15) e '#1: -0 1):1 ngag, (k = 1,2, ..., mn)

and repeat Step 1.

B. Complementary Pivot Methods

Appendix C points out how certain of the basis changes in the extended
matrix Sqij) can be interpreted as "dual pivotsﬁ, in the sense of the row operations
of the dual simplex method (Appendix D.A). This aymmettization is formalized in the
complementary pivot methods of Cottle [3], Dantzig [6], and Lemke [12], which were

developed for a larger class of problems (Section 13).

Instead of the extended variables (9.5)(9.6), attention is focussed on the

variables:
k =1,2, ..., n)
(9.16) zk-{xk
Yk-n (k = n+l, nt2, ..., nim)
w-ek (k =1,2, ..., n)
(9.17) k {rk-u (k = ntl, n+2, ..., nm)
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This has the effect of reversing the axes on the last m optimality diagrams of
Figure 9.1, thus making the ''real" dual variables y abscissae, together with

. i
the "real" primal variables x, . The problem (9.1) (9.2) is also usually stated

b
as a combined (min) x (mtn) primal-dual problem, together with feasibility
requirements which are identical with the optimality requirements (9.8).

In terms of our model, complementary pivot theory stresses the case when
exactly one pair of complementary variables, say (zh;u%) in (9.16) (9.17) is
nonconforming; this implies exactly one other pair is at the LB corner point, say
ze = we = 0 (possibly more than one if there is degeneracy). This point e is
then moved into either L or B in a manner to reduce the nonconformity of the
variable h , some other variable & then moving into its corner. If 2 moves
into the corner on B , it leaves on L at the next iteration, and vice versa;
this is what is meant by complementary pivoting, and is a natural observation from
the incremental subroutine of Appendix C. The procedure, of course, terminates,
when variable h becomes conforming.

Actually, starting with just one nonconforming solution pair (zh;uh) is
quite difficult, in general, and the only starting soluticn methods proposed (5]
seem to require introduction of artificial variables. Following the effect of this
proposai';ﬁrough in terms of Figure 9.1 reveals:

(a) All initial and subsequent solutions are in L , B, or B ,
or (¥k<0 and 7k-0).
(b) The nonconforming point(s) which is(are) currently farthest
avay (in a linear sense) are worked upon.
(c) Primal- and dual-freezing are used as needed to keep all
solutions in the aﬁove states.
These special rules then reduce the cﬂmplementary pivot procedure to a combination

of the primal- =i{mplex and duul-simplex procedures, that is, a :o. osite method

(Appendix D.I).
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However, we have previously seen (2.7) that the incremental program, (2.2)
or (9.9), is already in complementary pivot form, since only Es = 0 41is noncon-
forming at the beginning of the incremental subroutine. Thus, the COMPLEX approach
essentially reduces every initial solution to a related complementary pivot problem.
In addition, the nuisance problems of infeasibility and unboundedness are handled

separately.

C. A Doubly Double-Bounded Symmetric Problem

As an ultimate symmetric variant, the reader may wish to try rewriting the

algorithm of subsection A for the following doubly double-bounded symmetric problem:

n m
Minc- - [d,max(0,r,) - e ,max(0,-r,)]
le %3 1§1 1 i i 1

(9.18) ti
a,,Xx, -~ r, =b
ghy M T T
,'j f-xj ikj
) 4=1,2, ..., m
(J =1,2, ..., n)
n
Max 2D = 2 b z (¢, max(0,s,) - k,max(0,~s,)]
1=1 =1 h | ] 3 h
(9.19)
dy < yg Loy
) i ity t 8y 7 ¢

vhose optimality diagrams are given in Figure 9.2 a and b.

TP o el




D. General Piecewise-Linear Convex Costs

It is also appropriate to remark that the COMPLEX algorithm can easily be
extended to general pieccwise-linear convex costs. The resulting optimality dia-
grams would then have many horizontal and vertical segments; only a few details

in the algorithm would nced to be changed. (Scc also Section 12 and [8].)
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10. NETWORK FLOW MODELS

A special class of problems of great practical interest are the network
flow models [9,10,14] for which the constraint matrix is the node-arc incidence
matrix, giving either Kirchoff's Current or Voltage Laws in the primal or dual.
For these models, the homogeneous incremental program takes on the following
simple form:
(a) Find a loop (cycle) of special arcs in the network that
can take an incremental amount of flow;
(10.1) or
(b) Establish a set of potentials on each node, so that the
sum of potential differences around any loop of special
arcs 1is zero,
Either or both of these steps is handled in netowrk problems by means of a simple
labeling technique, which is merely a way of "unraveling" - fects of ~ pivot
change; by changing the flow variables around a loop (adding an incremental
eirculation flow), one increases or decreases only the variables necessa., to keep
the flow conservation laws satisfied. (If the problem is stated in single source-
sink form, the pivoting procedure may find a flow-augmenting patl..) As usual,
determining the actual bound on the increment of flow, or determining the changes
ir. potential to '"break down" a new loop, are secondary calculations which can be
performed independently. Thus, the calculations proceed from a basic solution (a
tree of arcs), adding a new vector (a cotree arc which forms a unique loop with the
tree), through a pivot change (determining an arc in the loop to be removed), to
the new basis (another tree).
Viewed in terms of the optimality diagram and the algorithm of Section 6, the

various methods can be viewed as follows:

(a) The stepping-stone methods are primal simplex algorithms which
always maintain bas’. primal-feasible solutions as shown in
Figure D.1l. A set ol potentials placed on the basic tree, -~.kes
a cotree arc nonconforming. Then, flow is rerouted to decer.ine
a new basic solution, and so on until optimal.
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(b) The Hungarian-Ford-Fulkerson methods were responsible for the
development of the general primal-dual method for linear
programs discussed in Appendix D and F. Usually all non-
conformity is placed on the return arc from sink to source,
which starts with zero flow. Thus, incrementally least-cost
flow-augmenting paths are sought until all flow is allocated.

(c) The out-of-kilter method 1s exactly the algorithm of Section 6.

Actually, after the important early papers of Ford and Fulkerson see [9,14] for
references) the state-of-the~art was such that many people realized that the
complementary slackness conditions were the key to dealing with arbitrary initial
condition (Appendix A of [10]). In fact, an independent development of the out-of-
kilter approach may be found in the 1958 thesis of J. B. Dennis [8]. The emphasis
is on electrical analongues, and elementary activities (Section 12), but his
"“black-box" approach, and "breakpoint-tracing'" are identical to our notion of a
selected activity, and sequential primal-dual changes needed to force this activity
to te conforming. This %mportant paper treats general programming problems in
this same light (Sections 12 and 13).

One can also extend the simplified pivoti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>