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ABSTRACT 

An algorithm has been developed which uses the complementary slackness principle 
to take completely arbitrary primal and dual solutions to a linear program with 
doubly-bounded variables Into the optimal solutions.  The algorithm Is not a 
new method; viewed In the proper context, It can be thought of either as an 
elaboration of the primal-dual, composite, breakpoint-tracing, or complementary 
pivot algorithms: as an extension of the out-of-kilter or black-box methods for 
network floWs; or, finally, even as a special way of looking at the original 
simplex algorithm.  However, It possesses certain pedagogical advantages: 

1. Proper emphasis Is placed on complementary slackness as the fundamental 
constructive principle of linear programming, and Infeaslblllty and 
unboundedness are related to secondary roles. 

2. Arbitrary starting solutions are allowed, and arbitrary lower and 
upper bounds on the variables are handled naturally. 

3. One activity at a time Is "worked on;" complementary slackness always 
Indicates what operations are necessary; no artificial distinction is 
made between "real," "artificial," or "slack" variables. 

4. The imbedded linear program is of an extremely simple type, which 
reveals the essential nature of simplifications which can be made in 
models of special structure. 

5. Very few set-theoretic proofs and tableaux rules are needed, almost 
all operations being described on the optlmality diagram for each 
activity. 

Almost all of the simpler procedures, such as Phase I, the dual simplex method, 
parametric programming, the primal-dual algorithm, etc. can be viewed as special 
cases of the complex algorithm which use special starting solutions and special 
heuristics, r 

k. ■ ■ 
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COMPLEX: 

A COMPLEMENTARY SLACKNESS, OUT-OF-KILTER 

ALGORITHM FOR LINEAR PROGRAMMING 

by 

William S.  Jewell 

0.     INTRODUCTION 

The purpose of this paper Is  to present a complementary slacknesst  out-of- 

kilter algorithm for the following dual linear programs: 

n 
Minimize 

(0.1) 

C-    I    ex 
j-1    3  J 

tjixjlkj 

(i - 1,2,   ...,  m) 

(J - 1.2 n) 

(0.2) 

m n n 
Maximize Ö -    I    by    -    I    k.u    +    I    Iv 

1-1    * 1      J-1    3 J      j-1    J 3 

y. unrestricted 

UJ.WJ  ,0 

where no restriction is made on the constants except 1. je k  for all J . (For 

a symmetric form, see Section 9.) 

The algorithm to be presented is not a new method; viewed in the proper light 

It can be thought of either as an elaboration of the primal-dual, composite, break- 

poirt tracing, or complementary pivot algorithms; as an extension of the out-of- 

[ 
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kilter or black-box methods for network flows;   or finally,   even as  a special way 

of looking at  the original simplex algorithm.     In fact,  each of  these methods can 

be produced by the use of appropriate heuristics within the procedure presented in 

Section 6. 

Why,  then,  another algorithm?    When teaching linear programming,  one is struck 

by the fact that almost all "advanced" topics  are merely repetitions of the same 

basic concepts of pivoting  (to move from one extreme point  to another)  and pvioing- 

out  (to determine a desirable direction in which to move), with slightly" different 

emphasis on which variable is to be increased  or decreased,  and by how much that and 

other variables are  allowed to change.    What  is needed,  it seems,   is  a general 

algorithmic framework in which all the various  extreme-point procedures can be 

explained as variants of a common procedure which wsa special heuristics. 

In the author's opinion, such a common simplex procedure should emphasize the 

following points: 

(a)    Much greater emphasis should be placed on the complementary- 
elaokneee relationship as the fundamental working principle 
of programming;  questions of  feasibility and boundedness 
should be relegated to a secondary role; 

(0.3) 

(b) The simplex procedure is a  local,  or incremental move in which 
one basis change la made to Improve some functional;  the prob- 
lem Is to know how to make this one move and interpret the 
results—the remaining steps will always "look" identical; 

(c) Arbitrary starting solutions should be allowed,  and  tedious 
conventions on signs of variables and constants,   form of  rnn- 
straints,  "real" versus "artificial" variables,  etc.   should 
be eliminated as much as possible; 

(d) Less emphasis needs to be given to tableaux and a variety 
of formal rules for row and column manipulations;  the 
algorithm and the current "state" of the solution should 
remind one of the correct rule to be used. 

Given that the elements for such a development have been available since 1959 

[7,8,11],  it is remarkable how many variants and elaborations have been presented 

(often with intriguing prior arguments for efficiency), but hor  little unifying and 
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synthesizing work has been done.  We do not pretend that the algorithm presented 

here will be a definitive one, but only hope that it will begin to reveal the 

underlying coherence and harmony between the various approaches, and how simple 

and straightforward a general theory is. 

The report is in the following main groupings:  the first four sections 

examine the central ideas of the optimality diagram and the incremental linear 

program subroutine; Sections 5-7 present the main algorithm and its proofs; 

Section 8 presents some of the many options available in using the algorithm, 

followed by a discussion of symmetric formulations in Section 9; Section 10 dis- 

cusses the important special case of network flow problems; and Sections 11-13 

conclude with a review of the basic ideas of the report, an appreciation of 

J. B. Dennis* important work, and a survey of the extensions which are possible. 

The Appendices present certain fine points, such as the organization of tableaux, 

and the interpretation of classical algorithms as special cases of the common 

procedure. 

■ 
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1.  THE OPTIMALITY PRINCIPLE AND DIAGRAM 

.• 
To fulfill point (0.3a), we begin by defining the constructive principle which 

will be used to solve (0.1) and (0.2) and express this principle as a set of n 

2 
diagrams In   (R     ,  one for each activity. 

Until Section 9, we assume: 

every set of values of the primal variablee    x   ■ x.   (J ■ 1,2,  ..., n) 
(1.1) 

wiiZ always eatiefy the equality constraints    \ ^a*^  " ^i   ^ " ^»^ "^ 

either by adjoining slack variables of  any sign in the formulation,  or by adjoining 

error variables of any sign after the initial solution is  chosen.     These particular 

constraints will never be violated during the algorithm and can henceforth be ignored; 

however,    x.    may exceed either of its bounds    k      or    £.   . 

Let 

(1.2) 

be the profitability  of activity j . For given initial values ix?;yw of the 

primal and dual variables satisfying (1.1), we define the state of activity   J    as 

the pair of values  [x°;z°) , and partition the state space  as shown in (1.3). 

(1.3) 

,;<*, 
^ ■  4d 

ir*°< kj x0 - k xj>kl 

'J>CJ J   c K' J   e K JEK+ 

•J-^ J   c B" J   c B JeB+ 

'J<CJ 
J   t L" J   E  L J   e L                                | 

Partition of State Space for Initial State H;ZJ} ,   of Activity    j 

■  
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For convenience, let 

(1.4) if - L" or B" or K" ; U - L or B or K ; ü+ - L+ or B+ or K+ . 

The state <x.;z.> of a current solution at Iteration t (t ■ 0,1,2, ...) can 

be shown most clearly on an optimality diagram    (x ;z ) for each activity j , 

shown in Figure 1.1; for example, U consists of the solid horizontal and vertical 

lines. Some of the states may be missing in degenerate cases. 

The following is Just a restatement of what is usually called the weak theorem 

of complementary slackness: 

Optimality Principle 

For a set of values   *x4;z I , satisfying    J a-.x. - b. 
(l,$) I j j J ij J   * 

(1 ■ 1 m) to be optimal, it is necessary and sufficient 

that   J e U for all activities   J - 1 n . 

(The strong theorem of complementary slackness states that there is at least   • 

one optimal solution which does not have any activities on the corner points, 

(B and x - 1.) , (B and x. " k.) ; however, we shall not need this fact in the 

sequel.) 

An activity in U will be called conforming  [14], or in-kilter  [9]; a "non-U" 

activity in ü" or U  is nonaonforming,  or out-of-kilter. 

The basic idea of the algorithm to be presented in Section 6 is as follows: 

The initlai solution determines the state of all activities. An arbitrary non- 

conforming activity is selected, and changes in the variables are made by a sub- 

routine to make this selected activity more conforming (in a sense to be made 

precise in Section 7); these changes leave all currently conforming activities 

in-kllter, and no unselected nonconformlng activity becomes more nonconforming. 

The primary pedagogical advantage of the optimality diagram is that all features 

of the algorithm can be explained directly on the diagram; this simplifies notation 
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FIGURE 1.1:  OPTIMALITY DIAGRAM FOR ACTIVITY J . 
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and provides a ready visualization and reminder of the rules of the algorithm, 

as well as suggesting various heuristic procedures. 

MBMM^M 
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2.  THE INCREMENTAL LINEAR PROGRAM 

The key procedure In the algorithm is a subroutine which determines the 

incremental  changes to be made from the current solution.  If <x I are the values 

determined during the t   (t - 0,1,2, ...) iteration, the incremental dieplaae- 

ment,     5  of activity J during the next iteration is 

(2.1) Cj " XJ " XJ 
J = 1 n 

The subroutine consists of the  following    incremental  linear program: 

Maximize       A - +£ 
-   8 

(2.2) ilx Vi 

(2.3) 

Minimize 

XJ ^J ± KJ 

k VJ - w 

ji niaij -^ + -r 
i   0      jl«8 

l+l      J-8 

(i - 1,2,   ..., m) 

(J - 1,2 n) 

u > 0 , Wj 1 0 

r\.    unrestricted 

The eeleoted activity index,    s  , will be furnished to the subroutine, as will an 

Independent set of column vectors, J , from the matrix (AJJ) •  The values of 

the bounds provided will always be such that 

(2.4) -• £ X £ 0 £ ic < (j - 1,2 n) 

So that the Incremental origin is always   (bjsic)   feae.'ble 



—^m 

For the selected activity: 

If the problem is to maximise    £  ,X ■0:0<K<+»: 
(2.5) ■   • . 8 - 

if the problem is to minimize    C  ,-«»<X <0;ic -0. 

The optimality diagram for the incremental program, 

(2-6) Cj ' ^ Vij versus  Cj , 

for activity j  is shown in Figure 2.1.  Note that some activities may have part 

or all of the C^-axis or the C^-axis as conforming states. 

It follows from (2.4) and (2.5) that: 

The values    C. - 0 » j c J) , oonetitute a basic feasible solution 

to (2.2) with    n« - 0 , (1 - 1,2, .... m) and   ; - 0 , 

(2.7)   (j ■ 1,2, ..., n) as corresponding solutions to (2).    (As usual, 

^■O.J/Jj. Furthermore,  this basis and these values can- 

not be optimal solutions to (2.2) and (2.3). 

The initial Incremental program is, in fact, in complementary pivot form 

(Section 9B). There are four possibilities for the optimal solutions, 

K} • {<) - Kl! 

(a) The optimal value of £  is unbounded (C - +« or -<») . 

(b) The optimal value of C  reaches its nonzero bound 

U* - KB    or Xs) . 

(2  8)     ^C) The 0Ptimal value of C  is nonzero, and the displacement 

* of some other activity reaches a bound (0 < ( < K  or 
8    • 

* * * 
X8 < eB < 0 , and ?. - X  or C. - ic  for some ire), 

(d) The optimal value of £  i* zero, but th«-. given «9  Is 

not the' index set of the optimal basis. 
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Appendix A discusses ways In which this special linear program can be organized 

In tableau form; Section 8 discusses simplifications which can be used for 

problems of special structure, and the possibility of selecting several activities. 

In all cases, except (2.8a), we know from the optlmallty diagrams In Figure 2.1: 

The finite optimal eolutions to (2.2) and (2.3) satisfy: 

* * 
If    x\  * t*  < <ä  * the*    Cj - 

(2.9) 
••••• •(..... ■ 

"':s|.::i- then 
.   <«,) 

Obvious modifications apply when X. ■ <. « 0 , or one or both of these Is 

Infinite. 

In particular, we note that not both    C  and c  can be simultaneously 

zero.  In addition to providing the optimal displacement of the primal variables, 

we shall see in Section 4 that the incremental subroutine also furnishes the 

optimal gradient  of dual displacement. 

I 
m ' 
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3.  ACTIVITY SELECTION FOR THE INCREMENTAL LINEAR PROGRAM 

The selected activity,  s , which is to be "worked upon" in the incremental 

subroutine can be chosen from among any  of the nonconforming activities which vio- 

late the Optimality Principle  (1.5).  Various heuristic procedures for this 

selection are discussed in Section 8. 

For "primal-infeasible" activities, it is clear that the rule 

(3.1) 

s c L  , B  , or K  — maximize C  • 
8 

+    + + 
s e L  , B  , or K  — minimize  ^  , 

s 

will move the state of activity s chosen towards feasibility.  However, this rule 

is also correct if i    < x < k  and  s ^ B , as we shall see in the next section. 
S —  S —  8 

How far should the  {? }  be allowed to move?  Clearly, a conforming activity 

should not be allowed to leave U .  Or, conversely, if some J I U , the 

Incremental movement should be stopped when the activity reaches U .  Finally, for 

finlteness. It Is desirable to prevent "non-U" activities from becoming more so by ' 

moving counter to the rule (3.1). 

This leads to the following rules for specifying the bounds {X.,<.} for the 

(t+1)   application of the subroutine, in terms of the current values <x.> 

(t - 0,1,2, ...) . 

IF: 

(3.2) 

J e L~ 

J c B" , K" 

J c L , K 

J E B 

j c L+ , B+ 

SET: 

0 

0 

0 

-(XJ - V 
-(xj - V 

-Oc] - kj) 

k - x 
J   J 

0 

0 

(J - 1 n) 

 ^ 
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The directions of change and the allowed maximal increments are conveniently 

summarized on the Optimality Diagram in Figure 3.1.  There are no infinite dis- 

placements allowed in the diagram as shown» but if k. - " , or I. ■ -• for some 

j , it would be possible to obtain the unbounded solution of (2.8a). 



———— 

1A 

t 
FIGURE 3.1:     OPTIHALITY DIAGRAM FOR ACTIVITY    J   ,   SHOWING DIRECTION AND 

MAXIMAL PRIMAL DISPLACEMENTS ALLOWED FROM DIFFERENT  STATES   (•) 

Mite 
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4.     BREAKPOINT  STEPPING WITH THE  INCREMENTAL LINEAR PROGRAM 

From the  above discussion,   the new activity levels     x.       ■ x. + 5j    obtained 

by adding the optimal Incremental values from the subroutine to the old activity 

levels  obviously keep all conforming activities so,  and do not move nonconforming 

points   farther away from or through  the optlmallty diagram  (see Section 7 for a 

discussion of conformity measures).     Furthermore,  the primal displacement only 

permits   the  following limiting  changes of state  from iteration    t    to    t + 1   : 

r 

(A.l) 

(a) L" -* L 

(b) B" -»- B 

(c) K" -^ K 

(d) L    -•' L 

(e) B+ H- B 

(f) K+ -^ K 

f J  ^ Ü 
lat iteration e) 

or 

(h)    (xj   >   ij 
'(■ 

t+1 
j 
t+1 

.) 

s) 
j c B 

at Iteration J 
At least one such change will occur, possibly at a zero-change level. 

Hopefully, the selected activity  s might undergo a change of type (a) - (f), 

but in general, £  may only move partway toward a conforming state, as shown by 

the horizontal line in Figure 4.2.  In fact, from (2.8d) It is possible that C " < 

After these horizontal (primal) movements are made on the various diagrams, 

the dual aolution to the incremental linear program fumiehee the appropriate 

gradient for vertical (dual) ohangee through the formulae: 

(4.2) 

(4.3) 

t+1 

t+1 t    * 

(1 - 1,2 m) 

(J ■ 1»2, ..., n) 

and appropriate selection of the gradient etcp size,     6  . 

- 

mmm —m m 
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Consider Figure A.l.  If the same requirements are placed on dual displacements 

as for the primal ones (all conforming activities remain so, and displacement stops 

when a nonconformlng activity becomes conforming), then it follows from (2.9) and 

Figure 2.1 that after the primal change  (4.3) we have: 

IF: THEN: 

t+1 
ü 

(A. A) 

(a) JeL ,B , or (K and xj ^J 

(b) Jc(K and t._< x^ <k ) or K 

(c) Je(L+ and xj"*"1^) .B+. or  K+ 

+       t-t-i 
(d) jc(L and l.<Xj .< k ) or L 

(e) jeB and lj<x5+1<kj 

(f) jeB and l1-x^+1 

(g) jeB and xj"*"1-^ 

* 

V-0 

if ct<o 

if ^>o 

* 

<> 

te 

e 

unlimited 

6 must be 

unlimited 

—   * 

c -z 
6 must be < •'■ ■' 

J 
unlimited 

unlimited 

unlimited 

for every activity j .  Changes which do not limit 9 are shown as dotted lines 

in Figure 4.1.  (In Section 7 it is shown that these displacements are also re- 

ducing nonconformity in a certain sense.) 

We conclude that all  conditions (4.4) are satisfied for all activities for 

every value of step size: * 

(4.5) 0 < 6 £ 0 - min/     min     1*1 ; M M 

(and C^O) (and ;.>0) 

By selecting 6-6  , we guarantee that at least one change of state 



^ 
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1 

Dual Displace- 
ments which do 
not  limit    6 

-»>Xi 

FIGURE 4.1: OPTTMALITY DIAGRAM FOR ACTIVITY j , SHOWING DIRECTION AND 
MAXIMAL DUAL DISPLACEMENTS ALLOWED FOR DIFFERENT STATES (•) 

mmmm 
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(A.6) 
(a) K  •> B 

(b) K~ -»■ B 

(c) L H- B 

(d) L+ -► B 

occurs.  If  s  becomes conforming, then all the  ^  may be zero, in which case 

* 
0  can be set to zero.  If the states referred to in (4.5) are nonexistent, and 

* 
8 is nonconforming, then 9=0°, and the dual solution is unbounded. 

Of particular interest is the trajectory traced out by  (x .z )   as it is s     8 

"worked upon" by  the  Incremental  linear proRram.     Suppose  first  that     (x0,z0)   e U~   , 
a s     s 

an  shown in Figure A.2;   then the  subroutine will maximize     C     .     The  result of 
8 

* * 
this  subroutine will be    A    = C     »   creating a nonnegative  displacement   towards  the 

right  to     (x   ,z   )   ,  possibly all  the way  to state    K  ,   (or unbounded  if     »c    « •»)   . 
8  8 8 

(For  z  < c  , the first step might, of course, be stopped by entry into state  L .) 
s    s 

* * 
Then calculation of the dual changes will change  z  by the amount  6 C 

8 8 

But, from (2.9) and (3.2), if the horizontal segment does not reach to state K 

* * 
or L , then £  < K  , and C B -1 •  In other words, the dual change moves the 

8 8 S 

trajectory'dounuarde by a positive amount    6       to the point     (x  ,z  )   .     If    6    *•<*>• t 
S        6 

then the trajectory moves downwards off the diagram, showing dual unboundedness 

(I.e.,  primal infeasibllity—there no basis change at any price which will bring 

x      up to    t )   . 
B B 

The net result Is that, after successive applications of the subroutine, the 

trajectory of  (x ,z )  describes what Dennis [8] calls the breakpoint curve,  a 
B   B 

sequence of nonnegative horizontal segments and positive vertical segments which 

leads either to unboundedness or infeasibllity, or to an intersection with one of 

the conforming "U" states. Similar remarks, "In reverse", apply to the trajectory 

traced out by some activity in U  , for which the subroutine would minimize £ 

(See also Section 8 for further possibilities.) 

Unselected non-conforming activities also follow a breakpoint curve at each 

application of (2.2) and (A.2) upLll conforming, or selected. 
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A* 
—> 

(maximize) 

6* 

— -z  

4.   -f 
i 

k .. , 

G 
nbounded primal 

possible only 
k - « 

•—e 

(minimize) 

:;) 

■*•   x. 

(unbounded dual) 

FIGURE A.2:     BREAKPOINT STEPPING THE  SELECTED ACTIVITY AS 
A RESULT OF THE  INCREMENTAL LINEAR PROGRAM 

"^ MM«^.. 
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5.     GENERAL OUTLINE OF THE ALGORITHM 

The «eneral outline of  the algorithm should now be apparent.     Starting with 

an arbitrary  solution to the primal and dual,   the states of  each activity are 

identified,   using   (1.3)  and Figure  1.1.     An  arbitrary  nonconforming  activity,     s   , 

is selected and worked upon,   using  the  incremental  subroutine.     By  following  the 

breakpoint  curve.   Figure (4.2)   either  unboundedness or infeasibility  is shown,   or 

s    is put   in-kilter.     Then another nonconforming activity  is  selected,  and so on, 

until all activities are in    U  ,  and  an optimal solution is obtained. 

There are still  several points  to be  cleared up,   such as   the  finiteness of 

the procedure,   both with the regard   to  the  subroutine,   and  the main algorithm 

(Section  7).     In addition,   there are various options  available at  each iteration 

which  can be  used   in devising various  heuristic procedures;   these will be 

discussed  in  Section 8 and when comparing   the algorithm with others   in Appendix D. 

We now present  the main algorithm. 

K* 
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6.     COMPLEX;   A COMPLEMENTARY  SLACKNESS.   OUT-OF-KILTER ALGORITHM FOR LINEAR 

PROGRAMMING 

0. Select arbitrary values of    x    ■ x.   (j ■ 1,2,   ..., n) 

satisfying   (1.1)  and y.  B y.   (i =  1,2,   ..., in)   .     Select  an 

arbitrary set of    m    Independent  columns for the Initial set 

«9- J>0     (Appendix B).     Set     t - 0  . 

1. Identify current states     (x   ;z   )     of  activities as 
J     J 

U"- L"   ,  B"   ,  or K"  ;  U - L  ,   B  ,  or K ; U+ - L+  ,  B+ ,  or K+ 

If  all    J   c U  ,  the current  solution is optimal. 

2. Otherwise,   select an arbitrary nonconforming state    s   . 

Solve the Incremental Linear Program 

n 
i 

(6.1) 

Maximize A - £    c*^* 
j-1    3   3 

(1 - 1,2 n) 

(J - 1.2 n) 

Minimize k (V:J " W 
m 

u j  > 0  , ttj    >    0 

n. unrestricted 

with Initial basis   Jt    ;  starting solution    £. 

(J-1 n)  ; 
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(6.2) 

/  0  J T« 8 

1+1 J - s e U~ 

\^-l j - s e U+ 

and  {X ,K } defined by (3.2). 

3. If A ■ +00 , the primal problem (0.1) la unbounded. 

4. Otherwise, set 

(6.3) xj+1 - *j + ?*       (J - 1 n) 

5. Find the step size,  6  , from (A.5) and the related 

discussion. 

6. If 6 - « , the primal problem (0.1) is infeasible. 

7. Otherwise, set 

(6.A) yj+1 - yj + e*nj ,    (i - 1,2, ..., m) 

(6.5) ej+1 - «J + 6*^  .    (J - 1,2 n) 

(retain the current optimal basis 4  as the starting basis J 

for the next iteration) and repeat Step 1. 
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7.  CONVERGENCK AND FINITENESS 

Assume temporarily that the current solution is "primal-feasible", i.e., 

£. £ x. £ k. . By direct substitution, the difference between the primal and 

dual functlonals is: 

(7.1) ^-C-0-  I     u.(k. - x.) +  I    w.(x. - £.) 
j«!  J  J    i J-l  J  d    J 

which will be  called the total deviation of  the current  solution. 

In  terms  of  the optimality  diagrams,   the total deviation  is  just the Bum of 

the individual activity deviations,  which are the shaded areas shown in Figure 7.I. 

Furthermore,   this  result does not  require    k.     or    I.     to be  finite, provided 

one uses  the usual "transfinite  algebra"  in which the infinite bound is replaced 

by a number    +M    which will be considered  larger than any number to which it is 

compared during the calculations.     Thus  to a point like   0   In Figure 7.1,  an 

area    u   (M - x  )  would be contributed  to  the total deviation    2>  .     This is Just 

the pricing-in term which would be added  to force the point out of  the "dual- 

infeasible"  region above the line    z,   - c. 

A similar device can be used to make arbitrary points "primal-feasible" as 

well. For example, if the current x. > k, or < 4. , we may consider that x. 

is  really an unbounded activity with piecewise linear cost structure 

(7.2) cost  of activity    J  ■ 

VJ +M(W   --<*J < ^ 
VXJ »j   IXj^kj 

Vkd +M(xj "V "j <XJ-- • 

which gives the transfinite extensions to the optimality curves shown in Figure 

7.2 (see also Chapter VI, fVj). 

"Ufcb «Al MfMHHHI 1     H 
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FIGURE 7.1:  CONTRIBUTION TO THE TOTAL DEVIATION 

Z>  - C-  b FROM "PRIMAL-FEASIBLE" i*yz^ 
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finite 
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transflnlte 
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FIGURE 7.2:     CONTRIBUTION TO THE TOTAL DEVIATION 
-Z?-  <J-   Ö  FROM "PRIMAL-INFEASIBLE" 
(XJ;ZJ) 
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Direct  calculation of^aC-u  for the  extended problem  (7.2)   leads  again 

to  the conclusion that  the area between the point     (x.;z.)       and  the  corresponding 

diagram is  the deviation due  to activity    J   ;   as  shown in Figure  7.2,   this 

deviation may be  transfinite only      l®|     ,   or may have both  finite and transfinite 

regions     |(g)| . 

Thus,  as a given activity follows its breakpoint curve,  as  shown in Figure 7.3, 

it  follows from the algorithm that: 

Every nonzero horizontal or vertical dieplaoement permitted 

by the algorithm gives a finite decrease to the total deviation 

i7.3)£) = C-B»  equal to the decrease in shaded area between the 

points    (x  ;2 )    and the optimality curves,  summed over all 

activities. 

In classical terminology,  the displacement  from I to II in Figure 7.3 

makes activity    J    "primal-feasible",  and from II  to III, "optimal"   (if    k    was 
J 

-H»  ,  all vertical displacements reduced "dual-infeasibllity", as well); however, 

in our extended definitions, all horizontal displacements decrease   C  , and all 

vertical displacements Increase  Ö   . 

Since the only displacements allowed decrease   SO   , and since each non- 

conforming activity is in the subroutine until it becomes conforming,  it is clear 

that the algorithm converges. 

The only possible source of degeneracy occurs in the incremental subroutine, 

where cycling can be avoided by the usual perturbation or lexicographic techniques [A], 

Even if the maximal value of    A    is zero. (2.8),  the decrease in SO   will be positive, 

and a new basis will be selected.    Thus the algorithm is finite. 

An alternate "finite" proof that an infinite number of steps with    0      finite 

■Hi 
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1%0>'    Increase 
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Decrease 
m <• 

FIGURE 7.3:     DECREASE IN THE TOTAL DEVIATION 
JZ>m Q -  0  AS ACTIVITY    j 
BECOMES CONFORMING 
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and with  A" » 0  cannot occur is as follows: 

(7.A) 

(a)  Since 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

A ■ 0 , no changes of the type 

K K 

K 

L" -*• L 

L+ -> L 

(j c B) (x. V (XJ > V 
(vi)   (j t  B) 

can occur. 

(XJ * V (x. V 

(b) If  an activity moves  from    L -> B    or    K -* B    during one 
dual change,   its index will enter the basic  sgt    <0    of 
the subroutine and remain there as long as    A    -  0  . 

(c) Otherwise, 6 is determined by a transition L -* B 
or K" -* B decreasing the number of activities which 
enter Into  (A.5). 

(d) Since there are a finite number of activities,  there 
can be gnly a finite number of dual changes until either 
some    A      is  finite   ("breakthrough"),  or the set   in 
(4.5)   is empty  (unbounded dual). 

' 

> 
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8.     ALTERNATIVES  FOR THE   INCREMENTAL PROGRAM  SUBROUTINE 

The Incremental  linear program (2.2)  can,  of  course,  be solved by any method 

available;  a fairly compact tableau method which utilizes its homogeneous,  double- 

bounded structure  Is given in Appendix A.     In  this section, we Indicate several 

alternative approaches which may be used. 

A.     Working on Several Nonconforming Activities at  the  Same Time 

If, in fact,  a general simplex tableau procedure,   as outlined in Appendix A, 

is being used to solve the  incremental program,   then one may wish to do more than 

maximize (or minimize)   the  selected nonconforming activity.     In particular,  one 

may work on all such activities at once,  by setting 

j   c if 

(8.1) -c. *   i-1    if J   e U1" 

Instead of  (A.l) and  (6.2).    This does not complicate the subroutine outlined In 

Appendix A and may make several activities conforming in one application  (with 

possibly more pivot steps)  of  the subroutine. 

Or,  one may select some of  the nonconforming activities to work on—for example, 

the activities with transfinite deviations may be worked on first, ss in the usual 

"Phase I" ptocedures  (Appendix D). 

Finally, the magnitude of the coefficients e. is immaterial to convergence 

of the algorithm, and one may choose to put more or less pressure on certain non- 

conforming activities, based on some heuristic choice; this is the basis for most 

proposals which combine "Phase  I" and "Phase 11". 

B.    Primal-Freezing Nonconforming Activities for Single-Step Subroutines 

A possibility in the other direction i\   to make the incremental program as 
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simple as possible.     One way to do this  is  to "freeze" all nonconforming variables, 

other than the one selected,  at  their current values by  setting 

(8.2) Xj - ^ - 0 j  ^ U + {s} 

instead of following (3.2).  X  or K  are set as usual. 
S 8 

In this way, as the subroutine (Appendix A) attempts to increase (or decrease) 

£  , only two bounded possibilities occur: 
6 

(8.3)  or 

(a)  £  reaches one of its own nonzero bounds; the 

subroutine terminates with s conforming and the 

current basis J) unchanged (but with possibly 

* different Cj » J e i) * all c. + c, are un- 

changed (equal to  e.) . 

(b) One (or more) basic £.  reaches a bound; s 

replaces 1 in the basis by making a pivot on 

some a.  (A.6). The eubroutine teminatee after 
Is 

one pivot with C, + c.  (<1 0 , and all other 

0 . J E Jl + {s) . cj + ej 

(The usual remarks about ties apply.) 

In this simpler, but more restricted procedure, it is clear that no con- 

trol is maintained over the sign of ;. , J ^ U + {s} . Thus, other nonconforming 

activities may become more BO  (i.e., their deviations may increase) at the dual- 

changing step which follows. This gives some theoretical problems in convergence, 

but in most cases, one can show that one of the functionals is moving in the 

correct direction. 
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If the resulting value of £  from (8.3) were then such that x  were 
B 8 

"primal-feasible", then it would be desirable to choose 6 without regard to the 

other nonconforming activities.  This would then make s conforming in a eingle 

pass through the algorithm,  although other activities might "overshoot"—i.e., 

conforming ones might become nonconforming  (see D below). 

The above procedure is used in the primal simplex algorithm.  If several 

variables «re brought in at once, the procedure is called "block-pivoting". 

C.  Dual-Freezing Certain Nonconforming Activities 

In a similar way, one can dual-freeze up to m nonconforming variables C. 
•I 

by requiring that their indices be in any basis  J of the incremental subroutine. 

This restriction then means that the bounds X  and K   (3.2) for these 

variables cannot be effective,  and the corresponding (. may have arbitrary sign; 

thus these other nonconforming variables may have increasing deviations. 

If an attempt is made to make activity s conforming in one step, this may 

drive some x. , J c B nonconforming. Thus, this possibility is usually followed 

in reverse',  i.e., some £  , J e B (c. ■ 0) is moved towards its bound until some 

positively or negatively priced C  reaches the appropriate bound. This "row- 

pivoting" is the procedure used in the dual simplex algorithm (Appendix D). 

P. Overshooting Conforming Limit-g 

In general, the limits on the £  and et  t J 4 U , have been chosen so 

that: 

(a) no conforming activity passes through a conforming state and 
then becomes nonconforming again; 

(b) no previously conforming activity becomes nonconforming. 

As we have seen above, however, when working on a particular activity, or 

set of activities, it may be desirable to get this activity conforming "at all 

- ■■ 
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costs".  This may conceptually be very bad If violating (3.2) or (4.5) makes more 

activities nonconforming.  However, in certain special cases, we may be able to 

argue convergence on one of the functionals. 

E.  Special Structure Models 

Actually, the incremental subroutine, as we see it, is a method for choosing 

the direction  of the vector  {5.} which will maximize the rate of increase of A , 

subject to •][ a^jCa ■ 0 , with certain directions "frozen"; the actual maximum dis- 

placement in either primal or dual is of secondary importance. 

In problems of special structure, it may be possible to follow through the 

effect of changing one variable on the other variables explicitly; then the various 

operations of "pivoting" can be carried out in sequential form, without continual 

reduction of the matrix to get the current trade-off coefficients ct.. . 

The most common example of this kind occurs in network flow models, where the 

allowed changes in the  {^.} correspond to an incremental increase in arc flows 

around a loop including arc s .  (Section 10.) 

F.  Dual-Stepping 

Nothing In the algorithm should be construed so as to give a special place to 

the primal problem.  One can Just as well define the  {n.}  as the absolute  dis- 

placements of the {y4) * and work on a selected n  through a homogeneous dual 

in the incremental subroutine.  For example, the pivoting procedure may be clearer 

in the transposed matrix (***)   • 

In this case, nonnegative vertical steps in Figure A.2 are taken first, 

followed by positive horizontal displacements, since all degeneracy (at the corner 

points of Figure 1.1) arise in the subroutine.  Thus, "row pivots" become the 

natural changes, and "column pivots" would require looking ahead to the "primal-" 

changing step (6.A) and (6.5). 
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G.  Bound-Tightening 

When a given activity is made more conforming, it is possible some other 

nonconforming variable may move coherently.  If the incremental subroutine makes 

several basis changes, it may be worthwhile to "tighten" the bounds on these other 

variables as the pivoting progresses to prevent them from "slipping back". 

Actually, except for didactic examples, this possibility is quite rare. 

H.  STARTING SOLUTIONS 

In many problems, special starting solutions, basic or not, may be available. 

If these are felt to be "reasonable", or near optimal, they certainly should be 

used in place of a completely arbitrary solution.  On the other hand. If one had 

previously found a basic set <0  , and the related Inverse basis  in (a..) , then 

one should use the corresponding basic solution, feasible or not, solely In the 

Interest of efficiency. 

I.  ARGUMENTS FOR EFFICIENCY 

It should be clear from the discussion of this Section and Appendix D that 

any prior arguments for efficiency of a certain heuristic, particularly those 

based on whether one is moving "inside", "outside" or "on" a certain convex poly- 

tope, are doomed to failure. 

The COMPLEX algorithm takes any  starting solution, basic or not, feasible or 

not, and converts it into an extreme point by adding artificial bounds (2.A). 

Thus all starting solutions "look alike", in a certain sense, and progress In the 

same manner as a basic feasible solution would move over the original polytope. 

One would have to make extensive numerical  trials for special classes of problems 

in order to clearly demonstrate the superiority of one heuristic over another. 

Most such experiments have concentrated on how to select a u ^conforming activity 

when using the heuristic described In Section 8B above, and starting with laslc 

feasible solutions. 
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9.     SYMMETRIC FORMULATIONS 

The problem  (0.1)   (0.2)  has been stated as an equality primal with doubly- 

bounded variables,   since this  Is often the  formulation In real problems.     On the 

other hand,  certain models,  such as  two-person games,  look more natural in a 

symmetric primal-dual format;   this  approach Is often favored  for aesthetic reasons, 

as well.     In  this section, we modify  the algorithm of Section 6  to a symmetric form. 

Consider: 

(9.1) 

(9.2) 

Minimize C=    \    C4X4 
j-1 3 J 

X *^ -bi 

xj >0 

Maximize Ö -   \    by 
1-1 1 1 

Yi 1° 

By defining nonnegative slack variables: 

(1 " 1,2, •«., m) 

(j - 1.2 n) 

(9.3) "i " Ji ^J^ ' ^ 1 
(1 - 1,2 m) 

(9.A) 
"J " CJ " Ji ^^J ' 

(j - 1,2 n) 

—+ 



—— 

n 
35 

the constraints in (9.1) and (9.2) are changed to equalities; since they will 

remain equalities during the algorithm, they are henceforth ignored, and all 

attention is focussed on the extended variables: 

(9.5) 

k-n 

(k - 1,2 n) 

(k «= n+1, n+2 n-hn) 

(9.6) 

h rk-n 

(k = 1,2 n) 

(k ■ n+1, n+2, ..., n+m) 

where k runs over the range (1,2, ..., n;n+l, n+2, ..., n+m)  to take In the 

appropriate real or slack variables.  The extended constraint matrix  of (9.1) 

consists of  CaJj)  augmented by an m x m negative identity matrix: 

(9.7) (o^) -   (Ca^),      -I) 

The restatement of the Optlmality Principle  (1.5)  is: 

Optimality Principle 

A feasible solution of nonnegative values   Y^.i it.}   i vs 

optimal if and only if 
(9.8) 

V ft -0 

for all    k - 1,2 mfn . 

The optlmality diagrams corresponding to (9.7) are shown in Figure 9.1. Note 

that this figure is reversed and normalized from Figure 1.1. Thus, the breakpoint 

trajectories will have reversed "dual" changes. Increasing (decreasing) from left 

to right (right to left), tfc keep the same states L , L , L , B~ , B , and 

K~ as before ior the current extended state   S^yX jfi\  • 
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FIGURE 9.1:     OPTIMALITY DIAGRAM FOR SYMMETRIC FORM 
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For completeness, we restate the algorithttuof Section 6 In symmetric form; 

some details on the extended tableau are given In Appendix C.  No proofs of the 

algorithm need be given, since the extended problem Is exactly In the form (0.1) 

and (0.2).  However, some "complementary pivot" Interpretations are given In sub- 

section B. 

A.  Symmetric Form of the Complex Algorithm 

0. Select arbitrary values of x. ■ x. (J ■ 1,2, ..., n) and 

y - y° (1 - 1,2, ..., m) and use (9.3)(9.4)  to calculate 

the remaining components of </»..> and <(ri.> • 

Select an arbitrary set of m Independent columns Ji       , In 

the extended constraint matrix,  (AJJ)  (say, the negative 

identity matrix of the last m columns). 

Set t - 0 . 

1. Identify the current states ML: ^k) of all variables as 

U" - L~ , B" , or K" ; U - L or B ; U+ - L+ .  If all 

k e U , the current solution is optimal. 

2. Otherwise, solve the Incremental Linear Program: 

tttn 
Maximise A -   I ev^ir 

k-1 * * 

(9.9) J/iA"0 

(1 - 1,2 m) 

(K 
m  1,2, •••, m+n) 

, 

-■- 
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(9.10) 

in+n 
Minimize I    ^W -   \\> 

k-1 

1 ^   ^ailc -   Uk +  \ " 

^ 10   ;   «^10 

n.    unrestricted 

-E. 

(i - 1,2, ..., m) 

(k " 1,2, •••, m+n) 

with initial basis Jt , and starting solution Ck - 0 

(k ■ 1,2, •••, m+n) • 

The coefficients in the functional have arbitrary value 

and sign: 

I 

(9.11) 

k e U 

elt < 1 0   k c U 

< 0   k c UH 

selected to work on one or several nonconforming variables at 

the same time 

The bounds are: 

(9.12) 

k Xk \ 

L' 0 K 
B" 0 - 

K" 0 a» 

L 0 0 

B »i - 

L+ 

< 
0 

3. If A • -H> , the primal problem (9.1) is unbounded. 

4. Otherwise, set: 

■^ 
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(9.13) ^r1 - %l + C (k - 1.2 m+n) kk 

* 
5.  Find the step size  6  from 

(9.1A) 6* - mln 
k Wl <**) 

(9.15) 

where only Indices k are allowed for which:  Jjf.   >_ 0 ; 

the denominator is nonzero; and the numerator and 

denominator are of the same sign. 

6. If the set of indices in (9.14) is empty,  G - " , and 

the primal problem (9.1) is infeasible. 

7. Otherwise, set: 

iit+1 tit * r  * 
!rk   -^k-6 ^Vik      (k-i.2 »+«) 

and repeat Step 1. 

B.  Complementary Pivot Methods 

Appendix C points out how certain of the basis changes in the extended 

matrix O^J) can be Interpreted as "dual pivots", in the sense of the row operations 

of the dual simplex method (Appendix D.A). This symmetrization is formalized In the 

complementary pivot methods  of Cottle [3], Dantzig [6], and Lemke [12], which were 

developed for a larger class of problems (Section 13). 

Instead of the extended variables (9.5)(9.6), attention is focussed on the 

variables: 

(9.16) 

(9. 17) 

,.(% 
(k - 1,2,  ..., n) 

k 
^k-n (k ■ n+1, n+2, ..., n+m) 

k 
lrk-ii 

(k - 1,2,   .... n) 

(k - n+1, n+2,   ..., n+m) 



 " ' 
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This has the effect of reversing the axes on the last m optimallty diagrams of 

Figure 9.1, thus making the "real" dual variables y  abscissae, together with 
i 

the "real" primal variables x  .  The problem (9.1) (9.2) is also usually stated 

as a combined  (mfn) x (mfn)  primal-dual problem, together with feasibility 

requirements which are identical with the optimality requirements (9.8). 

In terms of our model, complementary pivot theory stresses the case when 

exactly one  pair of complementary variables,  say  (zh;Mi )  in (9.16) (9.17) is 

nonconforming; this Implies exactly one other pair is at the LB comer point, say 

2  ■ W " 0  (possibly more than one if there is degeneracy).  This point  e  is 

then moved into either  L or  B in a manner to reduce the nonconformity of the 

variable h , some other variable  £  then moving into its corner.  If i    moves 

into the corner on B , it leaves on L at the next iteration, and vice versa; 

this is what is meant by complementary pivoting, and is a natural observation from 

the incremental subroutine of Appendix C.  The procedure, of course, terminates, 

when variable h becomes conforming. 

Actually, starting with Just one nonconforming solution pair  (2.; W^)  is 

quite difficult, in general, and the only starting solution methods proposed [5] 

seem to require Introduction of artificial variables.  Following the effect of this 

proposal through in terms of Figure 9.1 reveals: 

(a) All initial and subsequent solutions are in L , B , or B  , 

or 

(b) The nonconforming point(s) which is(are) currently farthest 

away (in a linear sense) are worked upon. 

(c) Primal- and dual-freezing are used as needed to keep all 

solutions in the above states. 

These special rules then reduce the complementary pivot procedure to a combination 

of the primal-simplex and dual-simplex procedures, that is, a .:->•. >oslte method 

(Appendix D. I;- 

(/k <0 ",d afk -0) • 
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However, we have previously seen (2.7) that the. incremental program,   (2.2) 

or (9.9), is already In complementary pivot form, since only C " 0 Is noncon- 
s 

forming at the beginning of the incremental subroutine. Thus, the COMPLEX approach 

essentially reduces every initial solution  to a related complementary pivot problem. 

In addition, the nuisance problems of infeasibility and unboundedness are handled 

separately. 

C.  A Doubly Double-Bounded Symmetric Problem 

As an ultimate symmetric variant, the reader may wish to try rewriting the 

algorithm of subsection A for the following doubly double-hounded Symmetrie problem: 

n        m 
Mint"  \    c,x - \    [d.max(0,r ) - e.max(0,-r,) ] 

J«l J J  1-1  1      1    1      1 

(9.18) 

}ml    
aiJXJ " 'l - bl 

(1 - 1,2, ..., m) 

(j - 1.2 n) 
m        n 

Max :Z> -  J Ny< + I      [l4m«x(0t8.) - k.iii«x(0,-84)l 
1«1 x x   j«i   J      J    J      J 

(9.19) 

whose optimality diagrams are given In Figure 9.2 a and b. 
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D.     Genoral Piecewlsc-Linear Convex Costs 

It  is also appropriate to remark that  the  COMPLEX algorithm can easily be 

extended  to general pleccwise-llnear convex costs.     The resulting optlmallty dia- 

grams would  then have many horizontal  and  vortical segments;   only  a  few details 

In the algorithm would  need  to be  changed.      (Sec  also Section  12  and   [8].) 

■ / 
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10.     NETWORK  FLOW MODELS 

A special class of problems of great practical Interest  are the network 

flow models   [9,10,14]   for which the  constraint matrix Is  the node-arc Incidence 

matrix,   giving  either Klrchoff's  Current  or Voltage Laws   In  the primal  or dual. 

For  these models,   the homogeneous  Incremental program  takes  on   the  following 

simple  form: 

(a^     Find  a  loop   (cycle)   of  special  arcs  in  the network  that 
can  take an Incremental  amount  of  flow; 

(10.1)    or 

(b) Establish a set of potentials on each node, so that the 
sum of potential differences around any loop of special 
arcs   Is  zero. 

Either or both  of  these steps  Is handled  In  netowrk problems by means  of a simple 

labeling technique,  which Is merely a way of  "unraveling"  ' Jfects  of i pivot 

change; by  changing  the flow variables  around a loop  (adding an Incremental 

oiroulation flow),   one. Increases or decreases  only the variables necessai,.   to keep 

the flow conservation laws satisfied.      (If  the problem is stated In single source- 

sink form,   the pivoting procedure may  find  a  flov-augmenting patl .)     As usual, 

determining the actual bound on the Increment of flow,   or determining the changes 

in potential  to "break down" a new loop,  are secondary calculations which can be 

performed independently.    Thus,   the calculations proceed from a basic solution  (a 

tree of arcs),   adding a new vector   (a octree arc which forms a unique  loop with  the 

tree),   through a pivot change   (determining an arc in the loop to be  removed),  to 

the new basis   (another tree). 

Viewed in  terms  of the optimality diagram and the algorithm of  Section 6,   the 

various methods can be viewed as  follows: 

(a) The stepping-stone methods are primal simplex algorithms which 
always maintain baf/». primal-feasible solutions  as shown in 
Figure  D.I.    A set  oZ potentialSj placed  on  the basic  tree,   -'ekes 
a cotree arc nonconformlng.     Then,  flow is  rerouted  to deLeii.-.tne 
a new basic solution,   and so on until optimal. 
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(b) The Hungarian-Ford-Fulkerson methods were responsible for the 
development of  the general primal-dual method for linear 
programs  discussed in Appendix D and F.     Usually all non- 
conformity is placed on the return arc  from sink to source, 
which starts with zero flow.     Thus,  incrementally least-cost 
flow-augmenting paths are sought until all flow is allocated. 

(c) The out-of-kilter method  is exactly  the  algorithm of Section 6. 

Actually,  after the  important early papers of Ford and Fulkerson see   [9,14]   for 

references)   the state-of-the-art was such that many people realized  that  the 

complementary slackness  conditions were  the key  to dealing with arbitrary  initial 

condition  (Appendix A of   [10]).     In fact,  an independent development of  the out-of- 

kilter approach may be  found in the 1958 thesis  of J.  B.  Dennis   [8].     The emphasis 

Is on electrical analogues,  and elementary activities  (Section 12), but his 

"black-box" approach,  and  "breakpoint-tracing" are  identical to our notion of a 

selected activity,   and sequential primal-dual changes needed to force this activity 

to bo conforming.     This  Important paper treats general programming problems in 

this same light   (Sections  12 and 13). 

One can also extend the simplified pivoting of ordinary network flows to 

problems where there are arbitrary multipliere of flow on each «re  [10a],  giving 

«rbitraiy coefficients in the node-arc incidence matrix.    However, here the 

appropriate basis is not a tree, and the appropriate "unwound" form of a pivot 

step is to find a flow-abeorhing loop in the network. Extensions   to multi-com- 

commodity flows have also been suggested  (see,  for example,   [10b]), but here the 

efficiency of the algorithms is less satisfactory. 

-    ■ - ■    ■      ' - ■    ■   - - 
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11.     THE  SIMPLEX METHOD AND  ITS  HEURISTICS 

By  this point,  our  central  thesis  should be evident: 

all the extreme point methods of linear pvogramrning are 

equivalent to the original simplex method, 

modified by  the   following heuristic  choices: 

(a) How  Is  the problem  formulated—inequalities,   equalities,  symmetric 
form,   self-dual,  upper  or  lower bounds,   etc.? 

(b) What  initial  solution.   If  any,   is  available   for   the  primal and/or 
dual? 

(c) Is   the  Initial  solution basic,  or Is  a natural  starting basis 
available? 

(d) Which  group of  nonconforming variables  Is  to be worked  on first? 
Is  any  subset   to be worked  on simultaneously,   or will  they be 
handled  Individually?     What   criterion of nonconformity  selects 
among  these? 

(e) What  Is  the attitude  towards  the other nonconforming variables? 
Are they to be bounded  towards  conformity?    Primal- or dual-frozen? 
Ignored? 

(f) Is a general simplex   (pivot)   subroutine  to be used,  or a special al- 
gorithm?    Will it do primal  steps  first,  or dual steps? 

(g) Are single-pivot changes   to  conforming states  to be made?    How much 
primal- or dual-change  overshooting Is  to be allowed? 

The primary advantage of the algorithm presented here is a pedagogical one, 

that  different variants  are easily presented,  and compared.     Also,  the problem 

does not  need to be forced Into any artificial format;   construction of the ap- 

propriate optimallty diagram always  "reminds" one of  the appropriate    procedure 

to be  followed. 

Finally,   the COMPLEX  algorithm presents a general framework within which new 

heuristics  can be explored;   certainly  the basic similarity of  the various break- 

point  curves suggests that questions of relative efficiency must be decided com- 

putationally,   and not on the basis  of whether a solution stays  feasible in a 

certain sense,   or always mrVes  some activity conforming at  each  step.     In this way, 

we distinguist- between the theory  and  the art of optimization. 

 , __. ^^-__.  
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12.  BREAKPOINT-TRACING ELEMENTARY ACTIVITIES AS BUILDING BLOCKS AND THE 

BREAKPOINT-THEORY ALGORITHMS OF J. B. DENNIS 

In this section we will consider the "construction" of an arbitrary linear 

program ftom certain elementary activities.     In this way, we hope to shed some 

light on the pioneering work of J. B. Dennis [8]. 

As one analyzes the mechanism of the simplex algorithms. It becomes clear 

that there are only a certain number of elementary operations performed, and 

that each regular activity could be thought of as a composite of simpler 

elements.  Typically, we have:  a "pricing" mechanism which turns an activity 

"on" or "off"; a primal (In)equallty; and a dual (in)equality. 

The three canonical elementary activities might be: 

(s) 
(a) a no-cost switching  variable x^  , which turns other 

activities "off" and "on" to arbitrary levels, whenever 

the pricing Is negative, or tries to go positive. 

(Figure 12.1 a) 

(12.1) 

«j00 > 0 ; c<8) - 0 

.(c) (b) an unbounded oonatant-ooet rate  activity *\    •  vhlch 

"costs" or "profits", as the activity level Is 

positive or negative.  (Figure 12.1 b) 

^ x.      i      »     c. (O .(c) 
'J • 'J 

.00 (c)    a aonatant-level activity,    x*      , independent of 

pricing and costs.     (Figure 12.1 c) 

xjk) - k    ;   (c.00 - 0).   zj
(k)    unrestricted. 
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To build  up composite activities,   we use  the  following  construction rules 

between  two  arbitrary elements with given optimality diagrams,      (x^jz.)     and 

(x2;z2)   ,   to  construct a new activity     (x0»0   • 

(a)     "Series" Combination 

Xo " xl " x2   J   Zo = Zl + Z2 

(b) "Parallel" Combination 

(12.2) xo - x1 + x2 ; 2o - z1 - z2 

plus the unary operation: 

(c)    Traneformation 

x    - Kx.   ;  z    ■ Kz. o 1   *     o 1 

In this way, compound activities with very general 'btaircase" diagrams can be built 

up.  For example, the compound activity shown in Figure 12.2 (a) can be built up out 

of the five elementary activities shown in Figures 12.2 (b) - (f) by adding the 

three constraints 

+ x2        + x5 

(12.3) 0 -    - x2 + x3 

0 - -Xj     " x3 + x4 

and substituting x  in whatever other constraints hold for the compound activity. 

Rearrangements of (12.3) suggest the various ways in which the "assembly" of 

(x • z ) can occur, 
o» o 

L    
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Such an expanded representation naturally leads to many more elementary 

activities than real ones.  But, conversely, the various simplex operations 

degenerate considerably for the types (12.1), and it may be possible to devise 

special algorithms for hand calculations, particularly when the problem is 

"weakly connected". 

The use of elementary activities is nothing more than a faithful transcription 

of the -idedlized current elements  (diode, voltage source, current source) in 

J. B. Dennis* 1958 thesis [8].  The notion of breakpoint stepping and operating 

with the optiroality diagrams are also his; and, from a certain viewpoint, this 

entire paper might be said to be a natural interpretation of his method. 

But, for some reason which this author does not understand, very little 

attention has been paid to this fundamental paper; in the next section we shall 

see that Dennis* breakpoint-stepping ideas can also be used in a larger context. 

-- - i 
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13.  EXTENSIONS 

Wolfe [16] has shown how quadratic programs can be calculated by applying 

complementary slackness conditions to an enlarged problem In which the primal and 

dual variables are "coupled" by linear relationships.  The basic outline of an out- 

of-kilter method for these problems was given by Dennis [8], who Introduced the 

idealized elementary activity which has a straight line U,   ■ R. 3».  optimallty 

diagram (a "resistor"); there appears to be no difficulty in extending this 

approach in the directions we have outlined here.  Recently, Lemke [12] has shown 

that bimatrix games can also be put in complementary pivot form, which would then 

represent another extension for arbitrary starting solutions.  In both these cases, 

the breakpoint curve consists of straight lines at arbitrary angles, as well as 

horizontal and vertical segments, and the appropriate theory may be found in [8], 

Chapters 5 and 6. 

In principle, it would also be possible to extend these ideas to general 

convex programming, provided that one knew how to move both primal and dual      , 

solutions simultaneously along the monotone optimallty curves defined by the 

Legendre transformation which gives the dual problem.  For this reason, nonlinear 

solution methods appear to depend more strongly on special initial conditions than 

linear methods do.  Another well-exploited procedure is to use quadratic 

programming as a local approximation (Chapter 7 of [8]). 

- 
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APPENDIX A.  ORGANIZING THE INCREMENTAL PROGRAM TABLEAU 

Because the incremental program subroutine (2.2) and (2.3) Is In a special 

form, in this section we consider how calculations might be carried out in tableau 

format. Naturally, to develop an efficient procedure for computer calculations, 

■any other factors, such as size of storage, round-off error, matrix sparseness, 

etc. must be considered. As discussed in Section 8E, special algorithms may also 

be available for problems with special structure. Howevor, the procedure outlined 

below is adequate for hand calculations and as a starting point for planning com- 

puter organization. 

There are two novel features of the Incremental program: 

(a) it is homogeneous; 

and (b) its variables are doubly bounded. 

The first fact gives an easy starting solution in all cases; there is also no 

right-hand side to keep track of. To use (b) efficiently, the upper and lower 

bounding relationships are calculated outside the main tableau, and we keep 

separate track of the current values of the "nonbaslc" variables which are at 

their upper or lower bounds. 

A suggested format, as it might appear at the start of the first Iteration is 

shown In Figure Al. T*16 coefficients UJJ) are placed in the main m x n array. 

In the next row above are placed the "pricing" terms, C. + e. , with 

(Al) 
(+ 1 if c 
1       s 

is to be maximized 

S' (-1 l£ C. is to be minimized 

V l^.t 

But see Section 8A for other possibilities. 
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A. 3 

Since the current values of the variables arc "lost" during an upper- (and lower-) 

bounding technique, the  U } are displayed, together with the current values of 

the  {K } and  {X } , in three rows above the pricing terms. 

For completeness, an m x m unit matrix is adjoined to the matrix of coeffi- 

cients so that the dual variables  (n.)  and the inverse of the current basic are 

obtained automatically.  In a computer code, a more efficient scheme such as the 

product form of the inverse would be used. 

Once the initial basic set of variables, Jl = J  , is specified, then the 

tableau can be reduced to the normal form shown in Figure A2 by the usual Gauss- 

Jordan reduction procedure, and the relative prices  {; + e.)  reduced to zero for 

j e J) .  This simultaneously gives the inverse of the current basis and dual 

variables for the incremental program.  Pivoting operations are carried out in each 

application of the subroutine using the rules below; the last form of the tableau 

in a given Iteration can be used to begin the next application of the subroutine 

(Appendix B). , 

In a doubly-bounded procedure, all basic variables satisfy: 

(A2) ^ 1 Cj i Kj  ;  ^j + ej = 0  J e J • 

The nonbasic variables are at their upper or lower bound,  and, at optimality  (2.9): 

If    ;    + £    > 0 C* -  ►:.   ; 
(A3) J 3 I        •l      j   ^J. 

if    ;; + ej < 0 5j - Xj 

\ 
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A.5 

Thus, 

Rule for Selection of a Candidate to Enter the Basis 

Scan the Pricing Row for Some Nonhasic Activity    eiA    such that 

(a)     C    +  e     > 0 and        t,     < < e        e e        e 
(A4) (b)     ;    + e    < 0 and        J;    > X     . or e        e e        e 

(i)      If none exist,  the current    U.) ,    (n.)   and    UJ are optimal 

(11)    Otherwise,    £      Is a candidate to enter the basis. 

Now,   if some    ^      Is to enter the basis  from Its  lower bound,  a positive  [negative] 

trade-off coefficient,    a.     ,  In row    1   ,  column    e    of the tableau Indicates that 

the basic variable    Cj/.\    corresponding to row    1     (i.e.,   the unit matrix has an 

entry In column    Ä  , row    1  ) must decrease  [increase]:     the bound    ^»/i^l^a/■<\1 

may thus limit the Increase of    C    «as will Its own bound,    K    .    Similar remarks 

apply If    £      Is to enter the basis  from its upper bound. 

The smallest such change determines the actual change to be made in    C    : 

If it is a basic variable    t./.,\    which reaches a bound,    £      replaces    *•»(*} 

in the basis, with   a        as pivot;    if    £      goes all the way to its other bound, 
X6 " 

the basic set of variables remains unchanged,  and only the values of the £. 

are changed. Obvious remarks apply to ties and unböundedness. 

Thus follows: 
* 

Rule for Selection of Candidate to Leave the Basis, and for Changing 

the Values of the Incremental Variables 

1. For a given candidate activity e , a nonzero trade-off coefficient o. , 

(A5)    and the corresponding basic activity A(l) , partition A    into the following 

sets, and define the indicated displacements,    6. , for all J e J + (e) 
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(A6) 

(a) l(i)  e J "  iff 

r,   + t    > 0 and ou  < 0 
c e ie 

or ; 6, 
.C + e < 0 and a.  > 0 e e ie 

fC + e > 0 and a, > 0] 
e e ie 

(b) Hi)  EJ   iff (or 
U + e < 0 and a,  < 0^ e   e ie 

>rV/(-aie^ 

'(^-\)/(-aie) 

(c) Otherwise  Ä,(i) e J) - / - J" :  ^j^ E * 

(d) Define  6 
K - £     If c + e > 0 e   e e   e 

1 e   e e   e 

2. Compute the allowed displacement,     6 . 

(A7) 6 = min ( 6_; miij 60; min 6 
e' HCJT ^ilei" "' 

(a) If 6 = o0 , the incremental program is unbounded.  (Return to main 

program with Ä = ^ .) 

(b) If the minimum 6 in (A7)  is computed from Jl  or Jl  , then 

activity e enters the basis at level 6 < 6 , driving some basic 

activity I    to its lower or upper bound, whence it leaves the basis. 

Pivot on the appropriate a.  and reduce all rows of the tableau plus 

the pricing row to normal form with the new basis  *   - Jl + {e} - {J.} 

(c) If 6  is determined by 6  , then C  goes to a bound, and the c e 
i 

current basis  J     remains unchanged.    Jl   «   J) . 

(d) In case of a tie,  the choice is immaterial  (avoid a pivot operation, 

if possible). 
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3.  Compute the new values of the {£; }  : 

C. - I. 
+ 6 

e 1- 6 

(C + t > 0) 

^ + 6 If j c / 

C - 6 if j e J" 

= ^J If j e J- J+ - J' 

• 

Then, a new candidate is selected, using (AA) , and the steps are repeated 

until the optlmallty criterion (A3) is satisfied.  Control is then returned to the 

main routine, with the optimal values U  }  , {r^J , and (c.) from the appropriate 

*    r.      * 
points of the tableau, and A ■ ^ t. C- . 

The next call for the subroutine will clear U.}, ..., and give new values to 

U.} {ic.} and {E.} ; however, the rest of the tableau can be saved in its last 

. * 
(reduced) form, with the optimal basis J  from this iteration (Appendix B). 

■. 
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APPENDIX B.  SELECTING THE INITIAL AND SUBSFQUENT BASIf. 

To get the incremental program subroutine started, it is necessary to specify 

an initial basic set «5  . However, since C. = 0 for all  variables at the 

beginning of each of the subroutines, any  selection of m-independent columns of 

(a ) will work. Typically, some slack, or error variables were added in the 

formulation which provide convenient unit vectors.  At worst, with a full matrix, 

an arbitrary element can be selected to clear its column; any dependent columns 

will show up as columns of zeroes and cannot be used. Note that "frozen" variables 

0 < C. 1 0    (X - ic - 0) 

can conveniently be regarded either as basic variables, or as nonbaslc variables 

at either bound. 

Once the tableau has been put in normal form, It is probably most efficient 

and convenient to leave it In that form, making further changes only by pivot 

operations. To do this, the following result Is needed: 

The optimal basic sett   J) , from one iteration of the program 

(Bl)    subroutine may be used as the starting basic set  J   for the 

next iteration. 

The proof Is trivial, once we note (2.9), the fact that all £. are reset 

to zero for the next iteration, and the remark about frozen variables itada above. 

Suppose the objective coefficients at Iteration t were e. (J - 1, ..., n); 

* 
the optimal values of the (5 } can be determined directly from the pricing row 

ti »t* 
of the first tableau by subtracting {e.} . Then, If the same basic set, J>  , 

is kept to start the (t + I)8  iteration, one changes the nontableau rows 

mmmmmm 
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to the new values as follows; 

(B2) 

^  -0 ; 

t+1    t+1   , ,,  . /, o\ 
K   ,  \ ,  following (3.2) 

(pricing row)   " (pricing row) - {e.} + {ej+i) 

t+1   * 
n.  ■ n. (at iteration t ) 

with the tableau and basis inverse remaining unchanged. 

Note that if one is still working on the same activity (or group of activities) 

in the next iteration, only the bounds will change as a result of the primal or 

deal displacements.  Since the number of such changes is usually small (one or two) 

one could take 

(B3) 

t+1 

^t+1 
j 

t       r* 

t    * 

first, and then modify the bounds only for the activities which changed state in 

the dual step (6.4). 
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APPENDIX C.  THE INCREMENTAL PKOf.!:.' ■ i''.l.l .^ } O't TIT SYMMETRIC PROBLEM 

In the symmetric problem of Section 9, a negative unit matrix is in the 

formulation explicitly; by extending the indc :: of t,      from 1 to m + n , we get 

the incremental changes on the  {r.)  as well as the  {x } . Figure Cl shows 

how the tableau might be organize J; J  might as well be taken as the last m 

columns.  Note that bounds and pricin,' no., apply to all m + n columns; if one 

of the last m columns is basic, a slack cliunge may occur. At optimality, the 

* + Lk   .   (1<       1,2.   .... n)    or    -n*_n+ ck  , 
* * 

pricing row actually  contains    r    + L.    ,   (1<       1,2.   .... n)    or    ~\_    + E 

(k = n+l,n+2.   .... n+m)  • 

If there is a "slack" column in J     which prices out incorrectly at some 

Iteration, we see that  clearing the pricing row to zero in that column will intro- 

duce price changes in the  first    n    columns,  and thus a nonslack variable will 

become a candidate to enter      J.    This step will in fact be a dual-pivot 

as described in the dual simplex algorithm. Appendix D.D.    A more compact, 

symmetric form could be obtained from a condensed tableau form of Cl with rather 

complicated row and column-pivot rules  (2]; however,  rather than strive for 

complete symmetry, we leave the procedure here in its expanded form,  so that 

the   (negative) inverse of  the current basis is always available. 
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APPBMDIX I).  COMPARISON WITH OTHER SIMPLEX Al.nop.TTHMS 

To fully appreciate the relationship between the COMPLEX method and 

the many special algorithms which arc in current use, it is instructive to 

explain the possible variants in terns of the optimolity diagram. 

A.  The Primal Simplex Alporith-n 

In its primitive form, a problem is formulated using unbounded, nonnegative 

variables; nonnegativo "slack" variables arc added at no cost as needed to change 

all constraints to equalities. It is assumed that a primal-feasible basis,    B 

of nonnegative  (x }  is known; the nonbasic variables have value x. = 0, j ^ B . 

Dual variables are determined by solving: 

(Dl) V ^ yi a  ■ c 
U   J 

j e B1" 

and  thus we may have; 

(D2) 

< c, 

J   i Bf 

(If    z. ■ c.   , we may perturb the    c.   ,  so  that     B      corresponds only to our 

set B ). 

On the simplified complementary-slackness  diagram (Figure Dl) ,  all basic 

variables   ©   are on    B   , while nonbasic variables are either conforming in    L( CD ), 

or nonce iforming   Q)   (in K )'with x    - 0 . 

An arbitrary activity,    e , of type   (3)   is selected to enter the basis, 

and    x    B C      is maximized while primal-freezing all other nonbasic variables, 
e        e 

including the other nonaonforming ones;    horizontal movement of    £      is unlimited 

until some activity     t.    in    B    reaches  its  lower bound zero,  and thus  leaves 

the basis and is considered as an activity of type   ® .    As discussed in Section 8B, 

this means  that   the  incremer^al subroutine consists of a single pivot operation; 

the dual changing step öotemines    9    so as  to make activity    e    dual-conforming, 
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FIGURE Dl:  OPTIMALITY DIAGRAM FOR SIMPLEX ALGORITHM SHOWING 
BASIC AND NONBASIC ACTIVITIES, AND PIVOT STEP 



1^" 

D.3 

since  it  is  "brought   into the basis     B       "   (i.e., will be used  to  calculate  the 

z      from  (Dl)).     This  forced  conformity  may  possibly  lead  to dual  "overshooting," 

some conforming nonbasic activities become nonconforming,  and vice versa.     (Activity 

t  ,  however,  will  always move  into    L  .) 

The single-pivot procedure  is  repeated with  the new   (possibly  enlarged)  set 

of nonconforming  activities,  until  all  are  made conforming,  basic  or not.    At 

each  step,   the  decrease in  the  primal  functional  C   is   the shaded  area shown, 

and convergence   (except  for degeneracy)   argued on this   fact. 

Sometimes  the candidate    e    is not selected arbitrarily, but  Is  chosen 

from among those which are "highest  above     B ", or "will give  the  greatest area" 

on their respective diagrams. 

B.    Artificial Variables 

Getting a primal-feasible basis    BP     can be a nuisance.     If a unit matrix 

of appropriate sign cannot be found In    (a^j)   . then nonnegative artificial variables, 

x      ,  are placed  In    BP    as needed.     Since  they must ultimately satisfy    x      - 0  , 

they are given a  transflnlte cost    M     (Figure D2a)   , but  are considered conforming. 

In this "method of penalties", solution of   (Dl) gives transflnlte "nonconformities" 

M(z.  -  c )     to some of the ordinary variables;  then application of  the primal 

simplex algorithm removes these artificial variables, one at a time,  to position 

(2)   In Figure D2a whence they are Ignored.     (Assuming primal feasibility).    Since 

finite    z    -  c       discrepancies  are Ignored during this procedure,   further finite 

steps are still needed to correct any activities which are or become finite 

nonconforming. 

mmt 
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In  the  "two-phase method,"  transfinlte numbers  are  avoided,  but a separate 

cost  functional,  with: 

(1    J     artificial 
(D3) c    = 

-' ' 0    j     ordinary 

is  used  in  "Phase  1"  (Figure   (D2b)).     This procedure will   (if  the problem is 

primal-feasible)  drive all  the    x to  zero.     In  "Phase   II",   these variables 

are  frozen  at   zero,  and  the  ordinary   functional    C    is  taken up,   since a primal" 

feasible basis    B      of ordinary activities is available. 

As  is well knovn,   the  above  two methods are equivalent. 

In the  formulation of our algorithm,  these variables  are  treated either as 

error variables which are to satisfy    x      =0    (dotted line  in Figure D2c),  or 
aJ 

as nonconforming  (negative)  values of slack variables   (solid  line in Figure D2c). 

In our approach,   these would individually  (cr jointly) be made  conforming,  follow- 

ing the usual breakpoint procedure.     To obtain the same sequence of steps as  the 

above methods,  however, one would need to: 

(a)     Take all of  these artificial variables as   (part  of)  the 

initial basic set      J     ; 

(D4) (k)     Set    t    " 1    for these variables in the subroutine  (2.1); 

and     (c)     Ignore the nonconformity of the variables not in   J)   until after 

all these special variables have been made conforming  (i.e.,  until 

the next application of  the subroutine). 

C.     Combined Methods 

In various synthetic methods,   it  is proposed to combine Phase I and II by 

using 

(D5) f (w)  *  I x      + w [ c    x 

■a 
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as a single objective  function, with    w    as  a parameter.    Hopefully,   for some 

finite    w  ,   this would eliminate artificial variables,  and still give a solution 

not too far from the optimum.     If not all    x      = 0,    w   would be decreased,  and 

the minimization continued;   in the worst case,   it might be necessary  to set 

w = 0 ,  and enter a true Phase I to decide  if   the problem is infeasible. 

This approach gives an obvious modification  to subsection B above,  or may 

be  thought of as a cost-parametric procedure   (Subsection G, below). 

D.     The Dual Simplex Algorithm 

In the dual simplex algorithm,  a dual-feasible basis,    B    ,  is given,  such 

that when solving   (Dl) ,  ve have 

(D6) 
JJ ' K a      = c 

2jicj 

D 
J   e B 

JO". 

The corresponding primal solution: 

(D7) JtB1 
11J  "j " bl 

Xj-0 

1 m 1,   ...|  tn 

J   Ol 

must,  then,  have; 

0)8) Some     x' <   0 j   t  B 

if optimal basis has not been picked. On the optinmiity diagram of Figure D3, 

then have dual-feasible solution points which are:  (J)  basic, puimal-f. asibV 

.);  ©  nonbablc, zero-valu-s (in L); or  0)  basic, primal infeasible Kn » ) 
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An arbitrary activity,  £ , in B  is selected to leave  the basis, (i.e., one 

maximizes  ^ ), while dual-freezing all basic variables.  The incremental subroutine 

and the dual-changing steps (6.4) (6.5) together constitute a single-pivot operation 

in which the basic variable  £  is increased until it is conforming (i.e., K    -  x ) 

to select the vector to enter  the basis, all activities in L which move towards 

the right  are considered (i.e., all variables x  such that Oj/«\ J  < 0 » where 

i(t)  is the row corresponding to basic activity  £,).  The actual vector e is 

chosen to minimize  (c - z.)/ | QJ^ON  J I I 
SO
 that it would be the first  to be 

conforming again, in state B , i.e., when it enters the basis at the dual-changing 

step (6.4) (6.5).  (See also Subsection 8F.) 

There is no difficulty with the other nonbasic variables, since they are not 

selected to enter the basis, and hence remain at level zero; however, if all 

a./.x  . are >_0    for some i(£) , then no candidate could enter the basis to 

replace £ , and the primal problem would be infeasible (an OJ/.N a " ^ cannot 

be used as a pivot). 

f 
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♦    x. 

FIGURE 03:     OPTIMALITY DIAGRAM FOR DUAL SIMPLEX ALGORITHM 
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Forcing x  to leave the basis In one pivot may cause "overshooting" in the 

sense that some basic variable in B may become primal Infeaslble in B~ , and 

hence a future candidate to leave the basis; however, convergence is argued on the 

increase In the dual functional D which is equal to the shaded area in Figure 

D3. As In the primal simplex algorithm, special rules of choice, such as the 

"most nonconforming" (smallest x < 0), or "greatest shaded area" can be used. 

E. The Artificial Constraint 

The dual simplex method is usually applied because  a dual-feasible basis is 

known, as in parametric problems. However, if a basis B  is known which is 

not dual-feasible, then an artificial constraint 

5"  x. + x - M 

may be added, with x  a slack activity. This gives an optimality diagram for 

x  which looks like Figure (D4a) with an enlarged basis for the extended problem 

of B0 + {0} . 

mm~ 
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Now among the non-dual-feasible activities Ji j ^ B  , there is one which is 

"highest" above line B in Figure D4b, i.e., some k for which 

zk- ck- Max [Zj - Cj] . 

JeB0 

D.ll 

(D10) 

Vcj 

By pivoting on x,  in (D9) , all of these points are made conforming on L , 

with x,  replacing x  in the now dual-feasible extended basis 

BD - B0 + {k} (DID 

at level 

M . 

Unless x  comes back into the basis at a positive level, the optimal solution 

may be unbounded. 

F. The Primal-Dual Method 

In the primal dual-method [7], one begins with a (not necessarily basic) 

dual feasible solution {y^} , and a primal in which nonnegative artificial 

variables x   have been added to every primal constraint. This gives the 

•j 
optiroallty diagrams shown In Figure D5a and b. 



■i ^^^^^■^»^—^—. 

D.12 

i 
i 

T 

I 

r-<-4 

t 

ift 
a) 
M 

•H 
u 
> 

(0 

^ 

Q 
o 

i 
Ö 

I 

N  4- M 
ft! 
a, 
w 

± 

O 
tu 

Ö 

en 

« 

u 

> 

>> 
M 
n) 
c 

•H 
T) 
M 
O 

o 

Q 

W 

O 
M 
tu 



D,13 

The Initial starting solutions arc the nonbasic variables  x = 0 , and 

basic variables  x = bJ  (note that  z  ^ y,) • 

If z. < c. , then all such variables are "frozen" in L ; only variables for 

which z ■ c  are allowed to vary in an associated restricted primal.     The 

objective of this general linear programming problem is to minimize the error 

terms: 

(D12) Minimize E = ^ x 
aj 

while keeping all ordinary variables conforming (in L or B).  When E = 0 , 

the optimal solution is obtained. 

This method can be directly explained as a special case of the algorithm of 

Section 6, when applied to nonnegative unbounded variables. 

(a) The indices of the artificial variables are taken as the set  J  ; 

+ 
these variables are nonconforming in L 

(b) The ordinary variables are considered to be conforming in L If 

z. - c. < 0 , or in B if z. » c. . 

(c) In applying the incremental subroutine, all nonconforming (artificial) 

variables are worked on simultaneously  (e. ■ - 1 for J nonconforming) 

Otherwise, the primal-dual algorithm is identical to our algorithm with no 

special freezing or one-pivot rules being used (except possibly between artificial 

variables only),  Successive applications of the incremental subroutine will 

reduce the artificial variables, following the usual breakpoint-stepping procedure, 

and the optimal solution to the restricted problem after one pass can be used as 

the starting solution for the next pass (the optimal J  from one pass can be 

used to start the next one). 

As is well known, in certain problems one may avoid putting in artificial 
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variables for all constraints; for example, in flow problems, the conservation 

equations are never violated, since each (incremental) maximal flow subroutine 

only adds loop flows. Also, for this class of problems the subroutine Is solved 

by a particularly efficient labelling algorithm. 

If no dual-feasible solution exists, then an artificial constraint 

(D13) 

is added, and 

11 

I x. + 
1=1 ■* 

x = M o 

(DU) 

min [0. c ) 
J      2 

1, m 

constitutes a dual-feasible solution to the augmented program. 

G.  Cost Parametrization 

If a certain unit cost, c , is to be studied parmetrically,  starting from 

an optimal solution (x ; z.) , then the substitution 

(D15) CJ " CJ + e 

is made with, say, increasing values of 9 . The optimality diagram for this 

activity moves upward by an amount 6 , leaving the current solution (x,; z ) 
« j  j 

either conforming in    L(x.  =0)   ,  or nonconforming in    L  (x.   > 0)   . (Figure D6) 
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In the first case,  6 can increase without limit, activity j remaining 

nonbasic in L , with no change in C    -Z>    . 

In the second case, J is the only nonconforming activity, so the subroutine 

seeks to minimize ^ , keeping all other activities conforming. After a possible 

* 
finite decrease in x. equal to -A. at level c , a dual change is made, moving 

* 
the current solution upwards by an amount 9. , then to the left by an amount 

-&„, ..., etc., following the familiar breakpoint curve.  Finally, after a finite 
i 

number of steps,   the solution will be at  the desired  level    z    = c.   ,  or    x.   = 0   . 

Because the starting solution was optimal, except  for    J   ,  only one basis change 

will usually be made in the subroutine as an activity  in    L    changes to    B    or 

vice versa  (except  for degeneracy). 

fi * 
In the familiar tracing-out of the piecewisc linear curve of t-   versus 

6 , the vertical displacements Q-i»®?' ■,■' etc' » corresPond t0 intervals between 

tuvnxrvg "points  of C    %  and the determination of A  corresponds to the basis 

change at these turning points.  The decrease in *£>  at the origin 0 = 0 is 

-A-, (c. - z.) , and the increase in C  when 9 changes to 9.  is 9., (x + A.) , 

etc. 

Complementary remarks apply to a decrease in    0 

If a vector change in the    c      is proposed: 

(D16) 
c3 " cj + eej 

j • 1,2,   ..., n 

then the several nonconforming activities are worked upon at the same  time by 

the incremental subroutine with    e    - -e.   . 

H.     Right-Hand Side Parametrization 

First,  suppose some requirements value,    b.   ,  is to be changed to: 

(D17) bi = bi + * 

o . o 
starting from an optimal solution (x Jz.) . The corresponding equality constraint 



can again be satisfied by adding an artificial variable x  at level 

x = b. - b. : 
ail 

(D18) 
^ 'ij XJ + X- ■ bi  ' 

This variable Is now non con forming with    z    = y.   ,  as shown in Figure D7a. 

D.17 
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Since this is the only nonconforming var iable , s uccessive applications of the 

algorithm will always be minimizing ( , and the dual variable 
a will 

D.l9 

increase as x decreases ( ~increases). Horizontal displacements correspond 
a 

* * to changes in ~ , while vertical displacements cause changes in ~ , while 

(y
1

; ~) traces out the familiar breakpoi nt curve. 

If the right-hand side change is in an inequality, 

(Dl9) 

with 0 xj > 0 , then no change will occur for positive, j remaining in B 

(Fi gure D7b ). However, for some negative ~ , j will become nonconforming in 

B+ , and a breakpoint curve similar to the requirements change above must be traced out. 

Obvious remarks apply to vector changes in the {bi} , changes in some ij , 

et c . (SeE: also Section 9.) 

I. Composite Methods 

In the composite methods, such as he self-dual parametric algorithm [5] , 

or the composite algorithm [13] one permits a starting solution with a basis B0 

in wh ich both 

(D20) 0 xj < 0 for some (possibly all) ("primal-infeasible" ) 

(D21) z; > .cj for some (possibly all) j t B
0 ("dual-infeasible"). 

By a combination of the parametric methods of the last two paragraphs: 

(a) 

and (b) 

0 Setting x 
ai 

the activity 

• x; , and xj • 0 in equation i 

j in (D20), and then driving all 

corresponding to 

x to zero; 
ai 

Increasing cj temporarily to the level 0 zj , and then decreasing 

all of them parametrically to zero, for all j in (D21). 
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one can, it is explained, always work with a primal-and-dual-feasible basic 

solution and proceed to the optimum "by successive application of either the 

primal or dual simplex rules." (Subsection A and C.) These parametric changes 

can all be worked on simultaneously, or one at a time (usually Ignoring the 

others). 

A much simpler explanation is given in terms of the optimality diagram. 

Because a basic solution is always given, the nonconforming activities are 

either in B  or have (z. > c and    x = 0) (Figure D8). Application of the 

algorithm takes B  for «i , and always tries to increase ^  for all j in 

(D20) and (D21), either one at a time, or simultaneously. Wolfe [15] gives some 

suggestions for efficient choice of the e  , based on computational experience. 

A composite method is also described by Ballnski and Gomory [2], which avoids 

degeneracy through a hierarchy of "sub-primal" and "sub-dual" tableaux. 

_^. 
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APPENDIX E.  AN EXAMPLE 

As an example of the COMPLEX approach, consider the following program 

Mln (? = 2 max (0, x - 1) + 2 x. - x 

Xl    + 2 x2 + x3 > 2 

x.    + 6 x- + 5 x_ = - 4 

0 1 "i 1 3r " 1 x2 i ■*"2; lx3l 1 * • 

We add variables x, and x,.  to the constraints, together with the bounds 

Max C • J - {A,5} . After two zero-level pivots, x  increases to Its 

*      *  1 
corner point, increasing x,. , and decreasing x, . A ■ 2 • 6 ■ -r 1« limitec 

by the downward movement x. • J[ - {2,3} . Activity #3 is now conforming 

and take the simple (but poor) starting solutions 

x0 - (0, 0, 0, 2, -A) 

y0 - (0, 0) C0 - d0 - 0 - 2M + A + 2M + 4M - 8M + A 

z0 - (0, 0, 0, 0, 0) 

Only activity 91  is initially conforming. The optimality diagrams are shown in 

Figure El; note that no prior manipulation of the problem is needed to draw 

these diagrams. 

The following steps represent a possible  sequence of iterations following 

a COMPLEX procedure; the appropriate breakpoint trajectories are shown in Figure El. 

Iteration 1: 
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^* = (1, -^ . 0, 0, 2); i*  = (2, 0.- 2, 3, - 1) 

x1 - (1, - | , 0. J, 2); z1 - (1. 0, - 1, 3/2, - |) 

y1^ (3/2. -|); C1 " ^ = 6M . 

Iteration 2: 

Max ^  .  A zero-level pivot leads to ä" = 0 and the new basis 

J = {3, 5} .  6  = T" Is limited by the upward movement of x  to a corner point. 

C* = (0, 0, 0. 0. 0. 0);  c* - (4, A, 0, 5, - 1) 

x2 = x1 ; z2 = (2, 1, - 1. ^, - 3/4) 

y2 - (^.- 3/A) ; C2 - J2 = 5M . 

Iteration 3; 

Max    Cc   •     Increasing    x      drives activity #5 conforming, with      A    - 2  .     Since 

all components of     c      are zero,     6 may  take on any value, but  does not effect 

53 .   J3 -  {1,3}   . 

t* -  (|, 0, - \t 0,  2);    ;* - (0, 0, 0, 0, 0) 

x3 - (3/2, -f. -y.   2, 0);    z3- z2 

y3" (^. -3M);    C^-tf ' 3M • 

Iteration A: 

Min    C,     •    Decreasing    x,    increases    x.    to its new corner point, also de- 

creasing    x-.    A    - - 6/5  ,  and   J     «  {3,A)   .    6    - 5/A    is limited only by the 

upward movement  of    x«    into a conforming  state 

T 
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* 3 6 *        IL     L l\ 
t    -   (3/2,   0.  - -^ . - I . 0);   ?    = U'   V   0'  !• " 5) 

U 14     4 U 
*    -   (3.  - j.  - f. f.  0) J   z    «=   (3,   2.   - 1, A. -  1) 

yA= (A. - 1);  C4-  0A=lM • 

Iteration 5; 

Mln    C/   •     IncreaslnR     x      decreases both    x„     and    x     , with    &    = -  4/5 

as activity //4 becomes conforming.    «\    ={2,3}.     There are no dual changes: 

C* -   (0,   1,  - 6/5.  - A/5,  0);     q* =   (0.   0,  0, 0, 0) 

x5 =   (3. 4.  -  2,   0,  0) 5 4 
z    =  z (3,  2, - 1,  4, -  1)   . 

Since all states are now conforming,   the above solutions are optimal, with 

y5 - yA -  (A, -  1)    and     C5 -   ft5 " 0  . 

Note,  In particular,   that the trajectories in  conforming states need not 

be always in the same direction;  indeed,  they may  sometimes pass through  the 

same corner point several  times. 
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