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A computer program was developed to solve the model diagnostic 
problem. It consists of 1) an inference function which ’s based on 
a Bayesian analysis of attributes and includes a flexible way of 
dealing with non-independent attributes, 2) a pattern-sorting function 
which allows the program to detect irrelevant attributes and patterns 
of attributes corresponding to two different system states, and 3) 
a test selection function which employs various heuristics to select 
good tests for the user of the program to perform on the system under 
consideration. The diagnostic program is specialized for a particular 
problem by providing it with the appropriate experience. The pro¬ 
gram is embedded in an environment (set of programs) which facili¬ 
tates the study of various diagnostic strategies. 

The diagnostic program was implemented on the time-sharing 
system at Project MAC. It was applied to two medical problems, the 
diagnosis of congenital heart disease, and the diagnosis of primary 
bone tumors. The results obtained here suggest 1) that a computer 
program can be of considerable value as a diagnostic tool, and 2) 
that it is quite advantageous for such a program to perform sequential 
diagnosis as it interacts with the user. 

Thesis Supervisor: Joseph Weizenbaum 
Title: Associate Professor of Electrical Engineering 

and Political Science 
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Chapter 1 

DIAGNOSTIC PROBLEMS AND PROCESSES 

There are many problem area* in which attention is focused 

on some system. In these areas, the principal problem is to ascer¬ 

tain the current state of the given system. In general terms such 

a problem is a diagnostic problem. The problem-solver or diagnosti¬ 

cian is equipped for his task with information distilled from past 

experience with such systems, and he attempts to couple this gen¬ 

eral knowledge with specific observations or tests of the given 

system in such a way that he can deduce the identity of the current 

state. The extent of the general knowledge, its organization, 

and the particular manner in which it is brought to bear on the di¬ 

agnostic grpblem, the diagnostic process, may vary considerably 

among different problem areas, but the general nature of the prob¬ 

lem persists. 

Thus the medical diagnostician deals with the problem of dis- 

covering the "state" of the patient. Through training and experi¬ 

ence, the physician has learned the sign and symptom patterns asso¬ 

ciated with possible diseases from which the patient can suffer. One 

problem is the effective utilization of this experience which is 

framed in terms of the abstraction of the disease and the reality of 

the individual patient. An additional complication arises from the 

1 
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fact that different diseases may result In similar signs and symp¬ 

toms. The physician exploits his general knowledge or experience 

in the selection of a sequence of tests to apply to the patient. 

The results of these tests provide him with information from which 

he constructs a more complete picture of the health of the patient. 

These tests may include simple questions as in the history-taking 

or complicated medical procedures such as in an exploratory opera¬ 

tion. Since tests may exact a high cost (in terms of risk to the pa¬ 

tient, patient discomfort, the time of skilled persons, money, etc.), 

it is the additional task of the diagnostician to properly balance 

this cost against the potential usefulness of the test results. For 

these and other reasons, medical diagnosis is often a complex and 

difficult intellectual problem. 

A second example of a diagnostic problem is that of debugging 

computer programs. A program containing one or more errors can be 

thought of as a system for which it is desired to determine the state. 

The state in this case is characterized by the particular combination 

of errors. The programmer brings his past experience with a variety 

of programs to bear on this diagnostic problem. By controlling the 

inputs to the program, applying traces, or altering instruction se¬ 

quences, or employing a post mortem, he can perform a range of tests 

on the program. The results of these tests may suggest new tests as 

well as providing the programmer with new insight into the problem 

currently confronting him. Like medical diagnosis, program debugging 
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is often a difficult task, requiring considerable judgment both in 

the selection of tests and the interpretation of results. 

The research reported here is concerned with a particular diag¬ 

nostic problem and a diagnostic process for solving that problem. It 

has several aims. The first is to formulate the model of the diagnos¬ 

tic problem in such a way that the definition subsumes the principal 

features of problems in a number of ostensibly different problem 

areas. For example, the definition might apply both to medical diag¬ 

nosis and to program debugging, although it might not be the particu¬ 

lar definition employed by diagnosticians in the respective areas. 

That such a model can be formulated is the major contention of this 

thesis. The second aim is to develop and investigate strategies for 

the solution of this model diagnostic problem. Because they are to 

be stated in terms of an abstract problem, such strategies will be 

independent of any real diagnostic problem. These diagnostic pro¬ 

cedures then are to be embodied in a computer program. This step 

serves two purposes. First, the program provides an explicit state¬ 

ment of the diagnostic strategies, and thus facilitates the testing 

of these strategies on particular problems. Second, if the strate¬ 

gies in the program prove effective in practical applications, the 

program could be of considerable value in computer-aided diagnosis. 

In the event that this approach were successful, the resulting pro¬ 

gram may be useful in a number of distinct diagnostic problems, since 

the methods it employed would be problem-independent. The second 
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major contention of this thesis is that given a model for the diag¬ 

nostic problem, effective strategies for the solution of the problem 

can be formulated in terms appropriate for their implementation in a 

program. 

Such a program for diagnosis could be embedded in an environment 

(other programs) which would permit two different uses of the program, 

first, the program could be applied to actual diagnostic problems so 

that its effectiveness could be determined. Second, the environment 

could permit the study of a variety of artificial problems, each 

designed to test a particular aspect of program performance. The first 

type of application might be termed "open diagnosis"; and the second, 

"closed diagnosis." Closed diagnosis may facilitate the development 

of improved diagnostic strategies. 

In order for a diagnostic problem to exist, one must have at 

least some knowledge of the nature of the system being considered. 

Further the various states of the system must manifest themselves 

through certain observable attributes.1 It should also be possible 

to apply tests to the system at some cost to obtain more attributes. 

Finally, the general knowledge of the system must include some com¬ 

prehension of the relationships among signs, states, and tests. The 

prerequisites are satisfied by the two examples of diagnostic prob¬ 

lems presented above. In fact, in simplest terms, this is the basis 

1The term attribute is used in this thesis to denote any observable 

manifestation of system state which is employed in the deductive phase 

of diagnosis. For example, it includes both signs and symptoms in 

medicine. 
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for the diagnostic problem studied in this work. 

A Brief Outline of a Diagnostic Process 

The basic outline of a diagnostic process is as follows. Be¬ 

cause the observation of certain initial attributes suggest a diag¬ 

nostic problem in some system, the diagnostician wishes to ascertain 

the current state of the system. He selects a test (based on some 

criterion) and applies it to the system. The application of the test 

yields to update his current view of the problem. He then applies 

another test and obtains more attributes. This process continues un¬ 

til the diagnostician makes a decision about the current state. Now 

this is a most sketchy outline of the diagnostic process. There can 

be a great deal of sophisticated information processing during each 

iteration of the process. The point is that test selection and in¬ 

ference are the two principal features of diagnosis as performed in 

a number of distinct areas. The outline above seems equally appli¬ 

cable to medical diagnosis, qualitative chemical analysis, and the 

problem of diagnosing a malfunctioning automobile. At this level, then, 

the diagnostic processes in these and other areas exhibit considerable 

similarity. Inference and test selection appear to be the keys to 

diagnostic strategies of some generality. If it could be demon¬ 

strated that these features of the process necessarily differ funda¬ 

mentally from area to area, than there would be little hope for the 

formulation of general diagnostic strategies. In fact, as will be 

shown in this work, there is reason to believe quite the contrary. 
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It appears that, for a number of areas, problem-independent diagnostic 

strategies can be developed. Note that the strategies employed by 

experts in different fields may be quite dissimilar, there is no re¬ 

quirement that the strategies developed here resemble theirs. The 

criterion by which strategies will be judged is how effective they 

are in particular applications, not how closely they approximate those 

currently used by human experts. 

The diagnostic process then merits careful study for several 

reasons. First, as indicated above, variations of this problem arise 

in many different contexts and so the problem is of general interest. 

Second, the nature of the diagnostic problem is such that it often 

requires a great deal of intellectual effort to solve it, and any 

means of improving the problem-solving process will be of consider¬ 

able value. Finally, the general form of the problem suggests the 

value of a man-machine partnership in the problem-solving process. 

Before such a partnership can be established, however, the diagnostic 

process must be carefully explored in order to determine respective 

parts to be played by man and machine. 

Some Further Comments on the Difficulties of Diagnosis 

Diagnostic problems on the whole are difficult ones, particularly 

for non-experts. Moreover, a great many diagnostic problems consti¬ 

tute considerable challenges to the skill of even the most expert 

diagnostician. Several factors contribute to the complexity of the 

diagnostic problem. First, an expert diagnostician must be aware of 
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a large number of relationships among system states and attributes. 

As evidence of this, consider the considerable training required to 

develop the skills of a medical diagnostician. Observation of many 

different attributes may be required to identify a particular state, 

and a given attribute may suggest many possible states. These facts 

coupled with the often large number of states and attributes require 

the diagnostician to master considerable amounts of information. 

Often the relationships mentioned above are known only in proba¬ 

bilistic terms. In such a case, the task of the diagnostician is 

complicated by the need for some form of probability analysis, a 

task which generally proves quite difficult for human beings. The 

accurate assessment of probabilities for a large number of possible 

states given observed attributes requires extensive training and ex¬ 

perience. 

Another factor complicating the task of the diagnostician is 

the difficulty of establishing and maintaining an apptopriate struc¬ 

ture for all the information relevant to the diagnostic area. Much 

of the usefulness of that information in the diagnostic process ac¬ 

crues from its organization, A major portion of the expert's skill 

is derived from his ability to associate particular attributes or at¬ 

tribute patterns with possible system states and subsequent testing 

strategies. Again extensive experience and training are required to 

organize the relevant information into a useful associative structure. 

Unfortunately such a structure is not easily maintained. Associations 
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which are seldom used may be effectively lost to the diagnostician. 

As a result, his field of competence tends to become narrow. This 

tendency is accelerated when the diagnostician must devote considerable 

effort to the mastering of a continual stream of newly-relevant in¬ 

formation. 

A computer program to provide general diagnostic assistance to 

its user would help circumvent some of these difficulties. One of 

the significant advantages to be gained from the use of a computer 

is the sheer bulk of information which it can maintain. A diagnos¬ 

tic program would be able to deal with extremely large information 

structures. Since the program would be independent of the content 

of the information structure which it employed, that content could 

be continually updated without affecting the operation of the pro¬ 

gram (although better information should result in better program 

performance). 

The amount of logical and probabilistic inference with which 

the program could cope would exceed that comprehensible to a human 

being. This capability wou1d permit the more extensive exploration 

of possible testing strategies. Because the program could consider 

more possible diagnoses than a human being, it would provide a strong 

safeguard that a particular state is not overlooked in the diagnosis. 

Finally, a diagnostic program which was "table-driven" would be of 

all the more value because of its potential applicability to a 

variety of problems. 
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Note that diagnostic strategies suited for a computer are not 

necessarily suited for a human diagnostician. While human diagnos¬ 

ticians possess many special skills and hence serve as good sources 

of information about diagnosis, the purpose of this research does 

not restrict the set of possible strategies to those employed by 

humans. The goal is to develop strategies which enable the pecu¬ 

liar capabilities of the computer to be exploited. Additional in¬ 

sight into the nature of the human diagnostic process and the dis¬ 

covery of ways to improve it would be a valuable, but derivative 

result of this research. 

A Preface to the Material Which Follows 

This thesis describes a computer program for diagnosis and 

presents the results of some experiments performed with this pro¬ 

gram. The design of the program was strongly influenced by the model 

diagnostic problem chosen for this research. Although later chapters 

contain detailed discussions of this problem, a brief summary of its 

principal characteristics is presented here to provide some perspec¬ 

tive on the problem. 

The statement of the diagnostic problem considered here assumes 

that the system is in one of a finite number of states. The object 

of the diagnosis is to identify the current state of the system. Ex¬ 

perience with similar systems is assumed to be available. This ex¬ 

perience is in the form of probabilities for the various states and 
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probabilities of attributes given state. Test costs are constant 

and known. Furthermore the application of a test does not change 

the state of the system. Tests are also assumed to be accurate. 

Finally, it is assumed that the decision loss for each possible mis¬ 

diagnosis is given in the same units as test costs. This work, 

then, is concerned with the development of strategies to solve 

diagnostic problems which can be stated in keeping with these as¬ 

sumptions. 

Chapter 2 examines some of the research reported in the lit¬ 

erature which has direct relevance to this work. 

Chapter 3 presents two views of a diagnostic problem. In the 

first view, diagnosis is considered as a problem in pattern recog¬ 

nition. The implications and limitations of this view are examined. 

Then the problem of diagnosis is formulated as a sequential decision 

problem. This formulation underscores the computational problems 

associated with the determination of optimal testing strategies. 

Finally, a discussion of heuristic considerations in test selection 

is presented. 

A system for the study of computer-aided diagnosis is des¬ 

cribed in detail in Chapter 4. This system includes both a diag¬ 

nostic program and a variety of programs which provide an environ¬ 

ment within which different diagnostic strategies can be studied. 

The next three chapters are devoted to experiments performed 

with the diagnostic system. Chapter 5 discusses the use of the sys- 
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tem in the diagnosis of primary bone tumors; and Chapter 6, an ap¬ 

plication of the system to the diagnosis of congenital heart disease. 

A number of other experiments with the system are discussed in 

Chapter 7. Chapter 8 presents a discussion of the results of the 

research and delineates some areas for further investigation. 



Chapter 2 

LITERATURE SURVEY 

A. Diagnostic Programs 

In recent years, there has been an increasing amount of work 

done on various aspects of diagnosis. Some of this work has been 

aimed at the development of computer programs to perform particular 

diagnostic tasks. Other work has been more oriented toward the 

study of human diagnosticians and the strategies they employ. A 

brief survey of this work is presented in this chapter. Examples 

of computer programs for diagnosis are discussed. Of particular 

interest are the diagnostic strategies and models employed by such 

programs. Finally, some broad views of diagnosis and its attendant 

difficulties are considered. 

By far the greatest concentration of research in computer- 

aided diagnosis has been focused in the area of medical diagnosis. 

A number of programs have been written which are capable of perform¬ 

ing diagnosis in particular medical areas. These programs, as a 

rule employ a Bayesian analysis of attributes based on a disease- 

attribute probability matrix for the given set of diseases considered. 

That is the programs compute the probability of disease D given 

the set of attributes A as follows 

P(D/A) 
P(D) P(A/D) 

■£P(D) P(A/D) 

12 



where P(D) is the a priori probability of D. 

P(A/D) is the conditional probability of A given D. 

The use of a disease-attribute model and Bayesian inference was ad¬ 

vocated by a number of researchers as early as 1959 (RI, R2, R3, R4,) 

While other means of inferring diseases from their attributes were 

suggested at this time (R5, R6), the Bayesian approach has proved 

the most widely used. In certain areas the use of analog computers 

has been explored, but this work will not be reviewed here. 

In recent years, computer programs incorporating the Bayesian 

model have been developed for problems of heart disease (R7, R8), 

Thyroid disease (R9), epigastric pain (RIO), Cushing's syndrome (RH) 

and others. Some of these programs have enjoyed striking success in 

attaining levels of performance comparable to that of the expert hu¬ 

man diagnosticians. For example, a Bayesian analysis of 268 cases of 

patients with one of three thyroid problems yielded the accepted diag 

nosis in 96% of the cases, (R9). In a similar analysis of acquired 

valvular heart disease patients, a computer program correctly identi¬ 

fied 96% of the problems. (R7). In both cases this level of per¬ 

formance compares favorably with that attained by experienced diag¬ 

nosticians. 

In order to provide a more detailed view of the use of Bayesian 

analysis in computer-aided diagnosis, two studies will be reviewed 

here. The first is the diagnosis of congenital heart disease; and 

the second, the diagnosis of thyroid function. 

In a series of papers (R12, R13, R14), Warner, Toronto, and 
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Veasy have reported on the development and use of a computer program 

for the diagnosis of congenital heart disease. This program employs 

fifty-seven possible attributes to classify patients into thirty-five 

different disease classes. The basic strategy employed by the pro¬ 

gram is the use of Bayes' rule to obtain the posterior conditional 

probabilities for the different diseases given a particular set of 

attributes. The necessary a priori disease probabilities and condi¬ 

tional probabilities of attributes given disease were derived from 

statistical studies of a large humber of known congenital heart di¬ 

sease patients. In certain instances, the statistical information so 

obtained was deemed inadequate and the probabilities involved were 

estimated from 1) the available literature and 2) consideration of 

the pathologic physiology of the disease. The program takes into 

account the significance of attributes which are absent as well as 

those which are present. Thus, the absence of cyanosis is significant 

in the diagnosis. The program is also designed to account for cer¬ 

tain mutually exclusive sets of attributes. For instance, if one 

of a set of mutually exclusive attributes is present, it would be in¬ 

correct to consider the absence of the other attributes in the set 

as additional information in the diagnosis. 

The program is used in the following way. For each patient ex¬ 

amined, the examining physician determines the presence of absence 

of the required attributes. Vmen the examination has been completed, 

the information obtained is punched on cards and fed to the computer 
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along with the matrix containing the disease-attribute probability 

matrix. When the program has completed its application of Bayes' 

rule, it lists all those diseases with posterior probabilities 

greater than 0.01 and their corresponding probabilities. 

The performance of the program was compared with that of two 

physicians, one a clinical physiologist and the other an experienced 

pediatric cardiologist. The measure of performance employed in this 

study was the product of 1) the mean probability assigned to correct 

diagnosis and 2) the fraction of cases in which the correct diagnosis 

was given a probability of greater than 0,01, This measure was used 

because it is sensitive to both the average probability assigned 

to the correct diagnosis and to complete failures. In each of the 

83 cases studied, "the correct diagnosis was determined by follow¬ 

up studies such as heart catheterization, heart surgery or autopsy." 

The average results obtained by the two physicians and the 

program are summarized in Table 2. 

TABLE 2 

Diagnostician Performance Index 

Clinical physiologist 

Pediatric cardiologist 

Computer program 

0.66 
0.67 

0.64 

Warner and his colleagues conclude from this study that 

Experience with this approach in the field on congenital 

heart disease indicated that these diseases can be diagnosed 

with an accuracy equal to that of an experienced specialist 
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in the field. Furthermore, the accuracy of the computer 

diagnoais is stiH improving with refinements in the data 
matrix, (R-12) 

Overall and Williams (R-9) developed a computer program for the 

diagnosis of thyroid function. The object was to classify patients 

into one of four classes: 1) no thyroid disease, 2) hypothyroidism, 

3) enthyroidism or 4) hyperthyroidism. By analyzing 879 cases, the 

authors obtained a disease-probability matrix which included 21 in¬ 

dices of thyroid function. Although over 800 cases were involved in 

the analysis, not all of the 21 measures were available for each 

case. Relative frequencies of each attribute were based on the num¬ 

ber of cases in which the necessary data were available. Independence 

of attributes was assumed, although the authors note that this assump¬ 

tion is suspect. 

In an extensive series of tests, the program performed extremely 

well. According to the authors 

ifa8noses a8reed with the clinical diagnoses 
in over 96/» of the cases in which anything like complete 
data were available. (R-9) 

Both of these examples of computer-aided diagnoses lend credence to 

the belief that Bayesian attribute-disease models of diagnosis may 

prove extremely useful in a whole range of medical applications. 

As noted earlier, not all applications of mathematical methods 

to medical diagnosis have been founded on Bayesian inference. An 

interesting example of a different view of the problem involves 

considering a point in an n - dimensional space (where n is the 

number of attributes). From past experience with diseases, one can 
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consider each disease as representable by a class of points in the 

space. The diagnosis of the current disease is derived from a 

consideration of the "closeness" of the corresponding point to the 

classes for each of the known diseases respectively,, ^ In a recent 

paper (R-7), Lerner discusses the use of such an approach in the 

recognition of handwritten letters and the detection of oil-bearing 

strata in petroleum geology. In the latter problem (another type 

of diagnostic problem), he reports that a program based on this 

method far surpassed the performance of the most experienced experts. 

He then advocates the application of this method to problems of 

medical diagnosis and asserts that the possibilities of this approach 

considerably exceed those of doctors-diagnosticians." 

While this method differs markedly from that employed in the 

two medical applications above, it shares with them a very important 

limitation. In Chapter 1 it was suggested that the diagnostician 

performs two major tasks in his problem-solving. The first task is 

the interpretation of attributes manifested by the system being diag¬ 

nosed. An equally important task is the selection of an appropriate 

testing strategy. All of the programs above map a set of attributes 

into a diagnosis in one stage. There is no test selection function 

performed in any of these programs. As a result, all the data which 

are to be employed by the program must be collected before the pro¬ 

gram is invoked. There is no opportunity for selective testing based 

^This approach will be examined in more detail in Section A of 
Chapter 3. 

> w,H 
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on an analysis of an incomplete set of attributes. Thus, it may 

happen that the cost of determining a number of attributes (for ex¬ 

ample, by taking an X-ray) is incurred unnecessarily. While this 

may not be a major problem in the particular areas discussed above, 

it is easy to think of situations in which this approach would be 

highly undesirable. Consider, for example, the computer-aided diag¬ 

nosis of diseases from a group which exhibit clusters of relatively 

disjoint attribute patterns. The approach outlined above required 

the determination of a full set of attributes to be made available 

to the program. Since only a small subset of the set of all attri¬ 

butes is necessary for a diagnosis, many attributes are unnecessary 

in any particular application. If the cost of obtaining these un¬ 

necessary attributes is high, then the diagnostic procedure will be 

less than satisfactory. This is because the quality of diagnosis 

should reflect its cost as well as its accuracy. As Lusted has ob¬ 

served (R-17), 

A great many medical diagnostic tests have been developed to 

supplement the patient information obtained from history 

and physical examination. These tests vary greatly in the 

amount of discomfort to the patient, complexity, and cost. 

It is obvious that diagnostic tests should be kept to a 

minimum. 

It seems that a more satisfactory solution is to permit the 

diagnostic program to operate sequentially, choosing tests for the 

user to run based on a continually updated view of the problem. 

The program could engage in a dialogue with the user as it performs 

both the inference and test selection functions of diagnosis. The 
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testing strategy evolved by the program should reflect the informa¬ 

tion derived from the attributes observed to date, past experience 

with similar systems, the cost of tests, and the relative seriousness 

of various disease states. Part of the research reported in this 

thesis is aimed at developing a program which satisfies these require¬ 

ments. 

Less has been done with computer-aided diagnosis in other areas. 

One problem which has received attention, however, is the diagnosis 

of faults in a computer. Although the problems here are not well 

understood at present, recent research (R-18) shows considerable 

promise. Significant results pertaining to the selection of an op¬ 

timal set of diagnostic tests have been obtained (R-19), but they are 

restricted to the case of a single fault. 

B. Perspectives on Diagnosis 

One of the chief motivations for this research is belief that 

a computer is potentially a very useful tool to be employed in di¬ 

agnostic problems. The need for such a tool becomes apparent when 

the difficulty of particular diagnostic problems is considered. 

A considerable portion of the effort expended in implementing 

computer programs is devoted to program debugging. As progranming 

applications become increasingly sophisticated, the complexity of 

the associated problems of debugging increases at an equally rapid 

" The tremendous effort required to debug a large operating 

system is a testament to the magnitude of the diagnostic problem in- 



20 

involved. This is so even though many of the programmers involved 

in such an effort are experts. 

The non-expert who ventures into the world of programming 

also faces many diagnostic problems. Often the magnitude of these 

problems relative to his limited programming skill and experience 

is such as to prevent him from effectively using the computer in 

his particular research. In both these cases, there is a need for 

an improved diagnostic facility. Research into the potential use¬ 

fulness of diagnostic computer programs seems especially appropri¬ 

ate in this context. 

Much the same situation exists in medicine, although here 

there exists more explicit evidence of difficulty of problems in 

medical diagnosis and the need for new aids in the problem-solving 

process. Physicians receive extensive training in their profession, 

and they devote considerable efforts to the development of their 

diagnostic acumen. For all their training, however, the difficulties 

of the diagnostic problems confronting them have resulted in a sur¬ 

prisingly low level of performance. In a recent research report of 

the United States Public Health Service entitled "Completeness and 

Reliability of Diagnosis in Therapeutic Practice," the author con¬ 

cludes from an extensive study 

On the basis of available evidence, I estimate if we re¬ 

gard all diagnosable diseases at a given time that are con¬ 

sidered of significance for current health as 1, the num¬ 

ber of therapeutically determined diseases constitute 

numerically 0.4. Of this 0.4 nearly half are conditions 

diagnosed incorrectly, This suggests that correctly 
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diagnosed diseases known to attending physicians represent 
0,2 of the universe of diagnosable diseases of health sig¬ 
nificance. (R-15) 

Such figures strongly suggest the need to improve the diagnostic 

process in medicine. The new technology of on-line real time com¬ 

puter systems provided a potentially powerful aid in this process. 

The development of a sophisticated diagnostic program capable of 

dealing with diverse medical problems would be a major step toward 

exploiting this potential. 

Both the inference and test selection aspects of medical 

diagnosis might be improved,, For example, the most brilliant diag¬ 

nosticians, according to the discussion of the logic of medical 

diagnosis presented in the textbook of Clendening and Hashinger 

(R-16) are the ones who remember the most possibilities. A program 

acting as a diagnostic assistant could increase the capacity of the 

physician in this regard. 

Program debugging and medical diagnosis are but two of the 

areas in which there seems to be a considerable need for an improved 

diagnostic capability. Other examples are management information 

systems and a wide variety of machine failure problems. Thus, 

there is considerable motivation for research into the problems 

of employing computers to assist diagnosticians in their problem 

solving efforts. 



Chapter 3 

TWO VIEWS OF DIAGNOSIS 

This chapter concerns the theoretical framework for the 

study of computer-aided diagnosis. Here the nature of the diag¬ 

nostic problem is examined and the model for the problem is de¬ 

veloped. Two views of diagnosis are considered. The first view 

is that of diagnosis as a pattern recognition problem. This con¬ 

sideration brings into focus those features of the diagnosis which 

distinguish it from the "classical" pattern recognition problem. 

The second view involves analyzing diagnosis as a problem in sequen¬ 

tial decision-making. The problems arising from this formulation 

are explained and various means of circumventing these problems 

are discussed. The view of diagnosis as sequential decision¬ 

making is the one taken for this research and so this discussion 

leads directly to the specification of a computer program for per¬ 

forming general diagnosis. 

In the following chapter, a discussion of a program to perform 

general diagnosis is presented within the framework of the program 

actually implemented as part of this research. Each of the major 

logical functions of the program is discussed in turn with the em¬ 

phasis on the way in which these functions match the requirements 

of a diagnostic process. In a very real sense, the program can be 

taken as a statement of an overall diagnostic strategy for computer- 

22 
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aided diagnosis. 

A. DIAGNOSIS AS A PROBLEM IN PATTERN RECOGNITION 

Consideration of the diagnostic problem as a pattern recog¬ 

nition focuses attention on some of the more significant aspects 

of the problem. Also it is quite natural to conceive of diagnosis 

as a pattern recognition problem. The observable attributes associ¬ 

ated with the system of interest in a diagnostic problem do consti¬ 

tute a pattern which is the direct evidence upon which a classifi¬ 

cation decision is based. Thus a medical diagnostician confronted 

with an ailing paitent employs his observations of the patient's 

symptoms and signs in conjunction with his experience and training 

to deduce the nature of the patient's problem. While there are 

many features which are shared by the diagnostic problem and a wide 

variety of particular pattern recognition problems^ there are addi¬ 

tional constraints on the former which add to its complexity. The 

purpose here is to explore both the similarities and differences 

between the diagnostic problem and the "classical" pattern recog¬ 

nition problem. 

The classical pattern recognition problem is fundamentally one 

of recognizing class mtmbership and establishing decision criteria 

for measuring membership in each class. Given a set of pattern 

classes the problem is to assign a new pattern to one of the classes. 

For example in the recognition of handwriting, knowledge of the gen¬ 

eral properties of individual letters is utilized in the determina- 
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tion of the identity of chat segment of handwriting which is cur¬ 

rently of interest. Ihe individual pattern classes may be known 

in a variety of ways ranging from a set of representative patterns 

to a functional characterization of the probabilistic process by 

which patterns of the class are generated. In general^ a pattern is 

comprised of a set of features; each feature being represented by 

some numerical value. In the handwriting recognition problem, an 

unknown letter could be represented by numerical values for such fea¬ 

tures as the height, number of loops and the number of intersections 

the letter makes with certain reference lines. Such a representa¬ 

tion leads quite naturally to the representation of a pattern as an 

n - dimensional vector where n is the number of features which are 

taken to be relevant to the classification problem. 

Hence, each pattern class can be conceived of as a set of 

points In an n - dimensional space. Similarly, any pattern which 

is to be classified can be represented as a point in the space 

(provided, of course, the same set of features obtains). The problem 

of classifying a new pattern sample involves determining the "close¬ 

ness" of the sample to each of the respective classes. For instance, 

we may decide a certfin letter is an "e" because it more closely re¬ 

sembles representatives of the class of known "e's" than representa¬ 

tives of other classes of letters. In the n - dimensional space, 

this corresponds to measuring the distance (in some abstract sense) 

between the point denoting the new pattern and those representative of 
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the various classes. The problem of establishing criteria upon which 

the "resemblance" of a particular letter to the class of letters 

known to be "e's" is but one instance of the general problem of de¬ 

ciding exactly how the "closeness" of a sample to various classes is 

to be established. For a given application, the determination of an 

appropriate metric is a fundamental problem of pattern recognition. 

Consider the schematic of a pattern recognition problem pre¬ 

sented in Figure 1, Here two pattern classes are of interest, 

classes A and B. In this case, there are two features in the pat¬ 

terns and an orthogonal coordinate system corresponding to these fea¬ 

tures is shown. Notice that in this simple example all members of 

class A are "closer" to all other members of class A than to any 

member of class B and vice versa. Unfortunately, this condition 

does not hold in general. The more common case is to have "close" ot 

intersecting pattern classes. Members of a class can be closer to 

members of another class than to certain other members of the same 

class. For example, some handwritten "e's" look very much like "i's" 

and vice versa. A schematic of intersecting pattern classes is pre¬ 

sented in Figure 2, The problem of recognizing the pattern x in 

these figures involves establishing a metric which can be employed to 

decide whether x is "closer" to the class A or the class B (or in 

some cases deciding that x is a member of neither A nor B). The 

actual decision regarding the identity of x can be based on the cost 

of misclassification as well as the chosen letric. 



Figure 1 

Two Pattern Classes 
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Figure 2 

Intersecting Pattern Classes 
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When the pattern classes are inherently close or intersecting 

in the space, recognition is more difficult. In some cases matters 

can be improved by devising class separating transformations. Such 

a transformation has the property that the classes resulting from 

the application of the transformation to the original classes are 

more separated from one another in the transform space. Figure 3 

represents the effect of a class-separating transformation on classes 

A and B. The particular transformation will depend on both the 

characteristics of the classes to be transformed and the constraints 

placed upon the transformation. Suffice it to say here that trans¬ 

formations of this type can be derived by solving constrained op¬ 

timization problems. Given such a transformation, the pattern to 

be recognized is first transformed and then its "distance" from 

each of the transformed classes is measured. It is this distance 

in the transform space which is incorporated in the classification 

decision rule. 

The problem of diagnosis has much in common with the pattern 

recognition problem discussed above. The pattern classes in the 

pattern recognition problem correspond to the system states in the 

diagnostic problem, and there is a similar analogy between particular 

patterns and sets of attributes. The object of diagnosis is to class¬ 

ify a set of attributes as being a manifestation of a particular sys¬ 

tem state. Again, the notions of an n - dimensional space and vector 

representations of attribute sets is suggested. There is an important 

difference between diagnosis and the pattern recognition method out- 
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lined above. In the latter, it was assumed that a pattern to be 

recognized is given as a point in the sample space. This implies 

a complete specification of the corresponding vector. In the usual 

diagnostic problem, the pattern of attributes is incompletely speci¬ 

fied. There exist means for obtaining the values of unspecfied com¬ 

ponents of this vector (tests which can be run, etc.), but in general 

there is a cost associated with the use of these means. These costs 

make it advantageous to analyze the diagnostic problem sequentially 

and to make decisions based on an incompletely specified attribute 

vector.^- Doctors, for example, make diagnostic decisions without 

performing all possible tests on the patient. 

Thus, in the diagnostic problem, one is concerned throughout 

» 

with subspaces of the sample space. The ■dimensionality of the sub¬ 

space which contains the pattern vector is reduced by obtaining pre¬ 

viously unspecified values for certain pattern features. In general, 

each value so obtained reduces the dimensionality of the subspace in 

which the point corresponding to the fully specified attribute set 

must lie. Because of the costs associated with the tests for particu 

lar attributes, a good diagnostic scheme must include some means for 

assessing the expected value of a test in determining the class to 

1Note that this distinction between pattern recognition techniques 

and diagnostic techniques is not a necessary one. Certain pattern 

recognition schemes have employed sequential methods while most medi¬ 

cal diagnosis programs have avoided sequential analysis entirely. The 

distinction, however, does have appreciable generality. 
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which the attribute vector belongs. While the sequential nature of 

the diagnostic process complicates its realization, it also offers 

a potential advantage of the pattern recognition scheme described 

above. Although an attribute vector may be incompletely specified, 

the subspace corresponding to it may include only one class. In 

such a case it may be possible to make the classification decision 

at that point without investigating the remaining attributes. This 

reduction in the amount of the processing required for a classifica¬ 

tion decision is especially significant when many of the system 

states are represented by disjoint subspaces in the n - dimensional 

sample space. This reduction can be obtained only if the diagnostic 

scheme incorporates some stopping rule for the attribute sampling 

(or testing) process. 

So while the pattern recognition problem and the diagnostic 

problem have a number of features in common, there are significant 

differences between the strategies indicated for their solution. The 

former problem concerns the classification of a fully-specified 

vector into one of a number of known classes. The latter problem 

is equally one of classification, but the initial specification of 

the vector is generally incomplete. Part of the problem is to as¬ 

certain which tests to run (at some cost) to obtain a more complete 

specification of the vector. Decisions based on an incompletely 

specified vector are the rule rather than the exception. Note, 

however, that there may well be inherently close or intersecting 
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classes in the diagnostic problem as in the pattern recognition 

problem. 

One aspect of the pattern recognition problem which was not 

discussed above was that of choosing the coordinate system for the 

sample space. This has a direct and significant analogy in diagnosis. 

In the discussion of pattern recognition, it was assumed that the 

pattern features were given. The efficiency and the accuracy of 

the recognition scheme often can be improved by the selection of a 

new coordinate system (set of features). The problem of establish¬ 

ing the coordinate system is often termed the pattern detection 

problem. 

Thus, for example, in Figure 1 the dotted coordinates are in 

a sense more efficient, for they permit the characterization of 

classes A and B solely in terms of one coordinate. Again general 

mathematical techniques are known for establishing "good" coordi¬ 

nate systems for a number of problem types. 

Clearly, a similar situation obtains in diagnostic problems. 

Generally speaking, the attributes considered in diagnostic problems 

are chosen without any particular regard for the efficient separation 

of pattern classes. It is apparent, however, that there is potential 

value in conducting such an analysis for a given problem area. In 

certain areas, especially in a medical diagnosis, there has been an 

increasing awareness of the importance of the proper choice of pattern 

features; a number of articles on the "taxonomy of disease" 
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have appeared in the literature,^ While this problem is an extremei) 

interesting one, it is beyond the scope of this thesis. Here the 

pattern features of attributes for any particular area are taken as 

given. 

This discussion provided only a brief overview of pattern recog¬ 

nition and ics relation to diagnosis. The particular type of pattern 

recognition which constitutes diagnosis will be explored in con¬ 

siderable detail in other sections of this work. 

B. DIAGNOSIS AS A SEQUENTIAL DECISION PROBLEM 

In this section, the problem of diagnosis is formulated in 

terms of statistical decision theory. This formulation is in very 

general terms, but it suggests a number of the factors which compli¬ 

cate particular diagnoses. In many areas of diagnosis, attention is 

focused on a system. In medicine the system is a human being; in 

program debugging, a computer program. The object of the diagnostic 

problem is to determine the state of the system (e.g. the disease in 

the person or the error in the computer program). This state is one 

of a finite but perhaps quite large number of possible states. In¬ 

formation about the state of the system can be obtained by performing 

a variety of tests on the system . Information obtained from testing 

1In recent years, there has been much medical work directed 

at developing specific tests for diseases. Thus a particular at¬ 

tribute (test result) may indicate exactly one disease. 

} 
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coupled with experience with other diagnostic problems Is employed 

by the diagnostician in his attempt to deduce the state of the sys¬ 

tem. In this work, the goal of diagnosis Is taken to be the deter¬ 

mination of the state of the system of interest. It Is assumed that 

knowledge of the system state will greatly facilitate further (non- 

dlagnostlc) action. For example, the Identification of the state 

of a patient as "tuberculosis" may lead directly to a course of 

treatment. The system under consideration here Is a finite state 

machine. The diagnostician knows about all the states of the machine 

In the sense that he has available probability distributions whl.h 

characterize the responae of the machine to certain tests given the 

machine state. In particular, this information relates attributes, 

the results of the tests, to particular system states.1 At the 

outset of the problem, the ,«achine Is In a particular, but unknown 

state and the task of the diagnostician Is to employ the available 

tests to obtain Information about the Identity of that state. Tests 

are assumed to be free from error and It is further assumed that they 

do not alter the state of the system. 

Associated with each test Is a cost of applying It to the system 

(called the testing loss) and thus It Is advantageous to make a de¬ 

cision about the state of the system based on a limited number of 

tests. On the other hand there is a decision loss associated with an 

attribute Is binary-valued. That Is, each attribute Is 
either present or absent. A test Is used to determine the presence 

absence of some number (perhaps greater than one) of attributes. 
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incorrect decision. The loss resulting from each particular decision 

about the unknown state as a function of the actual state is given 

by a loss function for the problem. For example, the loss resulting 

from the decision that a tumor is benign when it is in fact malignant 

is very costly and a diagnostic procedure for tumors should take 

cognizance of this fact. In general, the possibility of loss for 

an incorrect decision indicates the value of extensive testing prior 

to any decision. The problem is to balance the testing loss and the 

decision loss in a sequential decision function for the problem. 

This function would specify a diagnostic procedure such that the 

total expected loss of the final decision is minimized. The follow¬ 

ing is a formal statement of this problem. 

1. The states of the Machine M are Mj, j*l,n. 

and the current state is denoted by My. It is assumed 

that My does not change during the course of the 

diagnosis. 

2. IT-nr 1,-- -7Tn) is a vector of a priori probabili¬ 
ties for My. That is ïf t = P(My = M^) 

and £, denotes experience. 

3» T » |t^, --- tf^ is the set of available tests. 

4. (ti)q is a vector of length q with each t^T. It repre¬ 

sents a series of tests with test ti being run at the i£ll 

stage. 
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5. S = ^>1, -- Spj is the finite set of possible attributes 

for M and the set T. 

6. (S^)q is a vector of length q with each SjfcS. It denotes a 

sequential set of attributes. 

7. dt is a terminal decision and dt.CDt where Dt is the finite 

set of all possible terminal decisions. 

8. C((t^)q, (S^Jq) is the testing loss for a sequence of tests 

(t¿)q resulting in the attribute sequence (S^q followed by 

terminal decision at stage q+1. 

9. P((S^)q/Mj) is the conditional mass function for (S^)q 

given Mj. 

10. P((t^)q,dt/(S£)q) = conditional mass function for the testing 

sequence (t¿)q followed by terminal decision dt given the 

attribute sequence ¿)q, 

11. LtTTjd^) is the decision loss function. 

12. 0(d/(tj)q,(S^)^) is the sequential decision function to be 

determined. 

Let or.«) * the average decision loss 
L2(n-,e) ■ the average testing loss. 

then the problem is to determine 6 such that 

l^tM) + L2(ir,e) 

is a minimum. 

,«> “ ZI ¿it: IZiar.^sidt/csi) (tl) ). ftcsi) /^j) 
q-o I, PI ^ Dt 
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l2( i’85 ’ rTTjZ'((tiVV^v . cas^.o^pus^/Mj) 
q” Cq J“1 Sq 

where Tq is the set of all (ti)q 

and Sq is the set of all 

The great difficulty with this problem is not conceptual but com¬ 

putational. For finite sets of attributes and decisions, the optimal 

solution can be obtained in principle by laying out a decision tree. 

Such a tree includes by two types of nodes—decision nodes and "nature's 

nodes." Nodes of the former type are characterized by 1) a current 

view of the diagnostic problem as embodied in the probability dis¬ 

tribution over the states of the system. (This distribution accounts 

for both the attributes observed to date and the a priori likelihood 

of system states in a manner to be made explicit later in this thesis.), 

and 2) a branch emanating from the node for each alternative available 

to the decision-maker at the node. In the context of diagnosis, then, 

there is at each decision node one branch for each possible test which 

can be rur and one branch corresponding to a terminal decision. Once 

an alternative branch away from a decision node has been chosen by 

the decision a particular one of nature's nodes is encountered. 

Such a node represents the possible outcomes of the decision cor¬ 

responding to the branch which leads to the node. Each of these "out¬ 

come branches" leads to a new decision node. A portion of such a 

decision tree is shown in Figure 4. The node A is a decision node 



Figure 4 

Section of a Decision Tree 
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which is characterized by the prior probability distribution and his¬ 

tory embodied in the path to the node. There is a branch from this 

node for every relevant test (given the history andTT) as well as a 

branch corresponding to a terminal decision. If a particular test is 

chosen, say test in the diagram, a new node (here node B) is ob¬ 

tained. This node is one of the "nature's nodes" mentioned above. 

There is a branch from this node for each possible test outcome given 

T^ and given the state of the diagnosis at B, the conditional proba¬ 

bility for each attribute branch can be computed. 

If it is assumed that the total number of potentially useful 

test sequences is finite then the entire tree for the diagnosis can 

be specified. By folding back this tree in terms of expected loss, 

one can obtain an optimal decision for every decision node on the 

tree. This problem is amenable to techniques such as dynamic pro¬ 

gramming. There is little conceptual difficulty in solving the 

problem. 

The difficulty is the exponential growth of the number of de¬ 

cision nodes with the number of signs and tests. Since diagnostic 

problems involving large numbers of possible attributes are common, 

it is expected that the problems of searching large decision trees 

contribute a large part of the complexity of specific diagnostic 

problems. One of the major concerns of this research is with the 

development of effective heuristics for this tree searching problem. 

While such heuristics produce sub-optimal solutions, it is possible 
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that the reduction in the size of the search space may more than 

offset this disadvantage. 

As an indication of the potential size of such a problem^ con¬ 

sider the diagnc is of a ten-state, twenty-attribute system. Such 

a case might arise when one was attempting to employ twenty attrib¬ 

utes to classify a person into one of ten disease groups. Assuming 

that there is a test for the presence or absence of each attribute 

and that each test is run but once, the number of decision nodes in 

the decision tree for the problem can be expressed as 

nNk = 
2kn.' 

(n-k): 

Where nNk = the number of decision nodes 

k = the depth of the tree 

n = the number of tests. 

For this example, n is 10, and the number of decision nodes in a 

tree of depth k is given by 

10Nk 
¿k10.t 

(10-k).' 

Table 1 gives values of 10¾ ^or selected values of k. Notice the 

extremely rapid increase of 10% with k. Also, at any given decision 

node at depth k it is necessary to compare (n-k+1) decisions (one for 

each 3f the n-k remaining tests and one for the possible terminal 

decision). Although in many cases such an attribute set is highly 

» 
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redundant, it is often possible that a depth of 5 may be required 

for an optimal decision. In such a case there are still almost a 

million decision nodes. Even in the simple case of a specific test 

for each state, there are n.' different decision nodes, where n is 

the number of states. Again the growth of the decision tree with 

n is enormous. 

Table 1 

Growth of Search with Depth 

k = 0 ion5 = 1 

1 20 

3 5,760 

5 967,680 

While there are certain factors in particular diagnostic 

areas which allow the decision tree to be considerably reduced in 

size, the determination of an optimal testing strategy reamins com¬ 

putationally infeasible for the most part. The value of good 

heuristics is apparent from considerations such as the above. 
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C. HEURISTIC CONSIDERATIONS IN TEST SELECTION 

As previously noted, the problem of obtaining an optimal test¬ 

ing strategy for a particular diagnostic area generally will be 

computationally infeasible. Many diagnostic areas are character¬ 

ized by overlapping attribute patterns for different states and highly 

redundant attribute patterns, however, and there is strong motivation 

for developing "good" diagnostic strategies. Unnecessary or re¬ 

dundant tests may exact a high coat which could be avoided by a more 

efficient testing strategy. In certain areas of medicine, tests 

are quite costly and may cause the patient considerable discomfort. 

If such tests contribute little additional information to the 

diagnosis, it is especially important that these tests not be em¬ 

ployed. A second difficulty is that a poor sequence of tests may 

generate results which, being unnecessary for a diagnosis, simply 

tend to obscure the truly relevant attributes. One approach to 

this problem was mentioned earlier. This approach consists essen¬ 

tially of sharpening the taxonomy of the problem states. While 

success here can substantially reduce the redundancy in attribute 

pattem», it will not necessarily make the determination of an op¬ 

timal testing strategy computationally feasible. While the possi¬ 

bilities of this approach are extremely interesting, they will not 

be considered here. For the purposes of this work, it is assumed 

that in any diagnostic area, the attributes for states are given. 

No attempt is made to improve on the efficiency of the given attrib¬ 

utes with regard to the characterization of the states. 
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A second approach to the problem of test selection is to de¬ 

velop heuristics for the selection process. Such heuristics would 

employ only limited segments of the decision tree in evaluating 

the potential efficacy of relevant tests. The general nature of 

the diagnostic problem is such as to offer two distinct means of 

controlling the growth of the number of decision nodes considered. 

The size of the decision tree (the number of decision nodes) de¬ 

pends on the number of tests considered at any decision node, and 

the depth of the analysis of that tree. By restricting either of 

these quantities, the diagnostician can limit the growth of the 

tree. In this discussion, heuristics which limit the number of 

branches from a decision node will be called breadth-limiting: 

and those which limit look-ahead, depth-limiting. In what follows, 

the set of relevant tests for a particular decision node will be 

taken to mean all those tests which can result in a sign which is 

manifested by at least one state with a non-zero probability in 

the prior for the node. The set of relevant tests is a subset of 

the set of all tests. 

Breadth-limiting heuristics are easily formulated. Perhaps 

the simplest is to limit the number of branches from a decision 

node to some fixed number. If this number is less than the number 

of possible test branches for a given node, then a decision rule 

for selecting (or rejecting) branches must be established. In terms 

of the diagnostic problem, this means selecting a subset of the 
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relevant tests for consideration given a prior distribution for 

the unknown state. 

Heuristics which limit the number of branches from a decision 

node to a certain fixed number have several shortcomings. Principal 

among these is the problem of the selection decision rule. If 

certain tests are to be selected over other tests, then some measure 

of test effectiveness should be employed. That is, one test is 

chosen over another because by some standards the former is more 

promising. The difficulty with this is that almost any reasonable 

measure of expected test effectiveness requires information obtained 

from a look-ahead in the decision tree. To assess che potential 

value of a particular test, one needs to consider the likelihood 

of various test results and the value of these results in improving 

the current view of the diagnostic problem. If this look-ahead is 

performed, the purpose of the heuristic is defeated. A breadth- 

limiting heuristic is intended to select a subset of relevant tests 

without employing a look-ahead procedure. Then this subset is 

subjected to further analysis. 

Since a breadth-limiting heuristic probably should not employ 

a look-ahead to obtain information, the only information upon which 

it should make its decisions is that contained in the current prior 

distribution and the test cost data. Thus one possible breadth- 

*This may be overly restrictive, since one can imagine breadth- 

limiting heuristics which employ a priori probabilities. Such heuris¬ 

tics are not in general very sophisticated, and are not considered here 
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limiting heuristic is "At any decision node consider at most 5 tests 

in order of increasing cost." This heuristic obviously ignores all 

the information embodied in the current prior distribution, and so 

while it limits the breadth of the decision tree, it does not appear 

to be a particularly good heuristic. 

An alternative breadth-limiting heuristic employs the current 

prior distribution to generate the subset of relevant tests which are 

to be considered. For each state there are a number of relevant 

tests. These tests may produce an attribute which is significant in 

the diagnosis of the state. Consider, for example, a problem in 

medical diagnosis in which one of the diseases which currently is 

being considered as the explanation of the patient's problem is 

tuberculosis. Since a chest X-ray is a useful test in the diagnosis 

of this disease, it would be considered a relevant test. On the 

other hand, the absence of any attributes associated with an in¬ 

jured ankle would exclude an X-ray of the ankle from the set of rele¬ 

vant tests at this stage in the diagnosis. The union of the sets of 

tests relevant to currently possible states is the set of all rele¬ 

vant tests. By limiting the number of states considered, one can 

limit the number of branches at the decision node. A heuristic of 

this type is Create the total set of relevant tests from the sets 

of relevant tests for the three most probable states (based on the 

current prior)." In the above example, if tuberculosis were cur¬ 

rently the most probable disease, the diagnostician might choose to 

r 
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consider only those tests which are relevant to tuberculosis and 

ignore all others. Note that such a heuristic is only potentially 

breadth-limiting. There is no guarantee that any test branches are 

excluded in this way since the same set of tests may be relevant to 

all states currently being considered. Also the actual number of 

branches from a given decision node is not specified and generally 

will vary from node to node. 

Such an heuristic has intuitive appeal, however, because it 

prunes branches corresponding to tests for attributes specific to 

improbable states. If an attribute for an improbable state is also 

manifested by a state which is currently quite likely, however, then 

the appropriate test will be included in the set of those considered. 

The weakness of this heuristic lies in its sensitivity to the current 

probability distribution on the states of the system. This distribu¬ 

tion can undergo radical change upon the observation of one new 

attribute. Thus, states which were previously unlikely can become 

very probable as a result of one new observation. This phenomenon 

cannot be accounted for by breadth-limiting heuristics based on the 

current prior distribution. In fact, no breadth-limiting heuristic 

which does not employ look-ahead can completely account for this possi¬ 

bility. A breadth-limiting heuristic of this type is applied at each 

decision level, however, and in some sense it can ’’recover" from a 

drastic change in the probability distribution. This capability is 

derived from the consideration of the probability distribution at the 

current decision node. Thus, when a state which was formerly improbable 
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at one decision node becomes probable, it will automatically be in¬ 

corporated in the test selection scheme at the next level. Unfor¬ 

tunately, this state may not become very likely until a large number 

of tests have been run. If it is the actual state, its probability 

can remain low simply because the "wrong" tests are being run. Thus 

a doctor may fail to obtain a chest X-ray of a patient because it seems 

unlikely that the patient has tuberculosis, when this disease would 

become very probable if only the X-ray were taken. This, of course, 

is a general problem encountered with all test selection heuristics. 

The evaluation of the heuristic involves a comparison of the 

benefits of its tree-pruning power with the losses incurred from the 

sub-optimal testing strategies it produces. In general, a heuristic 

based on the current probability of various system states appears to 

be the most promising form of a breadth-limiting heuristic, but its 

actual value can be determined only in the context of a particular 

diagnostic problem area. For example, in one area a breadth-limiting 

heuristic which restricts the search to tests relevant to the n most 

probable states may prove useful. In another area, tests relevant 

to all states with curreht probability greater than some threshold 

may be considered. Finally, in certain areas breadth-limiting heur¬ 

istics may be of no value regardless of the particular specification. 

One of the areas explored in this research is that of evaluating sev¬ 

eral breadth-limiting heuristics in particular diagnostic problem 

areas. In such an evaluation, the capability of closed diagnosis may 

be particularly valuable. 
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As noted in the beginning of this section, there are two gen¬ 

eral types of heuristics which reduce the number of decision nodes 

considered in test selection: breadth-limiting and depth-limiting. 

As the name of the latter implies, such heuristics limit the extent 

of the look-ahead in the decision process for test selection. As 

with breath-limiting heuristics, there are several variations of 

the depth-limiting heuristic to be considered. 

Perhaps the most obvious form of the depth-limiting heuristic 

is one which sets a fixed depth of search for all branches of the 

tree. Thus given a particular decision node, the search would pro¬ 

ceed down all branches from that node to a depth k, where k is a 

fiixed number. The information derived from this search would then 

be employed in a decision rule to determine the test to be run next. 

The parameter k is a relative depth, that is at a decision node at 

level £, the search is conducted to a depth of £+k before making 

the decision for level £. An alternative depth-limiting heuristic 

might employ a variable depth look-ahead. Such a heuristic might 

attempt to explore more "promising" branches to a greater depth than 

less promising ones. The difficulty here is to decide which branches 

are promising. It is, in fact, the general problem of heuristic 

test selection all over again. 

There are several problems to be resolved in the development of 

any depth-limiting heuristic. First consider the effect on the de¬ 

cision process of limiting the depth of search. If the depth is 
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limited to k, then the »terminal» nodes will be characterised by 

probability distributions for the unknown state. (See Figure 4.) 

Since, in general, there will be a number of states with non-sero 

probability at any given terminal node, there must be some way of 

assessing the value of being at the node. One of the major problems 

in the development of depth-limiting heuristics then is the defini¬ 

tion of measures of the desirability of nodes which do not represent 

a certain diagnosis. 

One way of establishing the value of a node is suggested by 

the presence of a loss function. The value of the node can be ob- 

tained by assuming a decision about the unknown state is to be made 

there. Then the prior distribution for the node and the loss func 

tion can be employed to find the expected decision loss for the 

node.l From this loss the value of the node is derived, while 

this measure seems to be a natural one, it is not without its weak- 

nesa. The problem with the measure is that it is based on an 

assumption which is generally untrue. 1„ most cases, one will not 

make terminal decisions at the nodes which are "terminal" for one 

state in the look-ahead. For example, if the search depth is 

limited to 2, the value measure assumes that a terminal decision 

will be made two tests from this point. Since the actual terminal 

An additional assumption should be noted here < -v 
assumption that given the prior distribution rï» ; ^ ÍS the 
loss decision is made. “tion, the minimum expected 
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decision «y not be mad, until nany tests have been run, thl. 

««eure dl.tort. the value of teats con.ldered for the current level. 

The problem 1. tMt the val«, of the loa, function at the decision 

nodes of a given level may bear little relation to the value, of 

the best testing strategies which Include these nodes. The poten- 

tlel effectiveness of this "loss function" measure is difficult to 

«...se. The expectation Is that it depends upon the particular 

problem area In which the measure 1. esployed. 

A second problem with this heuristic 1. Us potential sensi¬ 

tivity to the actual loss function employed. If the heuristic Is 

very sensitive to the loss function then uncertainties as to the 

true nature of this function may result in testing strategies which 

are decidedly sub-optimal. The problems of accurately assessing 

the loss function for a particular application will be dl.cussed 

later in this thesis. 

The above discussion of breadth-limiting and depth-limiting 

heuristic, purposely considered the two Independently In order to 

■eke clear the consideration. Involved. The motivation for such 

heuristic, in test selection is the desirability of reducing the 

number of decision nodes con.ldered. since the nusfcer of decision 

node, 1. dependent on .»th the breadth and depth of the search, 

the heuristic, employed In » actual problem will Interact. Ge„. 

.rally speaking, the depth of the search can be Increased only at 

the expense of the breadth, because there Is 
a constraint on the 

total number of nodes to be considered. 
The particular balance of 
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these two heuristics may significantly affect the effectiveness of 

the test selection process. An additional complication is introduced 

by the possibility of changing this balance during the course of the 

diagnosis when many states are possible. It may be desirable to 

limit the depth and allow full breadth. This is particularly true 

if the prior distribution is quite diffuse. As the diagnosis pro¬ 

gresses and certain states are eliminated from further cunsideration 

the breadth of the tree may be reduced and the depth of search may 

be increased correspondingly. The relation between the depth and 

the breadth of the search is an important matter for investigation 

in the development of heuristic test selection schemes. 

More of the practical considerations involved in developing 

heuristics will be discussed in a later section describing the 

heuristics employed by the diagnostic program and their relative 

effectiveness. 



Chapter 4 

A DIAGNOSTIC SYSTEM 

The considerations outlined in the previous chapter led to 

the design and implementation of a diagnostic system. This system 

is composed of three major parts. The first is a set of programs 

which perform the actual diagnostic function. The second is a set 

of programs which facilitate the study of a variety of diagnostic 

problems and strategies. The third part of the system is the informa¬ 

tion structure which contains all the relevant information which 

these programs employ in performing diagnosis for a given problem 

area. While the content and, to some extent, the nature of the 

information structure vary with the particular application, it is 

convenient to consider this structure as a third general part of the 

diagnostic system. These three aspects of the diagnostic system will 

be discussed in detail in this chapter. 

The diagnostic system is currently operating on the Project 

MAC time-sharing system at the Massachusetts Institute of Technology. 

The diagnostic system is designed to exploit the inter-active capabili¬ 

ties of the time-sharing system. The programs of the diagnostic 

system are written in MAD and FAP, They make very extensive use of 

the SLIP-MAD system developed by Professor Joseph Weizenbaum of M.I.T. 

The SLIP-MAD system (hereafter referred to as SLIP) is a set of list 

processing functions embedded in the host language MAD. Because 

52 
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discussions of SLIP are available elsewhere (R-20), only a brj.ef out¬ 

line of the system is given here. 

The basic data structure employed in the SLIP system is a SLIP 

.list, A SLIP list is a list composed of cells where a cell is a pair 

of adjacent words of storage. The first word of the pair is divided 

into an identifier field, a link-left field and a link-right field. 

Each cell in a SLIP list contains a forward (right) link and a backward 

(left) link. SLIP lists are symmetric in the sense that lists have 

no particular orientation, the top and bottom of a list are equally 

accessible. The identifier is used to indicate the type of element 

stored in the second word of the cell. This element is referred to 

as the datum. An example of a simple SLIP list is given in Figure 5. 

Notice that any cell may contain an actual datum rather than a symbolic 

designation for the datum. 

Every SLIP list contains a special cell known as the header 

of the list. This cell contains the address of the first cell on 

the list in its right-link field and the address of fhè last cell on 

the list in its left-link field. Any storage location which contains 

the address of a list header in both its address and decrement fields 

is said to contain the name of that list. A SLIP list structure can 

be defined as a SLIP list whose data terms may themselves be names 

of SLIP lists. 

There may be associated with any SLIP list a description list 

or DLIST. If a SLIP list possesses a DLISI, the address of the header 
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of the DL1ST is contained in the left-link of the datum of the 

header cell. The DLIST, which is itself a SLIP list, is used to 

store data pairs. A variety of SLIP functions are available for 

creating and accessing these pairs. 

The SLIP library is a set of functions for manipulating SLIP 

lists. Typical functions permit the reading or searching of lists, 

additions to or deletions from lists, and the creation or erasure 

of lists. SLIP maintains an available space list, and the system 

includes an automatic garbage collection facility. 

Because the SLIP library consists of compiled subroutines 

which can be invoked from MAD or FAP programs, SLIP programs run 

at object speed. The fact that SLIP is embedded in an algebraic 

language, MAD, means the full arithmetic and logical capability 

of the latter is available to the programmer in a list-processing 

application. These two features make SLIP a convenient language to 

use in the implementation and debugging of a large list-processing 

application such as the diagnostic system developed in this research. 

For this particular application, the need for both the flexibility 

of list-processing and the algebraic power of MAD is well served by 

the SLIP-MAD system, 

A. THE INFORMATION STRUCTURE FOR THE DIAGNOSTIC SYSTEM 

The manner in which the information relevant to a particular 

diagnostic problem area is organized haa a considerable effect on 

the capabilities of the diagnostic program. The information contained 



56 

in this structure for a particular application constitutes the "ex¬ 

perience" which the diagnostic program brings to bear on problems. 

This experience includes relationships between observable attributes and 

states of the system to be diagnosed. For example, in an area of 

medical diagnosis, the information structure would contain the re¬ 

lationships between signs and symptoms and the appropriate diseases. 

Also included in the structure is information about the tests which 

are relevant to the given diagnostic area and their associated costs. 

Because of the probabilistic nature of many of the attribute-state 

relationships as well as other important relationships, the informa¬ 

tion structure must maintain a large number of individual probabilities. 

The general content of the information structure will be explained 

below. 

The large number of state, attributes, and tests encountered 

in many diagnostic areas places a premium on efficient searching of 

the information base during a diagnosi-j. The efficiency of search 

can be maintained at an acceptable level only through the proper organi¬ 

zation of the relevant information. 

A number of questions were considered in the design of the 

information structure currently employed by the diagnostic system. 

One of the principal questions was that of what information should 

be maintained in the structure. To a large extent, the particular 

diagnostic problem under investigation here determined the answer to 

this question. Since the model of diagnosis makes reference only to 

states, attributes, tests and various probabilities, these factors 
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constitute the basic information blocks in the structure. Another 

question is how, given the basic information blocks, these blocks 

should be related in order to facilitate accejs by the diagnostic 

program to the relationships which are significant in the deductive 

process of diagnosis. For example, the following questions typify 

the types of demands made on the structure. 

What are the symptoms of pneumonia? 

Which diseases exhibit a rash on the arms as an 

attribute? 

• What is the probability that a patient will have a 

temperature greater than 103° given that he has 

pneumonia? 

The information structure described here was developed through 

the consideration of a number of alternative forms, although there 

obviously are other forms which might serve as well. To a certain 

extent, the information structure reflects the use of the SLIP 

system by the diagnostic program. For example, the information 

structure is a SLIP list structure. While in certain instances 

this results in inefficient utilization of main storage, this dis¬ 

advantage was more than offset by the convenience of being able to 

employ the full SLIP library in the development of the diagnostic 

system. 

A basic information block in the structure is either a state, 

an attribute, or a test. Each of these basic blocks is represented 

by a SLIP list in the information structure. In what follows these 
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block. Will be referred to „ ¿tace UsU, ettrlbute ll8t., or test 

lift,. A typical «et« Hat la depicted In Figure 6¡ In thla inatance, 

the stete list corresponding to pneuBonla In a medical diagnosis 

problem. The list name of each attribute list relevant to pneumonia 

appears on the state list for this disease. There are two data pairs 

on the DLIST of each state list. The stored attributes are the a 

ETlorl probability of the state and the ^ name of the state." The 

latter 1, the name by which the user of the program makes reference 

to the state. In order to facilítete the retrieval of the state list 

corresponding to a particular print name (as, for example, „hen the 

user makes a request for Information about the disease pneumonia), 

all the state lists are grouped on a number of hash lists. Each hash 

list Is a sublist of a list called the master state list. The re¬ 

trieval of the stete list corresponding to a particular print name Is 

effected as follows: First a SLIP function is used to map the given 

print name onto the Integers 0 to N-l, „here N Is the number of hash 

lists on the master state 11,t. If the integer K-l results from this 

mapping, the Kth hash list Is searched for a state list with the de¬ 

sired print name. Since the same hashing function is employed In the 

creation of the master state list, the appropriate list will be found 

If one exists. Roughly speaking, this technique reduces the average 

search time for such requests by a factor of 1/N as compared to a 

search in the absence of hash lists. 

An attribute list Includes the list names of all the test lists 

corresponding to tests which can result in the given attribute. 
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The DUST for an attribute Hat contains a data pair for the attrib¬ 

ute print na« in addition to a special data pair for a »saber list. 

The member list for an attribute list Is a standard SLIP list which 

contains the list name of each state list on which the name of the 

attribute list appears and the corresponding probability of the at¬ 

tribute given the state. Continuing the exan*)« above. Figure 7 de¬ 

picts the attribute list for the attribute "fever." As In the case 

of the state lists, each attribute list Is a subllst of a hash list, 

and each of these hash lists, in turn. Is a subllst of the master 

attribute list. 

A test list contains the cost of the test and a DLIST. The 

DLIST contains the print name for the test and a member list for the 

attribute lists which include this test. In Figure 8 a simple test 

list is shown with a single, cost (independent of state) and a deter¬ 

ministic member list. This is the form of test list used in this 

research although it would be relatively easy to make it more com¬ 

plex. As above, each test list is a sublist of a hash list, which 

is in turn a sublist of the master test list. A schematic of a por¬ 

tion of the information structure is shown in Figure 9. 

The presence of two-way links between attributes and states and 

attributes and tests results in a highly associative information 

structure. This associative property facilitates the accessing of 

information pertinent to a diagnosis. Thus a search for attributes 

given state and a search for states given attribute are equally effici 

ent. Similarly the accessing of possible attributes resulting from a 
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particular test is made straightforward by the 

list. 
presence of the member 

One example of the Importance of this associative aspect of the 

information structure is its use by the diagnostic program in the 

initial "pruning" of the space of possible diagnoses in response to 

the observation of initial attributes. Generally, these initial 

attributes are presented as the user's statement of the problem. 

For the program to operate in a reasonably efficient manner, it must 

use this initial statement of the problem to develop a drastically 

reduced set of states for further consideration. This is directly 

analogous to the "pruning" employed by a doctor when upon the observa 

tion of a few initial signs or symptoms, he reduces the list of di¬ 

seases he considers as possible causes of the problem to a very small 

number relative to the set of all diseases. The diagnostic program 

would employ the member list for a given attribute list to rapidly 

determine the set of all diseases which were known to exhibit the 

corresponding attribute. While this reduction of the search space 

is crucial to the success of the program, it must not be irreversible 

if the program is not to be led astray by spurious Information or 

noise. Since it is unreasonable to expect that those who prepare the 

information structure can anticipate all variations in attribute pat¬ 

terns for a given state, it Is expected that the program at times will 

be confronted with problems involving attributes which are not rele¬ 

vant to the principal problem. The Strategie! employed by the pro- 
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gram and the nature of the information structure have a strong effect 

on the program capability in such a problem environment. 

The information structure currently employed by the diagnostic 

program associates with each state only those attributes which are 

relevant in the diagnosis of that state. Thus there would be no 

association between the state "tuberculosis" and the attribute "sore 

thumb" in the information structure for medicine.* The advantage of 

this is that the size of the information structure is limited. Thus 

while there may be many attributes, only a subset is associated with 

any state. As will be discussed later, this creates problems in 

performing diagnosis in a noisy environment. Certain routines asso- 

elated with the diagnostic program are responsible for making de¬ 

cisions about the significance of the attributes observed in a diag¬ 

nosis. The function of these routines is also the subject of a 

later section. 

The discussion of the information structure to this point has 

implied that the attributes for a given state are taken to be in¬ 

dependent. Since in many cases the assumption of attribute independence 

is not justified, it is necessary that inter-attribute dependencies 

be representable in the structure. This capability is available in 

The current program through the use of clustering routine the 

Since the program does not determine what information is in¬ 

cluded in the structure, the user can associate any attributes and 

states. The point is that certain associations are not expected. 
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relation-definition routine, and the relation interpreter. 

In order to provide a general capability for dealing with 

inter-attribute dependencies, the diagnostic program must be able to 

cope with a variety of relationships among attributes. The import¬ 

ant relationships most likely vary from one diagnostic problem 

area to another. It does not seem advisable to attempt to catalog 

these relationships within the program itself, since it is extremely 

difficult to predict just which relationships will be required. Also, 

if the relationships are incorporated within the program itself, it 

is difficult to introduce now ones as they become of interest in a 

particular problem area. 

What is required then is a flexible facility for the program 

to accept new relationships and having so accepted a relationship, 

to incorporate it correctly in the inference process of diagnosis. 

In an attempt to provide this facility, the diagnostic program pro¬ 

vides the user with the means to define a variety of relationships 

among attributes. A relationship ie defined by specifying as a 

Boolean function the conditions under which the relationship is 

true. This function is employed by the diagnostic program whenever 

it is necessary to determine whether the relationship is satisfied 

for a particular state. 

Consider, for example, the case in which it is necessary to 

account for the time of the appearance of certain attributes of a 

particular disease. Imagine that for the disease in question the 
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attribute "rash.. appears two days after th. 
y teer the appearance of "fever.H 

Let the function BEFORE accent 
ccept five arguments and be defined as 

BEFORE (A1,A2,A3,A4,A5) « 

<EQ (Minus (CHAR Al A2) (CHAR A3 A4)) AS) 

a EQ, Maus, and CHAR are system primitives (defined by the 

diagnostic program). The function CHAR Is used to retrieve charac¬ 

teristics of attributes. For exaaçle, the value of 

(CHAR TIME FEVER) 

la the time at which the attribute fever was observed. 

By specializing the function BEFORE as 

BEFORE (TDŒ, rash, TIME, FEVER, 2) 

The relationship for the disease in question can be checlced. 

Such relationships are defined by the DEFINE subroutine which 

the user can invoke as required Relating u, 
a. Relationships can also be built 

into the information structure when it . 
nen “ 18 fir»t established if they 

ere known to be necessary 
cessary. define . relationship among the at- 

tributes of a particular nra#-o 
state, one uses the CLUSTER routine. This 

routine re-organizes the state list for 

the 8tate involved, producing 
an attribute-cluster Thus, for the examol k 

, the exanple above, the reorganized 

state list might look as that in Figure 6 a , u 
“gute 6. As with individual at¬ 

tributes, a conditional probability given < 
y 8 ven state is associated with 

each attribute cluster 
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Figure 10 

State List with Cluster 
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Any number of relationships can be defined for the structure 

provided that they can be expressed in the prescribed manner. Com¬ 

plex relationships can be specified by using functions of functions. 

Note that attributes remain independent for any state unless a re¬ 

lationship involving them is defined for that particular state. 

Thus, in one disease "fever” and "rash" may be related in some way, 

while in another they may be independent. 

The diagnostic program employs an interpreter to determine the 

truth of relationships during diagnosis. The interpreter permits 

the correct incorporation of relationships in the diagnostic infer¬ 

ence, The manner in which the interpreter is employed will be ex¬ 

amined in detail later. 

B. THE DIAGNOSTIC PROGRAM 

The diagnostic program and its associated routinvare the 

heart of the system. These programs embody the various diagnostic 

strategies employed by the system. When one uses the system in 

the solution of a diagnostic problem, he interacts with the diag¬ 

nostic program. This program provides the interface between the 

user and the facilities of the system. There are three basic 

functions performed by the diagnostic program. (Although, in fact, 

each of these functions is delegated to a set of subroutines, it 

is convenient to consider them as logical functions of the diagnos¬ 

tic program.) In brief these three functions are: 

1) The interpretation of the attributes of a particular 
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problem based on the information contained in the in¬ 

formation structure. This function is called the 

inference function. 

2) The selection of tests for the user to apply to the 

system being diagnosed in order to obtain further 

clues as to the system state. This is the test se¬ 

lection function. 

3) The analysis of the attributes of a problem to de¬ 

termine whether there are irrelevant attributes 

present or to detect attribute patterns from more 

than one system state occurring simultaneously. 

This is the pattern-sorting function. 

The design of the diagnostic program permits the alteration or 

replacement of any of these three functions independently of any of 

the others. This flexibility is important, because these functions 

are fundamental to this scheme for diagnosis, and it is necessary 

to study different versions of the functions. The possibility of 

changing individual functions without changing the remainder of the 

program greatly facilitates this study. 

Before the diagnostic program can be used in a particular 

problem area, an information structure for that area must be es¬ 

tablished. This requires that a disk file containing all the rele¬ 

vant information be created. The disk file can be created using 

the standard input and editing facilities of the time-sharing. The 
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formatting of the file, although specified, is quite single, and if 

the necessary information is available, the only difficulty in 

creating the file is dealing with the large amount of information 

which may be required. The information in the file consists of state 

attribute relationships and test cost data. An example of a portion 

of such an input file is shown in Appendix 1. A system program 

processes the input file and from it constructs the information 

structure for the problem area. 

A second file containing the loss structure for the problem 

area is required by the diagnostic program. At present this loss 

structure is always a matrix. Any element of this matrix, 1^, is 

the estimate of the loss for diagnosing state J as state i. The 

exact manner in which this information is employed will be made 

clear below. 

As a preface to the discussion of the logical functions of 

the diagnostic program, consider this example of a particular 

application of the program. Suppose the program currently is set 

up to diagnose a certain group of diseases. This means that the 

appropriate information structure and loss structure have been es¬ 

tablished. A user wishing to invoke the assistance of the program 

does so by providing an initial problem statement. This statement 

is essentially a list of the attributes which have been observed. 

Assume for the example that this list is 

• temperature of 102* 

• severe coughing 

• sore right ankle 
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As indicated in Figureil, the program first invokes the pattern 

sorting function for the current attributes. In this case, the 

pattern sorting function hypothesizes that the attribute "sore right 

ankle is not relevant to the principal medical problem of the patient, 

and so removes it from the list of attributes for later investigation. 

After the attributes have been processed by the pattern sorting func¬ 

tion, the set of all diseases which exhibit the relevant attributes 

is obtained and a probability distribution for diseases given these 

attributes and the "experience" in the information structure is 

created. The creation of this probability distribution is the task 

of the inference function. This distribution results from a considera¬ 

tion of both the current attributes and the knowledge of the various 

diseases. It is the current view of the diagnostic problem assumed 

by the program. 

Now the program invokes the test selection function. The 

object of this function is to select a good test for the user to 

apply to the patient in order to gain more information. In selecting 

this test, the test selection function considers the current proba¬ 

bilities of the various diseases, the cost of each test, and the 

usefulness of the results expected from the test. The user is in¬ 

formed of the test which has been selected. The test may be as 

simple as asking the patient questions about his recent exposure to 

other sick persons, or it may be more involved, for example, a chest 

X-ray. In any event, when the user has obtained the results of the 
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test, he report» them to the program. These test results are new 

attributes and the program again enters the loop shown In Figure 11. 

This dialogue with the user continues until a diagnosis has been oh- 

talned. A more detailed trace of a session with the diagnostic 

program Is presented In Appendix 2. This brief exasçle provides an 

overview of the operation of the diagnostic program. In what follows, 

each of the primary functions of the program will be discussed In 

detail. 

1. THE PATTERN-SORTING FUNCTION 

As explained In an earlier section, only those attributes sig¬ 

nificant to the diagnosis of a particular state are associated with 

that state In the Information structure. Thus the attribute "sore 

ankle" would not be associated with the disease tuberculosis in the 

Information structure; this means that the name of the attribute list 

for the attribute "sore ankle" does not appear on the state list for 

the disease "tuberculosis". Similarly the member list of the attrib¬ 

ute list for "sore ankle" contains no entry for the state list of 

tuberculosis. If the name of a state list does not appear on the 

■.ember list of a given attribute Hat, then the conditional probability 

of the attribute given the state Is taken to be tero by the program. 

As will be discussed in the following section, the particular method 

of deduction alloyed by the program (Bayes- rule) results in a tero 

posterior probability for the state given the attribute. For Instance, 
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if in the course of a diagnosis it which tuberculosis was considered 

a possible cause of the attributes the attribute "sore ankle" were 

observed, the updated probability of tuberculosis would be zero. 

Since the program removes from current consideration any state with 

zero probability, this approach makes maximum use of each attribute 

to reduce the set of possible diagnoses. 

The problem encountered here is that while "sore ankle" is 

not an attribute of tuberculosis, one certainly can have tuberculosis 

and a sore ankle. This is but one example of the more general prob¬ 

lem of irrelevant or noise attributes. Unless special precautions 

are taken, such attributes can eliminate the actual state from con¬ 

sideration when processed by the inference function. A number of 

solutions to this problem are possible. 

One approach is to associate every attribute with every state, 

employing f. probabilities whenever an attribute is not considered 

relevant to the diagnosis of a particular state.* As long as £ is 

greater than zero, no state will be eliminated from consideration in 

the manner described above. The difficulty is that this method pre¬ 

vents the drastic reduction in the set of possible diagnoses which 

is necessary for efficient operation of the program. A second ap¬ 

proach is to employ the £ probabilities as above, but to eliminate 

This probability might be taken to be the unconditional proba¬ 

bility of the attribute. Since this probability may be quite small, 
the problem discussed here could still be encountered. 
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from further consideration those states whose posterior probability 

falls below a fixed threshold. This method is unsatisfactory be¬ 

cause the posterior probabilities for the various states can undergo 

radical change as additional attributes are observed and employed 

by the inference function. Thus, there is no guarantee that a state 

with a very low probability in the early stages of the diagnosis will 

remain improbable with the observation of new attributes. This 

problem can be even more severe if the noise attributes are the first 

observed. In either event, the actual state may be removed from fur¬ 

ther consideration by this method. Another approach is to decide 

whether an attribute is relevant to the diagnosis or merely noise 

~e-fore it: is processed by the inference routines. This is a very 

difficult task to accomplish given the particular model employed in 

diagnosis by the program. The model of the system being diagnosed 

consists principally of state-attribute relationships without any 

information about causal connections. Thus, the only way to evalu¬ 

ate the relevance of an attribute to the diagnosis is to consider 

some measure of its probability given the diagnosis to date. Since 

almost every measure of this kind depends on the current prior dis¬ 

tribution, which, in turn, depends on the observed attributes assumed 

to be relevant, a cyclical argument results. 

A second problem arises when attributes characteristic of two or 

more distinct states are observed, as in the case of an individual 

with more than one disease. This is more than a problem of simple 
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noise since the program must detect two or more patterns. Again 

the methods mentioned above are inadequate to cope with this problem. 

The solution to this problem which has been incorporated in 

the diagnostic program involves processing a number of attribute 

£atterns in parallel during a diagnosis. A pattern is a subset of the 

set of observed attributes which has the following two properties: 

1) At least one state in the information structure exhibits all the 

attributes in the pattern with a non-zero probability and 2) The 

pattern is not a subset of any other pattern. If the set of observed 

attributes contained a number of the attributes of tuberculosis and 

the attribute sore ankle, one pattern would be the set of tuberculosis 

attributes. A second pattern would be obtained by choosing a disease 

for which sore ankle is an attribute and taking the intersection of 

the set of attributes for that disease and the set of observed at¬ 

tributes. Perhaps the set of attributes obtained in this way, using 

a second disease on the member list of "sore ankle," might be dif¬ 

ferent from both those previously obtained. If so, this set is still 

another pattern. 

Throughout the course of a diagnosis, a pattern stack is main¬ 

tained by the pattern-sorting function. A schematic of the pattern 

stack is presented in Figure 12. Each pattern is represented by a 

sublist of the pattern stack, and associated with each pattern is 

the probability distribution for the states of the system given the 

attributes of the pattern. 
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Whenever a new attribute is obtained in a diagnosis, it is 

processed against every pattern in the pattern stack. The new at¬ 

tribute is used to update a pattern if it is relevant tr at least 

one state in the probability distribution for the pattern. After 

this updating, the attribute is added to the pattern. If no state 

in the probability distribution of a pattern is known to exhibit the 

new attribute, no changes are made to either the pattern or the dis¬ 

tribution. The actual manner in which distributions are updated to 

account for new attributes is discussed in detail in the next sec¬ 

tion on the inference function. 

When the new attribute has been processed against all patterns, 

a routine called PÀTFRM is invoked to form new patterns if possible. 

PATFRM retrieves the member list of the attribute list corresponding 

to the new attribute. For each state on the member list, the set of 

probability distributions in the pattern stack is searched. If the 

state is found in this set, the pattern for the state is already in 

the pattern stack. If the state is not found, the intersection of 

the set of attributes denoted by the appropriate state list and the 

set of observed attributes is a new pattern. This pattern and the 

corresponding distribution for the states is added to the pattern 

stack. While it is conceivable that this procedure could generate 

many patterns for a given information structure and attribute se- 

quence, this is not a serious problem. First in most areas the num¬ 

ber of distinct patterns which can be formed by this procedure for a 
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given attribute set is quite limited, because states exist in 

groups which have overlapping attribute patterns. Secondly, the 

number of patterns considered can be limited by considering only 

those patterns with a probability greater than some threshold. 

This procedure also includes a provision for removing patterns 

from the stack. If the inference function determines that the 

probability of a particular pattern is zero, the pattern and its 

associated distribution is eliminated from the pattern stack. The 

contents of the pattern stack, then, can be quite dynamic during 

the course of a diagnosis as new attributes trigger the addition 

and deletion of patterns. 

As an illustration of this aspect of the pattern sorting 

function, consider the following example. At a given stage in a 

diagnosis of a medical problem, three attributes have been observed. 

These attributes are A, B and C. Also assume that of the diseases 

represented in the information structure, none exhibits all three 

of these attributes. A number of diseases exhibit A and B as at¬ 

tributes, however, and so this is a pattern. The point here is that 

while a disease which exhibits A and B can occur with C also present, 

C is not considered relevant to the diagnosis of any of these 

diseases. For the diseases for which C is a relevant attribute 

A is also relevant. For this situation the pattern stack can be 

represented as in Figure 13A. Here the symbol 7f denotes the dis¬ 

tribution list for a pattern. 
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Now when the new ettrlbute D ia observed. It is processed 

through the pattern stack. Assuming that the new attribute is rele¬ 

vant to some of the states in distribution TTj, this distribution is 

updated by the inference function to produce 1f\ .„d the attribute D 
is added to the pattern. Attribute D is not relevant to the second 

pattern in the stack, and so this pattern and its associated dis¬ 

tribution remain unchanged. Finally, the routine PATFRM is invoked 

to search for new patterns. Assume that no new patterns are formed. 

Thus, at the end of this phase in the processing of the new attrib- 

ute, the pattern stack appears as in Figure 13B. 

Now in the event that there is more than one pattern in the 

stack, the diagnostic program must make a decision as to which 

pattern to diagnose. Thus, the program must generate a hypothesis 

about the significance of the various patterns in the stack. For 

example, if one pattern corresponds to a majority of the attributes 

of tuberculosis, and the other to a single attribute "sore ankle," 

it is extremely important for the program to give priority to the 

former pattern. The problem is to establish pattern selection rules 

which will make the "correct" decision in such a case. 

One consideration which is relevant to the selection of a pat¬ 

tern is the seriousness of the states suggested by the pattern. For 

this reason, an attribute quite specific to a very serious disease 

will strongly influence the course of a medical diagnosis. 

In order to account for the relative seriousness of different 
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states of the system, the diagnostic program makes extensive use of 

the loss function provided for the problem area. In this research, 

the loss function for any problem area is specified as a matrix of 

losses (Ijj). An element of this matrix 1^ is the loss for decid¬ 

ing that the system is in state i when it is in fact in state j. For 

example, the loss for diagnosing a malignant tumor as benign might be 

1,000,000 while that for diagnosing a benign tumor as malignant might 

be 100. The problems associated with the construction of such a 

loss function are discussed later in this thesis. In the work done 

with the diagnostic program to date, it has been assumed that the 

loss function can be specified in this form. 

The diagnostic program derives a measure of the seriousness of 

each system state from the information contained in the loss func¬ 

tion matrix. The rationale for the measure employed by the program 

is as follows: Suppose a decision about the identity of the unknown 

system state had to be made without running any tests at all. Since 

it is assumed that the loss function matrix accurately reflects 

the decision losses involved in the problem area, such a decision 

should minimize expected loss. That is, if the only information 

available is that of the relative incidence of the various states 

of the system, one should decide that the unknown state is state 

where 

n 

J-l 
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and Tf j ■ a priori probability of state J. 

Values of 9 decrease with increasing seriousness of states. This 

can be seen in the following simple example. 

_LOSS_ 

_ _±_ 2 9 

1. Benign tumor 0.7 0 1,000,000 300,000 
2. Malignant tumor 0.3 100 0 70 

While other more sophisticated measures of seriousness can be de¬ 

veloped, this simple one was deemed suitable for the purposes of 

this research. 

Once the seriousness of the various states has been estab¬ 

lished, the problem of pattern selection can be solved in a quite 

reasonable way through the use of the Bayesian model. For each 

pattern, a conditional distribution on states can be obtained by 

the inference function. For each pattern, the distribution is con¬ 

ditioned on the attributes of that pattern alone—all other patterns 

are ignored. Thus for the k£ÍL pattern 

11 r püSik-s^/e) 

Where Tf ^ is the conditional probability of the j~ 

state (Mj) given the pattern £slk . . . Smk j • 
The seriousness measure for fhe pattern is given by 

= Z TTjôj 
j-i J J 



85 

and the pattern selected is the one with minimum . 

This measure has several desirable properties. Consider the 

case of an attribute which is very specific to a serious disease. 

If that attribute is observed, the conditional probability for the 

serious disease given the pattern containing the attribute will be 

close to one. Since the corresponding value of 6 is small, the 

value of Y1 for the pattern will be small. Hence this pattern will 

quite likely be selected. On the other hand, if the attribute is 

not specific to the serious disease, the conditional probability 

for the disease given the pattern will be less; and the resulting 

value of Y*, greater. 

The measure also favors a pattern which contains many attributes 

provided that the pattern strongly indicated one or more serious 

states. The posterior distribution does not have to be spiked, how¬ 

ever, for a pattern to be chosen. For example a pattern which re¬ 

sults in equal probabilities for six states may also be chosen if 

the seriousness of the individual states so warrants. This measure 

accounts for both the specificity of a pattern and the seriousness 

of states associated with the pattern. In this respect, it seems to 

be a good way to select patterns for investigation. 

A routine called SELECT chooses the current pattern for the 

diagnostic program, and this pattern may change from time to time 

as additional information is gathered by the program. The current 

pattern is the one employed by the test selection function for 
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evaluating tests. Before each use of the test selection function, 

SELECT chooses the current pattern based on all information cur­

rently available.

A nufliber of other processing routines affect the pattern stack 

during the course of a diagnosis. Recall that whenever the pattern 

sorting function produces more than one pattern in the stack, the 

selection of a pattern for further diagnosis constitutes a hypothe­

sis about the significance of a group of attributes. If a consist­

ent diagnosis for the current pattern is obtained, then the hypothe­

sis is tentatively confirmed. If there are no other attributes to 

account for then a consistent diagnosis for all attributes has been 

obtained. Otherwise the remaining patterns must be considered. It 

is possible that a second pattern is being diagnosed, new attributes 

may prove the hypothesis about the first pattern to be Incorrect.

In this case, the attributes in this pattern can no longer be con­

sidered accounted for. These possibilities are dealt with in the 

following way by the pattern sorting function. The program maintains 

a list called the "unaccounted-for" list, and on it are all those 

attributes which have yet to be attributed to a particular system 

state. When the current pattern is "diagnosed" or assigned to one 

state, the attibutes in the pattern are removed from the unaccounted- 

for list, and the pattern itself is marked. A marked pattern is ig­

nored in test evaluation, although it is updated with new attributes 

whenever appropriate. When the current pattern has been marked, all 

unmarked patterns are deleted from the stack. Then PATFRM is called



87 

for each attribute in the unaccounted-for list. Patterns are formed 

using the unaccounted-for list as the total attribute set. If the 

unaccounted-for list is empty, a consistent diagnosis for all attrib¬ 

utes has been obtained. Otherwise, the diagnosis continues on the new 

patterns. 

This means that attributes which are included in marked patterns 

are not utilized in the formation of new patterns a', this time. If, 

for example, the total attribute set were (A, B, C, D) and (A, B, D) 

had been tentatively diagnosed, the only unmarked pattern would be 

(C). This is true even though there may be states which exhibit both 

C and A, If, however, the test selection function chooses a test 

which can detect A, A will be added to the unmarked pattern. This is 

because the program always consults the history of the diagnosis be¬ 

fore requesting the user to run a test. If on the other hand, the 

program would normally account for C without employing knowledge of 

A, it will do so. 

If a new attribute causes the probability of a marked pattern to 

become zero, a special recovery procedure is invoked. First, each 

attribute of the marked pattern is transferred to the unaccounted-for 

list. If one of these attributes is added to the list, it is also 

processed against all the other patterns in the stack. Whe the stack 

has been updated with such an attribute, PATFRM is invoked to check 

for new patterns based cn this attribute. Finally, the marked pattern 

is deleted from the pattern stack, and diagnosis continued. 
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Thu., the content, of the pattern stack may be quite vol.tlle 

during a dlagnosl., although ca.e. of extra« volatility are not ex- 

petted to occur very often. In any event, the use of the pattern 

afack permits the program to deal „1th nolae and multiple pattern, 

m a reaaonably efficient manner. By allowing the uaer to Inter- 

act with the program during diagnosis. It Is possible to employ his 

judgment with regard to the merit, of pursuing particular patterns. 

2. THE INFERENCE FUNCTION 

In general, the observation of a new attribute provides the 

diagnostic program with additional information about the current 

state of the system being diagnosed. Based on this observation, the 

program may significantly alter its estimate of the likelihoods of 

the various states. This section discusses in detail the manner in 

which the program incorporates observations of attributes into its 

current view of the diagnostic problem. The routines „hoch process 

new attributes for their effect on the current view of the problem 

collectively are called the Inference function. 

The basic analysis of attributes and Inference done by the diag- 

nostlc program Is based on Bayes rule. Bayes rule can be stated as 

follows 

f(Mj/st,£ ) - KV* )P(St/M„f ) 
P<St/£> 

where P(Mj/£) is the probability that the current state Is M 
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conditional on the total experience to date. 

P(St/Mji£) is the probability that the system will exhibit 

attribute St given that it is in state Mj and the diagnos¬ 

tic experience £. 

P(St/£) is the probability of the system exhibiting S.t 

unconditional on state. 

P(Mj/S^,^) is the conditional probability that the state of 

the system is Mj given £ and the newly observed attribute St. 

The quantity P(Mj/£) is called the prior probability and P(Mj/St,£ ) 

is called the posterior probability of the state Mj. The observa¬ 

tion of the attribute increases the experience or information 

available on which to make a decision about the unknown state. The 

posterior probability is an adjustment of the prior probability to 

account for the new information. After this adjustment has been made, 

the posterior probability is the new prior probability when further 

attributes are observed. Consider the following example of this 

basic Inferential process; 

Suppose there are only two states relevant to the current diag¬ 

nostic problem. Mi and M2, and three attributes Si, S2 and S3. The 

a priori probabilities for the two states as well as the conditional 

probabilities for the attributes given the states are presented in 

Table 2. 
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TABLE 2 

EXAMPLE FOR BAYESIAN ANALYSIS 

Conditional 
Probability of Attribute/State 

A priori 
probability Sj 

M1 0.8 .! 

m2 0.2 #7 

The initial experience of the program, before any attributes have been 

observed, is embodied in the a priori probabilities. Thus, the cur¬ 

rent distribution on states is (0.8, 0.2). Now assume that tests 

employed in the diagnosis reveal the presence of attribute S ^ Ac¬ 

cording to Bayes rule, the posterior distribution is (.82, .18). 

That is 

S2 S3 

A .1 

.6 .9 

p<Vsi,e ) 
¢0-8)(0.81 

(0.8)(0.80)+(0.2)(0.7) * °-82 

*(M2/Sl,r ) (0.2H0.7Ï 
(0.8)(0.8)+(0.2)(0.7) 

* 0.18 

Thus, the new attribute has little effect on the view of the problem 

taken by the program. If two more tests yield the attribute $2 and 

then the attribute S3, the corresponding distributions are: 

- °-75 ?(M2/Si,S2,f ) . 0.25 
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and 

P(Mi/s1,s2,s3,0 = 0.25 P(M2/s1,S2,S3,C) = 0.75 

The attribute Sß has a marked effect on the distribution on the states. 

Because the appearance of Sß is very unlikely with state and very 

likely with state M2, the observation of Sß provides strong evidence 

that the unknown state is in fact M2. 

There are a number of points to be made about the use of Bayes 

rule. First, the posterior distribution can undergo drastic change 

as a result of the observation of a single attribute. An example of 

this effect can be seen above. The posterior distribution also de¬ 

pends upon the order in which the attributes are observed, although 

for a given set of attributes the final distribution (that is when all 

attributes have been processed) is unique. Finally, if the probability 

of a particular state goes to zero in one posterior distribution, it 

will be zero in all succeeding posterior distributions. This point 

was raised earlier with regard to the motivation for the pattern 

sorting function. 

The inference function processes each observed attribute against 

every probability distribution in the pattern stack. This processing 

involves applying Bayes rule to each distribution provided that the 

new attribute is relevant to at least one state in the distribution 

list. If the updating results in a zero probability for a state in a 

given distribution, the state is removed from the distribution list. 

Also, if the probability of an entire pattern becomes zero, the pat- 
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tern and its distribution list are removed from the stack. While 

Bayes rule is easily applied in principle, the inference function 

must include special routines to insure that inter-attribute rela¬ 

tionships and the "history" of the diagnosis are correctly accounted 

for in the probabilistic analysis. 

The routine UPD which performs the updating of the pattern stack 

based on the observation of a new attribute is to a large extent a 

simple encoding of Bayes rule. The routine, however, does not ob¬ 

tain the requisite conditional probabilities directly. Instead, it 

calls PU to obtain the conditional probability of attribute "J" 

given state "i" and the history of the diagnosis to date. The reason 

for this indirection in the accessing of probabilities is really a 

pragmatic one. The insulation UPD from the probability-retrieving 

process allows changes in this process to be made without affecting 

the basic inference process. 

As noted, the function of PIJ is to retrieve conditional proba¬ 

bilities from the information structure. In the sinçlest case, this 

involves retrieving a number directly from the information structure. 

When the attribute of Interest is involved in an attribute cluster for 

the given state, the process of determining the conditional probability 

is more involved. 

The general form of an attribute cluster is either 

a. (0! V 

or b. ^ Rl • e2 r2 • . . . o en Rn) 
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where Rj is an inter-attribute relationship; 

6j is the conditional probability of Rj given the state 

♦ is either "exclusive or" or "or." 

Here Rj can be any inter-attribute relationships (including functions 

of functions, etc.) as long as it does not include fr. The reason for 

this restriction is to eliminate ambiguity from the probability 

assignments. In fact, the restriction does not limit the class of 

logical relationships which can be defined, only the form which in¬ 

dividual members may assume. Thus, for example, Rj might be the 

cluster for the nlationship 

Either precedes A2 in time or A^ does not appear at all." 

In order to evaluate the conditional probability of an attribute 

involved in an attribute cluster, PIJ must be able to evaluate the 

truth of the relationships Rj, It does this by calling the routine 

INTER? to determine the true value of each Rj. INTER? is an inter¬ 

preter, which retrieves the definitions of any functions involved in 

Rj and applies these definitions to the appropriate arguments from 

the attribute cluster. The interpreter employs a push-down stack and 

recursive calls in the evaluation. All functions are reduced in this 

way to their component primitive functions. Routines to evaluate the 

primitive functions are built into the system. 

The operation of the interpreter differs in certain aspects 

from that of a normal interpreter of Boolean functions, because this 

interpreter must deal with variables whose current value is unknown. 
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For example, suppose the relationship under consideration for a par 

ticular state Mj Is "A1 precedes A2 In time” with probability 0.5. 

Assume Aj has just been observed and the conditional probability of 

A! given the state is desired. If A2 has not yet been observed, 

the relationship Is Incomplete (or from a logical standpoint, unde¬ 

fined). From a Bayesian point of view, however, the conditional 

probability is well-defined; It can be obtained by assuming that A2 

fact follow Aj in time. This assunption results in a value 

of 0.5 for the conditional probability of Aj given Mj. If a2 Is ob¬ 

served later, then Its conditional probability can be obtained In a 

similar manner, but the prior observation of A must be taken into 

account. This means that the desired probability of A, Is conditional 

on the state Mj and the previously observed A^ Hence the proper con- 

ditional probability is 1.0. 

In general terms, the interpreter assumes the truth of any 

relationship which Is incomplete unless that relationship Is demon¬ 

strably false given the current information of the diagnosis. The 

Interpreter must also Indicate whether any attributes Involved In a 

cluster have actually been observed. Given these modifications of the 

interpreter function, the routine PIJ can deduce the proper conditional 

probability for the given attribute-state pair. PU embodies a number 

of logical tests on the truth of the Rj and the number of observed 

attributes Involved In each. For the types of relationships allowed 

in the information structure 
these quantities are sufficient to deter- 
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mine the appropriate conditional probabilities to employ in UPD. 

When the interpreter is called to determine the truth of a par¬ 

ticular relationship, it does so by applying the functional defini¬ 

tion of the relation to the given arguments. All functions are re¬ 

duced to their component primitive functions. System subroutines 

are available to evaluate these primitive functions based on the 

values currently on the top of a push-down stack maintained by the 

interpreter. In addition to arithmetic and logical functions, the 

set of primitives includes PRES and CHAR. The former is true only 

in the case that the attribute which is its argument is in the set 

of observed attributes. The function CHAR permits relationships 

to involve characteristics of attributes. Thus, it is possible to 

refer to "the time of the appearance of the rash" and "the size of 

the lump." In keeping with the philosophy of the program, no attempt 

is made to include special routines to record particular character¬ 

istics. The interpreter, through the CHAR routine, obtains the value 

of a characteristic directly from the user. When the interpreter 

first evaluates a relationship involving an attribute characteristic, 

it obtains the value of the characteristic from the user. This data 

pair is then stored with the attribute for future use. This occurs 

only once for each data pair, and later requests for the value of the 

characteristic will not require interaction with the user. Because an 

attribute is processed by the inference function when the attribute 

first is presented to the system, all data pairs are established when 
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the relevant attributes are first presented by the user. Through 

th. use 0£ the interpreter, the diagnostic prograo ls able to deal 

with variety of relationships within a particular prob leo area. 

3. THE TEST SELECTION FUNCTION 

Ihe value of heuristics for test selection in diagnostic proh- 

l»s has been underscored in previous sections, m this section, a 

particular test selection program is discussed. This program (which 

1., in fact, a number of subroutines) is the one e^loyed in the diag- 

noetic program. The nature of the program strategy and organization 

Is explained and some of its limitations are noted. 

Prom the model of a diagnostic problem discussed in Chapter 3, 

recalled that one of the major tasks in diagnosis is the 

..lection of a good set of tests to apply to the system. The de- 

termlnation of such a testing strategy involves a consideration of 

both th. costs of tests and the information which they are expected to 

yield. Thus, any heuristic for the test selection process should re- 

fleet these considerations. Another consideration involves the amount 

0f COmPUCatl°n in'rolTOd the heuristic in a particular 

diagnosis. !„ order to facilitate the study of a class of such test 

.election heuristics, the test selection function was designed to be 

In Ur8e Pa" lndePendent °£ the Pedicular heuristics ployed. While 

the class of heuristics permitted is not particularly large, it does 

include heuristics which lead to »rkedly different test selection 
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strategies. 

The basic function of the test selection routines is to deter¬ 

mine the decision to be made at the current decision node in the 

decision tree. When called by the diagnostic program, the test selec¬ 

tion function produces a ranking of the alternative decisions for the 

current decision node. In this ranking, each relevant test is as¬ 

signed a value as well as the terminal decision alternative. The 

diagnostic program then simply chooses the alternative with minimum 

expected loss. As discussed in Chapter 3, if at a particular state 

in a diagnosis, the set of available tests were £t^, .... Tn^ 

there would be decision an alternative corresponding to the decision 

to apply each test to the system as well as the decision to stop 

testing and to make a diagnosis. The expected value of each of these 

decisions would be determined by the test selection function. 

The user of the diagnostic program can control both the depth 

and the breadth of the search conducted by the test selection func¬ 

tion in the decision tree. A search to depth K corresponds to the 

evaluation of sequences of K consecutive tests. The breadth of the 

search is the number of tests chosen from the set of all possible 

tests which are evaluated at a given decision node. The depth of the 

search conducted by the test selection function is a parameter to the 

function. While this parameter can be changed between calls of the 

function, it is not changed by the test selection function itself. 

This means that at present all paths in the decision tree which are 
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searched by the test selection function during a particular stage in 

a diagnosis are searched to the same depth.1 The limitations arising 

from this inflexibility will be discussed later. 

The breadth of the search is controlled indirectly by the user 

through the use of a threshold probability. At a given decision node, 

only those tests which are relevant to a state with a probability 

greater than the threshold are considered by the test selection func¬ 

tion. For example, if the probability distribution at a given decision 

node is (0.2, 0.3, 0.5) for states and the threshold is 0.25, 

only those tests relevant to states M2 and to M3 will be considered. 

Those tests which are relevant to M1 alone will be ignored. A test 

is considered relevant to a particular state only if an attribute 

which is associated with the appropriate state list in the information 

structure is a possible result of the test given the probability dis¬ 

tribution for the current decision node. Since the control of the 

breadth of search is indirect, in general, the user cannot easily 

predict the extent of the pruning of the decision tree which will 

result. Some feeling for reduction in the search space can be gained 

from experience with the program in a particular problem area. Note 

that in the above example, if all the tests which are relevant to 

An exception occurs when a particular node corresponds to a 

certain diagnosis. The search of the branch containing this node 
will terminate there. 
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state M1 are also relevant to either M2 or M3i then the threshold 

probability will not result in any priming of the decision tree. 

The maximum search breadth is obtained with a threshold of zero. 

Like the search depth parameter^ the threshold parameter can 

be set prior to each stage in the diagnosis. Also these two para¬ 

meters can be varies independently of one another (subject only to 

a practical constraint of available storage). This flexibility per¬ 

mits the overall selection strategy to change during the course of 

the diagnosis. 

There are four routines in the test selection package, each 

performing a distinct function in the tree search. The principal 

routine is SEQDEC which serves as the main control for the process 

of test selection. The diagnostic program communicates with the 

test selection package through SEQDEC. It provides this routine 

the name of the node in the decision tree which corresponds to the 

current state of the diagnosis. SEQDEC then analyzes the tree to 

the appropriate depth and breadth to obtain the testing decision. 

Because the decision tree can require considerable storage 

even for limited search depth and breadth, the tree is developed dy¬ 

namically. That is, new levels are added only as they are needed, 

and levels are erased when they have been analyzed. SEQDEC is called 

with the name of a decision node as an argument. This decision node 

is represented by an empty SLIP list which has on its DLIST a list 

containing a probability distribution over system states. This dis¬ 

tribution incorporates all the attributes which were observed on the 
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path from the beginning of the tree to the current node. 

SEQDEC first determines the expected loss for an optimal decision 

at this node. The manner in which this value is determined will be 

explained below. If the level of the current node equals the re¬ 

quired depth of search this expected loss is returned as the expected 

loss for the node. If not, the current loss for this node is assigned 

this value and if the level of the node is the topmost level of the 

analysis, the terminal decision and its value are stored in a special 

list. In any event an additional level must be "grown" on the tree. 

First the routine RELTST is called by SEQDEC. RELTST determines the 

set of tests which are relevant to the states whose probability at 

the current node exceeds the threshold. Excluded from this set are 

all those tests which have been actually run. These latter tests are 

known to RELTST because whenever a test is selected by the diagnostic 

program and run by the user, its name is placed on a list called 

TSTRUN in common storage. RELTST stores the names of the relevant 

tests on the current decision node list. 

After RELTST has collected the set of relevant tests, SEQDEC 

processes each of these tests in turn. SEQDEC begins reading the 

list of tests. For each test, a routine called GR0W1 is invoked. 

This routine determines all possible results of the given test and 

their respective probabilities. For each result, the routine con¬ 

structs a new decision node. First the current test is placed on the 

top of TSTRUN to simulate the running of the test and then for each 
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of the possible results of the test, SEQDEC calls Itself recursively 

to obtain the expected loss of the resulting decision node. When 

this value has been obtained, it Is weighted by the probability of 

the given result and the product accumulated. The sum of the expected 

loss for each result is combined with the cost of the test. The cur¬ 

rent test is removed from TSTRUN and the portion of the decision tree 

which has just been analyzed is erased. If the analysis is at the 

topmost level the value of the test is saved. This means that the 

expected losses for all alternatives at the current level are available. 

In »-he event that the best alternative cannot be employed (e.g. a test 

cannot be run for some reason), the next best alternative can be 

chosen. In any case, the expected los:) for this test is compared with 

that of the best decision to date for the node. If it is less, the 

current test becomes the best decision. The analysis then proceeds 

to the next test alternative. When all alternatives have been evalu¬ 

ated for the current decision node, SEQDEC returns the expected loss 

of the best decision as determined by the analysis. 

The determination of the optimal terminal decision as accomplished 

by a routine called DLOSS. This routine employs the probability dis¬ 

tribution, the decision node and the loss function to determine the 

value of the minimum expected loss terminal decision for the node. 

If 7T j is the probability of the state Mj in the current distribu¬ 

tion and l^j is a typical element from the loss function matrix, DLOSS 

selects state Mg where 
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and E is the expected loss of the optimal terminal decision for the 

node. The state selected by DLOSS and the value Ë are returned to 

SEQDEC. 

By controlling the breadth and the depth of the search employed 

by the test selection function, the user can generate a number of 

different test selection heuristics. For example, he might use a 

threshold close to tero and a depth of one early In a diagnosis 

when many states are still possible. Because the probability dis¬ 

tribution based on only a few attributes may be quite diffuse, a 

low threshold Is needed to Insure that significant tests are not 

overlooked. 0„ the other hand, the potentially large number of de¬ 

cision nodes requires a limited depth of search. As the diagnosis 

progresses and a few states become relatively probable, the thres¬ 

hold can be raised with less danger of missing significant tests, 

with the higher threshold It may be possible to Improve the evaluation 

of tests by Increasing the depth of the search. 

The selection scheme above can be supplemented by the use of 

two additional features of the program. First, the user can re¬ 

strict the set of relevant tests to chose associated with the best 

terminal decision at a given node. In the case when the loss function 

Is a constant for all ordered pairs of states, this corresponds to 

considering the tests which are relevant to the most probable state. 
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Since the routine DLOSS can determine the best terminal decision at 

a given decision, the appropriate state can be made available to RELTST. 

By considering only the tests relevant to this state, the user in 

a sense in limiting the search to those tests which will tend to 

prove or disprove the hypothesis that the given state is indeed the 

best decision. In practice, the user obtains this option by setting 

the threshold probability to a number greater than one. 

In order to permit the user an even greater facility to test 

hypotheses, the program permits him to request a search for tests 

to prove or disprove the hypothesis that "the state of the system 

is Mk." If the user chooses to test such a hypothesis, the test se¬ 

lection function will alter its method of evaluating decision nodes. 

All decision losses (l^j) are set temporarily to a certain very 

high value. The routine DLOSS then considers only two states in its 

evaluation of the loss for a given node. One state is and the 

other is "not M^." With these adjustments, the test selection func¬ 

tion will rank tests according to their expected value in proving or 

disproving the presence of state M^. 

A comparison of a number of particular selection heuristics 

employed in this research will be presented later in the thesis. 

C. THE GENERATOR PROGRAM 

The diagnostic program discussed in the previous sections is a 

major tool in this research. By exploiting the interactive capabili¬ 

ties of the program, the user can employ it directly in the solution 
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of actual diagnostic problems. Of equal importance, however, is the 

availability of the program as a test vehicle for a variety of over¬ 

all diagnostic strategies. By specifying the heuristics to be em¬ 

ployed in the pattern sorting and test selection functions, one is 

defining a diagnostic strategy. Since diagnostic problems tend to 

be difficult and the program operation is quite complicated, it is 

not an easy task to make generalizations about a given diagnostic 

strategy. There are many important questions which can be asked about 

a diagnostic strategy such as 

• How is the performance of the program affected by noise signs? 

What is the effect of uncertainty in the probabilities on 

the performance of the program? 

How do various changes in the relevant probability distribu¬ 

tions affect program performance? 

Questions such as these are difficult to answer based on experience with 

only a few problem areas. If one is constrained to work with descrip¬ 

tions of actual systems, it may be very difficult to establish the 

conditions required for the test of a particular aspect of the pro¬ 

gram. If, on the other hand, one can employ a wide variety of system 

descriptions, the program can be exercised more thoroughly. One ap¬ 

proach is to create an information structure with the desired proper¬ 

ties and to test the diagnostic program with simulated problems from 

this artificial problem area. Information gained from such studies of 

diagnosis "in the abstract" may suggest improvements in the program. 
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It «y au» provlde a deeper lnslghe into ehe probiens ¡nvoived in 

SOlï1"8 real dl“ — II -CH a simulation faciUty 

were available, sinnilated cases generated from fh 
generated from the structure for an 

actual problem area could be utili^H ► 
lized to conveniently investigate 

aspects of diagnosis in that area. 

The diagnostic system includes such a simulation facility i„ 

the f0m °£ the Ih- program is the third MJor 

port Of the diagnostic system. Uke the diagnostic program, the 

generator makes extensive use of the information structure. The 

for which problems are to be simulated is described in the 

standard manner by the user. This description is converted to an 

information structure which is available to both the diagnostic pro- 

iram and the generator, the basic operation of the generator is as 

• FitSt’ a State U Ch0“" » random from the set of possible 

-a-s for the system in accordance with the , ^ probability 

distribution, then a certain number of initial attributes (the 

number being controlled by the user) are generated at random given 

the deSCriPtl°n °f the — - ‘»e Information structure, the set 

ol initial attributes constitutes the problem presented to the diag- 

nostic program. The latter is call^H .-o 
called to process these attributes. It 

selects a test in the usual manner 
uai manner. Given the state and the test 

the generator selects a test result 
result and conveys this response to 

the diagnostic program. This interaction W 
interaction between the generator and 

the diagnostic program continues until the latter arc 
latter arrives at a diagno- 
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sis. This diagnosis then can be compared with the "known" state 

used by the generator. 

As an example of the operation of the generator,, consider its 

use in the following simplified problem. The generator is used 

to simulate disease case histories for the disease-attribute proba¬ 

bility matrix presented in Table III. The relevant tests are listed 

to the right of the matrix. Assume that cases are to be drawn at 

random from the structure and that one initial attribute is to be 

presented to the diagnostic program. 

The generator first selects the disease. It does this by creat¬ 

ing a list of all possible diseases and cummulative probabilities. 

For this example, the list would be 

(D1 0.3 D2 1.0) 

Each cummulative probability is the sum of the a priori probabili¬ 

ties of the diseases preceding it in the list. Then a random number 

between zero and one is gen|ferated. The list of diseases and cummula¬ 

tive probabilities, call^T the generation list, is searched for a 

disease with the property that the probability preceding it is less 

titan and the probability following is greater than the given random 

number. This disease satisfying this condition is chosen for this 

case. Thus, if the random number generated in the example were 0.41, 

the disease selected would be D2. Assuming the disease D2 has been 

chosen, the generator now selects the initial attributes which define 
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TABLE 3 

Disease Description for Generator Example 

Disease 

a priori 

Probability 
P(Attribute/Disease) 

A2 A3 A4 A5 A6 

D1 

D2 

0.3 

0.7 

0.3 0.7 

0.8 0.2 

0.5 1.0 

0.3 0.2 

0.5 0.5 

0.6 0.4 

Test 

T1 

T2 

T3 

Attributes 

Al, A2 

A3 

A4 

T4 A5, A6 
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«Ith the appropriate probabilities and return. It to the diagnostic 

Program This iterative process continues until the diagnostic pro- 

gram has completed the diagnosis. 

In this example, only one attribute „as generated for each test. 

There are tests, however, from which several attributes can be ob¬ 

tained. Such tests are marked in the information structure, and the 

generator will generate a set of test results for these tests. 

The diagnostic system will record an extensive history of each 

diagnosis or selected aspects of that history on a history fn. „ 

requested to do so by the user. A schematic of the relationships 

a»ong the three major parts of the diagnostic system is presented 

1" Figure U. In the remainder of this section, certain features of 

the generator-diagnostic program interaction will be discussed in 

detail. 

The subroutine GETSYM is the principal link between the genera¬ 

tor and the diagnostic program. It is this routine which is called 

by the diagnostic program whenever the latter requires a test to be 

run. If the diagnostic program is being controlled by the user from 

the console, then GETSYM retrieves the test results from him. If 

the generator is in control, a routine called CENSYM is invoked to 

generate an appropriate response to the chosen test. The diagnostic 

program itself is independent of the source of responses to tests. 

GENSYM is also used by the generator to select the initial attributes 

Of a problem. All system output (such as requests for test results, 

distributions, etc.) is processed by a special output package. This 



Figure 14 

Schematic of Diagnostic System 
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package directs the output to the appropriate device. For example, 

the user may wish the current probability distribution printed both 

on the console and on the history file. He may wish the test evalu¬ 

ation results to be printed on the history file only. Some informa¬ 

tion he may not want recorded at all. The output package insures 

that all the output developed in the system is handled in accord¬ 

ance with the user's requests. 

It is important to note that the generator employs the informa¬ 

tion structure to obtain probabilities. This means the full set 

of retrieval routines such as PIJ are available for its use. This 

insures that probabilities used in the generation of states or 

test results will properly reflect the relationships used in the 

description of problem areas. 

In a simulation run, the user can specify 

1) The number of cases to be diagnosed. 

2) That cases should be drawn randomly or 

should all be one state, 

3) The number of initial signs, 

4) The depth and breadth of search, 

5) The number of noise signs to be introduced 

into each diagnosis. 

Although there are other controls which are desirable but not imple¬ 

mented, this set coupled with the selective output facility makes 

it quite easy to study specific aspects of a strategy. Of course. 



another advantage is that many cases can be simulated in a rea¬ 

sonable amount of time. 



Chapter 5 

DIAGNOSIS OF PRIMARY BONE TUMORS 

A* Nature of the Diagnostic ProhlPm* 

The diagnosis of primary bone tumors is based almost exclu 

sively on radiologic clues. Radiographs of bone tumors offer con¬ 

siderable evidence to be employed in diagnosis because the growth 

of a tumor in the dense medium of bone results in either destruction 

or proliferation of the bone. Either of these occurrences produces 

patterns of growth which are quite visible in radiographs. To a 

very great extent, the diagnosis of bone tumors Involves the inter¬ 

pretation of the growth patterns revealed by a radiograph, while 

the radiologic evidence is generally clear, the interpretation of 

this evidence is often difficult. 

Difficulties in interpretation seem to rise from two sources. 

The first is the variety of tumor classification schemes which 

exist. There is no universally accepted classification scheme for 

bone tumors (R-20). While this problem is no doubt a serious one, 

it was avoided in this work. Here the classification system em¬ 

ployed names tumors for the predominant cell type. Although there 

also are problems with this approach, the resulting classification 

scheme was deemed quite sufficient for the purposes of this research 

G S Lodui'rtr^^M0 sectT°n is derived from papers of Dr 
. S. Lodwick and his associates. (R20, R21, R22, R23) 

112 
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The second problem encountered in the diagnosis of bone 

tumors is the large number of potentially useful attributes which 

can be extracted from a radiograph. Generally speaking, there are 

four direct kinds of information which are obtained from a radio¬ 

graph of a bone tumor (R-20) 

1) Destruction of bone 

2) Proliferation of bone 

3) Mineralization of tumor matrix 

4) Location, size, and shape of tumor. 

Each of these general classes of information is broken down into 

a number of more specific attributes. The result is the large num¬ 

ber of attributes mentioned above. Hence, the diagnostician is con¬ 

fronted with a considerable amount of data which he may employ in 

classifying a particular tumor. 

The particular study discussed here involved the diagnosis 

of actual cases of bone tumors, each of which was classified into 

one of nine histological types. These types are listed in Table 4. 

The evidence employed in the diagnoses consisted of fifty-three 

attributes obtained principally from radiographs. (The age of the 

patient was the only non-radiologic attribute considered.) The 

attributes are listed in Table 5 along with their abbreviations 

used in discussions of particular diagnoses. 

The case histories and the disease-attribute probability matrix 

used in this study were obtained from Dr. G. S. Lodwick of the 
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University of Missouri. Dr. Lodwick and his associates developed 

the matrix as a result of many years experience with cases of bone 

tumors. Thus, the matrix represents the distillation of extensive 

diagnostic experience with the problem. It reflects both the stat¬ 

istical experience and understanding of the disease processes in¬ 

volved of the workers who created it. The papers cited above sum¬ 

marize their work and are recommended to any reader who is interested 

in a more authoritative view of the problem than the competence of 

this author permits him to present. 

Experiments in Bone Tumor Diagnosis 

The diagnostic system was used to study various aspects of 

bone tumor diagnoses. The disease-attribute probability matrix pro¬ 

vided by Dr. Lodwick was used as the basis for an information struc¬ 

ture for the system. A state was defined for each of the nine types 

of bone tumor. A set of thirty-two tests were defined. Some of 

these tests such as that of determining the age of the patient can 

result in one of a number of attributes. In the case of the age 

test, the possible attributes are: 1) age 0 to 9 years, 2) age 10 

to 19 years, 3) age 20 to 29 years, 4) age 30 to 39 years, and 

5) age 40 years and over. Other tests are specific for one attrib¬ 

ute, such as the test of checking for geographic destruction of 

bone. The set of tests and the respective attributes which may re¬ 

sult is presented in Table 6. Throughout the remainder of this 
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TABLE 4 

HISTOLOGICAL TYPES FOR BONE TUMOR DIAGNOSIS 

Type 

1» Chrondoblastoma 

2. Chrondosarcoma 
3. Ewing's Sarcoma 
4. Fibrosarcoma 

5. Giant Cell Tumor 

6. Osteosarcoma 

7. Parosteal Sarcoma 

8. Reticulum Cell Sarcoma 

9. Chrondomyzoid Fibroma 

... . Relative 
Abbreviation I^idence 

CB 

CS 

ES 

FS 

GC 

OS 

PS 

RC 

CF 

0.05 

0.17 

0.15 

0.10 
0.15 

0.25 

0.05 

0.05 

0.03 

1.00 

Note. This formulation assumes that each oaHani- u 
only one of the given dise.«, ^ ^ ^ 0ne and 
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TABLE 5 

ATTRIBUTES FOR BONE TIMOR DIAGNOSIS 

Attribute Meaning 

502 Age 00-09 years 
503 Age 10-19 years 
504 Age 20-29 years 
505 Age 30-39 years 
506 Age 40 years and over 
507 Tumor Size 01-30 Millimeters 
508 Tumor Size 31-60 Millimeters 
509 Tumor Size 61-90 Millimeters 
510 Tumor Size 91 MM and over 
511 Shape-Round (L LT 1.5 X W) 
512 Shape-Elongated (L GE 1.5 X W) 
513 Location-Central 
514 Location-Eccentric 
515 Location-Cortex/Parosteal 
516 Long Bone 
517 Flat Bone 
518 Small Bone 
519 Sacrum and Pelvis 
520 Any Bone-Epiphysis 
521 Any Bone-Growth Plate 
522 Tubular Bone-Articular Cortex 
523 Tubular Bone-Metaphysis 
524 Tubular Bone-Shaft 
527 Matrix-Radiolucent 
528 Matrix-Floccules 
529 Matrix-Solid 
530 Matrix-Lumpt 
531 Matrix-Clouds 
532 Destruction-Geographic 
533 Destruction-Motheaten 

Attribute Meaning 

534 Destruction-Permeated 
535 Margin-Regular 
536 Margin-Lubulated 
537 Margin-Ragged 
538 Margin-Indistinct 
539 Transition Sharp or Smudged 
540 Invaalve Zone 
541 Special Sign-Fracture 
542 Special Sign-Displacement 
543 Proliferation-Sclerotic Rim 
544 Prolif.-Multiple Small Foci 
545 Proliferation-Endostosis 
546 Periosteal-Hyperostosis 
547 Periosteal-Buttress 
548 Periosteal-Trabeculae (Septae) 
549 Cortex Expanded 
550 No Codman's Triangle 
551 One Codman's Triangle 
552 Two or More Codman's Triangles 
553 No periostosis 
554 Laminated Periostosis 
555 Amorphous Periostosis 
556 No Splculation 
557 Sunburst Splculation 
558 Hair-on-end Splculation 
559 Velvet Splculation 
560 Periosteal Response-Delicate 
561 Periosteal Response-Coarse 
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TABLE 6 

TESTS FOR BONE TUMOR DIAGNOSIS 

Test Possible Results 

1. TEST2 
2. TEST? 
3. TEST11 
4. TEST13 
5. TEST16 
6. TEST20 
7. TEST21 
8. TEST22 
9. TEST23 

10. TEST24 
11. TEST27 
12. TEST28 
13. TEST29 
14. TEST20 
15. TEST31 
16. TEST32 
17. TEST33 
18. TEST34 
19. TEST35 
20. TEST39 
21. TEST41 
22. TEST43 
23. TEST44 
24. TEST45 
25. TEST46 
2o. TEST47 
27. TEST48 
28. TEST49 
29. TEST50 
30. TEST53 
31. TEST56 
32. TEST60 

502, S03, S04, SOS, S06 
507, SOS, S09, S10 
Sil, S12 
513, S14, S15 
516, S17, S18, S19 
520, N 
521, N 
522, N 
523, N 
524, N 
527, N 
528, N 
529, N 
530, N 
531, N 
532, N 
533, N 
534, N 

535, S36, S37, S38 
S39, S40, N 
541, S42, N 
543, N 
544, N 
545, N 
546, N 
547, N 
548, N 
549, N 
550, S51, S52 
553, S54, S55 
556, S57, S58, S59 
S60, S61 

Note: ihe symbol N denotes a "normal" attribute. It means 
that a test may fail to reveal any of the other attrib- 

"J*8 Th«s, for TEST41, the possible results are 
541 or S42 or neither S41 nor S47 (N). 
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chapter, the abbreviations for diseases and attributes presented 

In Table 5 and Table 6 will be used. In the Initial set of ex¬ 

periments, all tests were assigned unit cost and the cost of all 

misdiagnoses (e.g. deciding the tumor is CS when it is really GC) 

was assumed to be 100,000. This number is quite arbitrary, and is 

used simply to make the decision losses much greater than the test¬ 

ing losses. 

Experiment 1. Diagnosis Based on All Attributes 

Each of the twelve case histories was presented to the diag¬ 

nostic program by inputting all the attributes for the case. The 

diagnostic program processed the attributes through the inference 

function and obtained a posterior distribution for the type of 

tumor. The results of this experiment are presented in Table 7 along 

with the diagnosis of a pathologist provided with each case history. 

The latter is traditionally accepted as the definitive diagnosis 

in cases of this type. 

Experiment 2. Sequential Diagnoses--Actual Case Histories 

The second experiment exercised the sequential capabilities 

of the diagnostic program. Again, all diseases were taken to be 

equally serious (1^ - 100,000, i ¿ j) and all tests were assigned 

unit cost. The same twelve cases were analyzed by the program. 

For each case, the program was presented with a set of initial at¬ 

tributes. This set was obtained by collecting the results of the 



TABLE 7 

Diagnoses Based on all Available 

Attributes for Actual Bone Tumor Case Histories 

Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Posterior DistribuHnn* 

CB 0.12 

GC 0.87 

OS 0.65 

CS 0.35 

CB 1.00 

CS 0.99 

OS 1.00 

ES 

RC 
.33 

.67 

CS 0.78 

FS 0.22 

ES 0.04 
ES 0.02 

RC 0.94 

ES 1.00 

CS 1.00 

GC 0.65 

CF 0.35 

Pathology 

GC 

OS 

CB 

CS 

OS 

RC 

CS 

ES 

ES 

CB 

GC 

PS 0.99 PS 

uniy types with posterior probability greater 

0.01 are shown in the tables in this cLpter. 
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first ten tests listed in Table 6 from the case histories. Thus each 

diagnostic problem was defined by approximately ten attributes. (In 

certain cases this number was smaller, because some tests are not 

relevant to specific bonas.) 

After processing the initial attributes, for the case, the pro¬ 

gram employed the test selection function to select a test to be inn. 

The results of the test selected were determined by consulting the 

given case history. The attribute or attributes resulting from this 

test were given to the program and the inference-test selection cycle 

repeated. Throughout this experiment the test selection function 

searched the decision tree to a depth of one and limited the breadth 

of search to those tests relevant to the most likely disease type. 

For each case, this sequential diagnosis was continued until 

the diagnostic program terminated the process. This termination 

occurred when the program determined the expected reduction in loss 

for the best test at the current decision node was less than the 

cost of the test. 

An example of a sequential diagnosis is presented in Table 8 and 

the results of the experiment are summarized in Table 9. 

The results of Experiment 2 underscore the potential advantage 

of sequential analysis of attributes in diagnosis. Since all diseases 

were taken to be equally serious for this experiment, the program 

found the best terminal decision to be the most probable disease. Since 

these same conditions held in Experiment 1, it is easy to make compari¬ 

sons between the results of the two experiments. 
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TABLE 8 

Sequential Diagnosis--An Example 

(Actual Case History 12) 

Test Resulting Attributes Posterior 

1. — S05, S10, S12, S15 
S16, NOT S20, NOT S21 
NOT S22, S23, S24 

2. TEST29 S29 

3. TESTSO S50 

4. TEST56 S56 

CS 
ES 
FS 
PS 
RC 

CS 
FS 
OS 
PS 

CS 
FS 
PS 

CS 
FS 
PS 

Terminal decision -- PS 
Pathology report -- PS 

Distribution 

0.42 
0.13 
0.10 
0.31 
0.02 

0.06 
0.02 
0.01 
0.91 

0.06 
0.01 
0.92 

0.05 
0.02 
0.93 
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TABLE 9 

Sequential Diagnosis of Bone Tumor Cases 
Summary of Results for Actual Case Histories 

Case and 
Pathology 

Number of 
Tests Selected 

by Program 

Distribution at 
Point of Terminal 

Decision 

Distribution 
When all Attrib¬ 
utes Considered 

1. (GC) 9 

2. (OS) 12 

3. (CB) o 

4. (CS) 4 

5. (OS) 4 

6. (RC) 13 

7. (CS) 4 

8. (ES) n 

9. (ES) 5 

10. (CB) 3 

11. (GC) 5 

CB 0.21 
GC 0.78 

CS 0.79 
OS 0.21 

CB 1.00 

CS 0.80 
ES 0.08 
FS 0.08 
OS 0.04 

CS 0.03 
ES 0.02 
OS 0.94 
RC 0.03 

ES 0.30 
FS 0.01 
RC 0.68 

CS 0.74 
FS 0.26 

ES 0.05 
FS 0.07 
RC 0.87 

CS 0.02 
ES 0.88 
OS 0.05 
RC 0.05 

CB 0.96 
CF 0.04 

CS 0.10 
ES 0.01 
GC 0.81 
CF 0.08 

CB 0.12 
GC 0.87 

CS 0.65 
OS 0.35 

CB 1.00 

CS 0.99 

OS 1.00 

ES 0.33 
RC 0.67 

CS 0.78 
FS 0.22 

ES 0.04 
FS 0.02 
RC 0.94 

ES 1.00 

CB 1.00 

GC 0.65 
CF 0.35 
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FS 0.02 
PS 0.93 

Average number of initial 
Average number of test by 

PS 0.99 

attributes 9.4 
program 7.1 

I 
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With regard to "accuracy/1 it can be seen that the lists of 

terminal decisions from the two experiments are identical and these 

decisions are the same as those of the pathologist in ten of the 

twelve cases. The major difference between the two sets of results 

is the average number of tests performed per diagnosis. In the first 

case this average is 30. (The average is less than 32 because some 

test results were not available or were not relevant for a given 

case and the test was not counted.) Sequential analysis of the given 

cases required an average of 16.7 tests per case. This average in¬ 

cludes 9.4 tests on the average to obtain the initial attributes. 

Thus, by employing sequential analysis, the program in each case 

obtained the same diagnostic decision as it obtained using all attrib¬ 

utes, but with only slightly more than half as many tests. 

The nature of diagnosis of bone tumors makes this saving seem 

immaterial. That is, almost all attributes are obtained from a 

radiograph, and once the radiograph has been obtained, the marginal 

cost of the tests considered here is essentially zero. One can 

easily imagine a situation, however, in which tests are completely 

independent of one another. In such a situation, the savings from 

sequential diagnosis might be quite significant. The fact that the 

performance of a diagnostician should be assessed in terms of both 

accuracy and cost favors the sequential mode of operation for the 

program. The question of how to assess the performance of a diag¬ 

nostician will be considered at greater length later. 
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Another difference between the results of the two experiments 

is found in the posterior distributions at the points of a terminal 

decision. The average value of the maximum likelihood probability 

for the terminal decisions can be taken as an indication of the 

equivocation or uncertainty in the average decision. For Experi¬ 

ment 1 this value is 0.85 while for Experiment 2, it is 0.80. 

Therefore, the sequential diagnoses terminate on slightly less 

"certain" decisions. 

Experiment 3. Sequential Analysis--Simulated Case Histories 

Table 10 presents the results of the sequential diagnoses of 

ten simulated case histories. The generator function was used to 

develop the cases and the diagnostic program employed as usual. 

Again, all diseases were taken to be equally serious and all tests 

were assigned unit cost. 

Again, the marked advantage of sequential diagnosis is evi¬ 

dent. The average number of tests required for diagnosis was 17.0. 

Based on a maximum likelihood terminal decision, the diagnostic pro- 

granfe terminal decision was correct in nine of ten cases. 

On the average, the diagnostic program was more certain of its 

terminal decisions than in the previous experiments (average proba¬ 

bility of terminal decision ■ 90.5). 
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TABLE 10 

Sequential Diagnosis of Simulated Case Histories 

Histological Number of Inl- 
Type tlal Attributes 

1. PS 14 

2. ES 7 

3. OS 11 

4. GC 5 

5. ES 12 

6. RC 5 

7. CB 11 

Number of Tests 
Selected by Program 

9 

9 

0 

11 

6 

8 

8 

Distribution at 
Point of Terminal 

Decision 

CS 0.26 
FS 0.73 

ES 0.88 
OS 0.01 
RC 0.11 

OS 1.00 

CS 0.01 
GC 0.79 
CF 0.20 

CS 0.01 
ES 0.94 
OS 0.04 

CS 0.05 
FS 0.78 
RC 0.16 

CB 0.93 
GC 0.02 
CF 0.05 

8. OS 11 

9. FS 5 

10. GC 10 

8 OS 0.98 
CS 0.02 

12 CS 0.11 
FS 0.88 

8 CB 0.04 
FS 0.01 
GC 0.94 
CF 0.01 

Average number of 
Initial attributes 

9.1 

Average number of 
tests by program 

7.9 



Chapter 6 

DIAGNOSIS OF CONGENITAL HEART DISEASE 

A, The Nature of the Diagnostic Problem 

A prolonged study of a group of thirty-four types of congeni¬ 

tal heart disease has been conducted by Warner and his associates 

(R12, R13, R14). As a result of this study, they developed a 

disease-attribute probability matrix for thirty-five types (includ¬ 

ing "normal") and fifty-seven attributes. The attributes can be 

grouped into four main categories: murmurs, electrocardiogram find- 

iogs. X-ray findings, and other symptoms and physical signs. The 

problem of diagnosing heart disease cases based on this matrix is 

more difficult than the bone tumor problem discussed in Chapter 5. 

One reason for the increased difficulty is simply the increased 

number of diseases. Also certain groups of diseases have Quite 

similar attribute probabilities in the matrix. 

As noted in Chapter 2, Warner developed a computer program to 

perform diagnosis of congenital heart disease patients based on a 

Bayesian analysis of their signs and symptoms. His program employs 

the matrix mentioned above, but in addition it must account for cer¬ 

tain dependencies (such as mutual exclusion of signs or symptoms). 

From the performance measures presented in Chapter 2, it can be 

seen that Warner's program performs at the level of an experienced 

physician. 
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The experiments discussed here involved the use of the disease- 

attribute probability matrix prepared by Warner in the diagnosis of 

congenital heart disease. As before, the matrix was the basis for 

each of the disease types and the appropriate attribute lists created. 

Twenty-eight tests were also defined for the problem. Dr. Warner 

provided nine case histories, each with the correct diagnosis and 

the diagnosis obtained by his program. In this instance, the cor¬ 

rect diagnoses were determined by follow-up studies such as heart 

catheterization or autopsy. 

Table 11 presents the names of the thirty-five states of the 

information structure used in these experiments and the names of 

the corresponding diseases. Table 12 lists the attributes of the 

problem; and Table 13 the tests. 

B. Experiments in Congenital Heart Disease Diagnosis 

Experiment 4. Diagnosis Based on All Attributes 

The first experiment tested the diagnostic capability of the 

program given all the known attributes for each of the actual case 

histories provided by Dr. Warner. The results of this experiment 

are summarized in Table 14. In each instance, the diagnostic pro¬ 

gram duplicated the results obtained by Warner's program for the 

given case history. (That is, both programs arrived at the same 

posterior probability distribution given all attributes.) 



129 

TABLE 11 

Heart Disease Types 

States Diseases 

D01 Normal 

D02 Atrial septal defect 

D03 Atrial septal defect with 

pulmonary stenosis 

D04 Atrial septal defect with 

pulmonary hypertension 

DOS Atrio-ventricular communis 

D06 Partial anomalous pulmonary 

venous connection 

DO? Total anomalous pulmonary 

venous connection 

DOS Tricuspid atresia 

(without transposition) 

D09 Ebstein's anomaly 

DIO Ventricular septal defect with 

valvular pulmonary stenosis 

Dll Ventricular septal defect with 

infundibular pulmonary stenosis 

D12 Pulmonary stenosis, valvular, 

gradient ^ 40 ran. Hg. 

D13 Pulmonary stenosis, infundibu¬ 

lar, gradient 40 ran. Hg. 

D14 Pulmonary atresia 

D15 Peripheral pulmonary stenosis 

D16 Pulmonary hypertension 

D17 Aortic pulmonary window 

States Diseases 

D18 Patent ductus arteriosus 

D19 Pulmonary arterio-venous Fistula 

D20 Congenital metral disease 

D21 Primary myocardial disease 

D22 Anomalous origin or coronary 

artery 

D23 Congenital aortic disease 

D24 Ventricular septal defect with 

pulmonary flow — 1.4 systemic 

flow 

D25 Coarctation of aorta 

D26 Truncus arteriosus 

D27 Transposition 

D28 Hypertrophic subaortic stenosis 

D29 Absent aortic arch 

D30 Ventricular septal defect with 

pulmonary flow ^ 1.4 systemic 

flow 

D31 Ventricular septal defect with 

pulmonary hypertension 

D32 Patent ductus arteriosus with 

pulmonary hypertension 

D33 Tricuspid atresia with 

transplantation 

D34 Pulmonary stenosis gradient 

< 40 ran. Gh. 

D35 Ruptured sinus Valsalva 
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TABLE 12 

Attributes for Congenital Heart Disease 

Meaning 
¿í&ü Meaning 

SOI Age, less then 1 year 

fj? A*** 1 y«*r to 20 years 
503 Age, 20 or more years 
504 Cyanosis, mild 
505 Cyanosis, severe (with 

clubbing 
506 Cyanosis intermittent 
SO? Cyanosis differential 
508 Squatting 
509 Apex systolic 
510 Apex systolic, holo 
511 Apex systolic, mid 
512 Apex diastolic 
513 Apex diastolic, early 
514 Apex diastolic, late 
515 L 4th systolic 
516 L 4th systolic, holo 
517 L 4th systolic, mid 
518 L 4th continuous 
519 L 4th diastolic 
520 L 4th diastolic, holo 
521 L 4th diastolic, early 
922 L 2nd systolic 
523 L 2nd systolic, holo 
524 L 2nd systolic, mid 
925 L 2nd continuous 
527 R 2nd systolic 
528 R 2nd diastolic 

529 
530 
531 
535 
536 
537 
538 
540 

541 
542 
543 

544 
545 

546 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 

Post systolic 
Post continuous 

Murmur louder than gr 3/6 (10 mn) 
Accentuated ?2 
Diminished ?2 
Fixed split ?2 

Femoral pulse less than brachial 
Atrial fibrillation or broad 
notched P wave 
Axis, right (more than 110°) 
Axis, left (less than 0*) 
R wave greater than 1.2 mv in 
lead Vi 
rR' or qR in lead Vj 

R wave greater than 2.5 mv in 
lead V6 

T wave inversion in lead Vt 
Rib notching 

Peripheral vessels increased 
Peripheral vessels decreased 
Hilar vessels increased 
Hilar vessels decreased 
Main pulmonary artery large 
Main pulmonary artery not seen 
Aorta large 
Aorta small 
Cardiomegaly 
Snowman 



TABLE 13 

Tests for Heart Disease Diagnosis 

Tests Pos sible Results 

1. TESTl 
2. TEST4 
3. TESTS 
4. TEST9 
5. TESTIO 
6. TEST12 
7. TEST13 
8. TESTl5 
9. TEST16 

10. TEST19 
11. TEST20 
12. TEST22 
13. TEST23 
14. TEST27 
15. TEST28 
16. TEST29 
17. TEST31 
18. TEST35 
19. TEST37 
20. TEST38 
21. TEST40 
22. TEST41 
23. TEST43 
24. TEST44 
25. TEST45 
26. TEST46 
27. T2ST47 
28. TEST48 
29. TEST50 
30. TEST52 
31. TEST54 
32. TEST56 
33. TEST57 

SOI, S02, S03 
504, S05, S06, S07, 
505, N 
509, N 
510, Sll, N 
512, N 
513, S14, N 
515, N 
516, S17, S18, N 
519, N 
520, S21, N 
522, N 
523, S24, S25, N 
527, N 
528, N 
529, S30, N 
S31, N 
535, S36, N 
536, S37, N 
S38, N 
540, N 
541, S42, N 
543, N 
544, N 
545, N 
546, N 
547, N 
548, S49, N 
S50, S51, N 
S52, S54, N 
S54, S55, N 
556, N 
557, N 
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TABLE 14 

Diagnoses Based on All Available Attributes 

for Actual Heart Disease Case Histories 

Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Posterior DistribuHnn* 

D03 0.91 

NORMAL 0.04 

D34 0.03 

DOS 0.84 

D02 0.09 

D31 0.03 

D04 0.03 

D32 1.00 

D20 0.41 

D28 0.38 
NORMAL 0.22 

D24 0.04 
D34 0.02 

Dll 0.01 

D08 0.94 
D33 0.05 

D32 0.98 

D29 0.02 

D31 0.47 

D30 0.37 

DOS 0.08 

D02 0,03 
D32 0.02 

D30 0.87 
D02 0.12 

D31 0.70 

D27 0.20 

D26 0.10 

Definitive Diagnosis 

D09 

D04 

D02 

NORMAL 

D33 

D32 

D31 

D30 

D27 

* í‘ysh0Í^SeS WUh pr0bablUty Sreater than or equal to 0.01 
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Experiment 5. Sequential Diagnosis of Heart Disease Cases 

The actual heart disease cases were also diagnosed by the pro¬ 

gram using the sequential mode of operation. In each case, the 

initial attributes presented to the program were the results from 

a set of seven tests relating to physical signs. The diseases 

were assumed to be equally serious (Ijj = 100,000, i ¿ j) and all 

tests were assigned unit cost. The search depth in the test se¬ 

lection function was one in each case. 

A summary of the results of this experiment is presented in 

Table 15. Again, the advantage of sequential diagnosis is appar¬ 

ent. The program required an average of 5.8 tests to obtain a 

diagnosis compared to the thirty-three tests required to determine 

all attributes. This small number of tests is interesting. Re¬ 

call the sequential diagnosis of the bone tumor cases required an 

average of 6.7 tests per case, although the problem involves only 

one quarter as many states as the heart disease problem. Several 

reasons might be advanced to account for this. First, the tests 

associated with heart disease may include a number which have little 

value in differentiating groups of diseases. Thus, in a given 

problem, the test selection function may choose a terminal decision 

after relatively few tests have been run. A second reason may be 

the relevance of more inter-attribute relationships in the heart 

disease problem. Such relationships may be quite useful in diagno¬ 

sis, but the testing sequences for them are not examined since the 
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TABLE 15 

Sequential Diagnosis of Actual Heart Disease Cases 

Case and 

Definitive 

Diagnosis 

1. D09 

2. D04 

3. D02 

4. NORMAL 

5. D33 

6. D32 

7. D31 

8. D30 

Number of 

Tests Selected 

by Program 

10 

4 

1 

10 

3 

0 

10 

8 

Distribution 

at Terminal 

Decision 

NORMAL 0.04 

D02 0.06 

D03 0.69 
Dll 0.02 

D18 0.05 

D26 0.03 

D34 0.03 

D02 0.08 

D04 0.17 
DOS 0.62 

D31 0.10 

D27 0.03 
D32 0.96 

NORMAL 0.07 

D10 0.03 

Dll 0.07 

D12 0.02 

D20 0.67 

D24 0.01 

D28 0.10 

D08 0.92 

D33 0.01 

D32 0.98 

D29 0.01 

D04 0.01 

DOS 0.09 

D31 0.86 
D32 0.02 

D02 0.03 

D05 0.02 

D20 0.01 

D30 0.89 

Distribution 

Based on all 

Attributes 

NORMAL 0.04 

D03 0.91 

D34 0.03 

D02 0.09 

D04 0.03 

DOS 0.83 

D31 0.03 

D32 1.00 

NORMAL 0.22 

D28 0.38 
D24 0.04 

D20 0.41 

D34 0.02 

Dll 0.01 

DOS 0.94 

D33 0.05 

D32 0.98 

D29 0.02 

D31 0.47 
D30 0.37 

DOS 0.08 

D32 0.02 

D30 0.87 

D02 0.12 
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9. D27 6 Dll 0.02 D31 

D19 0.01 D27 
D24 0.06 D26 

D26 0.06 

D31 0.77 

D33 0.03 

Average number of initial attributes - 7 

Average number of tests by program « 5.8 

0.70 

0.20 

0.10 
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depth of the tree search Is limited to one level. Unfortunately, an 

increase in the depth of search leads to prohibitive amounts of com¬ 

putation in the heart disease problem. A deeper search may be posai- 

ble if more powerful breadth-limiting heuristics are developed. 

On the whole, the performance of the program with sequential 

diagnosis is comparable to that when all attributes are available. 

The one apparent exception to this involves case 9. Here the se¬ 

quential diagnosis failed to assign a probability of greater than 

0.01 to disease D27. The seriousness of this failure depends on 

medical considerations which are not discussed here. The general 

problem of measuring diagnostic performance, however, will be dis- 

cussed in Chapter 8. 



Chapter 7 

FURTHER EXPERIMENTS WITH THE DIAGNOSTIC SYSTEM 

In order to explore the potential value of the diagnostic 

system as a tool for the study of a variety of diagnostic problems 

and strategies, some further experiments were performed. The re¬ 

sults of these experiments are reported in this chapter. 

Experiment 6. The Effect of a Very Serious State 

In the experiments discussed in Chapters 5 and 6, it was 

assumed that the loss for misdiagnosis was the same for all pairs 

of diseases. For each experiment, the elements of the loss func¬ 

tion matrix were taken to be 0 for lit and 100,000 for 1^, Ijtj. 

For this reason, the diagnostic program always selected the most 

likely disease as its terminal decision. One can easily imagine 

situations, however, in which the assumption of a constant Ions for 

misdiagnosis independent of the actual disease is unrealistic. For 

example, it may be far more serious to diagnose pneumonia as a com¬ 

mon cold than vice versa. Sfnce the diagnostic program incorporates 

such considerations in its rules for selecting a terminal decision, 

changes in the loss function matrix can result in pronounced 

changes in its decisions. 
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This effect was observed in two different situations. In 

the first, the loss function matrix is presented in Table 16. Note 

that it is very costly to miss the diagnosis of CB. The misdiag¬ 

nosis of either CS or ES as a disease other than one of these two 

or CB is quite serious, but it is not particularly serious to diag¬ 

nose CS as ES or CB or ES as CS or CB. Failure to diagnose one of 

the remaining diseases results in a loss which is independent of 

the diagnosis made. 

The generator was used to generate seven case histories of 

bone tumor cases. Each case was diagnosed by the diagnostic pro¬ 

gram in the light of the new loss function. The results of this 

experiment are summarized in Table 17. From this table, it can 

be seen that the new loss function affects only one decision, that 

of case 3. In this case, the diagnostic program selected CB as 

the terminal decision in spite of the fact that GC (the actual di¬ 

sease) was more than three times as probable. The loss for diag¬ 

nosing CB as GC is 1,000 times that of diagnosing GC as CB, however, 

and this fact dominates the decision of the program. The relative 

seriousness of CB does not affect the diagnoses of the remaining 

cases because the observed attributes excluded CB as a possibility 

in each case. 

The effect of a serious disea?» on diagnosis can be made even 

more pronounced if the serious disease is not easily distinguished 

from other less serious ones. For example, the disease CS often 
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TABLE 16 

Loss Function Matrix for Bone Tumor Diagnosis 
(in thousands) 

Actual Disease 

Diagnosis CB 

CB 0 

CS 100 

ES 100 

FS 100 

GC 100 

OS 100 

PS 100 

RC 100 

CF 100 

CS ES FS GC 

0.1 0.1 1 1 

0 0.1 1 1 

0.1 0 1 1 

10 10 0 1 

10 10 1 0 

10 10 1 1 

10 10 1 1 

10 10 1 1 

10 10 1 1 

OS PS RC CF 

1111 

1111 

1111 

1111 

1111 

0 111 

10 11 

110 1 

1110 
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TABLE 17 

Sequential Diagnosis of Cases for Loss 
Function of Table 16 

Case and Number of Ini- 

Disease tial Attributes 

Number of Distribution 

Tests Selected at Terminal 

by Program Decision 

1. (PS) 15 

2. (GC) 8 

3. (GC) 9 

4. (ES) 10 

5. (ES) 8 

6. (OS) 13 

7. (GC) 8 

1 PS* 1.00 

7 

3 

GC* 0.90 

FS 0.09 

CS 0.01 

CB* 0.24 

GC 0.76 

0 ES* 0.99 

RC 0.01 

2 ES* 0.96 

CS 0.02 

0 OS* 1.00 

12 GC* 0.89 

FS 0.09 
CS 0.02 

* Terminal decision by program 
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appears in a terminal distribution when the actual disease is another. 

This means that CS has not been excluded as a possible diagnosis when 

a terminal decision is made. By making CS very serious relative to 

the other diseases, the decisions of the program can be strongly in¬ 

fluenced. 

The loss function matrix presented in Table 18 represents just 

this situation. A series of simulated cases was diagnosed by the pro¬ 

gram using this loss function. The results of this experiment are 

summarized in Table 19. Here the seriousness of CS dominates all 

decisions, and the terminal decision is CS in all cases. Note also 

that the terminal decision is made after relatively few tests have 

been run and while the posterior distribution is relatively diffuse. 

The predominance of terminal decisions for disease CS is a result 

of the seriousness of that disease. The decrease in the number of 

tests per case and the diffuse terminal distributions reflect the 

difficulty finding a single test which promises to significantly al¬ 

ter the expected loss. Since the diagnostic program employed a one 

level look ahead in searching the decision tree for these cases, it 

did not consider possible sequences of several tests to resolve this 

problem. This point will be discussed in more detail later in the 

thesis. 

The above example is but one in which the loss function has a 

significant effect on the terminal decisions made by the diagnostic 

program. Because the test selection strategy also accounts for the 

loss function, it, too, is affected by changes in the matrix. There- 
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TÀBLS 18 

Loss Function Matrix for Bone Tumor Diagnosis 
(in thousands) 

Actual Disease 

Diagnosis CB 

CB 0 

CS 100 

ES 100 

FS 100 

GC 100 

OS 100 

PS 100 

RC 100 

CF 100 

CS ES FS GC 

1111 

0 111 

10 11 

110 1 

1110 

1111 

1111 

1111 

1111 

OS PS RC CF 

1111 

1111 

1111 

1111 

1111 

0 111 

10 11 

110 1 

1110 
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TABLE 19 

Sequential Diagnoses of Cases 

for Loss Function of Table 18 

Number of 
Case and Number of Ini- Tests Selected 

Disease tial Attributes by Program 

Distribution 

at Terminal 

Decision 

1. (FS) 14 1 CS* 0.56 

ES 0.02 

FS 0.34 

CF 0.07 

2. (CS) 8 2 CS* 0.96 

FS 0.02 
ES 0.02 

3. (CS) 8 4 CS* 0.11 

FS 0.55 

GC 0.03 
OS 0.02 

RC 0.30 

4. (OS) CS* 0.08 

OS 0.91 

5. (CB) 6 2 CS* 0.16 

CB 0.21 

ES 0.03 

FS 0.11 

GC 0.48 

6. (GC) 7 2 CS* 0.15 

CB 0.04 

FS 0.07 

GC 0.53 

OS 0.12 

PS 0.06 

7. (OS) 15 CS**0.01 

OS 0.88 

FS 0.06 

* Terminal decision by program 
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fore, an important facility in the study of diagnostic strategies 

for a particular application is the ability to assess the sensitivity 

of these strategies to the loss function. Although the current 

version of the diagnostic system restricts the loss function to a 

matrix form, it is still possible to employ wide ranges of the 

values of the matrix elements in a given application study. This 

facility coupled with the capabilities of the generator makœ it 

possible to study the performance of different versions of the diag¬ 

nostic program with a variety of matrix loss function. 

Experiment 8. Studies of a Test-Selection Heuristic 

The experiments discussed in Chapters 5 and 6 indicate the value 

of sequential diagnosis in reducing the number of tests required for 

a diagnosis. Therefore, it is worth some effort to improve the opera 

tion of the test-selection function. 

One problem which can arise in the use of the test-selection 

function of the current system is the appreciable amounts of com¬ 

putation required to evaluate all the relevant tests at a given de¬ 

cision node. It would be quite desirable to reduce the amount of 

computation devoted to test selection provided that the diagnostic 

capability of the program were not Impaired. As an example of the 

amount of computation involved in test selection, consider the fol- 

lowrng. In the diagnosis of congenital heart disease, there can be 

as many as thirty-five states with non-tero probabilities in the 

current distribution. If there are twenty relevant tests at a given 
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decision node, each with two possible results, a one-level evaluation 

of these tests could require the creation of forty distributions, 

each requiring the computation of thirty-five updated probabilities. 

This is a significant amount of processing for a highly interactive 

program, and the example cited does not represent a particularly 

large set of alternatives. Since the test-selection function may be 

performed many times during a diagnosis, there is a good reason to 

reduce the time required to perform it. An obvious approach is to 

improve the efficiency of the code for the function. While this 

would no doubt lead to improvements, it was no., attempted. Atten¬ 

tion was focused on attempting to reduce the number of tests con¬ 

sidered, rather than reducing the time devoted to the evaluation 

of an individual test. 

This approach was motivated by the results of the experiments 

with sequential diagnosis. There it was observed that relatively 

few tests were required for diagnosis by the program. The particu¬ 

lar set of tests employed for a given diagnosis is determined dynam¬ 

ically by the program, and varies from one diagnosis to another. If 

one could guess which tests would be relevant to a particular diag¬ 

nosis, the total number of tests considered could be reduced signifi¬ 

cantly. A guess about the relevance of certain tests must not be 

irreversible, however, because the value of some tests will become 

apparent only after other tests have been run. 

At any stage in a diagnosis, the current distribution provides 
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the most logical basis for a hypothesis about the future relevance 

of particular tests. One heuristic which Incorporates this view is 

the one which restricts the set of tests considered to those which 

are relevant to the state which Is the best terminal decision at the 

current node. This heuristic favors those tests which tend to con¬ 

firm or dispro« the current "best guess" about the problem. It 

also had the property of reversibility mentioned above. When the 

terminal decision changes, the set of relevant tests changes corren- 

pondlngly. 

This heuristic was employed in a number of experiments with 

both congenital heart disease problems and bone tumor problems. In 

the cases studied it resulted in the same number of tests selected 

as the standard function which employs no such heuristic. This 

heuristic does reduce the average number of decision nodes considered 

per diagnosis. This reduction is not great, however, because in both 

problem areas the diseases share many attributes in common, and hence 

many relevant tests. Thus, at any decision node, almost almost all 

the tests are relevant to the state determined to be the best terminal 

decision. 

A second heuristic which offered a potentially greater reduction 

in the number of decision nodes considered per diagnosis was also 

considered. This heuristic employs the current distribution to "guess' 

which tests will not be useful in the remainder of the diagnosis. 

Tests which are thought to have little value are temporarily removed 
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from consideration. At a later point in the diagnosis these tests 

may be released for further consideration. 

The actual operation of this heuristic is as follows. At a 

given decision node, the set of relevant tests is evaluated by the 

test selection function. Then the set of tests is partitioned into 

two disjoint subsets. In the first are all those tests with the 

property that the sum of the cost of the test plus the expected loss 

of a terminal decision after the test has been run exceeds the ex¬ 

pected loss of the current terminal decision. These tests are said 

to be dominated. The second set consists of all the remaining un¬ 

dominated tests. The heuristic hypothesizes that the tests in the 

dominated set will remain dominated for the remainder of the diag¬ 

nosis. This set of tests is placed on the top of a push-down stack. 

At each decision node the push-down stack is examined prior to evalu¬ 

ating each test. If the test is found in the stack it is not con¬ 

sidered at the decision node. 

In general, then, each iteration of the test selection function 

produces a new set of dominated tests which are pushed onto the stack. 

This means the set of relevant tests is generally decreased at each 

stage of the diagnosis. Whenever there are no undominated tests at a 

given decision node (i.e. whenever the terminal decision is selected), 

the program releases the set of dominated tests (if one e: ists) on 

the bottom of the stack. This corresponds to re-evaluating those 

tests which were tentatively discarded earliest in the diagnosis. 
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The re‘80n f0r thlS Ch^ - to reconsider 

«se. which «re doeineted „Hen cHe dieiriHution „as quUe di„er.nt 

present one. I£ the distribution has changed little, tests 

y, there ls no guarantee that this method „ill prodllc<. the de_ 

“te» «ffect. It is u»,d primary .8 an exMçle of a pos8lble ap_ 

Ptoach, and additional discussion „in be devoted to the subject belo„. 

The "dominated-test" heuriqn^ 
heuristic was tested in the sequential 

diagnosis of both the heart cases k 
ases and bone tumor cases. The nine 

dlSMSe CaSeS “d the tumor esses „ere used as the 

testing ssmple. the same initial attributes tor a given case „ere 

Stven to both the "dominated-test.. and the standard ver- 

n of the diagnostic program. The number of tests by the program, 

decision nodes considered during diagnosis, and the 

■■ “• -- -.... ... 

suits are summarized in Tables 20 through 23 a u 
nrou8h A number of these 

results have an interesting interpretation. 

In both the heart disease cases e-u u 
cases and the bone tumor cases the 

dominated-test heuristic results in . substantia, reduction 1„ the 

average number of decision nodes considered per diagnosis. 1„ the 

— disease problem, this heuristic result, in . larger average 

number of tests performed per diagnosis r .. 
R diagnosis. In situations „hen the cost 

ef an average test exceeds the value of th. 
value of the computation saved, this 

« “ ««ect. The reeson for this reduction in diag¬ 

nostic efficiency can be seen from the folding interpretation of 
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TABLE 20 

Sequential Diagnosis of Heart Disease Cases-- 
Standard Test Selection Function 

Number of 
Case and Initial Tests Selected 
Diagnosis Attributes by Program 

1. D09 10 

Number of 
Decision 

Nodes 
Considered 

541 

2. D04 7 

3. D02 7 

4. NORMAL 7 10 

287 

133 

523 

5. D33 7 

6. D32 7 

7. D31 7 10 

248 

66 

513 

Distribution 
at Terminal 

Decision 

NORMAL 0.04 
D03 0.69 
D34 
DO 2 
D18 
D26 

D02 
D04 
DO 5 
D31 
D27 
D32 

0.03 
0.06 
0.05 
0.03 

0.08 
0.17 
0.62 
0.10 
0.03 
0.96 

NORMAL 0.07 
F10 0.03 
Dll 
D12 
D20 
D24 
D28 

DOS 
D33 

D32 
D29 

D04 
DOS 
D31 
D32 

0.07 
0.02 
0.67 
0.01 
0.10 

0.92 
0.01 

0.98 
0.01 

0.01 
0.09 
0.86 
0.02 
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8. D30 7 8 457 D02 0.03 

DOS 0.02 

D20 0.01 

D30 0.89 

9. 027 7 6 379 Dll 0.02 

D19 0.01 

D24 0.06 

D26 0.06 

D31 0.77 

D33 0.03 

Average number of tests by program * 5.8 

Average number of decision nodes considered > 350 
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TABLE 21 

Sequential Diagnosis of Heart Disease Cases 
Dominated Test Heuristic 

Case and Initial 

Number 
of Tests 
Selected 

Diagnosis Attributes by Program 

1. D09 11 

Number of 
Decision Nodes 

Considered 

283 

2. D04 163 

3. D02 7 

4. NORMAL 7 16 

66 

345 

5. D33 

6. D32 

7. D31 11 

176 

66 

269 

Distribution 
at Terminal 

Decision 

NORMAL 0.04 
D03 0.70 
D05 
D02 
Dll 
D18 
D26 
D34 

0.01 
0.06 
0.02 
0.05 
0.03 
0.03 

D02 0.08 
D04 0.16 
D05 0.63 
D31 0.03 

D27 
D32 

0.03 
0.96 

NORMAL 0.50 
Dll 0.02 
D15 
D20 
D28 

D08 
D33 

D32 
D29 

0.02 
0.24 
0.02 

0.98 
0.01 

0.98 
0.01 

D04 0.06 
D05 0.14 
D30 0.01 
D31 0.71 
D32 0.07 
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8. D30 7 10 301 

9. DZ? 7 6 216 

D02 0.04 

D04 0.02 

D05 0.02 

DIS 0.03 

D20 0.04 

D30 0.70 

D31 0.08 

D32 0.02 

Dll 0.02 

D31 0.77 

D24 0.06 

D26 0.06 

D33 0.03 

Average number of tests by program - 7 

Average number of decision nodes considered = 208 
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TABLE 22 

Sequential Diagnosis of Bone Tumor Cases 

Standard Test Selection Function 

Case and 

Pathology 

1. (GC) 

2. (OS) 

3. (CB) 

4. (CS) 

5. (OS) 

6. (RC) 

7. (CS) 

8. (ES) 

9. (ES) 

10. (CB) 

11. (GC) 

12. (PS) 

Initial 

Attributes 

7 

10 

9 

70 

10 

10 

8 

8 

6 

10 

10 

10 

Number of 

Tests 

Selected by 

Program 

9 

12 

0 

4 

4 

13 

4 

11 

5 

3 

5 

3 

Number of 

Decision 

Nodes 

Considered 

269 

425 

0 

223 

194 

406 

228 

475 

278 

109 

169 

142 

Distribution 
at Terminal 

Decision 

GC 0.78 
CB 0.21 

OS 0.35 

CS 0.65 

CB 1.00 

CS 0.99 

OS 1.00 

RC 0.68 
ES 0.30 

FS 0.01 

CS 0.78 

FS 0.22 

ES 0.05 

FS 0.07 

RC 0.87 

ES 0.88 

RC 0.05 

OS 0.05 

CS 0.02 

CB 0.96 
CF 0.04 

GC 0.81 

CS 0.10 

CF 0.08 

ES 0.01 

PS 0.93 
FS 0.02 

CS 0.05 

Average number of tests by program = 7.1 

Average number of decision nodes considered = 243 
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Case and 

Diagnosis 

1. (GC 

2. (OS) 

3. (CB) 

4. (CS) 

5. (OS) 

6. (RC) 

7. (CS) 

8. (ES) 

9. (ES) 

TABLE 23 

Sequential Diagnosis of Bone Tumor Cases 

Dominated Test Heuristic 

Number 

of tests 
Initial Selected 

Attributes by Program 

Number of 

Decision Nodes 

Considered 

Distribution 
at Terminal 

Decision 

10 

9 

10 

10 

10 

17 

0 

5 

14 

15 

151 

211 

0 

148 

139 

218 

180 

294 

137 

CB 

GC 

CS 

OS 

0.73 

0.26 

0.66 
0.34 

CB 1.00 

97 

CS 

ES 

FS 

OS 

OS 

ES 

CS 

RC 

RC 

ES 

CS 
FS 

RC 

FS 

ES 

ES 

CS 

FS 

OS 

RC 

CB 

CF 

0.82 

0.09 

0.05 

0.05 

0.92 

0.02 
0.03 

0.03 

0.70 

0.29 

0.74 
0.26 

0.90 

0.05 

0.03 

0.87 

0.03 
0.01 
0.04 

0.04 

0.96 

0.04 

10. (CB) 10 3 
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11. (GC) 10 119 

12. (PS) 10 106 

GC 

CS 

ES 

CF 

PS 
CS 

FS 

0.81 

0.10 
0.01 
0.08 

0.92 

0.05 
0.02 

Average number of tests by program = 6.6 
Average number of decision nodes considered = 150 
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the heuristic. 

This heuristic simulates to a certain extent the diagnostic 

strategy of one who seizes upon an initial view of the problem and 

later yields that view with considerable reluctance. Thus, the 

program makes a guess as to which tests will prove important at an 

early stage in the diagnosis, and thereafter restricts its attention 

to those tests as long as some appear to be useful. The difficulty 

is that the view on which the guess was made may not be an accurate 

one. Although the tests being considered may be of some value, 

there may be other tests, temporarily disregarded, which may be of 

greater value. Unfortunately, the heuristic is not sufficiently 

sensitive to changes in the current distribution, and it may cause 

relatively unfruitful paths to be pursued to an unnecessary extent. 

When it eventually abandons such a path and re-evaluates the formfjrly 

dominated tests, it may already have incurred unnecessary testing 

costs. The heuristic exhibits a "single-mindedness" which results 

in less than satisfactory performance. 

In the bone tumor cases, this heuristic reduced both the 

average number of decision nodes considered and the average number 

of tests run. Here its failing is a loss of accuracy. This effect 

is extremely interesting. Apparently in its pursuit of an informa¬ 

tive series of tests, the program succeeds in obscuring much of the 

information implicit in the initial attributes. As a result, when 

the undominated tests are finally released for consideration, the 
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current distribution is sufficiently altered that the program does 

not find additional tests worthwhile. This effect may be the cause 

of the results for case 1. Here the dominated test heuristic se¬ 

lected fewer tests in arriving at a less satisfactory diagnosis than 

the standard test selection function. 

While the heuristic in question has some shortcomings, it does 

indicate a certain amount of promise. What it seems to lack is an 

awareness of changes in the current distribution which should cause 

certain dominated tests to be released for consideration. One possi¬ 

ble solution is to save the current distribution with a set of 

dominated tests. This would allow the program to compare the pres¬ 

ent distribution with one in the stack to determine whether the view 

of the problem has changed sufficiently to warrant the release of 

the tests. This comparison could also account for the relative 

seriousness of states in deciding whether a given change were sig¬ 

nificant. 

This example is but one of a number of heuristics which can be 

studied in the diagnostic system. Because very large decision trees 

may be encountered in future applications, a variety of tree-pruning 

heuristics should be studied. 

Experiment 9. Exercise of the Pattern-Sorting Capability 

A small example was constructed with which the pattern-sorting 

capability could be tested. This example consisted of six states 

and fifteen attributes. The matrix for the example is presented in 
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Table 24. The states in this example can be partitioned into two 

sets which have the property that certain attributes are specific 

to the states in a group and other attributes are shared by the two 

groups. The generator was employed to simulate case histories with 

noise attributes. That is, a case history for a state in the first 

group included one or more attributes selected from those specific 

to the states in the second group. 

Consider the following diagnostic problem with the loss func¬ 

tion as specified in Table 25. The initial attributes are S10, S12, 

S13 and S04. These attributes cannot be attributed to a single state, 

and so the pattern-sorting function produces more than one pattern. 

In this case the patterns formed are (S04) and (S10, S12, S13), For 

each of these patterns the distribution over states is obtained as¬ 

suming that the given pattern is the only one. These distributions 

are: 

1) (S04): DONE 0.z4 
DTWO 0.11 
DTHREE 0.65 

2) (S10,812,813): DFOUR 0.42 
DFIVE 0.02 
DSIX 0.57 

Based on these distributions, the pattern-sorting function selects 

the current pattern. Here the choice is pattern 1 although it con¬ 

tains only one attribute. From the loss function matrix, it can be 

seen that state DONE is very serious. Since state DONE can exhibit 

804, the posterior probability of DONE given 804 is non-zero (0.24). 

By considering both posterior probabilities and losses, the pattern- 
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DONE 

DTWO 

DTHREE 

DFOUR 

DFIVE 

DSIX 

TABLE 25 

Loss Function Matrix for Six State Problem 
(in thousands) 

DONE 

0 

100 

100 

100 

100 

100 

PTWO 

1 

0 

1 

1 

1 

1 

DTHREE 

1 

1 

0 

1 

1 

1 

DFOUR 

1 

1 

1 

0 

1 

1 

DFIVE 

1 

1 

1 

1 

0 

1 

DSIX 

1 

1 

1 

1 

1 

0 
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sorting function selects pattern 1 as the more serious, and hence 

it becomes the current pattern. Tests are selected relative to this 

pattern, but any new attributes are processed through the entire pat¬ 

tern stack as discussed in Chapter 4. In this particular example, the 

program continued diagnosis until the following situation was obtained: 

1. (S02, S04, NOT S06, S07, NOT S08, NOT S09) 

DONE 0.92 
DTHREE 0.08 

2. (S10, S12, S13, S02) 

DFOUR 0.62 
DFIVE 0.01 
DSIX 0.37 

The program then tentatively attributed pattern 1 to state DONE. 

This left S10, S12, and S13 unaccounted for. At this point, the 

user terminated the diagnosis. Had he wished, he could have pursued 

the investigation, the original pattern was shown to be invalid, the 

attributes in it would be returned to the unaccounted-for set and 

the pattern would be removed from the stack. 

A variety of such experiments were run with the pattern-sorting 

function and the results indicated that the particular scheme embodied 

in the function exhibits the desired properties. This function needs 

to be studied more extensively, however, especially in more complicated 

situations. Although this area was somewhat slighted in this research 

the environment provided by the diagnostic system should be a good 

one in which to pursue such a study. 



Chapter 8 

DISCUSSION OF THE RESEARCH 

The research discussed in the preceding chapters suggests 

a number of questions and issues which merit additional comment. 

In this chapter an attempt is made to draw together ., number of 

results and to consider their potential generality. Also of Interest 

here are some of the possible extensions of this research which aim 

at developing a more sophisticated system for the study and perform- 

anee of diagnosis. 

One of the more obvious questions involves the evaluation of 

the performance of the current diagnostic program. This question 

is important for two reasons. First, one of the principal hypothe¬ 

ses considered in this research was that in a variety of problem 

areas, a computer program could prove a competent or superior diag¬ 

nostician. The current program has been applied to a number of 

cases, simulated and actual, of bone tumor and congenital heart di¬ 

sease. Hence a reasonable question is how well did it perform. A 

second reason for establishing a meaningful performance measure is 

so that it can be used in studies of various diagnostic strategies. 

If one test selection heuristic is to be judged superior to another, 

the judgment must be based on a measure of performance, and that 

measure should reflect diagnostic capability. So there is a very 
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real need for a good measure of diagnostic performance. 

Unfortunately, while the need for a perfornance measure is clear, 

the precise nature of such a measure is open to a number of ques¬ 

tions. Perhaps the best way to approach the problem is to catalog 

those qualities for which a diagnosis is generally judged to be a 

good one. The most obvious of these qualities is the accuracy of the 

diagnosis. The object of diagnosis as stated in the beginning of 

this thesis is to ascertain the state of a system. All other things 

being equal, the more accurate the determination of the state of the 

system, the better the diagnosis. By itself, however, this quality 

has relatively little meaning. One desires to know the state of a 

system in a diagnostic problem because this knowledge is an input to 

a subsequent decision (e.g. the decision about a treatment plan for 

a medical problem). Accuracy is not sought for its own sake, but 

rather for its improvement of decisions which result from the diagno¬ 

sis. If these latter decisions are independent of any particular al¬ 

ternative in a group of diagnostic decisions, then there is no bene¬ 

fit to be accrued from distinguishing one of this group from another. 

From the point of view of further decisions, the states corresponding 

to these decision alternatives constitute an equivalence class. If 

a doctor knows that a patient has one of three viruses, all of which 

would be treated in the same manner, there may be no value attempt¬ 

ing to deduce the "actual" virus. 

If one were interested in accuracy as the chief quality of good 
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diagnosis, ht could contend that in the above example, the doctor 

was accurate in diagnosing the problem as one of three viruses and 

that this car be thought of in identifying the state of the patient. 

A simple extension of this example makes this objection less forceful, 

however. Suppose that each of the three viruses are treated in a 

different manner and that there is a loss of diagnosing any one as 

another, but in each case this loss is less than the testing loss 

required to distinguish one from another. Again the identification 

of the goal of diagnosis as accuracy seems incomplete. The point is 

that accuracy is sought only to an extent commensurate with the ex¬ 

pected consequences of a diagnostic decision about the system and 

the expected cost of obtaining greater accuracy. 

This view of the diagnostic process has been the basis for this 

research. From the point of view of the diagnostician, the goal 

of diagnosis is to minimize the sum of the testing loss and the ex¬ 

pected decision loss. Conceivably a diagnostician could correctly 

ascertain the state of a system at such a testing cost that his diag¬ 

nosis would be judged inferior. 

While it is appropriate for a diagnostician to consider expected 

loss for misdiagnosis as a factor in determining the course of a 

diagnosis this quantity is not necessarily relevant to the judgment 

of his diagnostic performance. The principal reason for this is that 

the expected loss depends on the probability distribution over states 

which is held by the diagnostician at the time of a terminal decision. 
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Since the diagnostician chooses tests, this distribution reflects 

his testing strategy as well as the actual problem. Basing a per¬ 

formance measure on expected loss ignores the relative merits of dif¬ 

ferent testing strategies. It is as though a doctor were to be given 

a high performance rating simply because he believed very strongly 

that he had discovered the patient's problem. This strong belief may 

well be founded on incomplete or irrelevant information. 

A more satisfactory way of assessing diagnostic performance is 

to simply add the testing loss to the actual decision loss. That 

is judge the act rather than the intent. Ideally, one could deter¬ 

mine the actual decision loss by comparing the actual state of the 

system (when it becomes known) with the diagnostic decision and 

determining the loss attributable solely to the difference between 

the two. By this standard, a diagnostician who consistently mini¬ 

mized the sum of testing and decision losses would be judged to be 

superior. Some of the problems inherent in this measure are rather 

obvious. First, the actual state of the system may never be known 

with certainty. A patient who is diagnosed and treated may never 

return for further examination, and hence a serious misdiagnosis may 

never be uncovered. A second problem is the difficulty in appor¬ 

tioning the decision loss to various diagnostic decisions. Also, 

the loss itself may be very difficult to ascertain. Nonetheless, 

this measure does seem to subsume the desired properties, and al¬ 

though it may be difficult to apply, it does seem to be a standard 

to be sought. 
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Another consideration in evaluating diagnostic decisions couched 

in terms of probabilities is the interpretation of probability dis¬ 

tributions. For example, what are the implications of a diagnosis 

of (0.75, 0.25) for the states SI and S2 for a performance measure? 

To a large extent, it depends on the actions which are taken based 

on this diagnosis. Suppose the actual state is S2. How does this 

affect the evaluation of this diagnosis? If only a single action 

can be taken on this diagnosis and it is based on the belief that the 

state is SI, the problem is even more difficult. The influence of 

such a distribution on a human decision maker may be quite subtle. 

If individuals react differently to such distributions, the problems 

will be compounded. 

Finally, some effort should be made to normalize performance 

measures. Certain problems may be inherently more difficult to 

diagnose than others. For this reason, it is important to obtain 

an understanding oí: the limitations placed upon even the most expert 

diagnostician by the very nature of the problem before him. 

The evaluation of the performance of the diagnostic program 

in the particular problem areas of bone tumors and congenital heart 

disease is made more difficult by the lack of well-defined loss 

structure for these problems. This precludes the use of the total 

loss measure discussed above. An alternative approach is to compare 

the program performance with standards based on the performance of ex¬ 

perienced doctors. Even this approach is somewhat indirect in this 

case. Since no studies of doctor performance with the particular 
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case histories used were performed^ no immediate comparisons based 

solely on the results of this research are possible. Some indica¬ 

tion of program performance, however, can be obtained in the follow¬ 

ing way. The problems of bone tumor diagnosis and heart disease 

diagnosis have been studied extensively by Lodwick and Warner res¬ 

pectively. Both developed computer programs to perform diagnosis 

and have compared the performance of these programs with that of ex¬ 

perienced physicians. These comparisons suggested that the programs 

performed diagnosis of a quality comparable to that of an experienced 

physician when all attributes were presented to both physician and 

program. The fact that the current diagnostic program duplicates 

the results of these programs on the cases studied suggests that the 

current program would fare equally well in a comparison with physicians. 

In the absence of a performance measure, this is the strongest state¬ 

ment which the experimental evidence will support. 

If one tentatively accepts this suggestion, then a second sig¬ 

nificant conclusion can be derived from the results of these experi¬ 

ments. The diagnostic program was able to solve problems in two 

different areas of medical diagnosis. These areas differ in both 

the number of diseases and the complexity of inter-attribute rela¬ 

tionships which are considered. The latter aspect is particularly 

important because it was handled without changing the program. Since 

the experiments involved only two problem areas and both were medical, 

the applicability of the program for a wide class of problems has 

4 
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not been established. Its success in the two areas mentioned, 

however, strengthens the belief that it does have wider applica¬ 

bility. 

The fact that the program is independent of the content of 

the information structure might be of significant value in the use 

of the program with hierarchical structures. Consider, for example, 

the problem of diagnosing a very large set of diseases. One possi¬ 

bility would be to create a hierarchical structure in which many 

sub-structures exist. The structures for bone tumors and congenital 

heart disease might such sub-structures. At the higher levels, 

the states would be classes of diseases, such as heart disease. 

The goal of diagnosis at higher levels would be to determine the 

proper class of disease. When this determination had been made, a 

more detailed sub-structure for that disease class would be employed 

for a finer diagnosis. The same diagnostic program could deal 

with all sub-structures. This would be a great improvement over a 

large set of programs, one for each sub-structure. 

Again, considering the results of diagnosing actual case his¬ 

tories, one can readily appreciate the advantage of sequential diag¬ 

nosis. In the particular problems studied, the program was able to 

arrive at a diagnosis with the use of relatively few tests. This 

capability is very important since the testing cost for a diagnosis 

may be a significant part of the total cost. Tests which are un¬ 

necessary or uninformative may exact a high price, and an effort 
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should be made to restrict the tests run to those essential to the 

diagnosis. The sequential test selection facility permits the pro¬ 

gram to dynamically assess the potential usefulness of each possible 

test. This results in efficient testing strategies, an important 

component of good diagnosis. 

In a problem area in which the tests relevant to different 

groups of states are relatively disjoint, the value of sequential 

testing should be even greater. Once the appropriate group of states 

has been establisned, the tests considered can be restricted to the 

set of tests associated with that group. In the absence of a sequen¬ 

tial testing capability, it may be necessary to perform all tests to 

obtain information which could have been obtained from a few. The 

striking reduction in the number of tests required for diagnosis of 

bone tumors and congenital heart disease effected by sequential testing 

strongly suggests the potential value of this approach in other diag¬ 

nostic problems. 

The existence of a diagnostic system rather than just a diagnos¬ 

tic program has proved quite important in this research. Many of 

the strategies which were considered are quite complicated, and it is 

difficult to predict a priori the manner in which they will perform. 

The generator has been very useful in testing these strategies under 

a variety of problem conditions. Also of use has been the facility 

for selectively monitoring particular diagnostic functions such as 

pattern-sorting and test selection by collecting detailed data on 
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their operations. 

One virtue of the Inclusion of e generator In the diagnostic 

system Is that It makes It possible to study the performance of the 

diagnostic program In problems derived from a wide range of Informa¬ 

tion structures. The sl.l.tlon capability frees the researcher 

from dependence on actual case histories. Thus he can create struc¬ 

tures and simulated cases specifically designed to test some aspect 

of the diagnostic program. The use of the simulation facility with 

an information structure corresponding to actual diagnostic 

problem may also be very useful In the study of that particular 

problem. 

Complementing this capability Is that of operating the dlagnos- 

tic program In an Interactive mode. Thu. a user can employ the pro¬ 

gram in actual diagnostic problems. This "open end" of the system 

permit, the Independent testing of strategies developed through re¬ 

search, as well a. making the diagnostic program a practical aid to 

problem solving. The experience gained In this research indicated 

the value of such a system which permits the study of both actual 

and artificial diagnostic problems. It seems that this type of 

system would prove must useful in further development of sophist!- 

cated strategies for computer-aided diagnosis. 

Finally, the modularity of the system Is very Important. On 

the one hand, the Insulation of the system function, from one another 

permits one to study a wide variety of diagnostic strategies since 

the functions can be changed independently of one another. Also as 
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better versions of these functions are developed, they can be incor¬ 

porated into the system without restructuring it. In this sense, the 

performance of the system can be improved as additional experience 

with it is obtained. 

The experience obtained with the diagnostic system has pointed 

to a number of areas for further research. A number of these areas 

are discussed here. Some pertain to specific improvements in the 

diagnostic capabilities of the program, while others have more gen¬ 

eral ramifications. 

In Chapter 7, certain experiments to study the effect of the loss 

function on diagnosis were discussed. While these experiments are by 

no means exhaustive, they do indicate the strong effect the loss 

function can exert on diagnoses obtained by the program. Two major 

questions need to be investigated in this regard. The first is how 

such a loss function can be developed for a particular problem area,and 

the second is in what ways is diagnosis sensitive to the actual values 

of a loss function. 

The first question is a very difficult one to answer. Assuming 

for the moment that the matrix form of the loss function is retained, 

the problem is to determine the "seriousness*' of each possible mis¬ 

diagnosis in some appropriate units. For example, in the context of 

medical diagnosis, one must answer questions such as "How serious is 

the diagnosis of pneumonia as influenza and vice versa?" This answer 

must be in such terms as to permit the comparison of a wide variety 
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of misdiagnoses in an orderly manner. If one considers the extreme 

range of consequences resulting from misdiagnoses in medicine, he 

can appreciate the magnitude of this task. As stated, the problem 

required the establishment of a common scale for such extremes as 

the failure to diagnose a simple cold and the failure to diagnose 

cancer. 

In many instances, the loss for a misdiagnosis depends on many 

extraneous factors, such as whether a patient will return to the doc¬ 

tor when his symptoms persist. The loss may also depend on decisions 

made after the diagnosis which are difficult to predict. Compound¬ 

ing the problem of the loss function is the need to convert the test¬ 

ing loss to the same scale. In particular areas, one may be confronted 

with further complications in this regard. For example, the question 

of a loss function for medical diagnosis is also a question of whose 

loss function should be employed. One could answer that the loss 

function should be that of the patient. The loss function of the doc¬ 

tor, and that of society, however, are also possible answers to this 

question. If a diagnostic system were created for general use in 

medical diagnosis, questions such as these would have to be considered. 

Although the problems of determining the loss function for 

an area as complex as medical diagnosis would be very great, they 

may well prove worth the effort of solution. If the value of a pro¬ 

gram for diagnosis in a given area can be clearly demonstrated to 

be considerable, this would be strong motivation for work on an ap- 
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propriate loss function. As currently conceived, such a diagnostic 

program would make extensive use of losses in directing a diagnosis. 

These losses should reflect the best understanding or the conse¬ 

quences of possible decisions. In some areas, the development of a 

loss function might be a valuable exercise independent of the im¬ 

plementation of a diagnostic program. In areas where sophisticated 

diagnosis is currently being performed by human beings, a loss func¬ 

tion is often implicit. The attempt to quantify this loss function 

may reveal inconsistencies and reveal implicit losses of questionable 

merit. To the extent that this situation obtains in a particular 

area, there is additional motivation for research into this problem. 

Such research would involve investigation of means of quantify¬ 

ing and scaling diverse consequences as well as considerations of the 

best form which the loss function should take. To a large extent, a 

framework for these investigations has already been established. A 

number of workers in the areas of statistical decision theory, game 

theory, and economics (R21, R22) have considered many of the prob¬ 

lems associated with the attempt to scale decision alternatives. 

While this work is far from complete, it does provide a reasonable 

basis for some of the initial studies. This whole area is rich with 

problems of interest and importance. 

Another important area for research is the development of a 

diagnostic program which includes improved solutions to a number of 

different problems, some of which are discussed here. 
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As previously noted, the test selection function merits particu¬ 

lar attention. This function serves a central purpose in the over¬ 

all diagnostic strategy of the program, and as a result, significant 

improvements in this area would directly promote the diagnostic capa¬ 

bility of the program. More sophisticated test selection heuristics 

are required if the program is to deal successfully with problems 

involving large numbers of decision and testing alternatives. All 

the test selection heuristics employed in this research is "fixed- 

depth" in the sense that they explore all branches away from a given 

decision node to a fixed depth in the decision tree. Most likely a 

better test selection function would explore branches to varying 

depth, pursuing further those branches which appeared more promis¬ 

ing. The difficulty yet to be overcome in this regard is the es¬ 

tablishment of some measure of'promise" for branches in the decision 

tree. This problem has been encountered in other applications of 

heuristic programming, and it can be expected that significant re¬ 

sults in the diagnostic problem would be of more general applica¬ 

bility. Similarly, if powerful test selection heuristics can be 

developed, they might be of considerable value in a variety of 

sequential decision problems. 

Another improvement to the diagnostic program would allow it 

to take advantage of various relationships among tests. For example, 

if one is going to perform a certain test, it may be advantageous 

to perform another test as well because it is inexpensive when run 
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in conjunction with the first test. The inclusion of more complete 

information about tests in the Information structure might allow 

the program to exploit various tnter-test relationships and to select 

groups of tests to be run during diagnosis. 

The pattern-sorting function needs to be bolstered by the addi¬ 

tion of facilities for assessing the accuracy of the attributes 

provided it by the user. Just as it is important to detect noise 

attributes, it is equally important that the presence of false in¬ 

formation be discovered. Undoubtedly only partial solutions to this 

problem are possible, but additional capabilities of this kind, 

even if somewhat limited, would be of considerable value in appli¬ 

cations of the program to actual diagnostic problems. For example, 

the program could include a means for incorporating estimates of 

the reliability of tests into both the pattern-sorting and inference 

functions. 

A number of improvements can be made in the inference function 

of the program. One of these is the incorporation of a learning 

scheme within this function. Such a scheme would permit the pro¬ 

gram to learn the a priori probabilities for the various states as 

well as the conditional probabilities of attributes of given states. 

Bayesian framework provides a convenient structure within which a 

learning scheme can be developed. Learning of this type is especially 

important if the relevant probabilities vary with the specific appli¬ 

cation. For example, if the information structure for congenital 
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heait disease were employed in a region of the country other than 

that in which it was developed, the probabilities might require ad¬ 

justment to reflect changes in the characteristics of the popula¬ 

tion of potential patients. The program can obtain the information 

required for such an adjustment from the actual diagnoses which it 

performs on patients from the new population provided that other 

means of obtaining diagnoses are available. Thus in certain appli¬ 

cations, the diagnostic program may require a training period in 

which it can alter the contents of the information structure to more 

accurately reflect the relevant behavior of the given system. A 

variety of learning schemes should be investigated to develop a 

scheme which will be suited for this problem. 

Some of the considerations involved in research of this kind 

are apparent at the outset. If the probabilities of interest are 

relatively stable, then a rather prolonged learning period may be 

acceptable in the hope that these probabilities will be learned accu¬ 

rately. On the other hand, if the probability structure of the 

problem is relatively dynamic, then more rapid learning may be re¬ 

quired. One difficulty with the latter situation is that rapid 

learning implies a greater weighting of recent experiences and if the 

environment is noisy, this may lead to poor probability estimates, 

and hence to poor diagnosis. One possibility is to exploit the 

ability of the human diagnostician to perceive patterns and trends 

by f.llowing him to influence probability estimates dynamically. For 
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instance, a doctor might be better able to detect the early stages 

of an epidemic and hence adjust the a priori probability of the 

prevalent disease to reflect its increased incidence. 

Some Comnents on the Diagnostic Model 

When one devotes considerable attention to the problem of diag¬ 

nosis, he may experience a tendency to generalize his definition of 

the problem so as to encompass an increasingly wide circle of prob¬ 

lems. The danger of this tendency is that it may result in the ex¬ 

tensive discussion of diagnostic programs and systems of impressive 

capabilities which are founded more on wishful thinking than on 

practical experience. Because the appeal of such an intellectual ex¬ 

ercise is strong, it is important to consider carefully the model of the 

diagnostic problem being employed in order to obtain a realistic view 

of both its potential and limitations. Some of the important charac¬ 

teristics of the model employed in this research are investigated 

here with this intention. 

A diagnostic model based on attribute-state relationships has 

understandable appeal. In many diagnostic problems the most visible 

aspect of an expert's attack on a problem is his gathering of attrib¬ 

utes on which to base his decision. In many instances he may appear 

to relate these attributes directly to the possible states of the 

system. When the difficulty of diagnostic problems in general is 

considered, however, it seems unlikely that the human expert per¬ 

forms only a simple association of attributes and states to arrive 
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« a diagnosis. Dl.gno8l., as perforraed by huMnSj ^ ^ a 

súbela and often complex process of association and deduction. 

The rodel employed in this research, on the other hand is 

-y explicit in the way in which it relates attributes andrstes. 

Associations in the information structure are relatively direct 

and deduction is performed in a uniform tanner for all problems.’ 

In one sense, the model employed by the diagnostic program appears 

1 rigid and simple. Even this brief comparison with human diag¬ 

nosis suggests an important question. Can this relatively si^le 

"»del be sufficient for a diagnostic program to perform effectively? 

erivative of this question is the following. To what extent can 

a program based on this „del be successful in performing diagnosis 

in a variety of problem areas? Although the evidence gathered from 

this research is far from sufficient to allow definitive answers to 

these questions, it does permit so« insights into the problems to 

which these questions are addressed. 

The author believes that the basic functions developed i„ this 

worh reflect aspects of a diagnostic program which has both potential 

generality and power. At present, the functions are quite crude i„ 

their structure and capabilities, but the conception of diagnosis in 

terms of these functions (or their more sophisticated successors) is 

believed to be both a useful and viable one. One problem may be that 

the current separation of functions is somewhat restrictive, but this 

bas the advantage of emphasising the principal objectives and problems 

of each. This emphasis is very portant in the initial phases of 
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research in this area, and the separation permits the study of differ¬ 

ent versions of one function more or less independently of the others. 

In broad outline, the model incorporates the principal features 

of diagnosis as performed by human beings. The inference function 

coupled with the information structure allows the consideration of 

both past experience and current information in a particular diagnosis. 

Bayesian inference provides an orderly way ¿or balancing these two 

elements in the deductive process. The test selection function pro¬ 

vides the program with a rational means for choosing tests which 

accounts both for their cost and their potential value in furthering 

the diagnosis. Finally, the pattern-sorting function provides a 

means for performing diagnosis in the presence of noise. 

While it is unlikely that the human diagnostician employs this 

particular division of the diagnostic function, the total capability 

incorporated in the functions seems to approximate that required. 

It is also important to note that there is no particular reason to 

require a diagnostic program to simulate the processes employed by 

humans. A more appropriate requirement is that a diagnostic pro¬ 

gram should allow the exploitation of the comparative advantages of 

a computer in order that the total diagnostic capability of a man- 

machine partnership may exceed that attainable by either above. 

For example, it has been noted that doctors do not organize 

their diagnostic experience into large lists of symptoms and diseases, 

but rather associate their experience with and through their under- 
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standing of the human body and its processes. It would be extreme 

to conclude from this that such an organization is a necessary one 

for diagnosis, particularly if the diagnostician is a computer pro¬ 

gram. The fact that a doctor does not order his ejperience primarily 

in terms of attribute-disease lists may simply be evidence of the 

difficulty he encounters in attempting to deal with and maintain 

information of this form. A computer program would have less of a 

problem in this regard, and, in fact, this may be a useful structure 

to impose on the experience employed by a diagnostic program. 

While in very general terms, the functions of the program corres¬ 

pond to those apparently required for diagnosis, there remain cer¬ 

tain questions about limitations arising from their current realiza¬ 

tions. In a sense these are questions about the generality of the 

model. Since the program was designed to solve the model diagnostic 

problem, it is reasonable to expect that the generality of the pro¬ 

gram will be determined by the extent to which real diagnostic prob¬ 

lems can be described by the model. (Also, the appropriate statis¬ 

tical data must be available.) 

For example, a major difficulty in applying the program to pro¬ 

gram debugging is developing a proper characterization of states. 

One can see in theory how this can be accomplished, but a practical 

solution would be extremely difficult. Also, an extremely useful 

strategy in program debugging is changing the state of the program (by 
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changing instructions, etc.) Here tests may very well change the 

state of the system. Because one can save a copy of the program, 

one can also use destructive testing. While one could probably 

change the model (and program) to reflect these possibilities, the 

current model does not account for them. Hence, the use of the pro¬ 

gram in this area is severely limited. 

Also, there may be areas in which the diagnostic experience 

may not fit the statistical model employed in this work. In these 

areas, the inference function would have to be redone for non-Bayes- 

ian inference. 

On the other hand, there seem to be a number of real problems 

which can be described by the model, including many machine failure 

and medical diagnosis problems. While the evidence is limited, the 

performance of the current diagnostic program in the areas of con¬ 

genital heart disease and bone tumors should not be overlooked. At 

the very least these results must be termed promising. The model on 

which the program was based and the program itself were developed 

independently of considerations of these particular diagnostic prob¬ 

lems, anu yet the program demonstrated potential value in both areas, 

There seems reason to believe that other problems of medical diagno¬ 

sis will also prove susceptible to such a program. The diagnostic 

system permits the study of alternative strategies developed in the 

light of such experiments, and this, too, should ease the problems 

of increasing the extent of its capabilities. 
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Some of the difficulty in applying the program to new areas 

can be traced more directly to a lack of adequate data for an in¬ 

formation structure than to an inherent intractability to this ap¬ 

proach. If continued research yields further indications of the 

value of a computer program for diagnosis, it may well be worth the 

considerable effort required to reformulate a number of diagnostic 

problems in terms of this model or an extension of it. Certainly, 

the results of this research do not preclude this possibility. 
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Appendix 1 

Sample of an Input File 
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(STATE DOÍ 0.05 SOI 0.01 S02 0.10 . . . S17 0.90) 

(CLUSTR DOl EXOR 0.05 S06 0.07 S07) 

0 

*> 

(ATTRIB (SOI S02 S03) TEST1 S04 TEST4 ... (16 S17) TEST16) 

0> 

0 

0 

(TESTS TEST1 10. . . . TEST16 15.) 



Appendix 2 

Trace of a Session with the Diagnostic Program 
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User responses “ small letters 
Program responses - capital letters 

1. r system 

2. NAME OF DIAGNOSTIC AREA PLEASE 

3. bone tumors 

4. NAME OF LOSS STRUCTURE FILE 

5. bone losses 

6. INFORMATION STRUCTURE ESTABLISHED 

7. generate brief 

8. YOU OR ME 

9. me 

10. HISTORY FILE 

11. bone case 

12. CODES 

13. 3222323 

14. NEW CASE 
WHAT ARE THE INITIAL ATTRIBUTES OF THE PROBLEM. Q. 

15. s05 s07 sll s!4 sl7 s20 not s21 

16. CONDITIONAL PRIOR STATE PROB 
CB 0.26 
CS 0.09 
GC 0.62 
CF 0.02 

TRACE 0.01 

17. ANY IDEAS. Q. TYPE 'DONE' IF SATISFIED. 

18 c.r 



19. SET SEARCH DEPTH, THRESHOLD, AND HEURISTIC CONTROL 

20. 1 0.10 0 

21. THE TEST SELECTED IS TEST43 

22. s43 

23. CONDITIONAL PRIOR STATE PROB 

CB 0.55 
CS 0.04 
GC 0.37 
CF 0.04 

24. THE TEST SELECTED IS TEST50 

25. s50 

26. CONDITIONAL PRIOR STATE PROB 
CB 0.21 
GC 0.78 

TRACE 0.01 

27. GC TENTATIVE DIAGNOSIS FOR THIS PATTERN 

28. CONSISTENT DIAGNOSIS FOR ALL ATTRIBUTES 
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Notes 

A. Line 7 through line 14. The user sets controls for the run. 

These controls include a history file and instructions as 

to what information is to be collected in this file during 

the run (line 13). 

B. Line 15. These are the initial attributes of the problem. 

C. Line 16. The inference function reports the current dis¬ 

tribution. 

D. Lines 17 and 18. The user is given the option of testing 

his hypothesis about the problem. He declines this option 

(line 18). 

E. Lines 19 and 20. Here the user sets the depth and threshold 

for the test selection function. He also chooses the stan¬ 

dard version of this function. 

F. Lines 21 and 22. The program selects a test and the user 

responds. This dialogue continues through line 25. 

G. Line 27 and line 28. The program makes a terminal decision 

for the pattern. This decision accounts for all attributes and 

the case is completed. 
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Appendix 3 

Listings of Diagnostic System 
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COMMON NAO 

- OUFl»IUF2,€Oir*SI6NSrCPAS»ALi#AT»CPNIOA 
i •CTCST»ALLrST»0ISEAS»STAN0(FILEItFILE2. 

^-0»»fM,ÍMAHM.NlMIK,>- ’ 

I I£^^;^cI!Í!*"t,*™^st»^áctí>ÍtstÍunÍmtstÍ( 

9 tNPRIMfCELL 

0«N »UFIUMUmWAM^(TACKUO»tUFUNC(20)«AACS< LOI 
1* FRINOO) tNFRIMI 30) tCONST( 30) «CELLI 20 ) 

N* R 
-IMIHT Bill COMMON 
D'N VAULT!100) 
-1M14AWL0I-- 
SET LIST TO VAULT 

. -4.TST. ! TAH )_ 

ífWíiü^S^^ST.ÍÍI.LIST.ICELuñri 
» lyppffcHi _ 

LIST.ITSTAUN) 
Am»4CiU4m 
LIST«ISVNLST) 
4W*4PAWW . 
LIST«(UNACTO) 

-CIST.I TIMO)_ 
LIST«!STRUCT) 
VAULT« O- 
UFUNC—1 

-#IUMUUALUS^- 
MINI2)«NINUS. 

-»tlMIDiTIMH. 
MIM|«)-OIVIOE. 

-MPIW«L»- 
MINI6)-LE. 

- -MlllimMO«- 
FA|N(0)aGE* 

- »N|N|0)aC,- 
FRINU0)-AN0. 
RMMUU-OIU- 
MIMU2)-EQV. 
RAIM(1)|-N0T.- 
MIM!14)-ATrRIB. 

V»S NFRIN-lS,|FLUSt,$NINUS»f»TINESI,$OlV!OE$. 
J Si>»tt«l»AiOA»m»»ACA<AANOA»AOM»>EQVA, 
2 INOTl.tATTRIBI «FRESA 

ÜoíoNLÍ??SÍÍ °* 0,ACNO»T*C '•Í.SASf* 
NI«B0BT0Ri(TBNB)_ 
N2-FOFTOP.ITENF) 
SC TUF« (NI tN2) 
FRINT CONNENT »NAME OF LOSS STRUCTURE FILE« 
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RDIONL.ITCMP) 
IR«M»V0*ri9fMH 
N2»POPTOP.(fCNR ) 

-Wftos» I ><08?. INI I >H<UST. IN2> I- 
PRINT CONNENT »INFORMATION STRUCTURE ESTABLISHED.» 
ROLONL*! TEMPI 
CQDEaPOPTOP.I TEMP) 

-N*R CODE.E.»DEFINE»- 
LST-DEFINE.ITENPI 

-^R 60Pi.C.»CeNERB».QR. C08E.E.»ftCN»- 
GENERB.I TEMP) 

-PRINT COMMENT «RETURN FROM GENERA«» - 
O'R CODE.E.»CLUSTR» 

-ISUCLUETR.ETfNPf- 
PRINT OCTAL RESULTS LST 

-EH-- 
MTLIST.ITEMP) 

-THT-TOP-- 
E'A 

- DUG - -MAO- 

EXTERNAL FUNCTION (CONTRL) 
-NH»- 

F*T P,SELECT,FANS.FANSI 
-B*N LEMPTT___ 

INSERT FILE COMMON 

-EQUIVALENCE <IP,PI,(FANS,ANS), (FANSI,ANSI) - 

R THIS FUNCTION IS THE CONTROL ROUTINE FOR THE 
n giagnogis.it manages the magro apsegts of_ 
R THE DIAGNOSIS. 

-R- 
R 

-EHIGIAG.- 
COUNT-O 

-NTt 1ST■ ICSLLI111--- 
LIST.(TEMP) 

^N'R STANO.E. 1.OR.STAND.E.S, OUTPUT. I STAND,0,GLNR) 

R GET AND PROCESS THE INITIAL SYMPTOMS NHICH DEFINE 
R THE PROBLEM 

■-R------ 

N'R CBIT.E.l, P'T ILINE 

V*S ILINE-BH/NHAT ARE THE INITIAL SIGNS OF THE PROBLEM/*» 
N'R GETSYM.(TENPI.E.O, F'N 
N'R LEMPTV.ITEMPI, F'N 
MTLIST.(PATSTK) 
MTHST.IUNACTOI--- 
MTLIST.I TSTRUN) 
MTLIST.ISVMLST) 
MTLIST.ITREE) 
VS BLNM»/,H/ MEN CASE/,/«» 

R 
R PROCESS THPtF fYMPinMC rn kobm tvMntnm fATTtnr)I __ 

N'R LEMPTV.(TENP), T'O GETPAT 
SYNP-POPTOP.(TEMP) 

LOOP 
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TEST-BOT.(SVNP) 
-^M»OT*T T«T^W(UmT_ 

If ”:i I!**1*1 »HtlUS*. «STI 

irn,|,",u"1 
-TT4M4N»_ 

R 

Ä HERE IS WHERE TME HOST SERIOUS RATTERN 

t1?^En,T,;i;¡;isTM^¡¡;T,ni<‘ T»» ^»1 Bl IWMIIITBO 

GETRAT R-SEIÉCT.COI 
OOTRUT .1 CPAT^O » INIRRMI_ 

u\i CURRENT PATTERN IS.../.» 

-su::;;iy:^irBT nr "'it 111 ».. 
OUTPUT.ICRAT.l^tWiB.RT 
OOUMRl.l CRRIORfCURLST) 
AR4TRUT »I ALI RAT »O.OTEMT I_ 

jagSE&riüg 
R 
R 

j SÄiStWÄ^.SI.L0"F0" * suc“s$ful 
TL 

R-j ROROW.4CURLST1 
IR-AOVLER.(RVF) 
A(*TLA.U1- 

IRAROR.IR) 
-TMI-OöHLT- 

O'R R.L..99 
-»0 Tt. 

E*L 

succ 

/m.ÍTÍÍ“**’“'“ “**“* U MKUUltOJa^ 

R CHECK FOR MORE SVNRTOHS TO EXRLAIN. 

GOTRAT.IO) 
W'R COOE.E.O» 1*0 GETRAT 
OUTRUT.C STANOt OtOKVS I 

T.^»?i^^ti,l;îll,ltlt,l,l, "l,r,l"fl‘ ,m »< TUNS./«. 
F*N »OK» 

OOTiST 

R 
R 
R 
-LCOUNT-Q 

RRO 

N*R CBIT.E.0.0R.CRRI0R.E.2 
NSTATE-0 
NOR 0-0 
T'O SEEK 

E'L 

"cONTINUE><>,8>11 Uki lnf>S*Q’ ,nn>t|:> '* SATISFIEO. t 
R'T C6, WORD 
V'S C6«»C6.» 
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SEEK 

TLOOP 

geftst 

M'R MORO.E.»DONE* 
OUTPUT« ( STAND«OtUTERM) 

_V.l yj^w*>H/USER TERNINATEO DIAGNOSIS OF PATTERN/*» 

O'R NORD.E.»NO».OR.UORO.E.»» 
NSTATE-0 
WORO-O 

O'E 
NSTATE*TRANS«IMORf•1) 

-NSUTE.C.O_ 
PRINT CONHENT »NOT RECOGNIZED. TRY AGAIN.» 
T*0 RRD 

E*L 
EH. 

R 

-^■‘SeOOEG* is THE TEST »HE6TION ROUTINE,_ 

“o Meu,,snc 
DEPTH«POPTOP. { TEHP) 
THRESH*POPTOP.I TEMP) 

GONTRL-POPTOP. < TEMP)__ 
E'L 
NOOES-O 
STATE*NSTATE 

0UTPiiT*<2»i*CFRMfDEPTH,THRESH) 
SEQDEC.ITREE«0«STATE) 

■N*R ALLTH»E«0, T»0 GETTST 
ROR«SEQROR.(ITSVAL.I»VAIiUES»,TREEI) 
STATE«SEDLR.(ROR,|) 
IP*SEQLR.{ROR«I) 
W*R NORD.NE.0 

N»R STATE.E.»DUMMY» 
-PRE«»N0T»- 

O'E 

O'E 
PME*»» 

E'L 

WORD*ITSYAL.(»PNAME»« STATE ) 
PR8*»»- 

E'L 
OUTPUT .IALLTST«}«TRMO« PRE « MORO.P) 
VS TRMO*»H/ BEST TERMINAL DECISION AT THIS POINT I* / r* / 

1«C6«H/ NITH EXPECTED LOSS /,f».2*» *S /,CJ,/ 
OUTPUT.(ALLTST,O.THEAD) 

- VS THCAO«»H/ TEST -COST -EftOS /+/*»- 
TEST*SEOLR.(RDR,I) 
W'R I.NE.l 

ANS*SEQLR.(ROR«I ) 
ANS1*60T.( TEST ) 

NAME*ITSVAL.(»PNAMEt« TEST I 

»"iNAMC, FANS!,TANS-f ANSI) 
VS TLIN*»C6«3SfFS.l«SS,F8.2*» 
T'O TLOOP 

E'L 

OUTPUT.(ALLTST, I, SCORE,NODES) 
V'S SC0RE*»I6,H, DECISION NODES CONSIDERED.«//•» 

R SELECT THE BEST TEST 
R 

M'R CONTRL.G.O 
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LC*TOPTHs( TEST » STATEI 
€OU«T«COU*tHC-_ 
F*0 CKS 

TOPT.(TEST,STATE) 
-Ml*. MATi*Ki»0- 

lcount-lcounthc 
- 4.COUNT.k.COUNT 

POPNOT.ICELL (1)) 
-COONTwf OUNT»A 

DECIOS 

O'E 

^J 1TSVAL. {»VALUESI, TREE ) ) 

E'L 

C^ANOrl » DE. 11f tpNAMFt. CTâTiri i 
Hi tentItive oicSTS^^1- FOA THIS PATTERN./«! 

-**N«0*r4«*T*WlUNM_ 
¡If Sl!1TSVAL*J »«CLUSI, TEST ) 

^NtN^SST.NE.^NENdOT.UTiST.TSTRUN^ 

TRiSl 

R TEST HAS BEEN SELECTED. NOW RUN IT. 

MTLIST.ITENP) 

tOIF.S.Or NEWTOP.4TEST.TENP) 

• "**' » TSVAL. ( IPNANEA, TESt7)~ 

svÜpÍpoptopIÍimÍ! T’0 A6AIM 
SVMSAy.(SVNPtTEST) 
TEST«SOT«(SVNPI _ 
NEMBOT.ITESTtTSTRUN) 
-yîT;';;¥n-«>«»fii|n,TssT) 
ï.î T“I-Ne-°» NEMB0T.(TEST,1 
-n^t—ü*mTwïï __ 

Ï'S TÎwuÎÜÎÎÎrîÎÎi'î^ ^ TMReSH«/^EA^2*^ 
V 5 TFRN-AH/THE TEST SELECTED IS /,C6«S 

F*T RANNO.OLDP,P,PRyTESTP 
B»N DNARK,LEMPTV 
INSERT PILE CONNON 
EQUIVALENCE (IPR.PR) 

-S»Q 6SNSRB.__ 

R GENERA JS THE SINULATOR FOR THE 
R DIAGNOSTIC SYSTEM. 

LIST.(WORK) 
-UH .NOT.) SMPTV.U)_ 

POPTOP.IX) 
noruns-fast.icontrli 
T*D OKTOGO 

l 
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E'l 

*** WHO IS C0WHWt.#,|- 

»*ft »N5«W€«»VOU> 
CB1T«1 

W'lfZl'"** W)W-W4SM-A-HISTOB¥ TO BE K€P?*<}«• 

M*« ANS* E. ms« 
T'O CETFIL 

-»*€- 

E'L 

FILEl-0 
FH.E^- 

T*0 GETINC 
EH. 

J GENERATOR CONTROL HERE. SET CONTROLS. 
H ~ - -— — __ ___ 

RSTAT 

CB1T-0 

FRITIT CONNENF AHOW MANY CASES -IN THIS RUN.O.ft 
NORUNSaROPTOP.(ROLONL.( WORK I ) HÜN.Q.» 
PRINT GOMMENT INANE OF ONE PUEASC OR G.R. 
" T C6t ANS 
«•R -- 

ONARK>OB 
-OH- 

0MARK-1B 
-01SEAS«TRANS»<AN5>I> 
M'R OISEAS.E.O 

>N0T Reco€H*KO- TRY AGAIN.A 
* W Mo I AI 

-- 
^ ^lPR»lTS¥AL.(tPROBt, DISEAS) 

RR!?I CONNENT IPLEASE SPECIFY UN THE ORDER GIVENI THEA 
RRfNT CGNNêNT AFOLLOWING -CONTROL P ARAÑE TER S FOR THF RUMA 
;;!!»! “ytNr ,1. depth of the t«h ««c",'0* ,Ht ^ 
PRINT CONNENT A2« BREADTH L INI TING PROB ABI LI TY.A 

:: ïï sïïsi ”• of ,n,tul siïïrSriiîiîii yWiWI »BNNENT A4. Mil ng MffICE tlCNt Ptn ntt a_ 

PRINT CONNENT BS. HEURISTIC CONTROL FOR TEST SELECTION.! 

GETFIL 

R 
R 

OEPTH«PQPFOP.!ROLONL.(WORK)I 
THRESH«POPTOP.(WORK) 

■ NINITS»POPTOP>IWORK)- 
NOISE*POPTOP.( WORK ) 
CONTRI »POP TOR, (WORK )- 
R 
-- 
PRINT CONNENT INANE HISTORY FILE.I 
-RILEI*RjyST.IPOPTOP.IRDLONL.lWORKm 
FILE2-RJUST.(POPTOP.( WORK I ) 
ASSIGN, IF (LET*BUFiiBUF2)_ 
T'O GETINF 

R 
R 

V*S COF»$H/FOR EACHOFTHe”FOLLOWING] TYPE •T*""»n«-T7—7" 
IH/CONSGiE TRACE. BTHEAHlS./ii t,,,• 
T'O RDINF 
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CET I NF 

ROI NF 

OKTOCO 

SLOOP 

HLOOP 

-WN— 

START 

GLOOP 

PRINT CONNENT »FOR EACH OF THE FOLLONING* RESPONDS 
PRINT CONNENT S*l» IF VOO WISH A CONSOLE TRACE*4 - 
PRINT CONNENT S'i* IF YOU WISH A HISTORY RECORD,! 
MINT CONNENT É Hi IK wnn mich «nru, ^ |F NiIU 

PRINT CONNENT SI. CURRENT DISTRIBUTIONS 
PRINT CONNENT S2. CURRENT PATTERNS 
PRINT CONNENT S3. PATTERN STACKS 
PRINT CONNENT SA. TESTS ANO VALUES! 
PRINT CONNENT SS. TES* SELECTED! 

-MINT CONNtiNf t4. tif.n nc tm; PROBLEMS 

PRINT CONNENT S7. STANDARD INFORNATIONS 
CPRIOA»POPTOP.|ROLONL.(WORKII 
CPAT«POPTOP.I WORK I 
ALLPAI-POPTOP.IWORK ) 
ALLTST-POPTOP.IWORKI 
CTEST*POPTOP 11 WORK I 
SIGNS-POPTOP.IWORKI 
STAND-POPTOP.I WORK I 
PRINT CONNENT SS 

/if. ,Lei»M6A0»CPRI0Ä*OA^»ALLPAT, 
1 ALLTSTtCTEST,SIGNS,STAND) 
WU f BIT ■ E. I____ 

T'O OOOIAG 
O'A ONARK 

T'O START 
E'L 

-R SET UP OISEA8S SIIICTIOM LIST. 

P-O. 
LIST.IGENLST) 

RDR-SEQROR.I TOP.(STRUCT)) 
HSHLST-SEQLR.(ROR,I ) 

—WAR I .Ni. I__ 

R-SEQROR.(HSHLST) 
NEXT-SEQLR.(R,F) 
W'R F.E.l, T'O SLOOP 

IPR-ITSVAL.ISPROBS,NEXT) 
P-P^PR 

-JUNY.IfiENI ST,NF»T,P)_ 
T'O HLOOP 
E'L 

R 
R WARN UP RANNO. 

T'H RIN, FOR J-l,1,J.G.20 
RANNO. (X)--- 

R 

R CONTROL LOOP FOR THE GENERATOR. 
R 

T'H GENO, FOR J-l,I,J.G.NORUNS 
OLDP-O. 
MT CON, J--- 
VS CON-SH/CASE /,I2-S 
W'R ONARK, T'O GOTIT 
TESTP-RANNO.IX) 
ROR-SEOROR.(GENLST) 
DI SEAS-SEQLR.IRDR,I ) 
•VR I.i.t__ 

OUTPUT.ISTAND,0,BUG) 
VS BUG-SH/BUG IN GENLST/-S 
CHNCON.(0) 



O'E 
-11- 

W*ft OLOE.LE.TESTE.ANO.TESTP.L.PR, T '0 GOTH 
-0fcOf*ER-- 

T'O GLOOP 
-«n- 

R 
-d- 

GOTIT OUTPUT.I STANO,3,HEAOI» J, ITSVAL.(tPNAME $,01 SEAS ),PR-OLOP) 
-CtfRiST-0---- 
0001AG DIAG.ICONTRI) 
-N*R C8IT.E.I 

PRINT COMMENT »ANOTHER.Q.$ 
-R i T r ANS - 

M*R ANS.E.SYESI, T'O OOOIAG 
-T*0 PINI- 

E'L 
&€H0-CONTINUE 

OUTPUT.(STAN0,0,TFRM) 
-IRAtST.IGENtST) 

VS TFRM>ft//,H/RUN COMPLETED./•! 
F4#I-P-I4C.< PILED--- 

IRALST.(UORK) 
-PM*- 

R 

VS Il>ftll«s 
-VE GE«»Cf- 

VS HEAD*»H/SNITCHES FOR THIS RUN/,/, 
-ï THGPRIOR»,II,IS,SHCPAT«,11, IS,7HALLPAT*, 

2 11,1S,7HALLTST*,U,1S,6HCTEST*,11,IS,6HSIGNS*, 
3 U,1S,6HSTAN0-,I|,/*» - 
VS ..... 

-i //«H/CASC /|H|H/, DISEASE IS /,C6,2H I,- 
2 F3.2,2H)./«S 

- EHÍ- 

GETSYM MAO 

EXTERNAL FUNCTION HIST)- 
N'R 

-P'T TESTP,PR,PQLO,PNEW,PIJ,RANNO- 
INSERT FILE COMMON 

-R'N LCMPTYiNAMTSTiSPTCST--- 
R 

R THIS FUNCTION HANDLES ALL THE SIGN RETRIEVAL 
R ACTIVITY FOR THE DISEASE GENERATOR AND THE 
R DIAGNOSTIC PROGRAM. 
R 

-E*N GCfSVM.--- 
RET-1 
LIST.IHORK) 
N'R C6IT.E.I 
VR SIGNS.G.l 

OS-2 
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R HERE THE USER IS IN CONTROL. SIMPLY RETRIEVE 
_ R THE HEX* 4VW»T0* #AOW HIM ! WTTTL TRAMEUTION- 

R «NO CHECKING). RECORD SYMPTOM AS CALLED FOR. 
-R------- 

OUTPUT.lOSfOcFIRST) 
_RDLOML•( WORK ) 
LOOP W*R .NOT. LEMPTV.IMORKI 
- HAME»®OPTOP.INORK) 

W'R name.e.snoti.or.name.e.snos 
_NfPOPTOP.lMJRK)-—- 

M'R NAMTST•INL) 
- STRANS.<01 

O'E 
_ R*SEOROR.(NL) 
SL NL-SEOLR.(R.F) 
-MIR -- 

STRANS.IOI 
-fXQ- SI 

E'L 
€«L 

INTERNAL FUNCTION (ON) 
-jlQ STRANt.----- 

M0R0>TRANS.(NL»2) 
-WiR WOROvfi^Ot- T'O-ERRMRK 

NEMTOP.I-MOROtLST) 
-OUTPUT.(OS* WNRMVNL) 

F»N 
-S«N --- 

O' R NAME.E.»NORMALS 
_ R»SSORDR.(POPTOP.(MORK)I 

TL NEXT-SEQLR.(R*F) 
- W'R F.NE.1 

OUTPUT.lOSfitNT.NEXT) 
-VIS NTMH/MORMIl /.CMS- 

Rl*SEQROR.(ITSVAL.(»MEMBER»»TRANS.INEXT»3))) 
TU_SVMP»S€0LR. (Rl»F I ) 

M'R Fl.E.lt T'O TL 
_NEMTOP.i-SYMP.LSn- 

T'O TLl 
--- 

O'E 
_MOROaTRAN&»iNAME*2) 

M'R MORO.E.Of T'O ERRMRK 
_ NEMTOP.(MORO»LSTL- 

OUTPUT.IOStItFOStNAME) 
--- 

T'O LOOP 
-E'L — 

R 
-R MHEN THE CURRENT LIST IS EMPTY, INITIAL SYMPTOMS - 

R MUST BE GENERATED. 
-R--- 

O'M CURLST.E.O 
OUTPUT•(SIGNS,0,INIFRM) 
MANY.(LIST.( TEMP).DISEASf1.0) 
COUNT-RELTST.(MORK,TEMP) 
IRALST.(TEMP) 

-R-—--—- 
R HERE THE INITIAL TESTS ARE CHOSEN AT RANDOM 
R TO OBTAIN THE INITIAL SYMPTOMS. 
R 
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SWITCHED 
T»H TGiOOPf FOR JMi 1*JtG.NlNl?S 
U*R COUNT.E.0, T'O OUT 
-KTH*COUNT«RANNO»m«l- 

K-0 
ROR-SEOROR.IWORK) 

GET1 TEST>SEQLR.(RDRtI ) 
- R^IH 

U*R K.L.KTH, T'O GET I 
-COUNT»COUNT-1- 

NEWTOP.ITESTfLSTI 
SYMGEN.ILST > 
RENOVE.(LPNTR.(RDR11 

-Ü*R FOF.HSTT.O.O» SWITOfl 
TGIOOP CONTINUE 
OUT-U'R SUITCH.E.O- 

OUTPUT.(STANOtO.NOS) 
RET»0 

E'l 
-R 

R HERE A RESPONSE TO A PARTICULAR TEST IS 
-R RCQUIR68, THE TUT IS OH THE TOP OF »LGT». 

R 
--0*€ 

SYMGEN.(LST) 
-EH 

R 
GAG*-IRALST.(UORR)- 

F'N RET 
ERRMRK OUTPUT.(STANOfOtERR1 

T'O LOOP 
—R- - 

R THIS FUNCTION SELECTS A RESPONSE AT RANDOM 
-R- TO THE TEST ON THE TOP OF THE 'LST* GIVEN 

R THE KNOWN DISEASE 'DISEAS*. 
-R- 

INTERNAL FUNCTION (X) 
E'O SVMGEN. 
TEST»POPTOP.(LST) 

-U1R ITSVAt.lASPTCGTtfTitT).C.<ViS<- 
SPTEST-IB 

O'E 
SPTEST-OB 

€*L 
TESTP-RANNO.(X) 

-POLO»0»- 
R-SEQRDR.I:TSVAL.(*HEHBER*«TEST)) 

GLOOP- NEXT»SEOLR.(RtS) 
U'R S.E.l 

U'R SPTESTi F'N 
GL00P1 NEXT-SEQLR.(RtS) 
-U*R S.E.I» F'N- 

NANE»ITSVAL.(SPNANEftt NEXT ) 
OUTPUT.(SIGNS*l»NRM'NAM€) 
NEUTOP.(-NEXTfLST) 
T'O GLOOPI 

O'E 
-LOG-MEMBER.IDlSEAGtlTGVAL.IAMEMBCRA.NEXT).0) 

U'R LOC.E.Ot T'O GLOOP 
PR»PN.(NEXT(CONT.(LNKR.(CONT.(LOC) )♦!)) 
PNEM»POLO*PR 
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POtD«I»TESTP.ANO.TESTP.I.PNEU 
^N«.|TWAt.TAPNAN§^NE*W--^ 
2iíí !î!I • !51 ^15 •1 • ^os • »<A»»E i ■NiMTOP.tNEAT^Ãyi_ 
N'A SPTEST 
- P«W»«0*-. 

T'O GLOOP 
«H.- 
P'N 

POLO-PNEN 
T'O GiOO^-. 

E'L 

• •4- P|AST>AM/USER RESPONSE /«CA«1 

*•$ INIFtn.lH/TMP ,«vîiî. .Tî!h 

ïü OSMH'u,se,,eo s'« -/.06.¿h';« — 

ARE/»» 

NAO 

EXTERNAL PONCTION (NARK) 

-R»T NGT-- 

EQUIVALENCE (IWGT.MGT) 
—1**cgaT FILE ¿"‘"‘ITN 

€•0 OUNPP. 

■UXUL 

NLK ALLPAT^O^ EtN_ 
OUTPUT•I ALLPAT* Ot BLANK ) 
R-SEQROR.ÍPATSTK)_ 
COUNT-0 

-N£XT«SF(( I, n,ft_ 

-I ~jÄ\£;i;.rÄl*u’A'-0-mn 
E'L 

-COUNT-COUNTU 
N'R NEXT.L.Ot T*0 LOOP 

—»««■■»■  .» 
T'O LOOP 

R 
R 

V*S BLANK-A/-A 
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DUMPl 

LOOP 

LOOP! 

MAO 
-EMTEMNAt fUMCÎiOM IMAWMfLSTI- 

N»A 
E*T PfPTOT 
EQUIVALENCE IIP*P) 
INSEAT EILE COMNON 
E'O PDUMP1. 

-N*A MAAA.E.O, F»N-- 
CNT-0 
RESEGADA.(LSTI 
SYMP-SEQLA.(R.F) 
Ii*A F»t. I — 

N'R CNT.C.O, OUTPUT.INAAK,CNT,SVIIN,$AAAAV») 
-OUTPUT. <HARRlQ.tLANR>--- 

F'N 
E*L 
W'R SVNP.L.O 

CNT-CNT+I - 
STACK(CNT)>SNOT t 

-E-*-fc--- 
CNT-CNTf1 
STACKICNTI*iTSVAL.(ftPNAMEA« SVMP).y.AOOO*OOi 
WR CNT.C.17 

OUTPUT.IMARKtCNTf SVLIN» tAAAAYtI 
CNT-0 

-E*E---- 
T'O LOOP 

R 
R 
E'O DOUNP1« 
N'R MAAK.E.O. F'N 

-P TOT-O.___ 
R-SEORDR.(LSTI 
OUTPUT alMARKyOyOLINEI 
STATT «SEQLRalRyFI 
N'R F.E.l 

OUTPUT.(MARK,2,LINE*TRACE*l.-PTOT) 
-OUTPUT. (MARK,Oy BLANK»---- 

F'N 
E'L 
IP-SEQLR.(RyF) 
N'R P.L.l.E-2* T'O LOOP1 
OUTPUT.( MARK* 2*LINE* ITSVAL.(IPNAMES* STATE)* IP I 

—PTOT-PTOT »P___ 
T'O L00P1 

R 
R 
VS BLANK-*/«» 
VS TRACE-ITRACE* 

—VS S¥HN-»1BG»M_____ 
VS DLINE-IH/CONOITIONAL PRIOR STATE PROS/»/«» 
VS LINE-»20S»C*,F4.2«S 
E'N 

MAD 
EXTERNAL FUNCTION (MAAK,NARGS,FMT,AI,A2*A3) 

OUTPUT 
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N'K 
IMSCRT Flt€ CONNON - 
E’O OUTPUT. 

--W1* •I.B.MRMVI. T»Q OOtNARm _ 
STACKin-Al 
STACK! 21 «A2- 
STACK!3 Í■A3 
T*0 00(NARK)- 

0013) CONTINUE 
OUWJ-N«R NARfil.j.Q__ 

DWRITE.(FILEI,FNT) 
-***- 

ow*ITC*(FILEI,FNT,STACK!II...STACK(NARGS)I 
'«"ll --—-— ___ 

FP,T» STACK! D...STACKINARGS) 

0010) F'N 

SELECT 

TLOOP 

NAO 
-^EKTERNAL RUNCTIQM IOUNNÏ)____ 

Î ‘fî"]"*5 111 iw »«m«« in iw_ 4 kiäk «ÄTstrrs 
-4|.frHü.l0{??,"K.ri^.s°:;»;°!!;!!i».;°;"^ »»». «con» 

_ N'R_ 
INSERT FILE COMNON 

- -FfT WEIGNT,WG1,PSAVE_ 
E'O SELECT. 

—RSA¥S«0. 
FIRNUP.(PATSTK) 
ROR»SEOROR.IPATSTK) 
SAVLST-CURLST 
NEXT>SEQLR.(ROR,I) 
N'R I.E.I 

-R- 
R UPDATE THE TREE 
R 

NTLIST.(TREE) 
NEMVAL.!AVALUESAtLI ST.! 9), TREE) 
NEWVAL.|tPRlORi,CURLSTlTREE) 

F'N PSA.VE 
E'L 

MGT*WEIGHT.(NEXT) 
NEMVAL.IAWEIGHT A,WGT,NEXT) 
N'R NEXT.L.O, T*0 TLOOP 
N«R MGT ■ G ■ PSAVfc__ 

PSAVE>N¿. 
CURLST*NEXT 
PATLST>ITSVAL.(ÍSYNPSS,NEXT) 
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e»t 

-TtOOP 
R 

Hi¬ 
ll 
R 
R 
It 
R 

THIS FUNCTION UPDATES THE UNACCOUNTED- 
FOR UST AFTER A SUCCESSFUL DIAGNOSIS OF A PATTERN. 
IT CONTROLS THE FORNATION OF NEW PATTERNS FRON THE 
SVNPTQNS REMAINING ON THE UNACTO LIST. 

ElO GQTPATi 
CODE«I 
RDR-SEORDR. (UNACTO) 
SYNP«SEQLR.(RDR.n 
UHI I.E. t f E»0 PRUNE 
LOC-NENBER.ISYNP.PATLST.O) 

LOOP 
CHECK 

-U«R LOC.E.O 

O'E 

W«R SYNP.C.O, C0DE«0 
T*0 -LOOP^ 

E 
ADO*LPNTR«(ROR) 
SYNP-SEQLR.IRDR.n 
RENOVE.(ROD)- 

-EH 
R 

T'O CHECK 

PRUNE W*R CODE.~.I. F'N 
-ROR«SEGROR»IPATSTKI 

LIST.(TENP) 
LOOP)-NULST«SEOLR. (ADR*I ) 

W'R I.E.1 
T'O RESTOR 

O' R NULST.L.O 

O'R NULST.E.CURLST 
NEWSOT . (-NUL ST f TEMP ) 

EH 
T'O LOOP! 

R 
-R- 

RESTOR 

L00P2 

R0R«SE0RDR.(UNACTO) 
NTL1ST.(PATSTK) 
SYNP«SEOLR.IRDR(I) 
N'R I.E.l - 

INLSTR.(TEMP,PATSTK) 
-ERAiSTi(TCHP) 
F'N 

EH 
W'R SVNP.G.Ot PATFRN.(SYNP) 
T'O LOOP2 
E'N 

PATFRN NAO .. . 
EXTERNAL FUNCTION (SYNP) 

R THIS FUNCTION FORMS ALL THE DISTINCT PATTERNS 
R FOR A GIVEN SYMPTOM, 'SYNP*. IT PROCESSES 
R ALL PATTERNS SO FORMED AGAINST THE CURRENT 
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5 STACK» IF THE PATTERN IS A NFU dmf it 
; « «'*'«»• <hwm,« "-'iJL 

■#m- 

LOOP 

B'N SUBSET 

4MSBBT fUE COMMON 
*'T P, UPOI 
€*0 PATEAM,_ 

tH6MLST«ITSVAL.(»MEMBERS,SYMP » 

f0* e‘CH ”*rt on ,hi 

- ROP*SEQROR, 4MCMIBTI 
STATE>SEQLR.IAOR,I) 

-B*B i.B. 

J THiS STATE 1M THE CURRENT PATTERN ctatv 

1« mu! ,2í,.íH!1' “"'»»'‘'««N «1st »ISO* jJ BE THEREr AMO IT SHOULD BE ICNOREO» — 

-EEOIR IRPR, 11 

^R MEMBER.ISTATE,PATSTK,lt.NE.O, T‘0 LOOP 

CLOOP 

JMSEC!-4 UMACTO rS TA TE,U ST.4 TEMP »4 

VÎÂÎÎÎi!!;*”'"" * - *N .»isMHG 
NEXT-SEOLR.IR.F) 

-M«R P.NE.I_ 

^'iRALSTflTEMPI^* **S*NPS»,NEXT'> 
T*0 LOOP 

OLE--- 
T*0 CLOOP 

-sa_ 
E*L 

INLOOP 

R pIrTF*iâN°?QÎ?ïiA!NS ™E PARTUL SYMPTOM 
R PATTERN. CREATE THE STATE PRIOR FOR THIS PATTfbm 
« »«0 «00 I. TO TH£ PATTERN STACK. '* ntUl 

NcMVAL•(ASVMPSS,TEMPtNULST) 
IRORaSEQROR.(MEMLST) 
STATEl-SEQLR.IIROR,||) 
N'R II.E.l, T'O PROC 

-EEOLR. IIRPR, HI 

T'0 I ML OOP 

T*0VINL00pT*STATei* * TSVAL*1 IPÄ0S$* STATED ) 
R 

R 'NULST* NOW CONTAINS THE STATES ANO A PRIORI 
ü?!î****^ PnP THt RâTTg^^ • fEiip, , 

R UPDATE THIS PRIOR BASED ON THE SYMPTOMS IN 'TEMP'» 

P«0. PROC 
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MM«SEQftDR. I TEMP) 
pteop-syw»i-s€«i*.<PROR,i»n~ 

M*ft PI.NE.l 
-UPOU<S¥HPI,WtfLSTtWUtSTt 

T'O PLOOP 
-En- 

IIIALST.I TEMPI 
-T*0 LOOP- 

E'N 

-UPD—MAO- 
EXTERNAL FUNCTION (SVNPI 

-R___ 
R THIS FUNCTION SUPERVISES THE UPDATING 

-R- OF-THE- -PATTERN- STACK GIVEN THE NEO *SVNPn- 
R EACH OF THE STATE PRIOR LISTS IN THE STACK 

- R IS UPOATEO (PROVIDED THAT THE «SVMP* 1*^- 
R RELEVANT TO SOME STATE IN THE LISTI. 

-R WHOMEVER THE PRORARIUTV OF A PATTERN GOES- 
R TO ZERO* THE PATTERN IS DELETED FROM THE 

-A PATTERN STAG«.- 
R 

_;_||*H_ 

B'N LEMPTV, RELEV 
-INSERT FILE COMMON--- 

F*T PtUPDl 
-UPf .- 

NEMBOT•(SVMPfUNACTO) 
-RDR«S€®ROA. IPATSTKI- 

LOOP STLST*.ABS.SEQLR.IROR(I) 
«N6G«-N*R I.E.I. T»0 FINISH- 

R 
R CHECK THE RELEVANCE OF THE SYMPTOM TO - 
R THE PRIOR IN STLST. 
-R- 

M*R .NOT. RELEV.(SVNP.STLSTI 
-N«R SVNP.L.O. NSNBOT.ISTMP»ITSVAL.< SSVMPSS.ITLSTII 

T'O LOOP 
E»L 

R 
R THE SYMPTOM IS RELEVANT. USE IT TO 
R UPDATE THE PRIOR. 

-A—--- 
P-UPDl.fSVHP.STLST.STLSTI 
W'R P.E.O 

N'R STLST.L.O. UNOO.ISTLSTI 
AOO*LPNTR.<RORI 
STLSTaSEQLR.fROR.II 

-SVMPSalTSVAL.ISSYMPSB,REMOVE.IAOOH- 
PLOOP N'R LENPTY.fSYMPSI. T'O CHECK 

TSVMPaPOPTOP.ISYMPSI 
N'R TSYNP.G.O» PATFRM.fTSYMPI 
T'O PLOOP 

O'E 
-MGMVAL.fIPROBI,P.STLST I- 

NEMBOT.ISVMP,ITSVAL.ISSYMPSft.STLST)I 
T'O LOOP 

E'L 
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-It MCAS THi SYMPTOM IS PAOCitS&O AY ipAT^AML - 
R TO SEE IF ANY NEW FATTERNS CAN BE FORNEO. 
-R- 
FINISH N*R SYNP.G.Ot PATFRH.ISYNP) 
-FUt- 

E'N 

. -UfOl_nao____ 
EXTERNAL FUNCTION (SYMP.LSTl.LSTZ) 
-R- 

R THIS FUNCTION UPDATES THE STATE PRIOR 
-R IN aSTU TO ACCOUNT FOR THE NEK- 

R SYMPTOM 'SYMP•• THE SIGN OF 'SYMP* DENOTES 
-A THE PRESENCE OR ABSENCE OF «SYMP*.- 

R *LST2' IS WHERE THE UPDATED PRIOR IS STORED. 

N'R 
-m BRSI«l.i.A_ 

INSERT FILE COMMON 
-FJLT F, PU «-EPS4 .PR , PROB- 

EQUIVALENCE (IPROB(PROB) 
-EMI-SANE- 

E'O UPOl. 
-W«R ISTl.E.tSTa --- 

SAME-IB 
--ORE- 

SAME-OB 
--iH.- 

P-0. 
-M8MCST-1TSVAL.I»MEMBERS,SYMP)- 

R 
-R-PROCESS EACH-STATE ON THE MEMBER LIST OF «SYMPU- 

R 
-ROR-SEQROR.ILSTAT- 
LOOP STATE-SEQLR.IRDRtl) 
CHECK-WIR UE.I_ 

W*R P.L.EPSI* F'N 0. 
- ROR-LRDROV.(LST2)- - 
AGAIN IPROB-ADVLER.IRDR.M 
-W*R I.E.1» F'NP- 

ADD-LPNTR.IRDR) 
-SUBST.IPROB/P.AOOI- 

T'O AGAIN 
- - _ - 

IPROB-SEQLR.(RDRt1) 
LOC-MEMBER.ISTATEyMEMLSTtO) 
W'R LOC.E.O 

-PR-B.--- 
O'E 

PR-PIJ.(SYMPyCONT.(LNKR.ICONT.(LOC))♦!)) 
E'L 
W'R SYMP.L.O 

PROB-PROB-Il.-PRI 
-Ol* 

E'L 
R 

OB-PROB» 
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R CHECK FOR 'ZERO' POSTERIOR FOR THIS 
V STATE* IF ZERO! OCÍETE IT FROH THE LIST*- 
R 

-W«R RROR.i.CFEI, T'O SCRAP- 
P«F*PROB 
H±R-SAHE- 

AOO-LPNTR.IROR) 
SOBST.IPRWfAOO» 

O' E 

-HAH¥»ILSTitSTATEiPRORI-- 
E'L 

-T'O -- 
R 

jj «ME^ H HHERE A STATE TS REMOVEP FROM '1ST4 

EORAP-H'R ■WOT.SAHE, T'O 1QQP--- 
AOOUPNTR.IRDR) 

-AOOIlNKi.ICONT.IAOOH - 
STATE-SEQLR.(RDR,It 

- REHOVC.IADO» - 
RENOVE.(AOOiI 

-T'O CHEGR___ 
E'N 

-PW-NAO--- 
EXTERNAL FUNCTION (SVNP,CLUSTRI 

-N*A- 
INSERT FILE COMMON 

— O'N LENPTVfNAMTST- 
F'T Pl#P2 

-EOUIVALENCC <Pli»PII.IPE,IPgl-- 
E'O PIJ. 

-«- 
R THIS FUNCTION OBTAINS THE PROBABILITY OF SYMPTOM 
*4SVMPA^ 'CLUSTR* IS EITHER THIS PROBABILITY OR 
R THE NAME OF A CLUSTER WHICH CONTAINS 'SYNP'. 

-R—_______ 
W'R NANTST.ICLUSTRIt F'N CLUSTR 
LIST.(TEMP) 
LIST.(OPSTCK) 
ROR*SEQROR. (CLUSTRI 

LOOP NEXT«SEQLR.(ROR*I) 
-N*R -- 

R 
R SHOULD NEVER GET HERE 
R 

F'N -I. 
O'R NEXT.E.LPAREN 

-T'O LOOP--- 
O’R NEXT.E.RPAREN 

R 
R END OF A TRIPLE, PROCESS OPERATOR AGAINST 'TEMP' 
R 

IPI»P0PT0P.(TEMP) 
-MRST«P0PT9P.(TEMP)----- 

W'R (.EMPTY. (OPSTCK ) 
R 
R END OF THE EVALUATION 



210 

-IJMlST.tffM») 
IRALST.lOrSTCK) 

-M*-M- 
l'l 

-IfJMOAIW. IÏSMA»- 
SECOND*POPTOP«(TEHPI 

- OPfR*POPTOP.(OPSTCK» - 
R 

-R »MCESt OPBRATOR MiM- 
R 

_Mia np&ji-C.iflRA_ 
M'R FIRST.E.1.0R.SEC0ND.E.I 

-Pi*Pl*P2 
tNARK-l 

-OK- 
Pl*0. 

_-MARH*0_ 
E'l 

-0*E - 
bnark*first»secono 

-MIR tMARK.ft.l- 
P1*0. 

_ajlAMUmfl_ 

O'E 
-Pl-Pl^2 

E'L 
-frl4- 

R 
-R CHECK FOR AN OPERATOR HERE 

R 
-O'R NEXT.E.AORA.OR.NÍXT.E.AEXORA 

NEMTOP«( NEXT tOPSTCK ) 
-TIO LOOR- 

R 
-R PROCESS SURCLUSTER HERE 

R 
-OIE- 

BMARK-INTERP.(NEXT) 
_M*R S)fllCMl.*-0- 

P1-0. 
BNARK*0 

O'R BMARK.E.O 
Pl«0* 

O'R NENBER.ISYNP.NEXT.OI.NE.O 
-MIR EYMCNT.i.l- 

|PI*ITSVAL.(SPROBI.NEXT) 
O'E 

Pl*l. 
E'L 

O'E 
-P1»0.- 

E'L 
E'L 
NANY.ITENPtPI.BNARK) 
T'O LOOP 
Y'S LPAREN-R(S 

-RWARiM«Rlt- 
E'N 



NSCOMP NAO 
-WfNNAL rUNCTION IfCSÎfNNION,LST> 

N'K 
#*í ^»UPOI 
E'O NSCONN. 
K-SEONON. Hf SVAi.4 ANENBEAS,TEST M 

LOOP SVNP»SEOLN.(ll,F) 
-tH* F.Ni.T-- 

P>l'PO 1.1-S YNP « PRI OR. L S T ) 
- N»R N.G.O.i f»0 LOOP 

E'L 
-FM* P^ 

E'N 

DEFINE -NAO - - 
EXTERNAL FUNCTION (TEMPI 

-N*N---- 
B'N LENPTY» OPER 
INSERT FILE COHNON 
E'O DEFINE. 

-LST«0 
LIST.IRDRSTK) 

-NAME«POPTOP.I TEMPI--- 
NUN«UFUNCIO) 
T'H LOOK, FOR J-1,2,J.G.NUM 
W'R UFUNC(J).NE.NAMEi T'O LOOK 

M'R UFONCU+IT.NE.O 
PRINT COMMENT ARELATION ALREADY DEFINED. REPLACE.Q.$ 

-R*T ACf A?ANS--- 
W'R ANS.NE.SVESAf T'O DONE 
LST*LI ST■(UFUNC(J*l» I 
T'O START 

LOOK CONTINUE 
-MUM» HUM* 3--- 

UFUNC(NUNI»NAME 
LST»LI ST.IUFUNCINUN*111 
PRINT OCTAL RESULTS LST 
UFUNC(O)-NOM 

START PCOUNT-O 
-OPER»10-—_ 

ARGLST»POPTOP.I TEMP) 
ROR»SEOROR.(TEMP) 

LOOP ELEM»SEQLR.IROR»11 
W'R I.E.I 

PCOUNT-PCOUNT-1 
-W'R LCMPTY.IRORSTKI—--- 

W'R PCOUNT.G.O 
PRINT COMMENT ANOT WELL FORMED. TRY AGAIN.A 
UFUNC!J*1I»0 

E'L 
T'O DONE 

-0*«--- 
*>EWBOT.(A)At LST) 
ROR•POPTOP.(RORSTKI 
T'O LOOP 
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e»L 
o** i.i.o — 

WR OPER 
-OPER«oa-- 

P'R ELEM.E.SQUOTEI 
ELEM*SEOlR.(ROR,Il - 
T'O COEF 

EU 
C00E>AR6TST.(0I 

-WR COOR.Mi.O, EllMaCOOE.W■ 5AK10 
NEMBOT «(ELENfLST) 

4)»E 
CODE-ARGTST.(O) 
MIR COOE.ME«0 - 

ELEH-COOE.V.5AK10 
-MMBOT lEHM.UT»__ 

O'E 
COEF-CNUJUCOMSnOJ- 

CNUN«CNUM«L 
CONST(CNUM)*ELEM - 
CONSTI0)«CNUN 

-NEMBOT.KNUN,IS TI_ 
EU 
EU- 

O'E 
OPER* 1B- 
NEWTOP.(ROR« RORSTKI 

-RPR-SEQROR.(ELEN>- 
NEWBOT.UlBtLSTI 

- PCOUNT-PCOUNT*!- 
EU 
4»0 LOOP - 

R 
-R_____ 

INTERNAL FUNCTION (OUMNY) 
-R- 

E'O ARGTST. 
ARDÄ-SEQRDA. ( ARGL S TI 
ACOUNT-I 

UOOR-AIEN»«SEQ1R.IARQR, All__ 
M*R AI.E.U F'N 0 
WR ATSNP.E.ELEN, F'N ACOUNT 
ACOUNT *ACOUNT♦I 
T«0 AL OOP 
E'N 

-R----- 
R 

DONE IRALST.(RORSTK) 
F*N LST 
E'N 

CLUSTR MAO 
EXTERNAL FUNCTION (LST) 
N'R 

-B«N LINRTY- 
F'T P, PSAVE 
EQUIVALENCE IIP«P) 
E'O CLUSTR. 



213 

L!S?.(TEMPI 
STATE«T*A*5.(P0PT0P«(IS?I,11- 
M'R STATE.E.O, T'O ERR 

' Sh!!.t?1»;Ulit.Ill,sum,U 

LOOP 

NEMVAL* ( tRELATIt SClUSTM, NUL ST ) 
ROA-SEOAOA.IiSTI 
NEWBOT.(LPAREN.NUL ST I 
SUÖ-0 
IP-SEQLR.(RDR,I) 

-WR I.E.I-— 
NEMBOT•(RPARENt NULST) 
WA lemptv.itempi 

IRALST.I TEMP) 
NULST- 

E'L 

SUB-0 
0*R I.E.O- 

WR SUB.E.I 

O'E 
NEWTOP,(RPR,TEMPI- 
R0R-SEQR0R.(IPI 

NEWBOT*(LPAREN|NULST I 
E'L 

O'R !R«€.ftOR*.OA.IP.E.*EXOA» 
NEWBOT*(IPtNULSTI 

-e^E___ 
SUB-1 

- MSAVE»P- 
E'L 
*•0 LOOP 

OLOOP 

INTERNAL 
E'O 001. 

SUBLST-CONT. (NEWBOT. (LIST. (91,NULSTU1) 
NEMVAL.4 tPROOt.PSAVE,SUBISTI _ 

NEWVAL.($RELAT»,POPTOP.(SLSTI,SUBLSTI 
OROR-SCOROR. ( SL & T I____ 
NEXT-SEQLR.(DRDR,DII 
W'R OI.E.Lr P'N - 
NEXr-rRANS.(NEXT,2l 
W'R NEXT.E.Or T'O ERR 
LOC-MENBER.(NEXT,STATE,OI 

-RCMOWC« ( LOCI-—_ 

SUBST.(NUL ST,ADD) 
NEWBOT.(NEXT,SUBLSTI 
T'O OLOOP 
-E*N__ 

ERR 

R 
R 

PRINT COMMENT 
F'N -I 
VS LPAREN-m 

-VS RPARCN-m 
E'N 

•ERROR IN FORMAT! 

8 
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INTEftP MAO 

-MliMMAt rUMCTIOM ICIUETIU 
N * Ä 
IMSMT PUE COMMON 
E*0 INTEAP. 
SVMCNÏ-0 
BASE-0 
-SMOiNT-Q_ 

LOOP 

STACKIOI-O 
AOM-SEOAOM. (CLUSÎMI 
ELEM-SEQIR.(ADR,|| 

UB.1- 

?ÎÎÎÎ?*!ITSVAL*U*ELAri*ClUSTA»| 

W*A STACK(0).E.f«lNC*S 
-STACA40)«!_ 

°' sTAcmi^o*°R*STACK10 * *E *IFAL SEI 
E*L 

O'E 
PUSN.<EL«#i- 
î'0 LOOP 

-ÍU- 
I'M 

SVAL MAO 

EXTERNAL FUNCTION (DUMMYI 

INSERT F ILF COMMON 
SVAU- 

POP.INAME I 
R- 

R CHECK FOR PRIMITIVE 

J"l»I»J*6.NPR|M(0l 
—*MR NAMC.NE.NPRIM1J). T'O LOOK 

COOE-PRINIJ).(0) 
-F»W COOC- 

CONTINUE 
-M- 

LOOK 

R USER DEFINED FUNCTION 

mb0??* r°* J.6.UFUNCI0) 
M A UFUNCIJ).NE.NAME« T'Q ULOOK 

LST-UFUNCIJ*!) 
-y*A LIT.i.O, T«Q IRR--- 

ULOOK 
ERR 

RAOC- 
LOOP 

T*0 PROC 
CONTINUE 
F»T EARN, NAME 

AOT DEFINED./•$ 
r * N •I 
AOR-SiQRQRi(LST) 
NEXT-SEOLR.I ROA11 ) 
WR I.E.l 

POP.( NEXT ) 



RETAC*( NEXT ) 
fMI STACKTOT 

O’R NEXT*E.$($ 
---HfSHUOt-- 

NEMTOP.ISPOINT,OPSTCK) 
NEXT-SEOIR. »ROR.n 
NEWTOP.INEXTtOPSTCK) 

0»R NEXT«E*S>$ — 
NEXT-POPTOP.(OPSTCK) 

--W*R NEKT.A.PTKIO.E.SAKIO- 
AR5F.INEXT) 
T*0 KCER 

E‘L 
POSH*TNEXTl - 
SAVE DATA ROR» BASE 

-SAVE RETWRN-- 
BASE-POPTOP.(OPSTCK) 
COOE-EVAi.(O) 
RESTORE RETURN 
RESTORE OATA BASE» ROR 
W'R CODE.L.O.OR.CODE.E.SFALSEI» 

-0*R NEXT.A.TTKIO.E.IAKIO- 
ARCF.(NEXT) 

0*€ 
PUSH.(CONST(NEXT)) 

T*O LOOP 
- E«N------ 

F'N CODE 

CONTRI NAO 
-EXTERNAL FUNCTION (SPOT) 

N'R 
INSERT FILE COMMON 
E'O RETAC. 
STACK!BASE)«SPOT 
SPOINT-BASE 

- F‘N- 
E'O PUSH. 
SPOINT-SPOINT+1 
STACK!SPOINT)-SPOT 
F'N 
E'O POP. 

--—SPOT-STACK!SPOINT)- 
SPOINT-SPOINT-I 
F'N 
E'N 

APRIM MAO 

EXTERNAL FUNCTION (DUMMY) 
N'R 
STATEMENT LABEL X 

-B«N FIRST, SECOND,A6HSCKfBV 
VS NRMBIT-4000000000K 
INSERT FILE COMMON 
E'O L. 
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M*R ACHECK* ( BSTORE) 
- #V* ET EMA 2.4. «F TEMA 1 — 

O'E 
-»VTEMRa.L.TiRFl- 

E'L 
-T'O «STÖR*- 

E•0 LE. 
W*R ACHECK.t»STORE» 

BV-FTENP2.LE.FTENPI 
-01»- 

6V-TENP2.LE.TEMPI 
- « *4- 

T'0 BSTORE 
EiO SO^- 
W*R ACHECK.IBSTORE» 

-B¥«FT«M»l.i.FT«M»2— 
0*E 
-»V»TE»P1-€*T«MM- 

E'L 
-T'O BSTORS- 

E'O CE* 
-WIR ACMBCK.»BSTORE»- 

BV-FTENP2.GE.FTEMP1 
O'«- 

BV-TEMP2.GE.TEMPI 
-fit- 

T'O BSTORE 
-HO 0.- 

W'R ACHECK.I BSTORE) 
- BVaFT«MP2.G.FTEMPl— 

O'E 
-SV.TEMP2.0.TEMP1- 

E'L 
•SJCORS-RBTAC.i»»»- 

P'N 
-CO PLUS.- 

M'R ACHECK.IBACK» 
- fTEMP1«FTEMPI*FTEMP2 

O'E 
-TEMPIaTEMPUTEMP?- 

E'L 
--T'O BACK- 

E'O MINUS. 
M'R ACHECK.I BACK»- 

FTEMPl«FTEMP2“FTEMPI 
-Oi»- 

TEMPI»TEMP2-TEMPI 
E'L 
T'O BACK 
E'O TIMES. 
W'R ACHECK.IBACK) 

-PTSMRUFTGMPf FT8MP2 
O'E 

TEMP1"TENP1*TEMP2 
E'L 
T'O BACK 
E'O DIVIDE. 

-W'R ACHECK.IBACK)- 
FTEMP»"FTEMP2/FTEMPI 

O'E 
TEMPI"TEMP2/TEMPI 



E'L 
B^C« -RETAC*< T€#Plf 

F'N 0 
-R--- 

R 
IMTERM AL FUNCTION (X) 
E'O ACHECK. 
ROR*(T ENf11 
POR.ITENR2) 

-M*R TEHRI.E.<*IMC«>.OR.TEMRi.E.t*IMC*> 
TEMR1>I*INC»I 
RVMB 
T'O X 

E'L- 
M'R TENR1.A.NRN6IT.E.0 
-MRST»OR- 

O'E 
f IRST«IB 

E'L 
WR TEMR2.A.NRNBIT.E.0 

SECON0>0B 
-OM-—- 

SECOND*1B 
E'L 
M'R FIRST.AND.SECOND 

F'N iß- 
O'R FIRST.EDV.SECOND 
-MN OB-—- 

O'R FIRST 
FTENR2-TENR2 

O'E 
FTENRI-TENRI 

E'L 
-HN-W------ 

E'N 
E'N 

LPRIM RAD 
EXTERNAL FUNCTION (DUMMY) 
N'R 
INSERT FILE COMMON 
B'N TEMPitTEMP2*BTESTtBV 

-MO AND«- 
M'R .NOT.BTEST.IOIt F'N -1 
BV*TEMPI.AND.TEMP2 
T'O STORE 
E'O OR. 
M'R .NOT.BTEST.IOIt F'N -1 

-§V*TCMRI t8R»TEMR2- 
T'O STORE 
E'O EQV. 
M'R .NOT.BTEST.IOIt F'N -1 
BV-TEMRI.E0V.TEMP2 
T'O STORE 

-E'O NOT.- 
POP.(TEMPI) 
BY».NOT.TEMPI 
T'O STORE 
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STORE RETAC.(BV) 
E'H O 

R 
-R--- 

INTERNAL FUNCTION (XI 
E'O BTEST, 
Tl-STACK.SPOINT» 
T2-STACKI SPOINT-n 
M'R T1.E.O.OR.1l.E.I 

—-POP.IUMpn- 
O'R T1.E.$*INC*$ 

POP.( TEMPI I 
tempi-ib 

O'E 
F’N 08 

-E-i-L-- 
NEXT M'R T2.E.O.OR.T2.E.1 

POP.( TEMP2) 
O'R T2.E.$•INC«t 

POP.! TEMP2I 
TEMP2* IB 

-OM-- 
F'N OB 

E'L 
F'N IB 
E'N 
E'N 

SYMATS MAO .. 

EXTERNAL FUNCTION (DUMMY) 
-MML-- 

B'N BV 

INSERT FILE COMMON 
E'O PRES. 
POP.(TEMP) 

LOC"MENBER.( TEMP,SYMLST»01 
-M»-Jt 10C.E.0_ 

RETAC.( MARK I 
O'E 

BV>TEMP.C.O 
SYMCNT»SYMCNTM 
RETAC.(BV) 

---- 
F'N 

VS MARK>t«INC»t 
R 
R 

E'O ATTRIB. 
—-C008»0- 

LIST.(LST) 
POP.(SYMP) 
POP.(ATT) 
N'R SYMP.L.O 

CODE* $F AL SE t 

T'O RET 
E'L 

LOC«MEMBER.(SVMPtSYMLST.O) 



-eH- 

w • vy 

Vâi-flAllN 
1 '0 RET 

«•* OLIST.NE.O 

¡ t ^ 1 âT t * ^ *s t *c » «'A ALOC.ME.O 

SVKCNT-SYRCNT*! 
f*0 RET 

E'L 
E*l - 

«w.oS.:u$nH •C‘,‘H ^ ,C‘'*M •«••» 
TEMP«P0PT0P.(LST) 
Wf. FENP.e.M 

val-rarr 
-GIE¬ 

RET 

VAfTERP 
SVRCNT-SVRCNMl 

c^NERVAL.(ATT,TERP,LSTll 

IRALST.(LST) 
-RCFAt» IMRi. j --- 
E'N CODE 

A 
R 
€•0 ARGE. 
lOODUARy.A.TTK 

e*mstagkmusc»u 
e»n 
€'N 

GA0N1 NAO 

MRrWP- 

EJTERNAL EÜNCTION IREADER.PRIOR» 

EQUIVALENCE IIP.P) 
E'T PtUPQI,NSCONP 

J TR« MANC¿026¡fJí¡!|¡0C¡J ??s?.tEVEL 0NE ™C 0EC,SI01 

E'O GR0W1. 

*?9"l>fNTR. IREADER) 
—*ES . i WL . _ 

« «OC€SS f«M Of r«f P0SS1UE Msuns Of THf ,ls, 

ÍÍ«I*frSm#<M€R®€ARiTEST) 
SROR-SEQROR.(SLST) 

-EVNP«ECQLA,4 s^Qt^ S4^— 
w; St.E.l. T*0 NCONP — 
LIST.(SAVE) 
A*UPOl.(SYNP.PRIOR.SAVE ) 
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CHECKP.ISYNP) 
--î*0-NIM>0*- 

R 
-» **W8 THI «MORMAL» MtUI T Oü A TBtT »_ 

R PROCESSED. 
-R- 
NCONP LIST.(SAVE) 
-P-MSCOA^rWSSTrPUMmSAVS)- 

CHECKP.(SNORMS) 
-WAIST.(RUT)_ 

F'N RLST 
-R- 

R 
-iMTfiMIAL- -PiMCT IOM 4NARK)_ 

E'O CHECKP. 
-V«R P.C.Q---- 

LIST.(SCRAT) 

îîïiâ m WR*. SA VE» MESULT*»MARIU 
NEMBOT.(LISf•(9)(RLST) 

-^W«OL^I4CÂAI»iOT^4RiST* )- 
IRALST.(SCRAT) 

—-BU_____ 
IRALST•(SAVE) 

-PUi- 

-IUI- 

RELTST NAD 
--iRTBRWAL PUMCTIOR US T »PRIORI 

N ® Ä 
—-WSBRT RUE CORROM_ 

•'M LEMPTY 
-SWIEREMI -LABEL- SVI ICM_ 

P*T P»THRESH 
-EBUIVALEMCE (IP»R)_ 

R 

_. MCTI0*4tfmil,>tf*AM THg TPCTt uu,ru 
R ARE RELEVANT TO THE CURRENT STATE LIST OF 'PRIOR* 
*4MU WU£.4t«* ALAEAOV SEEN KUN 

-€*0 RELTST.- 
COUNT-O 

-UST.IRQRSU)---- 
N'R THRESH.6.1. 
- SVITCM>RSr - 

STATE-0 
-OLOSS • ( PRIOR» STATE I- 

T'O 001 
-OU___ 

SWITCH-LOOP 
-SU- 

SR-SEQROR.(PRIOR) 
LOOP-STATE-SEOLR (SR, SI I 

V'R SI.E.l 

EU 
IP-SEQLR.(SR.SI) 
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M'R P.IE.THRESH, T'O LOOR 
EXH-SVR*SEOROR« ( STATED- 
INLOOP SYNP«SEQLR.(SVR,SYn 
-5YI,E.| __ 

W'K .NOT.LENPTY.IRORSTK) 
SVR>PORTOP.IRORSTK)- 
T'O tNLOOP 

--O'E- 
T'O SWITCH 

-tH-—- 
O'R SYI.L.0 
T'OiNLOOP- 

O'R ITSVAL»(SRELATt,SYNP).NE*0 
-HEW?OP»ISYR,RO«ST*f- 

SVR-SEQRDR.ISYNP) 
-T'O INLOOP-—- 

O'E 
-4EST«BOT,ISVHH- 

W'R MEMBER.(TEST,CELLUI»!).NE.0, T'O INLOOP 
O'R NEMBER.ITESTrLST,OI.NE.Ov T'O INLOOR- 
M'R MEMBER.(TEST,TSTRUNtO).NE.0, T'O INLOOP 

-NEMBOT.ITEST,LST>-—- 
COUNT-COUNT*! 

-T'O INLOOP- 
E'L 

-E'N- 

TOPT MAO 
EXTERNAL PONCTION TATEST,STATE)- 
N'R 

-B'N LEMPTY-- 
INSERT PILE COMMON 

-P'4 L5A¥E,OSAVE,LS- 
EQUIVALENCE (ILSAVE,LSAVE),IILS,LS! 

—E^O TOPTN.- 
SMITCH-I 

-UST.INOOOOOI- 
T'O START 

-fO- TOPT.- 
SWITCH-2 

START-R-SEQR0R.4 ITSVAL. IAVALUESA,TREE) ! - 
RET-0 

- STATE-5E0LR»IR,f I- 
ILSAVE-SEQLR.IR,F) 

- OSAVE-LSAVE 
ADD-LPNTR.IR) 

LOOP-TEST-SEQLR.IRf F)- 
W'R F.E.l, T'O ENOISWITCH) 

-ILS-SEOLR»1 R,T )- 
M'R LS.C.OSAVE 

T*0 SAVE!SWITCH)- 
O'R LS.L.LSAVE 

STATE«» 
LSAVE-LS 

-ATEST-TEST---- 
ADO-LPNTR.IRI 
E'L-- 

SAVEI2) T'O LOOP 
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SAVEUI NCMTOP.I TEST• NOGOOO) 
-^*0 44M»>- 
EHOHI M'R .WOT. LEWRTV. I NOGOOO I 
-MTM__ 

NEWTOP.INOGOOO.CELL (III 

IRALST.tNOGOOO) 
ENOUI-ASNOVC.<LWKL«(CONT. IAOO) ) I 

RENOVE.IAOO) 

EXTERNAL FUNCTION (N1.N2I 

P*T PRO« 
«OUIVALENCE (IPRO«.PRO«) 
•'N LENPTV.NANTST 
-IMllPT cnc _ 

KL 

E*0 SETUP. 

NUN-ITSVAL.|«HSHNUNt. STRUCT) W 
-TAN XL» PO« ^»l.UJ.G.a.P^NON_ 

NEMB0T.(LIST.(9),STLIST) 
- NiMRIlT II lit _ 

NEMBOT.IL1ST.(9) .TESTS) 
- CONTINUE _ 

LIST.(TENP) 

^® .N3. TBNPI^i.iOQNl«. TJ|1 «moo 
MORO-POPTOP.ITENP) ® *NO°- 

-NTR MORO « miTBI_ 
T*0 ST 

-OU-MORO. B*«SVNP1«^ 
T'O SVNPL 

O'R MORO .£<.«1 ES ISA 
T*0 TESTL 

-Oil 
DEFINE.(TEMP) 

-04« MORO.E.fSP 1RStt 
T'O SPTST 

-O*« MORO.E.tEXCCUSA 
T'O EXL 

—0*4—-- 

E'L 

PRINT CONNENT SERROR IN BCD TAPE« 
CNN COM. 10)_ ___ 

« -NANB-POPTOP.ITEMP) 

stloop 

STATE-LOORUP.(NANE.I) 

1» T«» > 'STATE I 
M'R LENPTV.(TENP), T'O LOOP 
SYMP-POPTOP.4T4MP) _ 
I PROS*POPTOP.ITENP ) 

- M»R PROB.B.0,. TtQ STLOOP_ 
SYNP-LOORUP.ISYNP.2) 

MANY. 11 TS VAL. UMiNBBR«. S YNP ). S TATE .PRO« I NEMBOT. I SYNP, STATE) '4»«»'«^NON» 
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f'O STIOOP 
—Ä- - 

R 
SWRt-W«R î»0 iOOP- 

P*T KK, rOP.ITENP)« NTHTOP.ITEMP,2> 
VS KK-ft2US»K12)*S - 
NAME-TOP.(TEMPI 
TEST»iOO«»iP.(MTMTOP.( TEMP,21,31 
VR NâMTST.(NANEI 

-S¥MP«SQOMMP.IMAMS,21- 
NEMSOT•(SVNP,ITSVAL«(SMEMBERI,TEST 11 
NENSOT «(TEST,SVMPI 
T'O SYNPL1 

-EM.- 
MENLST-1TSVAL.I»MEMBER»,TEST I 

-R«SCSR»N.IHAMEI- 
RLOOP SVMP-SEOIR.(R,F) 

VE F.E«ir T^Q SVHPil 
SVNP-LOOKUP.(SVMP,21 

-HEHBOTrHESTrSVHPI 
nembot.isvmp.menlst) 

-T«0 RSQOP- 
TESTE M'R EIMPTV.ITEMPI, T'O LOOP 

-HAME-TOP.(TEMPI - 
C0ST-NTHT0P.(TENP,2I 

-VA NAMTST.fNANEI - 
NEM60T.(COST,LOOKUP.(NAME,31) 

-T'O TESTkl- 
E'L 

- E-SEOROR.(NAME I 
TLOOP NEXT-SEOLR.(R,FI 

— -VE F.E.tr T'O TESHl 
NEMBOT.I COST,LOOKUP. ( NEXT,311 

-T'O HOOF- 
SPTST M'R LENPTV.(TEMP), T'O LOOP 

TEST-LOOKUP.(POPTOP.(TEMP 1,31 
NEMVAL.(»SPIEST»,»YES»,TEST I 

-TM3 SPTST- 
ENOO IRALST.(TENP) 
-MH- 
SVMPL1 POPTOP.(TEMPI 

POPTOP.4 TEMPI 
T'O SVMPL 

TESTLI-POPTOP.I TEMPI 
POPTOP.ITEMP) 

-T'O TESTt- 
EXL M'R LEMPTV.(TEMPI, T'O LOOP 

-T4«TRANS. (POPTOP» I TEMP I, 31 
T2-TRANS.(POPTOP.( TEMP 1,31 
NEW At • ( »EXCLUS » , T1, T ? ) 
NEMVAL.(»EXCLUS»,T2,TII 

-T'O ERL- 
E'N 

LOOKUP-MAO- 

EXTERNAL FUNCTION IMORO,LCOOE) 
N'R 
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INSERT FILE CONNON 
€•0 LOOKUP. - 
HLIST»0 

-ROOMMATE,10»--- 
N*R AOO.E.O 

-NiWA0T.IUSI.i9),HLlSn_ 
LST-BOT.(HLISn 

-N*R LCOOE.C.U NE#VAL.UNEN0€R»rLIST.I9),LST)- 
NEWVAL.(IFNANEtt MORO,L ST) 

-EU---- 
F'N LST 
€»« TRANS.- 
F'N LOCATE.10) 
INTERNAL FUNCTION (X)- 
E'O LOCATE. 

-NSNNUM«1TS¥AI. UNSMNUNt,STRUCT)_ 
HLIST>NTHTOF.INTHTOF.( STRUCTtLCOOE)fHASH.(NORDfHSHNUN)♦!) 
ROR-SEORSA.INLTSTI- 

LOOP LST-SEQLR.fRDRtt) 
N'R I.E.U F'N O- 
M'R ITSVAL.(fPNANEStLST).E.WORD« F'N LST 

-TU LOO» _ 
E'N 
E'N- 

INSECT NAO 
-EXTERNAL FUNCTION (LUL2»L»)- 

N'R 
EMT 4ENFTV- 
E'O INSECT. 

-R- 
R THIS FUNCTION OETERNINES THE INTERSECTION 
R Of LI AND L2 ANO PLACES THE ANSWER IN L3» 
R 

-R DR* SE ORO R. (LI I_ 
LIST.IRORSTR) 

COOP-El EltoSEQLi. ( ROM . I )__ 
W'R l.E.l 

W'R LENPTV.(RDRSTK) 
IRALST.IRORSTK) 
F'N- 

O'E 
-RORaROPTOP. IRQRSTR)-- 

E'L 
0'R I.L.O 
O'R ITSVAL.(SRELATS.ELEN).NE.0 

NE W TOP . ( ROR » R DR S T K ) 
RORaSEQROR.( ELEN) 

-O'R NEWER.(,A»S.ELEN.12.0).NS.0- 
NEWBOT.(ELEN.L3) 

E'L 
T'O LOOP 
E'N 

NENBER MAO 12/12/66 2321.6 92 00000 
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EXTERNAL FUNCTION (GOAL,LST.LEVEU 
- 

E'O NENBER. 
-AOO-O--- 

RDR-LRDROV.tLST) 
OESCNO-NAftfAGVSWR.UDRtO 

H'R I.E.lt T'O RETURN 
N*R LCNTR«IRORI«L.LEVELr T*0 OESCNO 

COMPAR W*R NAME.E.GOAL* T'O FOUND 
-NAME«AOVLWR.IRORtn--- 

M'R I.NE.l* T'O CONPAR 
ASCEND -- M'R LCNTR.IRORI.E.O* T'O RETURN- 

LVLRVl.(ROR) 
AOVLNR.IROR.H - 
M'R I.E.l* T'O ASCEND 

-T-*0 OESCNO--- 
FOUND AOO>LSPNTR.(RDR) 
RETURN-IRARORaTRORT- 

F'N ADO 
E»N 

UNDO MAO 
-EXTERNAL FUNCTION 4LST I- 

N'R 
-INSERT FILE COMMON-—_ 

E'O UNDO. 
RDR-SEQRDR.IlTSVAL.USVMPSttLSU»- 

LOOP SYHP>SEQLR.(RDR»I) 
N'R I.E.l* F'N- 
RDRl*SEQROR.(PATSTK) 

COOP!-NEXT«SEQLR.IRORitm-- 
H'R Il.E.l 

NEHBOTSYMPtUNACTOI- 
T'O LOOP 

O'R MEMBER.4SVr4PTITSVAL.USVMPSA,NEXT)*0).N€.O- 
T'O LOOP 

-0*E----- 
T'O LOOP1 

E'N 

DSKR09 MAO 12/01/66 2026.2 166 00000 
EXTERNAL FUNCTION (FIRST.SECOND,LSTI 
N'S INTEGER 
INSERT FILE COMMON 

-O'N INT( 211,NAME! 1 > >OTHCR( 211-- 
E'O OSKLST• 
VS NODE-1 
T'O START(MODEI 

START(II NAME(Ol-RJUST.(FIRST I 
NAME(1I-RJUST.(SECOND! 

-GFOREN. ( AR6tNAME( ¢1 .NANEl I ! .BUF116121 * BUF2 ( AH! ,-0, jRR) 
MODE-2 

START(21 BFREAO.INAME(OI*NAME(1!* INTIO! ••• l*E0F,E0FCT*EfU4) 
COUNT-LNKR.(INTIO)! 
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BFREAO.INAMECOI.NANEdltlMTICOUNTI ... COUNT,EOF .EOFCT ,EAR) 
-T«H SWITCH, FOR l-COUNT.-i, » -E. O 
SWITCH OTHER!COUNT-1)alNTII ) 
-OTHER! BU ■CBMWT--- 

K*VL 1ST.IOTHER,LST) 
_W*R K *1* ANOITETA, T’O START 121- 

F'N K 
EOF-BFC4.0S.! NAME! O), WANE !U, ERR! 

NODE*I 
_F*?! tlMMit_____ 
ERR FRINT CORNENT ICOOF ON READING FILEI 

üm\c» i _ 
•      — —* ■ 

F'N IDONEI 
-El#- 

RELEV RAO 
- EXTERNAL FUNCTION TSYMF.LST! 

M*R 
-E«T> RELEE.- 

ROR«LROROV.!ITSVAL.IIRERBERI,SYRFI ) 
LOOR-TEST«AOVLMR>!ROR, 14- 

W'R I.E.i, F'N OB 
-*Ml NENBER.OEST,LST,Ol.NE.O, F»R U 

T'O LOOR 
-EX#-- 

LOSS RAD 
-EKTBRNAl FUNCTION |Al,Aa!- 

N'R 
_FIT—PR,LOSS,WCT,SAVE,ICONS,WTOT,RI - 

B'N LERFTV 
_EQUIVALENCE 44RR^RRI,i IWfeT^GTI- 

O'N FI(10)«LOSS!100,AOI 
_wts Ao«a,nio- 

VS SUBS«0,0, 10,20,30,40,50,60,70,80,90 
-B'N LEMRTY- 

INSERT FILE CORRON 
-EX# SETLOS.- 

RET»0 
-LIET.IBUFFERI- 

0SKLST.IAl.A2,BUFFER) 
- STSL-RORTOF.IBUFFER) 

DSKLST.IA1,A2,BUFFER) 
-T'H LOOR, FOR i«l,1,J.G.SITE 

W'R LERFTY.(BUFFER), T'O ERL 
-NUN» FORTOR.(BUFFER) - 

NAME"TRANS.(FOFTOF. ( BUFFER ),1) 
-W'R NANE.E.O, T'O ERL 

I FR"ITSVAL•IIFROBI,NAME ) 
_FI ! HUH > *PR_ 
LOOR NEWVAL.IIINDEXS,NUN,NARE) 
-NAX»Q.-- 

T'H LOOP), FOR J"1,1,J.G.SI2E 
-4 NO" SUBSIST- 

W'R OSKLST•(A1,A2,BUFFER).E.IDONEI, T'O ERL 



INLOOP 
LOOPI - 

ÍM-iUnT^' F0* **1»1»K«G.SÏZE 
IPP-POPTOP.I auffER » 
LOSSIIND^K)«PR 

■»HP PR.C.MâR. NRR.pR-— 
CONTINUE 

CONTINUE 
NTLIST.(BUFFER) 

WLOOP 

R 
R 

P«tF8P0R.(TOP.(STRUCT)) 
MTOT-O. 
HSH-SEQLR.(R|F ) 
«•p F.E.l, T'O norm 
ROR-SEOROR.(HSH) 
NCJCT^SEOLP. ( ROR, I ) 

JaITSVAL.(tINDEXB.NEXT ) 
VGT-O, - 
INO-SUBSIJ) 

T'M NLOOPr FOP «•!,l.K.G.SIZE 
MGT»MCT«PHK)*LOSS( INO^K) 

-**N¥.(BU(TCP. NEXT, yen- 
WTOT>HTOTPWCT 

NORM 
BLOOP 

T*0 LL- 
FCONS"I./(( SIZE-1)»WTOT) 
#-P L€NPTV,«UFf«)r mo BACA 
STATE>POPTOP.( BUFFER) 

-iNCTwpopTop. ( Burrcp» 

ERL 

•AGN- 

?*0VÍlÔÓpI,E l6HT|, FC0NS#( “TOT’wGT ), STATE ) 

BET—1 
OUTPUT «I ST AND*O.ERR ) 

•••wrliyfK?" 111 l°“ s,>uc'ul,t *■“•/•» 
F*N RET 

P 
R 

OIOSS.-- 
A2-0 
SAVS"MAK 

OLOOP 

CLOOP 

P-LPOPOV.(Al) 
STATE-AOVLNR.(R,F) 
N'P F.E.l, F'N SAVE 
XTSVAL.4SINOEXB.STATE) 
WGT>0. 

-POP«SC8ROR.(Al)- 
NEXT-SEQLR.(ROR, I ) 
N*P I.E.l 

N'P MGT.L.SAVE 
AZ-STATE 
SAVE>UGT 

-E-4: 
T'O OLOOP 
E'L 
IPPaSEQLP.( ROR,I ) 

-E'N 
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WilCMt-NAO 

MON¬ 

EXTERNAL FUNCTION ILST» 

E»T NGT(ANSfFR 
EQUIVALENCE (MCT*IWQTl«{IPR,PR) 
E'O WEIGHT. 
R-EEQRDR.(LETI - 
ANS-O. 

-ETETiBtiQU.iR^)- 
V'R F.E.l, F»N ANS 
IR«-SEQLIUTR,N)- 
IWGT-1TSVAL. I »WEIGHTI,STATE I 
ANS*ANS*PA*WGT - 
T'O LOOP 

EAST NAO 
-tllMMâi IfONTRI \ 

-E'N LENPTV- 
INSERT FILE CONNON 

-E AO-MET,- 
LIST.ITENP) 

--MINT rOHNEMT tvnn na 
R'T $C6*$t ANS 

- N'Ä ANS,E.ATOUT _ 
CBIT*0 

- PRINT CONNENT RCONTRQL LIETE 
ROLONL.ITENP) 

-OiRTMwROPTOP. ITiNRI_ 
THRESH«POPTOP. | TEMP I 

- NINlTJaPOPIOP*(TENP)_ 
NOISE-POPTOP. I TENPI 
CONIALaPQPIQP.dEKPI 
PRINT CONNENT ECASESI 

-EOI ONI ■ )TFMR)___ 
NUNapoPTOP.(TENP) 

-0*E--- 
CBITal 
E'L- 
PRINT CONNENT SHISTRY FILEE 

-ROtONL. ITENP)- 
W'R •NOT.LENPTY.(TENP) 
FILE1«AJUST.(POPTOP.<TENP)) 
FILE2aRJUST.(POPTOP.(TENP) I 
ASSIGN.(FILE1»BUF1VRUF2) 
E*L 

-MINT CONNENT tCOOESt_ 
ROLONL.(TENP) 
CPRlQRaPOPTOP.ITEMP) 
CPAT-POPTOP.ITENP) 
ALLPATaPOPTOP.(TENP) 
ALLTSr-POPTOP.(TENP) 

---EmT-PnaTQp , ( TEMP ) __ 
SIGNS■POPTOP.(TENP ) 
ST ANO«POPTOP.(TENP) 
W'R CPRIOR.E.2.ANO.CBIT.E.l 
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MIMT COMMENT IDEPTHtTHRESH*HEURISTIC CONTROLS 
OERTH.ROPTOP* «ROLOML. HEMPH 
thresh«Poptop«itempi 
COMTRL«POPTOP» I TEMP Í-- 

E'L 
IRALST.ITEMPI 
F'N MUM 
E*# 

FIRMUP MAO 
EXTERNAL FONCTION 4PATSTK) 
N'R 
->JM SURSIT-- 
F'T P»PR 
EQUIVALENCE IPR.IRRI 
E'0 FIRMUP. 
-P^>w- 
R«SEQROR.(PATSTKI 

■PATR«R- 
LOOP 
CHECK 

LOOP1 

NEXT-SEQLR.IR.F) 
N*R F»E«-lr- F*N P - 
CURPAT«!TSVAL.(SSYMPSSfNEXTI 

CAND-SEQLR.IRI.m 
-W«R II.C. I-- 

IPR«1TSVAL.ISPROBS*NEXT) 
-P«P^PX - 

T'O LOOP 
Q*R CANO.E.NEXT 

T'O LOOPI 
-O'R SUBSET.ICURPAT,I 

O'E 

AOO«LPNTR.(R) 
MEXT»SEQLX.IR,E) 
REMOVE.(ADO) 
T'O CHECK 

-MO LOOPI 
E'L 
E'M 

SUBSET MAD 12/26/66 1718.A A4 
EXTERNAL FUNCTION <L1»L2> 
N'R 
E'O SUBSET. 
R«SEQRDR.(L1) 

-NEXT«SCQLR.IRtr)- 

00000 

N'R F.E.l 
F'N IB 

O'R MEMBER.(NEXT.L2,01.E.O 
F'N OB 

O'E 
-MO LOOP- 

E'L 
E'N 
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4*M*A¥-NAO---- 
EXTERNAL FUNCTION ISYMP.TESTI 

_M'A_ 
INSERT FILE CONNON 

_fiQ SYNSAV* _ 
M'R NENBER*(SYNR«SYNLST«0)«NE•Ot F'N 

-NiNBOT»ISYNR»SYNLSli- 
UPO.tSYNRI 

-AMI 
E'N 



COMMON FAP 
AUF 1 -COMMON 41» 
AUF2 COMMON 4»» 
CMU-COMMON—I- 
SIGNS COMMON I 
CPAT - COMMON -I- 
AILPAT COMMON I 
CPAIOR COMMON I 
CTEST COMMON 1 

01 SEAS COMMON 1 
STAND COMMON 1 
FILEI COMMON I 
FILE2 COMMON -1 
DEPTH COMMON 1 
TMABSM COMMON—I- 
NI NI TS COMMON 1 
NOISE COMMON —» 
NOOES COMMON 1 
AASE COMMON -t 
TREE CONNON i 
CURCST COMMON—I- 
PATLST COMMON I 
STRUCT COMMON 1 
SYMCNT COMMON I 
SVMLST COMMON -I 
UNACTO COMMON I 
TSTRUN COMMON—1- 
PATSTK COMMON 1 
CODE COMMON -i- 
OPSTCK COMMON 1 
STACK COMMON 21- 
UFUNC COMMON 21 
ARGS-COMMON—U- 
PRIM COMMON »1 
CONST COMMON »1 
SPOINT COMMON 1 
NPRIM COMMON-AI 
CELL COMMON 21 

MACROS FAP 
• 
• STACK MANAGSMGNT MACROS- 
PUSH MACRO ARGS 

- 1RP ARGS 
TXI •♦I.I.l 

- CLA-ARGS 
STO STACK»! 

-LRR- 
PUSH END 

MACRO ARGS 
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UP ARGS 
- CIA-STACK* 1 
STO ARGS 
-HK-If I--- 

UP 
POR-êMO- 

• LIST READING MACROS HERE 

SEOROR NAGRO-Ar«--- 
CLA* A GET LIST HEADER 
-STO-*-STORE IN READER CELL 

SEQRDR END 

SEOLR MACRO A(BtC 
-LAG-Dr*- 

CLA !» A 
-STO-A- - 
CLA 0*4 
-HO-A 
ANA -0700000 

-ARC-H- 
SUB -I 

— -STO-1 — 
SEOLR END 

-READER LINK- 
GET OATUN FOR CELL 
SAVE DATUM 
ADVANCE READER 

SET FLAG 

NTEST 
ENTRY 

NAMTST SKA - 
CLA* 

-STO- 

NAMTST 
SV4,4 - 
1.4 
-GANO- 

TSX 
TXH 
STO 
CLA 
SSP 
-STA- 

IGETMEM'4 

LIMIT 
CANO 

ARS 
CAS 
TRA 
TRA 
TRA 
-GLA¬ 
ÇAS 
TAA- 
TRA 
CLA* 
STO 
ANA 

LINK 
IB 
LINK 
NO 
*♦2 — 

NO 
LINK 
LIMIT 
NO 
•♦i 
LINK 
HEAD 
»0700000 

CAS 
TRA 
TRA 
TRA 
CLA 
-AAS- 

•0200000 
NO 
•♦2 
NO 
HEAD 
-SB- 

CAS 
TRA 
TRA 

UNIT 
NO 
•♦1 
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STA 
CIA 
ANA 

-CA*- 

•♦1 
•• 
-077777 
-t4#K- 

TRA 
TRA 

NO CLA 
-TRA 

TES CLA 
WA-AXT- 

TRA 
CANO Rte 
HEAD PtE 
LINK PtE 
LIMIT PtE 
-iMO- 

NO 
VES 
•I 
•♦2 
-0 

t A 
2,4 

SLF FAP 
• OfcPTM TO OBTAIN THE BEST TEST—in ruf BOU?INE 

• necesUrJ! USE0 T0 GR0W NEW BRANChes on the 

• STACK MANAGEMENT MACROS 
P04N-MACRO-ARCS_ 

RUSH 

IRP 
TX* 
CLA 
STO 
IRP 

-¿NO 

ARGS 

ARGS 
STACK,1 

POP MACRO 
IRP 
GLA¬ 
STO 

-LU_ 
IRP 
CNO 

ARGS 
ARGS 
STACKtl 
ARGS 

-MA.1,1,1 

POP 

• LIST READING MACROS HERE 

RSOROR MACRO-At*_ 
CLA* 
STO 

SEQRDR END 
• 

SEOLR MACRO 
-LAC- 

A 
S 

GET LIST HEADER 
STORE IN READER CELL 

CLA 
STO 
CLA 
STO 
ANA 
ARS 

A, B,C 
-SrA- 
1,4 
A 
0,4 
S 
-0700000 
-LS- 

reader LINK- 
GET DATUM FOR CELL 
SAVE DATUM 
ADVANCE READER 

SET FLAG 

SUB 
STO 

SEQLR END 

-I 
C 
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ENTRY SE'wOEC 
-RE-T-H- 

SXA RE T » i • 2 
SKA RET42.4 

• INDEX REGISTER i IS THE ROINTER TO THE TOP OP THE STACK 
IXA IERO,I 

• INDEX REGISTER 2 IS THE LEVEI COUNTER FOR THE SEARCH 
-4*4-K«Ot4-- 

CIA* 1,4 
STO LIST 
CLA* 3,4 

-- STO STATE- 
CLA DEPTH 

-SOS-ONS-—- 
ALS 18 
STO LIEST 
TSX tlTSVAL,4 
TXH VALUED-VALUE LIST FOR TOP LEVEL - 
TXH LIST 

-STO-VALUES-—- 

• THIS IS THE MAIN SEARCH LOOM. 

• FIRST GET THE DECISION LOSS OF THE CURRENT PRIOR 
LOOP CLA NODES COUNT DECISION NODES 
-AM--4--- 

STO NODES 
TSX- HTSVAL,4 — GET DISTRIBUTION FOR THIS NODE 

TXH PRIOR 
- TXH -- LIST 

STO PL 1ST SAVE NAME OF PRIOR LIST 
-6E4-STATE-—- 

STO DECIDE 
NOTEAN TSX- 80L0SS,4-DECISION LOSS FOR DISTRIBUTION 

LTEST 

TXH PLIST 
TXH-DECIDE-DECIDE NAME- 
STO LSAVE 
TXH-LTEST,BrO-—- 
TSX INANY,^ SAVE DECISION VALUES IF AT LEVEL ZERU 

TXH VALUES 
TXH DECIDE 
TXH LSAVE - 
TXL DOMN,2,•* CHECK LEVEL AGAINST DEPTH 
-HH-CONT IN,2, ■ 1-RETURN- 

• 
• HERE THE LEVEL IS LESS THAN THE REQUIRED DEPTH. 
• THE TREE IS DEVELOPED TO THE NEXT LEVEL AND THE SEARCH 

• CONTINUES. 

eeuN-TSX-»RCLTSTtA-GET relevant tests for this level 
TXH LIST 
TXH PLIST 

• 
* PROCESS THE BRANCHES AWAY FROM THE NODE DENOTED BY 'LIST*. 
• EACH BRANCH CORRESPONDS TO A DIFFERNT TESTING ALTERNATIVE 
* AT THE NODE DENOTED BY »LIST«.- 
• 

SEQROR LIST,RDR ESTABLISH READER FOR LIST 
SEQLR TEST,RDR,I GET NEXT TEST 
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READ CIA I 
- CAS OME 

TRA MOMEAD 
-UM-- 

TRA MOMEAD 
- TUM-•»2f2»0 

TRA RET 
TRI COMTIM,2f-l 

MOT A HEADER 

END 
MOT TME EMD OF TME ANALYSIS 

• PROCESS A SIMGU TEST RRAMCM MERE_ 

MOMEAD CLA-ZSRO 
STO ELOSS EXPECTED LOSS FOR THIS TEST 
TSR »CROM1.4 *CROM* RESULT LIST FOR THIS TEST 
TXM RDR 

-TAM-RCIST___ 
STO RESLST NAME OF RESULTS LIST 

• SAVE VAAIABLES HERE 
PUSH (RDR,LSAVE,RESLST,PL 1ST) 
TSR SNEWTOPfA PUT THIS TEST ON TEST STACK 
TXM TEST 

-TXM-T STRUM--- 

• PROCESS ALL POSSIBLE RESULTS FOR THE TEST CURRENTLY BEING 
• EVALUATED. 

SEQRDR RESLST,ROR1 READER FOR RESULTS LIST 
RSAD4—SEOLA-C4ST,RDRI,H—CST UST FOR NEXT RESULT 

CLA II CHECK FOR HEADER 
CAS ONE 
TRA GOON 
TRA •♦Z HEADER 
TRA GOON 

• ALL RESULTS FOR THIS TEST PROCESSED. RESTORE VARIABLES FOR TEST 
• EVALUATION 

POP 
TSX 

-TAM— 
STO 
TSX 
TXH 
FAD 
STO 

-TAM— 
TSX 
TXH 
TXH 
TXH 

CHECK CLA 
-FSB— 

TPL 
CLA 
STO 

DEL SEOLR 
LXD 

-SAA- 
TSX 
TXH 
TRA 

(PL!ST,RESLST,LSAVE,RDR) 
•POPTOP,A GET THE TEST NAME 
ISIRUM--- 
TEST 
SBOT,A GET TEST COST 
TEST 
ELOSS COMBINE WITH ELOSS 
ELOSS 
CHtCK,a,0-—-_ 
»MANY,A SAVE VALUES IF LEVEL IS ZERO 
VALUES 
TEST 
ELOSS 
ELOSS 
-L4AVS-LS-THIS THS BSST TO DATS_ 
DEL NO 
ELOSS BEST SO FAR 
LSAVE 
TEST,RDR,I REMOVE THIS BRANCH 
RDR,A 

tREMOVE.A 
TEMP 
READ 



236 

• PROCESS A SINGLE TEST RESULT HERE 

-» SAVE VARIABLES- 
GOON PUSH IRDR1•ELOSS*LI ST ) 

- Til LOOP«2* 1 CYCLE 

• POLO THIS BRANCH BACK IN TERMS OF EXPECTED VALUE 

CONTIN POP 
TSX 

- TKH 
TXH 

- STG 
LOO 

-PNP- 
FAD 
STO 
TRA 

■fLPSf«ELOSS«ABRI I RESTORE VARIABLES- 
tITSVMf 4 
PROBO GET PROBABILITY OF THE BRANCH 
LIST 
PROB 
LSAVE EXPECTED LOSS 

■PROB- 
CLOSS 
ELOSS 
RE ADI 

-RG-T-Attf-•*r4- 
AXT ##,2 

-*X?-#*,4 
TRA 1,4 

• 

FESTO BGI-I,TEST- 
PLIST 
PRIOR BCf 1,PRIOR 
TEMP 
TEST 
RDR 
-ROM- 
I 
II 
LIST 
ELOSS 
ONE OCT 1 
-RGS4-S-F- 
LSAVE 
ZERO OCT 0 
PROB 
PROBO BC I 1, PROB 
STATE 
OEC IDE-- 
VALUEO BC 2 1,VALUES 
VALUES 

INSERT COMMON COMMON PACKAGE 
END 

UP01 FAP 

• THIS FUNCTION UPDATES THE PRIOR DISTRIBUTION IN 
• HSTI« BASED ON THE SIGN «SYMP», THE NEU DISTRIBUTION 
• IS STORED IN 'LST2*. 

ENTRY UPD1 
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INSERT MACROS 
SUBST MACRO READER.DATUM 

LAC READER.4 
-CIA-Ur4- 

ARS 18 
BAC 0,4 
CLA DATUM 
STO 1.4 

SUBST END 
URDI-SJU-RII.4- 

CLA* 1,4 
-STO — SVMB 

CLA* 2,4 
-STO LST1 

CLA* 3,4 
-SM-LC«- 

CAS LST1 
_ IRA DIE 

TRA SAME 
DIE-STZ SWITCH 

TRA **2 
-SAME-SU-SWITCH- 

CLA EZERO 
_ STO- R- 

TSX SITSVAL.4 
TXH-MEMO 
TXH SVMP 

-SM-Ml ML ST- 
SEQRDR LSTl.RDR 

LOOR - SEOLR STATi.RDR,I 
CHECK CLA 1 

CAS ONE 
TRA MORE 

-UA-ba2- 
TRA MORE 

._fiA_P 

FSB FZERO 
TPL NOZEPO 
CLA P 

AU-AXJ-atUA_ 
TRA 4,4 

• -_ 
NOZERO SEOROR LST2.RDR 
AGAIN- SEQLR STATE.ROR,I 

CLA I 
-CAS-OMS- 

TRA **2 
TRA RET-1 
SEOLR PR.ROR,I 
CLA PR 
EDP P 

-CM-PROB- 
SUBST RDR.PROB 
TRA AGAIN 

• 

MORE SEOLR PROB.RDR.I 
TSX »MEMBER,4 

-UH-SUM- 
TXH MEMLST 
TXH ZERO 
TNZ **4 

i 
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CIA FZEftO 
-sro— hi 

TAA STEST 
-AAi-»r*- 

CLA 0,4 
-PAC- 0,4 

CLA 1,4 
-S?0- Hl 

TSX APN,4 
-WH-t¥MP- 

TXM PK 
- STO - KÄ¬ 

STEST CLA SVHP 
-ŸPL— -MUL-f— 

CLA -UEO 
-PW-PK- 

STO PK 
POLT LOO-PK 00 

FKP PK 
- WO-PK OB 

FSB F2EK0 
-m-mo-- 

tka sckap 
- CLA-p- - 

FAO PKOB 
- CTO-P 

ZET switch 
-TKA-MO- 

TKA OIFPRO 
- SOOST KOK,PKOB - 

TKA LOOP 

OIFPKO TSX $KANY,4 
-WH-- 

TXM STATE 
- TXH-PKOB 

TKA LOOP 
» - 

# 

SCKAP NIT-SWITCH-- 
TKA LOOP 
LAC -- KOK,4 
CLA 0,4 
ARS 1« 
STA AOO 

-GtA-KOK- 
ARS 18 

- STA-A001 
SEQLK STATE,KOR,I 
TSX- »REMOVE, 4 
TXH AOO 

-TSX-»REMOVE, »- 
TXH A001 
TKA-CHECK 

FZEKO OCT 233000000000 
-OHE-OCT-1- 
ZERO OCT 0 
SWI TCH 
KOR 



state 

IST! 
vwa- 
SYNP 
*€*Q ftCI - 
ADD 
A 001 
P 

1« member 

PROB 
MfMLST 

END 

MEMBER - fap_ 
entry memoer 
INSERT MACROS 

MEMBER SXA RETtA 
-SXA-agT*! t t 

CIA* !,♦ 
- STO-COAL 

CL A* 
- STO 

CLA* 
-taw— 

CLA 
- STO 

TSX 
RET — AXT 

AXT 

2t* 
-LIST 

3tA 
-LSYEtl 

LIST 
NEXT 
ONCE » 1 
••r4 
•••1 

LEVELI seoror list.rdr 
LOOP SEOLR NEXT «ROR*1_ 

CLA I 
-CAS-ONE_ 

TRA GOON 
TRA-«*2_ 
tra goon 

- SAC - 
TRA RET 

«WM-TSX-OHCG,i_ 
TRA LOOP 

ONCE - SEOROR NEXT«R 
OLOOP SEQLR CANO.R.F 
-OLA— 

CAS ONE 
TRA MORE 
tra 
TRA MORE 
ZAC 

-*A4-S*4— 
MORE CLA CANO 

CAS GOAL 
TRA OLOOP 
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TRA »*2 
ÎRA — Oi OOP - 
LAC R»A 

-Gfc*-OtA- 
ARS 18 

- ANA «OT7777 
TRA RET 

CANO 
- 

ROR 
I 
R 

GOAL 
Ar+S4--- 
ONE OC T 1 

- ENO - 

UN FAP 
ENTRY 
ENTRY 
INSERT 

SUBST MACRO 
-tAG- 

CIA 
ARS 
PAC 
CL A 
STO 

GORST—ENO- 
• 

HCHECK MACRO 
CL A 
CAS 
TRA 

-TRA- 

UPOl 
NSCOMP 
MACROS 
REAOER.OATUM 
REAPER? A- 
0,A 
1« 
O,A 
DATUM 
11A 

TRA 
HCHECK ENO 

LAB1«LAR2?ELAG 
FLAG 
ONE 
LABl 
-LAR2- 
LABl 

• 'UPOl' DOES THE STANDARD UPDATE OF LSTl INTO LST2 
• WHEN A SYMPTOM IS THE 'AGENT*. 

UPOl STI 
RIR 
TRA 

INDIC 
17 
START 

SAVE AND SET INDICATORS 

• 'NSCOMP* DOES THE NORMAL UPDATE WITH A TEST AS THE AGENT. 

NSCOMP STI 
RIR 
SIR 

START SXA 
SXA 

-GtA*- 

INDIC 
17 
1 
RET,A 
RETM.l 
-4-rA- 

STO 
CLA* 
STO 

AGENT 
2,A 
LSTl 

'AGENT' 

FIRST LIST 



CIA» 3,4 
sro LST2 
CAS IST! 

-WW--- 
SIR 2 
CLA ZERO 
STO P 
TSX »ITSVAU4 
TXH MEMO 

- IX«-ACëHt-. 
sro MEML ST 

• 

• PROCESS EACH STATE ON LST1 

SEQRDR 
UiOP-SEOIR 
CHECK HCHECK 
• 

CLA 
RET AXT 

AXT 
-UM- 

TRA 

LST1 ,RDR 
STATE,ROR,I 
MORE,NORM, I 

P 
•»,4 

4AMMC- 
4,4 

SECOND LIST 

SAME LIST.Q. 
HO—- 
VES 

OST NSMaSR LIST OE ACENT 

NORM SEOROR 
AGAIN SEQLR 
-MC HECK 
OIV SEQLR 

CLA 
FDP 
STO 
SUBST 

-TRA- 
• 

MORE SEQLR 
RFT 
TRA 
TSX 

-UM- 
TXH 
CLA 
TPL 
CLA 
FSB 

-SSO- 
MULT CLA 

FSB 
TMI 

RTEST RFT 
TRA 

-IRA- 
OK LOQ 

FMP 
STO 
CLA 
FAD 

-SM- 

LST2,ROR 
STATE,ROR, I 
Ol V,RET-l-r4~ 
PR,ROR,I 
PR 
P 
PROS 
ROR,PROB 
AGAIN- 

PROB,ROR,I 
1 
NC 
GETP,1 
MEMLSI- 
PR 
AGENT 
MULT 
»1.E0 
PR 
-PR-- 
»l.E-6 
PR 
OK 
2 
SCRAP 

-LOOP- 
PROB 
PR 
PROB 
P 
PROB 
P- 
2 
SAME 
$NANY*4 

NORMALIZE LST2 

TEST PROCESS SNITCH 
'NSCOMP• 
GET PI AGENT/STATE I 

CHECK FOR NEGATIVE RESULT 

CHECK FOR •ZERO» PROB 

ACCUMULATE PROBABILITY 

RFT 
TRA 
TSX 

AGAIN TEST LISTS 
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TXH 
mH 
TXH 

-m*- 
SANE 

MC— 

LST2 
STAT€ 
PROB 
100P 

NLOOP 

GOON 

SU6ST 
T*A — 

CI.A- 
STO 
SeOROB 

ROR,PROB 
LOOP 

SEOIR 
MCHECK 
TSX 
TXH — 
TXH 
-G*0- 

•i.eo 
PR 
-WENiSTtR 

INITIAL(IE PR 

AGENT*R(F 
GOON,HOLT,F 
IITSVALtA 
NEMO 
AGENT 

-STWEN- 

-REAP MEMBER LIST OF TEST 
NEXT SIGN 

BERBER LIST OF STRP 

TSX 
TXH 
TXH 

CIA 
FSB 

-GT0- 

GETP,| 
SYREN 
TERP 
PR— 
TERP 

-PR- 
FSB 
4PL 
TRA 

■I.E-6 
NLOOP - 
RTEST 

TEST FOR ZERO 

• GET 
«- 

THE PROBABILITY OF A SIGN GIVEN A SYRP 

GETP CL A* 
STO- 
TSX 
TXH 
TXH 

-TXH 

BACK 

TNZ 
GLA¬ 
STO* 
TRA 
PAC 

-CL A 

1,1 
HOLD 
»MEMBER,* 
STATE 
HOLD 
-ZERO- 

ZERO 
2,1 
».I 
0,* 

-0,4 

FOUND 

STORE RESULT 

GET PROB CELL 

PAC 
CLA 
STO 
STA 
ARS 

-ANA- 

0,4 
1,4 
HOLD 
FIGHT 
18 

CAS 
TRA 
TRA 
TRA 
TSX 

-TXH- 

«OTTTTT 
RIGHT 
NONAM 
•♦2 
NONAM 
SPIJ.4 

FAST CHECK FOR NAME 

NONAM 

SCRAP 

TXH 
TRA 
CLA 
TRA 

-LXO- 
SXA 
SEQLR 
LXD 

-AGENT- 
HOLD 
BACK 
HOLD 
BACK 

-ROR,4 

NOT A NAME 

POSSIBLY A NAME 

AOO, 4 
STATE,ROR,I 
ROR, 4 
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SXA AUDI,4 
-MEMOVf ,4 

TXH ADO 
-WA-AMHQVB, 4___ 

TXH AOOl 
TAA - CHECK- 

• 

SV*€M - 
ADO 
AOOl--- 
I NO 1C 
ROA- 
R 
I 
F 
S-IAXE---- 
IST1 
LST2- 
RIGHT 
HOCO - 
TEHP gggm_ 
MEHQ BCI 1» MEMBER 
ZERO - OCT-0_ 
AGENT 
P- 
PR 
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