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PREFACE

This Memorandum is part of RAND's continuing research into the
statistical analysis of computer simulation experiments. Preceding

work on this subject has been described in G. S. Fishman and P. J.

Kiviat, Spectral Analysis of Time Series Generated by Simulation Models,

The RAND Corporation, RM-4393-PR, February 1965, and G. S. Fishuan,

Problems in the Statistical Analysis of Simulation Experiments: The

Comparison of Means and the Length of Sample Records, The RAND Corpo-

rati&n, RM-4880-PR, February 1966. The purpose of this research is
to find methods for efficiently extracting useful information from
time series generated by these experiments. This study compares two
simulation experiments and investigates how to efficiently allocate
computer time between them. In addition, it provides a two-step pro-
cedure for implementing the derived allocation rule.

This Memorandum replaces RM-5288-PR. The method described here
leads to improved population estimators by reducing the error due to
sampling fluctuations and correcting for a suboptimization performed

in the earlier work.
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SUMMARY

This Memorandum investigates the problem of efficiently alloca-
ting computer time between two simulation experiments when the objec-
tive is to make a statistical comparison of means. For a given level
of accuracy our results show that significantly less computer time is
required when the sample sizes are determined according to a certain
rule than when the sample sizes are equal.

A graphical analysis suggests that small errors in estimating
the population parameters of the allocation rule do not significantly
affect the efficient allocation of time. The influence that the
degree of autocorrelation has on the time allocation is alsc inves-
tigated; results show that small differences in the autocorrelation
functions are important when each process is highly autocorrelated.

Positively correlated samples for the two experiments are
examined and incorporated into the efficient allocation rule. Tt
is shown that their use leads to a saving in computer time.

A two-stage procedure is described wherein initial cstimates
of the population parameters are computed which permit the experi-
menter to estimate how many more observations to collect on each
experiment. The procedure is simple and straightforward to implement
and should be of practical value.

When the camputer time requirements turn out to be prohibitive,
we suggest using negatively correlated replications on each experi-
ment. This may be accomplished by using antithetic variates. The

two-stage procedure also applies in this case.
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THE ALLOCATION OF COMPUTER TIME IN COMPARING
SIMULATION EXPERIMENTS

1. INTRODUCTION

In performing computer simulation experiments, it is desirable
to minimize the computer time required to obtain a statistical result
with a given level of accuracy. This minimization is also desirable
when comparing two experiments, but minimizing the time needed to
obtain a given accuracy for each experimental result is not neces-
sarily the same as minimizing the time needed to obtain this same
accuracy for comparing the two results. It is therefore instructive
to investigate the problem: When comparing two experiments, how many
ohservations should be collected from each one to obtain a given level
of statistical accuracy with a minimum expenditure of computer time?

This problem is investigated here with regard to comparing the
means of two computer simulation experiments. A number of consider-
ations enter into the problem's solution. The processes being ob-
served are generally autocorrelated, thereby precluding the use of the
statistical methodology applicable to independent observations. The
variances of the sample means as well as the computation times re-
quired to collect one observation in each experiment strongly influence
the choice of efficient sample sizes. Variance-reduction techniques
also play a role. Inducing positive correiatfon in the samples of the
two experiments and negative correlation between replications of the
same experiment reduces the time required to obtain a given accuracy.

In this Memorandum a rule for choosing sample sizes [s described.
The rule incorporates the above-mentioned considerations and deter-

mines the sample sizes necessary to meet a specified reliability with

*
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a minimum expenditﬁre of computer time. The varlance of the differ-

ence of the sample means measures rellability.

A two-stage procedure Ls also presented wherein initial samples
collected on each experiment are used to estimate the relevant popu-
lation parameters. These estimates are then used to determiane how
many more observations should be collected to efficiently meet the

specified reliability.

2. DEFINITIONS
Consider a covariance stationary stochas.ic sequence [Xt; t=20,

+l, ¥2, ..., +»} with mean

(1a) b= E(X),
variance
(D) o = E(x,w?,

autocorrelation function

(1) by = o E[(X,-w) (X W],
(1d) gig L 0,

and spectrum

-]
(1e) g(\) = ﬂ-lozzpse-“‘s D« <.

Given a time series of N observations, we compute the sample mean as

A e
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N
(2a) X = N-IE Xt,
t=1
with variance
N-1
-12
(2b) var(® = N'lo 2 (l-lsllN)ps
s=-N+1
As N becomes large, we have
(2¢) lim Nvar (X) =m < o
N—x
o
2
(24d) m=mng(0) =0 z Py <@
8= -

so that the large sample variance of X is approximately m/N. In
addition the statistic (Y-p)/(m/N)% asymptotically has the normal
distribution with zero mean and unit variance. We hereafter assume
N is large enough so that these limiting properties hold reasonably
well.

Condition (ld) assumes the abseuce of perfectly perifodic compo-
nents in [Xt}.* If any are present, they should be removed prior to
performing the analysis presented here. Presumably the mechanism
generating {Xt} will be well enough und.rstood to permit removal.

An analysis of the sample spectrum of [Xt] as described in [4] will
reveal periodicities if they are present.

Extremely narrow peaks in the spectrum indicate the presence of

fatrly regular periodic components in [Xt]. The magnitudes of these

*
See [1], p. 254.
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peaks compared to that of the remaining spectrum determines the
relative contributions of these components to the mean-square varla-
tion in {Xt]. In general a spectrum analysis can only be performed
after the experiment is run. It nevertheless serves as a convenient
check on assumption (ld) in addition to providing other useful infor-
mation.

The reader should not construe the term ''time series" to apply
only to a set of observations collected at equal intervals along a
time axis. The subscript t is simply an index and any series of
events indexed on t can generate a time series. For example, in a
single-server queueing problem, t may denote the tth job to receive
service and Xt inay be the waiting time of this job.

Our purpose i{s to collect observations on a particular process
in two simulation experiments and to compare the sample means of the
two time series. Let the subscript i denote experiment i. The. X,

L,t

with mean By variance 02

{ and autocorrelation function Pi denotes the

th : . .
t  observation on experiment i.

Suppose that {Xl t} and [XZ t] are correlated with covariance
» ?

function
(a) Rig,r = BLOXy o) gy ]
3b l1fm R = 0.
(3b) T 12,7
Given NI and N2 observations on experiments 1 and 2, respectively, we
have
*
See [4].

**For a further discussion of the statistical analysis of series
of events, see [2].
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! 1 2
(3¢) cov(Xl,Xz) = (NINZ) E E RlZ,s-T
s=1 T=1
If N > N_ we may write
1 2 N
2
- = -
{3d) cov(Xl 'XZ) = (NINZ) { TR!Z.T-N
= 1
T=1
0 Nz-l
) E: Rigor * z :(Nz' )Rl2,'r]'
T=N2- l+l =1
N_-1
0 2
(3e) éiTm N, cov(Xl,Xz) = Z Rlz‘_+ E (1-¢/N2)R‘2‘T,
1 T~ =1
(3€) élgm klem N1 cov(Xl, Xz) = m,
2 1
(-]
= E <
My R12,7 ®
T=.®
Similarly for N2 > N1 we have
¢ : . ' Y v =
‘3g) éxmﬁ éxg@ N2 ccv(Xl,Xz) m,.

For large N1 and N2 we therefore may write
(2L cov(Xl,Xz) ~'m3/max(N1,N2).

The variance of interest may now be written

(4a) var(Xl-Xz) ~ ml/N1 + m2/N2 - 2m3/max(N1,N2),

where m, and m, are obtained from (2d) for {Xl,t} and {Xz,t}, respec-

tively. For convenience of exposfition we first assume {xl

independent so that

(4b) var(X; - X,) ~ml/N1 + my/N,.

,t} to be
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3. THE EFFICIENT ALLOCATION OF TIME

We denote the computer time necessary to collect Nl and N2

observations on experiment ! and 2, respectively, as

(5a) T= clNl + CZNZ

where <y ls the computer time required to collect one observation on

experiment i. Suppose we require that
(5b) var(xl-xz) ~V = ml/Nl + mZ/NZ’

V being specified by the experimenter. We choose Nl and N2 SO0 as to

minimize T for fixed V by considering

= - /! -
(5¢) L clNl + c2N2 + A(V ml/Nl mz/NZ).

A\ being a Lagrange multiplier. Minimization yields:

(62) N) = m (14 (0TI,
(6b) N: = Nt(r/b)%

(6¢) Ty = [eymp ¥+ (e )12,
(6d) b= cyle,,

(6e) r = mzhnl.

The converse problem of minimizing V for a given T has the same

solution.
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It is convenient to first assay the special but common case

*
Table | shows the relationship between r and TZ/TO for this case.

For r equal to 8, roughly 75 percent of the computer time is spent

on experiment 2. When r lies in the interval 64 to 128, approxi-

mately nine observations are collected on experiment 2 for every

observation collected on experiment I.

Table 1

RELATIONSHIP BF™.EEN r AND r’z‘/ro -

%
r TZ/TO
4
1 .5000
2 .5858
4 .6667
8 .7387
16 .8000
32 .8456
64 .4889
128 .9188

k3
CZNZ/TO FOR b = |

In many simulation experiments it is customary to set

(7a) N, = N, = T/(2c¢)

so tiiat the computer time is equally shareu.

have

(7b) T = 2cml(l+r)/V,

whereas the derived rule vields

(7¢) T0 = cm1(1+r¥

Y2,

Then for a given V, Jg

———— s W Nl - PNV



To measure efficiency we use the ratio

(8a) T/1, = 2(1+1) /(14D 2.

For arbitrary Nl’ N2 and b we measure efficiency by
(8b) T/T, = [(H—ab)(1+r/a)]/[l+(br)%]2,
(8c) a= NZ/Nl a > 0.

Notice that:

(9a) lim T/To = 1 + ab,
r~Q

(9b) lim T/TO =1+ 1/(ab),
T~

(9¢) lim T/Ty = 1 + r/a,
b0

(94d) lim 1'/'r0 =1+ a/r.
b

Expression (8b) suffices for comparison purposes.

4. THE SENSITIVITY OF EFFICIENCY TO THE CHOICE OF a

Estimating ¢, and Cys and hence b, can be accomplished by

L
straightforward observation. The true value of r is more elusive

and it is therefore instructive to examine how sensitive the efficiency
measure T/T0 is to different values of a. Figure 1 shows T/T0 for a
equal to 1, 2 and 3, and b equal to unity. The values of a corres-
pond to devoting 1/2, 2/3 and 3/4 of the computer time, respectively,
to experiment 2.

If 6 s r <20, choosing a equal to 3 vields an allocation close

to the efficient one. For r < 6 the allocation a equal to 2 appears
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reasonably efficient. Now Lf r exceeds 100, the time allocation a
equal to 3 requires 45 percent less time to meet the specified accuracy
than an equal time allocation does. For r of this magnitude, an a

equal to 9 would be even more reasonable since

1im T/To = 10/9, a=29.
e

Figure 1 shows that, while the true value of r may be unknown, a
rough estimate permits the experimenter to choose an a that brings
the time allocation close to the efficient one.

Table 2 shows several interesting comparisons. It is evident
that as b increases, the a equal to 3 allocation becomes more desir-

able for larger r.

Table 2

T/TO FOR a = 1, 3 AND b = .25, .5, 2 AND 4

b = .25 b =.5 b =2 b =4
r a=1 a =3 a =1 a=173 a =1 a=3 a =1 a =3
1}]1.1111 1.0370 |1.0294 |[1.1438 }1.0294 [1.6013 |1.1111 [1.9259
211.2868 [1.0008 §1.1250 |1.0417 [1.0000 [1.2963 {1.0234 11.4783
311.4359 }1.0052 {1.2122 }1.0102 }1.0085 |1.1766 |1.0036 |1.3047
4] 1.5625 11.0208 |1.2868 11.0008 |1.0234 |1.1144 |1.0000 {1.2133
511.6718 |1.0403 ]1.3509 |1.0007 |1.0390 |1.0775 11.0019 |1.1577
6 1.7679 |1.0607 |1.4067 [1.0048 |1.0538 [1.0538 |1.0058 |1.1208
711.8533 {1.0811 [1.4560 |1.0111 |1.0675 |{1.0378 ]1.0105 |1.0947
811.9302 |1.1009 |1.5000 |1.0185 [1.0800 [1.0267 |1.0155 |1.0757
91]2.0000 {1.1200 |2 5396 |1.0264 |1.0915 |1.0187 |1.0204 |1.0612
10| 2.0639 [1.1382 |1.5756 |1.0345 {1.1020 |1.0130 |1.0252 |1.0500
20 | 2.5067 [1.2812 [1.8182 |1.1063 {1.1743 [1.0003 {1.0618 {1.0079
30)2.772% |1.3772 ]1.9582 |1.1581 /1.2158 }|1.0066 |1.0846 |1.0006
40| 2.9582 |1.4478 {2.0538 |1.1967 |1.2438 |1.0146 {1.1004 |1.0002
501 3.0990 |1.5029 }2.1250 |1.2269 |1.2645 |1.0220 {1.1122 {1.0017
60 | 3.2111 |1.5476 |2.1809 |1.2514 |1.2805 |1.0286 |1.1214 |1.0037
70| 3.3034 |1.5850 |2.2265 |1,2718 |1.2935 ] 1.0344 |1.1289 |1.0059
80)]3.3813 |1.6169 |2.2647 |1.2892 |1.3044 | 1.0396 |1.1352 |1.0081
90 | 3.4483 |1.6446 }12.2973 [1,3044 |1.3136 | 1.0441 |1.1405 |1.0102
100 | 3.5069 |1.6690 |2.3257 |1.3176 }1.3215]1.0482 |1.1451 |1.0121
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S. THE EFFECTS OF VARIANCE AND AUTOCORRELATION

It s Lnstructive to examine the effect of population variance
and autocorrelation on the efficlent time allocatfon. Assuming the

two samples are independent, we consider two cases of special Lnterest:

2 2
Case 1: o s o, °1,s =0y.8

2 2
Case 2: oy =0y LR}
For Case 1 we note that
2
(10) r= 02/o

which is easily estimated. Figure |l can then be used to choose an

a. One might therefore conclude that if the nature of autocorrelation
in each sample is roughly alike, an efficient choice of a can be
based on the ratio of the population variances. This conjecture may
be contrary to fact as we now show using Case 2.

For convenience of exposition we assume

(1la) -a!tl 0o, <1 f =1, 2.

L

This autocorrelation function corresponds to the Markov process,

(LLlb) Koo X e Y&,

where {el t} fs a sequence of mutually Lndependent, {dentically

distributed random variables. Now we have

(1lc) r=[1- o, + (az-al)]/[l- @, '(az'al)].

e o ————— o —

e
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Figure 2 shows r as a function of (az-al) for several values of @ -
Notice that for a given difference, (az-al), r increases rapidly as

a, and therefore o, increase. This result implies that small differ-

1 2

ences in the difference (07-01) are important when each sequence is
highly autocorrelated. Hence, while it may appear that two sequences
are quite similar because their autocorrelation functions are, these
minor differences may strongly affect the efficient allocation of time

between the experiments.

6. CORRELATED SAMPLES

It is often suggested that one may reduce the sample sizes needed
to obtain a given accuracy V by working with positively correlated
samples o1 the two experiments. This is clearly true for equal sample
sizes. Here the effects of correlated sampling on the efficient

choice of N, and N

1 are investigated.

2

The expression to be minimized, in analogy to (5c¢), is

(12) L - o N+, N+ X[V-m!/Nl-mz/N2+ 2m3 /max(Nl ,Nz)].

This yields

(13a) NT = {m1+»[hn2(ml-2m3)]g -2m3}/V
*

(13b) N, = {m2+ [mz(ml-2m3) /b]%}/v

for

(13c) m, < b(ml-2m3)

and
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(14a) N’: = {‘“1*'["“1(“‘2'2"'3)]%}/"
* %
(l4b) N, = f[ml(m2-2m3) /b1* + m, - 2m3]/V
for
(lac) m, 2 bm1 + 2m3.

It is easily shown that correlated samples reduce the required computer
time when either (13¢) or (l4c) holds.

It may occur that m, sat.<fies neither constraint so that

2

(15) b(ml-ZmB) < m, < bm1 + 2m3.

Suppose we then choose our sample sizes as

‘= N = -
(16a) Nl N2 (ml+m2 2m3)/V.

The corresponding computer time is

(16b) T = (c1+c2)(m1+m -2m3)/V.

2

As an alternative, in the case where (15) holds, we may work with

independent samples and choose N1 and N2 as in (6a) and (6b). The

required computer time is then

(17) ™ = [(clml)’5 + (czmz)%]z/V.
For independent sampling to be desirable, we require
(18) T - T" > 0.

Lxpression (18), however, implies that

]
(19a) m, > bm  + 2(1+b)m, + Z[Zb(l+b)mlm3] ,
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(19b) hnl > m, + 2(l+b)m3+2[2(l+b)m2m3]%

which clearly violate (15). When (15) holds it is therefore desirable
to work with correlated samples with equal sample sizes determined by
(16a).

In practice the quantities m and m, are unknown prior to

m

1’ 72 3

experimentation. 7> estimate them an initial sample »>f say Q obser-
vations on each experiment is needed. The estimation procedure ls
described in Sec. 7. For now we assume m;, m, and m, are known and

we concern ourselves with several contingencies that may arise.

Suppose that (I13¢) or (l4c) holds. If
* *
(20) Nl = Q, NZ 2Q,

no difficulty occurs. If, however,

* *
(21a) Nl >Q, N2 < Q,
* %
then we recompute N1 and N2 as
*
(21b) Nl = Q(ml-2m3)/(QV-m2)
*
(ZIC) Nz = Q_
Similarly when
* *
(22a) Ny <Q, N >Q,
then we set
*
(22b) Nl = Q
N /
(22C) 2 - Q(m2‘2‘“3) (Qv-ml) .

-
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If both required sample sizes are less than Q, we terminate the

experiments.

7. ESTIMATION PROCEDURE

The quantities ml, m2 and m3 seldom are known a priori and there-
fore a method of estimating them is required. The presence of auto-
correlation in {xl,t] and [Xz,t] makes estimation somewhat difficult.
Ideally we desire a method that can easily be incorporated into the
performance of the experiments. Then sample sizes can be automatically
determined within the simuiations.

The method suggested here accounts for autocorrelation but unfor-
tunately cannot be readily incorporated into the experiments. It
nevertheless provides valuable assistance to the experimenter especially
when large amounts of computer .ime are involved. The method has been
described in [3]. Here we briefly describe and extend it to the esti-
mation of my. Several clarifying remarks on [3] should facllitate its
application.

Suppose we initially collect Q observations on experiment 1 and
wish to estimate m . Since the same procedure applies to m, in

experiment 2, we momentarily drop the subscript i. The sample auto-

covariance function Is

Q-7
~ -1 - .
(23a) R o= aq Zl [, B Ky D)
t=
T = O’lv"')M< Q
(23b) X =ql X,

< m———rr
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which for large Q has expectation
(23¢) E(R) ~ o2 -m/Q.

T T
An initial estimate of m is
M

(26a) &= ﬁo + 22 (L-TMOR_

=1

which for appropriately chosen M has expectation
(24b) E(m) ~ m(1-M/Q).

Dividi ig (24a) by (1-M/Q) compensates for the bias so that our esti-

mator of m is
M

(25a) f = r_ﬁo + 2 (l-T/M)ﬁT]/(bM/Q).
=1

If {Xt} is a normal process then

(25b) var (i) ~—Ym2
(25¢) ¥ = 4M/(3Q).

The experimenter must choose an appropriate value for the design
parameter M. Our clarifying remarks concern this choice. Notice that
as M becomes large

M
(26) lim 2 (t-]rjMR_=m R =op_,
M T T T
T=-M
the desired mathematical limit. In (24a) we use ﬁT since R_r is unknown.
As M {ncreases here the variance Ym2 also increases so that the esti-
mate becomes less statistically reliable. This dilemma between good

resolution (mathematical convergence) and good reliability (convergence

et e —

——  — 1 21 o Tl 11
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in probability) is fundamental to spectrum analysis. Clearly a
compromise must be made which permits both acceptable resolution and
reliability.

The compromise depends on the choice of M. To guide us in our

choice we use the ratio

(27a) p= [var(ﬁ)]%/E(ﬁ) ~[4M/(3Q)]¥.
If
(£7b) M= 3Q/4

the ratio p is unity which i{mplies that sampling fluctuations in @
are roughly of the same order as its mean m. This is clearly undesir-
able. If

(27¢) M= Q/4

then the ratio is roughly .57. It is suggested that M not exceed Q/4
and in general be kept much smaller. One may easily compute @ for
several values of M, say Q/32, Q/16, Q/8, 3Q/16 and Q/4. Doing so
permits the experimenter to decide, albeit subjectively, when fi is
well resolved.

There (s the possibility that Q may be too small to permit good
resolution. If the estimate m fails to become well resolved as Q
increases to M/4, then more observations should be collected and used.
Failure to obtain a well-resolved estimate can lead to a serious
underestimate of m.

The estimation of My is accomplished in the same manner. Suppose
we have Q observations on each experiment. We form the sample covar-

fance function

-

[ S
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Q-||
a -l -— -
(28a) Riz,r = @ 2;(HJ40“L&;“)
t=

T = 0,+1,...,2M,
which for large Q has expectation

(28b) ER), ) ~Rp, -my/.

T

Our estimator is then

M
(280) 8, = LZ(I-Irlnofznﬁ]/(l-u/o)

=-M

with expectation

(284) E(ﬁ3) ~ mg

and variance, when both processes are normal [6],
2
(28e) var(ﬁB) -Y(mlm2+m3)/2.

In spectrum analysis the quantity m3/n is called the co-spectrum
of [Xl t} and [Xz t} at frequency zero. The same procedure concerning

Q applies here as in the estimation of m, and m,.
*

*
Our main purpose is to estimate N, and N

) 2 When (13c) holds, we

have initial estimates

~% " —k.
(29a) N, = [ﬁl + [bd, (& -28,)]%-28,}/v
gl %
(29b) N, = [ﬁz + [ﬁz(ﬁl-zﬂ3)/b] v

When (l4c) holds, the iniltial estimates are

(30a) Ry = (8, + (08, (8,-28)1%}
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~ ~ ” A % -~
(30b) #'2‘ = [y + iy (y-28,) /6] % -2} /Y.
When (15) holds, the sample sizes are equal so that

(31) #} N’; . (Ry$hy 20 ) IV

2

If {Xl t] and {Xz t} are normal processes we may use the results
n to derive the sampling properties o an to order Q .
i 6) deri h li i £ “: d N; d Q 1

Defining

i

(32a) ai = mi-Zm

3
I _ 2 3.% _
(32b) Bl = (m3 mlmz)(m1+m2 2m3)/(4V ny 95 ) i=1,2
b i=1
(32¢) 61 =
1/b  1=2

and noting that

(32d) E(al) ~.¢1 = mi-2m3,
we may show that
(32¢) COV(ml,ﬁ3) ~'Ymim3
(32f) var(d,) ~ Y[m2-4m m, + 2(m.,m +m2)]

i i i3 17273

N 2
(32g) cov(al,mj) ~Y(mJ-Zmea) L, = 1,2; 14j.
When (13c¢) holds we have

* *

(33a) E(Ni-Nl) ~ ¥0,6,
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(33b) vzvar(w’l‘) ~ {1+ (51m2/o1)ﬁ2 var(d,) + 2[(5101/::12)% +8,] cov(d, i)

+ (tl:l/mz) var(im,)
2 “

(33c) v var(N;) ~ (Ezmz/:l) var(?l) + 2[(62m2/@1)% + 52] cov(&l,mz)

+71 + (=201/m2)%]2 var(&z).
When (l4c) holds we have
*
(34a) EQN[-N)) ~ ¥8,5,
(34b) Vzvar(ﬂt) ~ (61m1/32) var(@z) + 2[(61m1/$2)% + 61] cov(32,&l)
+0 + (6132/m1)%]2 var(&l)

(34c¢) Vzvar(N;) ~ 11 + (ézml/ﬁz)%]z Var(az) + 2[(5232/m1)% + 52] °°V(32,al)

+ (62$2/m1) var(&l).

Since
2
(35a) m, < m,m,
(35b) my + m, > 2m3,

*
the bias is negative. To compensate for this bias we estimate Ni by

~

(35¢) N1 - NT-Yeléi
when (13c) holds, and by

~% ~
(35d) N = N’:-\yez&l

when (l4c) holds. Here we define

A - QZ-A ~ -~ -~ - -~ 2A 3 k
(35e) By = (i) (i Hhy-20) /(40 0Ry D) L=1,2.
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To orxder Q-l the variances remain unchanged.

When (15) holds equal sample sizes are used and we have straight-

forwardly
*
(36a) s(?f:) ~ N}
2 ,
(36b) var(N:) ~ Y[(m1+m2) + 4m3gm3-m1-m2)].

No bias adjustment is necessary here.

1 and m2/m2 are

usually approximated by that of chi-square. This suggests that we

For normal processes the distributions »f ﬁl/m

K ;
also approximate the distribution of Ni/Nl by that of chi-square with

degrees of freedom
~% "%
(37) £, = 2B ) var(y)) .

Estimating fi by replacing the terms in (37) by their corresponding

sample values will assist the experimenter in determining how reliable

* %
his estimate of N1 is. This is especially important when CLNi turns

out to be large.

8. ANTITHETIC VARIATES

It may occur that the sample sizes determined by the foregoing
analysis require a prohibitively large amount of computer time. In
this case positively correlated samples have not sufficed to bring the
cost of experimentation within reasonable bounds. One may improve this
situation by working with negatively correlated replications of each
experiment. The suggested technique {s called the method of antithetic

variates . 5]. If §L is the 1th uniformly distributed psuedorandom number
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in the first replication of the experiment, then using (1 - gi) as the
uniformly distributed pseudorandom number in the corresponding event
of the antithetic replication induces a negative correlation between
the observations in the two replications.
th th
Let xlj ¢ be an observation on the } replication of the 1

experiment at time t. Suppose we collect N1 observations on each

replication of experiment i. Then we have

N
) i
(38a) Xy =N lej,t j=1, 2,
t=1
(38b) X, = X, + xiz)/z.

If the second replication uses the antithetic pseudorandom number

sequence of the first, then

(38¢) cov(Xyps Xyg) = my 4Ny
™S 0
gso that
38d XY = -
(384d) var(xi) (ml m1,4)/(2N1)'
1f

™ot m1/2 then using two antithetic replications of length N, is
equivalert to collecting ANl observations on 1 replication. If

ml,A = 3mt/4 then two antithetic replications each of length Ni is
equivalent to 8N1 observations on one replication.

To incorporate antithetic variates into the preceding results,

we need only form the observations defined by (38b) and compute L
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m, and m, as described. The resulting N:

should be collected on each of two antithetic replications of experi-

*
means that N1/2 observations

*
ment 1. A similar result applies to N2‘

9. CONCLUSIONS

Our reosults «ndicate that for a given level of accuracy, signifi-
cantly less computer time is required when the sample sizes are deter-
mined according to the derived rule than when the sample sizes are equal.
This is true when one uses either independent or positively correlated
samples on the two experiments.

An interesting conclusion also emerges about the significance of
the degree of autocorrelation in the observed processes. Our results
imply that small differeunces in the autocorrelation functions are im-
portant for the time allocation when each process is highly autocorrelated.
Failure to take these differences into account can significantly affect
the efficient allocation of time, thereby requiring unusually long running
times to obtain a given level of precision.

The suggested two-stage procedure provides initial estimates for

determining sample sizes and final estimates for testing hypotheses.
The graphical analysis suggests that the efficient allocation is not
very sensitive to small errors in the estimates and, therefore, the
use of estimates for the population parameters is not of major concern.
It is important, however, to get good estimates of M m, and my. This

depends on an appropriate choice of M using the suggested guidelines.
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