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PREFACE

This Memorandum is part of RAND's continuing research into the

statistical analysis of computer simulation experiments. Preceding

work on this subject has been described in G. S. Fishman and P. J.

Kiviat, Spectral Analysis of Time Series Generated by Simulation Models,

The RAND Corporation, RM-4393-PR, February 1965, and G. S. Fislulian,

Problems in the Statistical Analysis of Simulation Experiments: The

Comparison of Means and the Length of Sample Records, The RAND Corpo-

ration, RM-4880-PR, February 1966. The purpose of this research is

to find methods for efficiently extracting useful information from

time series generated by these experiments. This study compares two

simulation experiments and investigates how to efficiently allocate

computer time between them. In addition, it provides a two-step pro-

cedure for implementing the derived allocation rule.

This Memorandum replaces RM-5288-PR. The method described here

leads to improved population estimators by reducing the error due to

sampling fluctuations and correcting for a suboptimization performed

in the earlier work.



-v"

SUMMARY

This Memorandum investigates the problem of efficiently alloca-

ting computer time between two simulation experiments when the objec-

tive is to make a statistical comparison of means. For a given level

of accuracy our results show that significantly less computer time is

required when the sample sizes are determined according to a certain

rule than when the sample sizes are equal.

A graphical analysis suggests that small errors in estimating

the population parameters of the allocation rule do not significantly

iffect the efficient allocation of time. The influence that the

degree of autocorrelation has on the time allocation is alsc inves-

tigated; results show that small differences in the autocorrelation

functions are important when each process is highly autocorrelated.

Positively correlated samples for the two experiments are

examined and incorporated into the efficient allocation rule. it

is shown that their use leads to a saving in computer time.

A two-stage procedure is described wherein initial estimates

of the population parameters are computed which permit the experi-

menter to estimate how many more observations to collect on each

experiment. The procedure is simple and straightforward to implement

and should be of practical value.

When the cimputer time requirements turn out to be prohibitive,

we suggest using negatively correlated replications on each experi-

ment. This may be accomplished by using antithetic variates. The

two-stage procedure also applies in this case.

____________
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THE ALLOCATION OF COMPUTER TIME IN COMPARING

SIMULATION EXPERIMENTS

1. INTRODUCTION

In performing computer simulation experiments, it is desirable

to minimize the computer time required to obtain a statistical result

with a given level of accuracy. This minimization is also desirable

when comparing twu experiments, but minimizing the time needed to

obtain a given accuracy for each experimental result is not neces-

sarily the same as minimizing the time needed to obtain this same

accuracy for comparing the two results. It is therefore instructive

to investigate the problem: When comparing two experiments, how many

observations should be collected from each one to obtain a given level

of statistical accuracy with a minimum expenditure of computer time?

This problem is investigated here with regard to comparing the

means of two computer simulation experiments. A number of consider-

ations enter into the problem's solution. The processes being ob-

served are generally autocorrelated, thereby precluding the use of the

statistical methodology applicable to independent observations. The

variances of the sample means as well as the computation times re-

quired to collect one observation in each experiment strongly influence

the choice of efficient sample sizes. Variance-reduction techniques

also play a role. Inducing positive correiation in the samples of the

two experiments and negative correlation between replications of the

same experiment reduces the time required to obtain a given accuracy.

In this Memorandum a rule for choosing sample sizes is described.

The rule incorporates the above-mentioned considerations and deter-

mines the sample sizes necessary to meet a specified reliability with



a mt nLmum expenditure of computer time. The variance of the differ-

ence of the sample means measures reliabilLty.

A two-stage procedure is also presented wherein initial samples

collected on each experiment are used to estimate the relevant popu-

lation parameters. These estimates are then used to determ[ie how

many more observations should be collected to efficiently meet the

specified reliability.

2. DEFMINTIONS

Consider a covariance stationary stochas..ic sequence (Xt; t t 0,

*1, *2, ... , ±) with mean

(la) E(Xt),

varlance

(lb) 2= E(XtC) 2

autocorrelation function

(Ic) P s  2 ' 2 E[(X t-P) (Xt+8-11)

(ld) lim PS = 0,

and spectrum

(le) g(X) I -12 E•,•.eiX 0 K rt.

5- -s

Given a time series of N observations, we compu te the sample mean as

l i i, , -,
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N

(2a) X N N- K,

t=l

with variance

N-1

(2b) var() = 1 a 2 E (l-IsI/N)Ps.
s--N+Il

As N becomes large, we have

(2c) 1ir N var = m < cc

(2d) m = Tig(O) = S< c

so that the large sample variance of X is approximately m/N. In

addition the statistic (R-P)/(m/N)k asymptotically has the normal

distribution with zero mean and unit variance. We hereafter assume

N is large enough so that these limiting properties hold reasonably

well.

Condition (1d) assumes the abseuce of perfectly periodic compo-
*

nents in (Xt]. If any are present, they should be removed prior to

performing the analysis presented here. Presumably the mechanism

generating (X t will be well enough und-rstood to permit removal.

An analysis of the sample spectrum of (X t as described in [4] will

reveal periodicities if they are present.

Extremely narrow peaks in the spectrum indicate the presence of

fairly regular periodic components in (X ]. The magnitudes of these
t

See [1], p. 254.
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peaks compared to that of the remaining spectrum determines the

relative contributions of these components to the mean-square varia-

tion in (X t. In general a spectrum analysis can only be performed

after the experiment is run. It nevertheless serves as a convenient

check on assumption (ld) in addition to providing other useful infor-

mation.

The reader should not construe the term "time series" to apply

only to a set of observations collected at equal intervals along a

time axis. The subscript t is simply an index and any series of

events indexed on t can generate a time series. For example, in a

th
single-server queueing problem, t may denote the t job to receive

service and Xt may be the waiting time of this job.

Our purpose is to collect observations on a particular process

in two simulation experiments and to compare the sample means of the

two time series. Let the subscript i denote experiment i. The-L X.L~t
2

with mean p,, variance a and autocorrelation function p. denotes the
iL

th
t observation on experiment i.

Suppose that (X ,t) and (X2,t) are correlated with covariance

function

(3a) R = 2,T - E[(X ltPll )(X2,t+T"11 2 )],

(3b) lim R ' 0.
T-I 12,-r

Given N1 and N2 observations on experiments I and 2, respectively, we

have

See [4].
For a further discussion of the statistical analysis of series

of events, see [2].
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N N
1 2

(30) cov (RI~ IR (N N 'E F R1
2 -- 2 a 2, -,--

s-1 T=1

If NI > N2 we may write

(3d) cov(X! 1X2) (NI N 2-[ R1R 2 .- _N

+ 2 '1 ,,'-(= R12

T-N2-N1 + + ]=N -1

0 N

( 3 e) lim N cov(X 'X) = 2 + (r/N2)R
N 12 Sd12.,-+E21

(3f) lim lim N cov(XI , M)
N- N2 . 1 1 2 3

"3 = E '12,<

Similarly for N2 > N1 we have

¶3 g) lim lim N Ccv(XX2 M
N -" N 2-.w 2 2 3

For large N and N2 we therefore may write

(21.) cov(X, X2 ) - m3 /max(N , N2 ).

The variance of interest may now be written

(4a) var(Xi-X 2 ) -ml/N 1 + m2 /N 2 - 2m3/max(N 1,N 2 ),

where m1 and m2 are obtained from (2d) for (X1 ,tJ and [X 2 ,t}, respec-

tively. For convenience of exposition we first assume [Xlct to be

independent so that

(4b) var(X1I__ X_2_) 
_,. 

IIN_1 + m_2/IN_2,
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3. THE EFFICIENT ALLOCATION OF TIME

We denote the computer time necessary to collect N1 and N2

observations on experiment I and 2, respectively, as

(5a) T = cINI + c 2 N2

where cL is the computer time required to collect one observation on

experiment 1. Suppose we require that

(5b) var(1l-R2) - V . mI/NI + m2 IN2 ,

V being specified by the experimenter. We choose N and N2 so as to

minimize T for fixed V by considering

(5c) L =cIN1 + c 2N2 + X(V-ml/N-Im2/N2)'

), being a Lagrange multiplier. Minimization yields:

(6a) Nl m1 I + (br)O /V,

(6b) N2  (r/b)

(6c) T = [(cIm½)k+ (c2m2) 2/V,

(6d) b c 2 /cl,

(6e) r = m2!m .

The converse problem of minimizing V for a given T has the same

Solth t ion.
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It is convenient to first assay the special but common case

¢1 = c2 ' C, b=I.

Table I shows the relationship between r and T 2/T0 for this case.

For r equal to 8, roughly 75 percent of the computer time is spent

on experiment 2. When r lies in the interval 64 to 128, approxi-

mately nine observations are collected on experiment 2 for every

observation collected on experiment 1.

Table 1

RELATIONSHIP BP',EEN r AND T 2/TT c N I/T FOR b = I
2 0 2 2 0

r T*/T
2 0

1 .5000
2 .5858
4 .6667
8 .7387

16 .8000
32 .8456
64 .8889

128 .9188

In many simulation experiments it is customary to set

(7a) N = ' 2 - T/(2c)

so tiat the computer time is equally share.. Then for a given V,

have

(7b) T - 2cm (l+r)/V,

whereas the derived rule yields

(7c) To = cmI(l+r )2/V.

i

I______I_______l__I_________I_
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To measure efficiency we use the ratio

(8a) T/T0 2(1+r)/(1+r )2

For arbitrary Ni, N2 and b we measure efficiency by

(8b) T/T0 = [(l+ab)(l+r/a)]/[r+(br) ] 2

(8c) a = N2/NI a > O.

Notice that:

(9a) irn T/T - I + ab,
r-O 0

(9b) lir T/T = I + I/(ab)
rM 0

(9c) lim T/T 0 = I + r/a,
b-O0

(9d) lim T/T0 - I + a/r.

Expression (8b) suffices for comparison purposes.

4. THE SENSITIVITY OF EFFICIENCY TO THE CHOICE OF a

Estimating cI and c 2 , and hence b, can be accomplished by

straightforward observation. The true value of r is more elusive

and it is therefore instructive to examine how sensitive the efficiency

measure T/T0 is to different values of a. Figure I shows T/T0 for a

equal to 1, 2 and 3, and b equal to unity. The values of a corres-

pond to devoting 1/2, 2/3 and 3/4 of the computer time, respectively,

to experiment 2.

If 6 - r ! 20, choosing a equal to 3 yields an allocation close

to the efficient one. For r < 6 the allocation a equal to 2 appears
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reasonably efficient. Now if r exceeds 100, the time allocation a

equal to 3 requires 45 percent less time to meet the specified accuracy

than an equal time allocation does. For r of this magnitude, an a

equal to 9 would be even more reasonable since

lim T/T 0 - 10/9, a - 9.

Figure I shows that, while the true value of r may be unknown, a

rough estimate permits the experimenter to choose an a that brings

the time allocation close to the efficient one.

Table 2 shows several interesting comparisons. It Ls evident

that as b increases, the a equal to 3 allocation becomes more desir-

able for larger r.

Table 2

T/T 0 FOR a - 1, 3 AND b = .25, .5, 2 AND 4

b .25 b - .5 b = 2 b = 4

r af=f1 a=3 a-i a=3 a =1 af=f3 af=f1 a =3
1 1.1111 1.0370 1.0294 1.1438 1.0294 1.6013 1.1111 1.9259
2 1.2868 1.0008 1.1250 1.0417 1.0000 1.2963 1.0234 1.4783
3 1.4359 1.0052 1.2122 1.0102 1.0085 1.1766 1.0036 1.3047
4 1.5625 1.0208 1.2868 1.0008 1.0234 1.1144 1.0000 1.2133
5 1.6718 1.0403 1.3509 1.0007 1.0390 1.0775 1.0019 1.1577
6 1.7679 1.0607 1.4067 1.0048 1.0538 1.0538 1.0058 1.1208
7 1.8533 1.0811 1.4560 1.0111 1.0675 1.0378 1.0105 1.0947
8 1.9302 1.1009 1.5000 1.0185 1.0800 1.0267 1.0155 1.0757
9 2.0000 1.1200 1 5396 1,0264 1.0915 1.0187 1.0204 1.0612

10 2.0639 1.1382 1.5756 1.0345 1.1020 1.0130 1.0252 1.0500
20 2.5067 1.2812 1.8182 1.1063 1.1743 1.0003 1.0618 1.0079
30 2.7724 1.3772 1.9582 1.1581 1.2158 1.0066 1.0846 1.0006
40 2.9582 1.4478 2.0538 1.1967 1.2438 1.0146 1.1004 1.0002
50 3.0990 1.5029 2.1250 1.2269 1.2645 1.0220 1.1122 1.0017
60 3.2111 1.5476 2.1809 1.2514 1.2805 1.0286 1.1214 1.0037
70 3.3034 1.5850 2.2265 1.2718 1.2935 1.0344 1.1289 1.0059
80 3.3813 1.6169 2.2647 1.2892 1.3044 1.0396 1.1352 1.0081
90 3.4483 1.6446 2.2973 1.3044 1.3136 1.0441 1.1405 1.0102
100 3.5069 1.6690 2.3257 1.3176 1.3215 1.0482 1.1451 1.0121
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5. THE EFFECTS OF VARIANCE AND AUTOCORRELATION

It is instructive to examine the effect of population variance

and autocorrelation on the efficient time allocation. Assuming the

two samples are Independent, we consider two cases of special Interest:

Case 1: a 20 a 2 0 ,s=

2 2

Case 2: al 2 a2 0 1,s 2

For Case I we note that

2 2(10) r = 02/1I,

which is easily estimated. Figure I can then be used to choose an

a. One might therefore conclude that if the nature of autocorrelation

in each sample Is roughly alike, an efficient choice of a can be

based on the ratio of the population variances. This conjecture may

be contrary to fact as we now show using Case 2.

For convenience of exposition we assume

(lla) cilt = 0t 0 •' < I I - L, 2.

This autocorrelation function corresponds to the Markov process,

(t1b) Xi',t ai X it,t-l + el't

where ieL't is a sequenLe of mutually independent, Identically

distributed random variables. Now we have

(l c) r = [I - 0I0'2 + (o, 2-a)Iatl I LO'2 (o2-@I
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100
90

80 - a .95
70 -

60 - a .90

50 -. 85

40 a,= .80

30

20

10
9
8

7

6

5

4

3

2

0 .05 .10 .15 .20

22 "2l

Fig. 2 -- r 121 2 2 versus O2 oi for Of = .80, .85, .90 and .95
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Figure 2 shows r as a function of (oy2-€YI) for several values of l"

Notice that for a given difference, (a 2 -& 1 ), r increases rapidly as

orI and therefore ot2 increase. This result implies that small differ-

ences in the difference (ol-OfI) are important when each sequence is

highly autocorrelated. Hence, while it may appear that two sequences

are quite similar because their autocorrelation functions are, these

minor differences may strongly affect the efficient allocation of time

between the experiments.

6. CORRELATED SAMPLES

It is often suggested that one may reduce the sample sizes needed

to obtain a given accuracy V by working with positively correlated

samples oi the two experiments. This is clearly true for equal sample

sizes. Here the effects of correlated sampling on the efficient

choice of NI and N2 are investigated.

The expression to be minimized, in analogy to (5c), is

(12) L = NI + c 2 N2 + )[V-mII/N1 -mi2 /N 2 + 2m3 /max(N1 ,N 2 )].

This yields

(13a) N fmmI + [bm 2 (m 1 -2m 3 )]½ 2m-3/V

(13b) N2 =m 2 + [m 2 (mi-2m3 ) /b1½3/V

for

(13c) m2 - b(m -2m 3 )

and
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(14a) N1  [m]+ [bm (m2 -2m 3 )1½1N

(14b) N2 . [mI(m2 - 2m3)/bj + m2 -2m 3)/V

for

(14c) m2 2biI + 2m Y

It is easily shown that correlated samples reduce the required computer

time when either (13c) or (14c) holds.

It may occur that m2 satqfies neither constraint so that

(15) b(m -2m 3 ) < m2 <bmI + 2m3.

Suppose we then choose our sample sizes as

(16a) N' - N' - (mI+m 2 -2m 3 )/V.

The corresponding computer time is

(16b) T' = (c +C 2 )(ml+M2-2m3)/V

As an alternative, in the case where (15) holds, we may work with

independent samples and choose N and N2 as in (6a) and (6b). The

required computer time is then

(17) T" = [ (cIm )I + (c 2 m2 ) ½2 2/V.

For independent sampling to be desirable, we require

(18) T- T" > 0.

Uxpression (18), however, implies that

(19a) m2 > bmI + 2(l+b)m3 + 2[2b(l+b)mIm3 ]1
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(L9b) bmI > m2 + 2(l+b)m3 +2[2(l+b)m2mn3 j1

which clearly violate (15). When (15) holds Lit Is therefore desirable

to work with correlated samples with equal sample sizes determined by

(16a).

In practice the quantities mi, m 2 and m3 are unknown prior to

experimentation. T3 estimate them an initial sample if say Q obser-

vations on each experiment is needed. The estimation procedure is

described in Sec. 7. For now we assume in, m2 and m3 are known and

we concern ourselves with several contingencfes that may arise.

Suppose that (13c) or (14c) holds. If

(20) , N2 2 Q,

no difficulty occurs. If, however,

(21a) N > Q, N2 < Q,

then we recompute N and N2 as

(21b) N1 = Q(m -2m 3 )/(QV-m 2 )

(21c) N2 , Q.

Similarly when

(22a) N < Q, N2 Q,

then we set

(22b) N1 = Q

(22c) N2 - Q(m 2 -2m 3 )/(QV-mt).
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If both required sample sizes are less than Q, we terminate the

experiments.

* 7. ESTIMATION PROCEDURE

The quantities mi, m2 and m3 seldom are known a priori and there-

fore a method of estimating them is required. The presence of auto-

correlation in [X ,t] and (X 2 ,t) makes estimation somewhat difficult.

Ideally we desire a method that can easily be incorporated into the

performance of the experiments. Then sample sizes can be automatically

determined within the simulations.

The method suggested here accounts for autocorrelation but unfor-

tunately cannot be readily incorporated into the experiments. It

nevertheless provides valuable assistance to the experimenter especially

when large amounts of computer dime are involved. The method has been

described in [3]. Here we briefly describe and extend it to the esti-

mation of mi3 . Several clarifying remarks on [3] should facilitate its

application.

Suppose we initially collect Q observations on experiment I and

wish to estimate mI. Since the same procedure applies to m2 in

experiment 2, we momentarily drop the subscript t. The sample auto-

covariance function is

Q-T
(23a) T - Q-1 "E [(K tR)(x t+T-R)l

t- I

T - O,l,...,M < Q

(23b) X - Q- =t,
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which for large Q has expectation

(23c) E( T) 2 -M/Q.

An initial estimate of m is

M
(24a) i = k 0 + 2E (1-TI")PR

T-1[

which for appropriately chosen M has expectation

(24b) E(5) -- m ( 1 -M /Q) .

Dividj ig (24a) by (l-M/Q) compensates for the bias so that our esti-

mator of m is
M

(25a) m 0 + 21 (1-r-/M)R.]/(I-M/Q).
,=l

If (XtI is a normal process then

(25b) var(mi) -- 'jm2

(25c) - 4M/(3Q).

The experimenter must choose an appropriate value for the design

parameter M. Our clarifying remarks concern this choice. Notice that

as M becomes large

M

(26) lim _(l-IJr/M)R - m R 2P

r=-M

the desired mathematical limit. In (24a) we use R since R is unknown.

As M increases here the variance Tm2 also increases so that the esti-

mate becomes less statistically reliable. This dilemma between good

resolution (mathematical convergence) and good reliability (convergence

L _ _ _ _

___________________________________________________________

|1
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in probability) is fundamental to spectrum analysis. Clearly a

compromise must be made which permits both acceptable resolution and

reliability.

The compromise depends on the choice of H. To guide us in our

choice we use the ratio

(27a) p = [var()J)]k/E(iA) - [4M/(3Q)]½.

If

(17b) M - 3Q/4

the ratio p is unity which implies that sampling fluctuations in ;

are roughly of the same order as its mean m. This is clearly undesir-

able. If

(27c) M = Q/4

then the ratio is roughly .57. It is suggested that M not exceed Q/4

and in general be kept much smaller. One may easLly compute A for

several values of M, say Q/32, Q/16, Q/8, 3Q/16 and Q/4. Doing so

permits the experimenter to decide, albeit subjectively, when A is

well resolved.

There is the possibility that Q may be too small to permit good

resolution. If the estimate ;i fails to become well resolved as Q

increases to M/4, then more observations should be collected and used.

Failure to obtain a well-resolved estimate can lead to a serious

underestimate of m.

The estimation of m 3 is accomplished in the same manner. Suppose

we have Q observations on each experiment. We form the sample covar-

Lance function
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8 I Q-I¶1

(28a) 1R2 ,T Q',E (Xl ,t-71) (X2 ,t+-rR2)
t-l

SftO, l ,... ,+M,

which for large Q has expectation

(28b) E(RI 2 ,T) R R1 2,T -3/Q.

Our estimator is then

(28c) i3 - (I'T/) /(Z-M/Q)

with expectation

(28d) E(-3 m

and variance, when both processes are normal [6],

(28e) var(A3 ) Y(m m2 n2 )/2.

In spectrum analysis the quantity m3 /rr is ca!led the co-spectrum

of (Xtltt and (X2 ,tI at frequency zero. The same procedure concerning

Q applies here as in the estimation of mI and mi2 .

Our main purpose is to estimate N1 and N When (13c) holds, we

have initial estimates

(29a) NL n + [bA (A1 -2A )] S /V

(29b) N2  ('i2 + [A 2 (A C2A3 )/b] ]/V.

When (14c) holds, the initial estimates are

(30a) 17 - (A + CI(i2-23)] I/v
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(30b) += tn 2 + (1 & 2 -2ýi)/bi -2fi3)/V.

When (15) holds, the sample sizes are equal so that

(31) ?- ? - (;l-1-2i)/V

If [Xl1 'd and (X2,t] are normal processes we may use the results

in [61 to derive the sampling properties of and 9 to order Q-.~~1 26 ooorderQth

Defining

(32a) i- '2•3

(3b ,=( 2_ M ( -n-2 /(4V2m3¢3 ) 3 1 1,2
33b 1j 2 2 2 313,2

(3b) O -Cm 3 -mlm2 ) (il+mZ-2m3 )/4m 3  1

= lb i=l

(32c)1 
/b L=2

and noting that

(32d) E(31) - 0 - mi- 2m3 $

we may show that

(32e) cov(I 1 ,Cn3 ) 'Ymim 3

(32f) var(ý ) E 2_-4m m3 + 2(m 1m2 +M32

(32g) cov(al,%i) Y(m3-2m m3) i,j - 1,2; ij.

When (13c) holds we have

(33a) EMCt.Nt) - Te
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(33b) V2
(varil) 1 + ( 1 m2/, 1)ý 2 var(•I) + 2[ i~i/m2 )½ + 6 1j cov(O1 ,'n2)

+ ( Il:L/m2) var(mn2 )

(33c) V2 var(2) m (2m/.i) var(Ol) + 2[(4 2 m 2 /•i)½ + 6 cov(•li 2 )

+ -1 + 2 ½12 var(fi 2).

When (14c) holds we have

( 3C a) E -N i) -'Y0 2 5 i

(34b) V2var~i) - m (•ml/ý 2 ) var(I 2 ) + 2[(6 1 mi/ 2 )½ + 61] cov(• 2 ,•nI)

+ . + (F, 1 2 /m )/ 1 2 var(fi 1 )
2 *2 ^

(34c) V var(2) - LI + (62 m 12) var(O2 ) + 2[((ý2c 2 /m1 ) + 6 cov(. 2 ,ml)

+ (6202/mI) var(fii1).

Since

(35a) m3 < m12

(35b) mI + m2 > 2m3'

the bias is negative. To compensate for this bias we estimate N* by
i-*

(35c) N . 6

when (13c) holds, and by

(35d) N - 2- 6

when (14c) holds. Here we define

(35e) (I ,2_i & On+I^V /(4V 2 h3.1 1,2.-- 2 2L2-3 3½ L
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To order Q- the variances remain unchanged.

When (15) holds equal sample sizes are used and we have straight-

forwardly

(36a) E§) - N*

(36b) var(.i,) 'f[(ml+m2 ) + 4m3 (m3-, m

No bias adjustment is necessary here.

For normal processes the distributions -f F1 /Mr and f /m2 are

usually approximated by that of chi-square. This suggests that we

also approximate the distribution of NI/N* by that of chi-square with

degrees of freedom

(37) ft i 2[E(Ni)] /var(N )"

Estimating f by replacing the -erms in (37) by their corresponding

sample values will assist the experimenter in determining how reliable

his estimate of Ni is. This is especially important when ciNi turns

out to be large.

8. ANTITHETIC VARIATES

It may occur that the sample sizes determined by the foregoing

analysis require a prohibitively large amount of computer time. In

this case positively correlated samples have not sufficed to bring the

cost of experimentation within reasonable bounds. One may improve this

situation by working with negatively correlated replications of each

experiment. The suggested technique is called the method of antithetic

varates 53. if i is the ith uniformly distributed psuedorandom numbervaratesif
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in the first replication of tho experiment, then using (1 - as the

uniformly distributed pseudorandom number in the corresponding event

of the antithetic replication induces a negative correlation between

the observations in the two replications.

Let X~ it be an observation on the jth replication of the ith

experiment at time t. Suppose we collect Ni observations on each

replication of experiment i. Then we have

N
i

(38a) XiJ = Nil 2 Xij't j = 1, 2,

t=l

(38b) X, = (Ril + X12 )/2.

If the second replication uses the antithetic pseudorandom number

sequence of the first, then

(38c) cov(X3E Xll =m I2,4/Nt

il 1,4 0 ,
mi,4 0

so that

(38d) var(XL) = (MC-m1,4)/(2N ).

If mi, 4 = m /2 then using two antithetic replications of length N is

equivalent to collecting 4Ni observations on I replication. If

mi,4 = 3m /4 then two antithetic replications each of length Ni is

equivalent to 8N observations on one replication.

To incorporate antithetic variates into the preceding results,

we need only form the observations defined by (38b) and compute ml
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m and m3 as described. The resulting N* means that N /2 observations
2. 3

should be collected on each of two antithetic replications of experi-
.

ment 1. A similar result applies to N2 .

9. CONCLUSIONS

Our r(.ult6 Indicate that for a given level of accuracy, signifi-

cantly less computer time is required when the sample sizes are deter-

mined according to the derived rule than when the sample sizes are equal.

This is true when one uses either independent or positively correlated

samples on the two experiments.

An interesting conclusion also emerges about the significance of

the degree of autocorrelation in the observed processes. Our results

imply that small differences in the autocorrelation functions are im-

portant for the time allocation when each process is highly autocorrelated.

Failure to take these differences into account can significantly affect

the efficient allocation of time, thereby requiring unusually long running

times to obtain a given level of precision.

The suggested two-stage procedure provides initial estimates for

determining sample sizes and final estimates for testing hypotheses.

The graphical analysis suggests that the efficient allocation is not

very sensitive to small errors in the estimates and, therefore, the

use of estimates for the population parameters is not of major concern.

It is important, however, to get good estimates of mi, m2 and mi3 . This

depends on an appropriate choice of M using the suggested guidelines.
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