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Abstract

A relatively simple analytical treatment of the behavior of a rigid-

plastic annular plate subjected to an initial linear impulsive velocity

profile is presented. The influence of finite-deflections has been in-

cluded in addition to strain-hardening and strain-rate sensitivity of the

plate material.

It is shown, for deflections up to the order of twice the plate thick-

ness, that strain-hardening is unimportant, strain-rate sensitivity has

somewhat more effect, while membrane forces play a dominant role in reduc-

ing the permanent deflections.
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Notation

D strain-rate sensitivity coefficient defined in
equation (17)

E modulus of elasticity

H plate thickness

M aH 2/4O 0

Mr, M8 radial and circumferential bending moments per
unit length

N oH
O 0

Nr) N radial and circumferential membrane forces per
0 unit length

Q transverse shear force per unit length of plate

R outside radius of plate

T time at which plate reaches permanent position

W maximum permanent deflection of plate
m

V initial velocity of plate
0

a inside radius of annular plate

e ratio of the slopes of the elastic and plastic
portions of a stress-strain curve

k distributed pressure per unit area of undeformed
plate

mr m8 dimensionless bending moments Mr/Mo0 Me/Mo

nr n0  dimensionless membrane forces N r/N N /N°

p strain-rate sensitivity coefficient defined in

equation (17)

r radial coordinate of plate

t time

u displacement in direction r of undeformed plate



Notation (continued)

w transverse deflection perpendicular to undeformed
plate

a a/R

HV 1/p
(0

2DR 2

y vH2 /R 2

Cr e radial and circumferential strains

a circumferential coordinate lying in plate

Kr K radial and circumferential curvatures

PV 
2 R2

MH
0

mass per unit area of plate

E
V

ae
0

a stress

a yield stress in simple tension
0

slope of the mid-plane of a plate measured in
a plane which passes through r = 0 and is
perpendicular to the plate surface

A W /H
m

defined by equation (75)

•TC ) a--

(-C) at(



1. Introduction

It is apparent from a study of the current literature on the dynamic

behavior of some simple rigid-plastic structures (e.g. beams and canti-

levers [1]) that any strain-rate sensitivity which a material exhibits

should be included in theoretical calculations, while strain-hardening may

be disregarded unless the structure has a small length-to-thickness ratio

[2,3]. Moreover, it has also been shown that it is essential to consider

the influence of finite-deflections (i.e. membrane forces) in situations

where axial restraints are present and deflections of the order of the beam

thickness, or greater, are permitted [4].

Florence [5] examined the behavior of some simply supported circular

plates when subjected to uniformly distributed impulses and observed per-

manent deflections which were considerably smaller than those predicted by

a simple bending only theory [6]. Wierzbicki [7] in studying this problem

recently examined the influence of strain-rate sensitivity of the material

and presented a number of results for different viscosities, some of which

are similar to the corresponding experimental values (Florence states that

the material from which the plates were cut is believed to be somewhat in-

sensitive to rate-of-strain). Further, Perrone [8] has examined the influ-

ence of strain-rate sensitivity on the behavior of a simply supported annu-

lar plate subjected to an initial velocity profile and has suggested an

attractive method for analyzing structures which are loaded impulsively.

However, it has been demonstrated recently that finite-deflections (i.e.

membrane forces) play, as might be expected, a significant role in reducing

the permanent deflections of plates loaded impulsively [9] or dynamically[1O]
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which leads one to suspect that the influence of strain-rate sensitivity

may have been somewhat exaggerated in [7,8].

It is the object of this article, therefore, to study the combined

influence of strain-rate sensitivity and strain-hardening on the finite

deformation of rigid-plastic circular plates which are loaded dynamically.

A conscious attempt is made to simplify the selected problem in accordance

with the spirit of much of the previous work on simple structures, which

has been aimed at preserving the appealing simplicity of rigid-plastic

analyses, yet at the same time retaining the principal features of behavior.

It is shown that the dynamic behavior of the annular plate illustrated in

Fig. 1 can be described with fairly simple analytical expressions obtained

by extending the ideas developed previously in references [2] and [9].

2. Equilibrium Equations

The equations of equilibrium in the tangential and transverse direc-

tions of the deformed element shown in Fig. 2 are [9]

rn + n - n = -rkw'/N + prwIw'/N + pru/No (1)

and

rm"r + 2mr' - in' - 4new'/H = rk/M - ljrw/M + pruw'/M (2)

respectively, where

nr, ne = Nr/No, Ne/No

Mr, me = Mr/M° Me/M
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and the shear force Q has been eliminated using

rQ/M° = mr +t -iM (3)

3. Strains and Curvatures

It may be shown for small strains [9,11] that

S= u' + w' 2 /2 (4)

Ce = u/r (5)

S= (1 + u')w" - U 'NW (6)

and

Ke = wI/r (7)

from which

u' +ww (8)

e= u/in (9)

r= (1 + u')w" + i'w" - u"w' - u"+' (10)

and

The positive directions of u and w are indicated in Fig. 2.

4. Yield Condition

It has been found that disregarding elastic effects when analyzing

cantilever beams loaded dynamically is a powerful simplification and a
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valid approximation provided the external energy is at least three times

larger than the strain energy absorbed by the beam at its elastic limit

[3]. Consequently, in order to simplify the ensuing theoretical analysis,

the material of the plate is assumed to remain rigid up to its yield point.

The yield condition proposed by Hodge [12] and illustrated in Fig. 3

will be used here since it simplifies considerably a previous approximate

analysis, the results of which agree reasonably with experimental values

recorded on plates loaded impulsively [9]. This approximate yield surface

is an "upper" bound to the Tresca yield condition for a uniform shell [13],

while a similar one 0.618 times as large provides a "lower" bound.

5. Constitutive Equations

The constitutive equations which were developed [2] in order to analyze

the behavior of a rigid viscoplastic strain-hardening beam impulsively loaded

will be used in this section to describe the influence of strain-hardening

and strain-rate sensitivity on a linearized four-dimensional yield surface

[12].

5.1 Strain-Hardening

Strain-hardening of the plate material is described by a linear relation

of the form

1 + VE (12)
00

where

E
ae

0
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If it is assumed the yield surface [12] illustrated in Fig. 3 grows

outward according to (12) as indicated in Fig. 4(a), then it may be shown

that the following relations

n =1r+ e0 0, 0. n . (13)

nr = 1 + vr . 0 , C 0 0 n .< 1 (14)

m 6 = 1 + VHX/3 K 0 K = 0 , 0 .< m . 1 (15)

and m = 1 + VHK /3, K 0 K = 0 0 m 1 (16)r r r ' 0 0< <1(6

describe the behavior along the sides AB, BC, GH , and HJ, respectively.

Clearly, the relations for sides DE, EF, KL , and LM of the yield

surface may be obtained from the corresponding equations (13)-(16) by noting

the opposite directions of the forces, moments, strains and curvatures and

modifying accordingly.

5.2 Strain-Rate Sensitivity

Cowper and Symonds [14] observed that a constitutive equation of the

form
a (DNl/p
S= 1 + (17)

0

-1

could be fitted to the data of Manjoine provided D = 40.4 sec and p = 5

Thus, when the yield surface [12] grows with increase in strain and curvature

rates as indicated in Fig. 4(b), it may be shown that the following expres-

sions
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El6 /p
n0 e 1+ (> ) 0 0, 0 n r 1 (18)

El/p

me=l+(-f-))2p~l ' Ke % 0, r=0, O0  r l (19)

and2p HK 0

m 21 + ,i/( K 2 0 K 0 0 < m 0 1 (21)mr i p+l2• r ' 8 '6

describe the behavior along the sides AB, BC, GH , and HJ , respectively.

Further, the relations for the sides DE, EF, KL , and LM of the yield

surface may be easily obtained from (18)-(21).

5.3 Combined Strain-Hardening and Strain-Rate Sensitivity

Symonds [1] and Perrone [15] have suggested that

a
o_:f(O)g() (22)

0

could be used to analyze structures loaded dynamically, where f(c) and

g(6) are strain-hardening and strain-rate sensitive relations, respectively.

It is evident from equations (12,13,15,17,18,20) that when E. > 0 ,

e > 0 , E r = 0 . and 0 s n s 1 (i.e. side AB of the yield sur-

face), then according to (22)

El /p ,E0 l/p

n 1 + VEC + (-5-) + VE(- -) / (23)

while for K 0 , K > 0 s r K 0 , and 0 s mr s 1 (i.e. side GHSrr

of the yield surface),

+HI8 2p Elk i/p 2pvHK8  HK 6 l/p (24)3 3 2p+l 2D 3( 2p+l) 2D
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The corresponding expressions for sides BC, DE, EF, HJ, KL and LM

of the yield surface can be obtained from equations (13)-(22) in a similar

manner. Clearly it is straightforward to obtain expressions for sides CD,

FA, JK and MG , but these are not required here so are omitted for the sake

of brevity.

6. Finite-Deformation of an Annular Plate Subjected to a Linearly
Distributed Impulse

6.1 Rigid, Perfectly Plastic Material

In this section an examination is made of the behavior of a rigid, per-

fectly plastic annular plate which is subjected to a linearly distributed

initial velocity profile of the form

(R-r) (25)o (R-a)

as indicated in Fig. 1.

Equation (25) suggests that the transverse displacements might be of

the form

(R-r)
w = W(t) R-a) (26)

where W(t) is an unknown function of time.

Evidently it is more reasonable in this case to assume zero radial

strain c rather than zero radial displacement u , a simplificationr

which was helpful in previous analyses [4,9].

Thus, from (4)

u? = -w'2/2 (27)

which using (26) gives
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W2 (R-r)u =- (28)

2(R-a)
2

It may be shown that the strain and curvature rates given by equations

(8)-(11), (26) and (28) satisfy the normality requirements associated with

the yield surface illustrated in Fig. 3 when

n. = 1 0 n 1 (29)

and

me = -1, -1 m r 0 (30)

Substituting equations (29) and (30) into (2) with k = 0 yields

.7- (r 2m r 4rw'/H - Ur 2 w/M° + jr 2 uw'/M (31)ar ro

which using (26) becomes

a (r 2 m ) _ -4Wr VjW(Rr 2 -r 3 ) (32)
a-r r H(R-a) M (R-a)

0

when w - uw' m w

Integrating (32) twice with respect to r gives

M= -2W(r-a) 2  (_R_-a) (2Rr 3 - r 4 + 4Ra 3 - 3a4 - 6Ra 2 r + 4a 3 r) + a -

r HF(R-a)r -12M 0(R-a)r r

(33)

where the constants of integration have been evaluated from the conditions

that m = Q = 0 at r = a.

If the annular plate is simply supported at its outer edge, then an addi-

tional requirement is m = 0 at r = R . or

r
2+nw (3j#)
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the solution of which is

W A cos nt + B sin nt -6/n 2  (35)

where
24V 2

n2 0 (36)
AH2 (I-a)(l+3c)

6 n 2 H/2 (37)

tIV 2R2
A = M H(38)

M H
0

and

a = a/R (39)

Now the initial values w = 0 and w = V (R-r)
o T are satisfied by

equation (35) when

A 6/n 2  (40)

and

B Vo/n (41)

The motion of the plate ceases at t T when W = 0 , where using

(35), (40) and (41)

tan nT = V n/6  (42)

The permanent shape of the plate is

Wm + 1 (1-0)(+3a) r)
H 2(1-a) 1+6 - (i -R• (43)

However, in order to ensure m remains positive at the outer edge

of the plate, it is necessary that

W(t) l+c44)

H 4a
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Further, if n r 0 and n r 1 at r = R , then equations (28) andr r

(35) only satisfy equations (1) and (29) with n r 0 at r = a provided

X '24a R 2 (5•i---c-t H #s

Equation (45) is not as restrictive as equation (44) since R/H must

be large in order for plate theory to be appropriate. If one is interested

in deflections, the magnitude of which would violate the inequality (44),

then it appears reasonable to consider the analysis outlined here as valid

up to time t = T when m ' = 0 at r = R , while for T $ t < T the plate

could be considered to behave as a membrane.

For small values of the parameter a (<0.1 approx.) it may be shown that

m r -1 demands a more severe limitation of the analysis than those imposedr

by either equations (44) or (45).

If the deflections of the plate are assumed to be infinitesimal, then

nr = n = 0 and an analysis similar to the one outlined above gives equa-

tion (34) without the n 2 W term. The permanent shape of the plate for this

case may be shown to be

m (+3) (1 ) (46)
H 24 R

which agrees with the bending only solution for the same problem presented

by Perrone [8].

It is evident from Fig. 5 that when finite deflections are permitted,

then the consideration of membrane forces in addition to bending moments (43)

leads to significantly smaller permanent deformations than those predicted by

a simple bending moment only theory (46).
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6.2 Rigid, Strain-Hardening Material

When utilizing the linear transverse displacement profile (26) and the

condition for zero radial strain (27), it may be shown that cEr = r Kr =

Kr = 0 , Ce >' 0 , ýe >' 0 , ke < 0 , and 8 "< 0 . These strain and cur-

vature rates satisfy the normality requirements associated with the yield

surface [12] shown in Fig. 3 and developed in section 5.1 provided

n8 = 1+ vCe 0 <, nr < 1 (47)

and

me =- + vHic/3 , -i . mr .< 0 (48)

Making use of equations (5,7,26,28,47 and 48) permits equation (2) to

be written

a (r 2 m ,) = VHW 4Wr 2vW3 (R-r) PW(Rr 2 -r 3 )

T- r 3(R-a)r H(R-a) H(R-a) 3  M (R-a)

when neglecting uw' compared with wi

Thus,

M vHW 2W(r-a) 2

r 3(R-a)ar (a loge(a/r) + r - a) - H(R-a)r-

VW3  (2Rr loge(r/a) - r 2 + 2ar + 2aR - 2Rr - a 2 ) -

H(R-a) 3r

PW (2Rr 3 
- 6Ra 2 r - r4 + 4a 3 r + 4Ra 3 - 3a 4 ) +

12M (R-a)r0

+al1+ vHW (0
r 3(R-a)ar (a-r) (50)

where the constants of integration have been evaluated from the requirements

that m = Q = 0 at r = a.

TffrlTT7AIL LIBRARY

BLPUG 31 3
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Now in order to give m = 0 at r = Rr

alW + b W3 + c1W dI (51)

where

a1 = -(l-a)/6 (52)

b = - y{4a - a 2 - 3 + 2 loge(l/a)} (53)
1 H3 (1-a) 3

S=Y loge a 2(1-a) (54)1i 3H(l-a) H

dI = 1 - a (55)

and

y vH2 /R 2  (56)

If y 2, equation (51) can be rewritten in the form

_ --2b1W 3  2cIW (57)
--- 26

dW a1 a1

from which

bW 4  clW2

Y - 26W + V 2  (58)
2a1 a o

where the constant of integration has been evaluated from the requirement

that y = V 2 and W = 0 when t = 0 .0

Furthermore, the velocity W is zero when the displacement W reaches

it final value W . Thus, from (58)max

b H3 A4 + 2c HA2 - 4d A - 2a V 2 /H = 0 (59)

where

A W /H (60)

S. . . . ll, I II I I I [ Ima I I
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For a given value of a and y , it is simpler to substitute known

values of A into (5 9) and evaluate the associated magnitude of X from

a linear equation rather than solve a quartic equation for A correspond-

ing to a given value of A.

If Y = 0 , equation (59) reduces to the rigid-plastic case given by

(43) while if y = cI 0 , then it further degenerates to the bending only

solution (46).

In order for the above theory to remain valid, it is necessary that

mt  0 at r = R orr

7[4a + y(i+3a) {l + 2(l+2a)loge a + A3 _2(2 + 2a 2  3 )+

3(1-a) (1-a)(1+3a) (i-a)4

+ 2 loge a(l + 2a + 3a 2 )) s i + a (61)

Furthermore, if equation (1) is solved using equations (5,26,28 and 47)

and the condition that n = 0 at r = a , then in order to maintain n s 1
r r

and n' • 0 at r = R it is found that the solution is restricted to de-r

flections
A2 <1 2a(-a) 2 (22 62

y(a-l-loge a)

6.3- Rigid,-Visceplastic Material

Perrone [8] has shown for some simple structures loaded impulsively and

made from a strain-rate sensitive material that excellent agreement with

exact solutions may be obtained when utilizing a strain-rate insensitive ma-

terial with a constant yield stress equal to the initial dynamic yield stress.

Now it may be shown using equations (8)-(11), (26) and (28) that

Er r = 0 (63)
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_ WW(R-r) (64)
o (R-a) 2 r

and
* -w

C6 - (R-a)r (65)

However, if Perrone's simplification is used, then (63)-(65) become

r r 0 (66)

and
-V- 0

K0 = (67)
0 (R-a)r

since W = 0 and W=V when t = 0.
0

Equations (66) and (67) are consistent with the yield surface shown in

Fig. 3 and discussed in section 5.2 when

n8 =1 , 0 s nr s 1 (68)

and
HV li/pand me - 2plHV 0 - 1 <0 (69)2 p+l 2Dr(R-a) r

Substituting equations (26,68 and 69) into (2) gives
l/p -lip

(r 2m,) = 2 MHV 4Wr VW(Rr 2 -r 3 ) (70)
--r 2p+l 2D(R-a) HTR--a)- M (R-a)

Integrating (70) and ensuring that m : Q = 0 at r = a gives an

equation in mr which in order to remain zero at the simply supported

outer edge yields

W+ n2 W = d2  (71)

where

d2 = -c 2/a (72)

c2 = (9Z-1)(1-a) (73)
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HV 

(/p

0 (74)
2DR

2

and
Q 2p28(aI-I/P-I) (75)

(2p+l)(p-l)(l-a)l1+I/p

The solution of (71) is
-d2 V d2

cos nt + ° sin nt + - (76)
n2 n n2

where the constants of integration have been determined from the initial

conditions w = 0 and w=V
0

Now the motion of the plate ceases at t = T when w = 0 . Thus using

(76) it may be shown that

tan nT = -V n/d 2 , (77)

and the permanent shape of the plate is

1 : -0 + (--l)(l+3a)X } (l - ) (78)
H -2(1-) 6 6(iQ)2 R

The foregoing analysis is valid provided m r 0 at r = R , orr

-l-ip

4aA - 2pa[l-3a2 +2a+p{l+3a2+2a-2c / (l+2a)}] < 1 + a (79)
(2p+l)(p-l)(l-a)l+i/p

Further, in order that nr g 1 and n r 0 at r = R the inequality

(45) must also be satisfied. However, for small values of a(<0.l approx.)and

large values of a(>0.5 approx.) it may be shown that another more restrictive

inequality exists for the requirement m , -1r

If the variation of 8 with time given by equation (65) is retained

in the foregoing analysis instead of its simplified version (67), it may be
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shown that the equation corresponding to (71) can be solved with a series

solution somewhat similar to the one used by Perrone [8]. The maximum de-

flections predicted in this case are found to be in almost total agreement

with (78) when retaining only the first three terms in the rapidly conver-

gent series. These results further support Perrone's observations [8] and

indicate that they are also valid, as might be expected, for finite-deflec-

tions. It is important to point out here, however, that no account has been

taken of any strain-rate sensitivity which may arise from n .

6.4 Rigid Strain-Hardening Viscoplastic Material

In this section the combined influence of strain-hardening and strain-

rate sensitivity on the finite-deflections of a rigid-plastic annular plate

will be examined by amalgamating the separate effects treated in sections

6.2 and 6.3 in the manner suggested in section 5.3.

It may be shown that the strain and curvature rates associated with

the displacement profile (26) and the condition for zero radial strain (27)

satisfy the normality requirements demanded by the yield surface illustrated

in Fig. 3 and discussed in section 5.3 when

n =1 vW2 (R-r) with 0 s n s 1 (80)
2r(R-a) 2  r

and HV 0 /p HV i/p
m -- vfTW - V o 2pvHW 0

0 3r(R-a) (2D(R-a)r) - 3(2p+l)(R-a')r- 2D(R-a)r

with - 1 s m 0 (81)

If the equilibrium equation (2) is solved using equations (26,80

and 81) subject to the boundary conditions mr = 0 = 0 at r = a
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it may be shown that in order for the radial bending moment to be zero at

r = R , then

alW + b 3W + b W3 = -c 2  (82)

where

b = c + 2(p28(l3)--/p)3 1 3H(2p+l)(l-a)l1+i/p (3

By making a variable change y = ý2 , equation (82) may be transformed to

a first order differential equation which upon integration gives

-b3W2  blW4  2c2W
y - + V (84)

a1 2a 1 a o

where the constant of integration has been obtained from the initial condi-

tion y = V 2 when t = 0 .0

It may be shown that the permanent deflection of the plate satisfies

the quartic equation

b H3 A4 + 2b 3HA 2 + 4c 2A - 2a V 2/H = 0 (85)

Equation (85) may be reduced to the results of sections 6.1-6.3 when

Y 8= 0 , 8 = 0 , and Y = 0 , respectively.

7. Discussion

The results plotted in Fig. 5 illustrate the profound effect which mem-

brane forces have on the behavior of annular plates loaded impulsively.

This outcome is not unexpected and has been recently discussed elsewhere

[9,10,16].

It is evident from the curves drawn in Fig. 6 that within the range of

deflections examined, any material strain-hardening hardly reduces the
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permanent deflections below those predicted by a rigid, perfectly plastic

theory. If for mild steel v = 6 , then y = 0.06 would refer to a mild

steel plate with H/R = 1/10 while y = 0.015 would correspond to H/R

1/20 . Clearly, strain-hardening has less effect for smaller values H/R

Figure 7 indicates, as might be expected [1,2], that strain-rate sen-

sitivity of a material gives rise to a "size effect," which means that

physically smaller plates are more susceptible to rate-effects than larger

ones. In Figure 7 the values 0 = 0.30 and 0 = 0.70 for annular plates
-1

(a = 1/8) made from mild steel with D = 40.4 sec and p 5 , corre-
-1 -1

spond roughly to maximum strain rates of 1 sec and 60 sec , respec-

tively. However, although it is clear from Figs. 6 and 7 that strain-rate

effects are more important than material strain-hardening, they still have

a surprisingly small influence when compared with the reduction of deflec-

tions arising from the action of membrane forces alone. It is evident from

Fig. 8 that plates made from materials which exhibit strain-hardening and

rate-effects could be treated as rigid-viscoplastic without strain-hardening.

Even using a rigid, perfectly plastic material would introduce tolerable

errors provided membrane forces were included. This observation might in-

dicate why the results predicted by the rigid, perfectly plastic analysis

for an impulsively load circular plate [9] were quite close to the corre-

sponding experimental values [5].

In order to analyze plates with deflections larger than those permitted

by the various inequalities stated in section 6, it appears reasonable to

let the plate behave as outlined here until the time at which the particular

inequality is violated then treat any subsequent behavior as membrane.
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8. Conclusions

Herein is presented a relatively simple analytical treatment of the

behavior of a rigid-plastic annular plate subjected to an initial linear

impulsive velocity profile. The influence of finite-deflections has been

included in addition to strain-hardening and strain-rate sensitivity of

the plate material.

It is shown for deflections up to the order of twice the total plate

thickness that strain-hardening is unimportant, strain-rate sensitivity

has somewhat more effect, while membrane forces play a dominant role in

reducing the permanent deflections. It is believed, therefore, that the

results here with those of references [2,3] on beams indicate that a rigid-

viscoplastic material without strain-hardening is suitable for analyzing

dynamic problems.
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Figure 1 - Annular Plate

Figure 2 - Element of Plate

Figure 3 - Yield Condition after Hodge [12]

Figure 4 - (a) Rigid, Strain Hardening Yield Condition

(b) Rigid, Strain-Rate Sensitive Yield Condition

Figure 5 - Influence of Membrane Forces on the Final Deflection of
a Simply Supported Annular Rigid, Perfectly Plastic Plate
Subjected to a Linearly Distributed Impulse

Figure 6 - Influence of Material Strain-Hardening

Figure 7 - Influence of Material Strain-Rate Sensitivity

Figure 8 - Combined Influence of Strain-Hardening and Strain-Rate
Sensitivity
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