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SUMMARY

The buckling of ring-stiffened cylinders is studied by a "dis:rete"
approach, in which the rings are considered as |irear discontinuities
representad by the Dirac delta function, The analysis is a linear
Donneli type thecry that takes account of the eccentricity of stiffeners.
Buckling loads under hydrostatic pressure, |lateral pressure and axial
compression are compared with those obtained by "smeared-stiffener”
theory for an extensive range of geometries. The discreteness effect
depends very strongly on the geometry of the shell and the eccentricity
of the rings. Significant discreteness effects are found for hydro-

static pressure loading.
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SYMBOLS

coefficient of axial displacement
cross sectionai area of jfh stringer
cross sectional area of ifh ring
distance between rings
coefficient of circumferential displacement
distance between stringers
expressions defined by £gqs. (9)
coefficient of radial displacement
expressions defined by Egs. (9)
[En/12C1-v2)]
moduli of elasticity of shell, stringers and rings
respectively
distance between centroid of stiffener cross section
and middle surface of shell, positiv: when stiffener
is inside
shear moduli of stringers and rings respectively
thickness of she!l
moment of inertia of stiffener cross sect’on about
its centroidal axis
moment of inertia of stiffener cross section about the
middle surface ot the shell
torsion constant of stiffener cross section

lennth of shell between bulikheads
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moment resultants acting on element
membrane force resultants acting on element

prebuck!ing membrane force resultants

number of stringers

axtal load

lateral or hydrostatic pressure

number of subshells for ring stiffened cylinder
( number of rings is g-1)

radius of shell

number of circumferential waves

non-dimensional axjal displacement (=u*/R)
axial displacement

non-dimensional circumferential displacement (=v*/R)
circumferential displacement

non-dimensional radial disptacement (=w*/R)
radial displacement

non-dimensional axial coordinate (=x*/R)

axial coordinate
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. INTRODUCTION

Until a few years ago the customary appioach to the stability analysis
of a stiffened sheli was to replace it by an equivalent orthotropic sheli
(see for example [1] - [3] ). This approach, however, did not permit taking
Into account the eccentricity of stiffeners which was found to be of
importance in heavily stiffened shells (for example [4] or [5] ). A second
approach also assumes the stiffeners to be "smezred" over the whole surface
of the sheil, but considers the "distributed" stiffness of the stiffeners
separately, which permits inclusion of the effect of eccentricity. The
eccentricity effect had been pointed out long ago, [6] and [7], but was
studied in detail only in recent years (see for example [8], [9], [io],
cied, 0123 or [13]).

The "smearing" of stiffeners appears reasonable for shells with many
closely spaced stiffeners, but is doubtful when their number is small. The

study of discretely stiffened shells is therefore of interest.

Hence the buckling of stiffened cylindrical shells is anaiysed by a

third approach in which, instead of "smearing" the stiffeners, they are

considered as |inear discontinuities represented by the Dirac delta function.
This representation is satisfactory as long as the width of the stiffeners

is not comparable to the distance between them. One may add that a "discrete"
analysis Includes also consideration of local instability between stiffeners,

whereas the first two approaches deait with general instability oniy.
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This approach has heen employed in [14] for buckling of cylindrical shells
under torsion, in [15] for buckiing under lateral pressure, and in [16] and [!7]
for the casc of axial compression. In these asnalyses, however, the eccentricity
of stiffeners was not considered. In [18] the equilibrium and stabi!ity equa-
tions for discretely stiffened shells are derived taking into account the
eccentricity of stiffeners. The present study uses the formulation of [18]

an-: some preliminary results tor ring-stiffened cylindrical shells were given

in [19].

It shouid be pointed out that the effect of discreteness of rings on the
buckling of cylindrical shells under lateral pressure has been investigated
in [20] by an analog method, and that parallel work on axially compressed shells
by the approach employed here has recently been reported in [21]. These studies,
however, treat only typical examples and do not extend t> a wide range of

geometries.

In this report ring-stiffened cylindrical shells under lateral or hydro-
static pressure and axial compression are studied in detail. The main purpose
is to find the difference between tne buckling loads predicted by discrete and
"smeared" theories and the influence of the various geometrical parameters on

this difference.

The rings considered are equally spaced, but not necessarily of constant
cross-section. For the cases of varying ring cross-section, the variation is

assumed symmetrical with respect to the mid-length of the shell, since there is

no physical motivation for asymetrical stiffness distribution.
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The analysis is a |inear Donnell type theory and for clarity the main

assumptions are repeated here:

(1) The shell is thin, (R/h) >> !, and hence high powers of

(h/R) are neglected.

(2) The number of circumferential waves is not smali, or rather

*2 >» |,

(3) The rings are concentrated in their p. es, i.e. they have

zero width in the axial direction.

(4) The normal strains cx(z) and Cd(Z) vary linearly in the ring
as well as in the sheet. The normal strains in the ring and

in the sheet are equal at their point of contact.

(5) The rings do not transmit sheat out to their plane, hence the

shear membrane force Nx¢ is carried entirely by the sheet.

(6) The rings carry torsional moments on account of their torsional

rigidity.

2. STABILITY EQUATIONS

The stability cauations and force and momen* expressions for a cylindrical
shell stiffened by rings and stringers derived in [18] are given here for
convenience (it should be remembered that in [18] the stringers are assumed to

be equal, whereas every ring may have a different cross section):
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Atter substituticn of Eqs. (2) and (3) info Eq. (1) and omission of the
terms that relate to stringers, the stability equation for a ring-stiffened

cylindrical shell becomes:
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3. SOLUTION

The displacement components are expanded into Fourier serfes in the axial

direction

L _J

u = sintd I An cos nBx
n=1
[_J

v = costd I Bn sin nBx {%s)
n=|
[_J

w = sintd Cn sin nBx
n={

tEach set of terms of series (5) satisfies the stability equations of a shell

with smeared stiffeners (Eqs. 12 of [8]) and each term fulfils the classical

simple support boundary conditions




w = 0
Mx = 0
at x = 0, (L/R) (6)
v = 0
N = 0
X

Substitution of the displacements (5) into Eq. (4) yields:
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7

It was tacticly assumed in Eq. (7) that the prebuckling stresses Nxo' N¢o

and N are constant all over tha cylinder. In the case of hydrostatic

x40
or lateral pressure and axial compression this assumption is valid, if the

membrane stresses represent the prabuckling stresses satisfactorily, Since
each of the coefficients of GAm, GBm and GCm (m=1.... =) must be zero,

Eq. (7) is equivalent to three infinite sets of algebraic equations.

The first set ( that corresponding to 6An) does not contain delta

functions and can be solved direcf}y by equating the integrand to zero.

- A [n282 + ( %47 - B (-'ilnns-c wig = O
2 2
or
~vngC_ + fne(l%\-’-)B
Ay = = (8)
0“8 + (p2) 4

Substitution of Eq. (8) into the non-vanishing parts of Eq. (7) yie!ds after

appropriate integrations two sets of equations
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4. THE STABILITY DETERMINANT.

The buckling load is found from the vanishing of the determinant of

Eqs. (9).

For n terms ( or n equations) the determinant is of the order 2n. As
shown in Appendix |, the equations separate into subgroups. Hence the
stability determinant is reduced into subdeterminants. By choosing one
equation (not necessarily the first one} one obtains a first approximation
to the buckling load. It is also shown in Appendix |i that -in the case of
uniform rings this approximation coincides with the "smeared" solution.

In this case, the difference betwsen the results of "discrete" theory and
"smeared" theory is therefore the difference between the first order

approximation and that of infinite order.

5. LOCAL BUCKLING

Obviously the effect of discreteness of rings is more pronounced for
a small number of rings than for many rings. When there are only few
rings, however, local buckling between rings usually occurs at a lower load

than general instabilitv.

When the torsional stiffness of the rings is neglected, the local
buckling load is that of a simply supported cylinder of the same thickness
and radius but of length L/q. Or, in other words, the local buckling load

is equivalent to that of an unstiffened cylinder forced to buckie with

n=q.
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In Table | buckling ioads are given for severa! wave numbers n. Comparison
of this table with Table | of reference [11] ( the complete report,TAE 42) shows
that, in most cases of fairly strong rings, more thar 3 rings are needed for
general instability to be predominant ( to yield the lower buckling loads). In

some cases more than 20 rings are needed.

Hence the effect of discreteness of rings is studied in particular for

shells with weak rings.

6. NUMERICAL ESULTS AND DISCUSSION

The critical osressure was computed for discretely stiffened cylinders
covering a wide range of geometries. Most of the calculations relate to
cylinders stiffened with one ring only, since the discreteness effect is
most pronounced for one ring. Furthermore the results for one ring are more

accurate, as discussed in Appendix [!1, In connection with convergence con-

sideratijons,

As the local buckling load is very low for a cylinder stiffened with

one ring, very weak rings are considered 7o ensure that the general instability

loads wil! be lower.

6.1. Hydrostatic Pressure

Figure 2 shows the influence of the shell parameters L/R and R/h on the
effect of discretenec’ The effect is presented as the difference between

the "discrete" and "smeared" loads ( or rather the percentage reduction in
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buck'ing load for "discrete" rings) versus the Batdorf shell geometry para-
meter Z = (r-vz)l/z(R/h)(L/R)z, tihat combines L/R and R/h in the appropriate
manner. Shells with one ring are considared for which the difference is most
pronounced. |t is seen that the dependence is monotonous and there is

very small scatter., The scatter is mainly caused by the necessary integer
values of the number of circumferential waves, that produce ripples in the
separate '"smeared" and "discrete" curves, the difference of which is presented

in Fig. 2.

Rings with the following geometric parameters ez/h =1, A2/ah = 0.1
Izz/ah3 = 0.01 were chosen since they ensure for all| shell geometries general
instability at about 60%5-80% of the local buckling load. This is high enough
(see aiso Fig. 3) for a pronounced discrcteness effect, but on the other hand

not too close to the cut-off line (that represents the local buckling load).

Figure 3 shows the influence of the reléflve stiffness of the rings

on the discreteness effect. When the rings are very weak, the buckling mode
tends to remain in simple sinusoidal form, as for unstiffened shells, and the
"discreteness"effect is therefore very small. For stronger rings, the shell
seeks lower energy modes and hence the difference between the "smeared" and
"discrete" theory becomes more pronounced. Again shells with one ring are
considered, for which the ring spacing a = L/2. In the example of Fig. 2,
the ring eccentricity is4 and hence, for ringsof rectangular cross-section,
(AZ/ah) would be (c/a) = (2c/L) where c is the width of the ring. For rings

of rectangular cross-section (Izz/ahs) would then be 0.0833(c/a) = 0.0833(2c/L)
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In Fig. 3 the ring cross-section differs slightly from the rectangular and
is defined by (Az/ah) = (2¢/L) and (I?Z/ahs) = 0.1(2¢/L). £ = (2c/L)

appears as a parameter in the curves of Fig. 2.

Figure 3 also shows the effect Is larger for external rings than for

internal ones. The general behavior is however similar.

Figure 4 shows that effect of the eccentricity on the discreteness effect,
Comparison of rings of equal A,/ah ang |22/3h3would not be appropriate here,
since the eccentricity noticeably affects the "smeared" buckling load, and
the comparison would then actually be of rings of different strengths instead.
The comparison in Fig. 4 is between rings of equal strength with cross-sections
defined by Az/ah = 0.1f I22/ah3 = 0.0!f and where the parameter f was
adjusted for each eccentricity to yield the same range of "smeared" buckling

load.

As was pointed earlier, Figs. 2 to 4 show the influence of the discreteness
effect for shells with one ring only. Figs. 5 and 6 show dependence of
the effect on the number of rings. The general trend is, as expected, for the
magnitude of the difference to go asymptotically to zero with increasing number
of rings. It is however seen that for high L/R and R/h, when the one-ring
difference is highest, the effect also decreases more slowly with increasing

number of rings.

It should be noted that the results here are the Ith approximation and

are not accurate for one or two rings for high L/R.
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In Tables 2 to € some of the numerical results on which Figs. 2 to 7
are based are presented in tabular form.Th2 values in the tables are in
some cases given up to 5 or six significant figures, as obtained from the

computer program, though usually only the first 4 figures are meaningful.

Figure 6 summarizes the importance of the discreteness of rings in
the instability analysis of cylindrical shells under hydrostatic pressure.
It shows the variation of the percentage reduction in buckling pressure
(due to discreteness of the rings) with number of rings and increasing
ring strencth, As the "smeared" stiffness - represented in the figure by
the critical pressure parameter of the stiffened shell - increases, the dis-
creteness effect for | ring rises till the cutoff point is reached, when local
buckling becomes dominant for { ring. For 2 rings the discreteness effect is
at first smaller, but then rises beyond that for | ring, till the cutoff point
for 2 rings is reached. This increase in discreteness effect with number of
rings and ring strength continues til! at 6 rings a maximum for this geometric

configuration is reached. Then the effect starts to decrease with increase in

number and strength of rings.

It should be noted that the largest discreteness effect does not occur
with one ring, as one would intuitively assume, since local buck!ing becomes
dominant before the ring can attain a high stiffness that would result in an
aopreciabie discreteness effect, There are two opposing tendencies, one for the
discreteness effect to decrease with number of rings for a given basic shell,

and the other a postponement of the cut off point with number of rings. The
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result is a certain maximum for every she!l geometry as shown In Fig, 6.

6.2. Lateral Pressure with Non-Unlform Rings.

In ordar to Investigate the sffect of discreteness of stiffeners for non-
uniform stiffeners, tha buckling loads were computed for ring-stiffened
cylinders under lateral pressure with rings of varying cross-section. Results
of a "smeared" stiffener theory are avallable for sinusoldal height variation
of rings with rectangular cross-section [22]. For the "smeared" case, the

height of the rings d as a function of x can be written
d = do + d; sinBx (10)

where do represents a constant part and d‘ the amplitude of the varying portion
of the ring cross-section, For the corresponding discrete case the height of
rings is di i =1,,. (q=1) and the i*h ring is at X, = éﬁ-. The discretely
varying portion of the height of the ring, dl is chosen so that the mean

height is the same as for the "smeared" case and also that

9
3
J

In Table 7 the critical lateral pressures are given for three non-uniformly

-d sin x
° ’ (n

- d° sin xj

stiffened shells with 3 rings. The pressure parameters for the non-uniform
and uniform discrete cases are compared with the correspunding "smeared"
theory values from [22]. it Is seen that the difference between the uniform

and non-uniform cases is considerable in the discrete analysis., This does not
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invalidate the weight savings predicted by the "smeared" thec -y in [22].
For, even in the 3-ring case, the gain in critical pressure predicted by
the "smeared" theory can be recovered, if a larger portion ot the height
is varied than in [22]. The results, however, indicate that to. shells
with few rings the optimal dimensions predicted by "smearsd" theory may
have to be revised in view of the discreteness effects. Discrete theory
is therefore needed for a reliable analysis when one wishes to exploit

the advantages of non-uniform stiffening for shells with few rings.

6.3. Axial Compression

The critical load of unstiffened cylinders under axial compression is

a function of the wave parameter

(n82 + 142

ns
and not of t+ and n independently., (This applies strictly only to "ciassical"

simple supports and to shells that buckle into many waves in the axial direction),
Hence in many cases a ring-stiffened cylindrical shel! under.axial compression

can buckle under the same load as a corresponding unstiffened cylinder, since

for n=q it buckles through the rings for some value of the wave éaramefer. This
"ineffectiveness" of rings disappears only for large 8 or large n - for shells
with small ring spacing. These shells, however, exhibit a very small discreteness
effect ( see shells Nos. 4 to 8 in Table 8). As small ring spacing means low

effective Z, this is not surprising if one remembers that also for the case of
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hydrostatic pressure only very small discreteness effects were found for shells

of small Z.

In Table 8, eight typical ring-stiffened shells, chosen from the test data
of [23] and [24], are studied for discreteness effects, Shells Nos, | to 3
show a very small, but noticeable discreteness effects. The local buckiing load
in these shells, for simple supports, would be siightly below the general in-
stability, which would mean that the results presented are beyond the cut-
off ncint and therefore meaningless; but as in reality there is some restraint
at the boundaries of the sub-shells, the cut-off point is shifted and the
results are of value. For shells Nos. 4 to 8, the local buckling load is larger
than the general instability load, even for simple supports. The discreteness

effect is, however, negligible as already pointed out above.

The computations of Table 8 neglect the rotational restraint of the rings
(nfz = 0 is acsumed)., Calculations with the proper N4o values are in progress.
It can, however, be expected that the conclusion - that the discreteness effect
is very small for genera! instability of ring~stiffened cylirders under axial

compression - will not be affected.
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7., CONCLUSIONS

The results of the calculations for cylindrical shells under hydro-
static or lateral! pressure show that the discreteness effect depends
very strongly on the geometry of the shel! and the eccentricity of the

rings.

Though for most practical cases with many rings the affect is not
important, one should be cautious when dealing with shells of high Z
and rings of low eccentricity. The "discrete" load may then be about

20% lower than the "smeared" one even for ten rings or more.

In ring~stiffened shells under axial compression the discreteness

effect is always very small,
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APPENDIX I,

s e e v s st

REDUCTION IN ORDER AND SIMPLIFICATION OF STABILITY

DETERMINANTS.,

Equations (9) consist of two infinite sets of equations. The nTh
approximation yields 2n equations and the corresponding stability
determinant consists of n? blocks of 2 x 2. Denciing the blocks Aij we
have
I
q-| 2 mni q-! 2 mui
= in® 2L c inZ Ml
bml + ?= Bilsxn 3 mi + ?g Y;, sin g :
| o = |
I
| q-1 2 q-1 ;
mwi 2 mwi 2 mmi
| bm2 + ?= Bi2 sin e Cn2 + fg Yo sin + Gimmcos e
|
i and o.o|-|
y
i q-! q-|
t ¥=' BII in 9 sin 3 ?: iy sin 3 i a
’ Amn =
i mie g-l B,, sin mr i sin i g-l Y., Sin mei sin nwi
| = 12 q q =g 12 q q :
i me i nwi !
| + Gimn cos r cos —q—-
}
\
: 00."2

It is assumed that the rings are symmetrical with respect to the mid-length of the

cylinders. Hence Bil = 3(q-i)s s Yi) T Y(g-i)i etc,
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q-1 . q-1 )
A sum of the form L a, sin LA R L R $.cos mrl o NTE
i q q q q

i=| i=|
is zerowhen m is odd and n is even, or vice versa. This can be shown

as follows:

a sin mr{q-1) sin nn(qg-1)
(g-1) q q

a; sin (mr - ﬂ;i) sin (nn - "—;’l)

- 9 sin ﬂll sin nni ces | =3
q q

since for odd m

sin (mw- ﬂ'—1!-£) = sin il
q q
and for even n
i nwi
sin (nw - 28 ) = - g5 2EL
q ) q
The Ifh term in the sum therefore cancels the (q-i)Jrh term. Hence ail the

blocks Amn for which m is odd and n 1is even, or m is even and n is odd,
vanish, The stability determinant reduces therefore to two subdeterminants, the

first containing the odd n's and second the even n's.

This reduction of the stability determinant applies to the most generali

case. In some particular cases there are further possible subdivisions.

The first case is that of rings with zero torsional stiffenass.
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Rings of Zero Torsional Stiffness

e et e

q-! mm i nwi
Here Gimn = 0 and there are no sums of the type I ¢l cos o cos 3
i=1
q-! min nin
The remaining sums, of the type I a; sin < sin e are zero
i=1

when m or n are equal to a multiple of q. This means that the equations
numberad q, 29, 3q... separate and the correspording buckling load can be

calculated separately.

The physical reason is immediately apparent. These particular mode-
of buckling are the modes of local buckling, and when the rings have zero
torsional stiffness local buckling is the same as buckiing of the unstiffened
shel|l (a problem that has a closed form solution). Other subdivisions are

possible when all the rings are equal.

Equal Rings of Zero Torsional Stiffness

q-! min niw
When all the rings are equal the sums of the type I a; sin a sin T
i=1
-1 miw nin
become a I sin —— sin —— . The sum
i= q q
9-! min nis
= Z sin —sin — oo 1 -4
mq G g °"7q

vanishes if neither m + n or m -~ n are multiples of 2q or if both are.

This may be shown as follows:

q| ; q-| - :
L sin Msin m = _;. hX [cos .(M - COS M] vee §+ = 5
i= q =| q q

i
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Now if(m -~ n)is a multiplie of 2q

g-1 )i
pX ccs Im-n)iz q-| vee 1 =6
; =1 9

and the first set of terms of the sum equals HEL .

if{m + ntis a multiple of 2q

and the second set of terms of the sum equals - S%L . Hence when both (m-n)

and(m + n)are multiples of 2q,

To consider the case wnen noither m + n norm - n are multiples of 2q,

denote {m-n) = r and (p#n) = s, Than

jrim - jris
v 1 TN A T
COos —-q—- =5 i. | e

q-! .Y q-1
T cos (m-n)in -3
i=

i=| q |

LLa i aibic g

where j denotes here j = V-1,

Since all the blocks amn for which m is odd and n is even, or m ic even and
3 n is odd, vanish in the general case, only even values of r and s need be con-

sidered hare.




- 27 -

Now
| lri“ J_ﬂ |r(g-|)1r
T e 0 = 8 T g-e Y H
j=| e
| -~ e Q
Similarly
q-] - Jf'_"l
I e q z - | for even r
=l
Hence, here,
q- (m=n)ix
z COS e |
jul 9
In the same manner
q-! (men)ix 9! sin
I COS ~——m——m )X co§s —— = - |
i=l q Y 9
Therefore
' | q-| 'm-n)in (m+n)ix
S = 5 I [ cc. "=——— = 0§ —— ]

q

and the subdeterminants are further simplified.

for even r

for

even s

10

12

13
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APFENDIY. ||

COMPARISON OF “SMEARED" AND "DISCRETE" SOLUTIONS.

To compare the "discrete' and "smeared" solutions one first has to

clarify what are the corresponding cases.

The equivalence is defined here by taking the ring spacing as

=L
a q .

The ring parameters Mos Xo» Bo» Mgy 3S defined for the "smeared"

case contain é-. in the "discrete" theory %-is replaced in the parameter

|
by - Hence
_ Yog - R T
uzs L e

where the subscript s refers to parameters as defined in the "smeared" theory

and the subscript d to those defined in the "discrete" theory.

The "smeared" solution is in a closed form whereas in the "discrete"
theorv the solution is the limit of a series.

I+ can be shown that the first term, the first approximation, of the
"discrete" solution is equal to the "smeared" solution, for the case of
equal rings. |f one compares Eq. (12} of Ref. [3] with Eq. (4) of tiis
report, and solves ttase equations by the Galerkin method (choosing u, v, w as

in Eq.(5)) one sees that the terms corresponding to shell itself are equal.

For the rings,there are in the "smeared" case terms of the type

L/R 1
Stm,n) = Wy é sin nBx sin mBx dx = u25(fﬁ)6mn oo b1 =2

where Gmn is thu Kronecker delta.
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The corresponding term for the "discrete" solution is

L/R q-lI
Dm,n) = s [¢ Mog; S(x=x;) sin nBx sin mBx_Jdx
o i=i '
g~
= ?:] Hyq S N NBx, sin mBx, e 11 =3
Now for equa: rings Hogi = Y24 and theretore
q-1 , ¥, q
- mr . mni _ 2d _
D(m,m) = “Zd f:l s$:n —a—-SIn —a— = = N 4
Hence, after substiTtution trom Eq. t i~})
H “
2
Dmm) = =% - S(m,m) cee 11 =5

This means that the diagonal terms in the "discrete" stability determinant
are equai to those of the "smeared" cie. On account of the Kronecker delta
in Eq. (1t-2) one can conciuue that the first approximation of the "discrete"

case is equai to the "smcarea" so:ution for any number of rings and any n,
q 9
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APPENDIX 111

CONVERGENCE OF THE SOLUTION

In the "smeared" case the solution is in a closed form, whereas in the

P "discrete" case there is a series which converges to the solution,

[ For the interesting casf.,, when there is a considerable difference

between the "smeared" and discrete solutions, the convergence is siow. This

is to be expected since rapid convergence means that the shape of the deflaction
! is close to a simple sine curve, or to a combination of the first harmonics,

E When the effect of discreteness is appreciable the deflection shape is usually

different from a simple sine curve.

Fortunately, however, the series for one ring, though it converges slowly,
can be extrapolated easily. As can be seen from Fig. 8 , a semi-logaritmic
plot of the difference between successive approximations approaches a straight
line asymptotically. This means that the difference can be represented by a
geometric series. Thus if we know three approximations, for example Ais Ai+l’
J\i+2, we can estimate the limit

(Ai - Ai+l)

L T v v
i+l Ti+2
AT A

When the shell has more +han one ring, this is not true anymore and in the

numerical work the lthapproximafion was then usua!ly considered adequate. This

rather arbitrary decision was based on the results obtained for cne ring where the

difference batween Alo and A_ was usually less than 2-3%, except for large L/R

values for which the ditterence was up to 5%.
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TABLE 1.

LOCAL BUCKLING OF TYPICAL RING STIFFENED SHELLS

- 3 . -
Az/ah = 0.5 I22/ah = 5 = 5
local bucklin Number of rings
R/h L/R A smeared for one ring required for genersl
instability to pre-
dominate
50 0.5 644.9 428.9 2
1.0 544.9 173.2 5
.5 644.9 108.7 7
100 0.5 1303 533.8
1.0 1288 229.9
2.0 1281 107.4 14
250 0.5 3228 755.7
1.0 3224 345,9 0
500 0.5 6398 1013 8
i.0 6398 477.2 16
2.0 4660 231.7 26
1000 0.5 12860 1381 I
1.0 12180 661 .1 22
2.0 6881 323.8 29
2000 0.5 25590 1903 16
.0 18520 924.0 26
2.0 9957 454.9 33

* Torsicnal stiffness of rings is neglected.
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TABLE 2
“ INFLUENCE OF SHELL GEOMETRY ON DISCRETENESS EFFECT
3
' A/ah = 0.1 1,,/ah> = ¢,0l o,/h = |
R/h L/R Z A smeared A dlscre‘re* t
100 0.25 5.96 618.97 617.28 1
0.5 23.85 324.44 315.76 i0
0.75 53.66 223.64 216.48 8
, 1.0 95.39 172.76 163.24 7
: 1.25 149.0 140.08 129.73 7
1.5 214.6 117.20 108.80 6
1 .75 292.1 i01.68 92.03 6
2.0 381.6 91.90 81.10 6
2.25 482 79.51 71.25 5
2.50 596.3 71.78 62.52 5
2.75 721.4 66.75 56.82 5
3.0 858.5 63.35 52,75 5
500 0.25 29.8 1457.7 1417.5 21
0.5 119.2 771.4 722.4 16
0.75 268.3 525.3 481.7 13
1.0 477.0 402.1 353.9 13
1.25 745.2 323.4 278. | 1
1.5 1073 272.5 228.3 10
.75 1461 231.8 189.8 9
2.0 1908 204.4 163.4 9
f 2.25 2415 181.3 141.2 8
. 2.75 3607 148.6 114.7 7
3.0 4293 136.8 102.5 7
:
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TABLE 2. (CONT'D)

INFLUENCE OF SHELL GEOMETRY ON DISCRETENESS EFFECT

Adah = 0.1 Ip/ah> = 0.0l e, /h = |

R/h L/R z A smeared A discrefe* t ax%

1000 0.25 59.6 2125.2 2036.6 26 4.17
0.5 238.5
0.75 536.6 753.60 664.6 16 1.8
1.0 953.9
1.25 i490 461.48 373.7 13 19.05
1.5 2146 385.87 303.8 12 21.3
1.75 2921 332.16 261.5 1 21.2
2.0 3816 288.95 218.8 10 24,3
2.25 4829 259,24 193.3 10 25.4
2.5 5963 231.90 170.0 9 26.5
2.75 7214 214,73 155.6 9 27.5
3.0 8585 193,66 144.6 8 25.3

* Extrapolation to infinite order approximation.
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TABLE 3

INFLUENCE OF RING AREA ON DISCRETENESS EFFECT

LR =3 R/ = 250
3 *

e,/h A,/ah I)5/ah t A discrete A smeared LYY 4

| 0.0l 0.001 6 58.33 58.62 0.5

0.03 0.003 6 64.20 67.68 5.1

0.05 0.005 6 68.10 76.45 10.9

: 0.06 0.006 6 69.60 80.72 13.7
~ 0.08 0.008 6 72.70 89.08 8.5
: 0.10 0.010 6 76.00 97.17 21.8
; 0.12 0.012 6 78.30 105.02 26.4
-1 0.0! 0.00! 6 57.17 57.79 0.7

0.03 0.003 6 61.20 65.25 6.2

0.05 0.005 6 54.05 72.47 11.6

0.06 0.006 6 65.30 76.00 14.0

§ 0.08 0.008 6 67.25 82.89 18.9
0.10 0.010 6 68.90 89.56 23.1

0.12 0.012 6 70.20 96.05 26.8

0.14 0.014 6 71.40 102. 34 30.1

i * Extrapolation to infinite approximation
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TABLE 4

EFFECT OF RING PARAMETERS - ECCENTRICi1Y OF RINGS.

L/R = | R/h = 500
8,/h A,/ah | /ah3 A smeared A discrefe* t Ax%
2 2 22

-1 0.0! 0.00! 252.45 251,56 12 0.35
0.03 0.0053 279.t1 269.15 12 3.55
0.05 0.005 307.71 284.50 12 7.50

0.07 0.007 335,40 296.60 12 10.7

0.085 0.0085 355,6n 303.80 12 14.5

0.10 0.010 373.70 310,10 12 17.0

0.12 0.012 394,50 317.40 12 19.5

0.14 0.014 4:4,70 324,20 12 2.5

0.16 0.0i6 434,20 328.80 12 24.0

0.18 0.0i8 453,30 334,00 12 26.2

-2 0.005 0.0005 263.96 261.60 12 0.89
0.010 0,001 293.30 284,90 12 2.86

0.015 0.0015 522,134 304.78 12 5.45

0.020 0.002 351.10 322.10 12 8.29

0,025 0. 0025 378.76 337.27 12 1¢.9

0.030 0.003 20z, 350.45 12 12.8

0.035 0.0025 425,04 362.40 12 4,75

0,04C 0.004 447,87 373,00 12 i6. !

0.045 0.0045 470,50 381.90 12 18.8

-3 0.00! 0.0001 Z47 63 247,25 13 0.15
0.003 0.0003 274,87 271 .00 12 1.05
0.006 $.0006 314,32 303.70 iz 5.40
0.010 0.0010 367,12 340 05 12 7.36

0.012 0.00i2 390,74 355,85 12 8.94




|

TABLE 4 (Cont'd)

EFFECT OF RING PARAMETERS - ECCENTRICITY OF RINGS

L/R = | R/h = 500
3 *
e,/h M, /ah 1 5p/2h A smeared A discrete t arg
-3 0.015 0.0015 423.14 377.55 12 10.80
0.0{8 0.0018 455,36 396.40 12 12.95
-4 0.00I 0.000l 258,25 257.42 12 0.32
0.003 0.0003 305.86 268.76 12 2.32
0.005 0.0005 353.29 334,88 12 5.20
0.007 0.0007 397.01 366.37 12 7.97
0.009 0.0009 436.02 394.08 12 9.60
-10 0.0002 0.00002 264.52 263.65 12 0.33
0.0004 0.00004 294,65 291.2! 12 1.16
0.0006 0.00006 324.77 317.18 12 2,32
0.0008 0.00008 354,87 341.63 12 3.63
0.0010 0.00010 384.66 364.42 12 5.27
0.0012 0.00012 409.70 385.60 12 5.65
0.0014 0.00014 434,74 407.20 12 6.35
0.0016 0.00016 459,76 426,60 12 7.20

* Extrapolation to infinite approximation.
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TABLE 5

DISCRETENESS EFFECT FOR DIFFERENT L/R

AND R/h
e)/h =1 AJah = .15 1,,/3h> = 0.015

R/h L/R Z Number of t A smeared A discrefe* LYY 4
Rings

500 0.5 119.2 | 16 842,92 692.22 17.9
2 16 743,38 i1.8
3 16 781.16 7.34
4 16 806.99 4,27
5 15 821.45 2,55
6 15 828.69 .69
7 15 832,97 1.i8
8 15 835.64 0.86
9 15 837.38 0.66
10 15 838.56 0.52
I 15 839.4| 0.42
12 15 840.04 0.34
13 15 840,56 0.30
14 15 840.856 0.25
15 15 841,15 0.21

500 | 477.0 | 12 424.5 330.8 22,1
2 12 351.6 17.2
3 12 367.6 13.4
4 N 380.5 10.4
5 I 389.2 8.34
6 I 396.9 6.52
7 il 403.2 5.03
8 H 408.3 3.81
9 H 412, 2.93
10 ti 414.9 2.27

H 417.0 i.77
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TABLE 5 (Cont'd)

INFLUENCE OF THE NUMBER OF RINGS ON DISCTETENESS EFFECT FOR D!FFERENT L/R

D R/
op/h == AJah = 0.15 I,pfah> = 0.015
R/h L/R Z Number of + A smeared A discrete g
Rings

500 | 477.0 12 I 424.5 418.52 .42
13 1 419,67 1.14
14 1 420.53 0.95
15 I 421.20 0.78

500 2 1908 | 9 213,17 i65.73 22.2
2 8 170. 41 20.2
3 8 174.37 i8.2
4 8 178.51 16.1
5 8 182,37 14.4
6 8 185.7! 12.9
7 8 188.61 1.5
8 8 191.18 10.3
9 8 193,50 9.23
10 8 195.66 8.20
i1 8 197.67 7.28
12 8 199,56 6.38
13 8 201.29 5.57
'4 8 202.85 4,85
15 8 204,25 4.18

100 | 95.39 | 8 188.41 156.80 15,85
2 7 17¢.22 9.10
3 7 178.17 5.45
4 7 182.38 3.20
5 7 184.67 1.99
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TABLE 5 (Cont'd)

INFLUENCE OF THE NUMBER OF RINGS OM DISCRETENESS EFFECT FOR DIFFERENT L/R

AND R/h
2,/ == Afan = 0.15 1ylah> = 0.015
R/h L/R z Number ¢ T A smeared A discrete A%
Rings

100 | 95. 39 5 1 f3a.el 185.93 .31
7 7 186.67 0.92
8 7 187.12 0.68
9 7 187.42 0.52
1C
i 7 187.77 0.33
12 7 187.88 0.28
13 7 187.96 0.24
14 7 188.03 0.20

2000 I 1903 I 17 852.69 652.78 23.5
2 17 670.08 21.4
3 17 690.07 19.1
4 17 709.45 16.8
5 17 727.51 14.7
6 16 742 .82 12.9
7 16 754,46 1.5
8 16 764.72 10.3
9 I6 774,01 9.20
10 16 782.62 8.23
i 16 790.70 7.28
12 16 798.73 6.42
I3 16 805.15 5.49
14 16 811.42 4,84
15 I6 816.98 4,18

* Tenth order approximation
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TABLE 6

INFLUENCE OF NUMBER OF RINGS ON THE DiSCRETENESS EFFECT BETWEEN CUT-OFF LINES

Carliy o

FOR RINGS OF VARYING STRENGTH.

L/R = | R/h = 500 92/h = =2

g?mber of A,/ah 5o/ 2h t A smeared A discrete g
ngs

1 0.003 0.00225 12 255.13 254,22 0.36

0.018 0.01350 12 357.4 331.1 7.36

0.039 0.02925 12 475.5 400.5 15.7

2 0.042 0.03375 i 49(.6 435.7 il.4

0.060 0.04500 | 586.7 486.1 17.1

0.096 0.067200 i 736.1 563.0 23.5

3 0.099 0.07425 I 748.0 611.1 18.7

0.120 0.09000 11 830.2 655. 1| 21.

0.168 0.12600 10 1007 733.7 27.1

4 0.171 0.12825 10 1016 784.4 22.8

0.210 0.15750 10 1123 843.0 25.0

6.280 0.21000 10 1303 930.2 28.6

5 0.288 0.21600 10 1323 1010 23.6

0.360 0.27000 10 1492 1097 26.4

0.416 0.31200 i0 1615 1155 28.5

6 0.432 0.32400 9 1650 1252 24.1\

0.512 0.38400 9 1806 1326 26.8

0.608 0.45600 9 1943 1406 27.6

7 0.624 0.4680C 9 1965 1525 22.4

0.800 0.60000 9 2189 1671 23.17

0.896 0.67200 9 2300 1741 24.3

8 0.9!2 0.68400 9 2318 1889 18.5

* +enth order approximation
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TABLE 7
COMPARISON BETWEEN DISCRETE AND "SMEARED" NON-UNIFORM 3-RING

¥
STIFFENED CYLINDERSt UNDER LATERAL PRESSURE

R/h = 500 L/R = | ez/h = 2
A /ah | /ah3 A smearz3i X discrete smeared discrete smeared discrete
2 22
RON~ 4y NON- YY) ag
uniform uniform
0.08 C.06 758. 1 727.7 967, 1| 767.4 27.6 5.41
0.10  0.0667 854.7 809.8 1109 858, 1 29.8 5.96
0.12 0.08 948.4 896.2 1246 943.9 31.4 5.85

* The non-uniformity is a sinusoidal height variation of rings of rectangular

cross-section.

*% Half the cross-sectional area of the rings is constant and half varies sinusoidally.
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TABLE 9

CONVERGENCE OF THE APPROXIMATIONS FOR "DISCRETE" BUCKLING LOADS

Az/ah = 0,1 ez/h = . I22/ah = 0.0l
L/R R/h No. n X AX
250 3 | ! 97.173
5.079
2 1-3 92.094
2.413
3 {=5 89.681
1.635
4 1-7 87.856
1527
5 |-9 86,329
1.321
6 t=1 85,008
i.158
7 1-13 83,850
1.018
8 1-15 82.832
0.889
9 117 81.943
0.776
10 t-19 8i.167
100 0.5 i t 324.436
4.599
2 1-3 315.837
1.493
3 15 318,345
0.771
4 -7 317,574
0.47!
5 1-9 2i7.103
0.316
6 -1 316.757
0.226
7 -13 316,561
Q.170
8 i-15 316,391
0.133
9 i-i7 316,258
0.106

10 1-19 316,152
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