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SUMARY

The buckling of ring-stiffened cylinders is studied by a "dis~rete"

approach, in which the rings are considered as lIrear discontinuities

represented by the Dirac delta function. The analysis is a linear

Donnell type theory that takes account of the eccentricity of stiffeners.

Buckling loads under hydrostatic pressure, lateral pressure and axial

compression are compared with those obtained by "smeared-stiffener-'

theory for an extensive range of geometries. The discreteness effect

depends very strongly on the geometry of the shell and the eccentricity

of the rings. Significant discreteness effects are found for hydro-

static pressure loading.



- II -

LIST OF CONTENTS

Page

SUMMARY I

LIST OF TABLES III

LIST OF FIGURES IV

SYMBOLS V - VII

I. INTRODUCTION I-3

2. STABILITY EQUATIONS 3- 6

3. SOLUTION 6- 9

4. THE STABILITY DETEr4INANT 10

5, LOCAL BUCKLING 10 - II

6, NUMERICAL RESULTS AND DISCUSSION II

6.1. Hydrostatic Pressure II - 15

6.2. Lateral Pressure with Non-Uniform Rings I - 16

6.3. Axial Compression 16 - 17

7. CONCLUSIONS 18

REFERENCES 19 - 22

ACKNOWLEDGEMENT 22

APPENDIX I - Reduction in Order and Simplification 23- 21

of Stability Determinants

APPENDIX II - Comparison of "Smeared" and "Discrete" 28 - 29

Solutions

APPENDIX III - Convergence of the Solution 30

TABLES 31 - 43



*7;

- Ill -

LIST OF TABLES

TABLE I. Local Buckling of Typical Ring Stiffened Shells

TABLE 2. Effect of Shell Geometry

TABLE 3. Effect of Ring Parameters - Ring Cross-Sectional Area

TABLE 4. Effect of Ring Parameters - Eccentricity of Rings

TABLE 5. Influence of the Number of Rings on Discreteness Effect

for Different (L/R) and (R/h)

TABLE 6. Influence of the Number of Rings on the Discreteness Effect

Between Cut-Off Lines for Rings of Varying Strength

TABLE 7. Comparison Between Discrete and "Smeared" Non-Uniform 3-

Ring Stiffened Cylinders Under Lateral Pressure

TABLE 8. Discreteness Effect in Ring-Stiffened Cylindrical Shells under

Axial Compression

TABLE 9o Convergence of the Approximations for "Discrete" Buckling Loads



IV

LIST OF FIGURES

Fig. I Notation

Fig. 2 The Influence of Shell Geometry on the Discreteness Effect

for Shells with One Ring Under Hydrostatic Pressure

Fig. 3 Influence of Ring Stiffness on the Discreteness Ef~ect

(Shells with One Ring)

Fig. 4 Effect of Eccentricity of Rings on the Discreteness Effect

Fig. 5 Dependence of the Discreteness Effect on the Number of Rings

(For Different R/h)

Fig. 6 Dependence of the Discreteness Effect on the Number of Rings

(For Different L/R)

Fig. 7 Influence of the Number of Rings on the Discreteness Effect

for Rings of Varying Strength

Fig. 8 Convergence of Approximations.



V

SYMBOLS

A coefficient of axial displacement
cross of j stringer

A2I cross sectional area of jth ring

a distance between rings

B n  coefficient of circumferential displacement

b distance between stringers

bil, bm2  expressions defined by Eqs. (9)
C coefficient of radial displacement

Cml, Cm2 expressions defined by Eqs. (9)

D EEh3/12(1-v )

E, El, E2 moduli of elasticity of shell, stringers and rings

respectively

el, e2  distance between centroid of stiffener cross section

and middle surface of shell, posltiv,: ,when stiffener

is inside

GI, G2  shear moduli of stringers and rings respectively

h thickness of shell

I1, 122 moment of inerria of stiffener cross se,:t'on about

its centroidal axis

I(,, Io2 moment of inertia of stiffener cross section about the

middle surface of the shell

Itl' It2 torsion constant of stiffener cross section

L iennth of ,hell between bulkheads
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M x, MOP M moment resultants acting on element

Nx, NO, N membrane force resultants acting on element

NxoR N o0 Nx0°  prebuckling membrane force resultants

n number of stringers

P axial load

p lateral or hydrostatic pressure

q number of subshells for ring stlifened cylinder

( number of rings is q-1)

R radius of shell

t number of circumferential waves

u non-dimensional axial displacement (=u /R)

u axial displacement

v non-dimensional circunferential displacement (=v /R)

v circumferential displacement

w non-dimensional radial displacement (=w /R)

w radial displacement

x non-dimensional axial coordinate (=x /R)

x axial coordinate

Z (I-v2 1/2 (L/R) 2 (R/h)



B2  iR/L

o1il' 121 expressions defined by Eqs. (9)

6 imn' YIv Y21 expressions defined by Eqs. (9)

C;Ij E Ij AIjeljI/D

21 21A21e21

no2i E2 102 1/RD

nG E I /RDntlj GIj I tlj/RD

rnt21 G 21 1 t21 /RD

A (PR/wD)

AD  (R3/D)p

UIJ (I'V 2 )(E IJij iERh)

"21 (I-V2) (E21A2 1/ERh)

v Poisson's ratio

# circumferential coordinate

xjj E(I-v 2)E,.A,ei/EhR23

X2i [(I-V ME 2 1 A21 e2 i/EhR7)]

Subscripts following a comma Indicate differentiation

Subscripts I and j refer to i~th ring and j'th

stringer respectively.



I. INTRODUCTION

Until a few years ago the customary approach to the stability analysis

of a stiffened shell was to replace it by an equivalent orthotropic shell

(see for example [I] - [33 ). This approach, however, did not permit taking

into account the eccentricity of stiffeners which was found to be of

Importance in heavily stiffened shells (for example [4] or [5] ). A second

approach also assumes the stiffeners to be "smeared" over the whole surface

of the shell, but considers the "distributed" stiffness of the stiffeners

separately, which permits inclusion of the effect of eccentricity. The

eccentricity effect had been pointed out long ago, [6] and [7], but was

studied in detail only in recent years (see for example [8], [9], [lo],

L:13, [12] or [13]).

The "smearing" of stiffeners appears reasonable for shells with many

closely spaced stiffeners, but is doubtful when their number is small. The

study of discretely stiffened shells I! therefore of interest.

Hence the buckling of stiffened cylindrical shells is analysed by a

third approach in which, instead of "smearing" the stiffeners, they are

considered as linear discontinuities represented by the Dirac delta function.

This representation is satisfactory as long as the width of the stiffeners

is not comparable to the distance between them. One may add that a "discrete"

analysis includes also consideration of local instability between stitfeners,

whereas the first two approaches dealt with general instability only.
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This approach has been employed In [14] for buckling of cylindrical shells

under torsion, In [15] for buckling under lateral pressure, and in [16] and [17]

for the cas of axial compression. In these analyses, however, the eccentricity

of stiffeners was not considered. In [18] the equilibrium and stability equa-

tions for discretely stiffened shells are derived taking into account the

eccentricity of stiffeners. The present study uses the formulation of [18]

an.- some preliminary results tor ring-stiffened cylindrical shells were given

In [19].

It shoud be pointed out that the effect of discreteness of rings on the

buckling of cylindrical shells under lateral pressure has been Investigated

in [20] by an analog method, and that parallel work on axially compressed shells

by the approach employed here has recently been reported in [21]. These studies,

however, treat only typical examples and do not extend to a wide range of

geometries.

In this report ring-stiffened cylindrical shells under lateral or hydro-

static pressure and axial compression are studied in detail. The main purpose

is to find the difference between tne buckling loads predicted by discrete and

"smeared" theories and the influence of the various geometrical parameters on

this difference.

The rings considered are equally spaced, but not necessarily of constant

cross-section. For the cases of varying ring cross-section, the variation is

assumed symmetrical with respect to the mid-length of the shell, since there is

no physical motivation for asymetrical stiffness distribution.
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The analysis is a linear Donnell type theory and for clarity the main

assumptions are repeated here:

(I) The shell is thin, (R/h) >> !, and hence high powers of

(h/R) are neglected.

(2) The number of circumferential waves is not small, or rather

t2 >> I.

(3) The rings are concentrated in their p, es, i.e. they have

zero width in the axial direction.

(4) The normal strains cx(Z) and e6 (z) vary linearly in the ring

as well as in the sheet. The normal strains in the ring and

in the sheet are equal at their point of contact.

(5) The rings do not transmit shear out to their plane, hence the

shear membrane force N is carried entirely by the sheet.

(6) The rings carry torsional moments on account of their torsional

rigidity.

2. STABILITY EQUATIONS

The stability ocouations and force and moment expressions for a cylindrical

shell stiffened by rings and stringers derived in [18] are given here for

convenience (it should be remembered that in [183 the stringers are assumed to

be equal, whereas every ring may have a different cross section):
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M_ D + ) + - 2wj w
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q-I *L
= ( ){(w,) v+ ) + 6 x - -q)E no21  wI,,,
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After substitution of Eqs. (2) and (3) into Eq. (I) and omission of the

terms that relate to stringers, the stability equation for a ring-stiffened

cylindrical shell becomes:

L/R 27 Eh (u + 1-v u0o 61.1(v)' 2 xx + -T- -Tx R6u

Eh I+v I-v- ( TUx + v,+ +-V x-W w)

(IV2 2 '+2 ,xx ,
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+ x - --)E2 1 (vi,## - w1'4) - X2 1Wi,,,, ]} R6v
i=I

+ 2 + w,,,,, + 12(-) 2 (W-v - uR xxxx +2xx wn ,x

q-1 I
+ - (x -i, - V(2w, +i=i q IT 21$+ 1,# 144 o2 1w i ,444#

q-1 iL

+ 12 (f)2 2(wI - vi,)3 + 6 (x - qL nt2i Wx
h U21 1
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+ IT No x) x + (Now) * ( + + (Nxow p.) Px 6w R dx d#

2wf
+ ) , + v(v - w)]} Rau

+ Eh (u +v )Rav + D {w, +vw (w )V(l+VT ,x R xx +  wx

D
-(w + (2-v)w (NO ,xxx ,x44 D (xo~W,x

1 x=L/R
+ N x+o)W 1w1 Rd# (4)

3. SOLUTION

The displacement components are expanded into Fourier series in the axial

direction

u = sin to A cos n~x
n=l

v = cos U B sin nBx
n=l n

w = sin t E C sln n~x
n=I n

Each set of terms of series (5) satisfies the stability equations of a shell

with smeared stiffeners (Eqs. 12 of E83) and each term fulfils the classical

simple support boundary conditions
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w = 0

x at x = 0, (L/R) (6)

v = 0

N = 0
x

Substitution of the displacements (5) into Eq. (4) yields:

L/R 2v Eh 2 2 I-V 2
0 f 1 - 2 E -n282A n -

0 0 I-,v T n= I

( I+V)tnB Bn - vn8Cn ) cos n~x sin t# E NA cos m~x sin t#

m=l m

-Eh 2~ I-v 2 2gh £ {_(1. ..)tn$An - t2Bn - ( -_)n2aBB

(1v2 ) =1 2 n n 2n(I-v2 ) n=l

q-I ).2B

tCn + E 6(x - iL )[-U 2 21 B - U2 1tCn
1=1 qR

+X21'3Cn } 3R sin n~x cos £ sin m~x costO 6Bm
m=l

+ -ER)2 EC + tB + vnB AR n C I n2B + n22+1 n n

q-I iL 3
E 6(x - 7 E2i - 2t2C - t B )
j=1

4 2
+ t C + 121 )2 ,0C i

0-: n n 2i n n
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2R n 2 2 - t2 N + 2tnB NxJI sin nBx sin t#

q-1 iIL" 2 n xj
+ r 6 , x -- R)nt C slnt* cos n8 6C sin m~x slntf R dx d*

i~l Xm 1 1 (7)

It was tacticly assumed in Eq. (7) that the prebuckling stresses Nx0 , N o

and N×Xo  are constant all over the cylinder. In the case of hydrostatic

or lateral pressure and axial compression this assumption is valid, if the

membrane stresses represent the prebuckling stresses satisfactorily. Since

each of the coefficients of 6Am, 6Bm and 6Cm ( m = I .... -) must be zero,

Eq. (7) is equivalent to three infinite sets of algebraic equations.

The first set ( that corresponding to 6An) does not contain delta

functions and can be solved directly by equating the integrand to zero.

-A 2 + I -v 2 (.+V tn-
A n En2 + ( --)t]- (l)tn - C vn8 02 2 n

or

-vnBCn + tnB(l- )B n
n n 22 + (I2 .) t2

Substitution of Eq. (?) into the non-vanishing parts of Eq. (7) yields after

appropriate integrations two sets of equations



-9-

bin Bi + CM B B + E Ci)sln sin- 0

ml MI~~ -l lA - '

+c C + -E (8 B + Ti sc)sin sin nil +6Ccos mLCos nl 0

m2m m2 m n=I i=l1 n 2n q iwin q

m = I .... 4 (9)

where

l+v 2t2m2 2
- (i. - -(2 i-V )M282]L

bI 2 2 L-
ml Lm B- +(-:-)tz LK

1+- 2 2

,i2h Cml

Big = "P2i

2 3
II X2 1t - "1

22

b m2 12(R!1)2 CM_

221 22 2 +n2 R 12 [1 2M202

Y1m n = Xn2t 2  t

0 1 f
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4. THE STABILITY DETERIlNANT.

The buckling load is found from the vanishing of the determinant of

Eqs. (9).

For n terms ( or n equations) the determinant is of the order 2n. As

shown In Appendix I, the equations separate into subgroups. Hence the

stability determinant is reduced into subdeterminants. By choosing one

equation (not necessarily the first one) one obtains a first approximation

to the buckling load. It is also shown in Appendix II that-in the case of

uniform rings this approximation coincides with the "smeared" solution.

In this case, the difference between the results of "discrete" theory and

"smeared" theory is therefore the difference between the first order

approximation and that of infinite order.

5. LOCAL BUCKLING

Obviously the effect of discreteness of rings is more pronounced for

a small number of rings than for many rings. When there are only few

rings, however, local buckling between rings usually occurs at a lower load

than general instability.

When the torsional stiffness of the rings is neglected, the local

buckling load is that of a simply supported cylinder of the same thickness

and radius but of length L/q. Or, in other words, the local buckling load

Is equivalent to that of an unstiffened cylinder forced to buckle with

nq.
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In Table I buckling toads are given for several wave numbers n. Comparison

of this table with Table I of reference [11] ( the complete report,TAE 42) shows

that, in most cases of fairly strong rings, more than 3 rings are needed for

general instability to be predominant ( to yield the lower buckling loads). In

some cases more than 20 rings are needed.

Hence the effect of discreteness of rings is studied in particular for

shells with weak rings.

6. NUMERICAL !,FSULTS AND DISCUSSION

The critical pressure was computed for discretely stiffened cyl'nders

covering a wide range of geometries, Most of the calculations relate to

cylinders stiffened with one ring only, since the discreteness effect is

most pronounced for one ring. Furthermore the results for one ring are more

accurate, as discussed in Appendix ill, in connection with convergence con-

siderations.

As the local buckling load is very low for a cylinder stiffened with

one ring, very weak rings are considered To ensure that the general instability

loads wil! be lower.

6.1. Hydrostatic Pressure

Figure 2 shows the influence of the shell parameters L/R and R/h on the

effect of discreteneF' The effect is presented as the difference between

the "discrete" and "smeared" loads ( or rather the percentage reduction in



- 12 -

buckling load for "discrete" rings) versus the Batdorf shell geometry para-

meter Z = (t-v2 )l/2(R/h)(L/R)2, that combines L/R and R/h in the appropriate

manner. Shells with one ring are considered for which the difference is most

pronounced. It is seen that the dependence is monotonous and there Is

very small scatter. The scatter is mainly caused by the necessary integer

values of the number of circumferential waves, that produce ripples in the

separate "smeared" and "discrete" curves the difference of which is presented

in Fig. 2.

Rings with the following geometric parameters e2/h = I/ A2/ah = 0.1,/

3
122/ah = 0.01 were chosen since they ensure for all shell geometries general

instability at about 60%-80% of the local buckling load. This is high enough

(see also Fig. 3) for a pronounced discrtiteness effect, but on the other hand

not too close to the cut-off line (that represents the local buckling load).

Figure 3 shows the influence of the relative stiffness of the rings

on the discreteness effect. When the rings are very weak, the buckling mode

tends to remain in simple sinusoidal form, as for unstiffened shells, and the

"discreteness"effect is therefore very small. For stronger rings, the shell

seeks lower energy modes and hence the difference between the "smeared" and

"discrete" theory becomes more pronounced, Again shells with one ring are

considered, for which the ring spacing a = L/2. In the example of Fig. 2,

the ring eccentricity is1 and hence, for ringsof rectangular cross-section,

(A2/ah) would be (c/a) = (2c/L) where c is the width of the ring. For rings

of rectangular cross-section (122/ah
3 ) would then be 0.0833(c/a) = 0.0833(2c/L)



-13 -

In Fig. 3 the ring cross-section differs slightly from the rectangular and

is defined by (A2/ah) = (2c/L) and (1 22/ah
3 ) = O.l(2c/L). f = (2c/L)

appears as a parameter in the curves of Fig. 2.

Figure 3 also shows the effect Is larger for external rings than for

internal ones. The general behavior is however similar.

Figure 4 shows that effect of the eccentricity on the discreteness effect.

Comparison of rings of equal A2/ah and 122/ah 3would not be appropriate here,

since the eccentricity noticeably affects the "smeared" buckling load, and

the comparison would then actually be of rings of different strengths instead.

The comparison in Fig. 4 is between rings of equal strength with cross-sections

defined by A2/ah = O.If/ 122/ah3 = O.Olf and where the parameter f was

adjusted for each eccentricity to yield the same range of "smeared" buckling

load.

As was pointed earlier, Figs. 2 to 4 show the influence of the discreteness

effect for shells with one ring only. Figs. 5 and 6 show dependence of

the effect on the number of rings. The general trend is, as expected, for the

magnitude of the difference to go asymptotically to zero with increasing number

of rings. It is however seen that for high L/R and R/h, when the one-ring

difference is highest, the effect also decreases more slowly with increasing

number of rings.

It should be noted that the results here are the 10th approximation and

are not accurate for one or two rings for- high L/R.
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In Tables 2 to 6 some of the numerical results on which Figs. 2 to 7

are based are presented in tabular form.Thq values in the tables are in

some cases given up to 5 or six significant figures, as obtained from the

computer program, though usually only the first 4 figures are meaningful.

Figure 6 summarizes the importance of the discreteness of rings in

the instability analysis of cylindrical shells under hydrostatic pressure.

It shows the variation of the percentage reduction in buckling pressure

(due to discreteness of the rings) with number of rings and increasing

ring strencth. As the "smeared" stiffness - represented in the figure by

the critical pressure parameter of the stiffened shell - increases, the dis-

creteness effect for I ring rises till the cutoff point is reached, when local

buckling becomes dominant for I ring. For 2 rings the discreteness effect is

at first smaller, but then rises beyond that for I ring, till the cutoff point

for 2 rings is reached. This increase in discreteness effect with number of

rings and ring strength continues till at 6 rings a maximum for this geometric

configuration is reached. Then the effect starts to decrease with increase in

number and strength of rings.

It should be noted that the largest discreteness effect does not occur

with one ring, as one would intuitively a3ssume, since local buckling becomes

dominant before the ring can attain a high stiffness that would result in an

appreciable discreteness effect, There are two opposing tendencies, one for the

discreteness effect to decrease with number of rings for a given basic shell,

and the other a postponement of the cut off point with number of rings. The
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result is a certain maximum for every shell geometry as shown in Fig. 6.

6.2. Lateral Pressure with Non-Uniform Rings.

In order to investigate the effect of discreteness of stiffeners for non-

uniform stiffeners, the buckling loads were computed for ring-stiffened

cylinders under lateral pressure with rings of varying cross-section. Results

of a "smeared" stiffener theory are available for sinusoldal height variation

of rings with rectangular cross-section C22]. For the "smeared" case, the

height of the rings d as a function of x can be written

d = d0 + dI sinox (10)

where d represents a constant pasrt and dI the amplitude of the varying portion

of the ring cross-section. For the corresponding discrete case the height of

th ILrings Is d I - I... (q-1) and the I ring Is at x, , The discretely

varying portion of the height of the ring, dI is chosen so that the mean

height I5 the same as for the "smeared" case and also that

d I -d sinx I
di - do  sin x.

In Table 7 the critical lateral pressures are given for three non-uniformly

stiffened shells with 3 rings. The pressure parameters for the non-uniform

and uniform discrete cases are compared with the corresponding "smeared"

theory values from [22]. it is seen that the difference between the uniform

and non-uniform cases is considerable in the discrete analysis. This does not
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invalidate the weight savings predicted by the "smeared" thec -y in [22J.

For, even in the 3-ring case, the gain in critical pressure predicted by

the "smeared" theory can be recovered, if a larger portion ot the height

Is varied than in [22]. The results, however, indicate that fo. shells

with few rings the optimal dimensions predicted by "smeared" theory may

have to be revised in view of the discreteness effects. Discrete theory

is therefore needed for a reliable analysis when one wishes to exploit

the advantages of non-uniform stiffening for shells with few rings.

6.3. Axial Compression

The critical load of unstiffened cylinders under axial compression is

a function of the wave parameter

(n2 2 + t2)2

and not of t and n independently. (This applies strictly only to "classical"

simple supports and to shells that buckle Into many waves in the axial direction).

Hence in many cases a ring-stiffened cylindrical shell underaxial compression

can buckle under the same load as a corresponding unstiffened cylinder, since

for n=q it buckles through the rings for some value of the wave parameter. This

"ineffectiveness" of rings disappears only for large a or large n - for shells

with small ring spacing. These shells, however, exhibit a very.small discreteness

effect ( see shells Nos. 4 to 8 in Table 8). As small ring spacing means low

effective Z, this is not surprising if one remembers that also for the case of
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hydrostatic pressure only very small discreteness effects were found for shells

of small Z.

In Table 8, eight typical ring-stiffened shells, chosen from the test data

of [23] and [24], are studied for discreteness effects. Shells Nos. I to 3

show a very small, but noticeable discreteness effects. The local buckling load

in these shells, for simple supports, would be slightly below the general in-

stability, which would mean that the results presented are beyond the cut-

off nont and therefore meaningless; but as in reality there is some restraint

at the boundaries of the sub-shells, the cut-off point is shifted and the

results are of value. For shells Nos. 4 to 8, the local buckling load is larger

than the general instability load, even for simple supports. The discreteness

effect is, however, negligible as already pointed out above.

The computations of Table 8 neglect the rotational restraint of the rings

("t2 = 0 is assumed). Calculations with the proper nt2 values are in progress.

It can, however, be expected that the conclusion - that the discreteness effect

is very small for genera! instability of ring-stiffened cylirders under axial

compression - will not be affected.
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7, CONCLUSIONS

The results of the calculations for cylindrical shells under hydro-

static or lateral pressure show that the discreteness effect depernds

very strongly on the geometry of the shell and the eccentricity of the

rings.

Though for most practical cases with many rings -the effect is not

important, one should be cautious when dealing with shells of high Z

and rings of low eccentricity. The "discrete" load may then be about

20% lower than the "smeared" one even for ten rings or more.

In ring-stiffened shells under axial compression the discreteness

effect is always very small.
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APPENDIX I.

REDUCTION IN ORDER AND SIMPLIFICATI(O OF STABILITY

DETERMINANTS.

th

Equations (9) consist of two infinite sets of equations. The n

approximation yields 2n equations and the corresponding stability

determinant consists of n2 blocks of 2 x 2. Denoling the blocks Aij we

have

q-1 2 mi q-I 2 mii

bml + E i s in  q Cml + E yi, sinml i=l q1 it q

q-I q-I 2 m 2 mi
bm2 + 2 sin

2 mi cm2 + E Y sin 2 + i i+ Cos

m2 i1 12 q M2 1 1 1i2  mq

and ... I - I

q-1 mii I nii q-1 mil nii
r Bi sin- sin E y sin -sin
1=1 q i q i=l q q

Amn =

m n q-I mffi I q-n
E 812 sin sin m-sin-

1= 2 q q i=l q q

miii ni+5 cos-cos--

+ mn Cos q q

I - 2

It is assumed that the rings are symmetrical with respect to the mid-length of the

cylinders. Hence R ii = R(q-i)l I Yi = (q-i)i etc,
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q-i mrI nr q- mIri ni
A sum of the form E a sinM-sin 2- or E *iCos -M- cos

=1q q q= q

is zero when m is odd and n is even, or vice versa. This can be shown

as follows:

(q-i) sin mr(q-i) sin nw(q-i)

a i  sin (mw - m I l) sin (nw - ni- l)
q q

- sin m--L sin n i ... 3

I q q

since for odd m

sin (mx- Mw)= sin mw'q q

and for even n

sin (nw - n i) = sin niri
q q

The ith term in the sum therefore cancels the (q-i)th term. Hence all the

blocks Amn for which m is odd and n Is even, or m is even and n is odd,

vanish. The stability determinant reduces therefore to two subdeterminants, the

first containing the odd n's and second the even n's.

This reduction of the stability determinant applies to the most general

case. In some particular cases there are further possible subdivisions.

The first case is that of rings with zero torsional stiffenoss.
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Rings of Zero Torsional Stiffness

q-l m i n i
Here 6imn = 0 and there are no sums of the type E ' cos - -C

i=lq q

q-1 mii nin
The remaining sums, of the type Z O. sin - sin L are zero

i=l I q q

when m or n are equal to a multiple of q. This means that the equations

numbered q, 2q, 3q,,, separate and the correspording buckling load can be

calculated separately.

The physical reason is immediately apparent. These particular modE-

of buckling are the modes of local buckling, and when the rings have zero

torsional stiffness local buckling is the same as buckling of the unstiffened

shell (a problem that has a closed form solution). Other subdivisions are

possible when all the rings are equal.

Equal Rings of Zero Torsional Stiffness

q-1 mil nin
When all the rings are equal the sums of the type E a sin - sin -

i l q q

q-1 i n
become a E sin - sin - . The sum

i=I q q

q-1 mi ni4
S = Z sin - sin nw 4mnq i=l q q

vanishes if neither m + n or m - n are multiples of 2q or if both are.

This may be shown as follows:

q- mi nln I q-I (m-n)lw (m+n) 
Z sin -sin - = - E C cos cos ] ... 1-5

i=l q q 2 i= q q
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Now if(m - n)is a multiple of 2q

q-I (m-n)r i
E cos q 6
I:1 q

and the first set of terms of the sum equals jL

lf(m + n is a multiple of 2q

Cos (m+n)i i 7(11 (o m n i'- ... I - 7
i~ C0----- -

and the second set of terms of the sudi equals - Hence when both (-n)

and(m + n)are multiples of 2q,

S 0 ... I

mnq

To consider the case wncti ,:either m + n nor m- n are multiples of 2q,

denote (m-n) = r and (l+n) = s. Th.in

jrii - .i YUL
q-l (m-n)ir q-I rir I q-I q q
E Cos Cos = (C + e
=l q i=l q i=l

. -9

where , denotes here j = - I

Since all the blocks Amn for which m is odd and n is even, or m is even and

n is odd, vanish in the general case, only even values of r and s need be con-

sidered here.
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Now

Law 4.2- )

q-1 irlir q-
a q I for fornr ...nr

q-I emn i

E eo q- I 2

q-q

Eq Co (m-n)iw 12tsi

q q

Intheforemne

qm--i -mni qm-1i = - 1
Enn CosC - ] o o vns11

la l q q

and the subdeterminants are further simplkfied.
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APPENDIX II

COMPARISON OF "SMEARED" AND "DISCRETE" SOLUTIONS.

To compare the "discrete" and "smeared" solutions one first has to

clarify what are the corresponding cases.

The equivalence is defined here by taking the ring spacing as

a = L
q

The ring parameters p2 1 X21 2' no2 as defined for the "smeared"
I I

case contain I . In the "discrete" theory 1 is replaced in the parameter
I

by . Hence

P2d . qR
U2s L -

where the subscript s refers to parameters as defined in the "smeared" theory

and the subscript d to those defined in the "discrete" theory,

The "smeared" solution is in a closed form whereas in the "discrete"

theory the solution is the limit of a series.

It can be shown that the first term, the first approximation, of the

"discrete" solution is equal to the "smeared" solution, for the case of

equal rings. If one compares Eq. (12) of Ref. [3] with Eq. (4) of t;,is

report, and solves tase equations by the Galerkin method (choosing u, v, w as

in Eq.(5)) one sees that the terms corresponding to shell itself are equal.

For the rings,there are in the "smeared" case terms of the type

L/R
S(m,n) = P2s f sin nex sin m~x dx = P2s(2-) 6mn ... II - 2

0

where 6 is thu Kronecker delta.mn
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The corresponding term for the "discrete" solution is

L/R q-I
Dn,n) = [ E p2d; 6(x-x.)i sin nx sin mBx]dx

q-I
U 2a. s n n~x, sin mBx .. II 3

i=l

Now for equat rings V2di = V2d and therefore

q-i m. m i 2dq
D(m,m) = U 2d r sn -q sin q- ... lI-4

Hence, after substiTution tr,m Eq. ( i-i)

D(m,m) - S(m,m) ... II -52h

This means that the diagonal terms in the "discrete" stability determinant

are equai to those of the "smeared" cr .. On account of the Kronecker delta

in Eq. (11-2) one can conclude that the first approximation of the "discrete"

case is equai to the "smearea" soiution for any number of rings and any n.

I
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APPENDIX III

CONVERGENCE OF THE SOLUTION

In the "smeared" case the solution is in a closed for, whereas in the

"discrete" case there is a series which converges to the solution,

For the interesting casF,, when there is a considerable difference

between the "smeared" and discrete solutions, the convergence is slow. This

is to be expected since rapid convergence means that the shape of the deflection

is close to a simple sine curve, or to a combination of the first harmonics.

When the effect of discreteness is appreciable the deflection shape is usually

different from a simple sine curve.

Fortunately, however, the series for one ring, though it converges slowly,

can be extrapolated easily. As can be seen from Fig. 8 , a semi-logaritmic

plot of the difference between successive approximations approaches a straight

line asymptotically. This means that the difference can be represented by a

geometric series. Thus if. we know three approximations, for example A i, A i+1

X.+2, we can estimate ihe limit

(Al -A)iI

S+I-Ai+2

i - X i+I

When the shell has more than one ring, this is not true anymore and in the
th

numerical work the 10 approximation was then usually considered adequate. This

rather arbitrary decision was based on the results obtained for one ring where the

difference between A lo and X was usually less than 2-3%, except for large L/R

values for which the difference was up to 5%.
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TABLE I.

LOCAL BUCKLING OF TYPICAL RING STIFFENED SHELLS

A2/ah = 0.5 12 2/ah
3 = 5 e2  =

local buckling Number of rings
R/h L/R X smeared for one ring required for general

instability to pre-
dominate

50 0.5 644.9 428.9 2

1.0 644.9 173.2 5

1.5 644.9 108.7 7

100 0.5 1303 533.8 3

1.0 1288 229.9 7

2.0 1281 107.4 14

250 0.5 3228 755.7 5

1.0 3224 345.9 10

500 0.5 6398 1013 8

1.0 6398 477.2 16

2.0 4660 231.7 26

1000 0.5 12860 1381 II

1.0 12180 661.1 22

2.0 6881 323.8 29

2000 0.5 25590 1903 16

1.0 18520 924.0 26

2.0 9957 454.9 33

* Torsional stiffness of rings is neglected.
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TABLE 2

INFLUENCE OF SHELL GEOMETRY ON DISCRETENESS EFFECT

A2/ah = 0.1 12 2/ah3 = 0.01 e2/h =

R/h L/R Z A smeared X discrete t Ax %

100 0.25 5.96 618.97 617.28 II 0.27

0.5 23.85 324.44 315.76 10 2.68

0.75 53.66 223.64 216.48 8 3.17

1.0 95.39 172.76 163.24 7 4.92

1.25 149.0 140.08 129.73 7 7.40

214.6 117.20 108.80 6 7.16

1.75 292.1 101.68 92.03 6 9.50

2.0 381.6 91.90 81.10 6 11.75

2.25 482 " 79.51 71.25 5 10.4

2.50 596.3 71.78 62.52 5 12.9

2.75 721.4 66.75 56.82 5 14.5

3.0 858.5 63.35 52.75 5 16.7

500 0.25 29.8 1457.7 1417.5 21 2.76

0.5 119.2 771.4 722.4 16 6.35

0.75 268.3 525.3 481.7 13 8.30

1.0 477.0 402.1 353.9 13 12.0

1.25 745.2 323.4 278.1 II !3.9

1.5 1073 272.5 228.3 10 16.2

1.75 1461 231.8 189.8 9 18.2

2.0 1908 204.4 163.4 9 20.0

2.25 2415 181.3 141.2 8 22.1

2.75 3607 148.6 14.7 7 22.8

3.0 4293 136.8 102.5 7 25.1
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TABLE 2. (CONT'D)

INFLUENCE OF SHELL GEOMETRY ON DISCRETENESS EFFECT

3
A2/ah = 0.1 12 2 /ah = 0.01 e2/h = I

R/h L/R Z A smeared A discrete A

1000 0.25 59.6 2125.2 2036.6 26 4.17

0.5 238.5

0.75 536.6 753.60 664.6 16 11.8

1.0 953.9

1.25 1490 461.48 373.7 13 19.05

1,5 2146 385.87 303.8 12 21.3

1.75 2921 332.16 261.5 I 21.2

2.0 3816 288.95 218.8 10 24.3

2.25 4829 259.24 193.3 10 25.4

2.5 5963 231.90 170.0 9 26.5

2.75 7214 214.73 155.6 9 27.5

3.0 8585 193.66 144.6 8 25.3

* Extrapolation to infinite order approximation.
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TABLE 3

INFLUENCE OF RING AREA ON DISCRETENESS EFFECT

L/R =3 R/h = 250

e2/h A2/ah 12 2/ah
3  t A discrete* A smeared AX%

1 0.01 0.001 6 58.33 58.62 0.5

0.03 0.003 6 64.20 67.68 5.1

0.05 0.005 6 68.10 76.45 10.9

0.06 0.006 6 69.60 80.72 13.7

0.08 0.008 6 72.70 89.08 18.5

0.10 0.010 6 76.00 97.17 21.8

0.12 0.012 6 78.30 105.02 26.4

-1 0.01 0.001 6 57.17 57.79 0.7

0.03 0.003 6 61.20 65.25 6.2

0.05 0.005 6 64.05 72.47 11.6

0.06 0.006 6 65.30 76.00 14.0

0.08 0.008 6 67.25 82.89 13.9

0.10 0.010 6 68.90 89.56 23.1

0.12 0.012 6 70.20 96.05 26.8

0.14 0.014 6 71.40 102.34 30.1

* Extrapolation to infinite approximation
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TABLE 4

EFFECT OF RING PARAMETERS - ECCENTRICiIY OF RINGS.

LIR = I R/h = 500

e2/h A2/ah 122/ah 
3  X eared A discrete* tX %

-I 0,01 0,00! 252.45 251.56 12 0M35

0.03 0.003 279.11 269.15 12 3,55

0.05 0.005 307.71 284.50 12 7,50

0.07 0.007 335,40 296.60 12 10,7

0.085 0.0085 355.6n 303.80 12 14.5

0.10 0,010 373.70 310.10 12 17,0

0.12 0.012 394.50 317.40 12 19,5

0.14 0.014 4.4.70 324.20 12 2!o5

0.16 0,016 434.20 328.80 12 240

0.18 0o.0i8 453.30 334.00 12 26.2

-2 0,005 0.0005 263,96 261.60 12 0.89

0.010 0.001 293.30 284.90 12 2,86

0.015 0.0015 322.,31 304,78 12 5,45

0.020 0,002 351,I0 322.!o 12 8.29

0.025 0.0025 378.76 337.27 12 (1,9

0.030 0,003 a02,0l 350.45 12 12,8

0.035 0.0035 425.04 362.40 12 14,75

0040 0.004 447.87 373.00 12 i6,,

0.045 0.0045 470.5n 381.90 12 18,8

-3 0.001 0.0001 Z47 63 247.25 13 0,15

0.003 0.0003 274,87 271.o0 12 1O05

0.006 0.0006 3 4,32 303.70 12 3,40

0o010 0.0010 367,12 340 05 12 7.36

0.012 0.0012 390,74 355.85 12 8-94
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TABLE 4 (Cont'd)

EFFECT OF RING PARAMETERS - ECCENTRICITY OF RINGS

L/R = I R/h =500

22a3 *

e2/h A222  /ah 3 X smeared A discrete t AX%

-3 0.015 0.0015 423.14 377.55 12 10.8)

0.018 0.0018 455.36 396.40 12 12.95

-4 0.001 0.0001 258.25 257.42 12 0.32

0.003 0.0003 305.86 298.76 12 2.32

0.005 0.0005 353.29 334.88 12 5.20

0.007 0.0007 397.01 366.37 12 7.97

0.009 0.0009 436.02 394.08 12 9.60

-10 0.0002 0.00002 264.52 263.65 12 0.33

0.0004 0.00004 294.65 291.21 12 1.16

0.0006 0.00006 324.77 317.18 12 2,32

0.0008 0.00008 354.87 341.63 12 3.63

0.0010 0.00010 384.66 364.42 12 5.27

0.0012 0.00012 409.70 385.60 12 5.65

0.0014 0.00014 434.74 407.20 12 6.35

0.0016 0.00016 459.76 426.60 12 7.20

' Extrapolation to infinite approximation.
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TABLE 5

!NFLUENCE OF THE NUMBER OF RINGS ON DISCRETENESS EFFECT FOR DIFFERENT L/R

AND R/h

e2 A - A2 /ah = U.15 12 2 / h3 = 0.015

R/h L/R Z Number of t X smeared A discrete AA%
Rings

500 0.5 119.2 I 16 842.92 692.22 17.9

2 16 743.38 11.8

3 16 781.16 7.34

4 16 806.99 4.27

5 15 821.45 2.55

6 15 828.69 1.69

7 15 832.97 1.18

8 15 835.64 0.86

9 15 837.38 0.66

10 15 838.56 0.52

II 15 839.41 0.42

12 I5 840.04 0.34

13 15 840.56 0.30

14 15 840.86 0.25

15 15 841.15 0.21

500 I 477.0 I 12 424.5 330.8 22,1

2 12 351.6 17.2

3 12 367.6 13.4

4 I 380.5 10.4

5 If 389.2 8.34

6 H 396.9 6.52

7 I 403.2 5.03

8 I 408.3 3.81

9 I1 412.1 2.93

10 I 414.9 2.27

II I 417.0 1.77
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TABLE 5 (Cont'd)

INFLUENCE OF THE NUMBER OF RINGS ON DISCTETENESS EFFECT FOR DIFFERENT L/R

AND R/h

e2/h -I A2/ah = 0.15 122/ah 
3  0.015

R/h L/R Z Number of t A smeared X discrete AA%
Rings

500 I 477.0 12 11 424.5 418.52 l.A2

13 11 419.67 1.14

14 11 420.53 0.95

15 11 421.20 0.78

500 2 1908 I 9 213.17 i65.73 22.2

2 8 170.11 20.2

3 8 174.37 18.2

4 8 178.51 16.1

5 8 182.37 14.4

6 8 185.71 12.9

7 8 188.61 1i.5
8 8 191.18 10.3

9 8 193.50 9.23

10 8 195.66 8.20

Il 8 197.67 7.28

12 8 199.56 6.38

13 8 201.29 5.57

14 8 202.85 4.85

15 8 204.25 4.18

100 I 95.39 I 8 188.41 156.80 15.85

2 7 171.22 9.10

3 7 178.17 5.45

4 7 182.38 3.20

5 7 184.67 1.99
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TABLE 5 (Cont'd)

INFLUENCE OF THE NUMBER OF RINGS ON DISCRETENESS EFFECT FOR DIFFERENT L/R

AND R/h

3/h =-I A2/ah = 0.15 122/ah = 0.015

R/h L/R Z Number o' A smeared A discrete AX%

Rinqs

100 I 95.39 6 7 188.dI 185.93 1.31

7 7 186.67 0.92

8 7 187.12 0.68

9 7 187.42 0.52

I0

I 7 187.77 0.33

12 7 187.88 0.28

13 7 187.96 0.24

14 7 188.03 0.20

2000 1 1908 I 17 852.69 652.78 23.5

2 17 670.08 21.4

3 17 690.07 19.1

4 17 709.45 16.8

5 17 727.51 14.7

6 16 742.82 12.9

7 16 754.46 11.5

8 16 764.72 10.3

9 16 774.01 9.20

10 16 782.62 8.23

I 16 790.70 7.28

12 16 798.73 6.42

13 16 805.15 5.49

14 16 811.42 4.84

15 16 816.98 4.18

Tenth order approximation
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TABLE 6

INFLUENCE OF NUMBER OF RINGS ON THE DISCRETENESS EFFECT BETWEEN CUT-OFF LINES

FOR RINGS OF VARYING STRENGTH.

L/R = I R/h = 500 e2/h = -2
*

Number of A2/ah 122/ah t A smeared A discrete AX%
Rings

1 0.003 0.00225 12 255.13 254.22 0.36

0.018 0.01350 12 357.4 331.1 7.36

0.039 0.02925 12 475.5 400.5 15.7

2 0.042 0.03375 I1 491.6 435.7 11.4

0.060 0.04500 ! 586.7 486.1 17.1

0.096 0.07200 I 736.1 563.0 23.5

3 0.099 0.07425 I 748.0 611.1 18.7

0.120 0.09000 I1 830.2 655.1 21.1

0.168 0.12600 10 1007 733.7 27.1

4 0,171 0.12825 10 1016 784.4 22.8

0.210 0.15750 10 1123 843.0 25.0

0.280 0.21000 10 1303 930.2 28.6

5 0.288 0.21600 10 1323 1010 23.6

0.360 0.27000 10 1492 1097 26,4

0.416 0.31200 10 1615 1155 28.5

6 0.432 0.32400 9 1650 1252 24.1

0.512 0.38400 9 1806 1326 26.8

0.608 0.45600 9 1943 1406 27.6

7 0.624 0.46800 9 1965 1525 22.4

0.800 0.60000 9 2189 1671 23.7

0.896 0.67200 9 2300 1741 24.3

8 0.9!2 0.68400 9 2318 1889 18.5

tenth order approximation
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TABLE 7

COMPARISON BETWEEN DISCRETE AND "SMEARED" NON-UNIFORM 3-RING

STIFFENED CYLINDERSZ UNDER LATERAL PRESSURE

R/h = 500 L/R = I e2/h = 2

3A2/ah 122/ah A smearsi A discrete smeared discrete smeared discretenon- ** non- &A% AX
uniform uniform

0.08 C.06 758.1 727.7 967.1 767.4 27.6 5.41

0.10 0.0667 854.7 809.8 1109 858.1 29.8 5.96

0.12 0.08 948.4 896.2 1246 943.9 31.4 5.85

* The non-uniformity is a sinusoidal height variation of rings of rectangular

cross-section.

m Half the cross-sectional area of the rings is constant and half varies sinusoidally.
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TABLE 9

CONVERGENCE OF THE APPROXIMATIONS FOR "DISCRETE" BUCKLING LOADS

A2/ah = 0I e2/h I. 122/ah = 0.01

L/R R/h No. n AX

250 3 1 97.173
5.079

2 1-3 92.094
2.413

3 1-5 89.681

I .635

4 1-7 87.856

I 527
5 1-9 86.329

I .321

6 I-I1 85.008
1.158

7 1-13 83.850
I1.018

8 1-15 82.832

0.889

9 1-17 81.943

0.776
I0 1-19 81.167

100 0.5 I 1 324.436
4.599

2 1-3 319.837
I .493

3 1-5 3!8.345
0.771I

4 !-7 317,574

0.471
5 1-9 37.103

0.316
6 I-1I 316.757

0.226
7 1-13 3'6.561

0.170
8 1-15 316,391

0.133
9 i-il 316.258

0.106
10 I-:9 316.152
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