

Research and Development Technical Report ECOM-01604-F

FOR

SHELTER, ELECTRICAL EQUIPMENT S-250 (XE-2)/G

FINAL REPORT

ΒY

- 6 1301 DEC В

AD

ERNEST DI PAOLO

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

UNITED STATES ARMY ELECTRONICS COMMAND . FORT MONMOUTH, N.J.

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

ACCESSION	for
CFSTI	WHITE SECTION C
100	BUFF SECTION 🔲
· AMOUNC	
SHEIGST	ON
≥y di#tr:80 dist.	ION/AVAILABILITY CODES AVAIL, and/or SPECIAL

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

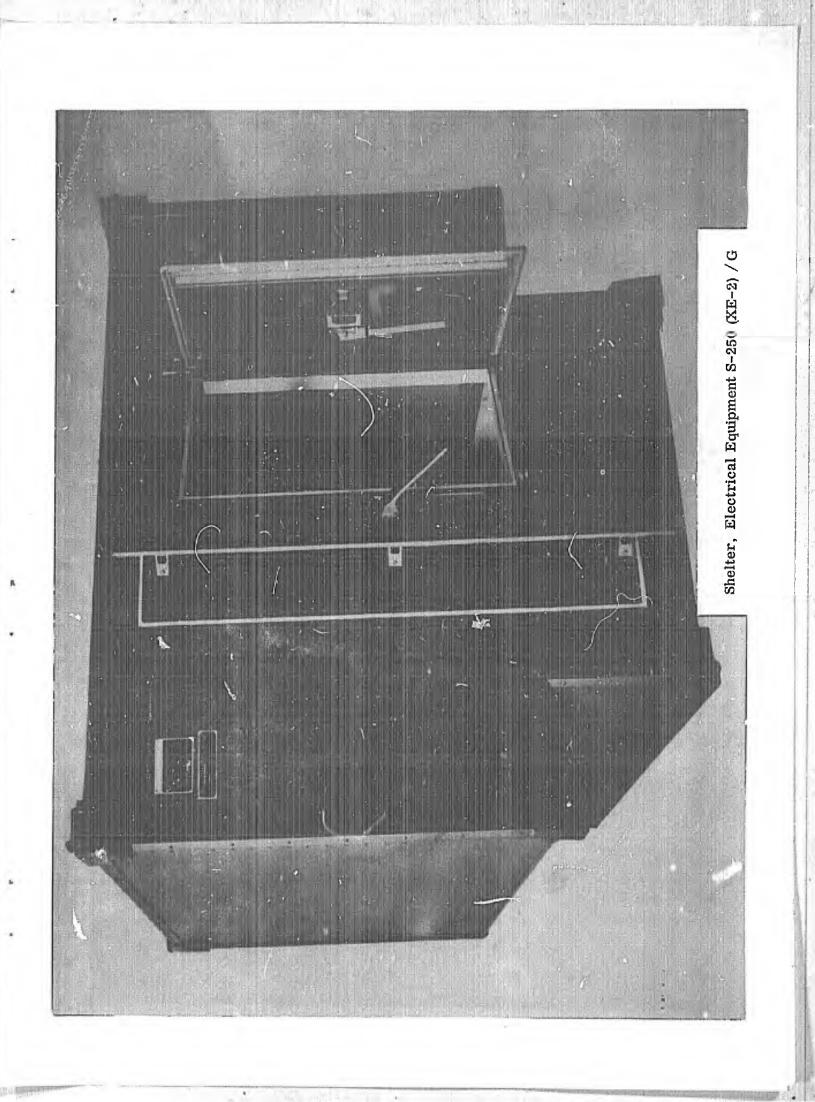
2

ł

AD

FOR

SHELTER, ELECTRICAL EQUIPMENT S-250 (XE-2)/G


FINAL REPORT NOVEMBER 1967

ΒY

ERNEST DI PAOLO

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

UNITED STATES ARMY ELECTRONICS COMMAND · FORT MONMOUTH, N.J.

TABLE OF CONTENTS

			Page
1.	PURPO	DSE	1
1	1.1	CRAIG DESIGN EFFOR I	1
	1.2	PREPARATION OF CRAIG MANUFACTURING DRAWINGS	2
n series Alternation Martin Constant Martin Constant Alternation	1.3	FABRICATION OF ADVANCE DEVELOPMENT MODEL NO. 1	2
	1.4	PREPARATION AND SUBMISSION OF RUNNING SET OF DRAWINGS	2
на ^{на} 1. 1.1	1.5	TESTING OF ADVANCE DEVELOPMENT MODEL NO. 1	2
	1.6	FABRICATION OF TWELVE EACH ADVANCE DEVELOPMENT MODEL NO. 2	4
	1.7	FABRICATION OF FOUR EACH PROCUREMENT MODELS	4
	1.8	SUBMISSION OF FINAL SET OF DRAWINGS	4
2.	ABSTR	RACT	4 [·]
3.	REPO	RTS	6
4.	FACT	UAL DATA	110
5.	CONC	LUSIONS	110
6.	RECO	MMENDATIONS	110
7.	IDENT	TIFICATION OF KEY PERSONNEL	111

FIGURES

FIGURE 1-1 S-250(XE-2)/G

A-

1. <u>Purpose</u> - The purpose or aim of this contract was to design, develop, and environmentally test a new shelter employing lightweight construction and having RFI capability of 60 db attenuation in the frequency range from 150 KC to 10,000 MC, capable of being transported by the newly developed 1-1/4 ton M-561, M-715 and XM-705 vehicles. Additionally, Government format manufacturing drawings were to be prepared and used for the fabrication of procurement models of the S-250(XE-2)/G Shelter.

The tasks, as originally contemplated, were as follows:

- a. Craig design effort (layout and initial design).
- b. Preparation of Craig manufacturing drawings for one Advance Development Model
- c. Fabrication of Advance Development Model No. 1.
- d. Preparation and submission of running set of drawings.
- e. Testing of Advance Development Model No. 1.
- f. Fabrication of twelve each Advance Development Models (No. 2).
- g. Fabrication of four each Procurement Models.
- h. Submission of final set of drawings.

1.1 Craig Design Effort - The initial Craig design effort began on June 30, 1965, calling for a release to manufacturing by July 20, 1965. The design parameters for the S-250(XE-2)/G were contained in Specification SCL-4608A. The design parameters were similar to those contained in SCL 4608 which was the criteria document from which Craig originally designed the S-250 Shelter on Contract No. DA-36-039-AMC-03749(E) in 1963. That shelter utilized a foamed-in-place construction for the core material. Specification SCL-4608A contained three critical design areas. These areas were:

a. Weight of 600 lbs. maximum.

b. RFI Shielding requirement of 60 db attenuation with no protrusions inside the shelter.

c. The use of slab polyurethane foam in lieu of foamed-in-place.

1.2 <u>Preparation of Craig Manufacturing Drawings</u> - The Craig design effort employed many of the features developed under Contract No. DA-36-039-AMC-03749(E), thereby aiding the timely release of drawings for the fabrication of Advance Development Model No. 1.

1.3 Fabrication of Advance Development Model No. 1 - On July 21, 1965, Craig submitted a list of hard-to-obtain material items for which approval to procure was requested from the Contracting Officer. This was approved via telegram on August 25, 1965, and the fabrication of the Advance Development Model No. 1 began, calling for the shelter to be ready for testing on October 8, 1965, with the testing to be completed by November 8, 1965.

During this period of performance Modification No. I'to the contract was made calling for additional mounting provisions in the door end panel of the shelter.

1.4 <u>Preparation and Submission of Running Set of Drawings</u> - The Craig effort to prepare a running set of drawings began on August 24, 1965, calling for submission at the time that the Advance Development Model No. 1 Shelter was submitted for testing (October 8, 1965).

On September 16 and 17, 1965, representatives from Fort Monmouth visited Craig Systems for the purpose of reviewing progress for the running set of drawings. Due to an unanticipated delay, Craig indicated that only one-half of the drawings would be available on October 8 and the balance would be available on October 14 and 15. Actual shipment of the complete set of running drawings was accomplished on October 21, 1965.

1.5 Testing of Advance Development Model No. 1 - Actual testing of the Advance Development Model No. 1 began on October 9, 1965, and was completed on November 18, 1965. The unit was refurbished and ready for shipment on November 24, 1965.

On December 14, 1965, Craig was notified by the Contracting Officer's Technical Representative that the test results of the Advance Development Model No. 1 had been evaluated and that it had been determined that the test results did not sufficiently demonstrate compliance with the technical requirements in the following areas:

- a. Structural strength of the knee panels.
- b. Wall and floor insert test requirement.

- c. Dimensional tolerance
- d. Weight

As a result of these comments, Craig was informed that Advance Development Model No. 1 was not acceptable and that the unit be resubmitted for testing. This letter also indicated, for information only, that action was being initiated to incorporate three changes having to do with the thermal barriers, ability of the door to withstand additional static and dynamic requirements, and the requirement for flatness and squareness of panels. This letter also informed Craig that these three changes would be incorporated into the Advance Development Model No. 1 Shelter to be resubmitted for testing.

On January 11, 1966, Amendment No. 2 to Specification SCL 4608A was received by Craig Systems. This specification change increased the allowable weight from 600 to 650 lbs. and incorporated the three anticipated changes mentioned above.

On January 21, 1966, Craig Systems submitted its response to the changes noted in Amendment No. 2 to SCL 4608A.

On January 26, 1966, a meeting was held at Fort Monmouth with representatives of Craig Systems, DCASR-Boston, and USAEC personnel to discuss the status of the contract and in particular, Craig's proposal of January 21, 1966. As a result of this meeting, Craig was requested to submit a proposal on or before 2 February 1966 encompassing the agreements reached during the meeting at Fort Monmouth on 26 January 1966.

As a result of the several meetings and negotiations, Modification No. 4 to the contract was issued. This modification modified the technical and delivery requirements of the contract and in summary, provided for the following:

> a. Acceptance by Fort Monmouth of Advance Development Model No. 1 as submitted.

b. Preparation of a new Advance Development Model containing all the changes previously discussed. The new Advance Development Model would be known as Item 2a. This unit would be subjected to a complete test program as had been conducted on Advance Development Model No. 1.

3

(BARBARAT & LEASTER BARRAR BARRAR AND AND A

The balance of 11 units of Item 2 would now be known as Advance Development Models and would not be subjected to a complete test program. The technical requirements were also modified as a result of the negotiations.

The delivery schedule was revised calling for the new Advance Development Model to be completely tested by 20 June 1966.

During the manufacture of this unit, a change in the wheel-well dimensions of the shelter was made and Modification No. 6 was issued revising the width of the shelter and increasing the allowable weight to 670 lbs. Since some of the panels were obsoleted as a result of this change it was necessary to fabricate additional parts and revise the delivery of the Advance Development Model to 25 September 1966.

The new Advance Development Model was subjected to testing beginning 20 July 1966 through August 31, 1966, with the COTR informing Craig that the Advance Development Model (2a) was acceptable and that authorization to begin fabrication of Item 2b was granted.

1.6 Fabrication of Twelve Each Advance Development Model (No. 2) -Based on Modification No. 4 to the Contract the twelve Advance Development Models were changed to two separate items, Item 2a-Advance Development Model (tested unit) and eleven each Advance Development Models. The fabrication of the eleven units known as Item 2b was authorized and the units were released to manufacturing to be manufactured in accordance with running set of drawings.

1.7 <u>Fabrication of Four Each Procurement Models</u> - Based on the acceptance of Item 2b, authorization was granted to fabricate the four procurement models which were fabricated in accordance with the running set of drawings. One of these four units was subjected to a limited testing program which proved satisfactory after a retest of the Drop Test portion of the testing program.

1.8 Submission of Final Set of Drawings - The final set of drawings were submitted on 30 June 1967, completing the Craig effort under Contract No. DA-28-043-AMC-01604(E).

2. <u>Abstract</u> - Electrical Equipment Shelter S-250(XE-2)/G is an aluminum lightweight shelter fabricated of aluminum outer and inner skins with polyurethane slab insulation bonded to the aluminum skin to form a sandwich panel approximately

nen el statistich den namer solar i se den seiter solar die die statistich solar

1-1/2" thick. Aluminum hat members within the panels provide mounting for equipment. The door is provided with a door within a door. The inner door provides a means of escape from the inside.

The S-250 Shelter weighs 670 lbs. and has a payload capacity of 1900 lbs. when transported by 1-1/4 ton vehicles.

The development of the S-250 Shelter was accomplished under Contract No. DA-28-043-AMC-01604(E) issued on 30 June 1965. Under this contract an Advance Development Model was designed and successfully tested. The configuration of this accepted unit was the basis for the preparation of a complete set of manufacturing drawings suitable for reprocurement. These drawings were further used for the actual fabrication of procurement models. The final set of drawings was submitted to USAEC on 30 June 1967.

The major accomplishments under this development contract were the successful design of a light weight, high strength-to-weight ratio, RF shielded shelter capable of withstanding worldwide environmental conditions. The S-250 Shelter was type classified STD "A" on 27 April 1966.

5

3. Reports - There follows herein Craig Test Report No. 010-B describing the testing and results of testing conducted on the Advance Development Model S-250(XE-2)/G Shelter, Contract Item 2a.

11、我们能到13-11。

b

*

9-1

.

ALC: NO

. . . . and any **R** care is a second and a second

LAWRENCE, MAR. QUALITY CONTROL DEPARTMENT

TEST REPORT NO. 010-B

Work Order 6010

INTRODUCTION

Testing of the 3-250 shelter at Craig Systems' facility began July 25, 1966 and was completed August 30, 1966. Testing was performed on a shelter produced under Item 2a of Contract DA-28-043-AMC-01604(E).

Witnessing either part of all of the tests were:

- 1. Joseph Roma, Preject Engineer, RAD Directorate, USARCOM
- 2. Ken Maloon, Prod. & Procurement Directorate, USAECOM, Shelter Branch
- 3. Walter Anderson, QAR-DCASE, Beston
- 4. Fred Christopher, GAR-DCAER, Bosten
- 5. Robert S. Smith, Director of Quality Control, Craig Systems Corporation
- 6. Richard M. Corsetti, Project Engineer, Craig Systems
- 7. Webster Brown, Test Engineer, Craig Systems

All applicable charts, graphs, and data sheets are attached to the individual test report that they cover. Included is an isdex of the individual tests.

TEST INDEX W.O. 6010

	t Report Number	
	010-B-1	-
	010-B-2	
	010-B-3	
	010-8-4	
	010-B-5	
	010-B-6	
	010-B-7	
	010-B-8 010-B-9	
	010-B-10	
	010-B-11	
	010-B-12	
	010-B-13	
	010-B-14	
ı tişi	010-B-15	
	010-B-16	
	010-B-17	
ų.	010-B-18	
	010-B#19	
	010-B-20	

Te

Test Name

Adhesion Shear Strength Test Water Absorption Test Cylinder Impact Test Tensile Test (Specimen Tests) Meisture Resistance Test Heat Transfer Test High Temperature Test Low Temperature Test Railrood Transport Sling Drop Skid Bearing Test Three-Point Support Flat & Rotational Drop Tests Towing Test Lifting Test Deep Fording Test Roof Test Door Test Lifting Ryes Test Towing Eyes Test

TEST INDEX W.O. 6010

Test	Report	Jumber
ing the second		

Test Name

01 0-B-2 1	Folding Steps Test
010-B-22	Wall Insert Test
010-B-23	Floor Insert Test
010-B-24	Lift and Tiedewn Assembly Test
010-B-25	Watertightness Test
010-B-26	Shielding Effectiveness Test

Page 1 of 2

LAWRENCE, MASS. QUALITY CONTROL DEPARTMENT

Test Report #010-B-1

1. TITLE: Adhesion Shear Strength Test 8-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 4, 1966

, PURPOSE: To test shelter design,

3. APPLICABLE SPECIFICATION: SCL-4608A, Amend. #2, dated Dec. 9, 1965

. REQUIREMENT: Specification Paragraph 4.1.1

A typical panel section, one (1) foot square shall be provided in order that the shear strength test can be performed. The test shall be performed by placing the panel section in a tensile testing machine with one of the aluminum skins attached to one (1) set of testing machine jaws and the other skin attached to the other set of jaws. The bonding area between the outer skin and the core material shall have a minimum shear strength of 10 psi. The test shall be to destruction, with the rate of application of load constant at one (1) inch per minute maximum. The plane of failure shall be entirely within the core material,

5. EQUIPMENT REQUIRED AND USED:

Craig Test Fixtures Dillon Dynamometer 0 to 5,000 pounds Model L, Serial No. AN3579 Date of Calibration - Aug. 1, 1966

6 TEST RESULTS:

Specimen Dimensions

Length - 12 inches Width - 12 inches Thickness - 1.5 inches Shear Area - 144 sq. in. Load at Failure - 1475 lbs. Shear Strength (psi) - 10.24

Page '2 of 2

QUALITY CONTROL DEPARTMENT

Test Report #010-B-1

7.

CONCLUSION: The specimen met the requirement of this test.

Reported by: W. J. Brown W.g. Brown Appreved: Quality Contr Engineerin

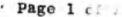
Systems, Inc.

Page 1 of 1

LAWRENCE, MASS. QUALITY CONTROL DEPARTMENT

Test Report #010-D-2

1. <u>TITLE</u>: Water Absorption Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01504(E) Performed July 28, 1966 through Aug. 2, 1966


- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amend. #2, dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: Specification Paragraph 4.1.2 A sample of core material one-foot square and three inches thick shall be weighed to within .01 pounds and then shall be subjected to 98% relative humidity for 120 heurs. At the completion of this test, the core material shall be rewaighed and shall not have gained more than 0.1 pounds of water.
- 5. <u>EQUIPMENT REQUIRED</u>: Craig Laboratory Humidity Chamber Dry and Wet Bulb Thermometers Scales: Harvard Trip balance by Ohaus Scale Corp. Calibrated 7/15/66

6. TEST RESULTS:

Date Exposure Started - 7/28/66, 8:20 a.m. Initial Specimen Weight - 240.5 grms Date Exposure Ended - 8/2/66 Final Specimen Weight - 284.0 grams Total Exposure (hours) - 120 Moisture Absorption - .096 lbs.

Attached are checks made on R.H. during the test. 7. CONCLUSIONS: The test specimen met the requirement of this test.

Reported by:	W. J. Brown ung Dawn
	Control R. S. Smills
Engineer	ing

QUALITY CONTROL DEPARTMENT

Test Report #010-B-3

- 1. <u>TITLE</u>: Cylinder Impact Test S-250(XK-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 10, 1966
- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amend. #2, dated Dec. 9, 1965
- 4. REQUIREMENT: (Specification Paragraph 4.1.3)
 - A 24-inch square specimen of both the wall and roof construction, having no support from internal structural member, shall be subjected to impact as follows: A 70-pound steel cylinder three inches in diameter and hemispherical at one end shall be dropped vertically 30 inches so that the hemispherical and of the weight strikes the center of the outer skin of the section on & horizontal plane. The specimen shall be supported along its four edges by a framework backed by concrete. The frame shall be made of four pieces of 2 inch by 4 inch mominal) lumber, rigidly bolted together to form a square 24 inches on a side (outside dimension), 4 inches (nominal) high, so that the frame rests on the 2 inch (Nominal) faces. The panel specimens shall have the four edge surfaces bound with skin material and shall be bolted to the frame with a minimum of two 1/4 inch diameter bolts per edge.
- 5. <u>EQUIPMENT</u>: Craig Test Frame Craig Test Structure (sling and instant release hook) Steel Cylinder (70 pounds including 3 in. dia. polished hemispherical nose piece)
- I, TEST RESULTS:

Weight of ram - 70 pounds Drep distance - 30 inches

Test Report #010-B-3

6. TEST RESULTS (Continued):

Inspection after test

Panel #1 (wall) Outer skin - no fracture Inner skin - ne defermation

Panel #2 (roof) No fracture No deformation

7. CONCLUSIONS: The specimens met the requirements of this test.

Reported by: W. J. Brown Mg. Brown Appreved by: Quality Control 10 Engineering:

Page 1 of 2

Test Report #010-B-4

- 1. <u>TITLE</u>: Tensile Test (Specimen Tests) S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 15, 1966
- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amend. #2, dated Dec. 9, 1965
- **REQUIREMENT:** (Specification Paragraph 4.1.4) If, in the construction of the shelter, bonding is employed to join skins to other skins, to structural members, or to thermal barriers, this test shall be performed. A sample lap joint consisting of two one-inch strips of aluminum (typical of those gauges used as skins), overlapped one-half inch shall be prepared, bonded together with the same bonding material, of the same proportions, as that employed in the construction of the shelter. This sample shall be tested in a tensile testing machine. The test shall be performed at an ambient temperature of $68^{\circ} \pm 2^{\circ}$ F. The adhesive shall have a minimum shear strength of the fullycured adhesive of 1400 psi.
- 5. EQUIPMENT REQUIRED:

1. Detroit Testing Machine Model PT Serial No. 1711 Date of Calibration - 7/11/66

QUALITY CONTROL DEPARTMENT

Test Report #010-B-4

TEST REBULTS :

6

Adhesive Identification: 1C30820/V 140 Curing Condition: Similar to panels Sample Description: As required Conditioning: 14 days at R.T.

Specimen No.	Failure	Libs .	Test Temp. F.
·i τής.	5		k
1	720		R.T. 75
2	850		**
3	800		**
4	800		11
5	850		17
5.g			
Ave, - 804			
PSI - 1608			

7. CONCLUSION:

The specimen met the requirements of this test.

Reported by: W. J.	
Approved by:	Brown
	0000
Quality Control	R.S. Smith
Engineering K	M Countri + -

Page 1 of 2

LAWRENCE, MASS. QUALITY CONTROL DEPARTMENT

Test Report #010-B-5

1. <u>TITLE</u>: Moisture Resistance Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed July 25, 1966 through August 6, 1966

- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amend. #2, dated Dec. 9, 1965 WIL-STD-170(Sig C) dated 12/20/54
- 4. REQUIREMENT: (Specification Paragraph 4.3.2.2)

Moisture Resistance -

- a. Dry at $130^{\circ} \pm 5^{\circ}$ F for 24 hours.
- b. Condition at 77° ± 5°F and 40 to 50 percent relative humidity for 24 hours.
- c. Subject to continuous cycling for five 48-hour cycles. Temperature, relative humidity, and period of time for each portion of the cycle shall conform to MIL-STD-170.
- d. After cycling has been completed, condition the equipment for 24 hrs. at 77°±5°F and 40 to 60 percent relative humidity. There shall be no visible evidence of damage or malfunction of doors latches
- evidence of damage or malfunction of doors, latches, 5. EQUIPMENT REQUIRED AND USED: and hinges at the completion of this test.

Craig Environmental Test Chamber #1774 (Front section only used. Rear section was partitioned and sealed off from the front section.) Bristol Controller Model TE-2T500FFF82-1A Calibration date 7/15/66.

5. PROCEDURE:

6

5.1	Moisture	Resid	tance
	MOAD GHAO	THE OWNER	0000

6.1.1 Condition the equipment for 24 hrs. at room ambient conditions.

6.1.2 Install the shelter in Test Chamber #1774 and subject it to five continuous 48 hour cycles. Temperature, relative humidity, and period of time for each portion of the cycle shall conform to MIL-STD-170.

6.1.3 After cycling has been completed, condition the equipment for 24 hours at room ambient conditions.

Page 2 of 2

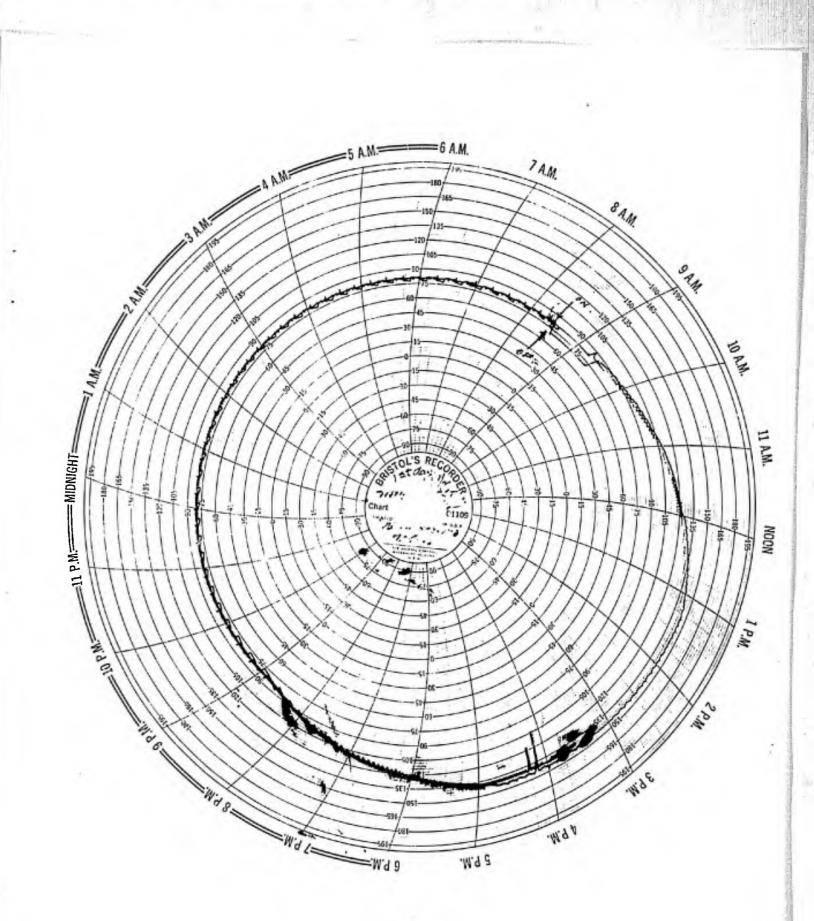
QUALITY CONTROL DEPARTMENT

Test Report No. 010-B-5

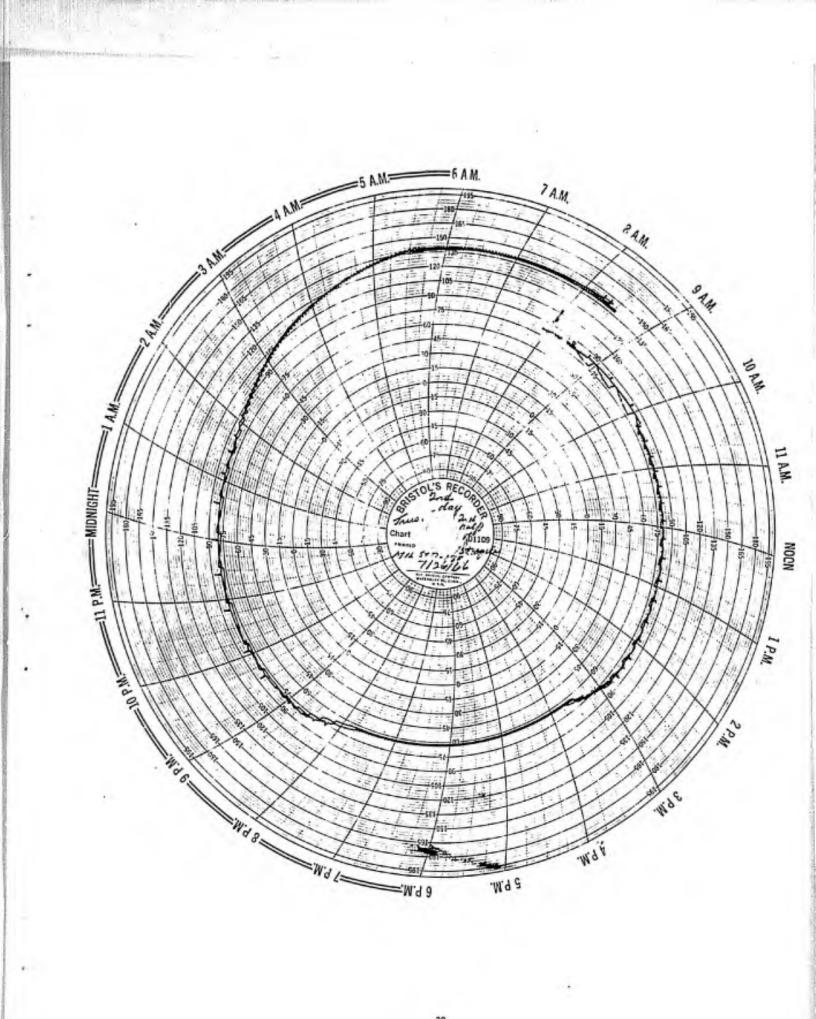
. TEST RESULTS:

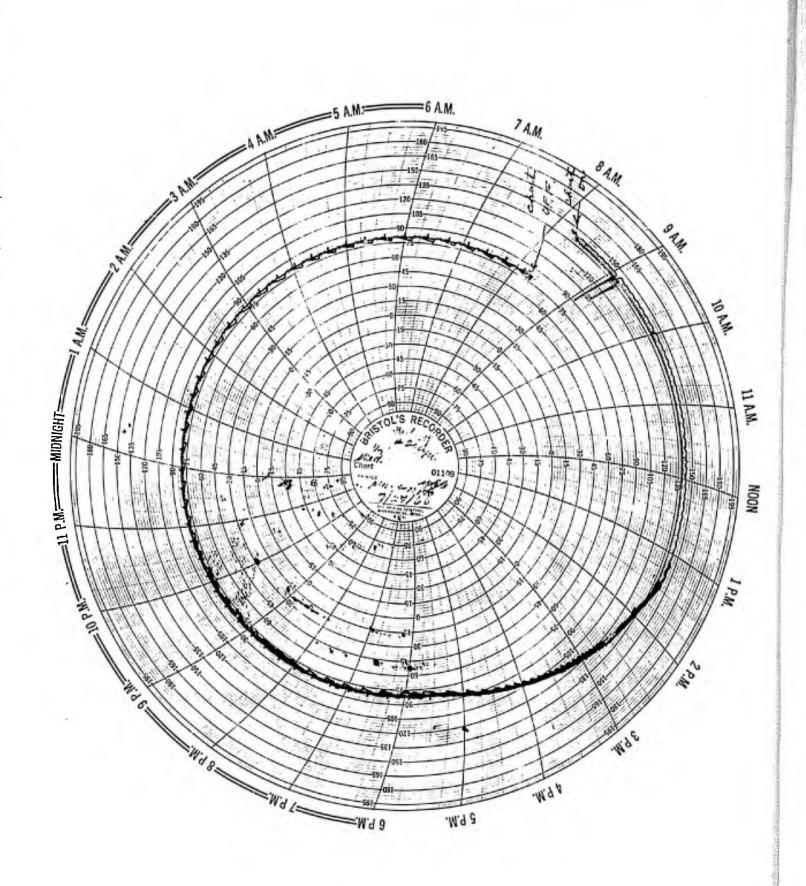
CONCLUSION :

8.

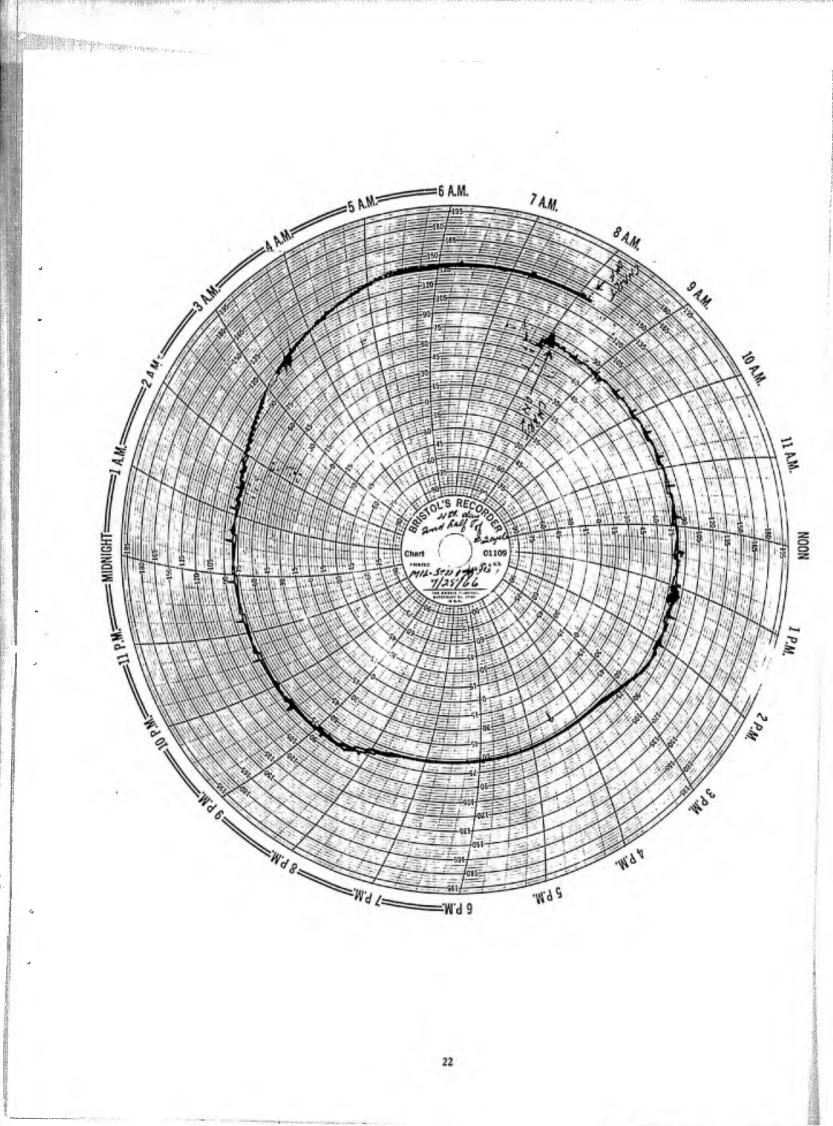

'Shelter doors were operated, panels were sounded and visual tests were made following each 48 hour cycle and at the end of the test.

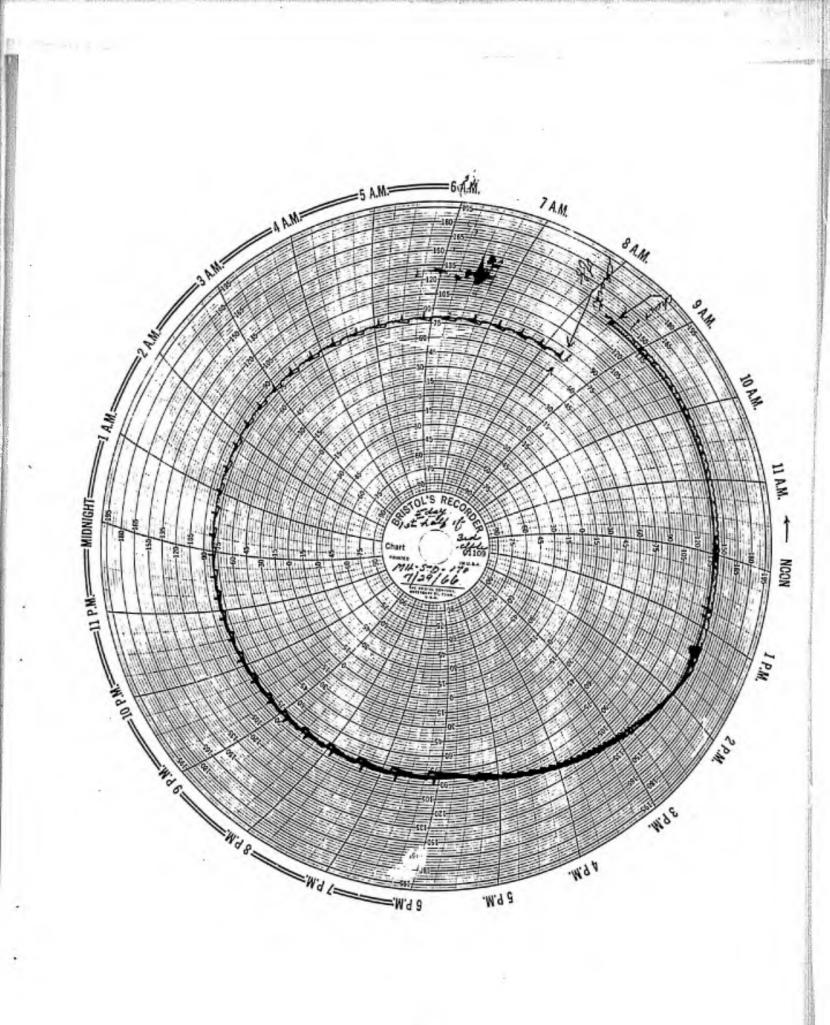
There was no evidence of damage to the shelter of malfunction of the doors, latches, hinges, hardware, etc.


The shelter met the requirements of this test.


Data sheets and charts #01109, as provided by the Bristol Controller Recording Equipment, are attached A time-log of operations, notes, etc. was also kept.

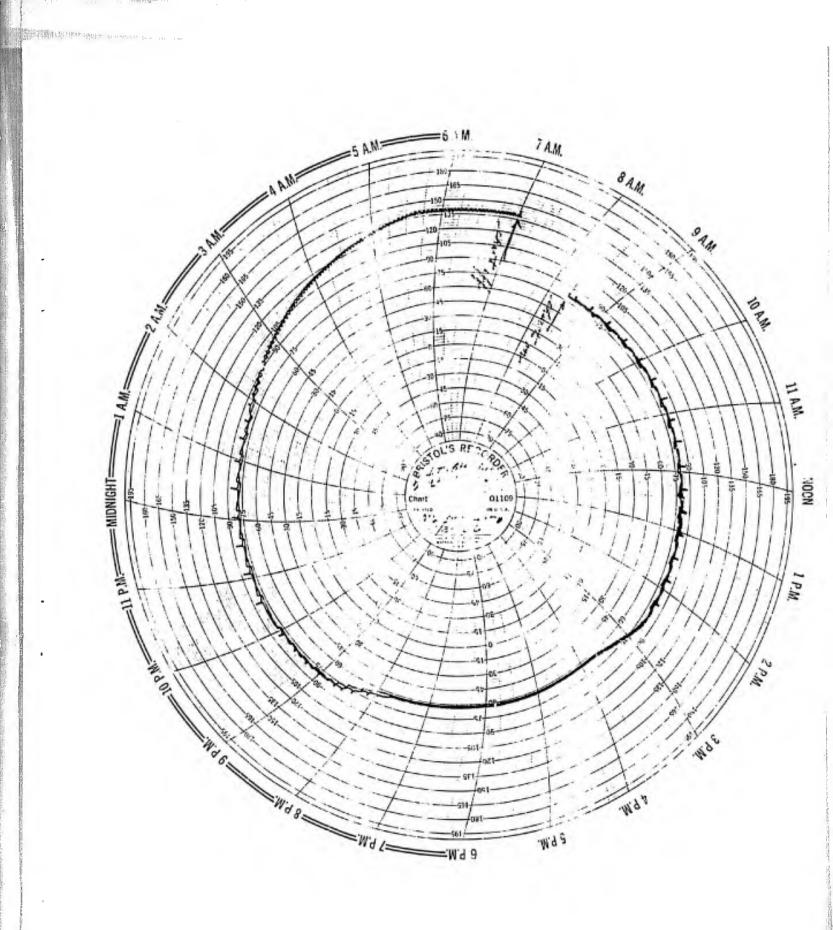
Reported by: W. J. Brown w.y. Brown Appreved by: Quality Control Engineering

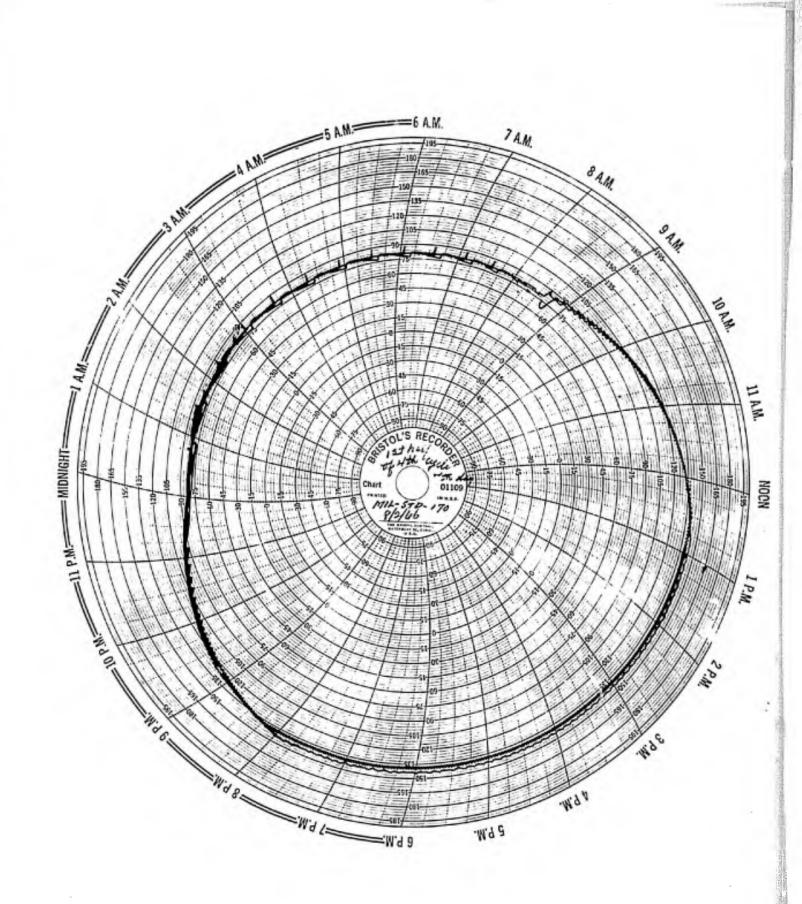

A REAL PROPERTY AND ADDRESS OF TAXABLE PARTY.

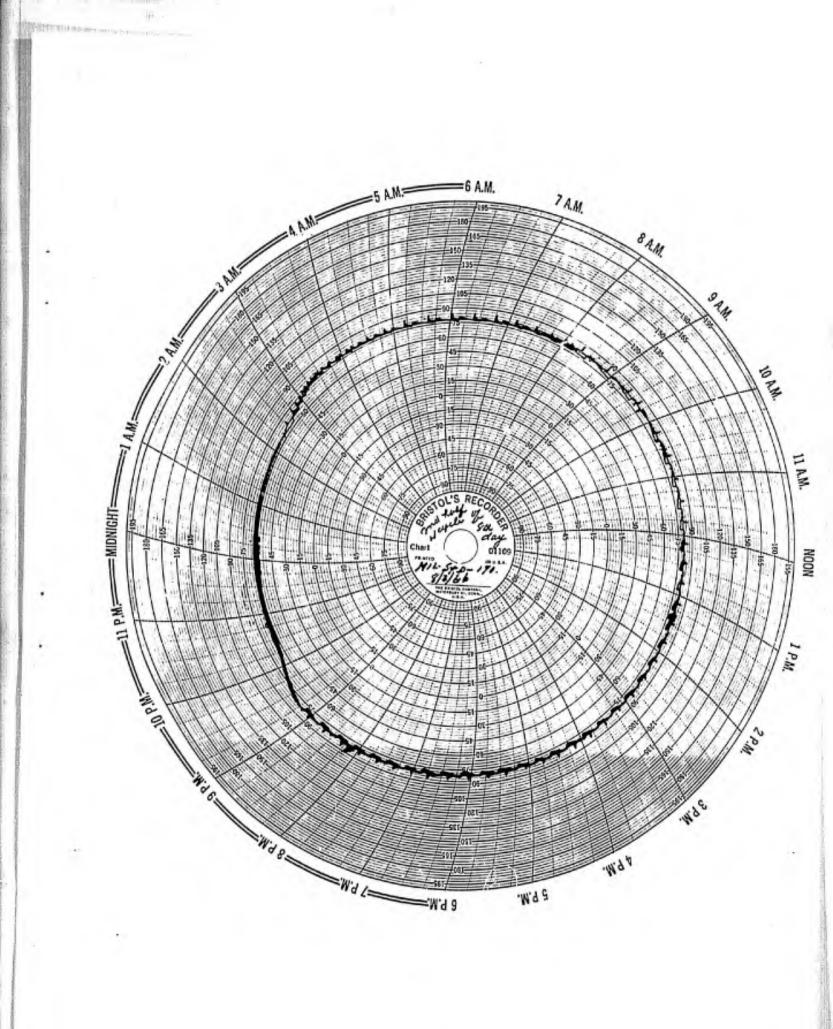


21

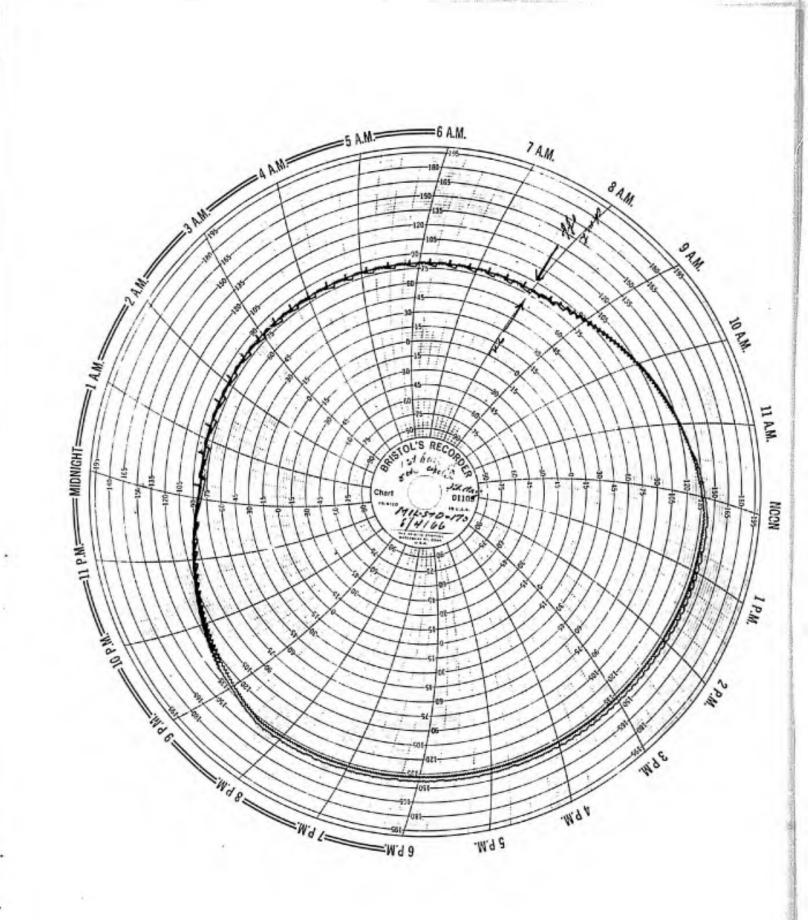
ALC: NO

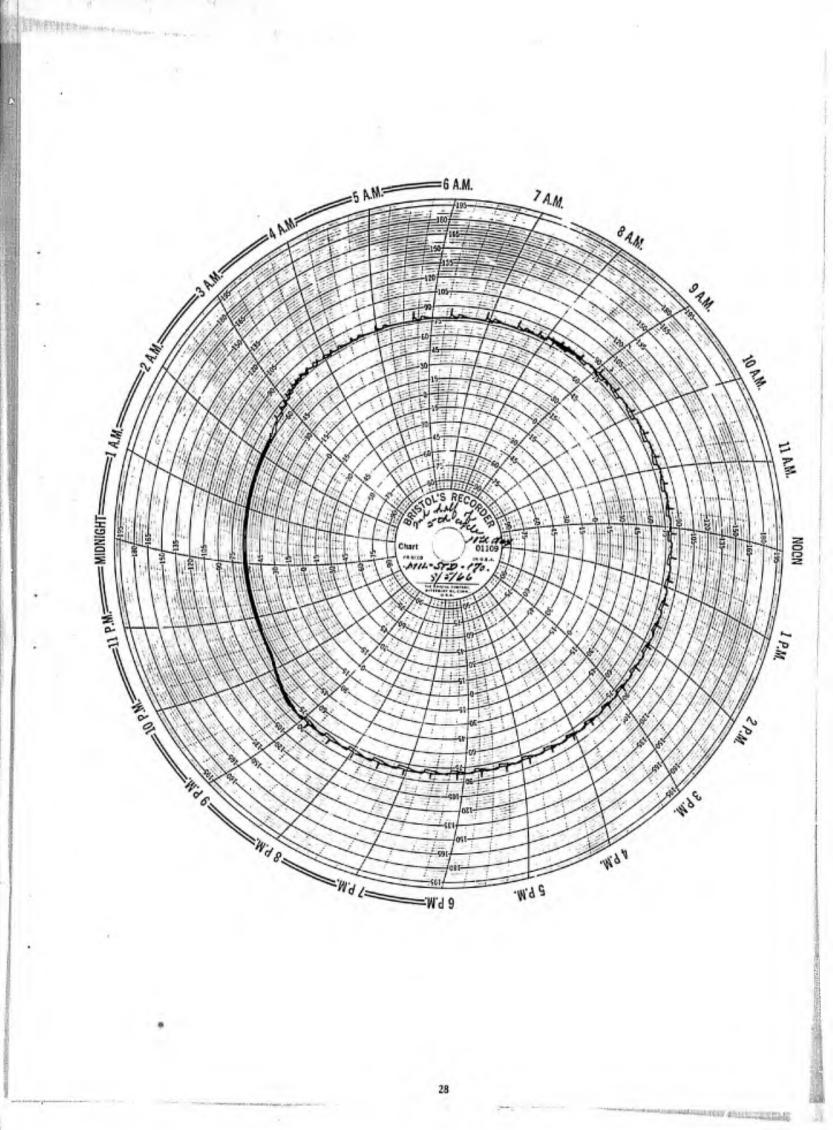



in and it is a first of the


States and a second second

J.




ļ.

中中的社会社会主义和社会社会的部分社会社会会会

No. of Concession, State

ATTACHMENT TEST REPORT #010-B-5

Environmental Test (Moisture Resistance)

Date	Time	Remarks
7 10 5		
7/25/	66 9 a.m.	Test started. (CO2 tank read 11,200#)
**	10	Distilled water bottle filled.
	10 a.m.	Dry bulb reading 94°F.
11	11.20	Wet bulb reading 93°F.
	11:30 a.m.	Dry bulb reading 118°F.
**	11:50 a.m.	Wet bulb reading 117°F.
It	12 p.m.	Heat #2 toggle switch put on.
11	12:45 p.m.	Dry bulb 126°F. Wet bulb 125°F.
**	2:10 p.m.	Dry bulb 138 ⁰ F. Wet bulb 136 ⁰ F. Dry bulb 146 ⁰ F. Wet bulb 143 ⁰ F.
11	3:15 p.m.	Dry bulb 145°F. Wet bulb 142°F.
**	4 p.m.	Dry bulb 146°F. Wet bulb 142°F.
11	4:30 p.m.	Auto. heat #1 and #2 switches off.
		made, meat wi and wi switches off.
7/26/	66 8:15 a.m.	Check showed chamber operated OK during night.
		(changed chart)
		Checked steam boiler (operating OK).
		Checked CO ₂ (vol. 10,200# pressure 295) - OK
11	9 z.m.	Dry bulb 83°F. Wet bulb 81°F.
**	10 a.m.	Dry bulb 82°F. Wet bulb 81°F.
11	12:30 p.m.	Dry bulb 82°F. Wet bulb 81°F.
11	3:40 p.m.	Dry bulb 64°F. Wet bulb 63°F.
11	4:20 p.m.	Auto. heat #1 put on.
**	4:25 p.m.	Dry bulb 64°F. Wet bulb 63°F.
7/27/6	6 8:05 a .m.	Night operation OK, changed chart and put auto. heat switch #2 on.
11	8:10 a.m.	Checked steam boiler, was OK.
11	8:25 a.m.	Checked CO ₂ (vol. 9400#) pressure 290 - OK.
**	8:30 a.m.	Dry bulb 144°F. Wet bulb 141°F
**	10:10 a.m.	Dry bulb 144°F. Wet bulb 141°F.
**	11 a .m.	Cramer Min. Meter Reading - 290.4
11	1:30 p.m.	Auto. heat switches #1 and #2 turned off
11	3:10 p.m.	Dry bulb 117°F. Wet bulb 114°F.
11	4:15 p.m.	Dry bulb 100°F. Wet bulb 98°F.
**	4:17 ^o p.m.	CO2 check OK; boiler check OK.
7/28/6	6 8:05 a.m.	Boiler check OK.
11	8:10 m.m.	CO2 check OK. (Vol. 8,000#. Pressure 295 - OK)
11	8:15 a.m.	Chart changed. (Test chamber operating OK)
**	8:30 a.m.	Cramer Min. Meter Reading 488.8
**	9:30 æ.m.	Dry bulb 81°F, Wet bulb 79°F.
**	11 a.m	Dry bulb 81°F. Wet bulb 80°F.
**	12:50 p.m.	Entered chamber and checked shelter. (Sounding tests and straight edge tests on panels) All tests OK.

29

1. 1. 1.

Date Time Remarks 3:30 p.m. 7/28/66 Dry bulb 66°F. Wet bulb 66°F. 11 3:30 p.m. Boiler check OK. 4:25 p.m. Auto, heat switch #1 put on. 7/29/66 8:10 a.m. Auto. heat switch #2 put on. 11 8:11 a.m. Chart changed. (Test chamber operating OK) 11 8:12 a.m. Dry bulb 143°F. Wet bulb 141°F. ŧŤ CO2 check OK. (Vol. 7200#) Pressure 290 - OK. 8:45 a.m. 11 10:30 a.m. Dry bulb 143°F. Wet bulb 140°F. 91 12:45 p.m. Resealed dry and wet bulb chamber. ** 1:30 p.m. Auto. heat switches #1 and #2 turned off. Dry bulb 124°F. Wot bulb 121°F. 11 2:45 p.m. H. 2:45 p.m. Cramer Min. Meter Reading 609.2 11 3:30 p.m. Boiler check OK. 11 4:25 p.m. Dry bulb 98°F. Wet bulb 95°F. 7/30/66 8:10 a.m. Changed chart. Test chamber operated OK (Sat.) during the night. .88 8:20 ..m. Boiler check OK. ** CO2 check OK (Vol. 5850, pressure 300) 3:25 a.m. 11 8:30 a.m. Cramer Min. Meter Reading 801.0 -11 8:35 a.m. Opened chamber and checked shelter - OK, ** 8:40 a.m. Dry bulb 82°F. Wet bulb 81°F. ŧÎ. 9:45 a.m. Dry bulb 81°F. Wet bulb 80°F. 27 Dry bulb 63°F. Wet bulb 62°F. 7:15 p.m. 7:45 p.m. Auto. heat switch #1 turned on. 7:45 p.m. Checked boiler, CO2 tank - Both OK. 7/31/66 7:00 a.m. Removed chart. (Sun.) 7:05 a.m. Shut down test at end of 3rd cycle. Shut off to steam boiler, CO2 tank and opened chamber and . · 11 7:15 a.m. shelter doors. 11 7:20 a.m. Cramer Min. Meter Reading 924.2 ** 7:20 a.m. CO2 tank showed vol. 5,000, pressure 295. 7:20 a.m. Immediate visual inspection of shelter showed: 1. No moisture, condensate inside, no bulging of panel skins inside or autside. Coin test sounded good - OK. 8/1/66 8:20 L.m. Rechecked shelter condition after 24 hours of room conditioning. Found it to be OK. Interior

30

of panels and exterior had not been harmed.

Date	Time	Remarks
8/2/66	8:05 a.m.	Boiler started.
	8:10 m.m.	CO, valve turned on. Vol 5,000#, Pressure 295
**	8:25 a.m.	Steam line bled of condensate.
	8:35 a.m.	Steam valve to chamber opened. 1 turn plus
		1 notch on wheel.
11	8:40 a.m.	Controllers turned on, circulating fan put on, new chart on and 4th cycle of test started. Checked wet bulb for saturation of cotton sleeve. Auto. heat 1 and CO_2 Al toggle switches
		put in on position. Closed Shelter doors and
		test chamber doors prior to starting test.
11	8:55 a.m.	Cramer Min. Meter Reading - 925.5
11	9:20 a.m.	Test proceeding satisfactory.
*1	9:22 a.m.	Dry bulb 93°F. Wet bulb 92°F.
**	10:55 a.m.	Dry bulb 117°F. Wet bulb 116°F.
**	12:30 p.m.	Heat #2 toggle switch put on.
11	1:20 p.m.	Dry bulb 144°F. Wet bulb 141°F.
**	3:30 p.m.	Dry bulb 145°F. Wet bulb 141°F.
**	8 p.m.	Auto. heat #1 and heat #2 switches off.
8 /3/66	8 a.m.	Changed chart. Dry bulb 81°F. Wet bulb 79°F.
**	8:15 a.m.	Checked boiler and CO ₂ supply, both OK. CO ₂ Vol. 3850, Pressure 295
*7	8:50 a.m.	Opened chamber and checked shelter. Coin and
		straight edge check OK. Visually shelter was OK all over.
* 1	9:35 a.m.	Opened humdity control box and checked saturation of cotton sleeve.
*1	11:00 a.m.	Dry bulb 82°F. Wet bulb 81°F.
17		Dry bulb 81°F. Wet bulb 81°F.
	12:45 p.m. 2:30 p.m.	Dry bulb 81°F. Wet bulb 80°F.
**	.3:30 p.m.	Cramer Min. Meter Reading 1116
**	4:10 p.m.	Dry bulb 81°F. Wet bulb 81°F.
	ж.то р.ш.	DIY DAID OI F. HEL DAID CI F.
8/4/66	8:05 a.m.	Auto, heat #1 toggle switch turned on.
17	8:15 a.m.	Checked boiler and CO2 supply OK.
**		CO2 tank filled this a.m. Reading 12,100# Cramer Min. Meter Reading 1225.8
11	9:25 a.m.	Dry bulb 98°F. Wet bulb 97°F.
11	10:50 a.m.	Dry bulb 120°F. Wet bulb 119°F.
11	11:20 a.m.	Heat #2 toggle switch put on.
**	2:00 p.m.	Dry bulb 143°F. Wet bulb 140°F.
71	4:00 p.m.	Dry bulb 144 ^o F. Wet bulb 141 ^o F. Heat #2 toggle switch turned off.

Date	Time	Remarks
8/5/66 "	8:05 a.m. 8:10 a.m.	Auto. heat #1 toggle switch off. Checked boiler and CO ₂ supply - OK. CO ₂ Vol. 11,200# Pressure 290
11	8:50 a.m.	Dry bulb 82°F. Wet bulb 80°F.
11	11:00 a.m.	Dry bulb 81°F. Wet bulb 79°F
TT '	1:00 p.m.	Cramer Min. Meter Reading 1402.0
**	3:30 p.m.	Dry bulb 83°F. Wet bulb 81°F.
	8:00 a.m.	Dry bulb 83°F. Wet bulb 81°F.
11	8:05 m.	Shut test down and opened chamber and shelter doors.
11	8:10 a.m.	CO2 Vol. 10,300#, Pressure 295
**	8:15 a .m.	Shelter inspected. Coin sound test OK; straight edge test OK. Moisture inside shelter - None Cramer Min. Meter Reading - 1520.2

.

at the state

Page 1 of 3

Test Report #010-B-6

- 1. <u>TITLE</u>: Heat Transfer Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-ANC-01604(E) Performed August 8, 1966
- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amend. #2 dated Dec. 9, 1965
- REQUIREMENT : (Specification Paragraph 4.3.2.3) Heat Transfer - The shelter shall be placed in a temperature controlled room which shall maintain a constant temperature environment of -40°F outside the shelter. An electrical heat source which has sufficient power to maintain a stabilized temperature inside the shelter of not less than 100°F above the outside temperature shall be placed in the shelter. Air circulation shall be sufficient to provide temperature uniformities inside and outside the shelter within 5°F, as measured by thermocouples placed as specified by the COTR. Under the conditions, the electrical power input shall equal the heat loss, and the average inside and outside temperatures and the inside area of the shelter shall be used in calculating the overall coefficient of heat transfer which shall be no greater than 0.40 BTU per hour per square foot per degree Fahrenheit.

5. EQUIPMENT REQUIRED AND USED:

Craig Environmental Test Chamber #1774 (front section only, partitioned off from rear section) Bristol Controller (Model TE-2T500FFFS2-1A) Calibration dated 7/15/66
Leads and Northrup Double Range Potentiometer Indicator Model 8657-C Craig Thermocuple Switch Panel 12 Copper-Constantan Thermocouples
2 heaters - Chromalox Model #6 (3000 watts each) Kilowattmeter - Weston Model 432 Percentage timer - Cramer Model 610E-60S Craig Wiring Harness and Control Panel

的人的上述在这些情况的情况。 计算法通过 化

Test Report #010-B-6

S. PROCEDURE:

- 6.2 Heat Transfer Test
- 6.2.1 Install the shelter in Test Chamber #1774 and connect the following equipment:
 - (1) Locate six copper constantan thermocouples inside the shelter on the side walls a minimum of 12" from any surface as shown in Figure 2.
 - (2) Locate four copper constantan thermocouples outside the shelter on the side walls a minimum of 6" from any surface as shown in Figure 2.
 - (3) Wire the above thermocuples to the switch " panel and connect the switch panel to the potentiometer indicator. An icewater bath may be used for the reference junction.
 - (4) Install two Chromalox heaters inside shelter and connect with wiring harness through switch panel and kilowattmeter to 120 volt AC supply as shown in Figure 1.
 - (5) Calculate inside area of shelter and record on data sheet page 11.
 - (6) Insulate and seal all openings to prevent circulation of air from inside to outside of the shelter.
- **6.2.2** Reduce chamber temperature to -40° F in three hours. During and after pulldown, monitor temperature inside shelter and maintain at 65° F.
- 6.2.3 Maintain chamber temperature at -40°F and shelter inside temperature at 65°F until no further change in electrical power input is required to produce these conditions.
- 6.2.4 Take four temperature readings at 15 minute intervals and record on data sheet. Record the power input at each interval.
- 6.2.5 Average the recorded temperatures and calculate the Ufactor in the space previded.

7. TEST RESULTS:

U = 0.314 Btu/Hr/97/Ft²

Test Report #010-B-6

8. CONCLUSION: The shelter met the requirements of this test.

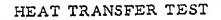
Legend:

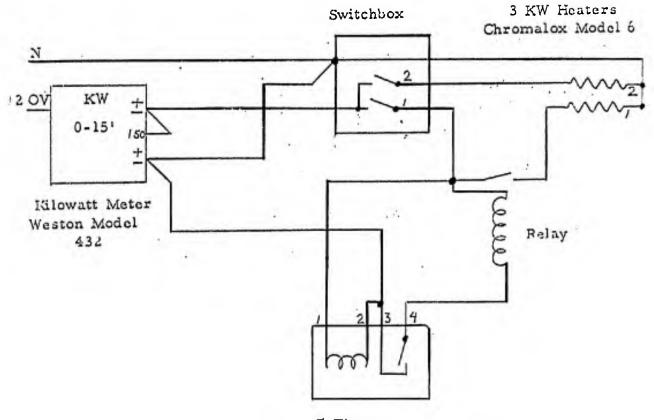
U - Overall heat transfer factor in Btu/Hr/Sq. Ft/oF W - Power Input in Watts .293 - Conversion Factor in Watt hours

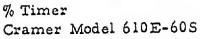
△T - Temperature Differential in •r

A - Inside area of shelter in sq. ft.

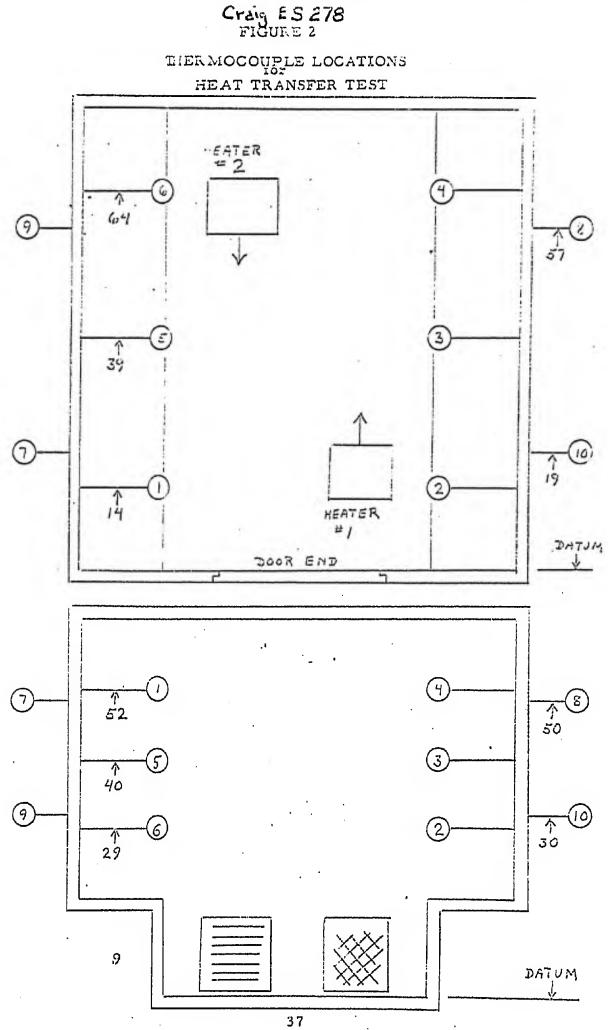
Data sheets and chart #01109, as provided by the Bristol Controller Recording Equipment, are attached along with diagrams showing the heater and thermocouple junction locations.


Reported by: W. J. Brown "g. Beauro Appreved by: Quality Control Engineering


Craig ES 278


FIGURE 1

HEATER WIRING DIAGRAM


FOR

र स्टब्स स्व ३१ (संदरन इंग्रेस्ट्रेल्स) स्व

HEAT TRANSFER TEST TEST DATA SHEET NO. 1

TEMPERATURES RECORDED

Date	Time		17:45	0UTSID 18:00		15	18:30	
	Bristol		-37	to	-40			
	Thermo	7	-41	-41	-42	-39		
	Couples	8	-42	-41	-42	- 39		
		9	-45	-41	-42	-39		
		10	-45	-4]	-42	- 39		
	Total Average		173 -43	164 -41	168 -42	156 -39	Total 165	Average -41

INSIDE

Total	123456	66 64 65 65 65 64 5 389 5	68 64 66 66 66 66 39 6	64 61 64 64 64 64 88	66 64 65.5 65.5 65.5	Total	Avo 12
Total		389.5	39.6	38.1	392.0	Total	Average
Average		64.9	66.0	63.5	65.3	259.7	64.9

TEMPERATURE DIFFERENTIAL=

Watts

2140 2140

2140 8560 2140

$$U = \frac{W}{.293 \times A \times 1}$$
$$U = \frac{2140}{.293 \times 220. \times 105.9}$$
$$U = 0.314$$

2140

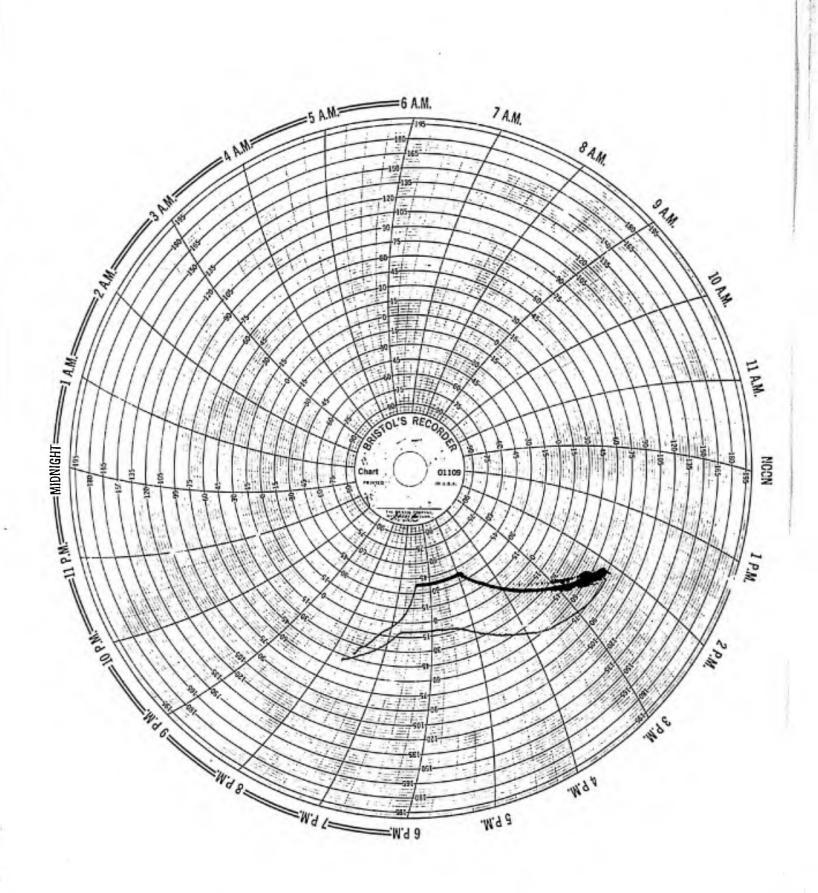
U = Overall heat transfer factor in BTU/HR/ $^{O}F/FT^{2}$ W = Power Input in Watts .293 = Conversion factor in watt hours T = Temperature differential in F A = Area of shelter in Ft²

SOLAR RADIATION CHECK

DATA SHEET NO. 2

Measurement No.	Millivolts	Location
1	16.0	Under lamp
2	16.2	Under lamp
3	14.8	Under lamp - outer bank
4	13.8	Between lamps
3	11.5	Between lamps
6	12.9	Between lamps
Total	85.2	
Average 14	4.2 x 25.42 = 360.96	BTU/Hr/Ft ²

WIND VELOCITY CHECK


DATA SHEET NO. 3

Measurement No.		Ft/Min
1		655
2	**	665
3	•	500
Total		1820
Average		606.6

Shall not exceed 616 ft/min (7 MPH)

0		Suren on		100	214 0 -				i		5				
TIME ~ PMIT		SIL	17.0	00	17.	7.45	101	1 1	18:	2		00			
DRY BULB	-	-39	-39		-39	8	10-		57 1	4	- 39				
ALUS BULB	-	Canada I	~ ~	CINCLE		Canada a		Chan		- united I					-
- SA IGHOU	4	+		07	14.	THAT		101		1 Part	1	ANTI	 TRMP	1.1.	TEMP
	-	∔	14	101	01	1. 11		0 101	21.	1.1	07	11		T	
	+	+	1	6.40	101	20	12	11	00.	10	20.	20		T	
	1-12	99	5%.	6.	.73	00	.70	00	04.	04.	44.	600			
•	2	+	.78	68	.73	100	54.	66	. 70	641.	46.	00.00			
.,	02. 50	60	28	22	52.	65	.75	66	. 70	44.	44.	6.5.5			
	6 . 20	69	.75	66	14.	64.5	. 75	66	. 70	Gif.	1.4.	65.5			
E	1-1.4	- 37	-1.51	-42	64%-	14-	64-1-	104-	10%-	der-	-1. 45	1.35			
~	8 -1.43	1	-1.50	-42	12.7.	-42.	647.	14 -	181-	277-	-1.465	1.30			
6	1-	- 39	-1.50	-42	-1.55	-45	64.1-	11-	121-	4/4-	-1.45	- 39			
10	1	62-	-1.50	2/1.	-1.55			14-	-1:00	2/4 -	3	- 39			
11															
12	-														
41															
15															
16															
17	1														
16	1														
19															
20															
21															
22											1				
23															
24															
25											•				
. 26								•							2.2
27	-														A the be
28	1												•		All a state
29															14 T
30		1 1					-								版
una ana.		11 11 11				-								Ī	

(2:08 7m) 8/8/66 Start (800 AM) 8/9/66 MM ofter and 10,200 lbs Jr. = 290 # 2, \$ 00 La. Con - 209. Con - 200. 42

1. TITLE: High Temperature Test 5-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 10, 1966 through August 16, 1966

2. PURPOSE: To test shelter design.

3. APPLICABLE SPECIFICATION: SCL-4608A, Amend. #2 dated Dec 9, 1965 MIL-STD-169(Sig C)

4. REQUIREMENT:

EMENT: (Specification Paragraph 4.3.2.4)

High Temperature - The shelter, with doors closed, shall be placed in a chamber with air maintained at 120°F to 125°F. The air shall be recirculated with a velocity not exceeding seven miles per hour in the vicinity of the shelter. After the outside shelter skin has stabilized between 120°F and 125°F. the doors and their hinges and latches shall operate freely. The full solar load shall then be applied to the roof. If the end or side walls are constructed of different composition, type, or density of core material than the roof, each different wall shall also be subjected to the full solar load simultaneously with the roof or in a separate cycling. The solar load shall be applied as rapidly as possible using at least twenty-eight number 1000T3, 230 volt bulbs (as made by G.E., Sylvania, or equal) per panel. The bulbs shall be arranged in four rows of seven bulbs each, or more as required, and shall operate within 10 percent of their rated voltage. The solar load shall be applied a period of four hours after all portions of the outside skin of the panel being tested have reached a minimum temperature of 195°F. After completion of the four-hour solar load, the airtemperature shall be raised so that all portions of the inside skin shall be between 160°F to 165°F. The shelter temperature shall then _____ reduced as rapidly as possible to $77^{\circ} \pm 10^{\circ}$ F.

The above cycle shall be repeated three times. There shall be no core growth, delamination, buckling, or deterioration of structural strength during or as a result of the testing.

5. EQUIPMENT REQUIRED AND USED:

Craig Environmental Test Chamber #1774 (Front and rear dividing partition and seal removed as entire chamber is required for High Temperature Test. Divider is re-installed for Low Temperature Test.) Calibration dated 7/15/66. Lead and Northrup Double Range Potentiometer Indicator Model 8657-C Craig Thermocouple Switch Panel 12 Copper-Constantan Thermocouples Pyrheliometer, Eppley 50 Junction Craig test stand for mounting Eppley cell 5" Biram Davis Anemometer-Super-Sensitive Wind Gauge Craig Wiring Harness and Control Panel

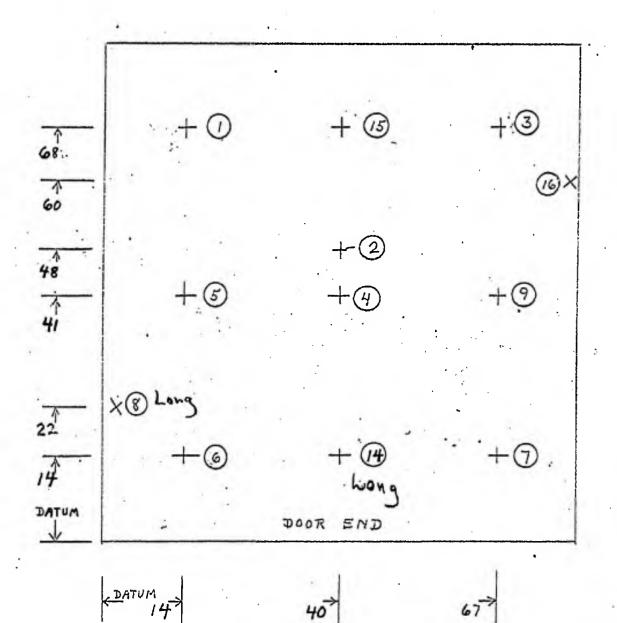
6. PROCEDURE:

- 6.1 High Temperature Test
- 6.1.1 Thermocouple locations. Locate 10 thermocouples on the shelter roof as shown in Figure 3. Nine thermocouples to be attached to the outside skin and one to be located in the free air six inches above the roof in the geometric center and shielded from radiation. Locate two thermocouples on the inside skin on the side walls as shown.
- 6.1.2 Solar Loading The solar source shall be twenty-eight 1000-T3 lamps spaced proportionately over an area of 8' x 12'. Prior to running the first cycle, the solar intensity must be checked using the following procedure:
 - (1) Locate the 50 junction Eppley cell with the detecting element at the height of the object undergoing test.
 - (2) Record readings in table as follows:
 - a. Three each directly under lamps of which one shall be on an outer bank.
 - b. Three each between lamps.
 - c. Average the readings in the space provided. Results shall be within 10% of 360 Btu/Er/st².
 - (3) Place shelter in chamber with chamber doors closed. Check wind velocity as fellews and record results in table.

45.

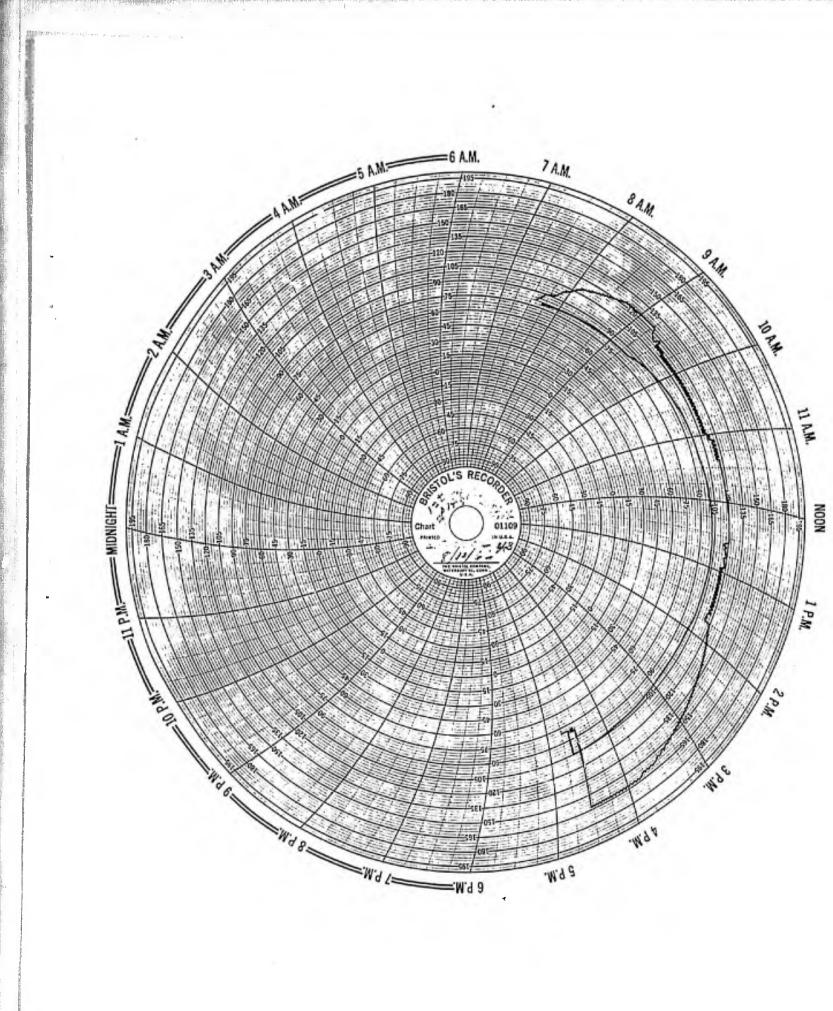
- 6. **PROCEDURE:** (cont'd)
 - a. Locate anemometer in three random positions on the shelter roof and measure wind velocity for 60 seconds in each position.
 - b. Average the readings in the space provided. Results shall not exceed 616 Ft/min (7 mph).
 - 6.1.3 Solar exposure and high temperature. Perform the solar exposure and high temperature tests as follows:
 - (1) Place the shelter in the rear of the test chamber clear of the solar radiation with the doors closed and the floor drain plug removed. Raise chamber temperature to 120°F to 125°F in less than four hrs.
 - (2) Maintain in the above condition until the shelter outside roof skin temperature has stabilized at 120°F to 125°F. After stabilization is reached, check that doors and latches operate freely.
 - (3) Nove shelter to solar exposure location and immediately apply the full solar load of 360 Btu/Hr/Ft² with a wind velocity not exceeding 7 mph. Maintain this condition for four hours after the roof skin temperature has stabilized. Ambient temperature inside chamber to be 120°F to 125°F. The free air thermocouple located six inches above the roof shall be the determinant for chamber ambient temperature regulation.
 - (4) At the conclusion of the four hour period and while at 120° F to 125° F, return the shelter to the rear of the chamber clear of the solar radiation.
 - (5) Raise chamber ambient temperature to 160°F to 165°F in less than four hours and maintain in this condition until the inside skin temperature has stabilized.
 - (6) After the above condition has been satisfied, open the chamber door and move the shelter to ambient room conditions as quickly as possable and operate shelter doors.
 - (7) Maintain at room ambient conditions for a minimum of four hours.
 - (8) Repeat steps 1 through 7 until three cycles have been completed.

7. <u>TEST RESULTS</u>: Three cycles performed of High Temperature Test. Checks made during the cycling and following each test revealed no shelter damage such as delamination of core to skin material, buckling, or deterioration of the structural strength of the shelter as a result of these tests. The doors, latches, hinges, hardware, etc. showed no malfunction, all operating freely at each test.


8. CONCLUSION: The shelter met the requirements of these tests.

Data sheets, charts #01109, notes, etc. as records of these tests are attached. Also included is the thermocouple junction location diagram, the Solar Radiation Check and the Wind Velocity Check.

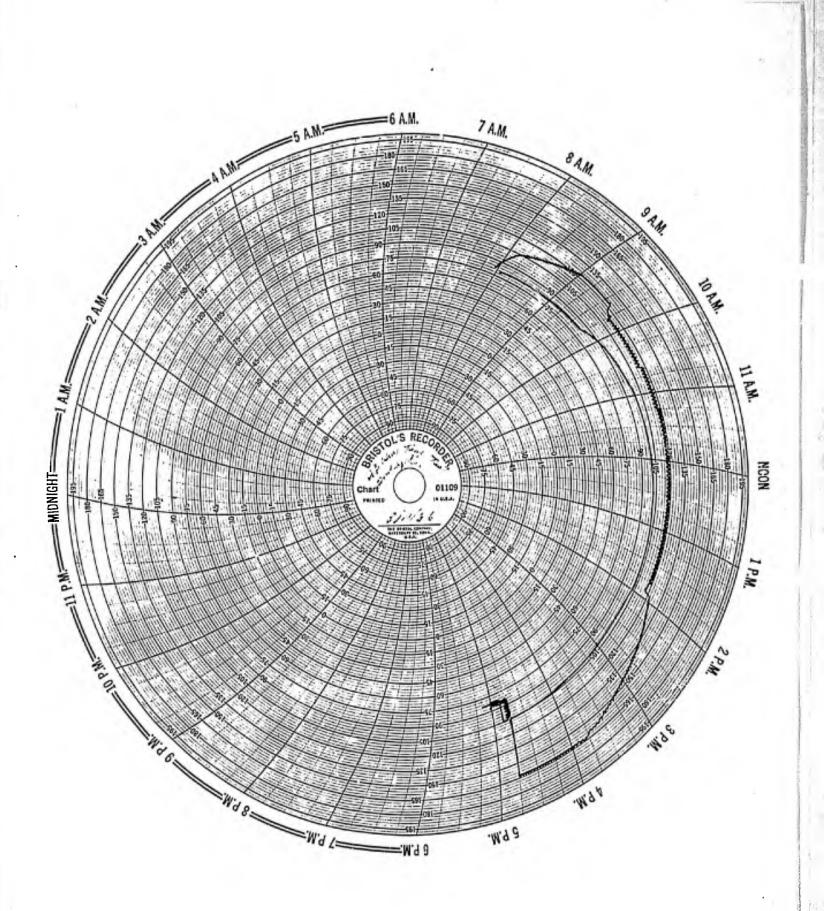
Approved by: Quality Control Engineering


THERMOCOUPLE LOCATIONS for HIGH TEMPERATURE TEST

Notes: Thermocouples #16 and # 8 to be attached to inner skin on side walls as shown 40 inches from floor.

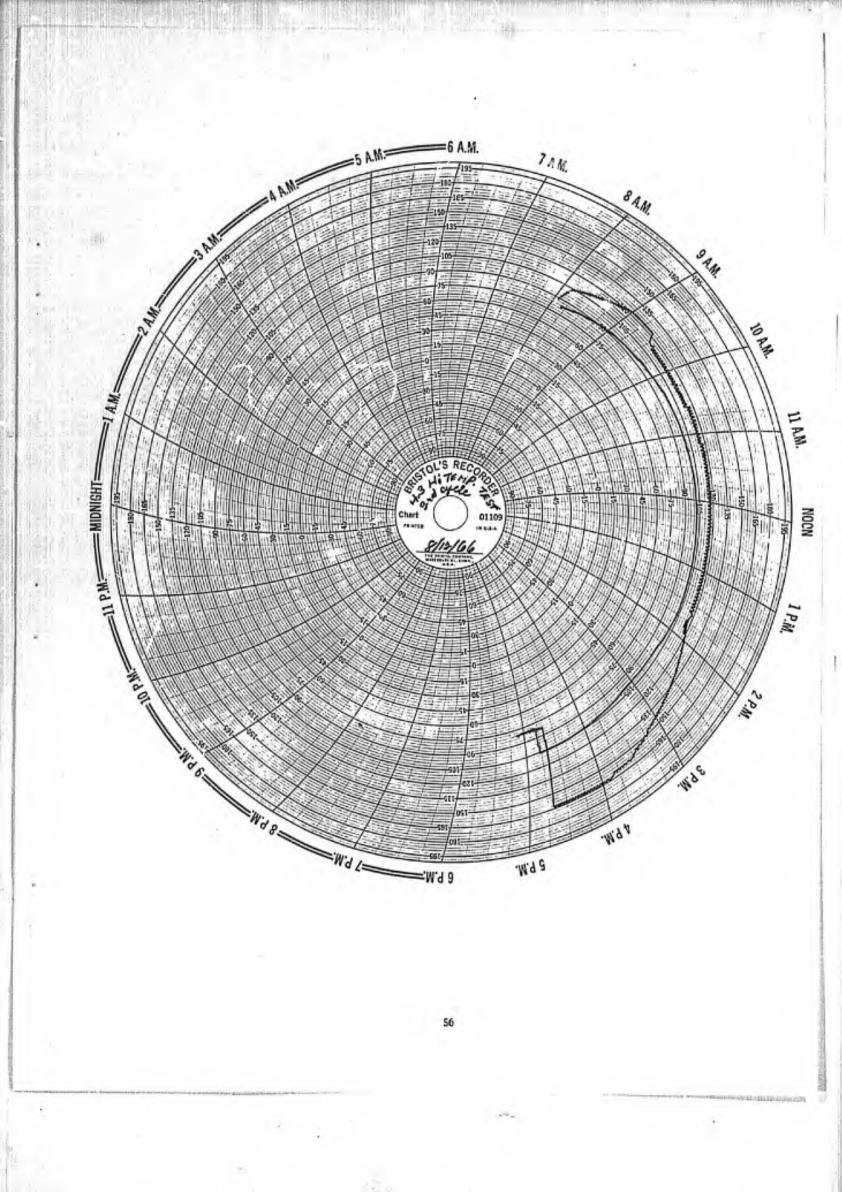
> Thermocouple #4 to be located in free air shielded from radiaton. All others attached to outside skin on roof as shown.

											0	1.4				
						DATE		10 100	10	SPEC	17.7	SCL-11605	4 10		6.200	
	5	N.	25%	510	10:01	Fa	11	100	10	5		1	4	1.	V.	1 .
A DITT O		AL			F		ŧ			1	1					
APPE DULLD	1	I		i	1	1			1				'	4	1	1
anna T	-	-			1	-	1				_	1	-			-
EREO-		IKIN		TEST.		TEEP.		TKEP		TEMP	-	_		TENP	N.V.	TEN
COUPLES 1	3.3	174.	3.38	174	3.30	Irik.	2	172	3.50	182	_	176.				
61	3.1	166	3.21	5.11	3.13	14.71		150		1701	3.15	-				
	31.5	169	14 8	241	12		2	-	3 18	167	3.15	165.				
2	21.0	126		125	200	121	0.0	121	1	125		1				
-	-	9		521	16	57.3	3.20	174	8.4.5	180	2.30	-				
*	3.0		1.	201	3.27		010	1 7	2.54	100	3.115					
L	-			4.1		0	5		1.5.	11.1	-	2.2.1				
1	j,	1		1951	2		200	101	10	200	-		1.76		1 10	1
2	2		-	Š	10. Na	2	00.00		4.40	147.	C 1.2	12	000		400	100
6	5.5	169	3.20	162	3.12	167	3.25	17.2	03.00	162	2.2 V	174				
. 10																
11																
13								_								
1	3.46	1000	3.4.0	175.	_	182	3.60	186.	3.42	174	3.4.5	1.50.				
15 15	2.23	1.50	2.85	100	283	125	3.00		3.00	162.	···	160.				
610	2.7.1	121	11.5	-	3.10	125	80 0		2.25	131.	1.2.7	2001				
17		T														
18																
19																
30				·												
21		T														
22																
23																
24																
25																
26																
27																
28																
29												•				
30																



2.00

14/1	172 222 172 2.23 172 2.23 172 2.23 172 2.23 171 2.11 171 2.11 171 2.12 171 2.12 171 2.12 171 2.12 171 2.12 171 2.12 171 1.12 171 1.12 172 2.25 172 1.12 172	11 11 11 11 11 11 11 11 11 11 11 11 11
------	--	--


ø

3) 930 AM Chamber entered + shifter moved forward to full solar load position. (dow operation shelled - 04.) A) 1030 AM and to slightly higher temperature position. Con 42 7 - 2100 100 5) 140 PM. Hoved allter to sear of chamber . Con togles off cam started to raise continue temperature to 160 P to 165 F. 6) 4 2 P. R. Spit-down ted, gendehanter and removed shitter. Both shitte-down opend. They geneted satisfactority. R) 9 22 A.M. Tent. control cam Stopped. Temp. wee 122 F. Freer to start of test (my cyrles) alter 2nd cycle. Co2 - 20l - 61,00 Ala. (Co2-20l = 4000 - 62. # georphe . M/ 2.71 = 150. F. Mar P.M. S. Mai 1:1 52

LÁTE 2. 11 CM E LÁTE LÁTE LÁTE LÁTE LÁTE 2.0 177. 3.40 177. 3.40 177. 174. 177. 3.40 177. 177. 175. 2.0 2.171. 175. 120. 175. 175. 175. 175. 175. 175. 175. 175	10	11 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2		TEEP H.V.	2.12 170. 3.35 176.	1010.00101	10 125 2.05 12.	176. 3.38	1.101	2. 3.21 170.	16 127. 2.18 1	15 16		50 152	12.	L. 129 5.20							
		110 11 .100	mount is a mount	· TORP N.V. TKEP	170 2 2 3 171	121 202. 021	125 206 123. 2.	3.40 178. 3.	3.48 181 .2	5 172 2.32 171.	8 120 2.13 126	165 3.08 1651 3.		175 3.50 182. 0	2.76 160 3	121 2.16 1.21. 2	Н						

100 112 2 112/ Jun 5) 132 R.M. Started control com with last Shat #1 and Dute Heat #2. 9123 Par. 3 let excles. I Sugh Tumpuche and dolar experience. 3) 939.1. Shelter derught freed and such sich bad turned an (normal types that " 1 1 had " 2)+(CO2 anto " 1 and " 2 togger amiteles find on"). 4) 1 to at Fall selas load abut - of . Cos Shut - of and shills more to to not of whember alle long themes couple heads # 9 + 104 6) 4 the T.M. Shut test down. Opened chamber and removed shelts. 7) & 45 P. M. Malter moperted by R. Smith . No mulal report was 61 to. that the shelts was in very condition fullowing the a) 32 AV. Timp. Contest Cam stepped Timp. 122. F. 55

OUALITY CONTROL DEPARTMENT

TEST REPORT #010-B-8

.. <u>TITLE</u>: Low Temporature Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(B) Performed August 10, 1966 through August 16, 1066

- 2. PURPOSE: To test shelter design.
- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4308A, Amend. #2 dmted Dec. 9, 1965 MXL-STD-169(Sig C)
- 4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.2.5) Low Temperature - The closed shelter shall be subjected to three cycles of the low temperature portion of MIL-STD-169 (Steps 5 through 10). The doore, atches, and hinges shall operate freely when tested on step 7. There shall be no change in the core material, and no delaminating, buckling, or deteriorating of the structural strength of the shelter as a result of this test.

5. EQUIPHENT REQUIRED AND USED:

Craig Environmental Test Chamber #1774 Calibration dated 7/15/66. Lead and Northrap Double Range Potentiometer Indicator Model 8657-C Craig Thermocouple Switch Panel 12 Copper-Constantan Thermocouples

6. PROCEDURE:

6.1 Low Temperature Test

Install shelter in test chamber #1774 at recm ambient conditions and attach two thermoccupies to the inside skin on the side valls. Close the shelter doors and subject to the following low temperature cycle (ref. MIL-STD-168). The floor drain plug must be removed for this test.

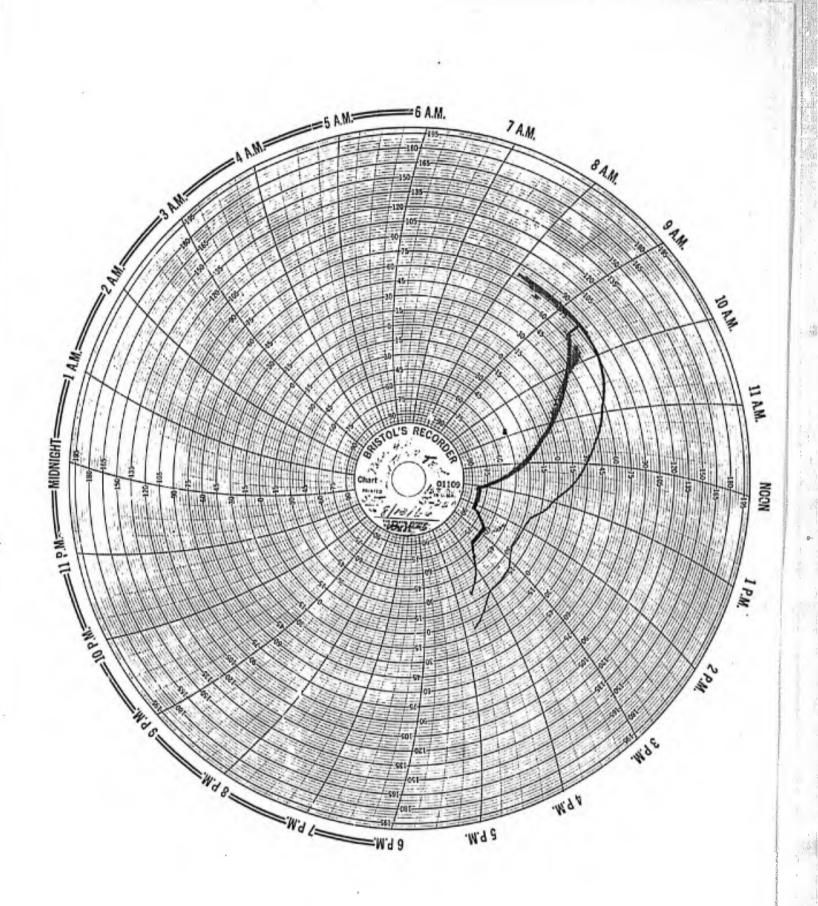
- (1) Reduce obsaber temperature at 39" per hour to -80°F.
- (2) Maintain at -80°F for 24 hours or to practical thermal equilibrium, whichever eccurs first. The

(cont'd) 6. **PROCEDURE**:

thermocouples located on side walls may be used to determine thermal equilibrium.

- Raise chamber temperature at 39° per hour to -65°F. (3)
- Maintain at -65°F until practical thermal equilibrium (4)is attained. At the conclusion of this period and while at the test temperature, check that the doors and latches operate properly.

Three cycles performed per Paragraph 4.4 of **RESULTS:**


ES 278, Low Temperature Test. Checks made during the cycling and following each test revealed no shelter damage such as delamination of core to skin material, buckling, or deterioration of the structural strength of the shelter as a result of these tests. The doors, latches, hinges, hardware, etc. showed no malfunction, all operating freely at each test.

The shelter met the requirements of these tests. 8. CONCLUSION:

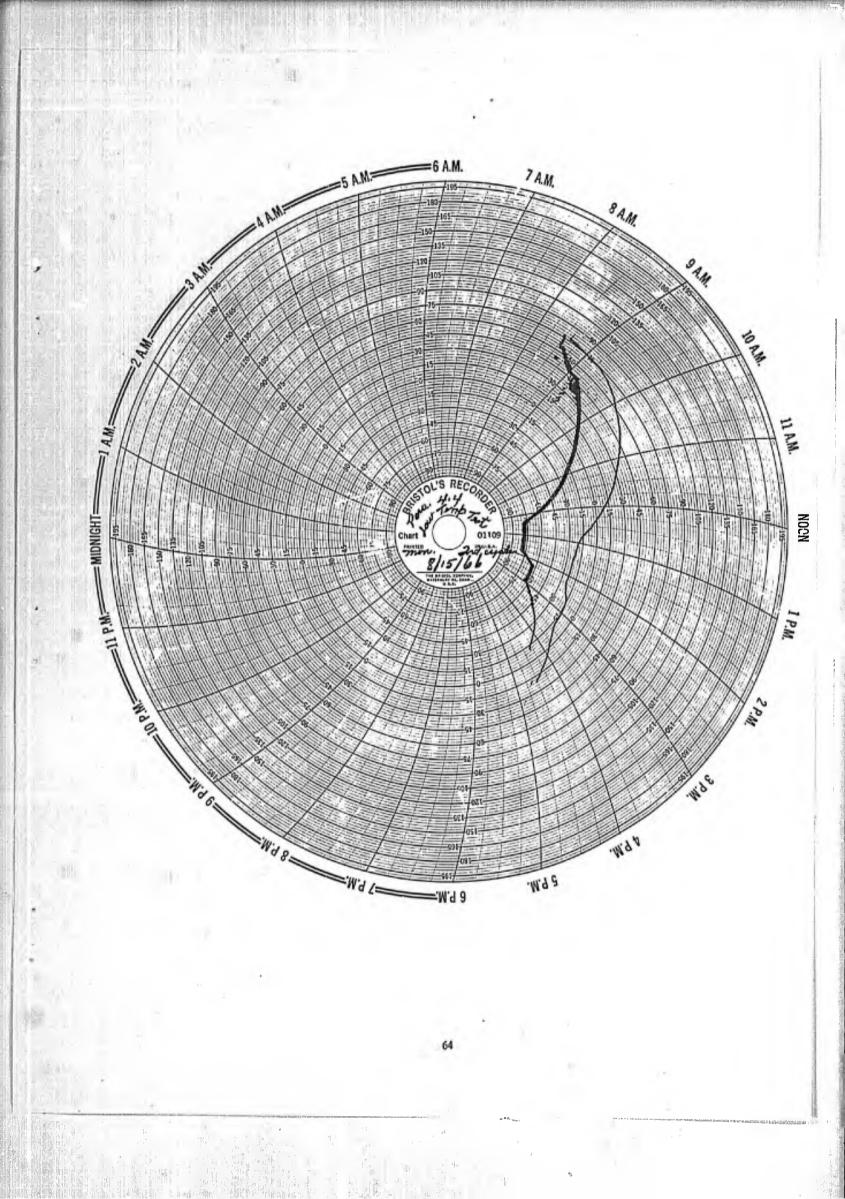
> Data sheets, charts #01109, notes, etc. as records of these tests are attached.

Approved by: Quality Control Engineering

.

3 5-4:0 ふろー E.V. TEMP h 1 20. they 20. Brown 123-1 -1.30 4.4.1-227-W.D. 6010 TRMP 14 0%-- 70 . 1 4 ۱ 1st Cold Maine й.Ч. 2.2 1202-2.00 SPEC. ST HEARING 1. A. A. EU-273 TEMP 41-74--6 3-34. ¥.V. \$0%-- 0.10 -210 49-·4.8.5 H.Y. TEMP - 75 .75. -200 -2.12 21.2for notes - au our St. 10. 1 M.V. TEMP 28:35c2 -2 08-1324 90 ENVIRONMENTAL TEST DATA SHEET -2,00 - : 9) 0 E 41-1 i DATE tis set M.V. TEMP 6.8 -- 85 - 80-- . 22. -1 18.8-1000 00.00 - 85 20 nu 200 4.4 M.V. TEMP 124 -12-- 315--21.15 -21.10--2.30 M.V. TEMP - 85 -63 - 63 531 -2,30 -1.90 -1.90 1 TIME 925 1 COUPLES 1 2 3 5 9 10 18 7 19 21 DRY BULB WET BULB THERMO-BEF JCT R And I want

Cla need = 3, 200 lbs I start of test. 929 AN. Mate - cord - cords and leave and the and the second start and leave and the subles of the second start and write and show supply for and some the second start was under from supply for. 2 2 PM. Control care Startid to raise temperature to - 68 F. (preclamid care at 5prt opposit, on climb side of Love flat 3 29 P.M. Contest car Stopped as Duy hull timp, had reached - 65. F. 5" P.M. Chamber down formed, abectic down sporsed - and # + crubbe (you and hald time and " + crubbe (you and had wached - 80 = (actually alightly lower.) 3 15 R.M. Control can started to bring Impusture gradually Con-2002 - 7100 200 134 -- 3 vo la - 132 P.M. Control come. Stephend 8 2 AM. There to start of list. action. 3.) . at or at 2) .02 7/ at 6) at 2


n ll' no se s nh Marine V

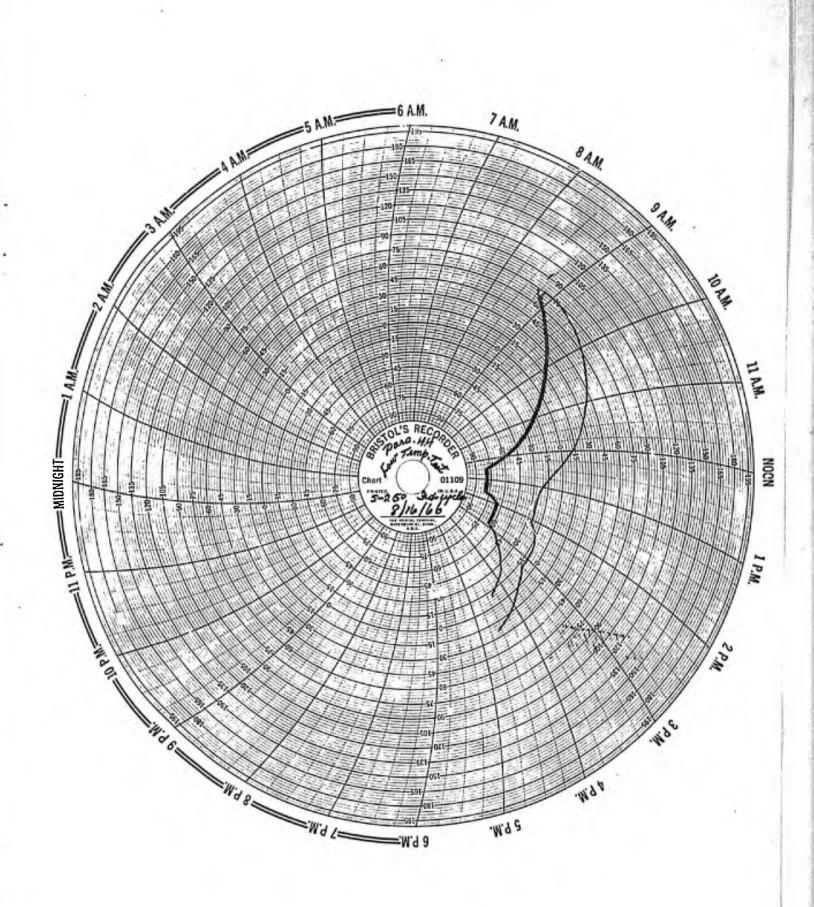
Ist quele - S-250 due Timp. That, cont from top. 1. Date Frome the gr 17.4. Rear utes Turnp. F. \$13/66. 230 PM CHAPT DE - 82. - 80 -2.21 14 82 -2.20 1. 1C. -80 -2.00 Ser and low and Die - 68.5 11 - 66. -2.18 # 8. #16. - 2.20 -80. 3 3 PM CHART D.B. - 68.5 na A. 11 - 64. At 8. - 2.12 - 75% # 16. - 2.12 ... 3th PM CHART D.B. - 75 -1.98 -66 -64 - 210 - 74 # 16. - 240 - 74 00 # 4 1.80 57 PIN, CHART 2.8. =50 -8.02 70 #16. 2.02 iro 4 30 PM CHART DB # 4 1.30 32 32 48 1.72 53 #16 1.72 03

up Berer .

Pg 2-A

9.1.A Apric. Seh - 4668A Jara. 9.4. Luce Temperature Text Lot cycle - 5-250 shelts. 20.0 6010 in Date M.L. Tamp.F. - service 2.00 The start 5/13/66 all @ T.T. 78. 4.8.16 4.8. 46 374 46. 74 .25 20. 10 35 ANT. Chait 2.8. -41. 21. 16. 20 41 .55 6. 11 AM chart D.B. 7. 32. 32. 90 11 30 AM. - 11 4 chart D.B. -- 12 - . 45 11. 16 -,43 12. - 29. STAM. chart D.B - 29 . 80 -7. -7. . 80 12 3 PM chart DB. 55 - 54 1.28 - 30 16 - 1.26 4 - 74 . 2.10 P.M. chat DB - 70 . - 1.58 - 46. - 45. 1.56 \$5. 2 Cam. P.M. 2.20 chat D.B 11 - 83.) Stopped 1.90 16. 1.90 - 63 2 PAT. - 95 .11 that D.B. - 81 2.15 - 77 8.15 - 77 2 1º RM. 5 - 56 2.20 - 79 - 79-1 2.20 Couples - #8 \$ 16 junction inside shelter (conton 1 2) Couple - + . " in free sir preitin above shelts.

1. 1 _ rele - 5-250 Lun timberature test, cont fim pal:B - 16. Time Comple 220. M.V. Jan SF. RentARKS. E115/66 1 30 - Arile Aart D.B. -2.10 74 -2.10 - 74 16 1 -P.M. Gant D.B. 81. -2.22 50 - 2.15 - 77. 2.15 - 77. 2,20 " Sin chart D.B. 82 50 conter 2.20 50-8:16 Stated - :0-2.20 1 15 P. Schur D. B. 74. 2.10 69. TM at 222 conter 80. 2.20 2.20 cam stephed . . 80. 1.95 66 2 TAT. CANT 2.3. 65 2.10 14 210 74 66. 1.96 3 Fm Chart 28 6% control cami 2.00 69. stasted . antinale 2,00 69. 3 FAIL Chart D.B. 1.60 47 45 1.92 GH. GK. 1.92 1.37 25. Frichart 2.8. 24. 1.60 47 16 1.60 - 47. at 4/12 PIM . 17 HERM Chart 2.8 1.00 - 16 renered chamber 1.45 6. 1.45 - 39 ton seals


By MBeaun

122B

19.18 Spic. And - 4608 A. Vara. 4.4. daw Temperature Test But the - 5-250 shilter 20.0. 6010. . to Time Coupl. no. M.V. Temp.F. TEMAT YS 31.5/66 8 AM. D Tra chart D.B. 47: 7 8. 16. 9th A.M. " Chart D.B. 24. . 30 46. 16. 30 46. 13. " 1015 AM. chart DB. 10. ,00 32. 16. 31 00 chart D.B. " 10 the AM. 17. 12. -...... 15 15 -.35 11 19 AM Charto B. 22. 25 .70 - 2. 16 2 .70 " 11 2 A.M. 42. - 1.50 Chart D.B. _ 1.08 - 42 - 20. 16 1.08 20 " 12 30 P.M. Chart D.B. 72 72 - 50 (at 12 30 2M) - 1.66 -1.66 50 Cam Slopped - 80. 12 15 P.M. 2.20 Chart D.B. 80 1.85 - 60. 16 1.82 - 59. " 100 P.M. - 2.20 80.-Chart D.B. 80. - 8.00 - 69 8. - 2.00 - 69 16. - 8.22 " I' P.M. Chart D.B. - 80. - 80. -206 - 72, -2.06 - 72. couples # 8 " "16. junctions meide shelter couple # 4. junction in free air preition above shelter -

6) at 235 P.M. Control cam stipped as Day halk timp. And derport to - 65 F. 3) at 915 A.M. Loweled thank printerin the week time. (was 15 mus show) 2) Start of Trat 8 45 AM. following ealing the chamber door. 9 at 202 R. Control care started to saire temperature to - 65, F. (printing and some clink side 37 Sur flat section at . 2 (1) at 820 7.1. Control cam storted to bring timperature alouty up to A at 12 35 P.M. Control war stiffed as charles was at - 80. F. B) at 4th P.M. Granber don opened shelter door grend of. hame min. meter redoing were 217. 8 min.

0-22-2-TEMP ich - H. Curren щ.V. W.O. 4210 -46 H.V. TRMP -2.00 - 69 S COPM -69 40--1.96 -2.00 Ing lold agel SPEC. SCL +608.9 TEMP J'ESTPH. +4--74 55-278 99-- 63-M.V. 56.1--2.10 -2.10 el. The moto ere over M.V. TEMP Prd 2: 6 +4-6--2.20-50 - 80. 69-Zint -2.10 -2.20 ١ 8/15/66 ŝ, Tara 4.4 Law Timperature W.V. TEMP - 82. +80 23--80 ENVIRONMENTAL TEST DATA SHEET -2.20 20.2--2.20 DATE 122-M.V. TEMP 18-22-- 80 515--2.23 2.2-W.V. TEMP - 72 - 72 68-1.52.1 -80 - 2.22 -2.06 -2,06 13 401 - 80 W.V. | TEMP 6.0--60 80. C.S. 1.2. 1.95 1.82 The second secon THERMO-COUPLES 1 TIME 8 ANT 2 2 IO 12 18 13 14 19 20 -H 53 Slant 7 21 DRY BULB WET BULB REF JCT 4 68

20 1.-0 Sec. S.C.d. - 4608-A. Para. 4.4 Law Temperature Tests 34 cycle - 5-250 Shilter 20.0. 6010. Date Time Cauple no. M.V. Timp F. 5/16/66 8 35 AM all TET. 7.7: 9 15 4 . 30 46. 1 9 AM Chart DB. - 45 1 10 AM. Chart D.B - 0. 8 -.12 26. REMARKS. " 11 25 ANT. Chart DB. -.12 26 一众7. -28. - .80 - 6. - .50 - 6. " 12 " N. gehart D.B -1.68 - 51 - 53 -27 -1.22 " 12 30 P.M. Chart D.B. =1.2.2 -27 -75 -2.12 -75 - 1.60 - 47 - 47 tat 12 40 PM. Control cam - 1.60 " 12 # PM Chast D. B. -2.20 81. - 1.80 " 1 " P.M. Chart. D.B. - 58. -1.78 - 57 - 2.22 - 80. - 81 - 1.90 - 63 - 1.90 - 63 1, 135 PM. Chart DB. - 2.22 - 80 - 80-- 2.10 - 74 16. - 2.10 " 1 #5 P.M Chart DB. 74 - 2.20 - 80 - 2.12 - 80 - 75 - 2.12 - 75

Couples # 8 + #16 junction in free-an position above shelts.

22.2.0

But incle - 5-250 shelter daw Timp. test (cont from pg 1-C) Date Time Cauple no MY. Timb F. REMARKS S/16/66 2 00 Chart D.B 66. -2.10 74. 10 74 66 - 2 BPM. Conter Came 1.95 Shelie 2 Prostato. B. She pred 65 2.05 71 2.05 71 2 "P.M (alait 2)2. 1.95 66. 45. 2.05 71. 71. 16. 2.05 5 ME Chart 20 1.96 66. 65. 69. 3.00 69. 2.00 66. (3:00 P.M. Cunter Can 3 FM Chut 22 " stated 69. 16. 6? 2.00 3 3 P.M. (chast 23. 39 37 1.80 58 16. 58 1.80 P.M. Chart DB. .00 ." 16 1.40 37. 1.40 16 57. " 4 = chart D. 2 8. 16.

By . I M. Brown

TEST DATA SHEET DATE 1 SPEC.	- 45 - 14 - 65	TEMP M.V. TEMP M.V. TEMP M.V. TEMP M	1- 2 227- 57- 52- 52- 25- 25- 25- 23	18- 19- 21- 12- 200- 12- 20- 20	15 - 5.2 - 2112.15 - 2 2.00 - 692.01			
ENVIRONMENTAL		C.V. TEMP M.V. TEMP M.V. TE	-2.40 - 80 - 2.22 - 80 - 2.23 - 8	2- 210- 12- 012- 32- 0.87-	-478 -57 -2.10 -74 -2.12 -7			

1) 6. Con Chier to Start of that () 1) 6. Con Con to Start of that () Con Viel - Val. - Not 5,90. Los Con Millin Con 200 - 2 by lit 202 20 mind and started to hing timpuative sland up to 8) at 447 24. Clamber quadually spired after interior had wacked about 14 Dives of shelter chucked by Anghalon (24/2 15) at - 65.17 in chamber 3) at 12 20 Control con stopped to chamber had reached - 80. F. of set 2 19 Control car Stopped al temperature was at - 65 F. b) at 1 mg lowled can started to pain timperature to - 65 F. 1) Test shut down at 4 32 R.M. * Tank fulled this AM.

TEST REPORT #010-B-9

TITLE: Railroad Transport S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 18 and 19, 1966

- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amendment #2. dated Dec. 9, 1965
- 4. REQUIREMENT:

1.

(Specification Paragraph 4.3.3.2) Railroad Transport - The shelter shall be loaded in the manner normally used for shipment on a railroad flat car. The test shall be conducted on a flat stretch of track. A 165,000 pound car traveling at 9 miles per hour shall be impacted against the test car coupled to two other cars. These cars shall be stationary with brakes off. Four impacts shall be performed, two with the shelter positioned longitudinally to the flat car and two positioned laterally. The direction of each impact shall be selected by the Government. If blocking or tie-downs holding the shelter in place are torn loose by the impact, the test shall be repeated.

5. **EQUIPMENT REQUIRED:**

l Railroad Switch Engine l Railroad Flat Car 2 Railroad Freight Cars l Railroad Car with total weight of 165,000 lbs. l{Stop Watch As required - Railroad torpedoes

6. TESTING PROCEDURE AND RESULTS:

Testing was conducted at the Lawrence Freight Terminal of the Boston & Maine Railroad. Equipment used included Boston & Maine switch engine No. 1119, one flat car loaded with the S-250 shelter, two other cars, attached to the flat car with weights of 51,000 and 43,600 lbs. respectively, and a loaded freight

TEST REPORT #010-B-9

6. TESTING PROCEDURE AND RESULTS (cont'd)

car of line with gross weight of 175,800 lbs.

Railroad torpedoss were positioned 100 ft. apart close to but before the impact point. Trial runs were made with an additional freight car to allow the railroad crew to get the engine settings that would give them approximately 9 miles per hour. Time measurements were taken in seconds to determine the speed of all runs.

The shoring of the shelter was performed in the normal manner for shipment. The direction of impact of the shelter during the longitudinal and lateral position was designated by the Government representative.

Measurements taken were as follows:

	Seconds	MPH
Longitudinal	7.70	8.9
	7.77	8.85
Lateral	7.00	9.75
4	8.00	8.5

After each impact, inspection of the shoring and the shelter was performed with a detailed inspection at the completion of the Fourth impact. There was no evidence of any physical effect on the shelter by the results of this test. Specific areas of inspection included around the lifting eyes at the changes in section from side to knee to floor panels and the door and end panels.

7. CONCLUSIONS;

The shelter design met the requirements of this test.

Approved by: Quality Control Engineering 75

ems.Inc.

TEST REPORT #010-B-10

1. <u>TITLE</u>: Sling Drop S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 22, 1966

2. PURPOSE: To test shelter design.

3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965

REQUIREMENT: (Specification Paragraph 4.3.3.3) Sling Drop - The shelter shall be suspended approximately 1/2 inch from the ground by means of the lifting sling assembly at its fully extended height. The sling assembly and the shelter shall be dropped in free fall so that the assembly strikes the roof of the shelter. This test shall be repeated five times.

5. EQUIPMENT REQUIRED:

Concrete pad, power winch, quick release hook.

6. TEST PROCEDURE AND RESULTS:

The shelter was raised and sling released as specified in requirement (d) above. Results of the five drops with indentations in the roof skin, none of which ruptured or penetrated the aluminum skin.

7. CONCLUSIONS Shelter design bot the requirements of this test.

Approved by: Quality Control Engineering

76 .

TEST REPORT #010-B-11

- 1. <u>TITLE</u>: Skid Bearing Test S-250(IE-2)/G Shelter - Item 2a Contract DA-28-043-ANC-01604(E) Performed August 22, 1966
- 2. PURPOSE: To test shelter design.
- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- BEQUIREMENT: (Specification Paragraph 4.3.3.4) Skid Bearing - The shelter shall be balanced on a 2 inch pipe anywhere along the skids.
- 5. EQUIPMENT REQUIRED:

Concrete pad, 2" diameter pipe, sling and power winch.

6. TESTING PROCEDURE:

The shelter with 1900# dummy load shall be balanced on a 2 inch pips anywhere along the skids.

7. TEST RESULTS:

Shelter balanced properly along its length with stops made at locations specified by the witnessing Government representative. The only result and the effect on the skids from this test was a dimpling on the outside edge of the curbside skid caused by the shelter being in a "cocked" position when it was initially lowered to the 2 inch pipe.

8. <u>CONCLUSION: The skids are acceptable to the requirements of the</u> specification.

Approved by: Quality Control Engineering

TEST REPORT #010-B-12

1. <u>TITLE</u>: Three-Point Support B-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-ANC-01604(E) Performed August 22, 1966

2. PURPOSE: To test shelter design.

3. APPLICABLE SPECIFICATION: SCL-4608A, Amendment #2 dated Dec. 9, 1966

4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.3.3) Three-Point Support - The shelter shall be supported on any three bettem cerners. In this position, the door shall operate freely.

5. EQUIPMENT REQUIRED:

Concrete pad, power winch, sling, wooden blocks (3).

6. TESTING PROCEDURE:

The shelter with a dummy payload of 1900# shall be supported on any three bottom corners. The door shall be opened and closed.

7. TESTING RESULTS:

The door was opened and closed in the testing position without any evidence of binding. Latch functioned properly and secured door.

8. CONCLUBION:

The shelter design met the requirements of this test.

Approved by: Quality Control Engineering 78

- 1. <u>TITLE</u>: Flat & Rotational Drop Tests S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 22, 1966
- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraphs 4.3.3.6 & 4.3.3.7) Flat Drop - The shelter shall be lifted to a height of 18 inches above a hard concrete surface (Measured from the bottom of the skids) and shall be allowed to fall freely with the skids impacting onto the concrete. This test shall be performed once.

Retational Drop - The shelter shall be placed on a hard concrete surface with a 4 inch by 4 inch member along one edge under the skids. The opposite edge shall be raised to a height of 18 inches above the concrete (measured from the bottom of the skids) and shall be allowed to fall freely onto the concrete. This test shall be performed once on each bottom edge for a total of four drops.

5. EQUIPMENT REQUIRED:

Concrete pad, sling, power winch with quickrelease hook, rule, 4x4 timber.

- 6. TEST PROCEDURE:
 - a. Flat Drop The shelter with a 1900# dummy isoas shall be lifted to a height of 18 inches above a hard concrete surface (measured from the bottom of the skids) and shall be allowed to fall freely with the skids impacting on to the concrete. This test shall be performed once.

- 6. TEST PROCEDURE: (con+'d)
 - b. Rotational Drep The shelter with a 1900# dummy load shall be placed on a hard concrete surface with a 4 inch by 4 inch member along one edge under the skids. The opposite edge shall be raised to a height of 18 inches above the concrete (measured from the bottom of the skids) and shall be allowed to fall freely on to the concrete. This test shall be performed once on each bottom edge for a total of four drops.
- 7. <u>TEST RESULTS</u>: Testing was performed as specified above with no visual damage to the shelter body. There was one noticeable effect of the drop test on the skids. The outside edges of the lower part of the outboard skids for a distance of approximately 3 inches from the front and rear ends open slightly in the rubber retaining groove. Subsequent testing, including towing tests, did not amplify or change this opening. It was considered that this effect did not alter the functionability of the skid.
- 8. <u>CONCLUSION</u>: The shelter design met the requirements of this test.

NOTE: Future skids will incorporate heavier wall sections to preclude skid retaining groove opening under similar tests.

Approved by: Quality Control Engineering

TEST REPORT #010-B-14

е.

- 1. <u>TITLE</u>: Towing Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 23, 1966
- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.3.8) Towing - The shelter shall be towed for a minimum of 1400 feet in each direction (front and rear) on the skids at a speed of five miles per hour over rough terrain. As part of the towing test, four right angle turns in sand shall be made. The turns shall be made with the initial position of the longitudinal axis of the shelter perpendicular to the truck, and the towing eye of the truck directly in line with the leading edge of the shelter. The pull shall be on one towing eye of the shelter.
- 5. EQUIPMENT:

5.1 M-35 Military Truck 5.2 S-250 lifting and tie-down sling 5.3 Mobile Crane

6. TESTING PROCEDURE:

The shelter with a dummy payload of 1900# shall be towed for a minimum of 1400 feet in each direction (front and rear) on the skids at a speed of five miles per hour over rough terrain. As part of the towing test, four right angle turns in sand shall be made. The turns shall be made with the initial position of the longitudinal axis of the shelter perpendicular to the truck, and the towing eye of the truck directly in line with the leading edge of the shelter. The pull shall be on one towing eye of the shelter.

81

TEST REPORT #010-B-14

7. TEST RESULTS: Testing was performed at Suellette's Sand Pit in Methuen, Mass. with the 1400 feet towing performed in 3-1/2 cycles on a measured 400 ft. long section. After towing the 1400 feet in each direction, four right angle turns were made in the sand.

> There was no evidence of any deformation either in the skids or the main shelter structure. Paint was worn off of the skids and off of the part of the exterior floor.

8. CONCLUSION:

Shelter design met the requirement of this test.

Approved by: Quality Control Engineering ne B.

- 1. <u>TITLE</u>: Lifting Test S-250(XE-2)/G Shelter - Item 3a Contract DA-28-043-AMC-01604(E) Performed August 22, 1966
- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.3.9) Lifting - The shelter, with an additional 6250 pounds of weight uniformly distributed over the floor, shall be suspended by the four lifting eyes for a period of 30 minutes. During the test the shelter shall show no undue distortion.

5. EQUIPMENT:

- 5.1 Plywood
- 5.2 Lead weights
- 5.3 Weighing Scale
- 5.4 Special Test Structure

6. TESTING PROCEDURE:

- 6.1 Locate shelter in special testing structure.
- 6.2 Lift shelter into position and attach chains from testing structure to lifting eyes.
- 6.3 Lower hoist so that all weight is suspended from lifting eyes.
- 6.4 Install plywood insert on floor.
- 6.5 Use weighing scale and/or count lead weights as they are placed into shelter and record, equally distribute over entire floor 6,250 pounds.
- 6.6 Allow shelter to stand 30 minutes after total weight has been installed.
- 6.7 Remove weights, lower shelter on to platform of test structure.

Systems, Inc. LAWRENCE, MASS. QUALITY CONTROL DEPARTMENT

TEST REPORT #010-B-15

TESTING RESULTS: 7.

After removing the weight from the shelter, there was no evidence of permanent deformation or material weakness.

CONCLUSION: 8.

Shelter design met the requirements of this test.

Approved by: Quality Control uth. Engineering

LAWRENCE, MASS. QUALITY CONTROL DEPARTMENT

TEST REPORT #010-B-16

- 1. <u>TITLE</u>: Deep Fording Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 24, 1966
- 2. PURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: Specification Paragraph 4.3.3.10 Deep Fording - The shelter, secured by its tiedowns to a suitable platform serving as the sinking device, shall be immersed for a period of one hour in water to a depth of 32 inches above the bottom of the skids. There shall be no leakage during this test. No special fording kits or additional caulking, taping, etc., shall be used in the performance of this test.
- 5. EQUIPMENT: Special plywood tank 8 ft. x 8 ft. x 36 inches deep. Attaching hold-down hardware.

6. TESTING PROCEDURE:

- 6.1 Close shelter door and verify that drain plug is installed.
- 6.2 Place shelter in tank and tie it in place.
- 6.3 Fill tank with water to 32 inch level.
- 6.4 Allow shelter to remain in water 1 hour.
- 6.5 Remove shelter from tank and dry area around door (use air if necessary).
- 7. TESTING REBULTS:

After some false starts where water entered the shelter because of drain plug leaking (sand in the threads) and two areas where sealer was not complete, shelter remained immersed for 1 hour without any entrance of water.

TEST REPORT #010-B-16

8. CONCLUSION:

Shelter design met the requirements of this test.

Approved by Quality Control Engineering reall

TEST REPORT #010-B-17

1. <u>TITLE:</u> Roof Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 23, 1966

- 2. PURPOSE: To test shelter design.
- 3 APPLICABLE SPECIFICATION: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.4.1) Roof - The shelter roof shall be loaded with a static load of 1860 pounds uniformly distributed over the entire roof area. During the test the shelter shall show no undue distortion.

5. EQUIPMENT:

- 5.1 Craig Systems Concrete Test Pad
- 5.2 1860 lbs. of lead weight
- 5.3 Plywood Panel
- 6. TESTING PROCEDURES:

Place plywood panel on shelter roof. Uniformly place lead weights on panel.

The shelter roof shall be loaded with a load of 1860 pounds of lead uniformly distributed over the entire roof area.

7. TESTING RESULTS:

With the load on the roof, it was noted by a dimensional check that the center of the roof deflected approximately 1/8 inch. After weights were removed, roof returned to a level condition.

8. CONCLUSION:

Shelter design met the requirements of this test.

Approved by: Quality Control sett. Engineering

whether all a first state of the state of the

LAWRENCE, MASS. QUALITY CONTROL DEPARTMENT

TEST REPORT #010-B-18

- 1. TITLE: Door Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 23, 1966
- 2. PURPOSE: To test shelter design.
- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.4.2) Door - A 200 pound load shall be placed separately on each door in its fully opened position. The load shall be located at the maximum distance from the hinge line.

5. EQUIPMENT:

- 5.1 Special Carrier for Weights 5.2 200 lbs. of lead weight
- 6. TESTING PROCEDURE:
 - 6.1 Apply load as specified in 4. above.
 - 6.2 Remove load and inspect for deformation and proper function of door and latch mechanism.
- 7. TESTING RESULTS:

After weights were removed, there was no deformation in the hinges and door, and latch mechanism functioned properly.

8. CONCLUSION: Shelter design met the requirements of this test.

Approved by: Quality Control Engineering

1. <u>TITLE</u>: Lifting Eyes Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-01604(E) Performed August 25, 1966

2. PURPOSE: To test shelter design.

3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965

4. REQUIREMENT: (Specification Paragraph 4.3.4.3)

Lifting Eyes - The shelter shall be firmly secured in a place, and a 5000 pound tensile load shall be applied to all four of the lifting eyes in each of the following directions: (a) upward, (b) downward, (c) horizontally in the plane of the eye, and (d) horizontally at right angles to the plane of the eye.

5. EQUIPMENT:

. .

Special Testing Structure Simplex Hydraulic (4 valve) Pump Model 3 HPB4089 Hydraulic Cylinder - Rogers #C2-3CK-1-3/4x14 (effective area 4.66 square inches) Special Pressure Gage calibrated in pounds force for above cylinder Attaching and Hold-down hardware

6. TESTING PROCEDURE:

- 6.1 Attach hydraulic cylinder to one of forward lifting eyes, and to test structure.
- 6.2 Attach holding hardware to opposite lifting eye (door end) and to test structure.
- 6.3 Apply force in an outward horizontal direction by means of the hydraulic cylinder.
- 6.4 When force reaches 5000 pounds, release pressure.
- 6.5 Inspect for permanent deformation or damage.
- 6.6 Disconnect cylinder and all attaching hardware.
- 6.7 Repeat for other two lifting eyes.
- 6.8 Repeat complete cycle for each direction on all lifting eyes (Reference 4. above).

7. TESTING RESULTS:

During and after all of the testing cycles were completed, there was no evidence of permanent deformation in the shelter or in the eyes.

CONCLUBION: Shelter design met the requirements of this test.

Approved by:

Quality Control

Engineering

TEST REPORT #010-B-20

- 1. <u>TITLE</u>: Towing Eyes Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-01604(E) Performed August 25, 1966
- 5. PURPOSE: To test shelter design.
- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.4.4) Towing Eyes - The shelter shall be firmly secured in place and a 5000 pound tensile load shall be applied to all four of the towing eyes in each of the following directions: (a) upward, (b) downward, (c) horizontally in the plane of the eye, and (d) horizontally at right angles to the plane of the eye.
- 5. EQUIPMENT: Special Testing Structure Simplex Hydraulic (4 valve) Pump Model 3 HPB4089 Hydraulic Cylinder - Rogers #C2-3CK-1-3/4x14 (effective area 4.66 square inches) Special Pressure Gage calibrated in pounds force for above cylinder Attaching and Hold-down hardware
- 6. TESTING PROCEDURE:
 - 6.1 Attach hydraulic cylinder to one of forward towing eyes, and to test structure.
 - 6.2 Attach holding hardware to opposite towing eye (door end) and to test structure.
 - 6.3 Apply force in an outward horizontal direction by means of the hydraulic cylinder.
 - 6.4 When force reaches 5000 pounds, release pressure.
 - 6.5 Inspect for permanent deformation or damage.
 - 6.6 Disconnect cylinder and all attaching hardware.
 - 6.7 Repeat for other two towing eyes.
 - 6.8 Repeat complete cycle for each direction on all lifting eyes (Reference 4. above).

Note: This test performed in conjunction with Lifting Eyes Test.

TEST REPORT #010-B-20

7. TESTING RESULTS:

During and after all of the testing cycles were completed, there was no evidence of permanent deformation in the shelter or in the eyes.

8. CONCLUSION: Shelter design met the requirements of this test.

Approved by:

Quality Control Engineering

1. TITLE: Folding Steps Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 23, 1966

2. PURPOSE: To test shelter dogign.

- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. REQUIREMENT: (Specification Paragraph 4.3.4.5) Folding Steps - Λ 400 pound load shall be applied on the outer section of the step.

5. EQUIPMENT:

- 5.1 Special fixture to carry 400 pounds of lead weight while attached to a Folding Step.
- 6. TESTING PROCEDURE AND RESULTS:

Special fixture was attached to the lower folding step. Four hundred pounds of lead weight were loaded into the fixture. Weight was then removed and shelter was inspected for any detrimental affect of the test.

There was no evidence of any permanent deformation or physical damage as a result of this test.

7. CONCLUSION: Shelter design met the requirements of this test.

Approved by: Quality Control Engineering

TEST REPORT #010-B-22

- 1. TITLE: Wall Insert Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 25; 1966
- 2. PURPOSE: To test shelter design.
- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Doc. 9, 1965

4. REQUIREMENT: (Specification Paragraph 4.3.4.6)

Wall Insert - 5/16 inch steel rivnuts shall be installed in wall members on opposite walls of the shelter in locations selected by the COTR. No banding material of any kind shall be employed to assist in securing the Rivnut in place. The inserts shall be connected together by suitable means and a 1200 pound tensile load applied from one to the other. After the load has been removed, there shall be no distortion of the shelter at the attachment location. Upon conclusion of this test, the Rivnut shall withstand 100 inch pounds of torque without turning.

5. EQUIPMENT:

- 5.1 Simplex Hydraulic (4 valve) Pump Model 3HPB4089
- 5.2 Hydraulic Cylinder Rogers #C2-3CK-1-3/4x14 (effect. area 4.66
- 5.3 Special Pressure Gage calibrated in pounds sq.in. force for above cylinder.
- 5.4 Attaching hardware
- 5.5 Torque Wrench

5. TESTING PROCEDURE AND RESULTS:

The Government representative selected locations in each side wall that were approximately the geometric center. 5/16 inch steel rivnuts were installed at these locations. Test was performed using the hydraulic sylinder attached between the two wall inserts. A tensile load of 1200 lbs. was applied and then released.

6. TESTING PROCEDURE AND RESULTS: (cont'd)

Bolts were inserted into the insert holes. The torque wrench was then used to exert 100 inch/lbs. of torque on the insert. The insert did not turn. There was no evidence of any distortion.

After test was completed, the Government representative observed that the hat-shaped supports which held the load in place during testing had not been removed. To insure that there would be no criticism of the test as performed, the hat-shaped pieces were removed from the shelter and tests were performed on the same inserts as described above. The results of this second test were the same as the first; that is, no permanent deformation resulting with the inserts able to take 100 inch/lbs. of torque without turning.

7. CONCLUSION: Shelter design met the requirements of this test.

Approved by: R. I Smith Quality Control Engineering

TEST REPORT #010-B-23

J.

- 1. <u>TITLE</u>: Floor Insert Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 25, 1966
- 2. PURPOSE: To test shelter design.
- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.4.7) Floor Insert - A 5/16 inch steel rivnut shall be installed in a floor member in a location selected by the COTR. No bonding material of any kind shall be employed to assist in securing the rivnut in place. A 1200 pound tensile load shall be applied to the rivnut. After the load has been removed, there shall be no distortion of the shelter at the attachment location. Upon conclusion of this test, the rivnut shall withstand 100 inch pounds of torque without turning.

5. EQUIPMENT:

- 5.1 Simplex Hydraulic (4 valve) Pump Nodel 3HPB4089
- 5.2 Eydraulic Cylinder Rogers #C2-3CK-1-3/4x14 (effective area 4.66 sq. inch)
- 5.3 Special Pressure Gage calibrated in pounds force for above cylinder.
- 5.4 Attaching hardware
- 5.5 Torque Wrench

6. TESTING PROCEDURE AND RESULTS:

The Government representative selected a location in the floor that was approximately the geometric center for the installation of the floor insert. Insert was installed. Hydraulic cylinder was then attached to the floor insert and supported across the knees of the shelter. A tensile load

TEST REPORT #010-B-23

6. TESTING PROCEDURE AND RESULTS: (cont'd)

of 1200 lbs. was exerted on the floor insert. There was no distortion of the shelter. Testing the insert with a torque wrench on a bolt that was inserted into the rivnut. The insert took 100 inch pounds of torque without turning.

7. CONCLUSION: The shelter design met the requirements of this test.

Approved by: Quality Control Engineering

the amplitude the contains the threads

1. <u>TITLE</u>: Lift and Tiedown Assembly Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 25, 1966

- 2. PURPOSE: To test shelter design.
- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENTS</u>: (Specification Paragraph 4.3.4.8) Lift and Tiedown Assembly - The combination lift and tiedown assembly shall be subjected to a tensile load of 5500 pounds.

5. EQUIPMENT:

- 5.1 Simplex Hydraulic (4 valve) Pump Model #HPB4089
- 5.2 Hydraulic Cylinder Rogers #C2-3CK-1-3/4x14 (effective area 4.66 sq. inches)
- 5.3 Special Pressure Gage calibrated in pounds force for above cylinder.
- 5.4 Attaching hardware
- 5.5 Torque Wrench
- 6. TESTING PROCEDURE AND RESULTS:

One leg of the lifting and tiedown assembly was selected by the Government representative for tests to these requirements. Tensile loading of 5500 lbs. was applied to this leg twice. First on the longer segment of the two-part leg and then to the complete length of the sling leg which included this longer segment. There was no slippage of the cable in its fittings nor was there any evidence of breaking strands in the cable.

7. CONCLUBION: Shelter design met the requirements of this test.

99

Approved by:

Quality Control

Engineering

LAWRENCE, MASS. QUALITY CONTROL DEPARTMENT

TEST REPORT #010-B-25

L. <u>TITLE</u>: Watertightness Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed July 20, 1966 and August 30, 1966

- 2. FURPOSE: To test shelter design.
- 3. APPLICABLE SPECIFICATION: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraphs 4.3.5 and 4.3.2.1) Watertightness " The watertightness test shall be performed a second time as outlined in 4.3.2.1.

Watertightness - Spray the surfaces of the shelter with water from Nozzles Model G295Q or 6G298Q, as made by Spraying Systems Co., Bellwood, Illinois, or equal. The nozzles shall operate at 40 pounds per square inch dynamic pressure measured adjacent to the nozzles, shall be approximately nineteen inches from the shelter, shall point directly at the shelter panel under test, and shall be located in a pattern to provide uniform coverage of the panel under test. Nine nozzles shall be used for each end panel and for each side or roof panel. All five exposed panels shall be tested for forty minutes each and more than one panel may be tested at one time, if desired. There shall be no visible evidence of leakage. No additional caulking, taping, etc., is permitted during this test.

5. EQUIPMENT:

Spider Fixture with nine (9) nozzles Hose (connecting to fresh water source). Water Testing Chamber. Water Pressure Gage. Attaching Hardware and Lifting Fixture.

TEST REPORT #010-8-25

TEST PROCEDURE: (All doors, ports and windows closed)

- 6.1 Place shelter in test chamber at room temperature.
- 6.2 Place nine nozzle spider approximately nineteen inches from panel to be tested.
- 6.3 Attach hose to spider and from water source.
- 6.4 Turn on water and verify gauge reading to be 40 psi ± 3 psi.
- 6.5 Spray panel under test for a total time of 40 minutes each.
- 0.6 Turn off mater.
- 6.7 Test the vertical panels of shelter in any convenient sequence.
- 6.8 Disconnect spider from water source and position spider horizontally by attaching to lifting fixture.
- 6.9 Position spider above shelter as described in 6.2.
- 6.10 Repeat stops 6.3 through 6.7.

7. TEST REBULTS: There was no entrance of water during the test.

8. CONCLUSION: The shelter design met the requirements of this test.

Approved by: Quality Control Engineering

时间的时间的复数形式

1. <u>TITLE</u>: Shielding Effectiveness Test S-250(XE-2)/G Shelter - Item 2a Contract DA-28-043-AMC-01604(E) Performed August 29, 1966

- 2. PURPOSE: To test shelter design.
- 3. <u>APPLICABLE SPECIFICATION</u>: SCL-4608A, Amendment #2 dated Dec. 9, 1965
- 4. <u>REQUIREMENT</u>: (Specification Paragraph 4.3.6) Shielding Effectiveness - The shelter shall be tested to determine its attenuation to electric and magnetic fields and to plane waves in the frequency range from 0.15 to 10,000 mc with the doors closed. Testing shall be conducted in accordance with the basic methods of MIL-STD-285. The shelter shall attain a minimum attenuation of 60 db throughout the prescribed frequency range.

5. TEST PROCEDURE AND RESULTS:

See attachment of Testing Report No. 552 from Sanders Associates.

6. CONCLUSION: She

Shelter design met the requirements of this test.

Approved by: Quality Control Engineering

Martine , Andula Sa

ELECTROMAGNETIC INTERFERENCE EVALUATION

OF A

CRAIG SYSTEMS, MODEL S-250 (XE-2)/G CHIELDED ENCLOSURE

AUGUST 29, 1966

TEST REPORT NO. 551

PREPARED FOR:

CRAIG SYSTEMS, INC. 360 MERRIMACK STREET LAWRENCE, MASSACHUSETTS

PREPARED BY:

SANDERS ASSOCIATES, INC. 95 CANAL STREET NASHUA, NEW HAMPSHIRE

ADMINISTRATIVE DATA

PURPOSE: To evaluate the shielding effectiveness of a Craig Systems Shielded Enclosure Model S-250 (XE-2)/G. DATE TEST BEGAN. August 29, 1966

DATE TEST COMPLETED: August 29, 1966

MANUFACTURER: Cra'g Systems, Inc.

TYPE OR MODEL: S-OLC (XE-2)/G CONTRACT NO.: Serial No. 6010-2

TEST SAMPLE SPECIFICATION OR DWG. NO.:

QUANTITY OF ITEMS TESTED: 1 (One)

SECURITY CLASSIFICATION OF TEST SAMPLE: Unclassified

INTERFERENCE SPECIFICATION: MIL-STD-285

TEST CONDUCTED BY: R. Burke, Technician

TEST APPROVED BY: H. Kicza, EMI Measurement Supervisor (Actin.)

DISPOSITION OF TEST SAMPLES. Relained at Crait Crait Las, inc.

DEVIATIONS APPLICABLE TO INTFELI RENCE CONTROL REQUIREMENTS: As modified by Craig Systems Specification ES-334B

PAGE 2 OF 7

T.R. 554

 $= (u_0 \varphi_0) \quad \ \text{and} \ u_0 \varphi_0 = u_0 (\beta_0 \varphi_0) (\beta_0$

Test Report No. 552

TEST PROCEDURE

The shielding effectiveness of a Craig Systems Shielded Enclosure Model S-250(XE-2)/G was measured in accordance with the procedures outlined in Specification MIL-STD-285 as modified by Craig Systems Specification ES-334B.

The attenuation of the enclosure to Magnetic F and Radiation was measured at 150Kc at the lenter of the door and at the center of each side of the shelter. The 12" loop antennas were placed in a vertical plane and were located 12 inches from the inside and outside walls of the enclosure.

The attenuation of the enclosure to Electric Field Radiation was measured at 150Kc, 1Me and 18Mc at each vertical corner and both sides of the main door. A 41 inch vertical rod antenna was used and was located 12 inches from the inside and outside walls of the enclosure.

The attenuation of the enclosure to Plane Wave Radiation was measured at 400Mc, 1000Mc and 10,000Mc at the center of each side of the enclosure. Horizontally polarized dipoles and horn antennas were used. The antennas were located 30 inches from the inside and outside walls of the enclosure.

A 90db reference was set during the reference measurements except at 150Kc where a reference level of 75db was used.

The test sample and test location are shown in Figure 1.

TEST RESULTS

The attenuated level for each test location is given on Data Sheets 1 and 2. The attenuation of the enclosure is equal to the free space reference level minus the shielded level. The minimum attenuation of the enclosure was 60db at 14Ke, magnetic field, measured at the door.

CONCLUSIONS

Craig Systems Shielded Enclosure Model S-250(XE-2)/G Serial No. 6010-2 complies with the 60db requirement as outlined in Craig Systems Specification ES334-B.

Technician Burke,

-3-' 105

H. Kicza, OActing EMI Measurement Supervisor

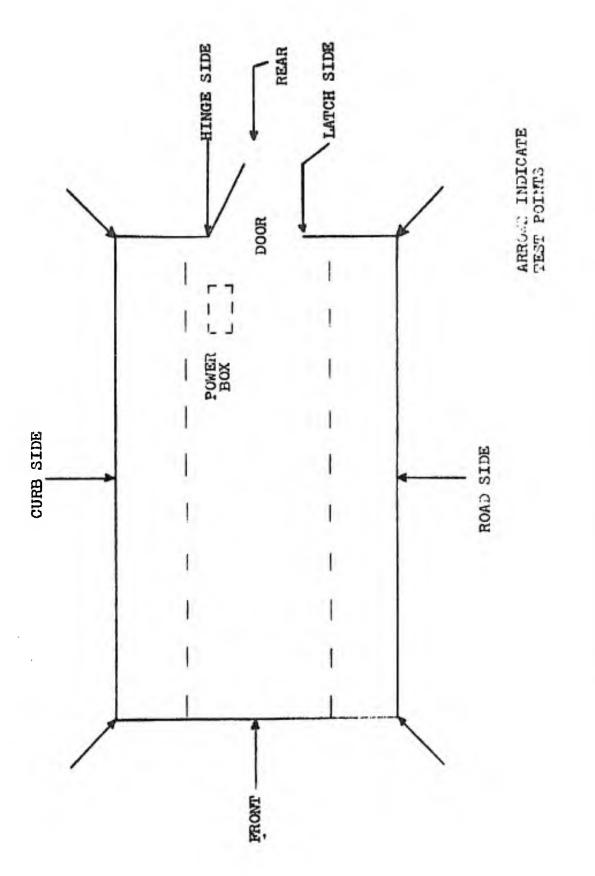


FIGURE I TEST JAMPLE AND TEST LOCATIONS

Allidakte - F

-4-106 Test Report No. 552

SANDERS ASSOCIATES, INC., NASHUA, N. H.

Sita: Sheat No 1

ELECTROMAGNETIC SHIELDING EVALUATION

MANUFACTURER Craig Systems MODEL NO. <u>S-250 (XF-2/G</u> SERIAL NO. <u>C. 16</u> CONTRACT NO. <u>THRM B</u>

8/39/66 DATE REPORT NO. 552 SPECIFICATION Mal. Stel. TEST ENGINEER

FREQUENCY	ANTENNA SEPARATION	FREE SPACE REF. (dbµ)	SHIELDED LEVEL (dbµ)	ATTENUATION DB	MAX. ATT. DB	LOCATION	ANTENNA TYFE
150K.C.	26"	75	15	60		Reak	Loop
150 KC	1	75	40	775		Front	Loop
150 KC	26"	75	<u> < 0</u>	27.5		Carbide	Loop
50 KC	26'	75	40	>75		Bood Side	Loop
JOKC	36 "	75	50	775		Lated Side	Rod
1	21"	75	20	775		Hings Side	1
	26"	75	20	775		Curb rear	
	36	75	40	775		Curb front	
	56	75	20 .	775		Boadbfront	
17	26"	75	20	775		Road Rear	
m.c.	26"	90	<u><0</u>	796		Latel sike	Rod
	26 "	90	<0	790		Hings side	
	36"	90	<0	790		Curle rear	
	26	90	20	790		Curb front	
	26"	90	20	790		Road front	
t	26:	90	60	790		Road hear	¥
18mc	36"	90	4	8.6		Latchride	Rad
	2.6"	90	6	84		Hinge side	
	26"	90	7	83		Curb rear	
	36"	90		79		Carb front	
	26"	9.6	11	79		Boad front	te
	26	90	9	81		Road Freak	A

GODB

ICF-12 2/8/63 SANDERS AUSOCIATES INC., MASHUA, D. F.

ELECTROMAGNETIC SUISLETING EVILLATION

MARTIN STURER Crucing Statima MODEL NO. 5-250 (XE-2) SERTAL NO. 6010 - 2 CON PRACT NO. JARINB

nate Schit 16. 2

DATE <u>\$ 29/66</u> NUIDIAT NO. <u>552</u> S. ECTFICATION M. 11- STJ- 2.83 They ENGINEER R. Burke

FREQUENCY	ANTENNA SEFARATION	FREE SPACE REF. (dbp)	SHIELDED LEVEL (dbµ)	ATTENUATION DB	MAX. ATT. DB	LOCATION	
400 A13	74"	190	60	790		Bear	i cara
400 m		90	40	790		Cirst side	t yrace
460 mc		90	< 0	790		Front	il inette
HOON	74*	90	<0	790		hoad side	L'epine
160	74"	90	12	78		Rear	hipara
IG-C	7.4 "	90	<0	290		Curlande	16 . Lock
1GC	74 "	90	40	290		Ironi	1 marale
16-C	7441.	90	<0	790		bacd side	
InGi	74"	90	23	67		Reci.	Haine
1060	74"	90	60	740		Esasure	their
1060	74"	90	20	790		front	Horn
1.000	74"	90	20	740		Rochenie	Harn
							; ; ;
<u> </u>							1
)		i		· ••• ••• ••• ••• ••• ••• ••• ••• ••• ••
 							; ;
					····		2
				·····	f 		
		<u>-</u>					i

NOTES: Specification Limit 60DB

TEST EQUIPMENT AND FACILITIES

TR # 552

equip used	Description	Manufacturer	Type	Serial	Cal. Date
x	Field Intensity Mete	r Empire Devices	NF-105	2020	8/66
. X	11	li	NF-105/TA	2020	8/66
x	11	11	NF-105/T2	3348	4/66
x	11	11	NF-105/T3	1746	4/66
x	11	Polarad	FIM-2	292	4/66
x	11	1	FIMX2	269	4/66
X,	Signal Generator	Hewlett Packard	606A	038-03786	5/66
x	Power Oscillator	A.I.L.	124	12410	6/66
x	Antenna Kit	Empire Devices	VA105	195	
·x	11	11	AC105		
x	A.P.S 4 Radar	Sanders Associates	** **		
		1			
		·			
		· · · · · · · · · · · · · · · · · · ·			
		\ 			
				-	• • ··· • !
		i		:	
					1

4. Factual Data - In the initial design of the S-250(XE-2)/G Shelter great emphasis was placed upon lightweight construction. To this end many design approaches which ultimately proved futile were incorporated into the Advance Development Model No. 1. The rejection of the first unit based on inadequate strength of knee panels, inadequate insert capability, dimensional tolerances and weight presented the major difficulty in this program. Each of these areas were corrected such that the resubmitted unit successfully met all of the previous deficiencies. The strength of the knee panels was reinforced by an external angle, the wall and floor insert torque requirements were increased by the substitution of wood thermal barriers rather than high density foam barriers. Dimensional tolerances were pin pointed by further definition of requirements and the weight problem was eliminated by increasing the allowable specification weight. The resubmitted unit demonstrated compliance with these specifications and also gave a firm basis for the preparation of Government format drawings.

5. <u>Conclusions</u> - It is concluded that the S-250(XE-2)/G Shelter as successfully tested under Contract Item 2a complies with Specification SCL-4608A with Amendment No. 2. Subsequent production testing indicates that units manufactured in accordance with the running set of drawings does yield a shelter which in all aspects meets specification requirements. Some 50 additional shelters have been manufactured by Craig Systems to these drawings and it is felt that the drawings fully represent the tested and approved unit.

6. <u>Recommendations</u> - It is recommended that future consideration be given to two possible areas of improvement. These are:

1. The use of extrusions in lieu of formed members.

NOTE: This would require an increase in the allowable weight of the shelter.

2. A simplified door with a possible consideration of eliminating the inner door.

It should be noted that in June of 1967 Craig Systems was awarded a contract by USAEC for a production quantity of S-250/G Shelters which will take into account the recommendations noted as 1 above. It is felt, however, that further investigation is warranted under 2 above.

7. <u>Identification of Key Technical Personnel</u> - The following key technical personnel have contributed to the success of the S-250(XE-2)/G Shelter program.

ERNEST Di PAOLO
SENIOR PROJECT ENGINEER
Ernie, as Senior Project Engiveer, is extremely well qualified in the broad scope and range of engineering activities at Craig Systems and, in particular, with shelter design, transit case design, and antenna mast design
BACKGROUND
He spent 14 years with the United Show Machinery Corporation as the Engineering Supervisor of the Construction Department, with the responsibility of designing and construction production and test facilities for components used in aircraft, missile and tank systems.
He joined Craig in 1949 and was engaged in the design and development of the following shelters:
S-57/GR used with Radio Direction Finder AN/CRD-6
S-62 FR used with VHF Omni-directional Radio Range System AN/FRN-12
S-73/TRC-32 used with Transportable Radio Set AN/TRC-32
Helicop-Hut, LM 257, used to house Battery Control Center and field maintenance shops for HAWK Missile System

.112

Helicop-Hut, LM 500, used to house Long Range Auto-theodolite and associated equipment for the Programmer Test Station (PTS) and Improved Programmer Test Station (IPTS) for PERSHING OMSS and SMSS Shelter configurations for CHAPARRAL Weapon System Test Equipment Radar and Operations JUPITER Program HAWK PCP Shelters Weapon System LFE Shelters

Ernie has also had considerable experience in the development and production of storage and shipping con-22' Long Shelter, Electrical Equipment for Litcom (Westrex) Systems, Inc.

DAS (Data Analysis Shelter) for UNIVAC's TSS (Tactical Surface System)

22' Long CSS (Computer System Shelter)

Alden Weather Finding Station

tainers for electronic test equipment, missiles, components, and optical devices.

Ernie is a Registered Professional Engineer (Massachusetts).

EDUCATION

He received his B.S. in Architectural Engineering degree from M.I.T. in 1934.

ROBERT S. SMITH

DIRECTOR OF QUALITY CONTROL

and quality of all plant processes and fabrication. At Craig, he implements and supervises cont rols and procedures Eob, as Director of Quality Control at Craig Systems is responsible for maintaining high standards of inspection for inspection and quality control operations, including special processes such as spot welding, welding, adhesive bonding, plastic foaming, soldering, cleaning, prepaint and paint finishing, and environmental testing.

With over ten years of experience at Craig. Bob was responsible for quality control on a wide variety of JUPITER, MATADOR, PERSHING and HAWK Guided Missiles, which covered structures as well as facility projects including Project TWO WHEELS and Project FOUR WHEELS, Air Traffic Control, and the THOR, installation. Bob holds ham radio license KIGVB.

asset in moving with Craig into the field of expanded product center areas of fabricated structures and related The broad scope of his present duties, together with his previous experience in other firms, is a distinct activities.

19
-
Ö
DC.
2
X
Q
S
a

and actuators. He has eight years experience in all types of inspection functions on quality control engineering, product engineering, metallurgical laboratory, heat treating and plating operations. He worked extensively on Bob's earlier experience was obtained as Quality Control Manager for Electrol, Inc., and Kaiser Motors Gorporation. His experience includes responsibility for quality functions on servos, aircraft landing gear the R-1300-1, ~2, -3 and -4 military aircraft engines and the commercial engine L-226.

Quality Gontrol functions relative to commercial and military aircraft hydraulic equipment. Products included In 1955, as Quality Control Manager for Electrol, Inc., Kingston, New York, he directed inspection and hydraulic servos, valves, hydraulic actuators, and aircraft landing gear.

Bob's assignments on automotive and aircraft engines in Engineering and Quality Control were culminated in In 1948, and subsequent seven years at Kaiser Motors Corporation, Engine Division, Detroit, Michigan, the position of Uuality Control Manager, with supervisory responsibility over the Metallurgical Laboratory. heat treating and plating operations, as well as Quality Control Department.

In 1940, he joined the U. S. Air Force where his services were utilized in Aircraft Maintenance and In-As an Aircraft Mechanic and Instructor of Aircraft Mechanics, Bob was involved in maintenance and inspection of all aircraft utilized in the Air Force at that time. Final assignment was Crew Chief on a spection.

EDUCATION

Wayne State University Law School. Participated as Student and Instructor in numerous Courses in the field of B.S. in Mechanical Engineering from the University of Illinois in 1948. Elected to Mechanical Engineering Honorary Society, Pi Tau Sigma. Bob also attended the University of Minnesota, College of Engineering, and

Smith

WEBSTER J. BROWN

Senior Chemical Engineer

BACKGROUND

years, being a member during this period of the Thomson Laboratory, the Wire and Insulation Department, the Motor and Generator Department and the Industrial Heat Department. He served while with Web has held engineering positions with the General Electric Company for approximately thirty the General Electric Company as Process, Product and Production Engineer over the years.

In 1959, Web joined Anaconda Wire and Cable Company, where he had a project assignment to obtain uniformity of magnet wire processing and product quality at the company's several magnet wire plants.

and foreign locations. He has engineered the erection, the processing and the training of the oper-From 1961 to 1965, he was associated with Mohawk Development Service, Inc. and had several project assignments in the wire and insulation field where the work took him to both United States ators and mill staff in production of magnet wire. At Durgapur, India, a complete wire mill was built and put into operation under his guidance.

EDUCATION

Management I & II - General Electric Company. Extension Courses in S.A.I., E.P. and Principles B.S. in Chemistry from Colby College in 1929. Engineering I & II - General Electric Company. of Foremanship. DONALD VANCE

Project Engineer

BACKGROUND

inserts and military specification knobs. Oualified product listing experience was achieved consisted of design and development of mechanical components, primary captive hardware company's prime product, thermistors. Previous to this, Don worked as a Components Don's former experience obtained as Design Engineer for Fenwal Electronics, Inc., where duties included design and development of electronic packaging techniques for the Engineer at National Radio Company, Inc., for 7-1/2 years. Duties at National Radio as a result of the military specification knob program.

Don presently holds a commission of First Lieutenant Signal Corp, U.S.A.R.

EDUCATION

Received his B.S. in M.E. Degree from Norwich University in 1958.

BLANK PAGE

WARREN TIBBETTS TEST ENGINEER Warren has been employed at Craig Systems Corporation since 1951 where his abilities have been used in many ways. As Supervisor of Production Control, he devised and installed a control system for the manufacturing of electrical, mechanical and sheet metal production.

poured-in-place polyurethane foam panels, Polyester glass lay up and epoxy cements as well as the develop-As Assistant to the Supervisor of Research & Development, he was responsible for the development of ment of the Helicop Hut, a shelter used to house electronic equipment for the Armed Services,

As Manager of Helicop Hut Manufacturing, he was responsible for the engineering, development, manufacturing and methods of this shelter, using cemented and poured-in-place polyurethane foam panels.

mentation of drawings, methods, etc. at the Craig Plant in Lawrence. He also helped to set up and put into Ag Supervisor and Technical Liaison of the HAWK system for NATO, he was responsible for the docuproduction the manufacture of shelters at the Fokker Aircraft Plant in Dordrecht in the Netherlands. Tibbetts

ment of new products, also in the testing of shelters, masts and transporters according to MIL specifications As Manager of the Prototype Division of Research & Development, he was responsible for the developboth at our Lawrence Plant and at the Aberdeen Proving Grounds in Aberdeen, Maryland.

BACKGROUND

From 1943 to 1951, Warren was employed at the International Shoe Machinery Corporation. Cambridge, machinery. He also held positions of Assistant Treasurer, Sales & Service Manager for the United States Massachusetts, where he was responsible for engineering, drafting, manufacturing and service of shoe and Canada.

From 1940 to 1943, Warren was employed at Atwood & Morrial Company in Salem, Massachusetts, as Production Manager of one-third of the business responsible for the manufacture of turbine control valves and relief valves.

Division as a draftsman, as a machine designer, and as a member of the test division, which was responsible From 1927 to 1940, Warren was employed at the United Shoe Machinery Corporation in the Research for the testing and evaluation of all machines, devices, etc. used in the manufacture of shoes and allied products.

EDUCATION

High Schoel at Brockton, Massachusetts

Wentworth Institute - Boston, Massachusetts

Warren has laken numerous courses in chemical handling and epoxy cements, polyurethane foams and Value Engineering. CHARLES E. WATT, JR.

LA FEINIS AN A FE

-

*

-

15

1

Assistant Chief Mechanical Engineer

ed responsibility concern distribution closely air had direct field has been including He uipment, . esign and heat transfer design for various shelter applications ince 1959, Charles' career in the shelter and van installation eq design and selection of air conditioning and ventilating SQ-18 system for the U. S. Marine Corps.

responsible pressure ration and Robinson Boiler Works pumping and 17 evelopment and product improvement of heat transfer applications, thermodynamics and hydrogen for military incorporating high vacuum Laboratory storage, for the Development systems He also was supervisor of an Advanced Charles was previously employed by the Cambridge Corpo sport of liquified gases, such as liquid oxygen, nitrogen, t Engineer where he designed equipment components and um vessels, and super-efficient heat insulation systems cial applications. Projec Q and tran commer the P P for and đ

with the system d on the M

combination with reflective insulations. Charles has experience in high capacity heat exchanger design and test site instrumentation.

graduate work in advanced structural design and high vacuum techniques at Northeastern University He received his B.S. in M.E. degree from Lowell Technical Institute in 1952. He has done and Boston University.

Charles served two years in the U.S. Navy as an Executive Officer aboard ship. He is currently a Lt. (J.G.) in the U. S. Navy on a Standby Reserve basis.

Watt

÷

	CUMENT CONTROL DATA .		and and a second state of the second seco
(Security classification of title, body of ab. • ORIGINATING ACTIVITY (Corporate author)	stract and indexing annotation must b	e entered when	the overall report is classified) F SECURITY CLASSIFICATION
			LASSIFIED
Craig Systems Corporation, Law	rence, Massachusetts	26. GROUP	
REPORT TITLE			
Shelter, Electrical Equipment,	S-250(XE-2)/G		
. DESCRIPTIVE NOTES (Typs of report and inclusion			
Final Report - June 1965 - Sept AUTHORIS) (First name, middle initial, last name)	tember 1967		
. AUTHOR(S) (First name, middle initial, last name)			
DiPaolo, Ernest			
REPORT DATE	78. TOTAL NO.	OF PAGES	75. NO. OF REFS
NOVEMBER 1967 CONTRACT OR GRANT NO.	120		0
DA28-043 AMC-01604(E)	Sa. ORIGINATOR	S REPORT NU	
PROJECT NO.			
1E6-343-1 D 246			
1E6-34301 D 246-06	95. OTHER REP (b)s report)	ORT NO(S) (Any	other numbers that may be assigned
DISTRIBUTION STATEMENT	ECOM 016	04-7-	
	12. SPONSORING		
ABSTRACT	U. S. Arm Fort Monm	y Electron outh, N. J	nics Command J (AMSEL-RD-GDO)
ABSTRACT Electrical Equipment Shelts fabricated of aluminum outer and to the aluminum skin to form a s hat members within the panel pro- with a door within a door. The The S-250 Shelter weighs 67 transported by 1-1/4 ton vehicle The development of the S-29 AMC-O1604(E) issued 30 June 1969 was designed and successfully te basis for the preparation of a cor reprocurement. These drawings we curement models. The final set The major accomplishments we lightweight, high strength-to-we ing worldwide environmental condon on 27 April 1966.	U. S. Arm Fort Monm er S-250(XE-2)/G is an d inner skins with poly sandwich panel approxim ovide mounting for equa inner door provides a 70 pounds and has a pay 35. (50 Shelter was accomple 5. Under this contract ested. The configuration complete set of manufact were further used for the of drawings was submit under this development eight ratio. RF shields	y Electror outh, N. J aluminum, yurethane nately 1-1 ipment. T means of vload capa ished unde tan Advan ion of thi turing dr the actual ted to US were the	hics Command J (AMSEL-RD-GDO) RF-durate lightweight shelter slab insulation bonde /2" thick. Aluminum he door is provided escape from the inside city of 1900 pounds with r Contract DA28-043 ice Development Mpdel s accepted unit was the awings suitable for fabrication of pro- AEC on 30 June 1967. successful design of a capable of withstand