
4

í«lifcS9fSIMi8WP«ISsÂI#^íp|
IGS-THE INTEGRATED- GRAPHICS SYSTEM

liilÃsiliii»«*®
lIliÉH

FOR THE S-C 4060

Gary;, D • Brown

November 1967 sippipipilillpsil

il f iii:i mi y:. :,y .-, :S ! : Si: ¿!Ä ^SP |¿|;i :

ai fsiîîti îîîï îIs

îfrï fl

.^tóWpli&Vp-^sflPiSfesíí;

iliflliiÉliÉlI
nîlFiii'inria-I w:fi.T«54OTi::RTim^*iiiironR

D D C

If '9É&- 11111111111,,,,,,,,,.,,..

■ppg': 'i;,i: yyr-yy-

u mÊmtHmîi'i u

IFI

Reproduced by the
CLEARINGHOUSE

for Federal Scionfific & Technical
Information Springfield Va 22151

WMm
i.V.>. ¿••»ft -

NOV 2 9 1967
3U¿;LnLl Li üã

Q
P-3722

I'*!!

Bi

I®
TMs .document hers besn approvod
far public roloaao cn^d sola; ito
distribution is unliraitod. ffiH- M IER? ¡«fi fcï' • iSPIBa

-IP IM'li’ifl i iiilîflii' flllÉilB1
<1/

i
í,,

-iii-

ABSTRACT

IGS, the Integrated Graphics System, is a machine

independent group of subroutines which may be called to

produce graphic output on the S-C 4060. The subroutines

may be called from FORTRAN, COBOL, machine language, or

PL/I.

-V-

ACKNOWLEDGMENTS

Several people deserve credit for the IGS package.

Chuck Bush of RAND did much of the design and programming

Marv Kaitz of Visual Computing Corporation and Tracy

Rumford of RAND were instrumental in the design of IGS.

Bob Berman and John Rieber of RAND have also contributed

to the implementation of IGS.

-1-

IGS—THE INTEGRATED GRAPHICS SYSTEM

FOR THE S-C 4060

*
Gary D. Brown

The RAND Corporation, Santa Monica, California

INTRODUCTION

About two years ago, the passive CRT graphics world

was very orderly. There was one display device the S-C

4020 [1], one main scientific computer line, the IBM 7000

series, one scientific programming language, FORTRAN, and

one graphics language, SCORS [2] (a subroutine package

used for producing output on the S-C 4020).

All this has now changed. First came the third gen¬

eration computers. The 7000 series was no longer the

scientific computer. More surprising, IBM could no longer

be considered the company. PL/I, a new programming lan¬

guage, was introduced. There were even rumors about a

remarkable thing called time-sharing. Next, Stromberg-

Carlson introduced the S-C 4060 as the successor to the

S-C 4020. This Paper will introduce IGS, the Integrated

Graphics System, as a follow-on to the SCORS package*

The S-C 4060 is a high-precision graphics output

device which produces output on both film and hardcopy.

It features a 116-hardware character set in four sizes and

two orientations, an unlimited software stroke character

-5-
Any views expressed in this Paper are those of the

author. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.

This Paper was presented at UAIDE, Washington, D.C.,
October 16, 1967.

• N»vr||illï1f»-M«4!)Hlllt!H|l;|il':h;il*|i|lil:ît|u||MHMI

-2-

set, four line weights with four dash sizes# and four times

the resolution of the S-C 4020. It includes many new

hardware features ac; well as a small peripheral computer

called the Product Control Unit (PCU). This computer is

called the PCU to avoid confusion with the host computer#

the installation's general-purpose computer that generates

input for the S-C 4060. The PCU is roughly twice as fast

as an IBM 360/50 allowing it to taice some of the load off

the host computer.

Data was the first consideration. Normally, the in¬

stallation's host computer generates a tape which is read

by the I’CU and then converted to hardware commands needed

to actually draw the display. The byte was picked to be

the basic unit of input for the S-C 4060# and the PCU is

programmed to handle both six and eight bit bytes. This

byte-oriented input is called the meta-language.

Still remaining was the problem of deciding on a

software package for the host computer producing .nput

for the S-C 4060. An obvious candidate was the SCORS

package. But however excellent# SCORS has several limita¬

tions. It cannot be called from PL/I# it does not lend

itself to the time-sharing environment# it is not readily

adaptable to other computers# and it has no provisions for

the expanded S-C 4060 hardware features. These limitations

indicate the progress of the computing industi./ and not any

failings in the SCORS design.

A new software package was designed called IGS (Inte¬

grated Graphics System). It was her^iiy influenced by the

present SCORS package and a SHARE committee report on

Standard Graphic Output Subroutines# GRAPPAC [4].

A full list of features can be obtained from the
hardware specifications [3].

-»-

MmtiWílN*«« •MMíMM»* W ■nut»»#» IMui i-mWWI«»WWiN|i.<»i imirmmn*

-3-

THE DESIGN OF IGS

The IGS design was dictated by several goals. First,

we had to decide which languages our system was to support.

FORTRAN, COBOL, and machine language were obvious choices.

In addition, we decided to make it compatible with PL/I.

PL/I and FORTRAN are incompatible in several respects.

Since PL/I can call on FORTRAN subroutines but FORTRAN can¬

not call PL/I routines, the system had to be written in

FORTRAN and not PL/I. PL/I calls must have a fixed-length

calling sequence so we eliminated variable length calls.

Finally, PL/I addresses a character string with a dope

vector rather than by a direct address as is done in

FORTRAN. An important benefit for the FORTRAN programmer

in providing PL/I compatibility is better character man-

ipluation capability than available in ordinary FORTRAN.

In the graphic system, individual characters may be ad¬

dressed effectively. This removes the restriction usual in

most FORTRAN written systems in which character strings

must lie on word boundaries and be left-justified.

The second goal was that IGS be machine independent

as much as possible. It had to run equally well on six-

or eight-bit machines, and not be dependent upon the word

size of the computer. As one step towards machine inde¬

pendence, it was programmed in ASA Standard FORTRAN as

much as possible.

The next goal was to isolate the user from the in¬

tricacies of the S-C 4060 hardware features. There is full

access to all the hardware features, but IGS always acts

as a intermediary between the user and the S-C 4060. This

is because there may be a successor to the S-C 4060 with

different features and the division of labor between the

Whether or not PL/I will become an established lan¬
guage remains to be seen; but since IBM is backing it at
the expense of FORTRAN and COBOL, the probability is high.

host computer and the PCÜ may change. Some things cur¬

rently done by IGS in the host computer may be done in the

CPU, but a change of this nature must not necessitate any

reprogramming on the part of the user. Finally, the S-C

4060 itself has various hardware configurations. For

example, it can produce 8 1/2 x n or 11 x 14 hardcopy. If

the user insists upon addressing absolute raster units, he

must reprogram if he wants to switch from one hardcopy

mode to the other. IGS is designed to protect the user

from this inconvenience.

Another consideration was introduced by the advent of

time sharing. Because this mode of operation may become

widely used, IGS has been designed to be adaptable to

time-sharing systems.

We also felt that IGS should not force the user to

modify his operating system. Some modifications may still

be desirable (e.g., end-of-filing the output tape if the

job fails), but these are at the option of the installa¬

tion. This is important to those installations that buy

computer time and are not free to modify the operating

systems.

Nothing has been said about low core storage require¬

ments, fast running speed, and flexibility since these are

automatic considerations in the design of any software

system.

DESCRIPTION OF THE IGS SYSTEM

IGS consists of a group of subroutines which are called

by the user to perform whatever graphic functions needed.

In their simplest form, these functions include drawing

lines, plotting points, and displaying characters. These

seem simple enough, but they become more complex when con¬

sidering all the variations possible. For example, a line

can be drawn in four line weights and four dash sizes.

This raises the question of doing simple tasks without

getting immersed in all possible variations.

-5-

We adopted the mode-set concept outlined in GRAFPAC,

whereby mode sets are used to specify various parameters.

The user is required to define a mode set array which must

appear as an argument in each call to a graphics sub¬

routine. When the system is initialized, all the default

values are stored in this array. One reason for requiring

reference to the mode-set array in each call is to hedge

against the time-sharing environment. This allows multiple

user programs to share a single public copy of the graphic

system routines; each user holding more information in his

private mode set array.

The use of the mode set array also adds flexibility

to the graphics system. At some later date, users may find

that they cannot live without the ability to draw lines

with arrowheads. Previous systems had two ways to accom¬

plish this. One way would be to add an additional argument

to the calling sequence of the lines subroutine, and get

the users to re-code their programs. This method has never

had much success. A second way would be to write a separate

subroutine, giving it another name. This results in a

myriad of subroutines with slightly different calling

sequences doing almost exactly the same things. By using

the modes set concept, subroutines can be modified without

changing their calling sequences. A vacant spot in the

mode set array is used to specify that arrowheads be drawn

at the end of lines. The documentation becomes simply a

footnote at the bottom of the description of the lines sub¬

routine telling the user how to set the mode. The coding

is easy since the basic line subroutine need not be re¬

written, but only modified to test to see if an arrowhead

is wanted.

The use of the mode-set array, by limiting the number

of arguments that are needed in the subroutine calls, also

makes them much easier to use. Consider a subroutine to dis¬

play characters. In its minimal form, the user might only

specify an xf y location of the first character, the number

of characters, and the characters themselves. In a more

complex form, he might want to specify the character size,

character spacing, line spacing, margins, line orientation,

and other items not at first apparent. It would be un¬

reasonable to expect the user to specify all of these

parameters each time he wanted to display a line of charac¬

ters. Equally unreasonable would be provision of a specific

subroutine for all the combinations which could be made

from the possible arguments. There is not time to write

special routines to provide for each combination of likely

arguments, they could not be maintained, and certainly

would not all fit in core at the same time.

The solution was to have the call to the character-

display subroutine require only the minimum information

needed to display characters. All other parameters are

obtained automatically from the mode-set array. The user

may make changes in this array when he wants to change a

value such as character size or page margins; the mode

set will stay in effect until the system is reinitialized.

A single subroutine is provided to do all the mode setting.

Another basic design concept of IGS is the distinction

between subject and object space. Object space is that

portion of the S-C 4060 screen that the user wants to use.

This can be adjusted by a subroutine call to put a margin

around the page or to subdivide the screen. Subject space

bounds the user's data, and can also be changed by a sub¬

routine call. This is extremely useful not only in plotting,

where the data may be in physical units not corresponding

ing to the raster addresses of the S-C 4060, but also in

textual displays. For example, the x-axis can range from

1 to 132, the number of normal size characters per line,

and the y-axis from 1 to 60, the number of lines per page.

Now lines and character positions can be addressed directly

as on a typewriter. IGS is intended to do all the scaling

7-

from user coordinates to absolute rasters. The user can

of course specify that no conversion be done, to allow

him to address absolute rasters.

IGS subroutines are provided to display joined lines,

line segments, and points. Numeric data can be displayed

in either I, E, F, or scientific format. There is also

a subroutine to draw multiple line segments. To do this,

one defines two delimiting vectors and the number of lines

to be drawn between them. This is extremely useful in

drawing grids or doing crosshatching • There are also sub¬

routines for displaying text. Page margins, tab sets,

character case, character size and orientation, and line

spacing and orientation can all be established with mode

sets.

One problem faced in designing IGS was that the S-C

4060 has a 116-character set while most keypunches have far

fewer keys. The expanded character set is not too useful

if one cannot get the characters into the computer. This

problem was solved by providing special control characters

which can be punched directly in the character string.

For example, if the user wants lower case characters dis¬

played, he precedes them with a 1 $LI. There is also a

special character for upper and special case, line eject,

tab, superscript, subscript, and even a null. In addition

to the CHARACTRON characters, the user may design his own

vector character fonts. Vector characters may be any size

or orientation, and they may be skewed. Since they are

composed of lines, they may be drawn with any of the four

line weights.

Built on top of these routines are subroutines to

draw, label, and title a grid. Grids may be either linear

or non-linear in either axis. Finally, there is a sub¬

routine to compute appropriate arguments for the grid

routine, and a subroutine to draw an entire graph with a

single call.

:: I

I'i

-8-

Although the design of IGS is considerably different

from that of SCORS, there is a degree of compatibility. A

few of the lowest level SCORS subroutines have been re¬

written to produce output for the S-C 4060. Although

the S-C 4060 can process the SCORS input directlyf there

are two reasons why an installation might not want this.

First, there is a marginal benefit in making the operation

of the S-C 4060 easier by having only one type of input.

More important, a large SCORS program need not be rewritten

in IGS to access the full S-C 4060 features. IGS and SCORS

calls can be intermixed to modify the output of the SCORS

program. Also, separate parts of the program can be written

in IGS and then added to an existing SCORS program.

Currently, IGS is being converted to a variety of

machines, and will be available in the UAIDE library in the

near future.

REFERENCES

S-C 4020 Computer Recorder Product Specification,
Document No- 281001-241r Stromberg-Carlson Corpora¬
tion, May 1964.

Programmer^ Reference Manual S-C 4020 Computer
Recorder, Document No. 9500056, Stromberg-Carlson
Corporation, October 1964, revised August 1965.

S-C 4060 Stored Program Recording System, Descrip¬
tion and Specifications, Document No. 9500209, ~
Stromberg-Carlson Corporation, October 1966-

Graphic Specifications for Standard Graphic Output
Subroutines, proposed by the SHARE Standard Graphic
Output Language Committee, August 8, 1966.

American Standard FORTRAN, American Standards Associa¬
tion, Inc., New York, March 7, 1966.

