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ABSTRACT 

An earlier method for the inverse diffraction problem, using only the 
backscattering cross section as a function of aspect angle, yields the profile 
curve for a strictly convex body of revolution.   If the profile curve has 
straight line segments, the body is not strictly convex.   Nevertheless, it is 
shown that the method, when applied to such a body, yields the correct 
profile except for a shortening of the straight segment by a factor which is 
at worst 0.7. 
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SECTION I 

INTRODUCTION 

One of the simplest approaches to the inverse diffraction problem is 

based on the geometrical optics backscattering cross section, cr.   For a 

smooth strictly convex body of revolution, a is simply related to the curva- 

ture K of the profile curve.   In References [ 1 ] * and [ 2 ]   it was shown that 

from a knowledge of a as a function of aspect angle one could recover the 

profile curve by integrating a simple ordinary differential equation.    The 

cross section function a is discussed in Section n, and, in Section EH, we 

present a simplified version of the earlier theory, leading to an integral 

formula for the profile function. 

A body of revolution whose profile curve contains a straight line seg- 

ment (such as a cone or a cylinder) is not strictly convex.   Nevertheless, 

it was found experimentally in [ 3 ]  that, in certain cases, satisfactory re- 

sults could be obtained for such targets using the method derived in Section HI. 

In order to understand the domain of applicability of the method we therefore 

apply it, in Section IV, to the case of an arbitrary straight line segment. 

This corresponds to a conical section of the target.   In so doing we use the 

physical optics representation for a.    This leads to a triple integral.    Two 

of the integrations can be carried out approximately by the two-dimensional 

stationary phase method, and the remaining integration can be carried out 

exactly.    We find that the resulting profile reproduces the assumed straight 

line segment except for an error in the axial component of the segment.    The 

error vanishes for a cylindrical section and is a maximum for a full 

*Numbers in brackets denote references cited on page 17. 



(truncated) cone.   In that case we find that the cone is shortened by a factor 

of approximately 0.7, a result which agrees almost perfectly with experi- 

mental results reported in [ 3 ] . 



SECTION n 

PHYSICAL OPTICS AND GEOMETRICAL OPTICS 
REPRESENTATIONS FOR THE 

BACKSCATTERING CROSS SECTION 

We consider a perfectly conducting body of revolution illuminated by 

a plane wave (see Figure 1) 

E. = En eikI* (1) 

where E   is a constant vector, k = a>/c is the wave number, and 

I  =   -(cos 6,   sin 9) (2) 

is a unit vector in the direction of incidence.    The plane of the figure is 

chosen to contain the vector I and the z-axis, which is the axis of rotation. 

x = (Z,r) 

Figure 1.   Perfectly Conducting Body of Revolution 
Illuminated by a Plane Wave 



By means of physical optics (the Kirchhoff method), the scattered field 

can be represented as a surface integral over the illuminated portion of the 

target.    This integral can then be reduced to a single integral over the 

profile curve (solid line in Figure 1) by the stationary phase method.    The 

details of this calculation are given in [ 4 ] .    The backscattered far-field at 

the point X'  =   -pi is then given by (see Equations (2.2) and (2.13) of [4] ): 

-•V ikp 

E    ~      „ f En (3) -s 2irp       —0 ' 

where 

1    ITT/4 i   1/2      >T   2ikI.X 
I'Ne ds    . (4) 

[7r i7r/4 I 
ksine] J 

Here X = X(s) = [ z(s), r(s)]   is the parametric equation of the profile 

curve, N = - n is the outward unit vector normal to the curve, and  s  is the 

arclength parameter.    For simplicity we have assumed that only the upper 

part of the target (solid line in Figure 1) is illuminated. 

We introduce the function 

f 
g(0) «  \r        I-n  e     -'-ds    . (5) 

Then 

E -s [—1 7T sin9 J 

1/2     ikp+3i7r/4 
 ~ gE     . (6) 

2p 0 



We also introduce the backscattering cross section 

A     2   |EO| k     i   |2 

' " *p TiJP = S*|g|   • (7) 

If the profile curve is strictly convex, the integral in Equation (5) can 

be evaluated by the stationary phase method, which is summarized in the 

Appendix.    We introduce the phase function 

4>(B) = 2I-X(s) (8) 

which appears in Equation (5).   We also introduce the unit tangent vector 

t = X(s) = -r= and the unit normal vector n = - N to the profile curve. 

Then 

X = t = n (9) 

where K is the curvature.   At a stationary point s for Equation (5), 

<£(s) = 21-t = 0   . (10) 

This is, of course, the specular point, at which n = I.   At this point, 

(p = 2I-X - 2*I-n - 2   , (11) 

and the stationary phase formula [Equation (50), with n = l]  yields 

1/2 
J'    e2ikI.X(*) + i,/4    _ (12) prr(fl)T 

[kW J 



Here X(9) = [ z(0), r(0)]   is the specular point and K(Q) is the curvature at 

that point.    From Equation (7) we now see that 

'-=£&• 

It is interesting to note that the two principal curvatures of the surface of 

revolution at the specular point are K and fsin#)/r.    Thus the Gaussian 

curvature is G = f/csinflVr and Equation (13) becomes 

»  - | • (") 

This is a well-known result which can be obtained directly by geometrical 

optics.    We have derived it by means of the physical optics representation 

because we will soon consider the case in which the profile curve has a 

straight line segment.    Then K = 0 and Equation (13) is not valid.    In such 

cases the scattering cross section is given by Equations (7) and (5). 



SECTION in 

SOLUTION OF THE INVERSE DIFFRACTION PROBLEM 
FOR STRICTLY CONVEX BODIES OF REVOLUTION 

At the stationary point X(6) we see, from Equation (10), that 

dz cos 9 + dr sin 0 = 0 . (15) 

Furthermore, by definition 

*<*>-£. (16) 

and 

ds       , i/dz2+dr2      .*/".    2. 1 
— = ±f——9— = ± rl + tan 0 =  
dr f      dr'2 F cos 9 

Hence, from Equation (13), 

It follows from Equations (15) and (18) that 

and 

(17) 

.   _    7rr 7rr_ ds dr 7rr       dr * 
sin 0K "" sine dr d0 ~ sin0cos0 d0    " (    ' 

dr = — sin0cos<9d0, (19) 
7rr 

a 2 
dz = sin 0d6 . (20) 

7rr ' 



These equations can easily be integrated to yield 

0 

r2(9) = T2(e ) + - a(0')sin0'cos0,d0' (21) 

and 

f o) - 7 ( f# * 3in20'dO' . (22) 

Equations (21) and (22) provide an explicit parametric representation for the 

profile curve X = [ z(6), r(0)]   in terms of the scattering cross section 

(7(6). 



SECTION IV 

APPLICATION TO A CONICAL SECTION 

We now consider a body of revolution, a portion of which is a conical 

section.   The corresponding profile curve then has a straight line segment 

as illustrated in Figure 2.   On this segment the curvature K is zero and the 

derivation in Section in does not apply.   Nevertheless, we shall examine 

the consequences of applying Equations (21) and (22) to this case, using for 

a (9) the physical optics scattering cross section.   The first step is to 

calculate cr. 

From Figure 2 we see that 

n = (-cos/3 , -sin/3), t = (-sin/3 , cos/3 ) (23) 

and 

X = [ z(s), r(s)]   = /zQ, r \   +  s(-sin/3 , cos/3), 0<s<L (24) 

r 

i i 

(Z„ r,) -- (Z0- Lsin/9, r0 + LCOS£) 

/     *>N. 

L #a^ 
><zo.ro> 

/ZXA fe^flW 
 »•• 

Figure 2.   Profile Curve for Body of Revolution 
with Conical Section 
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The coordinates of the terminal point are then 

(zr ri) =tZ(L)> r(L)^  = (zo " Lsin/3, ro + Lcos^) • <25> 

and 

I-n = cos0cos/3   + sin0sin/3   = cos(0 - [3)   . (26) 

We also see that 

I'X = -  z  cose - r   sine - ssin(0 - p)   . (27) 

We now assume that for 0   < 0 < 0     , contributions to the scattering cross sec- 

tion from portions of the target other than the conical section can be neglected. 

Then, from Equation (5), 

-2ik(z cos0 + r   sinfl] 
g(0) = cos(0 - /3)e VO 

C (rQ + scos/3) 

and, from Equation (7), 

a IB) = -—  |g|2 - -^cos2 (0-/3) v '      sin0   '   '        sin0 v      ' 

L        L 

l/2e-2ikSSln(0^)dSj (2g) 

f  J     C     . \V2 , „xl/2    2ik(t-s)sin(0-/3)      /on. 
\ ds   \dt(r   + scos/3\       {x  + tcos/3\       e .    (29) 

0 0 

10 



We now insert Equation (29) into (21) to obtain 

L        L        e 
2 2       2k    f f f 2 

r (0)-r      =—   1  ds   \ dt   \    d0'cos   (0'-/3) 
0 ° % 

cos^r^scos^^.tcos,)1/2   .«* ^ 

where 

0 = 2(t - s) sin(0' - 0)    . (31) 

The integral with respect to  t and 0'   in Equation (30) can be evaluated by 

the stationary phase method.   Thus we apply the results of the Appendix with 

n = 2.    First we note that 

0t = 2sin(0- - 0),   <fy,  = 2(t - s)cos(0' - /3)   . (32) 

Thus there exists one stationary point at 

t = s,   0'  = P    . (33) 

At this point 

^tt  \o' 0      2 
*=/.=„« • (34) 

A't ^0'0' 2      0 

11 



Hence det $ = -4 , and since the two eigenvalues must have opposite signs, 

sig $  = 0.    Thus we obtain, from Equation (50), for 9 > |3 , 

L 
r  (<9) - r 2 ~ COSJ3   I    ds(r    + scos/3) = 2Lcos/3 (r   + L/2 cos/?).     (35) 

0 

It must be noted that the stationary point in Equation (33) lies in the domain 

of integration if and only if 9 > /3 .   If 0 = /3 , the stationary point lies on the 

boundary and it can be shown that the asymptotic value is one-half of 

Equation (35).   If 9 < /3 , the integral is asymptotically zero.    Thus 

r2(0) ~ r0
2    > % £ e < P . '    (36) 

r2(/3) ~ rQ
2 + Lcos/?(r0 + ^ cos/?) = (rQ + | cos/3)    + (^cos/?)   ,    (37) 

r2(<9) ~ (r    + Lcos/3)2 , (3 < 9<  9 . (38) 

Having determined r(9), we now insert Equation (29) into (22).    Thus 

L L        9 
Q = -£  j  ds  j  dt J   d*   ^cosV-0) z(0) -  zn == - — 

0 

sin0W r   +SCOS/3J       (r   +tcos/3j        e        , 

(39) 

12 



where <pis again given by Equation (31).   Proceeding exactly as before we 

obtain, for 9 > /3 , 

z<e>" zo ~ Hn \ ds (ro+ scos3) =" w L [ ro+ i**" • 

If we insert Equation (37) into (40), the result is 

where 

Thus, 

13 

0 

(40) 

z ~ z    - Lsin/3 • Q (41) 

«- (* • .V*. «-^f&if 

z(0)~z 0n^0<(3    , (43) 
0 ° 

z((9) ~ z    - QLsin0 0 < 0< 0   ; (44) 

and, from Equations (36) and (38), 

r(0)~ro, eQ^e<(3, (45) 

T(6) ~ r    + Lcos/?  , P< 6< 61   . (46) 



From Figure 2 we see that the coordinates of the terminal point of 

the line segment are 

(zr ri)= (zo" Lsin/3' r
0 

+ Lcos^) • (4?) 

Thus we see that, as 9 passes through the specular direction, 9 =  /3, the 

vector    X(9)   =  [ z(0), r(9)]     jumps from the initial point to a point 

[z   - QLsin/3 , r   + Lcos/3]  which would agree exactly with the terminal point 

if Q is equal to one.   Thus the term e in Equation (42) represents an error 

which vanishes when /3 =  ir/2; i. e.,when the conical segment reduces to a 

cylinder.   In any case we see that 

Q ^^/Y=   *   0.7   . (48) 

The method we have used to evaluate the integrals asymptotically 

is of the simplest kind, and does not yield the smooth transition of the 

profile segment from the initial to the terminal point.    This transition 

could be obtained by means of an asymptotic expansion which is uniformly 

valid for 9 in a neighborhood of 9 = /3 .   Many types of integrals have been 

expanded uniformly, but unfortunately the integrals considered here do not 

reduce to one of the standard types.    The uniform expansion of such 

integrals is under investigation. 

It is interesting to note that for the case of a finite cone (see Figure 2) 

r    = 0 and 6 = 1.    Then Q = xp— «   0. 7.   In this case (in which the error 

is a maximum) our method yields a cone which is shortened by the factor 

0. 7.    This result agrees almost exactly with experimental results for a cone 

reported in Reference [3] .    For a cylinder, $ = TT/2, e = 0, and there is 

no error. 

14 



APPENDIX 

THE METHOD OF STATIONARY PHASE IN n-DIMENSIONS 

The method of stationary phase, discussed in Appendix H of Reference 

[ 5 ], yields the leading term of the asymptotic expansion for k — °° of a func- 

tion f(k) defined by an n-dimensional integral of the form 

f(k) =   j   g (tx tn)eik<Mtl V dtr-dtn =   f g(T)e ikm6T.       (49) 

D D 

A stationary point T = S = /sn s \ is a point for which —f-  (S) = 0 \ln) at„ 
for v = 1 n.   Each stationary point S in the interior of the region D 

yields a contribution to the leading term of the asymptotic expansion, given 

by 

f(k) ~ (f ^        [|det(y |] _1 2    g(S) eik<WS) + f sig ^ , k—>.        (50) 

Here (d> .) is the matrix with elements vy 

*     = ^*§L , (51) vvj    at at.      ' K   ' 

and sig (<Pvt) denotes the "signature" of the matrix, defined by 

m 

sig(*Vj) =   ^   Sgn rk    * (52) 

K—J. 

15 



In Equation (52), r r    are the eigenvalues of (<p   \ and sgn r,   = ± 1. 

We assume that the determinant det (<p .\ is non-zero.    The leading term of 

the asymptotic expansion of Equation (49) is obtained by summing Equation (50) 

over the stationary points S in D. 

16 
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