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ANNOTATION 

This book is dedicated to a systematic account 
of the physical bases and theory of atomic 
spectroscopy. The account is based on contemporary 
apparatus of theory of angular Elements. In this 
book questions of excitation and radiation of atoms 
are also systematically considered. These questions 
are interesting from the point of view of appli¬ 
cation of spectroscopic methods to investigate 
different physical phenomena. 

The book is designed for students of senior 
courses of higher educational institutions, post¬ 
graduates of higher educational institutions, post 
graduates and scientists, working on spectroscopy, 
spectral analysis and also in the region of 
theoretical physics. 
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.1 
Dedicated to the Memory of 

Grigoriy Samuilovich 
Landsberg 

PREFACE 

More than 25 years have passed since the widely known monograph 

of E. Condon and G. Shortley, "Theory of atomic spectra," was published. 

It is natural that during that time a whole series of sections of that 

book became obsolete to a considerable measure. This pertains, in 

particular, to those chapters in which questions fundamental for 

the theory of atomic spectra are expounded: theory of angular momentums 

and methods of construction antisymmetric wave functions. 

In 1942-1949 a series of works by Racah was published on the 

theory of complicated spectra. Thanks to these works the theory of 

angular moments was supplemented by new effective calculating methods. 

In these works the method of fractional parentage coefficients, which 

are very fruitful in examining of electron configurations containing 

equivalent electrons, was well developed. 

The value of Racah»s works for the theory of atomic spectra 

cannot be overevaluated. Many calculations previously prolonged and 

labor-consuming, with the help of Racah's "technology" are executed 

almost instantly, where results are expressed through tabulated 

coefiicients, W-coefficients, and fractional parentage coefficients. 

At present Racah's methods, obtaining further development in the 

.Í1 works of many other authors, have found wide propagation in a number 

FTD-MT-C^-54 2 
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of regions of theoretical physics, especially in nuclear theory. At 

the same time at present there are neither monographs nor textbooks 

containing a systematic account of the theory of atomic spectra based 

on these new methods. One of the problems of this book is to fill this 

gap in some measure. 

Besides the traditional group of questions usually included in 

articles on atomic spectroscopy and connected with systematization of 

spectra, in this book we will also consider a number of questions of 

interest from the point of view of the application of spectroscopic 

methods to investigate different phenomena. Among such questions are, 

e.g., radiation of a continuous spectrum, excitation of atoms, and 

broadening of spectral lines. 

For the convenience of the reader a short account of the elementary 

information about atomic spectra. Chapters I-III is prefaced to the 

basic material. In the remaining chapters of the book experimental 

data are discussed only to illustrate theoretical conclusions or to 

give a foundation to the approximations used. Thus, the references 

on experimental works have a selective character. The bibliography of 

theoretical works is also not complete. As a rule, in the references 

only those monographs, surveys, and works, whose results are directly 

used in the text, are cited. 

For the works and monographs, quoted especially frequently, we 

have used the abbreviated designations given on p. yCi. 

This book assumes a knowledge of the usual university course of 

quantum mechanics (this does not pertain to the first three chapters, 

which only require elementary information about the quantum theory of 

atom). Knowledge of theory of groups is not required. Due to this 

limitation, because I wanted to make the book accessible to a wider 

-2- 



circle of readers, a series of difficulties appeared in the account 

of certain sections of the second part of the book. For instance, it 

turned out to be very complicated to explain the physical idea of the 

quantum number v (seniority number) introduced by Racah. During 

application of the theory of groups this question is solved trivially 

simply. The same limitation forced us to ignore any detailed 

consideration of classification of levels of atoms with unfilled 

f-shells. 

This book assumes a course of lectures on atomic spectroscopy 

and an optional course of lectures on the theory of atomic spectra, 

which the author gave in 1956-1960 at the Moscow Physical and Technical 

Institute. In writing Chapters I, II, and III a recording of lectures 

on atomic spectroscopy read at the Moscow Physical and Technical 

Institute by Prof. S. L. Mandel'shtam was also used. Chapter XI and 

5 33 were written Jointly with L. A. Vaynshteyn, and 5 46 Jointly 

with L. A. Vaynshteyn and L. P. Presnyakov. 

In conclusion I want to express my sincere gratitude to Prof. 

S. L. Mandel'shtam, who encouraged the writing of this book, to Prof. 

M. G. Veselov, who read the manuscript, and also to L. A. Vaynshteyn, 

Yu. P. Dontsov, N. N. Sobolev, and V. I. Kogan, who examined separate 

chapters of the manuscript, for their valuable remarks. I also want 

to thank T. I. Sokolov for his help in shaping the manuscript. 

I. Sobel'man 
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CHAPTER I 

THE SPECTRUM OF HYDROGEN 

§ 1. The SchrSdinger Equation 
for the Hydrogen Atom 

Energy levels. The problem about relative motion of an 

electron (mass m, charge -e) and nucleus (mass M, charge Ze), as is 

known, leads to the problem about the motion of a particle with 

effective mass u = ~ m in a Coulomb field of . 

2 
The Schrödinger equation for a particle in field has the form 

(1.1) 

The wave function if/, which is the solution of this equation, describes 

a steady state with definite value of energy E. During motion in 

centrally symmetric field the angular momentum of the particle is 

maintained; therefore, among the steady states there are those which 

are also characterized by a definite value of the square of angular 

momentum and the value of one of the components of moment. Let us 

select the z-component of moment as this component, i.e., let us 

consider the steady states characterized by definite values of 

magnitudes E, the square of moment and the z-component of moment. The 

wave function -<p of these steady states is essentially eigenfunctions 

of operators l2 and lz and therefore must also satisfy equations 

fA&e. ¢. ÖMAfK -7- 



(1.2) 
/.♦-*♦. (1.3) 

where l(i + 1), m are eigenvalues of operators i2 and ¿^. Let us 

remember that In quantum mechanics the square of angular moment can 

take only a discrete series of values h2i(i + 1), where h = ^ h Is 

Planck's constant, where l = 0, 1, 2, .... In exactly the same way 

the z-component of moment can have the value km, m = 0, ±1, ±2, ..., 

with the additional condition that |m| â z. 

Subsequently for brevity we will talk simply about the moment i 

and the z-component of moment m, implying a moment whose square is 
2 

equal to fc Z(l + 1) and z-component is equal to km. 

The components of moment l are connected with the components of 

pulse p by relationship 

tog^xPf—yPu- (1.4) 

Replacing in these expressions p , p , p by the quantum-mechanical 
X jr Z 

Ö Ò Ò 
operators -Ik^, -ik-^, -14-^ &nd introducing spherical coordinates 

r, 0, q>, we will obtain the following equations instead of (1.2) and 

(1.3): 

+ (1.5) 

/51+^-°. (1.6) 

We will also write equation (1.1) in spherical coordinates 

(^0)+^1551^(^^)+551^ + ^1^+^} ^ = 0- (i-T) 

By comparing equation (1.5) and (I.7) we see that the angular part of 
p 

Laplacian operator A with an accuracy of a factor r is the operator 

of square of angular momentum; therefore, instead of (1.7) we obtain 

0. (1.8) 



We will look for a solution of this equation in the form 

f), (1-9) 

where the angular part of wave function cp) satisfies equations 

{1.5) and (1.6). Putting (1.9) in (1.8), we obtain the equation for 

the radial part of the wave function 

FÎ{,M§)-,JlPÏR + p[E+T]Rmi:0- t1-10) 

The asymptotic behavior of the radial functions as r 

by the equation 

co is determined 

(1.11) 

Thus, as r ao we have 

R—~ (1.12) 

Constants and can be found from condition of matching (1.12) 

with exact solution of equation (1.10) and the condition of 

normalization. These constants are functions of energy E and moment 

l. If E > 0, then i/-2mE = i/2(x|E¡ and function (1.12) is bounded. 

-1- V— 2*ir 
If, however, E < 0, member * increases without limit as 

r -► oo. In accordance with this at E > 0 there are final and continuous 

solutions (1.10) at any values of E and i. At E < 0 final and 

continuous solutions of equation (1.10) are possible only at certain 

discrete values of E, determined from conditions C^(E, l) = 0. By 

integrating equation (1.10) we can show that this condition gives 

E I 2*11«* 
(1.13) 

where n is an integer, n ¿ + 1. The number n is called the principal 

quantum number. At a given value of n the quantum number l can take 

the values 0, 1, 2, ..., n - 1 (all n are different values). Por 

each value l there are (2l + 1) states, differing by values of the 

-9- 



quantum number m, which is frequently called the magnetic quantum 

number. The energy of an atom in state n, m is uniquely determined 

by the assignment of the main quantum number and does not depend on 

l and m. Thus, for a particle in a Coulomb field n2-multiple 

degeneration of the level occurs. For level n there are 1 + 3 + 5 + 

p 
+ ... +• 2n - 1 =s n different states, differing by quantum numbers 

l and 'in. ' The independence of energy from m has a simple physical 

meaning. In a field possessing central symmetry, all directions in 

space are equivalent, and therefore the energy cannot depend on the 

orientation in space of the angular momentum. As for the independence 

from l, this is a specific character of a Coulomb field and, in 

general, a centrally symmetric field does not occur. An energy level 

diagram of a hydrogen atom, 

corresponding to formula 

(1.13), is depicted in Fig. 1. 

In spectroscopy the 

states corresponding to values 

of l = 0, 1, 2, .,., are 

designated by letters of the 

Latin alphabet 

*» P> ft Kt k, /, A, .. • 

Thus, state n = 1, l = 0 is 

designated Is, state n = 2, 

Z = 2 is designated 2d, etc. 

Thus, for level n = 1 there 

is state Is, for level n = 2 

J0V V 
9 

ë 

9 

9 

t 
'4 

9 

t\- 
/ 

O 

r § 
a 

*6«*; it 

xÿim» ■Tj.IIII i i 
WWW 

'~900B0~ 

CO 
(U 
•H 
ÍH 
0) 
CO 

Sh 
<D £ 
H 
CO 
m 

0m/- 

woooo • 

-man- there arc states Or- 2p, for 

Fig. 1. Energy level diagram of a 
hydrogen atom. 

level n 

3s, 3P, 

3 there are states 

1, etc. 
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If we disregard the difference between the reduced mass 

d ~ m(l - ™) and the mass of an electron m, which Is approximately 

m> then for the energy level we obtain E = me‘'' Th„ 
n 71?* ine a 2n 

4 
magnitude = 4 ^04 • 10“^^ at \ . 

erS (-27.07 ev) is accepted as the atomic 

unit of energy, in spectroscopy we also use the Rydberg unit of energy 

Ry , § E|.. In these unlts En _^zf _ por lonl2atlon of a hydrogen 

atom, l.e., to break an electron away from the nucleus, the atom must 

bo given energy |Em - E., | = | ii^_. Thls magnitude Is called the 
n 

Ionization energy (If it Is measured In electron-volts, then It is 

called the ionization potential) and Is designated by E^ With an 

accuracy of replacing u by m, El = Ry. The level n = 1 Is called 

the ground level. The first excited level, closest to the ground. Is 

called the resonance level. The energy necessary for excitation of the 

resonance level is called the resonance potential and is designated 

by Er. For a hydrogen atom Er = (Eg - Ejl = | Er This gives 

EI 13.53 ev, Er « 10.15 ev. In atomic spectroscopy instead of 

energy level En we frequently use the magnitude an = having the 

same units cm'1, as wave numbers. The values of magnitudes on for 

energy levels of a hydrogen atom are given in Fig. 1. 

2. Wave functions. We will designate radial wave functions of 

discrete spectrum by (r). Then 

Ip „Im (Í, ¢). 

The angular functions Ylm(G, cp), satisfying equations (1.5) and (1.6), 

can be expressed through adjoint Legendre polynomials 

-11- 



namely 

Kte (<Vp)—const P¡* (cos 6) 

Determining the value of constant from the condition of normalization 

u* 

j jl Klmifyl'ltatdidfmml, 

we will obtain 

(-ir 
4m 

¢-- 
FS* 

(1.14) 

Here Is assumed that m s 0. For m < 01 

6,.,.,-(-1)-0,,.,. (1.15) 

The functions cp) are usually called spherical. These 

functions are mutually orthogonal and are standardized 

Ü 
K#'.* K,, sin 6 ¿5 dip=ôwòmm'- 

Let us give evident expressions for functions Ylm at i 

r*. s* 

/-C 

/-1 ^.-/Icos«. 

'“2 /^(1 cos,0-t)- 

y». *»—T co®^ ^11 

K. i,-| »m1 a«*'■*. 

/-3 ^ (4 cos*6cos 6). 

y». si-T-J- y^^sinilScos'O-Dei^, 

”T sin16 eos fe*'**, ^ ^ -F s'n' 

(1.16) 

1, 3: 

(1.17) 

•’•Selecting the signs in functions 0 is not simple, nomo times 

the function _ |pij are determinea by another relationship. Tnis 

must be considered to avoid errors. The déterminât i or. of ph;;.r:en of 
functions G (1.15) corresponds to that accepted in hh. hri. j fK.IL.). 
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lhe radial functions of discrete spectrum Rn^(r) have the form 

B l,\~  L i/ (» + 0I m \ • -% (2lr\* 
(2/+1,1 K ^ \H¿,) x 

x/f[-(/i-/-l), 2/+2,^]. (1.13) 

Jt* 
“.-¿-0,529.IO-'c^i is the atomic unit of length (Bohr radius). Here F 

is the confluent or degenerated hypergeometric function, determined 

by the series 

F(a, p, x + IijSL±iLy» , + 
Pll Tp(p + I,2r + pTß+l,(P + 2,3! (1.19) 

If a is a negative integer, as in (1.18), then F(a, ß, x) is brought 

to a polynomial of degree |a|. This polynomial can be expressed 

through a generalized Laguerre polynomial 

C^T, 

L* (x) - (—i r m j ^ ( f [—(«—«), *+1, . 

(l.?0) 

(1.21) 

Thus, we have 

H ,(r>=— f 2£V iu.{2Zr\l .un (2Zr\ 
' V. ((«+/)!]* 2« Uo./ UaJ ¿n+< \«ãj • (1.22) 

The functions (r) are mutually orthogonal and are standardized 

Î ^»1 (r) Rnf (r) r* dr=flnn.. ( 1.23 ) 

From (1.11) it is clear that at large r the functions exponentia 

Zr 

attenuate: **. If r is expressed in atomic units of a0, and 

the energy in Ry, then as r —00 

We will give evident expressions for functions R (r) at 
in if 

'• ' . • . expressing r in units of aQ (for this it is sufficient 

to mukn the ^replacement anfl dropping the factor common to all 

functions 2? a, * , 
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T W 

* r' 

Rm ‘aTf * * 

ÄM"577f* *r(,_'S')’ ^ 
4 t ~ *r* 

M"~8iV55 

(1.24) 

■K 
Using (1.22), we can calculate the mean value of magnitudes r , which 

we will need subsequently: 

/&,*♦* dr, 

<f>-^{3«*-/(/ + m-§-, (1.25) 

<^> - £ (SSjiV -1)- SOnV+2)(/-1) + 

.+3(/+2)(/ + 1)/(/-1))-^ 

V -.V 1 3 <r 
.-. 1 * 
<r >-—7—íT“^’ 

•T+t) “• 
i z* 

*• (/+1)(/+4) /fl* 
<r*> 

(1.26) 

The radial functions of continuous spectrum Rg^r) can also be 

expressed through degenerated hypergeometric functions. However, in 

this case this function does not lead to a simple polynomial. 

Different presentations of this function are given in [B. D., L. L.] 

(B. C., JI. JI. ). 

r p ■4 f « ,Serial Regularities 

1. Selection rules for radiative transitions.1 The probability 

of transition of an atom from steady state a to steady state b. 

^•In this section we will limit our discussion to the general 
formula for probability of dipole radiation in reference to a hydrogen 
atom. The radiation processes are considered in greater detail in 
Chapter IX. 

-14- 
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accompanied by radiation of a quantum hœ = E - Ev , where cd is the 
a t) 

angular frequency, is determined by the expression 

*" W 1 r-* ^ ^ I^ +/a* + ■ (2.1) 

Here xab, zat) are the matrix elements of electron coordinates. 

Multiplying (2.1) by Icd, we will obtain the formula for the intensity 

of radiation (on one atom) 

(2.2) 

We will first of all clarify between what states radiative 

transitions are possible. The matrix element for coordinate 

z = r cos 0, corresponding to a transition from the mm state to the 
i i r 

n 2 m state, has the form1 

<«/« I g I n'l'm’y *=» 

? r « 
” J RmfRAi-r'dr J &,mQrm- cos 6 sin Í 1 ^ - • (2.3) 

Integrating on cp gives 1, if m = m , and zero, if m / m*. When 

integrating on 0 it is therefore sufficient to consider only the case 

of m = m . Using the known properties of adjoint Legendre polynomials 

it is possible to show that this integral differs from zero only when 
r 

I = l ± 1. Let us also consider matrix elements of magnitudes 

x+iy^rtinhe1* and x—iy = rtin(k 

(film I jc±/jr I *7V> - 
® ■ « 

(2.^) 

for the integral of cp not to become zero, in this case it is necessary 

that m ^ m ± 1. The integral of Q in this case differs from zero 

ormy at z = Z ± 1. Thus, only such states can participate in 

radiative transition for which 

1Depend ing upon convenience of writing below wo will use two 
designations of matrix elements V..^ and <a|v|b>. 
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r-/±i, «»'=*1, «»±1, (2.5) 

or, in other words, radiative transition is possible only when the 

quantum numbers l, m change by a magnitude 

A/-±l, A*-0, ±1. (2.6) 

No limitations are put on the quantum numbers n, n*. 

The relationships (2.5), (2.6) are called the selection rules 

for dipole radiation. Transitions satisfying condition (2.6) are 

called allowed transitions. If condition (2.6) is not fulfilled, 

dipole radiation is impossible. In this case quadrupole or magnetic 

dipole radiation is possible. However, the probability of such 

transitions is approximately 10-^ times less than the probability of 

dipole transitions. Such transitions are called forbidden. 

2. Serial regularities. The selection rules (2.6) allow us 

to clarify, with what transitions the series of lines observed in the 

hydrogen spectrum are connected. The hydrogen spectrum consists of 

a distinctly expressed series of lines, whose wave lengths satisfy 

the following formulas ; 

11-2, 3, *,... of Lyman series, 

T"*5* ...Balmer series, 

— R^, «—i, 5, 6, ... F ohen series, 

-J- —ä(^(—¿), «—5, 6, 7, ... Breckett series, 

ft-6, 7, 8, ... Pfund series. 

Here R is a constant, called the Rydberg constant, equal to 

109,677.581 cm-1. 

The wave lengths of the heading, longest wave members of these 

0 . 0 
series A.^, are respectively equal to 1215.68 A (vacuum), 6562.79 A, 

I.875I M-, ^.051 p, and 7.^56 p (1 p = 10-4 cm - 104 A). Relatively 

recently in absorption a head line of a sixth series vrar; revealed 
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= Jr} = 12.37 The general 

form of the series is shown in Fig. 2. 

With decrease of X the distance between 

lines decreases. The shortwave boundary 

of the series adjoins a continuous spectrum. The boundaries of the 

first four series are respectively located at X = 912 A, 3648 X, 

8208 A, 1.4600 p. Thus the Lyman and Balmer series are separated 

from the others. The remaining series partially overlap. 

It is easy to see that for any two levels n, n there are such 
» i 

states ni, n i , among which radiative transitions are possible. Thus 
« 

at n = 2, n = 1 transitions between states 2p and Is are possible; 

at n = 3 and n = 2 transitions between states 3s and 2p, 3p and 2s, 

3d and 2p are possible, etc. 

In accordance with formula (I.I3) during transition of atom from 

level n to level n a quantum is radiated 

L ■ 
/ 
X 

Fig. 2. General form of 
series of the hydrogen 
spectrum. 

JWZVJ 
l«1 (2.7) 

Inasmuch as the frequency of radiation 00 is connected with wave 

length X by the relationship œ = where c = 3-1010 cm/sec is the 

velocity of light, we obtain (at Z = I) 

The magnitude 

2n&c 
(2.8) 

with accuracy determined by the accuracy of 

measuring the constants m, e, c, h entering into it coincides with 

experimentally found value of the Rydberg constant R. 
t 

At n = 1 formula (2.8) gives wave lengths of lines of the Lyman 

series (transitions Is - np); at n = 2 it gives wave lengths of lines 

ip C. IInmphruys, J. of Res. Hur. of Stand. 30, I, 1933, 



of the Balmer series (transitions 2s - np, 2p - ns, 2p - nd), etc. 

The continuous background adjoining the boundary of the series 

is connected with transitions from states of continuous spectrum 

(E > 0) to states of discrete spectrum. 

Por lines of the hydrogen spectrum there are special designations. 

Lines of the Lyman series in order of decreasing wave lengths are 

designated by L , LA, L , etc.; the lines of the Balmer series are 
ct p y 

designated by H , hA, H , etc. 
Ct p I' 

The resonance line of the hydrogen atom, i.e., lines, corresponding 

to transition from the first excited state to the ground state is 

obviously the head line of the Lyman series La, X = 1215.68 A. This 

line is located in the ultraviolet region of the spectrum. The basic 

lines in the visible and near ultraviolet regions of the hydrogen 

spectrum are the following lines of the Balmer series: 

Hm 6562,73 A, Ht 3970,07 A, 
ftp 4861,33 A, ft, 3889,06 A, 
ftT 4340,47 A, ft,' 3835,39 A, 
ft, 4101,74 A, ft, 3797,90 A. 

3. Hydrogen-like ions. The systems of levels of monoelectron 

•L. X-l- -L_l—L 

ions He , Li , Be , etc., are similar to that of hydrogen. Such 

ions are called hydrogen-like. The constant depends on the 

reduced mass |i = m and, consequently, on the mass of the nucleus 

M. Inasmuch as m « M, the difference of constant R for two different 

masses and is small, although it lies within limits of 

experimental accuracy. Thus, for spectra of H and Heh in accordance 
R h 

with formula (2.8) the ratio -5-^= 0.999596, which agrees well with 
He 

M 
experiments. As ^”*30 u “* m. The corresponding value of R is taken 

as R^. The constant Rœ is connected with Rydberg unit of energy Ry 

by the relationship R = ^ easy to see that for a finite 
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mass of nucleus M 

i+(«!/«)• (2.9) 

Table 1 gives values of RM for hydrogen, deuterium and a series of 

ions (experimental). According to (1.1^) £.c/5Z\ Thus, for an ion 

with nuclear charge of Z the potentials E^, Er, are Z2 times more 

than for hydrogen, but Xpe3 is Z2 times less. The values of Xpe3 

for a series of hydrogen-like ions are given in Table 2. In this 

table in accordance with the accepted system of designations the 

spectra of neutral atoms are designated by roman numeral I following 

after the symbol of the chemical element; the spectra of single ions 

are designated by II, of double ions, by III, etc. 

Table 1. Values of 
Constant R for 
Hydrogen-Like Ions 

* *■-• 

I0S737.31l-t0.012 
109677,575*0,012 
109707.420*0.012 
100717.346*0.012 
109722.268*0.012 

Table 2. Values of 
xpe3 for Hydrogen- 

Like Spectra 

X Spectrum lpee. Â 

! 

! 
4 
5 
6 

HI 
Hell 
Li III 
Be IV 
BV 
CVI 

1215.68 
303,78 
135,02 
75.94 
48,58 
33.74 

§ 5. Fine Structure 

The dependence of electron mass on velocity. The 

Schrödinger equation (1.1) is applicable as long as we can disregard 

relativistic effects. A consecutive relativistic theory of the 

hydrogen atom should be based on the Dirac equation. In all cases of 

interest to us, however, relativistic effects lead only to small 

corrections. For this reason we will as before start from the 

.Schrödinger equation for the hydrogen atom, and we will consider 

relativistic effects in the framework of the theory of perturbations. 

-19- 
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(For a more detailed account of the theory of relativistic effects 

see Chapter VII.) First of all we will consider the effect of the 

relativistic change of an electron’s mass with velocity. 

The relativistic expression for the energy of a particle of mass 

m in field U(r) is determined by the relationship 

i-U+V~ty+m'ck. (5.1) 

Decomposing the second member in (5.1) into a series by degrees of 

2 
-•S-.w, we will obtain 
me 

(3.2) 

The Schrödinger equation (1.1) corresponds to a nonrelativistic 

Hamiltonian 

i.e., to the first two members in (5.2). The third member reflects 

the dependence of mass on speed and in order of magnitude is equal 

2 2 
to When V « c this member can be considered as small 

c 

perturbation. 

Let us now use the circumstance that in the zero approximation 

ptmm2rn(E—U). 

Therefore 

y—_-rU/f* i 2£z** i ***1 /, -,s SS1? 2m* + r (5.5) 

Perturbation V leads to a shift of level equal to the mean value of 

V in given state:1 

■‘•Actually, due to the independence of V from the angular variables 
o and rp Uto matrix elements <mrn|V|m 'm’> with I / l' and m / m' are 
oqua I. to zoro. This allows us to disregard degeneration on l and m. 
Por the same reason the calculation of AE1 leads to integrating on r. 
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— ¿r {F+ie.Z''«-).,+¿Vcr-^.,). (3.'i ) 

Flere h;; is the energy of an atom in the zero approximation, 

determined by formula (1.13). Putting the given expression for matrix 

eluents of magnitudes r'1 and r'2 in (3.4) we will obtain 

—a1 |^t-¿ J Ry; (3.5 ) 

e2 
Here a = 7-^. This formula will be discussed somewhat below. 

2* correction connected with electron spin. An electron 

has its own angular momentum s, not connected with its motion in space, 

Vtiîs moment is called spin moment or simply spin. The eigenvalue of 

the square of spin s2 is 

and the z-component of spin sz can take only two values ±-|. Besides 

its own momentum s, an electron also has magnetic moment q, connected 

with s by the relationship 

f-(3.6) 

The proportionality factor between 4 and s in absolute value is equal 

a doubled Bohr magneton ^ . u().i The presence of intrinsic magnetic 

moment on an electron leads to an additional interaction between the 

electron and the nucleus. The expression for the energy of this 

ir*erection in the most consecutive form can be obtained, if from 

tni' Dirac equation for an electron in a centrally symmetric field 

h(r) wo cross to a nonrelativistic equation, preserving the members 

of the order ol (v/c) inclusively. Along with the member calculating 

tiie dependence of electron mass on speed, this member appears in the 

nr athe ra4io of magnetic moment caused by the- motion 
of a charged partiere to its negative moment is equal to 4 ” 
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equation (see § 26) 

Vmm&F?1F7U- (3.7) 

In order to clarify the physical meaning of this additional interaction 

we will consider the motion of an electron in an electroslag field E. 

As is known, the Intensities of electrical and magnetic fields E, H 

in a motionless system of coordinates moving with speed v, for v « c 

are connected by the relationship 

/f_w+i[£.]. (3.8) 

The presence of field E in a motionless system of coordinates leads to 

the appearance of a magnetic field H* = | [Ev] in the system of 

coordinates connected with the electron. The energy of interaction of 

the magnetic moment of an electron p with this field is equal to 

Vmm—fjr-(3.9) 

We will place in (3.9) the expression —«f—Ví/m—and consider 

that the angular momentum of the electron hi is equal to mfrv]; 

therefore 

Thus 

Expression (3-7) differs from (3.10) by a factor This divergence 

is connected with the fact that formulas (3.3) are correct only in 

the case of unaccelerated motion of an electron. It is possible to 

show that calculating the acceleration leads to appearance in (3.10) 

of the needed correction factor of the so-called Thomas-Frenkel 

correction factor. 
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Expression (j. J) contains the scalar product oí’ vectors z, s¡ 

therefore, this interaction is frequently called spin-orbital 

interaction, or the interaction of spin and orbit. The conclusion of 

expression (3.10) shows that spin-orbital interaction is nothing else 

but the interaction of the magnetic moment of an electron with the 

magnetic field induced in the electron’s system of coordinates during 

motion of the electron in the electrostatic field of a nucleus. This 

interaction has a relativistic nature and disappears as ^--+0. 

opin-orbital interaction depends not only on the magnitude of 

angular momentum i, but also on the mutual orientation of moments l 

and s, i.e., on the magnitude of the full momenu of the atom j = l + s 

The; summation of moments i and s is conducted according to the general 

quantum-mechanics rules of the summation of moments. 

The intrinsic value of the square of the full moment is equal 

to ,](,j + 1); at a given value of l j = z ± | (at l = 0 j = |). The 

projection of the full moment m. is composed of the projection of 
J 

orbital moment m and the spin moment m . i.e., m, ** m + m . 
ü s j l s 

Below we will drop the subscript j from m^, unuerstanding by m 

the projection of the full moment. 

At a given value of j the quantum number m can take (2j + 1) 

different values: j, j - 1, ..., -j. Thus, for the level mj there 

are 2j + 1 states, differing by a value of the quantum number m. The 

magnitude 2j + 1 is called the statistical weight of the j level. The 

value j is indicated on the right below after the spectroscopic 

notation i. Thus, state n, z = 1, j = ^ is designated np^y^, state 

n = 4, z = 2, j = ^ - fd^y2, etc. The quantum number j is frequently 

also called the total angular-momentum quantum number. 

¡hill moment of any isolated system is mainte i ne d; therefore, the 
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State of an atom can be cnaracterized by the value of the full moment 

J also when the orbital and spin moments are not separately preserved. 

Due to spin-orbital interaction the energy of an atom in states 
1 1 

j *= l + T* and 3 = 1 - tj is different. Thus, spin-orbital interaction 

leads to splitting of the ni level into two components i + i and 

1 
l ~ ig. Before calculating the energy of splitting, we will express 

the dependence of spin-orbital interaction on 3 in a clear form. 

Inasmuch as 3 « i + s, 

Considering also that (/——Í?, we will obtain 

v-OT7iTrV-'*-*,>. (3-11) 

The mean value of perturbation (3.11) in state n, i, 3 is clearly 

equal to 

Therefore, for the correction to the energy caused by spin-orbital 

interaction, we will obtain (the value of the matrix element <r”^>nj 

was given above) 

« «. ¿1¿±í2zííL+!>z^±L) 4 R y. 
»<l+l>(l+yj * (3.12) 

3. Fine structure. A comparison of formulas (3.5) and (3.12) 

shows that both the completely relativistic effect and that connected 

with electron spin have one order of magnitude. It is easy to check 

that in both the possible cases of 3 = l + and 3 = 1 the total 

i » 
correction to energy AE + AE is determined by the came expression 
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(3.13) 

Thus, due to relativistic effects the m level is split into two 

components of j = z + | and j = z - ihis splitting is called fine 

or multiplet splitting. The dimensionless constant aB*'g~s>:îp» 

determining the scale of splitting, is called the constant of fine 

structure. When each of the corrections AE* and AE separately 

depend on i, the total correction 

--1__*Sl__ , AE does not depend on i. Thus, for 

J ^ ± “T- 
^ ^18 0 j a11 n_ and i -levels differing only 

f>t lmi ^ tmi a va^-ue ^ ^he components of 

fine structure with the same value 

1 j coincide. Figure 3 shows fine 
»I_Í2L_,__ 
^ ^ . /- f splitting of levels n = 1, 2, 3. 

"I W As follows frora (3.13), fine 

i splitting decreases with increase 

^ of n approximately as therefore, 

4-. n 
" !•* this splitting is especially 

Fig. 3. Fine structure of essential for the lower levels, 
levels n = 1, 2, 3. 

According to (3.13) the 

distance between levels j' = Z + | and j" = 1 - | is equal to 

Mm «’S* ^"iFr¿r+nRy- 
Thus, splitting of tevels of the hydrogen atom j = ^ and j = ^ at 

n — 2, 3, and 4 is O.36 cm , 0,12 cm and 0.044 cm ^ respectively. 

1At z = 0 formula (3.12) loses its meaning, since both the 
numerator and the denominator in (3.12) turn into zero. Nonetheless, 
formula (3.13) is correct at all values of z, in particular, Z *= 0 
(see § 26). 
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H 
pig. 4. Diagram 
of allowed tran¬ 
sitions in multl- 

» 
plet nd - n p. 

0/ 

In conclusion we will note that formula (3.I3) 

coincides with the formula obtained from an 

exact solution of the Dirac equation for a 

hydrogen atom, if in this formula to conduct 

decomposition by degrees of ^ and keep members 

on the order of inclusively. 
c 

The aggregate of lines formed by transitions 

between components of fine structure of levels 

ni and n'l' (transitions nlj -*■ n^’j') is called a multiplet. The 

selection rule according to quantum numbers j has the form1 

Ay-o±i. (3.14) 

With help of this rule it is easy to find the character of fine 

splitting of lines of the hydrogen spectrum. For instance, the 

multiplet nd - n'p shown in Fig. 4 In accordance with (3.14) consists 

of three components. 

Further, for the transitions responsible for the Lyman series 

both transitions are permitted by the selection rules for ,j : 

U, —npL, 
T 7 

1», 
7 7 

therefore the lines of the Lyman series have to be doublets. The 

distance between components of the doublet is determined by splitting 

of upper level, and therefore decreases rapidly with increase of n. 

Thus, the most distinctly doublet structure should be observed for 

the resonance line L . However, this line is located in the ultraviolet a 
region of the spectrum (which is inconvenient for experiments in 

vacuum), which hampers experimental investigation of its splitting. 

■'■This selection rule will be derived in Chapter IX. 
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In the case of the Balmer series these transitions are allowed 

251 ~ npi ’ 

T 1 » T 

2s —np 

2p 

2p 

2p,—««,, 2p 

— ndt, 
T 

—ndt, 

^ Î" 

~~ndL 
■ T 

The diagram of transitions for lines Ha is given in Fig. 5. 

Because levels ns^^ and np^y^, and ndJ/2 colnc;i-ciei each of the 

lines of the Balmer series in the general case must consist of five 

components. However, inasmuch as splitting of the lower level 

considerably exceeds splitting of the upper levels, the lines of the 

Balmer series consist of two groups of close lines. The distance 

P d 

Pig. 5. Diagram of transitions 
responsible for the line H . 

a 

sfc between these two groups is 

3/2 -1 
equal to O.36 cm and is 

constant for all lines of the 

series. The magnitude of 

splitting within limits of each 

group drops rapidly during 

transition from the initial 

lines of the series to the 

highest. The most convenient object of Investigation is therefore 

the Ha line. The fine structure of this line was thoroughly studied 

and within limits of spectroscopic accuracy it turned out to be in 

good conformity with the theory. k\ for the other lines of the Balmer 

series, then here the manifestation of the whole structure is connected 

with very great experimental difficulties. In the usual conditions 

the lines of this series are simple doublets with splitting equal to 

-1 
O.36 cm . The doublet structure of the Balmer lines was first 

observed by Michelson and Moseley in I887. Just their experimental 

works stimulated the theoretical research of fine structures, started 
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by Soramerfield, 

It is considerably simpler to compare the theory of fine splitting 

with the spectra of hydrogen-like ions, since splitting AE ~ Z4, and 

2 
U-Z . Such comparison was repeatedly conducted; in all cases 

excellent agreement of theory and experiment was noted. A very 

convenient object for investigating fine structure is the line 
o 

X « 4686 A of He (transition n = 4 -♦ n = 3). This line consists of 

8 components; the experimentally found values of splitting and relative 

intensities are in full agreement with the theory of fine structure. 

^• The Lamb shift.1 One would think that in spite of such 

excellent agreement of theory and experiment, the study of fine 

structures of hydrogen levels continued, attracting a more and more 

accomplished technology. This is connected with the fact that the 

hydrogen atom is the only system for which the Schrödinger equation 

and Dirac equation allow an exact solution. For this reason an 

experimental check of the theory of the hydrogen atom has an extremely 

important value for theory. Divergence of theory from experiment in 

this case cannot be attributed to a poor approximation or inaccuracy 

of calculations. Therefore, when in I934 the first indications 

appeared that in contradiction to the theory the 2s±y2 level lies 

approximately O.03 cm”1 above the level (Khauston, Williams, 

Pasternak, 193^-1938), this immediately attracted the attention of 

theoreticians. However, for a long time it remained vague how real 

this shift was. The fact is that due to Doppler broadening of lines 

all the components of Ha lines could not be reliably separated. This 

situation persisted up to I947, whem Lamb and Retherford, using the 

•W. F. Lamb, R. 0. Retherford, Phys. Rev. 72, 24i, 19^7; Phys. 
Rev. 79, 549, Í990; Phys. Rev. 8l, 822, 1991; Pnys. Rev. 89., 299, 1992. 
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radiospectroscopic method, showed that the 2s. /o lev l indeed will 
1/c. 

shift relative to the level by a magnitude of 1000 megacycles 

(approximately 0.0? cm"1). Later these authors, having improved the 

method of the experiment, obtained a more exact value of 1062 ± 5 

megacycles or 0.0J4 cm . 

Soon after publication of the works of Lamb and Retherford the 

shift of the 2s^y2 level obtained a theoretical explanation. In the 

Table 3. Radiation Splitting wor^ of Bethe, and then in the work 
the n = 2 Level 

of a number of authors it was shown 

that this shift is determined by the 

interaction of an electron with the 

field of radiation; the theoretical 

value of the shift (Table 3) agrees 

excellently with the experimental 

value.1 

The theory gives a significantly large shift for hydrogen-like 

ions (~Z ), which is also in excellent agreement with experiments. 

The discovery of the shift of the level for hydrogen and 

its theoretical explanation had an exceptionally large value for the 

development of quantum electrodynamics. 

Laval 
Raíiiation 
shift, Mo 

Dj ff arenca, 
Me 

*1 
a 

2pL 
7 

2P._ 
7 

+1040 

-17 

8 

1057 

See, for instance, A. I. Akhiezer and V. B. Berestetskiy. 
Quantum electrodynamics, State Technical Press, 1953; V. Gaytler. 
Quantum theory of radiation, IL, 1956. 
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CHAPTER II 

SYSTEMATIZATION OF SPECTRA OF MANY-ELECTRON ATOMS 

§ 4. Central Field 

1• Approximation of a central field. For atoms containing more 

than one electron, even for the simplest, the Schrödinger equation 

cannot be solved directly neither analytically nor by numerical 

methods. For this reason systematization of spectra of many-electron 

atoms due to necessity should be based on some approximate model. For 

purposes of systematizing spectra it is useful that the schematic 

consideration in which the presentation about the individual state of 

the electron in an atom is kept,.but the state of the atom on the 

whole is determined by all the states of electrons, taking into 

account their interaction. In the framework of this approximation we 

manage to obtain some general information about the system of energy 

levels possible for a given atom, their mutual location and grouping. 

In the framework of this approximation selection rules for radiative 

transitions are established, which makes it possible to obtain the 

spectral structure of every element. 

To describe the states of electrons in an atom we will start 

from the assumption that each electron moves in a certain effective 

centrally symmetric field created by the nucleus and all the other 

electrons. This approximation, called the approximation of a 
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self-consistent field, is taken as the point of departure for 

calculations. For purposes of systematizing the spectra there is no 

need to establish the specific form of this field. A whole series 

of results can be obtained based on the general theory of motion of 

a particle in a centrally symmetric field. A more detailed 

consideration requires calculating the noncentral part of electrostatic 

interaction of electrons, and also magnetic interactions, primarily 

spin-orbital interaction. 

In the theory of atomic spectra these interactions are usually 

considered in the framework of the perturbation theory, as small 

corrections to a centrally symmetric field. 

As is known, perturbation does not change the number of possible 

states of a system. To a considerable degree this determines the 

fitness of the above-stated method for systematizing spectra. 

The Schrödinger equation for an electron in an arbitrary centrally 

symmetric field U(r) has the form 

A*+|-[£-i/l')l* = 0. (^.1) 

This equation differs from equation (1.1) for a hydrogen atom 

i/« 2 
only by the fact that here instead of the Coulomb potential 

there is an arbitrary potential U(r). Therefore, we can use the 

series of results obtained above. During motion in an arbitrary 

centrally symmetric field angular moment is maintained; therefore, 

each steady state can be characterized by the assignment of the square 

of the moment and its z-conponent, i.e., by the assignment of quantum 

numbers l, m. The wave functions for steady states will have the form 

1 = R\r)Ytm(bt), (4.2) 

where are spherical functions defined by relationship (1.14), 

and the radial part of the function, R(r), is determined by equation 
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TT C ('■ 3T ) - ^ [£- Í/W] R " l> (“.J) 

Equation (4.3) has final and continuous solutions only at defined 

values of E. The totality of these values determines the energy 

spectrum of a particle, i.e., those possible values of energies which 

a particle can have during motion in a given field. The effective 

potential energy in equation (4.3), 

(4.4) 

contains l, but does not depend on m. Thus, the energy of a particle 

does not depend on m. In other words, the levels degenerate along m, 

i.e., in the direction of the moment. 

There are (2i + 1) different values of m which correspond to the 

given value of l. Thus, 2z + 1 states differing by orientation of the 

moment correspond to the same energy level. Determining the function 

R(r), i.e., solving equation (4.3), requires specifying the form of 

U(r). As a rule, it is necessary to use methods of approximation in 

this. 

Later we will be dealing only with such fielut for which U(r) < 0, 

and, furthermore. 

0, r—*oo, \ U[r)-+0, r-~ 
(^.5) 

This allows us to make a series of general conclusions about the 

character of radial motion and about the energy spectrum of a particle. 

We will limit our account to results not connected with a specific 

form of U(r). 

First of all we can show that the character of motion of a 

particle in a centrally symmetric field (4.5) is completely determined 

by values of E, l, m. There are not two different wave functions ^ 

corresponding to the same set of numbers E, l, and m. Thus, as in 
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the ea.se of a Coulomb field, at E < 0 the energy spectrum is discreet, 

and at E > 0 it is continuous. In generar the E spectrum is different 

for different values of l. We can affirm that the least value of 

energy possible at a given i is lower the less i is. This is connected 

with the fact that at a moment other than zero the effective potential 

energy (4.1) grows with increase of l, inasmuch as the centrifugal 

At /(/xd , 
energy __-i-j— is essentially positive. The ground state, i.e., the 

state with the least possible value of energy, during motion in a 

centrally symmetric field is always the state with l = 0 (see Fig. 6, 

on which the typical form of curves U(r) 

and Uj(r) is shown). 

2. Parity of states. The wave 

functions = REl(r)Ylm(0, <p), 

corresponding to different values of a 

particle's moment l behave in different 

ways during transformation of the inversion 

(x -*• -x; y -+ -y; z -+ -z). This transforma¬ 

tion for spherical coordinates nas the form. 

r, 6—n—•, qi—Mp-f ». 

Fig. 6,. Potential curves 
U(r) and (r). 

The functions do not change during this transformation. We 

will therefore clarify how the functions K^c/^lcos*)/'-’ behave. Upon 

replacing cp by cp + tt the factor elmcp is multiplied by (-l)m. Upon 

replacing 6 by tt - 0 cos 0 is multiplied by (-1) and sin 0 by (+1); 

therefore (co*(«~6)]-flT[-cos4| = (cosft)(-!)'-• . Consequently, 

»!.(»-ft, <f+n)-Kll(1tft. f)(-l)'. 

Titus, the functions v’Eîm> corresponding to stater: wlln even value:; 

oh ï , do not change. Such states, and also such fun.eU.oni:, are called 

even. For odd ?. the functions change their sign during 



transformation of the inversion. In this case the state is odd. 

Parity of the state is wholly determined by the value i and does not 

depend on E or on m. 

The operation of inversion leaves the Hamiltonian function of a 

particle in a centrally symmetric field, H = + U(r), constant. 

This means that parity of a wave function of a steady state does not 

change with flow of time. Therefore each state of a particle in a 

centrally symmetric field is characterized by a definite parity. 

The wave function describing a state of a system of n 

noninteracting particles in a centrally symmetric field can be written 

in the form of a product of Therefore, parity of this wave 

function is determined by the factor Thus, 

the state of a system of particles is even if the sum of moments of 

particles pt has an even value, and it is odd for odd values of this 

sum. 

Actually, parity is determined by just the sum of quantum 

numbers 1^, and not by the vector sum 

Classification of states by their parity has large value in 

establishing selection rules for radiative transitions. Thus, the 

selection rule Al = ±1, as will be shown below, is a particular case 

of the general rule prohibiting dipole transitions between states of 

one parity. 

£y.st-ematizirnr states of electrons in a central field. At a 

given value of z the states of a particle in the order of increasinp; 

energy are numbered by the principal quantum number n, taking the 

values I + l, l + 2, .... it is necessary to note that the sequence 

of increasing energy levels for complicated 

ior hydrogen. For hydrogen E depends only ( 

atoms is other than that 

s s .and does not, depend 



on 1 ’ Tvrvfl > En* Por complicated atoms there is frequently another 

sequence ox levels; tne energy of an electron in the n, i + 2 state 

is larger than in the n + 1, i state. As a rule, the energy of an 

electron is larger the larger the sum n + z. 

We can speak about the distribution of electrons in an atom by 

states with different values of n and i .just as we can speak about 

electron configuration. The assignment of electron configuration, 

thus, requires enumerating the values of n, i for all electrons of 

the atom. If there are several electrons with identical values of 

n and z, then this is designated by (ni)k, e.g., (3s)2, (3p)^, etc 
• $ 

or simply by 3s2, 3p^. 

Bor a particle with spin other than zero the states with identical 

values of E, l, and can still be distinguished by values of the 

z-component of spin, mg. The full characteristics of states of an 

electron can therefore be designated by assigning four numbers: n. 

l, mf.; energy is determined only by the first two. 

At a given i number m can take 2i + 1 values while m takes 
k s 

only two values, ±^. Consequently, there are only 2(2l + 1) states 

with identical values of n and z, but different values of m and m 
Z s ' 

States with identical values of n and z are called equivalent. 

Usually we speak of equivalent electrons, implying electrons in 

equivalent states. According to the Pauli principle in each n, z, 

V ms state there can be no more than one electron. Thus, in an 

atom not more than 2(2i + l) electrons can have identical values of 

n and z. The totality of 2(2i + 1) equivalent electrons is called a 

closed or filled shell, it is no longer possible to attach even one 

electron with the same values of quantum numbers n and z to such a 

shell. 
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At /-0 s-shell 2(2/+1) = 2, 
1 p-shell 2(2/+1) = 6, 
2 d-shell 2(2/+1)=10, 
3 f-shell 2(2/+1)=14. 

Sometimes a somewhat different designation of shells is used: 

n « i, K-shell (state is), n = 2, L-shell (state 2s, 2p), n *= 3, 

M-shell (state 3s, 3p, 3d). Shells with n = 4, 5, 6 are designated 

by the letters N, 0, and P. 

$ 5. The General Picture of Electrostatic 
and gpln~Õ~rbltal Splitting of LevêTTTrT 

the Approximation of LS Coupling 

1, Spectral terms. Quantum nurmers L and S. In the approxima- 

tlon of a central field the energy of an atom is completely determined 

by the assignment of electron configuration, i.e., by the assignment 

of values n and i for all electrons. Each electron configuration 

nlll* n2l2' corresPonds to 2(2^ + 1 )2(21 g + 1)2(21^ + 1)... 

states, differing by values of quantum numbers iryn^ or, in other 

words, by mutual orientation of orbital moments and spins of electrons. 

Relating all these states to the same energy level of an atom is 

possible as long as we disregard that part of electrostatic interaction 

between electrons which is not considered in the approximation of a 

centrally symmetric field, and also spin-orbital interaction. In 

fact, both types of interaction always occur, which leads to splitting 

of the level n^, n2l2> n^, ... into a whole series of sublevels. 

Joint consideration of both interactions is an extremely complicated 

problem. Therefore, as a rule we use a considerably simpler approach, 

in which one of the interactions is considered small as compared to 

the other. Experimental data show that in a whole series of cases 

electrostatic interaction has much larger value than spin-orbital. 

We will start with just this case. 

As will be shown in §§ 17 and l8, electrostatic interaction leads 
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to splitting of the level corresponding to the given electron 

configuration into a whole series of levels characterized different 

values of full orbital moment of electrons L and full spin S. The 

dependence of energy of splitting on L has a simple physical meaning. 

Different mutual orientation of orbital moments of electrons or, 

roughly speaking, different orientation of electron orbits, corresponds 

to different values of L. Therefore in states with different values 

of L electrons on the average are various distances from each other, 

which leads to a difference in energy of electrostatic repulsion. 

The dependence of energy on S is not so graphic and appears in an 

indirect manner (see § I7). 

The energy of interaction of electrons with the nucleus and the 

energy of interaction of electrons with each other have different 

signs; therefore, electrostatic interaction of electrons lead to shift 

of the energy level upwards (the value of energy in absolute magnitude 

decreases ). 

It was empirically established that for basic configurations and 

for configurations containing equivalent electrons electrostatic 

splitting obeys a definite rule, the so-called Hund rule. According 

to this rule the level with the highest possible value of S for a 

given electron configuration and the biggest (possible at the given S) 

valu.6 of L has the least energy. 

The energy levels corresponding to definite values of L and S 

are called spectral terms, or simply terms. Terms are usually 

designated by the letters of the Latin alphabet. 

¿«0. 1. 2. 3. 4. 5. 6. 7, 8. 9, 10 
SPDFQHIKLMN 

2- structure of terms. Thus, as in the case of the 

nydrogen atom, relativistic effects, primarily spin-orbital Interaction 
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lead to splitting of the LS term into a series of components 

corresponding to different values of the full moment of the atom J. 

This splitting is called fine or multiplet. 

In accordance with the general quantum-mechanics rule about 

summation of moments the full moment of an atom J can take values of 

L + SiJfc|L-S|. In the case of L ã S, 2S + 1 different values of 

J are possible, i.e., the term is split into 2S + 1 different 

components. The number 2S + 1, determining in this case the number 

Of components of the term, is called the multiplicity of the term. 

In the case of L s S the number of components is equal to 2L + 1; 

however, even in this case the name of multiplicity is kept for the 

number 2S + 1. If the multiplicity of a term 2S + 1 is equal to 1, 

the term is called a singlet, if it is equal to 2, it is called a 

doublet, 3 a triplet, 4 a quartet, etc. 

The value of multiplicity of a term is indicated on the left 

above the symbol of the term. The value of number J is indicated on 

the right below. Thus, the full designation of a term has the form 

2S+1 
Lj. Thus, a term with L 

4 2 2 
i the symbols and Py2 

5 
0, S = tj, J = 75 is designated as 

designate the components of a 

1 3 5 
doublet term, or simply the doublet L = 1, 3 = -^ and J = ^ e"tc ' 

When it is necessary to indicate parity of states pertaining to a 

given term, the odd terms are marked with the index o(odd), which is 

placed on the right above the L. For instance, The absence of 

the index 0 indicates evenness of a term. 

The term LS has (2L + 1)(23 + 1) states, differing by values of 

z components of orbital and spin moments NLIYL. Spin-orbital 

interaction does not completely remove this degeneration. It is 

obvious that the energy of an isolated atom cannot depend on how the 
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full angular rnoracnt of the atom is oriented in space. Therefore, 

the 2J + 1 states of an atom, corresponding to different possible 

values of the z component of full moment M, pertain to the same value 

of energy. In other words, every J component of a term is degenerated 

with multiplicity equal to 2J + 1. 

It is easy to check that 

^(2y+l)-(2¿+ 1)(25+1), (5.1) 

i.e., imposition of spin-orbital interaction does not change the number 

of states, pertaining to term LS. 

Only if for some reason a definite direction in space turns out 

to be separated (this occurs, e.g., during imposition of a magnetic 

field), degeneration along M is removed and every J component in turn 

is split into 2J + 1 components. 

Multiplet splitting obeys the rule called the rule of Lande' 

intervals. According to this rule splitting of levels J, J - 1 is 

proportional to J 

bFj_, = AEjtj_, s> A (¿5) /. (5.2) 

The constant of multiplet splitting A(LS) is different for different 

terms and can have either sign. 

At A > 0 the least value of energy belongs to the component of 

'the multiplet with least possible value of J = |L - S|. Such 

multiplets are called normal. 

At A < 0 the least value of energy belongs to the component of 

the multiplet with the biggest possible value of J * L + S. Such 

multiplets are called rotated. 

It was empirically established that configurations containing n 

equivalent electrons at n < 2z + 1 (shells less than half filled) 

correspond to normal multiplets, but at n > 21 + 1 (shells are more 
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than half filled) are for rotated multiplets. At 

n = 2l + 1 multiplet splitting is absent. 

i 

For the considered case a grouping of levels i 

similar to that given in Fig. 7 is typical. The 

distance between LS terms of one configuration is 

considerably less than that between identical 

terms of different configurations. Each term, 

with the exception of singlet terms and S terms, 

has a fine structure; the distance between components of this structure 

is considerably less than the distance between separate terms. Such 

grouping of levels is characteristic for the approximation which is 

called the Russell-Saunders approximation or the approximation of the 

R-S coupling. It is also called the LS or normal coupling. Below we 

will call it the LS coupling. 

3. Location of terms of many-electron configurations. For 

configurations consisting of unequivalent electrons all possible terms 

are easy to obtain based on the general quantum-mechanical rule of 

summation of moments. Upon summation of moments L1 and L2 the absolute 

value of the resultant moment can take one of the values (see § 12) 

+ £, + 1,,-1. /£,-£,[. 

Likewise, in summation of spins 

5-5,4-5,. 5,+5,-1.15,-5,1. 

Summation is first produced for two electrons, then the third is 

added, then the fourth, etc. 

Let us consider some examples: 

Configuration npr/p. 

L = 0, 1, 2; S = 0, 1. Therefore terms ^S, 1 ?, ^D, '"’s, ^P, -¾. 
Contlguratlon npn'pn"p. I.I 

*p\ 

'D_ 

-0 

-2 
* l 
=■■■■■!■!'. 

9 

Fig. 7. Group¬ 
ing of levels 
typical for LS 
coupling. 
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We will start with terms of the configuration npn'p. By combining 

the S term with Z = 1, s = we will obtain the term 2P. The 

addition of one p-electron to the term 1P gives the terms 2S, 2P, 2D; 

to the term the terms 2P, 2D, 2F; to the term the terms 2P 

and P; to the term ^P, the terms 2S, 2P, 2D, ^P, and to the 

term 3D, the terms 2P, 2D, 2F, 4P, 4D, V In all we thus obtain: 

two 2S terms, six 2P terms, four 2D terms, two 2F terms, one 4S term, 

three jP terms, two 4D terms, and one 4F term: 

npn’pl'Slp'P-, npn’pl'Plp^, *P, *D; npn'pl'D\p 'P, 'D. 'F, 
npn'p [*5] p *P, ‘P; 

npn'p^Fjp'S, •/>, *D, *5, *P, *D; npn'p 1*0] p *P, *D, *F, *P, *D, *F. 

In short form this is written: 

•S P D F *S P D F. 
* 6 *4 1 JS 

The numbers under the symbol of the term indicates the number of 

identical terms. 

The term of the npn p configuration in the brackets is called 

the initial term. We can speak about the designation Initial term 

just as about the genealogy or origin of a term. 

Let us note that the addition of one electron to a singlet gives 

doublet terms, to doublets, singlets, and triplets, to triplets, 

doublets, and quartets, etc. 

There is a simple method which allows us to determine the 

multiplicity of terms possible for a configuration consisting of 

unequivalent electrons and their relative number. 

By adding one electron to a term of a given multiplicity we 

always obtain terms with multiplicity one unit larger and one unit 

smaller than the initial since S' = S ± ^ and 2S* + 1 = 2S + 1 ± 1. 

This rule is illustrated in Fig. 8. As can be seen from this figure, 

only singlet and triplet terms are possible for two electrons; for 
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three electrons doublets and quartets 

are possible* the doublet terms are 

twice as numerous as the quartet 

terms. For four electrons singlet, 

triplet, and quintet terms are 

possible at a ratio of 2:3:1, etc. 

As can be seen from Fig. 8, for even 

n singlet, triplet, quintet terms are 

possible (2S + 1 is odd). Conversely, 

for odd n doublet and quartet terms are possible (2S + 1 is even). 

Thus, for configurations with number of electrons n, n + 1, n + 2, ..., 

even and odd multiplicity alternate. 

The totality of terms of one multiplicity obtained from an 

LS-term of initial electron configuration upon addition of one more 

electron to it is called a polyad. Thus, in the above considered 

example terms npn'p[•5P]p2S, 2P, 2D and npn'p pPJP^S* 11 d form two 

different polyads. 

For configurations containing equivalent electrons it is not so 

simple to find the possible terms. Among the values of L and S 

obtained from the general rule of summation of moments there can be 

those which correspond to states forbidden by the Pauli principle. 

As an example let us consider the configuration np , three equivalent 

p-electrons. For each of electrons these values are possible. 

!K| ■■ 11 0, 11 2 * 2 • 

By combining the different values of m and mc, we will obtain 
L o 

the following six possible states (the short designation of states is 

indicated on the right in parentheses): 

Fig. 8. Alternating are 
even and odd multiplicities. 
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(ff 

O I <0+> 

-> ÿ 

1 -j d”) 

O -J (0-) 

-J (-1-) 

According to the Pauli principle there can be no more than one 

electron in each of these F.ates; therefore three electrons can be 

placed on each in any three of these states. As a result we will 

obtain: 

(1+) (O*) (-n Afx-0 Af,»! 

(1+) «)♦) (1-) 2 i. 

on (on (o-) i ^ 
on (on (-in o ^ 
on i-m on i -J* 
(in (-in (o-) o ^ 
(on (-m o-) o i 

States with negative values of and Mg cannot occur, since these 

states - *11 give nothing new. The presence of a state with 

ML = 2, Ms = indicates that among the possible terms is a 2D term. 

We must still relate the states ML = 1, Mg = | and ML = 0, Mg = 

to this term. Among the remaining states there is still one state 

with ML = 1, Mg = |. This state and the state with M, = 0, = i 

give a P term. The term corresponds to the remaining states 

ML = °í Mg = and = 0, Mg = Thus, for the given electron 

configuration only three terms, 2D, 2P, and 4S, are possible while for 

a configuration of three unequivalent p electrons above we obtained 

I ..... 
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21 terms. The limitation of the Pauli principle thus considerably 

reduces the number of possible terms. By using the same method, we 

can find the allowed terms for other configurations in. Table 4 gives 

terms of configurations pn, dn, f11. 

Table 4. Terms of Configurations in 

Configura, 
tion . Tanna 

Full sta- 
tlstioal 
weight 

«(I" ) 

t 
é 

K* 
* * 
* + 
* * 

* * 

* 

f /•• r r 
r r 
r r 

• 

r r 
r r 

r 

•s 
•s 
V 
•SD »p ' 
W «s» 

•D 
*SDO *PF 
•PDFQH *PF 

'SDPOI •POFGH *D 
.12 2 4 2 
•SPDPOHI •PDFQ *S 
. *** •r 
•SDGI •PFH 
'PPFQHIKL* *SDFGl* 

•SDFGHIKLN •PDFGHIKLM *SDFGI 
244222 1243422 

•PDFGHIKLMNCP •SPDFGHIKLM* •PFH* 
4 2 7 4 72622 234 4332 

•spdpghiklmnq •PDFOHIKLMNO 'F 
4 341 47343 2 *3»7»«U33 

'SPDFQHIKL 

•SPDFGHIKLMNOQP •SPDFGHIKLMN* 'S* 
32 7IC1031 7 24 2 22227 22 33 

•PDFGHP 

2 
1 

6 
15 
30 

10 
45 

130 

310 . 

352 

14 
91 

364 

1001 

2002 

3003 

3432 

In the last column of this table the statistical weight of the 

configuration (the full number of states pertaining to the given 

configuration) is indicated. For configurations not containing 

equivalent electrons, statistical weight is equal to 

2(2l1 + 1)2(21 g + 1)..,. For configuration in the statistical weight 

is determined by the number of possible combinations which can be 

made from quantum numbers rr^, ms taking the Pauli principle into 

account. The number of such combinations, as this can be easily 

shown, is equal to the number of combinations on n from = 2(2l + 1), 
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C) 

. K. 
■e' ’ ZVP¡>- Tile Statistical weight of a confi ¡uration can be 

calculated by other means. The statistical »eight of each J level 

is equal to (2J + 1), and the statistical weight of an LS term is 

(2L + 1)(23 + 1), „here 2(2J + 1) . (2L + 1)(23 + 1). Therefore, 

the sum 1(2/+1) of all J levels of the given configuration and also 

the sum K*+ .><»+.,. over all the terms of the given configuration ' 

gives the statistical weight of this configuration. Thus, 

configuration d2 in Table 4 is given a statistical weight of 45. By 

summarizing the statistical weights of terms ^DO, 3PP(1, 5, 9, 9, 21) 

we obtain the same number. 

Por configurations from the biggest possible number of equivalent 

electrons, i.e., for a filled shell, only one term is possible, namely 

the s term. Actually, in this case ML is simply the sum of all 

possible values of m¡ = 0, ±i, ±2.which is obviously equal to 

zero. Likewise, for Mg only one value Mg - 0 is also possible. 

Configurations and 72(2l+l)-k . 
L 811(1 1 , i.e., configurations mutually 

supplementing one another up to a filled shell. 

If an electron configuration contains both equivalent and 

unequivalent electrons, it is necessary first of all to find the 

possible terms for the group of equivalent electrons, and then by 

using the rule of summation of moments to add to this group, as to 

an integer, the remaining electrons of the given configuration. Let 

us consider, e.g., the configuration p4d. Por the configuration p4 

according to Table 4 we have the terns h. \ 3P. By combining them 

with l *= 2, S . we will obtain: from the term term 2D¡ from 

the term ^D, terms ^G. 3 90 
2 4 4 '4 110 d, P, S; from the term pPt terms 2F, % 

p> F, D, P. Thus, terms 2SPDFO, 4PDF correspond to configuration 

P4d. 
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In exactly the same way, if a configuration contains two groups 

of equivalent electrons, we must first find the terms of each group 

separately, and then according to the general rule of summation of 

moments find the terms of the total configuration. 

^• Radiative transitions.1 Selection rule (3.14) is generalized 

for the case of a many-electron atom in the following manner. Doublet 

radiative transitions LSJM L S J M are allowed under the condition 

that 

A/-0, ±1; y+r>t, (5.3) 

even term ^ odd term. (5.J0 

Selection rules (5.3)* (5.4) are absolutely strict and are not 

connected with any approximation. According to (5.4) transitions 

are possible only between terms of different parity. The probability 

of doublet transition is determined by the matrix element of the 

doublet moment, which does not depend on spin coordinates of electrons. 

When spin-orbital interaction is small, as this was assumed above, 

during doublet transition the spin moment of an atom does not change. 

Therefore 

AS-0. (5.5) 

A¿-0, ±1; ¿ + ¿'>1. (5.6) 

According to (5.5) transitions are possible only between terms 

of one multiplicity. Transitions between terms of different 

multiplicities, the so-called intercombinational transitions, are 

forbidden. This selection rule is correct while spin-orbital 

Interaction is small and in certain cases it is disturbed, fulfillment 

of exclusion (5.5) is evidence In favor of the applicability of 

^■Por a detailed account of questions connected with radiative 
transitions, see Chapter IX. All the formulas necessary for 
calculating transition probabilities are given there. 
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approximation of the LS coupling. 

The relative intensities of multiplet components obey the 

following rule of sums. The sum of the intensities of all components 

of multiplet LSJ-.LSJ', having the same initial level J, is 

proportional to the statistical weight of this level (2j + i). The 

sum of the intensities of all multiplet components having the same 

final J level is proportional to the statistical weight of this 

level (2j + 1). There are also supplementary rules of sums , 

determining the relative intensity of supermultiplet components and 

the totality of transitions (§ 31). By supermultiplet we mean all 

transitions between two polyads, and by totality of transitions, all 

transitions between terms of two electron configurations. 

§ 6- Approximation of the i,j Coupling 

^ Different types of couplings. An analysis of experimental 

data shows that the area of applicability of the approximation of LS 

coupling is limited. The system of levels of many atoms essentially 

differs from that which corresponds to an LS coupling. Therefore, it 

is of interest to consider another limiting case, when spin-orbital 

interaction considerably exceeds electrostatic interaction. This 

case is called a coupling of the Jj type, or simply the Jj coupling. 

If the spin-orbital interaction is great, the idea of separate orbital 

and spin moments of an electron loses all meaning, it is possible to 

speak only about the full moment of an electron J, inasmuch as only 

this moment is kept. In pure form the jj coupling is almost not 

encountered in atomic spectra; However, the structure of spectra of 

heavy elements very closely approaches the structure characteristic 

for jj couplings. In general, during transition from light elements 

to heavy a more or less continuous transition occurs from an LS 



coupling to a jj coupling, i.e., an intermediate type of coupling 

occurs. 

Of special interest is a Jj coupling for multiple-charge ions. 

The electrostatic interaction of electrons (¡“--j), being in a field 

of nuclear charge Ze is approximately proportional to Z. Let us 

remember that the radius of the first Bohr orbit for a hydrogen-like 

ion with charge Ze is proportional to £. The energy of spin-orbital 

interaction is proportional to Z^ (see § 3). Thus, with increase of 

Z the role of spin-orbital interaction increases rapidly. Tne 

coupling is of Interest also for nuclear theory, inasmuch as in a 

nuclear shell Just this type of coupling is frequently realized (see 

§ 22). 

The choice between different types of couplings, i.e., solving 

the question about which interaction, electrostatic or spin-orbital, 

has decisive value, frequently turns out to be different for various 

levels of one and the same atom. As a rule, the levels of atoms of 

the beginning and middle of the periodic table of elements, 

corresponding to weakly excited states, are well described in the 

approximation of an LS coupling. However, this approximation is 

inapplicable to strongly excited levels of atoms. States in which 

one of the electrons is on the average a great distance from the 

nucleus and from the remaining electrons of atom correspond to these 

levels. Electrostatic interaction of electrons of atomic remainder 

with an orbital electron is small as compared to their spin-orbital 

interaction. In this case the magnitude of electrostatic interaction 

is determined by the mutual orientation of the full moment of the 
t 

atomic remainder J and the orbital moment of the orbital electron 1. 

Actually, with few exceptions all the real spectra can be 

systematized by diagrams of LS or JJ coupling, even if not one of 
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these limiting cases, strictly speaking, is applicable. 

By comparing the systems of terms of the two limiting cases LS 

and couplings, one can obtain a presentation about the system of 

levels in the case of a coupling of the intermediate type. A 

rule, for systematizing spectra such a qualitative considérât; 

out to be sufficient. 

Speaking of different types of couplings, we are essentially 

implying only the fact that one of the interactions, spin-orbital or 

electrostatic, is small as compared to the other. This terminology 

is connected with the fact that electrostatic and spin-orbital 

interaction can be interpreted as a coupling of various types between 

vectors l and s. In the approximation of the LS coupling electrostatic 

interaction can be treated as a coupling of vectors and s^, 

For all states pertaining to the given LS term on vectors and s^^ 

we place the conditions that and^,,.*. The energy depends on 

how we sum the moments Z1 into the full moment L and spin si into the 

full spin S. The spin-orbital interaction and the interaction of 

splitting on «T connected with this can be considered as a result of “ 

coupling between moments L and S. The energy depends on how vectors 

L and 3 are summed into the vector of full moment J « L + S. % 

Considering this interpretation, we can speak of the Russell-Saunders 

approximation as a coupling of the LS type. ; 

Let us note that strict quantum-mechanical calculations allow 

such an interpretation. Below, in §§ 17, I9 we will show that the 

operator of electrostatic interaction of electrons can be expressed 

through operators and s^, and the operator of spin-orbital 

interaction through operator LS. 

When the decisive role <s played by spin-orbital interaction. 
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the energy depends primarily on how the orbital and spin moments of 

each electron and s^^ are summed into the full moment of the electron 

Therefore we can talk about a break of the coupling between 

vectors and about the appearance of a coupling between 

I8i' *k8k* Electrostatic interaction now leads to splitting 

which depends on how the vectors are summed into the full moment 

J. Hence the term JJ coupling. 

2. Systematizing the states of electrons in a ,1.1 coupling. In 

the disgram of a JJ coupling the state of each electron is character¬ 

ized by four quantum numbers mjm. At a given value of j i = j ± |. 

One of these values is even, the other is odd; therefore the 

designation of j and parity of the state simply determines i. 
Vil / ' :,.1-. 

Usually the value J is indicated on the right below the value i, 

e#g,^#l/2' d5/2' etc* 

Obviously, the following states are possible: 

' A* f L* *» • ■ • •* a a.t * a. 

the states s, d, g, ... are even, and the states p, f, ... are odd. 

1 l 
The states j » i + ■£ and j = Z - tj due to spin-orbital interaction 

pertain to different energy levels. If we completely disregard 

electrostatic interaction of electrons, then the energy of each 

electron does not depend on the orientation of its full moment j in 

space, i.e., it is wholly determined by the assignement of three 

quantum numbers nij. In this case each j state is P.j + 1 times 

degenerated. 

At J = l + I 2j + 1 = 2Z + 2, 

At j = Z - I 2j + 1 = 2Z. 

Thus, in level j = Z + there are 2Z + 2 states with different 
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values of m, and In level J « I - ^ there are 2l states. 

In calculating the electrostatic Interaction the level 

characterized by the set of quantum numbers given for each 

electron, is split into a whole series of levels characterized by 

definite values of full moment J. 

The possible values of J are found exactly as finding the 

possible terms in an LS coupling. In the case of unequivalent 

electrons the allowed values of J are easy to find with help of the 

general rule of summation of quantum-mechanical moments. 

Let us consider, e.g., the configuration npnd. Por the p electron 

J = ^ for the d electron j = The possible values of the 

full moment are given in Table 5. 

The states with given values of J1, J2, and j are designated by 

Thusi the state = J2 ■ and J « 1, 2 is the state 

(t t), 811(1 (7 4), • The corresponding designations are given in the 

last column of Table 5. The total 

number of levels with the given 

value of J for a definite electron 

configuration should be the same 

in the case of LS and in the case 

of JJ coupling. It is easy to 

check that this indeed occurs. 

The configuration npnd In an LS 

coupling corresponds to térras 

Table 5. Terms of Configuration 
npnd in the Approximation of jj 
Coupling 

/, h JAs*'A Ter*« * 

1 
7 
1 
7 
3 
7 
3 
7 

to 
3 
7 
S 
7 
3 
7 
5 
7 

12 

23 

0123 

1234 

a 4L 

(4 4L 

(4 4),^ 

(4 4),,-. 

P1' V S' S.1,2- \s,y 
F2,3,V i*6*' to all 12 levels; as in Table 5, the level with J » 0 

is encountered once; with J » 1, three times; with J ■ 2, four times; 

with j = 3, three times; and with J - 4, once. 
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In the case of equivalent electrons, exactly as in the LS 

coupling, it is necessary to consider the Pauli principle.1 

In this case according to the Pauli principle not more than ( ) 

2J+1 electrons can have the quantum numbers nij; in other words, 

<|t identical values of nij the electrons have to differ by quantum 

numbers m. As an example let us consider configuration np2. The 

possible values of J for p electrons are ^ and When = and 

Jg * 2* P088^3-® values of J can be found from the general rule 

pf summation of moments. This rule gives J = 1, 2; therefore, we 

will obtain the states 7), and (77), • At ^ = J2 = | one electron 

can be in the state m = and the other in the state m = therefore 

only one state is possible, namely . At j1 = J2 = ^ the Pauli 

pr'f xple allows the following combinations m^ and m2 (we consider 

nly those states for which M = m^ + m2 >0): 

1 
T 
i 
T 
i 

“7 
3 
7 

I 
"7 
3 
7 
3 
7 
3 

"7 

M 

0 

~ 0 

It is simple to see that the possible values of J = 0, 2, i.e., 

the states and ^ . Finally for the configuration np^ we 

will obtain states (77)^(-5--5-^ ' and (7 7) * In tho case of LS 

coupling for tho configuration np2 we have the terms :LS0, 1D2, ^Pq ^ 2, 

1.0., 1.110 same number of levels with the same values of J. 

1Let us note that of greatest interest for j,j coupling are 
unequivalent electrons. For equivalent electrons the electrostatic 
interaction is always great. 
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In case of two equivalent electrons we can find the allowed 

states with the help of a simple rule. The states (jj) with 

j = 2j - 1, 2j - 3 are allowed 
Table 6. Terms of Configurations 

jn (Approximation of a jj Coupling) 

Configuration Jn 

(t) 
(if ar (!)■ 
(4)' 
(4)' (I)1 
(4)-(4)- 
(4)- 
(4)' (4)’ 
(4)-(4)- 
(4)-(4)- 
(4)- 

I 
7 

£ 
2 

0 2 

8 
2 

0 2 4 

3 5 9 
777 

7 
7 

0 2 4 6 

£ J5 £ £ H 15 
2 2 2 2 2 2 

0 2 4 5 6 8 
t s 

6 

15 

20 

8 

28 

56 

70 

and those with J = 2J, 2j ^ 2, 

2J - 4 are forbidden. In the 

above considered example at 

j, 3 
?• 

2-j-—3 0. 

Table 6 gives the allowed levels 

for a number of configurations 

,n 
J . When a given level is 

encountered several times, the 

multiplicity level is indicated 

below. 

In conclusion we will note 

one important circumstance. If 

in the case of LS coupling we 

absolutely disregard spin-orbita: 

splitting, and in the case of a jj coupling, the electrostatic, we 

will obtain a different number of levels. For instance, for a 

two-electron configuration in the case of a LS coupling the number of 

terms is equal to 2(2imin + l), where zmin is the least of the.numbers 

ll* l2- At lmin = 1, 2, 5, 4, we will obtain 2(2lmin + 1) - 6, 10, 

18, .... in the case of a jj coupling only four different 

combinations of numbers j^ are possible, since j1 « i± ± 

1 
J2 “ l2 ± Thus, if we investigate a spectrum with the help of 

equipment which does not allow us to resolve small splittings, then 

in the case of a jj coupling the spectrum will appear considerably 



poorer in lines than in the case of an LS coupling. The same will 

take place when broadening of spectral lines makes it impossible to 

resolve close lines. 
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CHAPTER III 

SPECTRA OP MANY-ELECTRON ATOMS 

§ 7. The Periodic Table or Elements 

The electrons of an atom in the ground state occupy levels 

allowed by the Pauli principle having least energy. During transition 

from an atom with reference number Z to an atom with reference number 

Z + 1 the number of electrons of the atom is increased by one. The 

added electron occupies the lowest state vacant of other electrons. 

This process of consecutive filling of electron shells is illustrated 

by Table 7. This table gives electron configurations of the ground 

state of atoms (internal filled shells are omitted), and also the 

basic term and ionization potentials. Knowing the electron 

configuration, one can determine the basic term from the Hund rule. 

The table starts with hydrogen, whose ground state is the Is 

state. The following element He corresponds to a configuration' of 

Is . The third element Li has a basic configuration of is22s. In 

accordance with the Pauli principle the is state can contain not 

more than two electrons; therefore, the third electron of the Li atom 

occupies the lowest free state, 2s. From the Li atom n = ? states 

are fined. Then comes Be with a configuration of ls22s2. Starting 

from B and up bo Ne the 2p states are filled. Starting from Na the 

-tateo with principal quantum number n = J are consecutively filled 
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Table 7. Electron Configurations of Atoms
I ClMtron 

oonflgu- 
ratiOr.

1 H 
3 He
3 Li
4 Be
5 B 
6C 
7 N 
80 
e F

10 Ne
11 Na

14 Si
15 P
16 S
17 0
18 Ar
19 K
30 Ca
31 Sc 
33 Ti
33 V
34 Cr
35 Ma 
26 Fc
37 Co
38 Ni
29 Cu
30 Zn
31 Ga 
33 Oe
33 As
34 So
35 Hr
36 Kr
37 Rb
38 Sr
39 Y
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
45 Rh
46 Pd
*1 U
48 Cd
49 In
50 Sn

la
Id*
2a
2i*
2i*3F
2a*2^
2iV

iSf
3d*
3d*V
3a*V

is‘3p*
3rt#r*
3a*3p*
4s
4d*
3d4a*
3d*4s*
3d*4a*
3d>4a
3d*4i*
3d*4d*
3d*4d*
3dM^
4s
4j*
4f*4p
4s*4<»»
4s*4p*
4s*4p*
4**4^
4t*4#*
Ss
5s*
4dSs*
4d*Sd*
4d*Ss
4d*Ss
4d>5s*
4d’Ss
4d*Ss
4d'»
5s
St*
5t*5p
5i*Sp*

basis
tsna da m

Sls-
osnt

£1 aolron 
oonTigu- 
ration

I*

I
•ft-
•5?
ft-
ft
ftftft-

?:•
•D..,

I:
I

13.585
34.580
5.390 
9.330 
8.396 

11.361
14.54 
13.614 
17.42 
31.550

5.138
7,644
5.984
8.149

10.55 
10.357 
13.01 
15.755
4,339
n.lll
6.54
6,83
6.74
6.764
7.432
7.896
7.86
7.633
7.723
9.391 
6.0U 
7.88 
9.85 
9.750

11.84
13,99:.
4.176
5.692
6.4 
6,8
6.9
7.10 
7.3
7.5 
7.5 
8.;i3 
7.571 
8.991 
5.785 
7..332

51 Sb 
82 Te
53 J
54 Xc
55 Ct
56 Ba
57 La
58 Cc 
SO Pr
60 Nd
61 Pm 
63 Sm
63 Eu
64 Od
65 Tb
66 Oy
67 Ho
68 Er
69 Tu
70 Yb
71 Lu
72 HI
73 Ta
74 W
75 Re
76 Os
77 Ir
78 Pi
79 Au
80 Hg
81 TI
82 Pb
83 Bi
84 Pa
85 At
86 Rn
87 Fr 

! 88 Ra
89 Ac
90 Th
91 Pa

93 U
93 Np
94 Pu 
96 Am
96 Cm
97 Bk
98 Cl
99 Es

da., c
tana

5i*5p*
5s*Sp*
Si’Sp*
5s*5p*
6s
6s*
SdSs*
4/*6s*
47*Ss*
4r6s*
4/*6s*
47*6s*
4/’6s*
4r5d6s*
4/*5d6s*
4f*6t*
4/"6s*
4r6s*
4/’*6s*
4/“6s*
SdSt*
5d*6s*

5d*6$*
5d*6s*
5d*6s*
Sd*6$*
5<r6s*
5d*6s
6s
6s*
6t*6p
6s*6p*
6s*6p*
6s*6p*
8s*60*
6s*8p*
7s
7s*
6rf7s*
6d*7d*

S/*6d7^

5/*6d7f*
5/*6d7d*
57*7**
5/*7s*
5T6d7s*
ST6d7P
V*7j*
87"6s*

dj. »

*s!,
•s.•ot.

•Pi

•W.,I
•p.

ft
ft

ft
ft‘

8.64
9.01

10.44
12.127
3.893
5,210
5.61
6.9
5.76
6.3

5.7 
5.67 
6.16
6.7
6.8

6.26
5.0 
7
7.9
7.98
7.87
8.7
9.2 
8.96 
9.2-23 

10.434 
6.106 
7.415
8.3
8.4
9.5 

10.745
4.0 
6.277

at first 3s, and then the 3p state. Thus, it continues up to Ar, 

which corresponas to a configuration of ls^2s^2p^3s^3p^. Then the 

process of filling states with n ■ 3 Is temporarily Interrupted. In 

the .< ana Ca atoms tne auued electrons occupy not the 3d state, but

the *is a.-id states, whlcn turns out to oe energetical ly more
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suitable. The Ca atom finishes fllllne the first main groups of the 

periodic table. Among the main groups are elements, containing no 

d or f electrons or filled d or f shells. Pilling the 5d states 

starts in elements of the first intermediate group, the so-called 

Iron group. Sc, Ti, etc. This process is not so regular as filling 

the s and p states in the elements of the main groups. From Sc to V 

the added electrons consecutively occupy states Jdts2, 3d?4s2, Jd3l|s2. 

In the following element, Cr, it is energetically more suitable to 

fill state 3d 4s, and not 3d 4s2, as one would expect. Por Mn the 

added electron occupies the 4s state freed in Cr with a configuration 

of 3d54s2. Then comes Pe with a configuration of 3d64s2, Co with 

3d 4s , Ni With 3d 4s2. In the following element, Cu, the regularity 

of filling shells is again disturbed; instead of a configuration of 

3d 4s we have 3d104s. Thus, Cu contains a completely filled 3d shell 

and therefore belongs to elements of the main groups. In the following 

elements the 4s, 4p, and 5s states are consecutively filled. After 

that in elements of the second Intermediate group, the palladium 

group, the 4d shell is filled. Here again there is a unique 

competition between the 4d and 5s states. As a result after Zr with 

a configuration of 4d25s2 follows Nb with a configuration of Ad^s, 

and after Rh with a configuration of 4d%s comes Pd with a configura- 
10 

tion of 4d . Such an irregularity is also met during filling of 

shells of the elements of the platinum group. The f shells are filled 

even more irregularly. The 4f state starts to be filled in the 

rare-earth elements after the 3p and 6s state, where competition 

between the 4f, 5d, and 6s states also occurs. 

In their chemical properties the rare-earth elements, as a rule, 

almost do not differ from each other. This is connected with the 

fact that in the 4f state the electron is on the average considerably 
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nearer to the nucleus than, e.g., in the 5p or 6s state. Chemical 

properties are basically determined by peripheral electrons, in this 

case the s and p electrons of previously filled shells. 

If we disregard the above-noted anomaly, then in broad terms 

the sequence of filling of states is determined by the magnitude 

n + l. States are filled in the following order: is — 2 electrons, 

2s2p — 8 electrons, JsJp — 8 electrons, 4s3d4p — 18 electrons, 

5s4d5p — 18 electrons, 6s4f5d6p - 32 electrons, 7s6d5f .... 

The above-mentioned basic regularities of the structure of 

electron shells found their reflection in Mendeleev's periodic table 

of elements. All elements were subdivided by Mendeleev according to 

their physicochemical properties into 7 periods; this subdivision is 

preserved at .present and includes a series of elements discovered 

later. Each of the periods starts with an alkali element and ends 

with an atom of rare gas (with the exception of the last incomplete 

period). Thus, the start of a period coincides with the beginning 

of filling of a new shell. As shells are filled the ionization 

potential, determined by the binding energy of an electron in an atom, 

although nonmonotonic, in general increases. The biggest value of 

ionization potential is attained in atoms of rare gases, which have 

completely filled shells. During transition to alkali elements the 

ionization potential drops sharply (Table 7). 

§ 8. Spectra of Alkali Elements 

1. Diagram of terms of alkali elements. The electron shells 

of atoms of alkali metals, Li, Na, K, Rb, Cs, and Fr, have identical 

structures: outside filled shells there is one electron in the ns 

p 
state. The basic term is Sjy2* The shells are very stable, 

since their structure is the same as for atoms of rare gases. For 
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this reason the spectra of atoms of alkali metals are determined 

exclusively by transitions of the outer, most weakly bound electron. 

The effective fieüd in which this electron moves is centrally 

symmetric, inasmuch as filled shells always have full orbital moment 

and full spin equal to zero. Over large distances the effective 

field coincides with a Coulomb field of charge e, since the electrons 

of filled shells shield the field of the nucleus. At small distances 

(near the nucleus) shielding does not occur, and the role of filled 

shells is the creation of a certain constant potential. Thus, 

U(r)—y, r—*oo, U(r)-£ r—»0. (8.1) 

Inasmuch as at all distances curve U(r) lies lower than the 

2 
Coulomb potential —level n, z lies lower than the corresponding 

level of the hydrogen atom 

(8.2) 

The farther away the electron is from filled shells, the more 

hydrogen-like the field is; therefore, at large n, z we can expect 
that the system of levels is close to hydrogen. 

This general information is supported by experimental data. 

Figure 9 gives diagrams of terms of Li, Na, K, Rb, and Cs. The 

corresponding hydrogen terms are shown by dotted lines. The diagram 

of Li terms at small n and z essentially differs from hydrogen. First 

of all degeneration by Z typical for hydrogen does not occur. With 

increase of n, z the terms coincide even more with hydrogen. The 

distance between levels ana Eni , decreases with increase of n, Z. 

At a given n, the larger z is, all the more hydrogen-like the levels 

are. This dependence has a simple physical meaning. On the average, 

the larger z is, the longer an optical electron in state n, z is at 
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large distances from the nucleus, where the field is close to a 

Coulomb. 

Por Na the difference of the field from a Coulomb is even 

stronger than for Li. The location of the lower levels differs even 

morp from that which is characteristic for hydrogen. Thus, level 

4s lie« lower than 3d. 

An analogous picture also occurs for Rb. Levels 5s and 5p lie 

considerably lower than levels 4d and 4f. At large n, l, just as 
for Li, the similarity to hydrogen is reduced. 

By analogy with hydrogen the terms of atoms of alkali metals are 

described by the formula 

where n# is the effective principal quantum number, 

in such a. way as to satisfy the experimental data. 

(8.3) 

which is selected 

Comparing (h.') 
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with experiments shows that with good accuracy 

n* can be presented in the form of difference 

(8.4) 

where , the so-called Rydberg correction or 

quantum defect, does not depend on n. The 

dependence of on i is shown in Fig. 10. In 

all cases the f states are completely hydrogen¬ 

like. Even .for Cs, which has the greatest values 

°f A¿* at i = 3 Aj = 0. As an example Table 8 

gives values of n* for Na. 

It is essential that the least value of n* is always greater 

than unity. Por instance, for Na (nj , = 1.627, for Rb In) 4 . 

1.8, etc. Therefore, the ionization potentials E1 and resonance 

potentials Er of alkali metals are considerably less than for 

hydrogen. 

Table 8. Effective Principal 
Quantum Numbers n# for Na 

m I * ft 1 •• 

3 
4 
5 
3 

0 
0 
0 
1 

1.627 
2.642 
3.647 
2.117 

1,373 
1.358 
1.353 
0.683 

4 
5 
3 
4 

1 
1 
2 
2 

3.133 
4.138 
2.989 
3.987 

0,867 
0.862 
0.011 
0,013 

2‘ £.?rial regularities. In examining the spectra of alkali 

elements at first glance it is difficult to reveal serial regularities. 

However, a detailed analysis allows us to separate a number of series 

of the same type as for hydrogen. The difficulty of separating 

series in spectra of atoms of alkali metals is connected with the 

fact that in the visible region of the spectrum a number of series 

are overlapped. 

Pig. 10. Mag¬ 
nitude of quan¬ 
tum defect A 

6 

for the series 
of alkali atoms. 
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The following four series are basic: principal, transitions 

between the basic S term and P terms; sharp, transitions between the 

deepest P term and higher located S terms; diffuse, transitions 

between the deepest P term and D terms; fundamental, transitions 

between the deepest D term and P terms. 

Besides these, there is a number of other series corresponding 

to transitions between higher terms. These series are found already 

in the infrared region. For Li, e.g., we have 

2sS-npP principal series, 
2pP-nsS sharp series, 
2pP-ndD diffuse series, 
?dD-nfF fundamental series, 
5sS-npP; JpP-nsS; 3pP-ndD, etc. 

For Na we have 

3sS-npP principal, 
3pP-nsS sharp, 
3pP-ndD diffuse, 
3dD-nfF fundamental. 

Transitions S Ä P, P s* d, D F, ... exhaust all transition allowed 

by the selection rules AL = 0, ±1; even term Ä odd term. 

The general formula for spectral series of alkali elements 

according to (8.3) has the form 

The sharp series is also called the first lateral, the diffuse the 

second lateral and the fundamental the Bergmann series. 

The spectroscopic notation of states 1=0,1, 2, 3 starts from 

the designation of series in spectra of alkali elements. The letters 

s, p, d, f are initial letters of the names of series: s (sharp), 

p (principal), d (diffuse), and f (fundamental). 

3. Thin structure of spectra of alkali elements. The 



multiplicity of terms in this case is equal to two (S » s « 

2S + 1 = 2). Therefore all terms, with the exception of 2S terms, 

) are doublets. The 2S terms are singlets. Thus, we have the following’ 

terms : 

, *P±I_, •D, , , •F, , , ... 
• • • • ■ • 

As a rule. In spectra of alkali elements the location of the doublet 

components is normal: level j = | lies below level J = level 

.1 = I is below level J = |. There are also exceptions. In spectra 

of certain alkali elements the series of terms SD and SF are rotated 

multiplets. 

Table 9 gives the values of splittings of first excited ?P terms 

of Li, Na, K, Rb, and Cs atoms (in cm-1). As can be seen from this 

Table 9. Fine Splitting table, the magnitude of splitting of the 
of Resonance Terms of 
Alkali Atoms 

ào(fip *Px—np*Pt) 
7 r 

m LI N« K Rb C* 

2 
3 
4 
8 
6 

0.34 
«7.2 
5.49 
2.49 
«.SO 

57.9 
«8,7 
8.1 

237,6 
77.5, 554 

first excited 2p term sharply increases 

with increase of the atomic number of the 

atom, Z. This is connected with the 

following circumstance. For hydrogen 

doublet splitting is proportional to 

<;r>> i.e., it is determined by the region 

of small values of r; the same thing 

occurs for alkali elements (from the conclusion of formula (3.7) it 

la clear that In this case .•<^> is replaced by <±">). But at small 

distances, inside the atomic remainder, the charge of the nucleus is 

cot completely shielded by electrons of filled shells; therefore the 

ective charge > 1, where it is greater the larger the atomic 

number Z. In the case of a Coulomb field splitting is proportional 

to ., . It is natural to assume, as in this case, splitting increases 

rep idly with increase of Z - * 
Vf 
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Knowing the fine stiructure of terms, it is simple to clarify 

the character of splicting of lines of different series. 

The selection rule for j permits transitions Aj » 0, ±1. The 

selection rule for parity is automatically fulfilled, since in this 

case L coincides with l and terms S, D are even, and terms P and F 

are odd. Considering this, we have 

o p 
principal series - doublets 3/2' 

sharp series - doublets ^yp 3/2 ~ ^i/P' 

diffuse series - triplets 2P1^2 - ^yp, 2P5y2 - ^yp^yp* 

2 2 2 
V2 " V2' V2 " F5/2,7/2* 

fundamental series — triplets ‘'D, 

In analyzing the experimental data we must consider the following 

circumstance. Multiplet splitting decreases rapidly with increase of 

n. For hydrogen the dependence of multiplet splitting on n, 1 is 

determined by the factor i/n^z(z + 1). For alkali metals this formula 

cannot be directly applied. However, even in 

this case a rapid decrease of multiplet splitting 

occurs with increase of n, z. As an example we 

will give values of doublet splitting of terms 

Table 10. Doublet 

Splitting of 2P 
Terms of Na 

II “ 

3 

* 1 I
"
'
"
 

3 
4 
5 
6 

17.2 ; 
3.49 
2.49 
1.30 

2pi/2 2p3/2 of Na (Table 10)' 

Doublet splitting of lines of the principal 

series is determined by the fine structure of 

p 
the upper P^y2 ^yp terms, since the lower term 

is a singlet (Fig. 11). Therefore doublet splitting is especially 

great for the head lines of the principal series. 

During transition to the highest, shortest wave members of the 

series doublet splitting drops rapidly. For Li only resonance and 

several lines following it have doublet form. For the remaining 

lines splitting is not allowed. For Na the observed lines of the 
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Fig. 11. Diagram of 
doublet splitting of 
lines of the principal 
and sharp series. 

principal series have doublet structure, 

For Cs splitting is oven greater. 

Doublet splitting of lines of the 

sharp series, conversely, is completely 

determined by the fine structure of the 
p 

lowest P„ 
'1/2 5/2 term (Fig- ii)- Therefor# 

all lines of sharp series in a scale of / 

frequencies or wave numbers have identical doublet splitting. In the 

scale of wave lengths splitting increases as X2 with increase of X 

since AX = X2Act. 

The structure of triplets of the diffuse seriefl 

is shown in Fig. 12. The distance between two 

*ß 

*P 

-5/£ 

components of the triplet 2P1^2 - 2d^2 and 

‘3/Z 

•VI 
"P5/2 ~ 2]D3/2 

Fig. 12. 
Triplet 
splitting of 
lines of the 
diffuse series 

is determined by splitting of the 

lower term and is constant for all lines of the 

diffuse series. The distance between components 

2, 
Vs - S/S “d %/2 - %/2 , determined by 

splitting of D^/2 terms, is considerably less 

in magnitude and rapidly decreases for the higher members of the 

series. At small resolving force of spectral equipment these 

components cannot be resolved; therefore the lines cf the diffuse 

series have doublet form, it Is likewise easy to establish the 

structure of the lines of the fundamental series. 

In accordance with the above-formulated rule the ratio of 

Intensities of components of the doublet, beginning from levels 1 
- 01 

anu J2 (or finishing on levels J1, j2), is equal to (2j1 + 1):(2J2 +1), 

For doublets of the principal and sharp series this ratio is equal 

to 1 r ? 



íiW *1 i.«.«.,»,,, 

For doublets of the principal series of Na and head lines of 

this series K, Rb, and Cs, the ratio of intensities of components of 

the doublet is indeed close to 1:2. For the remaining lines deviaticns 

are observed. These deviations are more significant for Cs, where the 

actual ratio of intensities is very far from the 1:2 ratio. It is 

necessary to note that in comparing the theoretical ratio of 

intensities with the experimental we must consider a whole series of 

factors connected with the conditions of excitation and radiation, 

e,g., reabsorption of radiation. 

4. General characteristics of spectra of alkali metals. The 

ionization and resonance potentials of atoms of alkali metals are 

small (Table 11). Therefore, 

atoms of alkali metals are easily 

excited even in low temperature 

sources. The most favorable 

conditions of excitation are in 

flames. In higher temperature 

sources, arc, spark, etc., the concentration of neutral atoms is 

very small, since a very large part of alkali atoms is ionized. At 

temperatures of 5000-6000°K almost total ionization occurs. From 

Table 11 it is clear that the system of terms occupies on the scale 

of energies only approximately 2.5-3.5 ev. Due to this the basic 

spectral series are located in the visible and infrared regions of 

the spectrum. The resonance lines are in the visible part of 

spectrum. 

The electron structure of ions of alkali metals is the same as 

atoms of inert gases; therefore the electron shells of Li+, Na+, ... 

are very stable and difficult to excite. The resonance lines of 

Table 11. Ionization and Reso¬ 
nance Potentials of Atoms of the 
Alkali Metals. 

El tat «nt LI Na K ft* Cl 

“r «V 
5.« 
I.M 

5.14 
2,10 

4,34 
1,61/60 

4.16 
1,5635 

3.89 
1.45,38 
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these ions lie in the far ultraviolet region of the spectrum. In 

the visible region of the spectrum lines of ions of alkali metals 

are not visible even at considerable concentrations of ions. 

The systems of terms of ions of the isoelectronic series 

(Lil) Ball. BUI. CIV. NV, OVI 
(Nal) MgII, AIIII, SiIV, PV, SVI 

are similar to those which occur for alkali atoms. The difference is 

an increase in the scale of system of terms approximately proportional 

to the square of the ion charge. The relative magnitude of spin- 

orbital splitting also increases rapidly. 

5• Spectra of copper, silver and gold. Atoms of Cu, Ag, and 

Au in the ground state also have one ns electron outside filled shells. 

In the periodic table Ag precedes Pu, whose 4d shell is completely 

filled. Therefore in Ag only the external bs electron is comparatively 

easily excited and the spectrum completely is like the spectra of 

alkali elements. For Cu and Au the situation is somewhat different. 

Cu precedes Ni with configuration of 3d®4s2, and not 3d10. This is 

connected with the above-noted competition of the s and d states. 

Likewise, oefore Au there is Pt with configuration of 5d%s. This 

indicates that for Cu and Au the binding energies of the s and d 

electrons are approximately identical; therefore along with excitation 

oí the s electron excitation of the d electron is possible. Excited 

states of the s electron of Cu and Au correspond to a system of terms 

of the same type as for atoms of the alkali metals. During excitation 

of the d electron new states are also possible. Thus, for Cu such 

at,ates are 3d^4s , 3d^4sns, 3d^4snp, jîd^snd, etc., in general, 
_ -9, 
3d- I snl. 

We will consider one 

For the Jd^ group only one 

of these configurations, e.g., 

term, “D-^/g 5/g is possible. 

3d^4snp. 

Using the 



general rule for finding the possible terms, we obtain 

i*rq]i»l'D]MpuPL±t V)iJL. •F±^î 

^[•014# VD]*p'P^t *D±±, *f[±. 
• • at aa aaa 

*Dt a a < t ^a üi* 
•T a TT T a a a 

Thus, in general systems of doublet and quartet terms are 

possible. In this case the series of terms is rotated multiplets. 

Thus, the even doublet terms have a rotated order of splittings, and 

the odd, a normal one. The deepest term of this system is term 

9 2 2 i 
3d74s ^2. This term lies approximately 10,000 cu higher 

than the basic term 3dl04s2S1^g. Doublet transition between these 

terms is absolutely forbidden since both these terms are even. 

Therefore term 3d94s2 2Dy2 is metastable. Likewise, in the case 

of Au term 5d%s2 5/2 is metastable. 

The boundaries of ionization of alkali-like systems of terms of 

Cu and Au are determined by the energy of the ground states of 

+ 10 1 4- 10 1 
Cu 3d Sq, and Au 5d Sq ions. If, however, ionization occurs 

due to one of d electrons, then the Cu+ ion turns out to be in one 

of the states 3d^4s^Dg, g Therefore the terms connected with 

the excitation d electron converge to the boundaries of ionization 

3d^4s1Dg and 3d^4s^D1 g In the case of Au new boundaries of 

ionization 5d^4s1D0, 0 , also appear. 

The presence of additional systems of terms permits the spectra 

of Cu and Au to be considerably more complicated than spectra of 

alkali elements. 

-1 

§ 9. Spectra of Alkali Earth Elements 

1. Spectrum of He. Atoms of He, Be, Mg, Ca, Sr, Ba, Ra, Hg, Zn, 

and Cd possess two s electrons outside filled shells. The ground 
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State of Fe Is toe Is2 1S& state. During excitation of one s electron 

two systems of terms are possible: a singlet, S = 0, 2S + 1 = l, and 

a triplet, C 1, + 1 = 3. the filled Is2 shell is extraordinarily 

stable; therefore the basic terms of He lies very deep, considerably 

deeper than for hydrogen. The ionization potential of helium is 

larger than for any other element, E. = 24.5 ev. The binding energy 

of the electron in the excited state is considerably less than in 

the normal, since the second electron, remaining in the Is state, in 

tnis case shields the charge of the nucleus. The first excited 

level is therefore located very high above the normal Er « 20 ev 

(^r « 600 A), in approximation of the LS coupling transitions between 

triplet and singlet terms are forbidden. 

Therefore in the spectrum we should observe, as it were, two 

independent systems of lines. Namely this occurs for He. Inter- 

combinational lines corresponding to transitions between triplet 

and singlet terms are practically absent in the spectrum of He. In 

connection witn this for long time there was talk about two varieties 

oí helium with absolutely different spectra, orthohelium and 

parahélium. Such terminology has been kept even up to now. A 

singlet system of terms is sometimes called the system of terms of 

parahélium, and the triplet, the system of terms of orthohelium. 

Within limits of each system of terms the selection rules allow 

transitions of the following types: 

~\snp'Plt 
\¿2p'Pl - lirts *5,, 

ls2p'Px-\snd'Dv 
\s3d'Dl — Isnf'F,, 

1*2* *5. -IwipVV,.,, 

WP'^-Und'D. 

ríe. -Tust as in spectra of alkali elements, 

frequently called principal, sharp, diffuse. 

these series are 

and fundamental. 
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The deepest triplet term of He is the term 1s2s^Sq. Inasmuch 

as the transition 1823^30 - Is Sq is forbidden, this term is 

metastable. 

During analysis of multiplet splitting of triplet terms of He 

the sharp deflection from the rule of Lande' intervals draws our 

attention. The splitting has a rotated order. The ratio of intervals 

is approximately equal to 1:14 instead of 2:1 according to the Lande" 

rule. The observed divergence cannot be attributed to deflection 

from the approximation of an LS coupling, inasmuch as the exclusion 

of intercombinational transitions characteristic for an LS coupling 

as already noted above, is observed. In § 19 we will show that this 

divergence is indeed caused by other causes. 

Obviously, only those lines of a spectrum caused by transitions 

between triplet terms have a multiplet structure. As an example let 

us consider the transitions 1823^3^- lsnp^P0 ^ 2, ls2p';P0 ¿ - 

- isns^s^i and IsPp^Pq^^ - Isnd^D^^« 

In the first case all splitting is determined by the fine 

structure of the upper level. This splitting decreases rapidly with 

increase of n. The corresponding lines are triplets; however, the 

triplet structure can be allowed only at small values of n. Conversely, 

in the case of transition ls2p"'P0 ^ 2 " Isns^S^ splitting is determined 

by the lower level; therefore the triplet structure does not depend 

on n and is identical for all lines of this series. It was just 

noted that splitting of levels ^P0 exceeds the splitting of levels 

^P^ ^Pg by It times. If this last splitting is not resolved by the 

equipment, then the line will have the form of doublets. 

For lines of the series IsPp^P^^g - Isrid^ 2 ^ the selection 

rules for J allow 6 transitions 0 -*• 1; 1-+1, 2; 2 -+ 1, 2, 3. Thus, 
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t.it lints of this series are sextets. Splitting of the upper level 

is much less than that of the lower and, furthermore, decreases 

rapidly with increase of n. Therefore the sextet structure is 

difficult to resolve. In the usual conditions most lines of this 

series have the form of triplets. The relative intensities of 

components of the considered multiplets can be calculated on the 

basis of the rule of sums. v 

o 
The resonance line of He \r « 600 A lies in the ultraviolet 

region of the spectrum, which is difficultly accessible for experiments 

With the help of the usual spectral equipment we can investigate 

only the lines corresponding to transitions between excited levels. 

A series of very intense lines Of He is located in the infrared region 

of the spectrum. All these lines' require 21-24 ev for their 

excitation; therefore the spectrum of He is excited only in high- 

temperature sources. The He ion is completely hydrogen-like and 

therefore does not require special discussion. 

2. Spectra of alkali earth elements. In the ground state atoms 

of Be, Mg, Ca, Sr, Ba, Ra have two s electrons outside filled shells. 

The basic term is the 1S0 term. The charge of the nucleus is shielded 

by electrons of the filled shells, therefore the effective charge of 

the atomic remainder is approximately equal to two. In this case, 

however, the electrons are a significantly greater distance from the 

nucleus than in the case of He. Due to this atoms of alkali earth 

elements are characterized by considerably smaller excitation and 

ionization energies than an atom of He. The magnitudes of E and E. 
ï* X 

are given in Table 12. 

Just as in the case of He, upon excitation of one s electron 

two systems of terms appear: singlet and triplet. The lowest term 

of the triplet system, nsnp5P() 1 2, is metastable. However, in the 



case of the alkali-earth elements the selection rule AS = 0 is 

fulfilled not so strictly as in the case of He. In the spectra of 

all these elements intercombinational lines corresponding to 

transitions from levels to the ground level ns2 are observed 

The intensity of these lines increases with increase of Z. 

Table 12. Ionization and Resonance 
Potentials for Alkali Earth Atoms 

* *1 4 7 ransition 

B* 
M« Cl 
Sr 
B« 
¡to 

S.2S 
4.33 
8.93 
3.63 
3.33 
8.86 

9.330 
7.644 
6,11! 
6.693 
8.310 
8.877 

3348,613 
3883,130 
4336.738 
4607,331 
5535.484 
4825.91 

2s '5,— 
3s'S,-3/»'/>. 
4j'S,-4p'Pl 
5s'S,-5p'P, 
fts'S.-fip'/», 
7j'S,-7p'/>, 

As can be seen from Fig. IJ, on which the diagrams of terms of 

Be and Mg are given, the nsnp5P term for all alkali earth atoms lies 

below the first excited singlet term, nsnp1?. Nonetheless by 

resonance transition for alkali earth elements we mean the transition 

2 I- 1 
ns Sq - nsnp P^, since the corresponding line is nevertheless 

considerably more intense than the intercombinational line. For the 

same reason the nsnp5P term is called metastable. 

As in spectra of the alkali elements, in spectra of alkali earth 

elements it is possible to separate the series: principal, sharp, 

diffuse, and fundamental. The lines connected with transitions betv/oen 

terms of the triplet system are triplets (principal and sharp series) 

and sextets (diffuse and fundamental), where one meets both normal 

and rotated order of splitting. Atoms of alkali earth elements are 

characterized oy comparatively small excitation energies. 

Besides the resonance lines in spectra of these elements the 

head lines of tne diffuse series are strong in botn the singlet and 

the triplet, system of terms. 
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Fig. i5. Diagram of terms of the series of 

elements with basic configuration (ns)^. 

i ne small values of ionization potentials of these elements 

cause their easy ionization. The spectra of ions of alkali earth 

elements are completely analogous to the spectra of alkali metals. 

The excitation energies of these ions are relatively small; therefore 

already in sources such as arc, the lines of ions of alkali earth 

elements are very intense. All alkali earth elements have the 

so-called displaced system of terms connected with simultaneous 

excitation of two electrons. For Ca these terms correspond to electron 

configurations 3dns, 3dnp, 3dnd, ..., 4pnp, etc. The probabilities of 

radiative transitions, as a result of which the state of the two 

electrons changes, are insignificantly small as compared to single 

electron transitions; therefore the displaced terms do not combine 

with terms of the basic system. 

3. Spectra of zinc, cadmium, and mercury. With respect to 
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alkali earth elements the elements Zn, Cd, and Hg occupy the same 

place as the elements Cu, Ag, and Au with respect to the alkali 

elements. Two s electrons are added not to the filled no6 shell, as 

for the alkali earth elements, but to the nd10 shell. The elements 

Cu, Ag, and Au, standing in Table 7 before Zn, Cd, and Hg, 

correspondingly have a completely filled nd shell. The binding 

energy of the nd electron in atoms Zn, Cd, and Hg considerably exceeds 

the binding energy (n + 1) of s electrons; therefore only the 

s electron is excited. The spectra of Zn, Cd, and Hg are thus 

completely analogous to the spectra of alkali earth elements. As an 

example Pig. 13 depicts a diagram of terms of Hg. The intercombina- 

tional lines in spectra of these elements are even stronger thaa in 

spectra of alkali earth. Thus, in the spectrum of mercury some of 

the intercombinational lines are very intense. 

The spectra of Zn+, Cd+, Hg+ ions are analogous to the spectra 

of ions of alkali earth elements and neutral atoms of alkali metals. 

In the spectra of these ions, however, some competition between s and 

d electrons appears. Excitation of both the s electron and also the 

d electron is possible. 

§ 10. Spectra of Elements with p Valence Electrons 

1. One p electron outside filled shells. In Table 7 for the 

first time a p electron is encountered in the B atom, the configuration 

2 2 
Is 2s 2p. Atoms of Al, Ga, In, T1 also have basic configurations of 

the same type, i.e., one p electron outside filled shells. 

The basic term of all these atoms is the doublet term 
1/2,3/?' 

where the 2P1y2 level is located below the 2Py2 level. Doublet 

radiative transitions between the levels 2P1/2, 2Py2 are forbidden, 

since both these levels pertain to one electron configuration and 
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therefore possess identical parity. Thus, the 2P, level is 

metastable. 

The distance between levels 1/2* Pj/p increases rapidly with 

increase of atomic number. For B it is only 16 cm"1, but for T1 it 

is 7793 cm" The resonance level of B is the level; 

therefore the resonance line is a doublet with splitting of 16 cm’1 

(transitions 2pSP1/s - ^2S1/S and SpSPy2 - 3s\/s). Inasmuch as 

this splitting is determined by the lower level, the remaining lines 

corresponding to transitions of 2p2P1/2 ys - ns2S1/2 also have the 

same structure. 

The doublet selection rules also allow transitions 2p^P . - 
y 1/2 3/2 

2 
- nd D^/2 5/2> which correspond to a series of triplet lines: 

p-p 2 2 2 2 2 
Pl/2 " D3/2' P3/2 " D3/2' P3/2 " D5/2* The io^gest wave line 

of this series is given by transition 2p^/2 ^/g - 3d^3/2 5/2* 

Let us remember that the 2d state is impossible, since n â 1 + 1. 

For the remaining atoms of the considered isoelectronic sequence 

Al, Ga, ... the nearest, to ground state np2?^ ^/2 and (n è 3) will 

be the nd Dy2 y2 and (n + 1)8¾^ states. In all cases the 

(n + 1) Sy2 level, which is the resonance level, is located lower. 

The distance between the ground and resonance levels decreases 

rapidly with increase of n; therefore with increase of atomic number 

the resonance lines shift into the long-wave region of the spectrum. 

Splitting of the resonance line increases simultaneously. As was 

noted above, in T1 one component of the resonance line is located in 

the visible region, and the second in the ultraviolet region. With 

so great splittings the deflection from an LS coupling becomes 

substantial. 
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The ionization potentials, resonance potentials and wave lengths 

of resonance lines for the considered atoms are given in Table I3. 

Table I3. Ionization and Resonance Potentials 
of Atoms with a p Valence Electron 

£1 ament Bulo 
term 

Resonance 
term 

«< «r U 

B 
AI 
<h 
h 

• Ti 

Wv. 
Wv. 

/¾ 
2¾ 
VS,, 

а, » 
ff.98 
б, 00 
5,791 
6,11 

4.94 
3,13 
3.06 
3,01 
3.27 

2497; 2498 
3944;3961 
4033; 4172 
4102.4511 
3776:5350 

Besides these terms, a number of others corresponding to 

excitation of one of the s electrons are also possible, i.e., belonging 

to configurations of the type nsnpn'z, e.g., nsnp^, nsnpn's, nsnpn'd, 

etc. For three electrons the full spin S can have two values, 1/2 

and 3/2. Doublet and quartet terms are correspondingly possible. 

These additional terms converge to a limit, which is determined by 

the energy of corresponding ion in the excited state, nsnp. 

The configuration nsnpn'z can be obtained from basic configuration 
2 

ns np by exciting two electrons: 

tu'np —* «s V/ —* nsnpn’l. 

Correspondingly one may assume that the energies of states ns2n'z 

and nsnpn'Z differ approximately by the excitation energy 
O 

E' = E(nsnp) - E(ns ). From this it follows that the terms of 

configuration nsnpn'z are shifted upwards relative to the terms of 

configuration ns n'Z by approximately a magnitude of E». As was 

noted above, such terms are called displaced. 

Basic configuration of ions B+, Al+, ...is configuration of the 

same type, as for alkali earth elements, i.e., configuration ns2. 

Therefore spectra of such ions are analogous spectra of alkali earth 
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elements. 

Coniiguration p . Two equivalent p electrons outside filled 

shells are encountered In the basic configurations of C, Si, Ge, Sn, 

and Pb. The configuration npc gives three terms: ^Sq, and 

P0,l,2 ^see 4)• In accordance with the Hund rule the basic 

term is the term of maximum multiplicity, i.e., the 5P term. Inasmuch 

as in this case the p shell is less than half filled, the levels 

J = 0, 1, 2 are located in normal order, i.e,, level J = 0 lies 

lowest of all. Doublet transitions between the terms ^Sq, ^Dg and 

the basic term are forbidden by the selection rules due to parity. 

Therefore the terms np? ^ and np2 1Dg are metastable. For atoms 

of this type excitation either of one of the p electrons or one of the 

s electrons is possible. In the first case we obtain electron 

configurations of the type ns2npn'z (singlet and triplet terms), in 

second, configurations of the type nsnp2n'z (singlet, triplet, and 

quintet terms). 

As an example let us consider the diagram of terms of carbon, 

shown in Fig. 14. The ground state of the C atom is the state 

2s'2P Pq- The metastable terms 1SQ and Sg also pertain to this 

configuration. 

The resonance levels of the carbon atom are levels 2s22p3s^P^ 

and P0,1,2* The term pi can combine with terms ^ and 1B2 of the 

baric configuration; the term ^P can combine with the term ^P. 

Let us note that in this case the resonance levels are not the 

lowest excited levels. The level 2s2p5 5Sg is located somewhat below 

tnem. Tn tue approximation of an LG coupling transitions from this 

level to trie ground level are forbidden by trie selection rule AS * 0. 

In fact lines of this type were revealed in tne spectrum of carbon. 
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The intensity of these lines is very low. For just this reason tne 

resonance levels are considered to be the levels of configuration 

2s^2p3s. 

Excitation of the resonance levels requires comparatively nigh 

energies (Er ^ 7.5 ev); therefore the carbon spectrum belongs 1.0 the 

class that is relatively difficult to excite. 

Diagrams of terms of Si, Ge, Sn, Pb have basically an analogous 

form. The excitation energy of resonance terms of tnese atoms Is 

somewhat lower than for carbon. Thus, for el is approximately 

5 ev; therefore the resonance lines of Si lie in tne convenient 

ultraviolet region of the spectrum. 
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For neavy atoms of this isoelectronic sequence we observe a 

noticeable deviation from LS coupling and a transition to a coupling 

of the Jj type. 

C+, :ji+, ... ions have basic configuration of the same type as 

2 
B, Al, ...» i.e., ns np. Correspondingly the spectra of these Ions 

are analogous to the spectra of B, Al, .... 

3. Configuration p^. N, P, As, Sb, and Bi have a configurâtiûn 

2 2 4 
of this type in the ground state. The terms P, D, and S correspond 

to this configuration. In accordance with the Hund rule the normal 

4 2 2 
term is S. The P and D levels are metastable. Among the terms of 

2 
the excited eonfigurations np nU only even terms can combine with the 

terms of the basic configuration. Sucn terms give, e.g., configurations 

2 2 4 
np n’s, np n'd. The even configuration nsnp , corresponding to 

2 
excitation of one of the electrons of the ns group, is also possible* 

As an example we will consider the diagram of terms of N. The 

basic term is 2p^ anc* resonance term is 2p pPJSs P« The 

o 9 19 
remaining terms of the 2p‘13s configuration, namely 2p [ s]3s S, 

2p2[1ü]3s2ü, and 2p2[^P]3s2P, cannot combine with the basic term due 

to exclusion of intercomblnational transitions. These terms can 

combine only with the metastable terms 2p^ 2P, 2p''; 2D. In fact the 

exclusion AS ■ 0 in the N spectrum is not absolutely strict, and some 

intercomblnational lines are observed. 

The resonance potential of nitrogen is comparatively high, 

approximately 10 ev; therefore transitions between terms of the ground 

and the first excited state give lines in the vacuum UV region of the 

> --: -Hi 

spectrum. 

The remaining excited levels of N lie in a comparatively narrow 

energy band. Transitions between the.se levels correspond to lines 
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lying in the visible and infrared regions of the spectrum. The terms 

of nitrogen converge to three ionization boundaries which correspond 

to three possible terms of the basic configuratior of the 4\’+ ion, 

2P2 V ^ lö2» ^ 2p2 ^P0,l,2* The dlfi,erence in energies of 

2p2 h0, 2p2 3P1, and 2p2 3P, is essentially small, ana it can 

be disregarded. Ionization is also possible due to one of the 

s electrons. 

The systems of terms of the remaining elements of tnis series 

have an analogous structure. With increase of atomic number the 
H 

values and rapidly decrease. Thus, for P most lines corresponding 

tc transitions between levels of basic configuration 3p^ and the first 

o 
excited configuration 3p are located in the convenient ultraviolet 

region of the spectrum. 

Configuration p^. Among the elements with basic configuration 

4 ii 
of np are 0, S, Se, Te, Po. The configuration p gives the same 

terms as the configuration p2. The difference is only the rotated 

order of tne multiplet structure. Therefore the basic term, just as 

in the case of the configuration p2, is 3P, out tne ground level turns 

out to be not ^PQ, but ^P2. 

The excited levels correspond to configurations np-^n's, np^n’p, 

np^n’d, ••.. For oxygen tne term 2s2p^ ^P, corresponding to excitation 

of one of the 2s electrons, is also known. 

The excitation energy of the lowest excited terms of oxygen is 

about 9 ev. The corresponding lines lie in the vacuum ultraviolet 

region. In the visible region of the spectrum there are lines 

connected with transitions between excited states. The oxygen ion in 

the ground state has the same electron configuration as the C atom. 

Correspondingly in the diagram of terms of oxygen it is possible to 
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separate a series of systems convergent to different ionization 

boundaries 2p3 "s, ¿p3 ariu 2p3 2p (13.55 ev_ 16_36 ev> ^ 10>5J| 

18.ev). 

The systems of terms of S, Se, Te, and Po have approximately the 

same form, as in tue case of oxygen. With increase of atomic number, 

just as in the nitrogen series, the values Er and are lowered, 

fnus, for 3 hr - 6.6 ev. This regularity has a single physical 

meaning. All elements of the considered series have approximately 

identical nuclear charge. At the same time in elements with large 

atomic numbers on the average the electron is further from the nucleus. 

5* £g.n.flguratj-°“ P^- The halides, F, Cl, Br, J, and At have a 

configuration of this type. The configuration np5 gives only one term 

^3/2 1/2’ the distinction from configuration np consists of 

rotation of the order of multiplet splitting. During excitation, Just 

as ln tne Preceding cases, several ionization boundaries are possible. 

Tne values Er ana are very great for halides, since the remaining 

np electrons practically do not shield the charge of the atomic 

remainder and Thus, for F Er - 12.9 ev and E1 -17.42 evj 

for Cl Er - 9.16 ev and E^ - 13.01 ev. The resonance lines lie in the 

vacuum ultraviolet region of the spectrum. Transitions between 

excited states give lines in the visible and infrared regions of the 

spectrum. 

P « The last group of elements having p optical 

electrons is the inert gases. Ne, Ar, Kr, Xe, and Rn. The six 

p electrons form a completely filled shell; therefore the ground stabe 
1 

is Sq. The binding energy of p electrons in atoms of inert gases 

larger than in halides; % 5. Due to this the ionization'ibid 

resonance potentials are very great and are the biggest in the whole 

periodic table of elements. Just as in case of halides, the excited 
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levels lie in a comparatively narrow energy band. Tnerefore the 

basic lines of spectra of these elements lie in the vacuum ultraviolet 

region of the spectra (transitions to the ground level) and in the 

visH|r|| and Infrared regions (transitions between excited levels). 

lor exoited states of atoms of inert gases a rather unique type 

of coupling is realized. Excited states are obtained during 

tran|ltion «f one of the np electrons to states n's, n'p, n'd, ... 

the binding energy of an n'l electron is considerably less than the 

binding energy of p electrons (for an n’t electron % 1 for 

p electrons % ^), and on the average this electron is a 

comparatively large distance fron the remaining electrons of the 

atomic remainder, including the electrons of the p snell. Therefore 
: ■'J ^ 'I«;" 

spin-orbital interaction of electrons of the atomic remainder is 

greater than electrostatic interaction of these electrons with an 

excited electron. In accordance with this the levels of atoms of the 

noble gases can be conveniently classified according to the following 

diagram. 

The atomic remainder is characterized by quantum numbers L, S, 

and j, where L is the orbital moment of the atomic remainder, S is the 

spin of the atomic remainder ana j is the full moment of the atomic 

remainder. 

In calculating the electrostatic interaction of an excited 

electron with electrons of the atomic remainder the state LSji gives 

a series of levels, each of which is characterized by quantum number 

K, corresponding moment K ■ J + 4. 

Finally, spin-orbital interaction of an excited electron leads 

to splitting of each LSJlK level into a series of J components. As 

before J designates the full moment of the atom, where J * K. i 1/2. 

In a classification according to tnis diagram a level is 
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characterized by the set of quantum numbers LSJtKJ. Usually the 

following designation is used: 

As an example let us consider the configurations np5n*s anff 
5 ’ - 4:!i'i'!:' 

np n'p. In the first case we have levels: 2Po/Pn,s[|-3 j 

2 1 p 
np Pl/2n's^^l,o* The term P3/2 oi* the atomic remainder gives one 

pair of levels J « 2, 1 and the term 2P1/2 gives one pair. In the, 

second case the initial terms are also the terms ^P. and 
1/2 3/2* 

Mow, however. 

*-/+/./+/-1.|/-/| 

can take the following values: 

at 

y f «•"T • Y* 

at 

, 3 » I 3 1 
/“f «•“•j' T' ï' 

Therefore we have the following levels: 

•'-ylilr 
In this case there are obviously two ionization boundaries which can 

be designated (^3/3) and (2P1/2). 

The above aescribed type of coupling is callea a J t coupling;' 

For this type of coupling the following grouplings levels are 

characteristic. The distance between levels LSjK and LSJK' is 

considerably less than the distance between levels LSJK and L'S1J1K, 

relating to different states of tne atomic remainder. The splitting 
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of level LSJK on J Is small In comparison with the distance between 

levels LSJK and LSj K'. 

Inasmuch as due to spin-orbital interaction each LSJK level will 

be split into two components J ■ K ± 1/2, the system of terms resembles 

the system of doublet terms of the alkali elements in structure. The 

difference consists only in the fact that now K can take half-integral 

values, and J Integers. In the case of LS coupling singlets and 

triplets correspond to configurations p^£. 
. ■ *1 ■ , 

/ A coupling of the Jt type also appears in spectra of certain 

other atoms, for strongly excited states when one of electrons is on 
-.. y 

the average a large distance from the atomic remainder. One example 

of such type is the spectrum Cu II.1 

I 11. Spectra of Elements with Unfilled 
d and i ¿hells 

1. Elements with unfilled d shells. Shells 3d, ^d, and 5d are 

respectively filled in elements of the iron group 

Sc. Tl, V, Cr. Mn. Fe, Co. Nl. 

the palladium group 

Y, 2r, Nb, Mo, Tc, Ru, Rh. Pd 

and the platinum group 

Lu, Hi, Ta, W, Re, Os, Tr, Pt. 

As was noted above, during filling of the d shell a unique 

competition between d and s states occurs. 

As a result for some of the enumerated elements the basic 

configuration is nd^^n + l)s (Cr - 3d^s; Mo - ) or even 

ndk+2(Pd - 4dlü) instead of ndk(n + l)s2. 

Hacah, Phys. Rev. 61, 5Ö7, 1942. 
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For most atoms of the considered groups the electron configuration! 

ndA(n + l)s2, ndK,'(n + l)s, and ndk+2 correspond to comparatively 

close energy levels; the order in which these levels are located is 

different for different atoms. 

Many terms, some of which have high multiplicity correspond to 

electron configurations containing several d electrons. For instance, 

for configuration 3d^ts we have 16 terms: 1PDFGH, ^PDFGH, ^PF ^?F 
2 2 

and 38 levels. Due to this the spectra of these elements are 

characterized by an extraordinary wealth of lines. 

Inasmuch as the levels of the first excited configurations and 

the basic configuration are comparatively close, in the visible and 

ultraviolet regions of the spectra of elements with d optical electrons 

there is a large number of lines. A cnaracteristic peculiarity of 

spectra of these elements is also the absence of strongly expressed 

intense lines, similar to those which are in spectra of alkali and 

alkali earth elements. This peculiarity is obviously connected with 

the fact that many levels pertain to each electron configuration and 

transitions between levels of two configurations give a very large 

number of spectral lines. 
i 

As a rule, a comparatively large group of lines plays the role 

of resonance lines for each element. The close levels of configurations 

ndk(p + l)s2, nd**1^ + l)s, and ndk+2 have identical parity, ainoe 

tne d and s states are even; therefore doublet transitions between 

these levels are impossible. The nearest odd configuration, as a rule, 

turns out to be the configuration obtained by excitation of one of 

the nd or (n + 1) s electrons in the (n + l)p state. ' * 

As an example let us consider the iron spectrum. The basic 

configuration of the Fe atom is 3d ̂ -2 The terms ^DFOI, 3|DFGH5D 
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correspond to this configuration. According to the Hund rule the 

basic term is D4 3 2 1 0* Inasmuch as in this case the number of 

d electrons is larger than half the amount possible, multiplet 

splitting has a rotated order; the lowest level is The lowest 

excited terms belong to configuration Sd^s: 

4* It 1* !• j* J^J J, 2« f /^J 2* 1 i et c. 

In all 16 terms pertain to configuration 3d'4s. All these terms are 
'lïjlïflf ' 

even and are therefore metastable. The lowest odd term is 
£L £ 7 fl 

3d 4s [ 2 1* However, this term has a multiplicity of 7, 

whereas the multiplicity of the basic term is equal to 5. Therefore 

the resonance transition i.. 

W4l* 'Oí. i. «. i. • ~ 8rf*4# [*0] ip ‘05.,. 

The resonance term 3d^4s [^D]4p^D^ can also combine with the lowest 
..if, 7 ll c 

excited term 3d'[ F]4s3P. The corresponding lines also can be called 

resonance. 

Other, lower odd terms with multiplicity of 5 are 3d^4s[^D]4p^F° 

and 3d7[l4F]4p5F0. 

Due to the irregularity of filling the d shell for these elements 

there is not such a strict conformity between spectra of elements 

occupying identical places in different periods, as this occurs for 

elements with s optical electrons. 

2. Elements with unfilled f shells. The basic configurations 

containing f optical electrons occur in the sixth period, in tne 

lanthanides: Ce, Pr, Nd, Pm, 3m, Hu, Gu, Tu, Dy, Ho, Er, Tu, Yb, and 

in seventh period, in the actinides: Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, 

2 
and Cf. Although the basic configurations of lanthanum (‘jdbs ) ana 

2 
actinium (6u?s ) do not contain f electrons, these elements are 

considered together with the remaining rare-eartn elements. 
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spectra of elements with f optical electrons are even more 

.0..,plae^.eo a.,o rocher In lines tnan the spectra of elements wltn 

d °Ptl0al electron3- This connected wltn the fact that electron 

configurations containing f electrons give an extraordinarily large 

number of terms and levels. Thus, e.g., configuration t1 gives 119 

terms with multiplicity of 2, t, 6, e and 327 levels. For configura¬ 

tions containing the group f1; ana also s, p, and a electrons, the 

number of terms can be increased to several thousand and the number of 

1 (--V---13 can exceed lo\ 

At present the spectra of lanthanides and especially actinides 

have been studied very Incompletely. The abundance of lines strongly 

hampers the study of these spectra. Furthermore, the ionization and 

resonance potentials of these elements are low. Therefore even In 

an arc along with spectra of neutral atoms to a considerable measure 

tnere are spectra of Ions. 

According to their character the spectra of lanthanides can be 

divided Into two groups: In trie first group are spectra of La (not 

belonging, as was noted above, to the group of rare earths, but 

usually considered together wltn them). Eu, standing In the middle of 

tne series, and Tu and Yb, located at the end of the series. In the 

second group there are spectra of Ce, ?r, Nd, Pm, Sm, Gd, Tb, Dy, Ho, 

and Er. Spectra of first group of elements are poorer In lines than 

spectra of elements of tne second group, and they contain a group of 

more or less intense lines. The La spectrum contains comparatively 

few lines, but spectra of Eu, Tu, and Yb are evidently subdivided Into 

a comparatively simple spectrum consisting of more Intense lines and 

a more complicated spectrum consisting of less Intense lines. The 

spectra of tne second group of elements are very rich in lines; the 
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group of intense lines is lacking in these spectra. These spectra 

can also be subdivided into two subgroups: for elements Sm, Gd, Dy, 

Ho, and Er, although not sharply expressed, there is a subdivision of 

the spectrum into simple and complicated; for elements Ce, Pr, Nd, Pm, 

and Tb such separation is lacking. A similar distinction in the form 

of spectra is caused by a change in the binding strength of 4f, 5d, 

and 6s electrons, whicn determine the position of low terms during 

transition from one element to another. The simplicity of the ha 

spectrum is explained by the absence of f electrons in its unexcited 

configuration. The simplicity of the Eu spectrum (basic configuration 

4f^6s^) is explained by the fact that the level of maximum multiplicity 

®7/2 ^08 considerably deeper than the remaining levels of the f 

configuration. Practically, level S^2 lies absolutely separate 

from the remaining low levels, and, the Eu atom, as it were, possesses 

i Singlet normal level. During excitation of the atom one of the 6 

7 
S electrons with unchanging f configuration is most easily excited. 

Thus, the Eu spectrum resembles the two-electron spectrum of Ba; 

during excitation of one of tne 4f electrons a complicated spectrum is 

obtained. This also approximately explains the relative simplicity of 

the spectra of Tu and Yb. 

Each of the configurations of 4f1^(Tu), 4fli|(Yb) gives only one 

term, and respectively. The nearest excited states of these 

atoms correspond to excitation of one of the 6s electrons and 

therefore they are also comparatively simple. 

The significantly great complexity of spectra of Ce, Pr, hd, Pm, 

and Tb is connected with the fact that many levels of configurations 

4fk”^5d and 4fic are locateo comparatively close to the ground level. 

For gadolinium and samarium the basic terms are a large distance from 
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the other terms of the basic configuration. For elements by, Ho, and 

Er the levels of configuration 4fk-15d lie significantly higher than 

the levels of ¿If*. Tnis leads to a certain simplification of the 

spectra of Gd, Sm, by, Ho, and Er. 

In accordance with what was said we can subdivide the spectra of 

lanthanides according to complexity into groups: 1 (the simplest), 

2a (intermediate complexity), and 2b (the most complicated). This 

subdivision is given in Table 14. 

Ionization of atoms of the 

lanthanide group corresponds to 

detachment of one 6s electron; the . 

second ionization is detachment of 

a second 6s electron. Ionization 

potentials are low. The energy of 

the first ionization for elements 

for which it could be determined 

from spectroscopic data is about 

6 ev, and the energy of the second 

ionization is about 12 ev. We 

should expect that the remaining 

elements of this group have approximately the same energy of first and 

second ionization. The spectrum of an ion of a rare-earth element, 

as can easily be seen, is not similar to the spectrum of a neutral 

atom of the element preceding it in the periodic table. 

Actinides spectra have been studied considerably less. The most 

complete aata are for thorium, uranium, plutonium, and actinium. We 

can expect that in the spectra of these elements approximately the same 

regularities will appear as in tne spectra of lanthanides. Thus, as 

aiso in case of lanthanides, not all of the elements of the actinium 

Table 14. 
Spectra of 
to 

Classification of 
Hare-Earths According 

Complexity 

O. amant No rrnal 
oonfigureii- 
tion 

basic 
terni 

lip yo irai 
group ac 
cording 
to com- 
ila.xlty 

b/ Lanthanum La .... 

60 Cerium Ce . 
69 Praseodymium Pr . 
60 tieodymium Nd .... 
61 Promethium Pm ... 

62 Samarium Sm . 
63 Europium Su ..... 

64 Gadolinium Gd ... 
65 Terbium Tb. 
66 Dysprosium Dy ... 

67 Holmium Ho . 
60 Srbium Hr.. 

69 Thulium Tu . 

70 Ytterbium Yb ...... 

4f*** 
4/W 
4fW 
4/*6s* 
4f6** 
4l'U 

4/*V 
4/^ 
ip** 
4P** 
4P** 
4P** 

•D 
•H 
•I 
•i 
•H 
'F 
•S 
•D 
•H 
•/ 
•/ 
•H 
•F 
•S 

1 
2b 
2b 

2b 

2b 

2a 
1 
2 b 
2b 

2a 

2a 

2a 

1 
1 
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group have equally complicated spectra. Examples of elements with 

very complicated spectra are U and Th. Even when spectral equipment 

with great resolving power is used, the spectra of these elements are 1 ) 

solid grids of lines with close intensities. 
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PART II 

THEORY OF ATOMIC SPECTRON 





CHAPTER IV 

ANGULAR MOMENTS1 
‘ ¡ ! 

5 12• Operator of Angular Moment. 
Summation of flomervTs- 

1. Orbital moment. In ciaielc mechanics the preservation of 

angular moment is connected with the property of isotropy of space/ 

Likewise, in quantum mechanics the determination of the, operator of 

angular moment is based on invariance of the Hamiltonian of the 

system relative to rotations of the system as an integer. During 

rotation on an infinitesimal angle 6* around an axis directed along 

a unit vector n the radius vector of the particle taitas on an increment 

(12.1) 

and tne arbitrary function of coordinates iKr) passes into the function 

(12.2) 

1 

roun, - 

iu?lJir»raiLeni958n ^um ™echjnics, collection «Deformation if at(Sii( 
^varsity Pre^, 1957¡ U. Pane ST. 

¡957 G Ya LÍubari?vK,T1959i "i Rouz' Plelds ^ multiplet.“ It. 
• ?LF0up5_anÍ i»? application ln 

pnysics, State Tecnnickí Press“, Í957rÃrpT“YutiisaiTABÂWT^Í2^ 
and V. V. Vanagas, Matnematical apparatus of the theory if anitular* 
momentum Vilnius, 1960j B. F. BeySan, Lecture on appUcaU^oJ ^ 
ttieory of groups in nuclear spectroscopy, Fizmatgiz^igól. ° *** 



(12.3) 

Thus, the operator of orbital moment of a particle 

¿—/[rvj 

is connected witn the operator of infinitesimal rotation 

l!;y • 1 * U*-*) 

by the relationship 

(12-5) 

We will enumerate the basic properties of operator L, ensuing 

from (12.4) |nd (12.5). 

the comppnents of L we have 
'kl 

¡Ik1' 
■7l. 
I - r,' ; 

‘'"-‘i**-**) 

(12.6) 

or 
■ .* 

'! ■ 

spherical coordinates 

'■ife 
W' 

Lt+Uy-J* (í+,e^l¿) • 

t«-i*+i;+iî—{¿i * $+¿ (“"•á)} * 

(12.7) 

(12.8) 

Using (12.6), we can obtain the following permutable relationships: 

(12.9) 

(12.10) 
ii„i,i-i£,. [1,.1.1-/1.. r¿„ 

li^ ri-iv n-o- 
Prom noncommutativeness of operators Lx, Ly, and Lz it follows 

that the components of moment cannot simultaneously have definite 

values different from zero (let us remember that only commutative 

operators possess tnis property). At the same time, each of tne 

components of moment can have a oefinite value simultaneously with 

the square of moment. Usually we consider states in which the square 

of moment and its z component are determined. 

2 
Eigenfunctlonals of operators L , n are spherical functions of 
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* î.rr.^ö ’; ^ » ciet<:;rmir‘eci the formulas (1.1^) and (l.lo); 

^^-/(/+1) Ytm, 
L,rla=mYim. 

+iLy) Ylm - K(/-*)(/ + »+D Yi. 

(La-tt,) r*. - Vu+*)(/-*+1) 
v;nere 

i-O. I, 2, ... \ 
*"0, ±1, ±2, ..., ±/. J 

In a numoer of cases it is convenient to introduce the function 

(12.13) 

standardized Ly the condition 

f)CÍ;'(«t qp)sin0d0</<p«• ft« • Ò,*•. (12.14) 

ihe advantage of functions(12.13) consists in tnat the known 

theorem of summation of spherical harmonics 

i 
P, (CO. «) - ^ k;« (6.. Ç|) ytm («„ 9t), ( 12.15) 

where u, is the angle oetween directions e ,, for functions 

Lm tawes on an especially simple form 

(12.11) 

P4(co.W)-£cr(«|( ¢,)= 2(-1)-Cid,, 9,)01(9., 9,). (12.16) 

Beiow we will also use the designation for functions (12.13;. 

2. General aetermlnation of the operator of anguiar moment. In 

general one can determine the operator of angular moment J, satisfying 

its components Jx> Jy, and ¿Si¿ with permutaDle relationships of the 

same type as (12.^): 

[/«• /jf) • \Jy* y*] (12.17) 

iiiis determination is tne most general one. 

Orbital moment (12.3) constitutes a special type of 

moment connected with tne motion of a particle witn mass 

angular 

m / 0. All 
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the above-mentioned properties of orbital moment can be obtained 

directly from (12.17). Also, determination (12.17) can be satisfied 

by angular moments of other types, e.g., electron spin anu angular 

momentum of an electromagnetic field, which can ue presented In the 

form (12.3). In contrast to (12.3) relationship (12.5) has a general 

character. During Infinitesimal rotation n6* tne wave function of a 

system with moment J will be converted according to the law

(12.18)

With help of permutable relationships (12.17) we can show that the 

eigenvalues of operators and are respectively equal to J(J + 1) 

and M

•rrM -yu +1) Tyj,.

where

“®* T* '• 4’ •••• I
-y. y-i, y-a,... J

y -0.
M

(12.19)

(12.20)

Thus, In general J can take both Integral and also half-integral 

values.

From (12.17) It also follows that

ly.+<y,) « V(y-A0iy+A»+1) T/w+„

and
(y. - ly,) Ty* “ K(y+A0(y-A*+» ’ry.w -.

<yyi4 »|y,|yiW>-ivty-Af)(y+AM d, 

<yAi-i|y,|yAi>-jV(y+Af)(y-Af+».

<y iM -11 y, I yAi> - y V(y+Aniy-Af-^»).

(12.21)

(12.22)

(12.23)

Relationships (12.17)-(12.22) are a natural generalization of (12.11) 

and (12.12).
2

In general tne eigenfunctions of operators J and J„ are neither
Ct

spherical functions (the latter are determineu only for integral values
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of J) nor, in general, functions of variables 0, ¢. The eigenfunctiops 

of tne spin operator of an electron are functions of this type. 

3. Electron spin. Experimental data show that the z component 

of intrinsic angular moment of an electron, spin 3, can take only two 

values: ±1/2. It follows from this that s » 1/2 and the eigenvalue 

of the square of spin is equal to s(s + 1) = 3/^. Putting J = s ■*1/2, 

M = p in (12.23), we obtain 

Here ox, oy, az are spin of the Pauli matrices (see § 25). 

In nonrelativistic theory the presence in an electron of intrinsic 

angular moment, not connected with the motion of the electron in space, 

can be described by introducing an additional spin variable X. In a 

state with given value of the z component of spin u 

(12.25) 

In contrast to the coordinate of the electron r, variable X is discrete 

and takes only two values: 1/2, -1/2; 

*»->/* - */»• l (12.26) 

The first of the functions (12.26) describes the state in which the 

z component of spin is equal to 1/2, and the second, the state in 

whicii the z component of spin is equal to -1/2. 

Below tne totality of three coordinates r and the spin variable 

A will be designated by where integrating over dç will signify 

Integration over dr ana summation over X 

* V 

in- 2 J*. (12.27) 
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Thus, 

X)¥(r, k)dr. (12.28) 

^1* Summation of two moments. Problem of summation of moments 

^1' ^wo «rating systems consists of finding the values 

of operators 

(12.29) 

(12.30) 

and their eigenfunctions vJM, if eigenvalues of operators Jl2, 

2 
^2* ^2z an^ i>uncti°ns Ÿj M * M are knöwn. From (12.30) it follows 

that the projection of full moment M is simply determined by values of 

an# M2 

Al«« iMj + Aí,. (12.31) 

The possible values of J can be found in the following way. The 

number can take one of (2J1 + 1) values 

Aig-y,, </(”“2,.. 

Likewise can have one of 2J2 + 1 values 

A^-y„ y.-i.-.M-y,. 

By combining different and M2 of tne state by all possible 

methods we will obtain (2J^ + 1)(2J2 + 1) values of M, given in 

Table 15. 

The series of values M in this table is repeated several times 

in accoraance with how many methods can be used to obtain the giwn 

value. Thus, the value M * + J2 can be obtained only by one 

method, namely by summation and M2 * J2. The value 

M ■ + J2 - 1 can be obtained by two methods: M = J^ - 1, M2 = J2 

nnd =* M2 » J'2 - 1. The value = + J2 - 2 can be obtained 
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Table 15 

Vi. 

Af,\ 
7, 7,-1 7,-2 • • • ... -7, + 1 -7, 

7. 7.+7, k+7,-1 7, + 7,-2 • • • • • • 7,-7, + 1 7.-7, 

7,-1 7,+ 7,-1 7,+7,-2 7,+7,-3 • • • • • • 7,-7, 7,-7,-1 

7,-2 7, + 7,-2 7,+ 7,-3 7, + 7,-4 ... • • • 7,—7, — 1 7,—7, —2 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

• • • 

. • 

• • • 

• • • 

-7,+ 1 7,-7, + 1 7,-7, 7,-7,-1 • • • • • • -7.-7, + 2 -7,-7,+1 

1 7,-7, 7,-7,-1 7,-7,-2 • • • • • • -7,-7,+1 —7,—7, 

by three methods: • J - 2, m2 = j2> Ml = J1 .. K2 • J. - 1. 

M1 “ Jl> M2 ' J2 * 2. etc. The maximum value of M Is equal to 

Jl + J2‘ 0n th other hand, 

/M-y, S-l, J-2.—y, 

therefore it is possible to affirm that among the possible values of 

J is the value J1 + J2> To this value of moment it is also necessary 

to relate the state M - J, + j, - ^ + j, - 2, ..., . 

All tnese states are separated by the framework of the table. Among 

tne remaining values of M is one more value ^ + J2 - This 

indicates that among the possible values of J is J1 + J2 - i. To this 

value of moment we must also relate the state M « J + j - ? 
1 2 » 

J1 + J2 " 3* •••» “lJ1 + J2 “ l|- Continuing these reasonings, we 

can simply obtain 

+ (12.32) 

We will present the eigenfunctions iJW of operator J2, J ln 

tne form of decomposition by functions 

Vii.iM,-(12.33) 
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In accordance with (12.31) in this decomposition there can be only 

functions of with Mx + M2 * M, therefore 

.• 
-V., 

‘ * 
■ 1 * 

-. 

Tm- 2 Cij., (12.3^) 

The coefficients of decomposition CjJ ^ , for which we will also 
1 r 

designation 

Ü-‘ 

■r.' ^ ' 
.¾ i i' 

'fAfc 

(12.35) 

bailed the Clebsoh-Qordan coefficients. Basic properties of 
" 

t||e«e coefficients are discussed in s 13. 
r‘‘ / 

Inasmuch as the functions fJM and ^ are orthogonal and 

„„„-jârdised, the transformation which is the inverse of (1 .3*0 has 
,;■■■ ï 

j i 

(12.36) 

Summation in (12.36) is conducted over all values of J 

Compatible with (12.32) and satisfying the condition that J > M ■ 

e ^ -f Mg. In general in the right part of (12.36) a whole series 

Of different values of J is represented. 

Probability of one or another value of J in the state 

J 2 
is equal to |CM .. | . Conversely, if we have the set of numbers 

12 

Jj, Jg, J| M, i.e., if we considered the states of the system In 

which definite values along with moments of eacn of the system also 

have full moment and its z component, then and are not 

determined. We can only affirm that + A,¿ ■ »M. The prooabiilty 

of definite values of M^, Mg at given values of J, M is determined 

by the square of the modulus of the corresponding coefficient in 

0 

decomposition of the wave function Yj j according to functions 
O 
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J" ^ 0 -y i <-N 1 £. X C 

As an example let us consider the summation of oroital moment 

ana spin. In accordance witn (12.32) the full moment of an electron 

¿12.37)... 

can have two values 

Therefore 

* 2 n.»— 
®xl***lj tl 

■■ Cil; -1/». 1/1 ty, «Pi; - V* • Çi. V* + C-i+iit, -itili.myïilfta, -V» 

The values of coefficients a 

Finally 

are given in § 13. 

<+«/+7 
ãT+í ♦<.»»>-«/»•?». 1/1 + 

/-/- 2 */»•> 

/ 
+>^1, 

r 2/+1 mi ~ V* ’ 

i/i+«v+I 
+r Si+i ♦/. 

2/+ 1 T<.«;+!/» 9«. -I/«» 

2/+1 «i -•/*•»«. tit + 

¿/ + 1 ' ’P». "/+!/* ?«. -1/,. 

(12.38) 

expressions (12.38) allow us to find the probability of definite 

values of mM at given values of Jmy For instance, at i = l, j » 3/2, 

m. = 1/2, the probability of values m « 0, p » 1/? and m - 1, u « -i/2 

is respectively equal to 

/+*/+7 2 /_m/+7 , 
27+1 “T* “2+1 “y- 

nt e - O tnu full moment is wholly determined by spin j * 

In thls ca3e rr>om (12.38) an evident result follows: at 

probaoility of values p = 1/2 arid u = -1/2 is respectively 

a 3 1/2. 

3 1/2 the 

equal to 
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1 and 0. Conversely, at rrij = -1/2 only one value u = -1/2 is 

possible. 

Subsequently we will speak about description of the system with 

the help of wave functions Vj and ^U3t as aD0Ut 

different representations of states of a system, or simply about the 

JM representation and representation. Likewise* we can talk about 

different representations of states of an arbitrary system. In general 

by a y representation we will understand a description of a system by 

wave functions where y is a full set of quantum numbers 

characterizing a definite state of the system. In accordance from 

this terminology the matrix of operator P, calculated with help of 

functions will be called a y representation of the operator, and 

functions 4^, the basis of the representation. 

5. Summation of three and more moments. During summation of 

two moments anu J2 the magnitudes of J ana M completely determine 

the state of the system. This is connected with the fact that the 

full number of quantum numbers, characterizing the state of system, 

remains constant. The magnitudes just as J2^1^2’ Gorr‘Pose 

a full set. During summation of several moments this no longer 

occurs. A whole series of different states of the system can 

correspond to the same values of JM. It is necessary therefore to 

specially pick out tne metnod of summation of moments. We will show 

this on the example of summation of three moments, J^, ¿2» ana ^3• 

We will conduct summation of moments by two different methods. 

In the first case we will first sum and J2, ana tnen wi^j. auu J^. 

According to (12.32) the summation of J1 and J2 gives 

/■»/,+/,. /,+/,—1. •• ••IA"“/*!• + 
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Tnen aaaing tne moment eacn obtained values of J', we 

obtain 

7-/ + /,, / + /,-1.1/-/,1: Af-Af+ AÍ,= Afl + Af, + Af,. 

In the second case wo first sum and 

/-/, + /„ /,+/,-1. 1/,-/.1: AT-Af. + Af,. 

and then ana J" 

/—/, + /, /,+/-1, ...,1/-/,1: Af»Af+ Afl = Af, + Af, + Af,. 

We will designate tne wave functions of states obtained oy both 

methods tnrough J]_^2 ^ ^ anc^ ^ dear 

that in general 

Wjm (/,/, [/] /,) + Vjm (/.: /,/, [ZD- 

One more diagram of tne summation of moments will be obtained, 

if we simultaneously change tne sequence and the order of summation 

of moments: 

▼/* (/,/, [/] /.) + Vjh (/,/. [S] A) 

The transition from one diagram of summation of moments to 

another 

Vjm (/,: /./. [/))-^(/,/, [/] /. I /,. /,/, [/)) 40* (/,/, [/J /.). 

’«O* (AA [/) A) - £ (AA [/} AIAA [/) A) 40* (/,/, [/) /.) 

is determined oy the so-called Racan W coefficients 

(/,/, [/)/,I/„/,/,[/))- /(2/ + 1)(2/+1) 1^(/,/,//,;//). ( 12.39 ) 

(/,/,[/]/,I/,/,[/]/,)-/(2/ + 1)(2/+1) ^(//,/,/: //,)• (12.^0) 

The Rucan W coefficients, constituting a function of six 

arguments, play a very important role in the theory of complicated 

spectra. As will be shown below, we must deal with these coefficients 

during solution of the most diverse problems. A discussion of the 
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'"Cp”tles cnose coefficients, and also the formulas necessary 

for tneir calculation, are in 5 13. 

In the considered case of summation of three moments the 

assignment of two numbers J and M is insufficient for a full 

description of the states of the system. It is necessary to assign 

another value of sum of any two moments, e.g., J* or J". m this 

case the full set will compose the totality of quantum numbers 

J1J2[J*]J3JM or J1, J2J3[J"]JM. 

Likewise during summation of a large number of moments for full 

description of the state along with JM we must assign another value 

of moments of subsystems of two particles, three particles, etc. Por 

example, in the case of four particles the state can be characterized 

by tne set of quantum numbers J. [j * ]j [jn] j. jm. 
1 C j 

Of course, other diagrams of the summation of moments are also 

possible. For example, 

AAlS]; Jti/g/jSIS/JM etc. 

Of greatest interest are the two diagrams of summation of 

orbital moments and spins of electrons: the diagram of L3 coupling 

Vi 1^1» [SI JM (12.41) 

and tne diagram of jj coupling 

V, (/,]/,*, 1/,] (12.42) 

In case (12.41) we nave 
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and in case (12.42) 

/i" 

/-/, +/„ /,+/,-1.1/,-/,I. 

** «I-Hi-Mj, 

Tm»4—_ .2 _ CfiLm^wA,! 
(12.44) 

6. Vector model. The above-obtained rule of summation of 

moments (12.31)-(12.33) can be graphically interpretea witn tue 

so-called "vector model." All possible values of J can be obtained 

f • by adding by the usual rules of vector summation 

vectors J1 and J2 with integral and half-integral 

lengths under the condition that the length of 

the total vector J = + J2 can also take only 

integral values (J^ + ” inteSer) or only 

naif-integral (J^ + J2 - half-integer). 

The vector model also allows us to graphically 

intepret the above-noted ambiguity in summation 

of quantum-mechanical moments. Tne assignment 

of an absolute value of vector and its z component M is insufficient 

for simple determination of orientation of the vector in space. The 

totality of directions, forming, as is shown in Fig. lb, a conical 

surface with the z axis corresponds to the given value of the 

z component of moment. Summation of quantum-mecnanieal moments in 

the framework of a vector model corresponds to summation of two 

vectors, arbitrarily located on corresponding conical surfaces. It 
Î ! t 

is easy to see tnat by adding vectors J^, J2; fctc'» as 

depicted in Fig. lb, one can oetain different results, although the 

Fig. 15. Sum¬ 
mation of moments 
according to the 
rules of the 
vector model. 

Mi,' 

O 
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vectors J^, J^, and also J2 nave identical length and the same 

value of z component. 

Tne vector model is frequently used in tne theory of spectra 

for graphic interpretation of results obtained by the methods of 

quantum mechanics. In particular, the terminology accepted in the 

theory of atomic spectra in a whole series of cases is based on 

graphic presentations of the vector model. However, we must consider 

that tne vector model, as a method of description, is no longer 

founded on a graphic analogy. 

As an Illustration we will show how the limitations imposed by 

the Pauli principle are formulated in tne language of the vector 

model. Let us consider, e.g., two equivalent p electrons. In this 

13 1 
case terms S, P, and D are allowed. The following values of 

operators correspond to these terms: 

(*<*+•>-«) 

and 

<s /,/,—a .,..--4- 
*P 1 I,*,■■ -jp, (12.115) 

•D /,1,-1 

It is easy to check that (12.115) is equivalent to the relationship 

W+(V,)+2 («,«.) ~T-°- ( 12. H6 ) 

Condition (12.H6) is a formulation of the Pauli principle for two 

equivalent p electrons in language of the vector model. At a given 

mutual orientation of vectors ^ and the mutual orientation of 

spins Sj and s,, is not arbitrary, but is simply determined by 
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relationship (12.46). If we add vectors l2 and si» s2 according 

to the general rules of a vector model, subordinating them to 

condition (12.46), then we will obtain terms ^5, ^P, and For two 
A:- <1/ - * .: 

equivalent d electrons the relationship analogous to (12.46) has a 

considerably more complicated form. In this case 

+90(/,/,)+72(1,0-18-0. ( 12.47 ) 

f" 

The general formulation of the Pauli principle in language of the 

vector model correct for any t does not exist. It is absolutely 

obvioue that relationships (12.46), (12.47) cannot be obtained from 

any graphic considerations without some quantum-mechanical 

calculations. 

I 13. Coefficients of Vector Summation of Moments 

1. Clebsch-Gordan and related coefficients. In this division 

we /fill enumerate the basic properties of Clebsch-Gordan coefficients 

and related coefficients, the Racah V coefficients 

vyjji *t»j*) (13.2) 

and Wigner 3j symbols 

(13.3) 

As will be seen later, these coefficients are encountered in the 

solution of a number of problems and play an important role in the 

theory of atomic spectra. 

The coefficients of decomposition of eigenfunctions of operators 

j2j2j2j (j » J-, + jp) according to eigenfunctions of operators 

j'-j jÍ;j are called Clebsch-Gordan coefficients: 

*ujm - JS IM*,*». \W*) V/.-.,/.-.. ( 13 • 4 ) 
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Tr.ese coefficients are determined for integral and half-integral 

values g± arguments and are different than zero if two conditions 

are carried out 

(13.5) 
J—Jt+ft* ]% /,|. (13.6) 

Differences of numbers - m^ J2 - m2, j - m, and also the sum 

J’l + j'2 + j are integers. Condition (I3.6) is frequently called the 

eonuition of triangle and designated by means of A(j1j2J). According 

to tnis conoition any of tne numbers j1, j2, j is greater than or 

equal to the difference of the two others and less than or equal to 

tne sum of tue two others. 

ine Racan V coefficients and 3j symbols are connected with the 

Clebsch-Gordan coefficients in the following relationships: 

(A/.*,*. I/,/»- (-1 ( j' Jt J \ ( 13.7 ) 
_ \mt 

(/»/.".*.IJJJm)=(- 1 y+«V2PT\ VUJJ-, m,*,-«), (13.8) 

yujji ^,/11,/11)-(-- 1)-/.+/.+// /. /. /V ( 13.9 ) 
\*. m) 

According to (13.7) and (I3.8) coefficients (13.2) and (13.3) 

are different from zero during fulfillment of condition (I3.6) and 

a somewhat modified condition (13.5) 

/•,+*,+/»-»0. 

The chief advantage of V coefficients and especially 3j symbols 

is that they possess significantly greater symmetry than Clebsch-Gorxten 

coefficients. For 3j symbols tne following relationships of 

1 
From (13.7), (13.8) it follows that 

y(/i/*/; A A ¡\ 
\ÄI| fflf HI/ 

Jnuomucii ;u. j - 
(13.7), (18.8), 

m is an integer, 2j - 2m is even and relationshios 
are equivalent to (13.9). 
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symmetry occur: 

(-! 4 -0-(-1 » 4)-(-7 4 4) -^-(44 -0 
.,-,^(4^4).,.,^(/44^. 

(13.10) 

Thus, an even permutation of columns of the 3j symbol does not change 

its Value; an odd multiplies the initial value (-1)J'1+^2+^ . 

Furthermore, 

(_ iy,+/,+/ h 
(13.11) 

Using (13.7)-(13.9), one can simply obtain relationships analogous to 

(I3.IO), (13.11) and for coefficients (13.1), (13.2). In particular, 

from (13.7)-(13.10) it follows that 

(A/.*,*, \JJJm) - (- 1 \JJJm). ( 13.12 ) 

The 3J symbols obey the following conditions of orthogonality: 

A.» •* /.«• \*, », *) \mx m, m) 
A A/A /. f\ , , , 

«X V*, */ \**, *, m’j 2/+ ! 

(13.13) 

(13.14) 

Analogous relationships according to (13.7)-(13.9) occur for 

coefficients (13.1), (13.2). Thus, 

\JJJm) (JJJm , (13.15) 

2 I JJJm) UJJ'm’ I JJtmtmt) « 0„ 'ômm'. (13.16) 

During calculation of the Clebsch-Gordan coefficients an 

ambiguity appears in selection of phases. All subsequent formulas 

correspona to such determination of phases (coinciding with that 

accepted in[K. Sn.], at wnicn the Cleoscn-Gordan coefficients 

are real. 

At J2 = 0 from the determination of trie Clebsch-Gordan 

coefficients (13.4) it follows tnat 
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(13.17) 

(13.18) 

(13.19) 

l/» o o IA o /*) “ tyifinm,. 

V{JtOJ; n*x 0 /»)■»][— l)-/+"(2y-f \)-^ò„,ò.nim, 

{mt oi)"*“ X)l' 12>+Ô/AÔ-".» • 

The general formulas aetermining the numerical values of coefficients 

of vector summation of moments are extremely awkwara ana inconvenient 

for calculations. Wnen one of arguments Is equal to 1/2, 1, 
i 

3/2, 2, it is possible to use the formulas, given below. 

Let us note that during concrete calculation it is convenient 

to pass to 3j symbols and to operate directly with them. For this 

reason we give below a summary of series of formulas for 3J symbols. 

Transition to the corresponding expressions for the Clebsch-Gordan 

coefficients and V coefficients with help of formulas (13.7)-(13.9) 

is not difficult. Therefore the formula for the Clebscn-Gordan 

coefficients are given only for j 2 * 1/2. 

2. Luminary of formulas for 3J symbols. The general formula for 

3j symbols obtains a comparatively simple form in the following cases: 

y-A+A 
(Jt A A+A ), 

,_t/ (2/i)t(2/t)l(y»4-/t + <w,+w>)t(/,4-/1—«!—«!)! 
11 r Wi+2/,+l)!(/,+m|)!(yl-«l)!(yt+mJ!(yl-mt)!' 

■A 

0:-/-.-9- 
rí d- /.4. A4-1/ (¿/.x <-/,+/.+/)> MHsE</-«)' 

1 r r Ü.+/.+/+DU/,-/.+/)1(7,+/.-/)1(-/,’ 

(13.20) 

(13.21) 

1 
Formulas for the Clebscn-Gordan coefficients are given in works: 

j 2 = 1/2, 1, 3/2, 2 [K. Sh.]; J2 = 5/2, R. Satio and M. Morita, Progr. 

Sheer. Phys. 13, 5^0, 1955; j2 = 3, D. Falkoff, G. Coliaday, and 

R. Sells. Canau. J. Phys. 30, 253-256, 1952. Numerical values of 
the Clebsch-Gordan coefficients up to values J = 9/2, i J2 i J can 

oe found in tables of A. Saymona, collection "Deformation of atomic 
nuclei," 1L, 1958. 
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X -(-O' Ÿ mEMVjEvmEMl 

X(í-/,)IU-W> tf-/)*' 
(13.22) 

if J, + Jo + J » 2g, g Is an integer, 

U o o;" 
o. (13.23) 

if Jx + J2 + J “ 2g + 1. 

For values J ■ 0, 1/2, 1, 3/2, 2, the general formula gives 

(; 
y"fO+' y 

I 
/ t).,-,/—r[ ,-+Í y 

1(2/+2)(2/ + 1) J • 
(13.25) 

From this formula it follows for (y, ): 

Xl 2 
1 
2 

/,+y 
1 1 

/ /i+m+ÿ J y/ /,—m+i 
! 2/, + 1 / 2/, + 1 

/«”T 
.,/1'-+7 
^ 2/, + 1 

1 

./ /•+m+7 
^ 2/,+1 

/-1 

/+1, /. 1 

fy+1 7 -1)-/--1 i (/-m)(/-m + H ¡j 
\ M -JB-I \) V ^ 1 (¿/ + 3) (2/+2) (2/ +1 » I * 

//+1 / l\_.l tty-—i f(/+<n + IK/—/n + l>) + 
\ * —*0/ V ' 1(2/+3)(/ + 1)(2/ + 1)) ‘ 

/,/, 1 

(J J n/—/</-w)>/+” + l>lT 
1/ V «I 1(/ + 1)(2/ + 02// * 

to:,1---- - {(2/ + 1)(/ + 1)/^, 

)- 3 JamJ 

(13.26) 

(13.27) 
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y+|.y. 4 
7-4 /* ^ 

m 1 
2 2 

_ /—+T /(^4] (/~w+t) 0-^+4)] * 
1 ' l (2/+4J(2/4-3)(2/+^(2/+1) ) * 

( 
y+4 ' , f 

~m—7 -j; 

-(- D 

y+4* y* 4 
i 

,/-«+ T i3(/~m'fT) (•'-m +4) 0 + m+4)l *. 
l (2/ + 4) (2/ + 3)(2/ + 2)(2/ + 1) J 

r y+T ^ 4' 
3 3 , 

* — m—y y ¡ 

Y--T7a (/~m4) 0-w4) 0+m+4)| * 
I (2/+3)(2/+2)(2/ + 1)2/ J » 

■)- ( 
r 2 

* —i 

TX 
I I 
y T/ 

i / 3 \ 1 
»(—|/ • (y+3*+TJ |(¿y + 3) (2/ + 2) (2/ +1 ) 2/J 

y-2 

(13.28) 

(13.29) 

y+2. y, 2 

yy+2 y 2\_, n,_. /(/-*"-»)(/-m)(/—*n+l)(/-<1+2)1 -j- 
\ * —» —2 2/ ( (2/+5) (2/+4) (2/+3) (2/+2) (2/+1) f • (13,30) 

^ _n/-J f ^/+m+2)(/~*"+2)(/—m+1) (/—m)^ 
\ * —1 1/ * F 1 (2/+0)(2/+4)(2/+3)(2/+2)(2/+1) f ’ 

/y+2 / 2\ i\/-m/$j/+m + 2)(/+w +1 )(/•—»»+ 2)(/—m+l)>-r 
\ m —m O / 1 ' 1 (2/ +5) (37+4) (2/+3) (2/+2) (2/+ï) ( ’ 

j+i, y, 2 

^ a n/-* 4- iHi~|rt~|K/~w)(/—^+1)(/+^+¾)) 4~ 
V m —m —2 2/ ^ y 1 (2/+4)(2/+3)(2/+2)(2/+1)2/ f ’ 

/y+1 y 2\ 

\ /» —«-1 iy“ 
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: '1, ,'V'í.?rhWp-. . 

\tl - ^/ + ^ + 0(/-.^ + 1) >T 
\m —m 0/ |(¿/+4)(2/ + 3)(2/+2)(2/ + 1)2,[ ' 
y.>. a 

fí y. o n/—> T 
V« —2 2/ V (2/+3M2/ + ¿K2/ + 1)2/ (2/-1) f 
(' { 
\» — 1 \J 

ui X 
• \* —* a) 

(13.32) 

|3w*—./(/ + 1)1 
{(¿/ +3)(/ +11(2/ + 1)2/(2/-1 )}•/* * 

'Por different applications the following formula, containing 

3J symbols is also important: 

K2/ + 1) »»(*. *)-J] /®Œæ] 

. ó)- (13.33) 

We will multiply (13.33) by Y I m (9, ¢) and integrate over all angles, 

For values satisfying the triangle rule aU^í,^)» from (13.33) it 

follows that 

Î »W*. f>yU(*. fHW». 

T/jggmHgSSD^. ** ‘M1* *' l'\ 
y 5 \0 0 0/ V*. *. «i/ (13.34) 

and 

-ÿ j PiAtm (cm 9) /), (cm 9) P«, (cm 4) sin 4 d<!h I*' K l- \ AO o o; • 
(13.35) 

The Integrals from the three Legendre polynomials in (13.35) are 

frequently designated by C . . According to (13.35) 
^ 1 ** 2 3 

C»M-2 ('• /. t.Y 
\o 0 o) • (13.36) 

3. Racah W coefficients and 6j symbols. Let us consiuer tv;o 

diagrams of summation of momer ts j ^, j , j ,, 

y.+A-A j 
y,+y,-A 

( 13.37) 
O 3.38) 
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In the first case 

- _ 2 „ w.".«. IM^') Ml) H%.. (13.39) 

In the second case 

ly.yy.io V/,., ho-«- - 

(13.^0) 

Functions can be presented in the form of 

decomposition on functions ^jM( j-¡^j 2 [J'] j ^ ) 

vjM, Jjt\r\)^ujt\JVrf\u Jth\f\ J)Vjmijjt(13 ,^i) 

With the above written expressions for functions [J '] J^) an< 

J2J3[J',]) we can express the coefficients of decomposition 

^ 3^ ^ 1» through Clebsch-Gordan coefficients 

1/./.l-n/r/l/,. /,/,\r\j)^ 2 WuJM\rjtArmt) x 

(13.^2) 

The sum in the right part is Independent from values nurrum-M»]^', 

according to whicn summation is conducted, and it is a function of 

six arguments j 1 j2J3<J ' J"J. Relationship (13.^2) can therefore be 

rewritten in tne following form: 

UJ, UV,J\A. WS]S) - V (2/+ 1)(27- + 1) wujtJj,i J'f). (13,1)3) 

The function W in the right part of (13.^3) is called the Racah W 

coefficient. 

If we transpose vectors J2 and J3, then the following diagram 

of summation of moments will occur: 

/»+/."/’, «T+/,«/. (13,1)1)) 

In this case 

UJ, IflJJUj, - V (2/ + 1 )(27* + 1 ) Jjty ( ] 3. D h ) 



Formulas (13.^3), (13.45) are generalized in a natural manner for 

that case when the order of summation of orbital moments and spins 

of three electrons changes simultaneously. For instance, for 

transition from diagram 

r-f/.-i, s'+a.-s (13.46) 

to diagram 

l.+J.-r, M%+»t-Sr, /, +Lm—L, «.+S--S (13.47) 

we have 
l/,*.. /.f.Ii'S'i/.t.iSI/.,,: /.5,, 

IXÎiVlXM'^ 1X35*4-1) irt/./,//,; ¿'£') 17(5,5,55,: 5*S'). (13.48) 

From (13.42) it follows that W(abcd; ef) is different from zero if 

the condition of triangles is fulfilled 

A(ofte). Al«**). A(*CA A(WA (13.49) 

The W coefficients satisfy a series of relationships of symmetry. 

These relationships can be conveniently written by expressing W 

through more symmetric coefficients, the so-called 6j symbols: 

1/. A A \ 

U/.'.r 
(13.50) 

(13.51) 

A 6j symbol remains invariant during any transposition of its columns, 

and also during transposition of lower and upper arguments in each of 

any two columns. 

With (13.51) it is easy to obtain the relationships of symmetry 

for W coefficients 

W(aòcd; 5/)— V^badci */)— W(cdab-, ef)** V(acbd-, /r)=* 
- (— ! W[ebef; atf) > (— 1 )•♦/-*-* W{ae/di Sc). ( 13.5 ¿ ) 

At e * 0 

lT(a*rf; 0/)-(-1^-^0^((2^ + 1)(25+ I))-''-. (13.53) 
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From (13.52) and (13.53) it follows that 

W(abed-, rO) - (— ! )rô,fôM f(2c +1 )(2* +1 )J -\ 
1T(0éc</; «/)-ô,kôf/[(2*+ 1)(2/+ l)| 
W(aQcd\ ¢/)-0.,6^ |(2e+ 1)(2/+l)|-v., 
W(abOdi ¢/)-^0.4(^+1)(2/+ I)!-*., 
lT(afcO; r/)-ô,A» 1(2^+1)(2/+1)| 

The 6j symbols satisfy the following rules of sums: 

2(-1)/+/+/-,2^,, (A /. /1 iy, /.7)1/,/./1 
7 U/. /1U/.// u/./r 

and also 

(13.54) 

(13.55) 

(13.56) 

A+A + A+/,+ /.+/.+ /+/+1, + , //, t‘J 

Í/tj X /,1 Í/, X /,) //, /,/,)/ /, /, /, 1 

ia/./,/1/./,/,/ U /, /,/U 4 /; r (13.57) 

Usi.ig the relationship of symmetry (13*51), one can simply 

oütain analogous relationsnips for W coefficients. For instance, 

£(2# + l) W(ac/d; be) W(acgd; be)-. 6/gt ( 13.58) 

2(~ irA+,+^'+/^(2e+1) W(acbd; fe) W(abdc; eg)- 

-W(acdbi/g). (13.59) 

In concluding this section we will give the formula for the sum 

of products of three 3j symbols: 

2(--1/. + ^ + 4 + ,. + ^ + ,.//, /, /,\/ /, /, /,\ 

^ V*. R, —R,A—R, «, R,/ x 
x//. /. /.W/. /. /.\ 1/././.. 
Vi “I».*./ \«, «, «,/ (/, /, /, I 

(13.60) 

enu Oi.e important asymptotic expression for a 6j symbol: at 

i>y.y.) 

l*y. y./ (13.61) 



Summary of formulas for 6.1 symbols1 

{« ! 1)(3<+ im--1./ 

{I ‘~i *+i}- 
« » c \ 

1 * 1 * n 
T e T b-T\ 

{ 

■‘-"•**** ['wTiTOr]7'. 

* t \—i •(«+!) (<-»aa—IWs~2flt 1«/, 
\i • —I *—Ij [(3»—I)»(2i + ly2c—l)2c(2cfI»] • 

b c\—i_ |\* r »<»-HM«~a<»H<--26W<-2c4-IH‘/, 
\l ¢-1 * I ' ^ ISFT^+Í)(&+ÍmÍc-I)2c(2c+1) J • 

•(»-»K»-2>-!)(«-2f+l>(s-2c4-2)l V. 
aft c 
1 c-1 *+lj 

\_i —..... _,.. 
I ' ^ LÍB+*)^+¿)(Í¿+^(2c-l,2c(2c-(-1) 

iiv. 
J • 

J« » ^ ^ 

[»(2*-fI)(2i+2)2c(2c +1)(2c+2)J’ 

_i_ tv#r <*—l)«(«+I)i*~2a--2)(j-2a—l)(*-2a) IV» 
' ' (26-1)H(2ft +1, (2c—2) i2c~ï) & (2e+Tj| • 

( 

-i— n' r ?,f*+l)(<~“2a~~l)(>~2a)f>'~2*>(t-2c-n> 1,ft 
4 1 u»—I) » (2*+1) (2fc+2) (2c—2) (2c—I ) 2c (2c -.-1 )J • 

4«_> *+|>- 

, «»i r3(i+lK»—2a)(i—2t—l)(i—26)(5-2c-HH»-2c+2)1 V. 
' [ià(2ft-f 1)<2*+2)(2*+3)(2c—2) (2c-l)2c(2c+l)J • 

I — IV r(|-2ft-2)(l-2ft-l)(5—2»(ï-2c+l)(s-2c4-2)(i-2c-f 3)1 V. 
' ' L (2ft + D (2ft+2) (26+3) (2ft+4/ (2c-2j'(2c~i) 2c (2c +1> J • 

(13.62) 

(13.63) 

(13.64) 

(13.65) 

i 
A. Edmonds. Angular moments In quantum mec 

"Deformation of atomic neclei," In, 1959. 
The W coefficients are tabulated for a wiue 

in arguments. The most extensive tables are: 
H. Horie, S. Yanagawa, Y. Tanabe, and M. Gato. 
Observ. [2] 3, 8?, 1963; [2] 1, 195*1; [2] *), 75, 
Biedenharn. Oak. Riuge ¡iatl. Lab. Rent. 

J • and T 

Observ. [2] 
Biedenharn, oak. Riuge hatl 
Baldin, Gol'danskiy, and I. 
reactions, Fizrnatgis, 1959. 

.tl. Lab. Kept, IO98, ___ . 
I. A. Rozental*. Kinematic.' 

interval of ch; 
Obi, T. 1 Sri id st 

Ann. Tokyo Astre 
. 155b; n. 0. 

1952; see ai so A. 
of nucieai 
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o , ..,[iH«-26H«-2c)-(s+2) (s—aa-OiHs + l) U-ia))''* 
'l"“1' U26-I)2» (26 +1)(26+2)(2c-1) 2c (2c+1) (2c+2)17. ' 

a 

3 

b e 

I k . i 
•j *—ÿ * i- j 

. «vjÍ(i-—23--í)(<-» 2c)—2(»-4-2) («-2a)l [d-2») U~2c + l)VI* 
mi ') (23 (26 + 1)(26 4-i) (2* +3) ác<2c+ l) (2r+2) (2c+á)!'-. 

i4 * M. 
\2 c—2 6-2/ 

i r (»—2)(»— l)c(»4- 1H»—2a—3)(«—2fl—2)(»—2a— !)(*—2«) VI* 
^ [(26-3)(26-2)(26-1126(26+l)(2c—3)(2c-2)(2c-l)2c(2c-fi)j * 

í« » e 

[2 c—2 6- 

I i\*o í(«-l)»(«-H)(*+2fl-2)(s-2fl-lH»-2flm-26)<»-2c4-in,t 
-l— ») * [(2¿_2)(26-1)26(264-1)(264-2)(2c-3n2c-2)(2c-1)2c(2c+1 )J » 

Ia * c\ 
\2 c—2 b\ “ 

i «v*r 6s(54-l)(«—2a—l)(s—2n) (»—26) (i—2c+l)<»—2c-f 2) 1'/» 
[(26—1 )26(26 11 )(26 4-2)(26 -|-3)(2c—3)(2c-2)(2c-í)2c(2c+1)J » 

i a 6 el 

/2 c—2 6+lj 2X 
V f(«+D (s-2b) (»—26—2) (5-26-1) (s-26)(s-2c+1 )(s-2c+2)d-2c4-3)] % 
X I 26 (26 4-1) (26 4-2) (26 4-3) (26 4-4) (2c—3) (2c—2) (2c— I) 2c (2c4-1) J ’ 

I a * * \ 
{> «-Í »+s)-,_,)1*-2*-sl x 

r(«—26—2) (f-26-1) (5—26)(s—2c4-l) «»—2c4-2) (t-2c4-3) (i-2c4-4)1 V. 
X [(26+1) (26+2) (264-3) (26+4) (26+5) (2c- 3) (2c—2) (2c-1) 2c (2c -f í) J * 

ía b el 

V <>(« + »)(g-»+l)~(g-n(g-»+«lH»(s+l)(»-2a-lKs-2a))V. 
X 1(26- 2) (26-1) 26(26+1) (26 + 2) (2c-2) - ¡, i ,* +l)(2c+2))-/. • 

la b el 

V »«+6 +1) (a-6)-c«+11(6 («+1) (»—2a) (i-26) (s-2c + 1)1'. 
x 1(26-1) 26 (26+1) (26 + 2)(26 + 3) (2c-2)(2c—I) 2c (2c +1) (2c+2)1-/. * 
la b el 

\2 c-1 6+1/ 
..4((a+6+2Ka—6—1)—(c—l)(6+c+2Hl(*—26—1)(J—26)(s—2c+l)(j—2c+2)lV«. 
x ^ (26 + 2) (26 + 3) (26 + 4) (2c-2) (2c-l) 2c <2c +1) (2c+2)|-/. 

la 6 el 

\2 c 6/" 
, _2\3X (X+ 1)-46(6 + l)c(c + l)) 
V ’ 1(26—1 )26(26 +1)(26 + 2)(26 + 3)(2c-1 ) 2c (2T+ l)(2t r 2»'('2í 

(13.66) 

—HT"- 



'«¡4 

In formulas (13.6^)-(13.66) 

()-»(»-(- l)~e(c+ I). 
(13.b?) 
(13.68) 

Let us also give two formulas for W coefficients which will oe 

especially frequently encountered later: 

.,-(-.r.• (».es) 
r(•»•*: e2)«i 

__2iaC«C-l)-4a(a+l)Mt + m_ ___ 
^^í)IU^+ÍMÍi+S)<iiT$(!^Í)^26;ÍHte+¿)(2*+lr (13.70) 

C-e(«+l)+¿(*+l)-e(c+l). (13.71) 

5. The 9J symbols. Let us consider the transition between the 

following by two diagrams of summation of four moments: 

/«/.í«',.!? JJMJ, (13.72) 
(13.73) 

This transition can be carried out in three methods by changing the 

ordor of summation of any moment each time: 

/i/.IA.l; A- JJAJJSJ-' 

As a result 

(/»/.UnUJ.ÍA.I. UIAJ/) - 
uujsiu jjm')* 

xl/,5 AA.I^MIV.IA.1 A*A 

(13.74) 

Each of the conversion factors in the right part (13*74) is expressed 

through a W coefficient by the formulas (13.43), (13.4¾). Replacing 

the W coefficients by 6j symbols in the final formula, we obtain 

IUIA.IÎ UIA.UIMÍA.1: JJMJ)- 
[h /. A.) 

(13.75) 
U% U A*^ 

+1)(2^ + 1H2A.+l)(2Ai +1 ) {/, u A.f. 11» U A.? « 
IA. A. J J 

0 

nmeve 

O 
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í“}{/ Jj“/]• (13.76) 

Expression (13.76) is a determination of the so-called 9j symool. 

Thus, conversion factors between two diagram of summation of four 
1 

moments are expressed through 9j symbols. 

Proceeding from (13-76) we can obtain the basic properties of 
2 

9j symbols, in particular the relationship of symmetry. The 9j 

symbols do not change during even permutation of lines or columns, 

and also during reflection in any of diagonals. Odd transposition 

of lines or columns of a 9j symbol multiplies it by (-1)5, wnere s is 

the sum of all arguments. 

Formula (13.76) can be essentially simplified if one of the 

arguments of the 9J symbol turns into zero. In this case {a Ù *\ (0«.^ i#0#) [//°) 
erf« - 

//oj 1/ c «J U / *J U « *J 

(-it*****' fg><l (13.77) 
“V(i.+i)(4/TT) \dc/i‘ 

In the theory of atomic spectra of special Interest are 

1 Likewise a c.ange In the diagram of summation of moments 
leads to 121 symbols, six moments to IbJ symbols, etc., which can be 
«resented in the form of sums of products of 6j symbols. Bor this 
Latter see: A. Edmonds, collection "Deformation of atomic nuclei, 
ti 1QS3- A. P. Yutsis, I. B. Levinson, and V. V. Vanagas. 
Matnematical apparatus of the theory of angular momentum, Vilnius, 

1960. 
A. Edmonds and d. Flowers. Proc, Hoy. Soc. A21'i, 919, 1992i A. 

Y. Tanabe. Pr-ogr. Theor. Phys. 11, I'tj, 
Rev. 92, 308, 1993i see also the above quotea book 

A rima, ¡I. lí orle, and 

of Ar<’p'.J* Yutsis, I. B.’Levinson, and . V. Vanagas 
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9J symbols determining transition from LS coupling to a Jj coupling. 

Formulas for 9J symbols of such type are given in S 20. The 9j 

symbols also satisfy a series of rules of sums. Let us give the 

simplest of these rules which we will later use: 

Att'ôf « 4 f 

If A * 
(13.78) 

I 14, Irreducible Tensor Operators 

1. Spherical tensors. During calculation of matrix elements 

Of different operators it is expedient to classify these operators 

by their behavior during rotation of the system of coordinates. From 

this point of view the usual determination of a tensor in the 

cartesian system of coordinates is inconvenient because from 

components of tensor of rank k > 2 we can compose a series of linear 

combinations which behave in a different manner during rotation of the 

system of coordinates. The necessity of such determination of a 

tinsor during which all its components and any linear combinations 

from these components would be converted in one form during rotation 

of the system of coordinates appears natural. Such a condition is 

satisfied by the totality (2k + 1) of spherical functions: Y ; k q 

q ■ K, K - 1, ..., -K. We will therefore define the tensor of rank 

K as that totality (2k + 1) of magnitudes whicn during rotation of 

the system of coordinates will be converted just as the spherical 

functions Y . Tensors defined in such a way are called spherical 
KQ 

tensors or irreducible tensors. In accordance witn this determination 

an irreducible tensor operator T^ of rank < constitutes the totality 

(2k + 1) of operators T^ 

(.) 

f-K, K—1, ... , —X. (.U.l) o 



satisfying the same rules of commutation with angular moment of the 

system J, that and does. These rules of cummutation according 

) to (12.11) nave form 

r««)—KõtT?H>*±?+lT Tt,#±,, ( 1¾. 2) 

'"yT'if (14.3) 

Simple examples of operator of such type is the function 

/(^) q>), (14.4) 

where f(r) is an arbitrary function of r. 

At K = 1 the rules of commutation (14.2), (14.3) coincide with 

rules of commutation for spherical components of vector A: 

•W,; ¿♦t —pif K + M,); ¿-.-ipyl/V.-M,), (14. i) 

since these componènts are expressed through spherical functions in 

tne following way: 

<V-M|co«D- 

, (14.6) 

* - y^4{\A\Y,, 

Thus, the spherical components of a vector form an irreducible 

tensor operator of the first rank 

TUtttmAiu (14.7) 

net us also consider how the components of a tensor of the second 

rank aik (1» k " x» y» z) are expressed through . This tensor can 

be presented in the form 

#i* ««+««» (14.3) 

where 

••■JrÇ*«» 
«í* “ y (a/â-4-a4í—aoôí4V 
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The track of tensor a is invariant relative to rotation of the system 

of coordinates; therefore a is an ungiven tensor of zero rank 

r..-«* (U. so 
Prom the components of antisymmetric tensor o^k it is possible to 

construct an irreducible tensor of the first rank 

* 

rM*a«vl 

f*. t » " i 
(14.10) 

and from components of the symmetric tensor o^k is an irreducible 

tensor of the second rank 

1 (14.11) 

(14.12) 

(14.13) 

Likewise tensors of higher rank can be decomposed into irreducible 

tensors. Later we will use for components of irreducible tensors one 

of two designations: T or T*. 
K ç q 

2. Matrix elements. Prom formula (13-34) it follows that 

{lm\yh I (- n* f yl.m Yl-m y ^(-1 ( L L' *) 
j M \—M M’ qj- 

This relationship can also be obtained directly from the rules of 

commutation of functions Y<q with orbital moment L. In precisely 

the same manner from rules of summation of T and J we can find the 

dependence of matrix elements T on quantum numbers MM’q. In 
K q 

general the matrix elements of operator T are determined oy the 
K q 

expression 

(YAtfl l)'-»(yJIirjlv-r)(_^ “ fv\ (14.14) 

(theorem Ekkart-Wigner). Factors not depending on MM’ ano q 

wirjiY'-n (i4.ib) 
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are called given matrix elements. 

Prom the properties of ortnogonality of 3j symbols (13.1^) an 

important rule of sums follows 

£ (J4.16) 
J(JM* 

Right side of (14.16) does not depend on q; therefore 

IX- \<yJM I I » 1(^-/117,1^7-)11. ( 14.17 ) 

During solution of a number of problems not actual matrix elements, 

but sums (14.16), (14.1?) enter into the final formulas. Therefore 

it is sufficient to know tne given matrix elements. The latter are 

found in tne following way: select the simplest matrix element 

¡ y 1J 'M* > from the point of view of calculation and compare 

it with tne general formula (14.14). Por instance, in tne case 

* = 1, as a rule, it is simplest to calculate tne matrix element 

’A = M* = q = 0. Prom formula (14.14) in this case we nave 

<Y^J ^ I Y'/'AT) = (- I)'*«(Y/||Tt\\y’f) ^ . ( 14.18 ) 

m WJ’) = 1-1)' . ( 14.19) 

« M‘) 

We will note tnat the given matrix elements (yJ||¡ ¡y *J1) are 

connected in the following way witn magnitudes (Y/i 7, jy'f). Introduced 

m ( n. » j h. ). 

(Y/II- VJ(J+\){2J+\)(yj! 7,1y'J), 

(Y/llr.llvV-1 ) -//(2/- 1)(2/+l)(Y/j 7, ;Y7— 1), 
{yA\Tx\\y'J+ D- 

- -/(/ +1 )(2/ 1 )(2/+3)(Y/Í r, [ Y'/ + I). 

For Hermitian operators T tne given matrix elements satisfy the 
^ «q 

relationship 

(Y/ll W-H - (-1 / (Y'/*ll 7.IIV/)*. (14.^1) 

(14.20) 
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3• A series of examples on calculation of given matrix 

elements. We will start from a calculation of the given natrix 

element of spherical function Y . According to (14.14) we have 

(14.22) 

(14.23) 

<to| |r*’>_(—1)<— (/yrjin(_(, * 

On the other hand, formula (13.34) gives 

J yJ*» Yi'm’ ^ dy ■■ (— ^ J K|-ibK^Ki>w- tlnbAdif** 

Comparing (14.22) and (14.23) we obtain for the case of i. + < + £1 

■ 2g, where g is an integer, 

win-1- «y vwfñw+T) (óôo)- 

At ie * 0 

Inasmuch as 

unw- 

WlCilO-KãT+lô«'. 

Y _ * 
• 

winio-Kãr+Tô«.. 

At < 

where ft_ is the biggest of numbers ft, ft'. Therefore 
mdX 

(4íc*ün - (- n1 VïZi, r - /± i. 

(14.24) 

(14.25) 

(14.26) 

(14.27) 

(14.23) 

(14.29) 

(14.30) 

Ü4.31) 

(14.32) 

For ft1 ^ ft í 1 the given matrix elements Yana C1 are equal to zero, 
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Tne spherical comeoients of unit vector n are expressed in the 

following way tnrough functions Y^: 

«•” V^T- Ylt; «41» (14.33) 

Therefore 

= /’ = /±1. (14.34) 

kt K - 2 tnese are other than zero 

(o (2/+à)(2/+1)(2/-0* (14.35) 

// 2i-2\ r uJT-ir 
\0 0 0 / ' r V 2(2^1)(2/-1)(2/-3) • (14.3d) 

d d11-37) 

Hence we can simply obtain trie expression for tiie given matrix 

elements , For instance, 

man— /5 /^giü- 

'W—/¡Ifâïïiïîi • 
(14.38) 

(14.39) 

Tne values ( £ j | Cu ¡ ¡ £ 1 ) for- 

net us now turn to the 

£ i £' I 4 are given in Table ItS. 

calculation of tne given matrix element 

of angular’ moment. The eigenvalue of tne z component of moment 

Jr/ - J(j Is equal to X. Thus, 

(14.40) 

wnurean tne generai formula (14.14) gives 

(14.41) 

Therefore 

(711/11/) - )/7(7+1)(27+1) òjju (14.4?) 
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Table 16. Value of Given Matrix Elements (11|Ca||4 * ) 

n 1 
% 

t 3 4 

1 

• 
> 

•• 
-n 

-yr 
—f 

t s 
1 

-re 
*VY 

-re 
sre 

-tfffil 
-»re 

» » 
t 

tiff 

-*re 
tiff 

sfm 

4 
s 

-«yr 
re 

-i® im 
fm 

ryj/IWî 

• 
• 

s 
4 ren 

-»res 
—«Vi/TO 

• 4 i» yus 
-tore» 

—eyî/re 

T 4 ifam 

• 4 21 ViSßSi 

In particular cases of orbital moment and electron spin formula 

(1^.42) takes the form 

(m\n- K / (/ + 1 )(2/-r~l) òtr, (14.43) 

until«') " * (14.44) 
4. Tensor product of operators. From the two Irreducible 

tensors T^, Ur we can construct the irreducible tensor rank s with 

components 

4-£(»tX|Ar,e)7X (14.4b) 

where 

a+r, *+r—1, .... I*—«I (14.4b) 
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ana (krq*¡krsa) are Clebscn-Gordan coefficients. Expression (14.^5) 

□etormines tne tensor product of operators TK, Ur, whicn below will 

b<- du:; ¡ ¿Ti.alou as 

Q,=[^*xír^,; (14.47) 

Witn help (l4.4t>) it is possiule to construct ( r.-. + 1), if k i r, or 

(2r + 1), if K > r operators of Tk * Ur . If k = r, then among the 

possible values of s is s = 0. Thus, from two tensors of identical 

rank it is possible to construct a scalar 

It Is more convenient, nowever, to determine tnis scalaf by the 

relat iOiisulp 

( (— i )* rji/., =. 2 (—1 )f f*. (14.49) 
« « 

expression (14.49) is callea tne scalar proauct of tensor operators 

,-,K , ; K anu u . 

A simplifica sxampxe of scalar product of tensor operators is 

tne tiieorem of summation of spherical narmonies (12. Id) 

icVj, 
(H.50) 

« 

äs 3. 31. c on(J c Xcirnp x<3 w6' c¿1 í a gx vc g 1 a0 u0 UgIx 3c 3i. ¿ír* px*ou u c t» o r t* //0 

vectors A and B, written in spnerioal components (1^.(2): 

iiÄ-2(—(14.51) 
m 

th? wi ij also give an exampie of the tensor product of irreuucible 

tensor seorutors. In 5 2 1 wc will show (íorrnua.a (23<21)) that the 

11 it erne t .1. o/i of nucleai* magfie tic moment witn tne .murinsic iriagnetic 

moment of an electron nas tiee form r 

/- aftl, ( 14.52 ) 

-127- 



where s is electron spin; I, nuclear spin; and at is a constant. The 

component a of vector K can be written in the following way: 

(14.53) 

(14.5^) 

Inasmuch as tensor Daßis symmetric and has a track equal to zero, 

from components Daß we can construct a tensor of tne second order (see 

(14.11)-(14.13)). The components of this tensor are proportional 

to spherical functions C^(0«^). The spherical components of vector 

s form a tensor of first rank S1. In accordance with the above the 

tensor product* 

[!)»XÄ•1, (14.55) 

is a tensor of first rank, and therefore the q component (14.55) 

[Vx&i -J¡ (21««' 121 Wüül (14.56) 

with an accuracy of a constant factor should coincide with the 

spherical component K of vector K 

irv-coast (14.57) 

To determine the constant in (14.57) we will compare K:/ from (14.53) 

with Kq from (14.57) 

Kg-eOgji+Dgyãy+( 14.58 ) 

1^-^2(21--112110)(^5^ (14.59) 

The component sz * sj enters only in tne last rnembor of fit. 58 ), 

therefore 

const (2100 J 21 lO)^. 

Considering tnat X)M—3cos*9—!, Cj- ^^(3cosM—1). (2100(2110)-j/y. we 

ob l 'i 1 n 
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K,-/TÕ 2 JII,)Ci(*»)Si-KTÔ[C*xî'i:. ( 1H . 61) ) 

D'V-.- 
—«,l/Tô2(-i)'lc,xs,i,/„. (14.61) 

« 

The matrix element of the scalar product (14.^9; can be 

calculated with the help of the general formula (14.14) 

<\JM I ( 7*ü*) I y'J‘M> 

rílY'^> <YV,»r|ü*..|T'/íf> - 
1),.,--« ,Tjj| 7*||V-y-, (v-y-||í/|lv7') X 

x£f /‘/"W /■ 
Í3T-V—Ç fif/X—AT —jM'/ * 

3y summing over M", q with tne help of (13.14) and considering that 

2J - 2M is even, we ootain 

<Yy/M|(r*£/*)|Y7'Af'>- 

“Z (- O'-''(Y^ir*|lY'-r)(Y*/’||i/||Y7’) . (14.62) 
TJ T* 

If operators and act on coordinates of two different 

non interacting systems with moments J1 anu J,}, then ®A satisfy the 

relatlonsiiips (14.2), (14.3) relative to moments and J * J1 + J2 

and commutate with J2, and Li^, conversely, satisfies the relationships 

(14.2), (14.3) with respect to J2, J and commutates with It is 

possible to show tnat in tnis case 

< vy.VAí i ( t*u*) j yV, ftJM> - 

- (- ^ (yaii^hy^hyV.ii^iiyv;) (14.63) 

201- instance, for the scalar product of operators 

(ci^î) -2(- 

</,/,¿^1(^)1/; itLML-> - 

“(- l/’^'V.IICViH/.llC-li/,) WdJÚ l\- Lk). (14.64) 

.djs t.iO scalar prouuct of moments from (14.03) it follows that 
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<7, v*| IV.) I ^ U.IIAIIA) (-'.IIAI! A) X 

xr(ylyr/iy,;yi)-l{y(y+in. (1^.65) 

kl J? 
The matrix elements of the tensor product of operators T , U , 

acting on coordinates of different systems, are calculated from the 

general formula (1^.14), in which we must place the following 

expression for the given matrix element: 

(yy,y^ii(r*xtrriiYV¡//)- 

■2 (VAII TV/) (Y'-UiiniY'y,) /(2y+1 ) (2r T1 ) (2s+1 ) X 

[A A *| 
x^y,y;r 

j r s 

(Ik.66) 

Thus, matrix elements of such type are expressed through 9j symbols. 

In the above considered example 

f* * n 
(íiyillC,xS,],l|i(/)-(/||C,||/)(s|lí||s)(2y+ I) 1^3 // / 2I. ( in . 67 ) 

U/u 

5. Matrix elements during summation of moments, how we will 

k 
clarify what form the matrix elements of operator V commutating witn 

J2 in the presentation J^^JM have. Prom the general formula (in.m) 

we have 

r Jks\ 
-(- n'-'iYAViiTV/A-nx f ^)- ( i't. es ) 

The expression for tne given matrix element in (in.68) cari be obtained 

from (in.66) by putting r = 0 and Uq = 1. With tnis 

I7*x 1Î - j; (kOq'O I *0*9) 7$ = T*„ 

(y'AH^iiyv;) -vlÿr+1 Ô. 
ÍA A * 
A A 0 
y / * 

V i a a*i 
/(24+0(27,+1) I y / y,l 
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(see (14.29), (13.77)). 

replacing the 6j symbols in tne final formula by a W coefficient 

we will ootaln 

(77,7,711 r^llY^y,/) - 

-(- l/,+4‘V V.IITVy',)Kr(27+1)(27-+DX 

X ^(7,77,7-; 7,*). (14.69) 

Likewise for operator U commutating with J1, 

(77,7,711^^77,7/) = 
=(- O-'1**^ (77.11*7V7¿> /(27+1)(27- i ll X 

X IT (7,77/: 7,*). 

From (14.69), (14.70) it follows that 

(14.70) 

(YAW'HyV/) =( - 1)^^-^^ (77,7,711^17-7,^+). (14.71) 

uet us consider a series of examples. For the given matrix element 

J1 in presentation from (14.42) and (14.69) we obtain 

(7,7,7||7,117,7,7) = (7,||7,||7,)(— 1+.-^.-^27+ 1)1^(7,77,7: 7,1) = 

• /7(7+1)(27+1)1 *+ 

(1¾.72) 

and also 

<7,7,7/M17,,I ( 14.73 ) 

The last relationsnip is simple to obtain proceeding from the graphic 

quasi-classical presentations according to which the mean value of 

J1 along state is directed along J 

/1 s — ^-^17 + 1) + 7,(/,+ 1)-7,(/,+ 1) 
HT+T\j 2717+0 :-J (14.74) 

7or oreitai moment ana spin s in presentation stjm we have 

wmm - V7U+IH27+1) (14.79) 

(14.76) 
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I 

Let us also give general formulas for the given matrix elements C in 

the presentation sajín 

(-y/yiICÍljT/) 

-(-1) * 

._(/+f+*‘Hm _. 
tW¥ír=^=WUV^lriWTk=nÃ • (14.77) 

(y</BC*Uy*7). 

y-/±y, 

SLlïztil 
-(-1) * 

\/il(/+^=77117^+W)! 
V (/+/'+*+4! 

^ (/+^+4)11 . f-ih yfi) 
*m.y-k)il (/+4-/-1)11 o'+*-/-T)n ' U4,'ö; 

kîî * 2*4*6...k, if k is even, and k!! * i*3*5...k if k is odd. 

Essentially, the expressions (14.77), (14.78) do not contain n'. 

Por k * 1, J * j1 and for k ■ 2, J * J1 from (14.77), (14.78) we 

obtain 

(|//nc4r/)-/^=,/-r±i. 

( j wicu-j/y)—1 . 

(14.79) 

(14.80) 

6. Direct product of operators. Multiplying by all possible 

Ur, we k 
methods the components of irreducible tensor operators ï and 

obtain the totality of (2k + l)(2r + 1) operators of T^. This 

k r* 
totality is called the direct product of operators T , U . Let us 

assume that operators satisfy the rules of commutation (14.2), 

( 14,3) with moment ana commutate with moment JL,, and ofjorator: 

conversely, commutate with and satisfy (14.2), (14.j) with respect 

to J0. Then operator Rkr witi» components behaves as an 

Irreducible tensor of order k witn respect to J1 and as an irreducible 

I(r 
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tensor of order with respect to Jg. 

We will therefore call operator RKr an irreducible tensor- 

operator of rank kr. The matrix elements of components of this 

operator in presentation have the form 

a.y.Af.Af, Itfiu', /;)* 

x(—il}, ^ A^)(—iMt X (1^.81) 

/) -U.ll rVi) (U.82) 

For different applications the case * L, J2 = S is especially 

interesting. Formulas (14.81),(1^.82) are direct generalizations 

of (14.14). Likewise all tne remaining relationships are generalized. 

Thus, tne scalar product of operators Rkr and Qkr is defined as 

Si- ir‘ .,. ( i4.83 ) 

- kp 
If operator R satisfies (14.2), (14.3) relatively to moments 

and commutates with L2S2, and operator Qkr commutates with L1S1, 

then 

<Y¿15/1S,¿5AftAfs y'L,SXs¿SMLMs> - 

« , (Y'¿ (14.84) 

X W(LtLtLtL¿ Lk) V(S,sXst; Sr). 

An example of a scalar product of this type is the operator 

M.Sl—1 )fcj(¢,9,).(*,^)((^cî)t ( 14.85 ) 

where 31s2 are the spins of two electrons, and Q^l* 02^2 are 

arigular coordinates. In accordance with (14.51) 

Althougn each of operators Tk, separately satisfies the rules 
Q A 

of commutation (14.2), (14.3) with full moment of trie system 

J = J1 + J.,, their product does not possess this property. The 

reiatlonsnips (14.2), (14.3) are satisfied only by fully definite 
linear combinations, of these products, namely (14.45). 
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(14.80) 

where 

On-cî^)^,)'; tf:(2)~cî(»tf.us,): (14.87) 

kl 
The matrix elements in presentation ism» are determined by 

formulas (14.81), (14.82), which in this case obtain the form 

<i»*Htfîir#«y>- 

-,-ir— (14.88) 

(14.89) 

(14.93) 

Putting these expressions into (14.84), we obtain 

< (Cf • cf y»,*, I OMLSMl^s > - 

= 1- l)<,+',+,'Í'S4l/lIIC*l|/¡)(/,||C*||/;) W(WX;Lk) X 

We will also give formulas, being generalizations of (14.69) 

(14.71): 

iyLJ^StLSUfrUv’L'XL'S'L’S’)** 

X /(2¿ + I)(2r+1)(25+1)(2S' + 1) W(L%LL\U-, Ltk) x 

X V(5,SS;5'; V). 

(YÍ.151¿t5tL5||Q*'¡lY’¿ISl¿1'S^'S') - 

l)l'í+5,+é+,,-¿*-s,-¿'-s (Y£,5,IIQ*rllYtó) x 

X •/(2£ +1)(2£' + 1)(254- 1)(2S' + 1) W{LtLLtU-, L%k) x 

(14.91) 

X WiStSSJ'; 5/), (14.92) 
(yLtStLlSlLS\\Rk'\\yLtStLXL'S’)^ 

-<-Ui;+,;-1'-s‘+t+*-r'i’ (vi,iAS.WIIÄ"llVi;W.Í-Í-). (, „ 5 3, 

The matrix elements of operator 1^, commutating witn Z ir. 

presentation , can be obtained by putting = = 

-1^4- 



T.'.u:., Ir.^tc-aa of formulas (l'4.8l), (lU.8^), (14.91), we will obtain 

<yL,S,L^S^Mt,Mj 1 (71- 7^) | _

t,L,S,L^,LS]\T*\\y’L.S,WS^ -

-I-K(2i + m2i'+n X
xwn.aii'a,*). (14.96)

Cl I

<» '

' P
*5

•' 'f*
7 .■■>■ ■. -
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CHAPTER V 

SYSTEMATIZATION OF LEVELS OF MANY-SLECTRON ATOMS 

§ 15. Wave Functions 

Approximation of a central field. The wave function of a 

system consisting of N noninteracting electrons can be constructed 

from single electron functions ¢ (£,), where £ is the totality of three 
cl 

coordinates and spin variable X. As such a wave function, however, 

we cannot simply take the product 

since the wave function of a system of electrons should be antisymmetric 

relative to transposition of electrons. This condition is satisfied 

by the determinant 

Y 

(5*) • • • 

♦«.(Si) ♦«.(S*) • • • ♦«.(S.v) 

♦.V(S.) V5.) --VSa) 

(15.2) 

which is a linear combination of functions (15.I). Transposition of 

two electrons i, k corresponds to transposition of the corresponding 

columns of the determinant, as a result of which the determinant 

changes sign. During transposition 1, 2, ..., i - 1, i, i + 1, ..., 

I\ -*■ 1, 2, ..., i - 1, i + 1, ... N, i, the determinant is multiplied 

i.y (-i):I'N. 
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(15.3) v = p= {t., (S,) tt>a> U,) -(Et) (g,)J . 

If among statas a , , a,., ..., a^. are identical, then the corresponding 

lines or the determinant will be identical, and it will turn into 

¿ero. Thus, function (15.2) satisfies the Pauli principle. 

The state of an electron in a central field is characterized by 

quantum numbers, n, Z, m, p. (m is the z component of orbital moment; 

[i is the z component of spin); therefore the wave function of a system 

1 |f N electrons in a central field has the form (15.2), if we set 

(see § 12) 

’t1« (S) “ (2) = ^n{a (r) (15.4) 

In the wave function (15.2) it sometimes turns out to be convenient 

i-o separate one of states, e.g., state aN< From the general properties 

cf determinants it follows that 

where 

V 

r- 

1 ••• ♦«,(£/_») 
••••••••••» 

♦«, (5i(5^) 
. 

V-1 t)... 

(15.5) 

(15.6) 

2* Two-electron wave functions in representation LSIV^. Let 

us now consider how it is possible to construct from functions of 

^n'Z'rn'u' the wave Action of 

ccscri'bing the state with given values 

the two-electron system 
L5MtM0, 

Li b 

of moments L, .1 and their z 

eomoonents v¡ j/]ri. 
L o 

hsing the general rule erf summation of moments, 

(’T.qt)), we obtain 

( formula (12.32), 
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- S CÍU- (6.). (1 ‘3 • 7 ) 
▼aüyit(VÍ) - 2 CU* (6.) ♦.*•*>• (6 ,)• ( 15 •8 ) 

Wave functions (15.7) and (15.8) differ by the fact that in the first 

case the first electron is in the state with moment l and the second 

electron is in the second state. Namely this circumstance is marked 

by indices 1, 2 at moments l, l'. The same designation will be used 

below. The initial function M can be obtained by composing the 
S L 

antisymmetric combination from functions (15.7)* (15.3) 

■* ^SLMgMiS1^ ~~ VsLMsML (V'W * ( 15 • 9 ) 

The factor —is introduced for normalization. By placing (15.7) 

y~~2 

and (15.8) in (15.9) it is easy to check that (15.9) is expressed 

through antisymmetric combinations of the products of single electron 

wave functions of the type (15.3). 

Thus, the two-electron function, which is an eigenfunction of 

operators L2, S2, Lz, Sz (L = l + I’; S = s + s'), can be constructed 

according to the general rule of summation of moments under the 

condition of subsequent antisymmetrization. From the properties of 

symmetry of the Clebsch-Gordin coefficients of it follows that 

(«W\U'LMl)~(- ly+'' ~L(l'im'm\l'tLML), 

Therefore 

iy+r+,"L_svsi.«s«1. w. 

(15.10) 

(15.11) 

and relationship (15.9) can be rewritten in the following form: 

where 

(Af.) (6,) (6.)- 

-I5Ö- 
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rune tien dií fers from function (15.8) by transposition of 

s tates . 

Let us now consider the case of equivalent electrons: n = n', 

l — l1. In this case, as this can be simply checked, the normalizing 

factor is equal to and not —i-. Considering this, and also using 

the evident relationship 

Vslmsml (/,/,)- Vslmsml (/,/,)- WSLMsMl (//i) 

we can obtain 
* 

VslmsMl = Vslmsm,. (/,/,), L + S even, 
Vslmsml =0, odd 

Thus, the wave function describing the state SIM^ of two equivalent 

electrons, at even values of L + S is simply equal to the function 

‘TILL} obtained according to the general rule of summation 
Li 0 

ol moments, and at odd values L + S it turns Into zero. Therefore 

ior two equivalent electrons terms with even values of L + S are 

allowed. For configuration p2 such terms will be 1S, ^P, for 

configuration d they will be 1S^P1D^F1G. In the general configuration 

I" terms VpVf...1!, = 21 are allowed. 

In a number of cases the wave function M can be conveniently 
‘S L 

ç s osenteu in the form of the product of independent coordinates and 

spin functions 

(15.14) 

(15.15) 

Each of the functions and QgM separately should not be 
L S 

antisymmetric. It is sufficient for the entire function ¥ 

[id ,1b) 

** m* ft. 

'fsU4sML «• Q>LMlQ£ms- 

8LM0Mt 
o L 

to be antisymmetric. Therefore two cases are possible: 

( 15.17 ) 

(15.18) 
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The indices + and - in (15.IJ), (15.18) correspondingly note the 

symmetric and antisymmetric function. Again using the general rule 

of summation of moments and considering (15.10), (15.11), we obtain 

I*,/.) - 2 ci,f1.1'',) Vi-m- (r#), ( 15.15 ) 

*LML{iJx) - £ cim flm W fi « l',). (15-20) 

iY+r-L*LML(i\i.)), (15.21) 

]V+r W)' (15.22) 

Likewise it is possible to construct the function QgM , Q”m . In this 
s 1 s 

case we must consider that electron spins cannot be different 

Qmij " { Qsms (*,*»)+1— (15.23) 

<Sms-yf{QsMs(s1)-* QsjwsU,»,)}. (15.24) 

Prom expressions (15.23), (15.24) it follows that at S = 0, 

Qsms and at 5* I Qsms + 0, Qs,w5 = 0. 

Thus, the singlet states (S = 0) correspond to an antisymmetric 

spin wave function, and the triplet (S = 1), to a symmetric. Gathering 

together all these formulas, we obtain 

5—0 YstÄ^Aii." 

- {^t (vi>+1- >y+r -4, 
•S"! 'fsLMsMLtm 

- /*)-(- If«’ ’L<t>LMLW) Qsms . 

In case of equivalent electrons 1=11 these expressions 

form 

S»O '¥sLMsML"tG>LMLV,lt)QsMS, L even, 

5*1 ¿ Odd. 

(15.25) 

(15.26) 

take on the 

(15.27) 

(15.28) 
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In accordance with (15.1cj) in both cases L + S is even. 

3. Two-electron wave functions in representation nun'SMg. In 

certain applications it is convenient to use the functions SM . 
S 

2 io 
These functions are intrinsic functions of the operators l , lz, l c; 

u and S2, S . In constructing these functions it is sufficient to 
2 z 

compose only the spin moments of electrons. It is not necessary to 

add the orbital moments. The coordinate functions can be 

constructed directly from functions ^njm(r)» ^n,¿,m,^r^’ summing 

the electron spins, we obtain symmetric and antisymmetric spin wave 

functions Q* and Q" . Therefore the requirement of antisymmetry 
oMgi oMg 

of the full wave function, we obtain: 

--pjt* (r(r*) + ,) t|>nTmÁr,)} QSMy ( 15 • 29 ) 

(15.30) 

4. Many electron wave functions in the approximation of parentage 

diagram. As a rule, several identical terms correspond to many- 

electron configurations. For instance, for configuration np n'p n"p 

we have the following terms: 

np n'p ['S] np 'P, 
np n'p ¡\S) np 'P* P, 
npn'p ¡'fl np'SPD, 
np n'p [V»! np 'SPD *SPD, 
npn’p ¡'D) n’p*PDF, 
npn'p l*D] np'PDF'PDF, 

among which there are six 2P terms, four 2D terms, two 2F terms, etc. 

We will characterize each of these terms by the assignment of the 

initial term, i.e., the term of configuration np n'p. In general 

the initial term of the atom is the term of the Ion which upon addition 

of an electron gives the term of the atom. We can speak of the 
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assignment of the initial term usually just as we can about the 

assignment of origin or genealogy of the term. 

The parentage characterisitc of a term has meaning only when 

interaction between the added electron and electrons of the initial 

ion is considerably less than interaction of the latter with each 

other. In this case the energy of the atom is composed of the energy 

of the undisturbed ion and the energy of the valence electron moving 

in the field of the ion. In exactly the same way the orbital and 

spin moments of an atom L, S are composed of moments L± and s1 of 

„ the initial ion and moments Z, s of the valence electron; along with 

preservation of LS preservation of absolute values L1 and S1 occurs. 

Namely this circumstance allows us to set each term of the atom in 

conformity with a definite initial term. 

In general the terras actually observed cannot have definite initial 

terms. 

We will designate the wave function of states pertaining to the 

term LS, obtained by addition of an electron with moment i to an 

initial term L..S* by means of ¥ t 7 n mu 
SIMcMt 'slLl' The wave functions 

*1 * *SD4sMl (Sl' Li’ 1 ) and = ŸSLMSM, (S2’ V l') obvi°usly 

correspond to essentially different states. When the energy of 

interaction of the added electron with electrons of the Initial ion 

is of the sane order of magnitude as interaction of the latter with 

each other, the nondiagonal matrix elements of interaction u,. are 

not small in comparison with Uj. r and n. This means thaVL 

this case only the full moments SL are preserved; preservation of 

si’ L1 does not oocur- To determine the energy of electrostatic 

splitting of two identical terms it is necessary to find the roots 

of the secular equation 
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í/,1-« í/,,, 0 
i/,, I í/,1 II — 8 

The wave functions i., and T , which are linear 
' ...L c 

functions and correspond to these root 

determine the energy of terms. Thus, to the a 

we must relate not the state ., (S.L. , l) 

(15.31) 

combinations of 

s £^ and Ep, which 

ctually observed terms 

or 'F, (T^- 

but a mixture of these states. In general the true terms do not 

have a definite initial tenu. 

The question about the applicability of the parentage 

cnaracteristic of terms can be easily solved in every concrete case 

if the relative location of terms is known. Systems of terms 

corresponding to different initial terms are similar and are shifted 

relative to one another approximately by the difference of initial 

terms. We have already met this situation in the analysis of terms 

of atoms with p and d ontical electrons. A typical example is the 

oxygen atom. Among terms of this atom we can separate a system of 

terms convergent to three different ionization boundaries corresponding 

to three basic terms of the oxygen ion: 2s ~2pv D, P and S. The 

identical terms of each of these systems are shifted relative to each 

other by approximately the same magnitude as the corresponding initial 

,erms oí' the oxygen ion. For instance, the difference of terms 

O V. O 1, y, r o 
is1 D] npxP and Ps^Pp-^f i:'P] np^Pof an oxygen atom approximately 

P 3 P P 3 P 
coincides with the difference of initial terms 2s 2p^ D, 2s'2p^ p 

of an oxygen ion. 

foretimes it is also convenient to relate the term of an atom 

to a definite initial term when the interaction of the valence 

electron with electrons of theinitial ion is comparable, 'but still 
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less the interaction of the latter among themselves. In this case 

there is no strict similarity of systems of terms of different 

parentage. We usually speak of disturbance of similarity just as 

about interaction of terms. Essentially this means that in secular 

equation (15.31) we cannot disregard the nondiagonal matrix elements. 

Let us turn to the construction of wave functions in the 

approximation of a parentage diagram. 

By (S'L*, 1^) we will designate the wave function of 

the state [S'L*] Z^SLMgM^, in which electrons 1, 2, ..., i-1, i+1, 

..., N pertain to the initial ion, and electron i is in the state 

with moment l. The function ^ (S'L1, 1^) can be built according 

to the general rule of summation of moments 

VsUiSMtlS'L ' (15.32) 

The wave function of the initial ion 'i'g, L,M , M, is antisymmetric 
S L 

relative to the transposition electrons 1, 2, ..., i-1, i + I, ..., N. 

Therefore wave function (15.32) is antisymmetric relative to electrons 

1, 2, ..., i - 1, i + 1, ..., N, but is not antisymmetric relative 

to all N electrons. 

The wave function ^gj^ M (S’L1, Z) antisymmetric relative to 
S L 

all electrons of the atom, can be represented in the form of a linear 

combination of functions (15.32) 

N 

VsLMsML(SrL\ /) ¿1-1)" 'Tsí.MsmJS’L', 1,). (15.33) 

Function (15.33) has the same structure as function (15.9), 

and is a natural generalization of (15.9) for the case of a large 

number of electrons. At N = 2 (15.33) coincides with (15.9). 
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3. Fractional parentage coefficients, m case of equivalent 

electrons the Parentage diagram does not have meaning even in the 

first approximation, inasmuch as not one of the equivalent electron 

has small interaction with the others. The wave function 

,n 

(lri), SUVI(,ml 

describing the state SLM^ML of group of ln equivalent electrons, 

constitutes a linear combination of functions q ' ï » U ï 
SLMnMT V ^ [o u 

corresponding to different initial terms S'L' of configuration l11'1. 

Here, however, we must consider that the circumstance that among 

the states ¿n 1 [S «L'] ZSLM^, obtained according to the general 

rule of summation of moments there will be those which are forbidden 

by the Pauli principle. Only fully defined linear combinations of 

these functions will satisfy the Pauli principle: 

2. (5'¿']/)- (15.34) 

The coefficients GS,L, are called fractional parentage coefficients, 

ouboequently, according to Racah, we will designate these coefficients 

siso by (ln-1í3'L']¡SL}lnSL).^ The general method of calculating 

fractional parentage coefficients was well-developed by Racah [R III]. 

The idea of the method consists of the following. Above we showed 

that in the case of two equivalent electrons the wave functions 

^ H'L'MW (l±l2^ built ac^rding to the general rule of summation 

of moments, at even values of S' + L' constitute standardized and 

terms ^ïïrïdentLaH! ^ ^ere can be several 
numbers. Tn general the ii,troduce additional quantum 

general .lie fractional parentage coefficients have to 
be recorded in the form, , 

rit '* ir « 1 «o/.11 \SL), However below when 

num£oS“y^niabetdr:ppcd!nderStandlnS’ the Sdrlltlünal «.«*«»«» 
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e.n+isyr.xÆtric functions of configuration l2. We will add to 
2 

configuration l a third l electron and construct the function 

again using the general rule of summation of moments. This function 

is obviously antisymmetric relative to transposition of electrons 

1, 2 and does not satisfy the requirement of antisymmetry relative 

to transposition of these electrons and electron 3. By changing the 

scheme of summation of moments we will obtain 

▼sui, ir A (/,/, [^I']/,) „ 

«^(//[S'rj/Sii/, «[srvjsnWsLMsM^ /,/,[rr]). 

The functions i2l3[S"L"]) are also built according to 

the general rule of summation of moments from functions ¢, and 

* Among these functions are those for which S" + L" 
S L 

is an even number and those for which S" + L" is odd. Only the 

first correspond states which are antisymmetric relative to 

transposition of electrons 2, 3. We will therefore compose such 

linear combinations 

$>*1 (/,/, [y¿']/,), 

which does not contain functions (^, l2l [S"L”]) with odd 
S L 3 

value of S" + Ln. This is fulfilled under the condition that 

(5-+1- l3 orld). 

The obtained system of equations allows us to find the coefficient 

(i?[S'L']¿SL(z\sL). 

Since the function which is antisymmetric relative to 

transpositions of electrons 1, 2 and 2, 3, is antisymmetric relative 

to all three electrons, we finally obtain 

v Ts/.*s (/•) = ^ (/• [5'r] ISL} I'ySL) V,SLMs «L (/» [S'L'] t). 
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■■•la

o
Likewise, by adding a fourth electron to configuration we 

can repeat all reasonings and obtain a system of equations for 

determining fractional parentage coefficients (l^[7'S'L*]iSLfl^SL), 

etc.

This method allows us to comparatively simply calculate the 

fractional parentage coefficients for the simplest configurations 

, namely for p"^ and d”. Subsequently considerably more general 

group-theoretical methods of calculating these coefficients were 

developed.^

Fractional parentage coefficients for a series of configurations 

p" and d*^, and also for terms of maximum multiplicity of configurations 

f^(n *7)^ are given at the end of this section in Tables 18-33.

All these coefficients are real.

Between coefficients for configurations i^^+2-n ^n

the following relationship holds:
JS'£'J/S4}/***»-*5£)«

V (it).53;

Thus, it is sufficient to calculate the coefficients <'3^'^, for 

configurations with n * 21 + 1, l.e., for shells less than half 

filled. Subsequently we will need the following property of 

coefficients :

■1

■ 1-1) (15.36)

[R IV]; for the remaining references see A. Edmonds, Angular 
moments in quantum mechanics, collection "Deformation of atomic 
nuclie," IT., 1958.

^Tables 18-24 are taken from work [R III]; Tables 2?-28, from 
work: R. Rosenzwelg, Ph’^s. Rev. 88, 58O, 1952; Tables 29-33, from
work: 0. M. Bukat, A. Z. Dolginov and R. A. Zhltnlkov, Optics and
Spectroscopy, 8, 285, 1^0. ‘
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For n = 2 expression (15.34) passes into (15.15) if we put (/[/]/.&}/^)- 

= 1 at even L + S and zero at odd L + S. In exactly the same way 

(/"♦• [j/]/oo|/4l+,oo)-i. 

The wave functions ¥ 
slm^l 

(in-1[S1L']l) in the right part of 

(15-34) are eigenfunctions of operators l'2, s'z, Z2' L2, S2, L , S 
z z 

and are built according to the general rule of summation of moments 

without calculation equivalence of electrons. For application it 

is necessary to know how to separate one of the electrons into evident 

form. This is attained by the following formula: 

(-1 r* Vslms mlv- ■ [s’f] /,). (15.37 ) 

which follows directly from determination and the above-stated method 

of calculating coefficients G, where i = 1, 2, . ., n. Let us also 

give the generalization of formula (15.37) for the case of two groups 

of equivalent electrons 

}TsLM5ML(lmSlLt, 

1 I 

+ X o?i.vSLM3Mlx 

X (/"5,1,, /’'" (5i¿i]/,5,/,)- 

(15.38) 

Likewise, one can also generalise for several groups of equivalent 

electrons. 

6. Classification of identical terms of configuration Zn according 

to seniority (seniority number). Among the terms of configuration 

ln at n s 2, as a rule, we meet identical terms (see Table 4). 

Therefore to fully describe states SLMr,MT of a system idd:i t, Iona 1 

quantum numbers are necessary. Such additional quantum numbers in 

this case canrot be moments S'L' of the initial ion, since the terms 
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i£^,uralion c cannot te x-elated to definite;1 terms of 

configuration ¿n It is, however, possible to classify the terms 

S, L of configuration ln by tneir connection with terns of the same 

type (i.e., with the same values of 3, L) of configuration ln'2. 

-his classification was offered by Racah. Below we will briefly 

enumerate his basic results, which are most important for systematizing 

spectra [R TI, R III, R IV]. According to Racah all identical terms 

3, L of configuration ln are divided into two classes. States SLM M 
¿g* * f 

pertaining to terms of the first class, car, be obtained from states 

of the same type of configuration ¿n_2 by adding two l electrons, 

forming a closed pair l2: L = 0, S = 0. The terms of the second 

class cannot be obtained in such a way from defined 3L terms of 

configuration l ^ and in this meaning appear for the first time in 

the given configuration. Part of the terms 8L of configuration ln'2 

in turn can be obtained from definite terms of the same type of 

configuration Zn 4 by adding a closed l2 pair; etc. 

continuing tnese reasonings, we will reach configuration lv, in 

wnich trie term SL is first met, in the sense that it cannot be obtained 

irom any definite term of configuration lv~2 by adding Z2[00]. The 

assignment oí the number v simply determines the whole chain of terms 

degenerating by term SL of configuration Zv. It is therefore possible 

to classify the terms of configuration Zn by giving them different 

values of the number v which shows, in what configuration the given 

term appears for the first time. 

According to what was said |(n-v) closed Z2[00] pairs correspond 

to states of vSL of configuration Zn. 

If we present the wave function M(Zn) with v / n in the 
S 

form of decomposition along the wave functions ' >n~2-,r - T -, 
vSLMmKt ' 1 llJl 1J’ 

O 11 

... 



12[S2L2]), then of all possible functions ^vSIjM M ( in-2[v1SL] l2[00] ) 
S L 

into this decomposition there will enter only one, corresponding to 

the value = v. 

Namely in this meaning the term vSL of configuration ln with 

V ^ n is generated by the term vSL of the configuration !n~2. 

Racah offered the designation seniority number for the number 

V. According to this terminology the numbers v classify terms 

according to their seniority. The value v is indicated ahead of 

2S+1 
and below the value of the term 

As an example let us consider configurations dn. At n = 1 only 

p 
one term is possible: D. This term must be given a value v = 1. 

Thus, we will obtain the term 2D. This term generates a chain of 

"5 S 
terms in configurations d ; d (it is sufficient to consider 

configuration ln with n s 2Z + 1). 

At n =» 2 the terms 1S1D1G'5P5F. 

1 2 
Terms S can be obtained by adding a l [00] to the configuration 

0 1 
l . The value v = 0 will therefore be added to term S. The 

p 
remaining terms first appear in configuration d , the value v = 2 

1 1 ^ ^ 
must be ascribed to them; we will obtain the term zD'ZGi.F-iF. At 

d ft d à 
2 

n = 3 two D terms are possible. One of these terms is 2D, since 
1 

2 2 
it is generated by the term of configuration d. The second D 

term appears for the first time and therefore corresponds to a value 

p 
v = 3. This term is designated by ^D.1 The remaining terms of 

configuration d^ also appear for the first time, therefore for them 

v = 3 also. Likewise it is possible to classify the terms of 

configurations d , d . The classification of terms of configuration 

dn is given in Table 17. In accordance with this classification 

1In the old designations jrD and 'iD correspond to and ^D. 
1 P 8 0 
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Table 17. Classification of terms of 

SL 
for fractional parentage coefficients G^t, in Tables 22-2¾ this 

designation is accepted 

n 
•ho three vSL numbers simply determined the term of configuration d . 

In case of the configuration fn the situation is more complicated, 

since there can be several terms corresponding to the same set of 

vSL numbers. To separate these terms we must Introduce additional 

quantum numbers. A detailed investigation of this question is in 

the last of Racah's quoted works [R IV]. 

Subsequently in different applications we will meet matrix 

elements of symmetric single electron operators T , of rank r relative 

to spin 3 and rank k relative to orbital moment L. For matrix the 

elements ?rK diagonal to v we have the relationships 

odd number 

(rvSLwr'wrvS'L) ^r-'vSLwr'wi—vS'i:) »... 
... -iröX|irV"*s*r). 

*.+ r__even number 

- g±-jr? (rvSLwr'wfvs-L'). 

(15.¾) 

(15.40) 

rk 
Also, for odd values r + k matrix T is diagonal to v. 
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Table l8 Table 19 
(P'SUpMS'I.'IpSÍ.) 

\ p* 
P1 \ 

•s *p •D 

*c 

V 

•D 

Ü 
ŸT 
T~ 

% 

0 

1 
1 
Vi 
1 

Vf 

0 

-VI 
1 

"Vf 

Table 20 

ip'SiÍPlS'L'JpSl) 

? 
*S •p *0 

•s 

•p 

‘D 

0 

1 

V3 

0 

1 

1 
2 

1 
2 

0 

VI 
/? 

Table 21 
S'i')p*P) 

•s •p •D 

•p 1 
7¾ VI Vi 

Table 22 

(*vSL ¡(Plv'S'L'ldSL) 

* . 4» 
■ » ^ io :f ic ' 

v* 

V* 

P 

u> 

‘S 

*/ 

lo 

P 

30-w 

15-^ 

eo-«.» 

no-** 

TB-'» 

5-1» 

42“ »i» 

j-»* 

0 f 

0 

4 

0 

0 

0 

0 

0 

r* 

_8'/» 

-3 

-7 

38,ia 

-t 

0 

0 

Ig'/* 

0 

—S1'* 

45,f 

-IO1* 

0 

-lO’'1 

0 

-a*'» 

-T*1* 

_21** 

21,/* 

jiit 

2 

21 

—1 

0 

0 

-3 

—5 

0 

„•» 

1 

1Here and below N Is the general 
normalizing factor by which wernunt multiply 
the numbers standing in the corresponding line 
for column) of the table._ 

-152- 



T
a
b
le
 

2
3

 

P*"’1" 

% 

* 
00000000^2^^^1^^^ 

O 
• • 

m * m « • ^ • e • • 
Qtf)ui co O «J *?■» Ñ» «en ooooto— ^oicFoîBggj i 

1 i i 

*4. * «1 

c ç * Z Z 
ooS'rooêî^-oôSiooSSo 

i i s7 7 

■ m 

■ 'ee* eeeeee. 
ocS?7 8 85îoS =^251^0 

?. 

■ - - f» e «. * e *• 
0-â2Ï88°|i2^7S§;:>0 

Q « m 

1 0 

13
5'
 •

 
0 

IO
S1

'*
 

0 0 0 0 
31

5*
'*

 
0 

1
8

9
^ 

0 0 0 0 

0. 
0 m 

e 5 ' 5 ï 
= 0^:0 = ^^ = 55=.0 = = = 

a. 
m m 

• «i •» Ç ^ 

00-^5^^^08^800000 
i i i - 7 

% 
1,-e5S55S5 55SS!î- 

% Ä i°. A, h -Q- Si A A A A A Pm P- P- A ¿% 

-153- 

ï 

I 



-154- 



(P
,s

,£
.,

) 
dS

L
) 

-155- 

r 1.* I M«iWI«Ililllllll|iliiI!ii|llllil||||n 
! 



T
a
b
l
e
 
2
6
_
_
_
 

T
a
b
l
e
 
2
7
 

Ä 

ft 

« » if T fe « ! ! ‘g 

ÍS. 
; * * 5 * e « f 

’ í *? 2 7 S s 1 S 

a 

n 
: s « * < T 
jg0^8ao|og 

fu H H H °0 il 
Ä 

1 0 0 0 0 0 1 0 0 

1 a. *. & A a. a. s. & * 

1 
% •j 

p 
% 

p 
|-|us 

A 

$ -1« 

A -t 

*» m -t 

Í P 

% ■ 
m m 

M 

e " r ■ f « « 
00000000^¾^¾¾¾^¾ g 

P. 
P«" «lee«**!"*; 

. « » . 1 0 ^ -g ^ g g p 

f*. 
eft ft* te. «* ? 

oo.s.o2g = sj«. = 8g0 ? 

A. 

« H M 1« M fft M M M M Mm Ç 

00 = I^I§°I®§IèSI0 § 

A 
«cceftft »eeftftft S 

® ä % S ^ .® ’? 5 2¾¾¾00 s 
I 7 7 'T 8 ■ 

A 

* 
&0t0ft.0000Ä.0l.0000 L 
* ï5 2 8 & 9 ......... mm 

A 
« * e « * * 5 

oofcVoofcfeoVao.ooeo^ 
Il 1 1 J - - -. R 

A 
e^S,** «•«•■ ■ 

ee^8!S%t%oS£ £ 00000 • 
‘Il 8 7 S 2 

X (^(oft.a.QQQÇj^ft.ü^CLOia^i- « 

-156- 



) 

Table 30 

•s •0 *F *a •/ 

•s 

•D 

*F 

*a 

V 

0 

0 

' i 
Vf 
0 

0 

0 

/1 

-i/l 
I ï/TTT 
iV 2^7 

0 

l 
1 

0 

-l/EO 
2 V 2 7 

3 
2V2I 

5 l/ 5 
2' r 2 7 -11 

i/h: 
2 r 211 

0 

0 

-1/IÏ 
2 V 2-7 

1 17 -13 
2 K 2-311 

/7 

2VT 

4/1 
2 7 2 

I 
2 Vi 

wr 

Tab 1. e 31 

(/••¿{/‘[•td/'i) 
•s •D V *G */ 

V 

•f 

0 

i/T V r? 
0 

/1 
/s 

1 
vn 

-/i 
1 

FIT 

/ÎK 
-/s 

1 .^~3-l3 
F 2T7T 

0 

-/El r 3-5-7 

l/±il 7 3-5-11 

Table 32 

*P •F 

'7 
1 
FT 

l 
vr V~Fi 

Table 33 

(f 
’1, 

'F 

•S 1 

§ • Matrix Elements of Symmetric Operators 

1 • of the problem. In different applications we 

meet two types of matrix elements of operators 

i. * i>* 

(16.1) 

(16.2) 

Operators P and Q are symmetric relative to all electrons of ■ 

the atom. The first of these operators is the sum of single electron 
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operators, since each of the operators ^ acts only on variables of 

the i-th electron. Operators of such type are, e.g., dipole moment 

of the atom 

(16.5) 

and also interaction of atomic electrons with the nucleus 

U-*■££• (16.4) 

Operator Q is the Siam of the two-electron operators q^. 

Summation in (16.2) is conducted over all possible pairs of i, k(i ^ k). 

The number of such pairs is equal to ^N(N - 1). An example of an 

operator of this type is electrostatic interaction of electrons 

(/. 'Z 
<>* 

I 
If-i-r*! (16.5) 

Before we consider concrete questions it is useful to establish 

a series of general relationships for matrix elements of operators 

F and Q, connecting the antisymmetric states of the system, i.e., 

states described by antisymmetric wave functions. 

Due to the indistinguishability of electrons the integrals 

where ^ are the antisymmetric wave functions, do not depend on 

indices i or i, k. Therefore 

i *; rvrdT -/vj y;/,y,.k,-n $ 
5 Yt-Q1V<ft-íiíniij - 

IN 

(16.6) 

^.7) 

Operator fN acts only on variables Consequently, to integrate 

in (16.6) it is necessary to separate the variables of the electron 

N from variables of all remaining electrons. In exactly the same 

way in the integral (16.7) it is necessary to separate the variables 

P P 
3N-1’ V 
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Le*, ue eisrify what has been said on the example of calculating 

the diagonal matrix element of operator for a two-electron 

configuration. We will be limited to an approximation of the central 

field. Assigning wave functions in the form (15.3) 

-7¾ (6.) t- (6,)}. (16.8) 

w e f 1 n rf 

- (6.) (6.) (5,) V (6.)} a-, dit 
or 

<aa# I ¢,, I ««'> - <a,«i I ¢,, I <*,<> - I ¢., I «,«>• 
(16.9) 

In this expression the subscripts to the quantum numbers aa» indicate 

which of the electrons is in the given state. Similar designation 

■will be used everywhere in this and subequent sections of this chapter. 

The matrix elements in the right part of (16.9) are calculated with 

nelp nonantisyrnmetrized functions 

(16.10) 

The matrix element entering in (I6.9) with a minus sign is called 

exchange. This designation is connected with the fact that in the 

right part of the corresponding matrix element a transposition 

change) -f electrons between states a, a1 is carried out. The 

physical meaning of the exchange matrix element will be clarified 

ia ^ T/, wo will introduce the operator of exchange P,0, which we 
1C 

w :1 i .1 define by the relationship 

(16.11) 

with help of this operator expression (16.9) can be written in a more 

compact form 
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<»• i -<«,«; i»,.o—p..'i «.«>• (16 •12 ) 

The problem of reducing mátrlx elements F and Q to matrix elements 

of operators fN and r calculatea ith the help nonantisjTnmetrlzed 

wave functions of the type (16.10), is a typical problem encountered 

in examining many-electron configurations. Only after solving this 

problem can we use the general methods of calculating matrix elements 

presented in § 14. 

2. Matrix elements F. The approximation of the parentage diagram. 

We will start from a consideration of matrix elements of transitions 

lY.VJ ¡SIMM - [Y.V.] 

in which neither the initial term nor the quantum numbers ni of the 

optical electron change. Particular cases of matrix elements of this 

type are diagonal matrix elements. We will present wave functions 

Y (S.L., l) in the form of (15.33), i.e., in the form of 

SLMSML 1 

decomposition along functions ^ M M l±> ' Let us remember 
SL S L 

that these functions are built according to the general rule of 

summation of moments assuming that electrons 1, 2, ..., i - 1, i + 1, 

..., N pertain to the initial ion, but electron i is in the state 

with moment l. Thus, the considered functions are antisymmetric 

relative to transposition of electrons 1, 2, ..., i - 1, i + 1, ...» N, 

but are not antisymmetric relative to transpositions of these 

electrons with electron i. Considering what was said, we obtain 

<Y ISLMsMl I f I Y.V.. IS'L'M’SM¿ = 

“N sL(”lyliSLMsM,|/aI Y,V,. WMKM'L>. 
>. * 

In summing over i, k only the members i = k, are different from zero, 

where all members i ^ N are equal. This allows us to record the 

right side of (16.13) in the following manner: 

(16.13) 
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+ <Y1S,¿1. /,JÍ¿AfsAft I(/V- I)/.vl yA¿,. (10 *14 ) 

In the second member of (16.1-4) it is possible instead of (N - l)fN 

to place .17, and then to replace index i by N. After that 
p r 

<.yxSxLx, lSLMsMl | Y^.t,. IS’L'M^ = 
= <YlV.. i*SLMsML\fs + ^f,\vtStL,. l^L(16.15) 

= <Y,V.. IsS’L'MsMl>. 

The matrix elements F, nondiagonal according to Quantum numbers of 

optical electron, are different from zero only when the state of 

initial ion does not change, i.e., for transitions 

\xSxLxhISLMsMl — Yi5,^,. n'l'SL' 

Again using expression (15.33) for wave functions, it is easy to 

obtain an expression analogous to (16.13). Now only In summing 

over i, k will only one member i = k = N be different from zero. 

Thus , 

<yxStLlt lüSLMgM^ F\yxSxLx, - 
(l6,l6) 

It is easy to see that (16.15) and (l6.l6) coincide with such 

expressions for matrix elements F which can be obtained If from the 

very beginning we ascribe electron N to state l. In other words, 

in calculating matrix elements F instead of antisymmetric functions 

TuofhhV 0 we can use the functlon 'Wm. (siLi’ !n>- 
S L O Li 

Calculating in exactly this way the matrix elements F in the 

approximation of a central field, it is simple to obtain 

«T ... a*|F|a' ... <rv> “ Ç <a*w I /jvl - Ç <«î | /* | a J>, (16.1?) 

<a • • • o* • • • «*v| F| a ... ft* ... av> ■■ ft*^> ■■ 

(16.18) 
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In this case the result again has the same form as in the description 

of the system by nonantisymmetrized functions 

▼ (16.19 ) 

3. Matrix elements F. Equivalent electrons. We will originate 

from expression (15.3^) for the wave function of states of configuration 

ln. For the transition between states 7SLM„MT and 7,S,L'M'M'T 
Oh Oh 

from (15.3^) this configuration should be 

<tmySLMsML J f irY'i'i'AfiAf:) -/» V OJl qts-l- 
iJj, lA‘Ll jf.i, X 

X <r - tmSLMsML\/m I /- -[YlS,4,j I'S'L’M^y. (16.20) 

In case of transition lnySLMgM^ -► ln"1[71s1L1]Z ’ 3'the 

wave function of the initial state must be given in the form of 

(15.3^), and the wave function of the final state, in the form of 

(15.33): 

<e^SLMsML I FI /• - (vAi.l X 

X 2(-1 y^</—(yA^,] lmSLMsML 1/, I /—(Y.S/jrVi'Af^W^ = 

In the particular case of configuration l2 formulas (16.20) and 

(16.21) take on the form 

(16.21) 

«•SIAfjAfJFI**2«xltSLMsML[/, [ lx¡tS'UM'SML>, 

iFSLM^FIl, I'S'L'- V~2 <lxltSLMsML\ft\lxt^L’MsML>. 

(16.22) 

(16.23) 

Let us also consider the transition Zn[71S1L1]Z'P[72S2L2]SLMSML - 

- Zn‘1[7^S|L|]¿,p+1[7l2S¿L¿]S'L,M¿M¿, in which two groups of 

equivalent electrons participate. In this case both the functions 

of the initial and the final states have to be given in the form 

of (19.38). 

Using these functions, one can simply obtain 



it+st+Lt+s't-r -% 

(16.24) 

All the remaining transitions with participation of groups of 

equivalent electrons can be reduced to the three given above. 

k. Matrix elements Q, The approximation of the parentage 

diagram. We will start from a consideration of the diagonal matrix 

element Q for lSLM^. Again using (15.33), we obtain 

<Y Ai.. ISLMsMl I <?| Y.V.. ISLMsMl> - I N(N-1) x 

x£(_iy+*<YiVii ¡¡SLMsMl i qN i JV I ylSlLi, 

In the sum (lo.23) only two types of members are different from zero 

1) i»JV, N—V, k *»N, N—l, 
2) l-k=£N, iV-1, 

where members i = N, k=Nandi=N-l, k = N - 1, and also i = N, 

k 1' - 1 and i = N - 1, k = N are equal. The contribution of 

mumbers of the first type of matrix element (16.25) is equal to 

(N~ \)\<,ytSyLxlNSLMsML\qN . liV|yiStLtl/s,SLMsMly — 

“ <ytStLilNSLMsML 19*-,, * I Y,S,¿,/a, -, 
(16.26) 

I.u'mbers of second type give 

71A/-1 ) £ <y151¿, 17/V-,. wI Y,V¿ S£AtsAft> - 
I 

<YlS,¿,/,JÍ¿iMíAft ¡ Yl5l¿1/fSZ.Af5Af£>. ( 16 *27 ) 
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A 
In this expression it is possible to replace ¿(N - 1)(N - 2)q1.I 

ty and then replace index i by N. Likewise in (16.26) 

it is possible to place <£< fy* instead of (N - N> As a 

result we obtain 

N 

aV,. iSLMgML I <?|Y»5.¿» tSLMsM^ — 
-<¥,5,1 ¿«SLMsMlI"gl+2^ -^w)lY,5A. IsSLMsMl>. (16.28 ) 

Ponnula (16.28) has a simple physical meaning. Two members in (16.28) 

correspond to interaction of electrons of the initial ion and 

interaction of elecuron N with electrons of the Initial ion. From 

(16.28) It follows that in calculating the diagonal matrix elements 

Q we can use nonantisymmetrized functions 1^), 
S L 

adding electron N of state l. The exchange members must be added 

to interaction of electron N with the remaining electrons. 

If the states of the initial ion can also be assigned in the 

approximation of the parentage diagram, then in the matrix element 

<yW^WLMsML I*1’-^a)Iy.V.. (l6 2 

rS^if/SLMgM^ 

we can easily separate one more electron, ascribing the state 1' to 

it. Repeating conclusion (16.28), we will obtain 

<YiS.it rstLt !SLMsMl I <?| Y.S/..rs^iSLM^ = 
*■ <Yi^X«> 1» _MsMl I VI ytStLt, fM _ t ( l6.30 ) 

2 0 - Pr» ) + 2 Ir. (1 — .V-, )t- 
r '•I N /-. 

‘ N -i)- (16.31) 

The first member in (I6.31) describes the interaction of 

electrons of a double ion; the others describe the interaction of 

electrons N, N - 1 with each other and with the electrons of the 

-164- 



initial ion. 

For two electrons formula (16.3I) takes the form 

I qxt J U'SLM^i) = 

“«¿¿LMsMlI ¢,,0 - A»,,))¡tíSLM5,MLy. (16.32) 

The same type of consideration can be taken for nondiagonal 

matrix elements Q. Let us give the final results. Nondiagonal 

matrix elements Q are different from zero only for such transitions 

with which a change of one or two electron states corresponds. These 

matrix elements have the form 

<ytStLtlSLMsML > - 

” <Y,S lLll^SLMsMt -P.nWy,L'MsMLy, 

<yts,LtrstL,iSLM^L I qiy,5,rs l,msml > » 
at(I — Pm-,. yv)| 

(16.33) 

In the first case the change of state of electron N is evoked by 

interaction of this electron with all the remaining electrons. In 

the second case only interaction of electrons N - 1, N occurs. When 

adding electrons N - 1 and N, which determines the defined states, 

it is necessary, Just as in (16.30), to add the corresponding 

exchange members. 

Let us also give the expression for matrix elements Q in the 

approximation of a central field (these expressions can be simply 

obtained either directly, or from (16.30)-(16.34)) 

<a'...a*|Qjo'...aJV>» ^«v -..wU—Aw-.. w)|_,*£>-■ 

“ ^ 1 - A») I a; o^, 

<«*.. .a*...«# J Q|a'...**. 

/»*,> =, 

<«'... .«*.. .a^| <?|a*.. . . .a#> - 

-<«í«Íkrt(l~A*)|ííí>¡>. 

(16.35) 

(16.36) 

(16.37) 



5. Matrix elements Q. Equivalent electrons. In this section 

we will be limited to a consideration of diagonal matrix elements Q 

for configurations ln and lnl1. In all the remaining cases the 

results can be obtained with analogous methods. 

Double application of formula (15.3^) gives 

(16.38) 

from which it follows that 

trySiM^l QirySLM^ » 

mJL£ 

x<r-[YA1.Í/.., [5,1,1I I r-[Y,v.l. 
(16.39) 

In the particular case of n = 2 formula (16.39) takes the form 

<,ttSLMsML J 9,, I rSLMsMj - </,/,51^ | ¢,, | ltl,SLMsML>. ( l6.4 0 ) 

Expression (16.40) coincides with the matrix element of the same 

type for two unequivalent electrons (16.32), if in this matrix element 

we put n * n1, Z = 1’ and drop the exchange member. 

Let us now turn to configuration lnl'. In this case the 

expression for the matrix element has the same form as (16.28), since 

In conclusion (I6.28) we made no assumptions about the structure of 

electron shells of the Initial Ion: 

<'r Iv AM rsLMsML IQ i r (Y A¿,1 í'slmsml> - 

■*</"[YAMÍnSLMsMlI^ 9i*+ (l6.4l) 

+Çíwli - 'WI'-IyAM ÍnSlm^. 
In conclusion we will show that for diagonal matrix elements 

KTySLMgM^ Q| rySLMgM^ 

operator Q, commutating with moments S, L, has a simple recursion 
m a 

formula. Operator Q = ^gtk contains ^ n(n - 1 ) members, but 

* -1 i 

operator Q» = 2-(^-1)^-2), therefore 
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</" i Ql i"ySLMsML> 

IQ' I l"ySLMsM¿>. 
(16.42) 

We will record wave function ^qTM M (Zn) in the form 

(16.43) 

Operator Q' does not act on the variables of electron n. This allows 

us with (16.43) to separate from matrix element in the right part 

of (16.42) the integral 

(6,) ¿6, *= Ömm-Äv, 

after which this matrix element obtains the form 

Considering that the matrix element of operator Q» does not depend 

on quantum numbers MS1 we obtain finally 

(16.44) 

Ourcmiary of results. The above obtained results can be 

briefly formulated in the following way: 

1. In calculating the matrix elements of operators of the F 

type we can start from nonantisymmetrized wave functions, adding 

to each electron, or to some electrons, defined states (formulas 

(:16.15)-(:6.18)). 

2. in calculating matrix elements of operators of the Q, type 

we can also start from nonantisymmetrized wave functions. However, 

in this case when adding to electron i a defined state we must replace 
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each of operators qik, k = 1, 2, ..., i - 1, i + 1, ..., N, by 

qik^' " ^ik^’ which is equivalent to adding an exchange interaction 

(formulas (16.28), (16.30), (16.37)). 

Equivalent electrons are an exception to these rules. Thus, 

in the case of configuration lnl' we can ascribe to a defined electron 

the state l1, but at the same time we cannot ascribe one of the l 

states. Therefore configurations containing equivalent electrons 

require special consideration (formulas (16.20), (16.21), (16.24), 

(16.39), (16.44)). 

§ 17. Electrostatic Interaction in a LS Coupling. 
fwo-ETectron Configurations 

1. Self-consistent field. In analyzing a system of levels in 

the approximation of a LS coupling we can start from the hamiltonian 

Ze 
where p. are the pulses of electrons; — is the interaction of 

i r^ 

electrons with the nucleus, which is considered motionless; the 

last member determines the electrostatic interaction of electrons. 

In the hamiltonian (17.1) relativistic effects such as spin- 

orbital Interaction, the dependence of the electron's mass on 

speed, etc., are not considered. All these effects are assumed small 

and are considered in the form of corrections at the lase stage of 

calculations. 

We will look for a solution to the Schrödinger equation 

(//-£)Ÿ-0 (17.2) 

in the form of (15.2). In this approximation we can obtain a system 

of equations to determine single electron functions fa(Z). If in 
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these equations we disregard exchange interaction of electrons, then 

these equations take on the form of the usual Schrôdinger equations 

(17.3) 
1 I * * 9 

for an electron in a field 

EW (IT.2*) 

where 

W - j ir') ipa. (r*) dr'. ( 17.5 ) 

These equations have to he solved jointly taking into account the 

orthogonality of the functions Í’ k. Actually, equations (17.3) are 
a 

not independent. In the eovation for function ^ j, we have the 
a 

potential 2 F¡(r), depending on states ., of all the remaining 
£ 

electrons of the atom. The last in turn depend on state k. For 
a 

this reason the considered approximation is called the approximation 

of a self-consistent field.1 

The self-consistent potentials F1(r) in general are not centrally 

symmetric. If, however, we separate the centrally symmetric part 

from these potentials and consider only it, then the system of 

equations (17.3) will be satisfied by functions of the type 

♦ (17.6) 

and this system leads to a system of equations for radial functions 

R ., (r). We will take this approximation of a self-consistent centrally 

symmetric field as the zero approximation. 

According to the above in the zero approximation the atom is 

uescribed by wave function T (15.2), where single electron functions 

1;’ee 5 hi for the solution of the general equations of a self- 
e on slot, en l field and their discussion. 
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'^a have the form of (15.^), and energy is determined by the set of 

quantum numbers 

at, n’t,... (17.7) 

We will consider the noncentral part of electrostatic interaction 

of electrons, which were omitted in the zero approximation, in the 

framework of the perturbation theory. Inasmuch as the energy levels 

of an atom in the zero approximation are degenerated according to 

quantum numbers m, p., in calculating corrections we must solve the 

secular equation of the perturbation theory. This equation of the 

f-th degree relative to AE, where f is the multiplicity of degeneration, 

generally has f real roots AE^, i = 1, ..., f, which are the sought 

corrections for energy. 

It is easy to see that calculating the electrostatic splitting 

of levels by this general formula is an extremely complicated problem. 

The fact is that in almost all interesting cases the multiplicity of 

degeneration f = 4(21 + 1)(211 + 1) is very great. For instance, 

for interaction of two p electrons f = 36; for interaction of p and 

d electrons f = 60; for two d electrons f = 100, etc. Even the fact 

that the general secular equation in this problem is broken up into 

a series of independent equations of smaller degrees does not change 

the position. 

In this case, however, we can manage without the solution of 

the secular equation. The energy of electrostatic interaction of 

electrons U, as any scalar quantity, is invariant relative to rotation 

of the system of coordinates. It follows from this that U commutates 

with L and the matrix U is diagonal to quantum numbers L and M^. 

Furthermore, matrix U is diagonal to S and M,,, inasmuch as U does 
D 

not depend on the spins of the electrons. 
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wm Si ■

Thus, the sought corrections to energy are determined directly 

by matrix elements
<SLM^^ IU1 SLM^i>. ( _ g ^

These matrix elements are determined by quantum numbers L, S and do 

not depend on Mg, since the electrostatic Interaction of 

electrons, as any magnitude characterizing an Isolated atom, does 

not depend on the orientation of moments L and S in space. Therefore

A£u~<SLMgM^\UlSLM^^. (17.9)

in which M^^, Mg are arbitrary.

In spite of the fact that part of the electrostatic Interaction 

of electrons is already considered in the zero approximation, 

everywhere below U will represent the full expression for this 

Interaction

(17.10)

D

This is connected with the fact that we are only Interested in 

splitting, l.e., the relative position of terms. The centrally 

syirLmetric part of U is immaterial for splitting and appears only in 

the shift common to all terms.

2. The niater Method (method of sums of diagonal elements). 

The first calculations of matrix elements (17.9) for a series of 

two-electron configurations were conducted by Slater with help of 

the known theorem of Invariance of the track of a matrix, which we 

abbreviate to the theorem of svuns.

Let us give a short proof of this theorem.

Let us assume that the totality s ci’ functions and 

constitutes two different sets of orthogonal and standardized 

functions, carrying out different presentations of system so that

I
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®«**¡*- ÇíCfl.í-fi.-- 

The matrix elements of arbitrary operator G, calculated with help 

of functions and <p^, are connected by the following relationships: 

0..- 5 «*«.*$ V<’ O^rfT-^a*,«.»^. 

It follows from this thal sum of diagonal elements, i.e., the track 

of the matrix, does not depend on the representation 

According to Slater we must calculate diagonal the matrix elements 

U in the murn'M.' representation and then to find AEto with the help 

of the theorem of sums. However, it is simpler to originate not 

from the mum1 a' representation, but from the mm'SMg-representation.1 

The sum of diagonal matrix elements <SLMSML|U|SLMgML> with different 

values of LM^ and fixed values of SMg is equal to the sum of diagonal 

matrix elements <mm,SMs|U|mm,SMs> with different mm* and the same 

SMf,. 

From (12.34) it follows that sets of functions M and 
S L 

^mm'SM treak down into a series of independent sets corresponding 
S 

to different values of M^. Functions M and with m + m' = 
S L S 

= will 136 converted one by the other without concerning functions 

with different M^. Therefore it is possible to formulate the theorem 

of sums separately for each of sets. The sum of matrix elements 

<SLM M |U|SLM0Mt> with different L and fixed values of is 
S L ^ -n O Li 

1Van Vleck, Phys. Rev. 45, 405, 1934. 
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ecuax to the sum of matrix elements of <mm ' SIC, I ï' I mm1 SMn>, for which 

m + m Thus, 

J&Els— 2 <mnt'SMs \U\mm' 5/VÍ-) (17.12) 

In the left part of .sum is taken for all terms of one multiplicity, 

i.e., with one 3, belonging to a given electron configuration and 

satisfying condition L ë 1On the right summation is conducted 

over all values of mm1, satisfying the condition m + m' = The 

matrix elements in the right part of (17.12) do not depend on Mgj 

therefore selection of M0 is arbitrary. Giving different values of 
O 

¡v; , we can obtain a system of equations allowing us to determine 

the magnitude äEto. This will be shown below on a series of examples. 
Lo 

5. Coulomb and exchange integrals. In accordance with (15.29) 

and (15.50) wave functions ¥ have the form 
mm ' kJ 

±Qsm5, (17.13) 

where upper sign corresponds to singlet states and the lower to 

triplet. Putting (17.13) in the expression for matrix element 

hmm’3Mg 11¡ [ mm'oMs> and considering that U does not depend on spin 

variables, we obtain 

5-0 <mm'SMs| U\mm'SMs> = I + K, 
S- I <m4i'5Afj|£/| mm'SMs> - l—K, 

where 
/- J (r.) yrm- (r.) ) ip,« (r.) fr«- (r.) drl drt, 

Ä = J vim (rt) yi« (rt) V,m (O fr«- dr, drt. 

Thus, the matrix elements <mm,SMc |Ujmm,SMc,> are expressed in two 

integrals of I and K. 

The integrand expression in (17.I6) can be written in the form 

öi« tOOr«'J , ■ 

(17.1^) 

(17.15) 

(17.16) 

(17.17) 
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2 
are the densities where pîm = -e ¡ j 2 a n d PL Tm ~ "e I ^'m'! 

of electrical charges corresponding to electrons in states Im and 

I'm'. The integral I therefore is simply the Coulomb energy of 

interaction of two charges distributed in space with densities 

o, and p,, ,. This Integral is called the Coulomb integral. 

Integral K determines the so-called exchange part of the energy 

of interaction and is called the exchange integral. This part of 

electrostatic interaction of electrons cannot be graphically 

interpreted, since the exchange energy does not have an analog in 

classical electrodynamics. The presence of two members in the 

expression for energy of electrostatic interaction of electrons, 

"pure Coulomb" and exchange, is connected with the fact that 

description of an atom by the Schrödinger equation is not exact. 

The Schrödinger equation does not contain spins. The latter are 

considered only indirectly. By requiring antisymmetry on full wave 

function of the system of electrons, for each value of S we separate 

only part of the states of motion allowed by the Schrödinger equation. 

Thus, spin S == 1 corresponds to the antisymmetric coordinate wave 

function <ï>", and S = 0, to the symmetric 4>+. 

In states <i>" and electrons on the average are different 

distances from each other. This circumstance is connected with the 

dependence of the energy of electrostatic splitting on S, determined 

by the exchange part of electrostatic interaction and having, thus, 

a purley quantum character. 

Upon passing to classical mechanics exchange interaction, just 

as spin, disappears. 

Let us turn to the calculation of integrals I and K. The 
2 

expression for energy of interaction -7— will be converted so as to 
r12 
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separate- the radial and angular variables. First of all we use the 

1 
fact that —— can be decomposed into a series according to Lectendre 

12 
polynomials 

r* 
(rï + 2/-/, cos o))“ * Z-^7 p* (co* «-)• (17.18) 

Here throguh r and rv we designate the smaller and large of modulus 
X. P' 

of vectors r^ and r^; cu is the angle between vectors r^ and r^, i.e., 

between directions 9.. and 
1dye. 

Using the theorem of summation for spherical functions, we can 

express :1.(coo ¡o) by functions Ykq(01» and Ykq(9?> 9?) 

«» ® 4 r* 
^ arr Z ^ ¢,) i'\. %)■ ( 17.19 ) 

we will place in (I7.I6), (17-7) wave functions 

Then <P). 

where 

/.T) = i* f -A- ^/(r.) (r.)r?dr.rîdr,, 

* 

0*1/./; /.7') = e*j /?n< (/-,) /?„')' (/-,) /,) //rîd/’.Odr,, 

while 1‘or 

f-iTT 
« r> 

• • * r, * 

» 

«*=2Fîl Z </» I »'J/«></'«'I y**|/'/»’> 
«=-* 

•*<//" ICÎI/i» > </')i|- ¡cV I /'m'>, 

**ãF+T^Zj</wI = Ci< -.1/-/.1-)^: 

(17.20) 

(17.21) 

(17.22) 

(17.23) 

(17.24) 

(17.29) 

(17.26) 
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T_ ^ 

see (13.5). Coefficients a and b are expressed through matrix 

elements of spherical functions. Matrix elements of this type can 

be calculated in the general form from formulas (14.22), (14.25). 

From these formulas it follows that coefficients ak and bk are 

different from zero only if the condition of triangle A(Z, l', k) 

and 

*+/+r«2*. 

are fulfilled, where g is an integer. These conditions limit in 

every particular case the magnitude k to only certain values. For 

this reason the infinite sums (17.20), (17.21) in interesting cases 

contain not more than two or three members. This circumstance, 

extremely simplifying calculation, has a simple physical meaning. 

Expression (I7.I9) for electrostatic interaction is obtained 

essentially by decomposition of electrostatic potentials according 

to multipole moments (see § 23). Such decomposition for small values 

is always very simple. For instance, in the case of p electrons 

values k = 0 and k = 2 are possible. If the considered configuration 

contains d electrons, then the maximum value of k is equal to 4, p, 

and f electrons, 4, etc. 

At k = 0 from (17.25), (17.26) it follows that 

a*(/m; I'm') -1; b\im; ( 17.27 ) 

k. k 
The radial integrals F and G , which are frequently called 

Slater integrals, are essentially positive. It is possible to show 

k 
that F , and also •.^ decrease with increase of k. For equivalent 

electrons F^=G^:. Calculation of integrals F^ and is possible 

only when radial functions R , are known. To determine the latter 
nl 

_ k k 
Tables of numbers a , b for a series of configurations are 

given in [K. SI!.]. 
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we must use some method of approximation. In examining the 

systematizing of spectra we usually go by another way. The number 

of parameters Fk, 0K, determining the splitting into terms of level 

n?,, n'l', as a rule, is less than the number of terms. Therefore 

the relauive distances betv/een terms can be determined excluding Fk 

ni 

Xv 
and G , i.e., independent of any concrete form of the function R 

ihio circumstance will be repeatedly used below. 

4. Examples. Let us explain what was said above on a series 

of examples. We will start from the configuration Is. In this 

case two terms 1L and 3L are possible; L = l. We will designate 

the energy of splitting of terms AELg through (1L) and (3L), and 

the matrix elements <mm>SMs|U|mm'SMg> through 1(mm») and 3(mm'). 

ft - L from (17.12), and also (17.14), (17.15), it follows that 

0)-/-/(. (17.2Ö) 

F'urther, 

«*(!». 00)-«*,; CO)--?« 
2l+ i 

Therefore finally 

(«/)-P-9t . /1/, £, , Gf 

2/+r( > p+27+T* (17.29) 

In accordance with the Hund rule term 3L lies below term ^L. 

Conf:i,,guration npn1 p : This configuration corresponds to six 

‘Dj ^S, 3P, ^D. We will first extract the system of 

equations (I7.I2) for triplet terms. At M 2 the conditions 

Mr and m + m’ 1 j Ml are satisfied by term 3D and matrix element 

(1, 1)* At Mi, = 1 in the left Part of (17.12) there will be members 

( ’h) and ( V), and in the right, 3(1, 0) and 3(0, 1). Continuing 

these reasonings, we obtain 

Aft-2 (‘OJ-'d, (), 
1 (*0)+(*l*) —*(|, 0)-f-*(0, I), 

Alt - 0 (*0) + (V) + (*S) - *<0, 0) + *(|, — I) +1( __ j , j (17.30) 
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Precisely the same system of equations occurs for singlet terms 

CD)—'<1. I). 
«£-i CD»+Cl»)-U 0)+'(0. I). (17.31) 
*t-0 CO)+CP)+<»$)-'«>. 0)+'(!, -1) + 1(-1. I). 

Each of the matrix elements entering the right side of equations 

K. It 
(17.30) and (17.31) can he expressed through parameters F and G . 

For instance, 

M.I)-POVi«»«l(Pl.pI)+P>0; «V)6*(pi;pi)— 
—GMopfCpjJCtpliPl). 

*_1. ft*-l 

1 *»_ ' 

Likewise calculating the other matrix elements entering the right 

side of equations (17.30) and (17.31) we simply obtain the following 

expressions: 

c*cs>-p+i!£±(G*+!g* 

en cP)-f-^.T(G*-^). 

en ro)-i»+£±<fl»+g). 

(17.32) 

in which the upper sign corresponds to singlet terms, the lower to 

triplet terms. 

p 1 
Configuration p : In this case three terms are allowed: S, 

*0, 5P. Magnitudes (^), (½) and (5P) can be simply found by again 

using the theorem of sums (let us note that in this we must consider 

only such states mm' which are allowed by the Pauli principle). 

However, this is not necessary, since the allowed terms of configuratim 

l2 can be obtained from the corresponding terms of configuration ll, 

by dropping the exchange members (see (16.40)). 

Thus, 

CS)-P+g P. 

m-p-4 r. (17.33) 

CD)-P+g P. 
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^.in in run conformity with the Kund rule the lowest ten» ls 

T tCrTth tk<: nlEheSt 1-. ten» ?P. Exciuding 
'' and .rc, it is ( 

» 1D and J'D, 
1 ! ’ / ^ t,J"y t0 0htaiIi the ratio or intervals between terms 

CS) - CP) 3 
m^TT (17.^) 

Essentially this ratio ices not iepenh on the numerical vaiues 

OI' magnltUdeS P ^ F ^ - - directly compared by experiment. 

If we designate (s), (p). and (D) as average-arithmetical values 

or singlet and triplet terms of configuration nprPp, from (17.32) 

this relationship follows 

(■St - (D) 3 
(Ä)-(/»)" 2 • 

v/uich is analogous to (17.34). 

. The 0f SUmS 0f dlag0nal allows us to comparative! 

--Ply calculate the energy of L, s states and for other two-electron 

configurations t3. Sh.], but it is practically inapplicable to many- 

electron configurations. 

3. 

o L 

^irecj^c^icuiation og matrlx elernpint!:; Matrix elementr 

O can be expressed through Slater Integrals Fk 

r (: ;^thOUt;eSOrtln6 t0 the Of sums Of diagonal elements, 

n- WU.L place in the expression for matrix elements (17.IO) the wave 

functions (13.17), (15.I8) 

SmmO VSLMsMl 

“pr 

f"1 VsiMS*l -*fMtQs\, 

For singlet terms 

< SLMsMt I Uj SLMsMl > - J(O^)* dr ^ w 

1LMl ¡ u\lALMLy 

(17.35) 

'(17.36) 

(17.37) 
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for triplet terms 

<SLMsMl i U\ SLMsMl > - j (<S>:M,)*LhX>ÏMLdrx dr, = 

I U\ l¿LML->—(—lY+r ~L <itÍ¿ML |Í4 Ï,I,L\1l >. (17.38) 

Functions and 4»^ (1^) can be conveniently 
L L - ■ 

presented in the following form: 

®LM¿ *■ Rmt(r,) Rn l (r*) 

QLMLU¿)~gCmn Kr* 

(17/39) 

(17-40) 

Using these expressions, it is simple to obtain 

¡üf SL.UsAtJ = g (/* f*±ft G\ ( 17 - 41 ) 

where the upper sign corresponds to singlet states and the lower to 

triplet; the coefficients f^ and g^ determined by formulas 

/*•= §Q*LMLitJt) P* (COS <tt) QLMLU/,)dOt dOt = 

= </,/; LMl |P4 (cos (a» I/,LMl\ ( 17 - 4 2 ) 

fo-(- 0*^(7;^ (cos a.) Q^r.gdO, (/0,= 
„ ( _ I P" (Cl)S ^ I í/f ¿Af¿) (17-43) 

P* (cos fc» = 2 CÎ (í.v.KÍ* (»)„ 9,). 
« 

The matrix elements (17-42), (17-43) are calculated in the common 

form (see § 14). In accordance with formula (14.64) 

/*-(- iy+r_M/iic*ii/)(/'iicV) war w-. (17.44) 

ft * (flicV)* wiurn Lk). ( 17 - 4 5 ) 

Thus, coefficients fk, gk are expressed through given matrix elements 

(formula (14.26)) and Racah W coefficients. Formulas (17-41), 

(17-44), (17.45) allow us to calculate the energy of electrostatic 

splitting for any two-electron configuration. 

As an example let us consider the configuration npn'p. Ir 

this case 
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<3. k — Q, 
d l|C*I| 1)*=? 6 . „ 

j V(ll||; £0)-(-1)4. ^(1111^2)= (-1^ I ¡3|4-¿(¿ + I)!x 

X 13-^/. + 1,(-161. 
/, = !. {3H-£ (¿ +1)| [3—L <L + 1)|—16}, 

¢,=(-1)/. jj— ¡3(4 — L (£ + 1)| (3—L {L + 1)J — I6j, 

from which (17.32) directly follows. 

For equivalent electrons, using (16.40), wo can obtal 

i.PSLM^ |q 1*SLMsMl> = 2/*^*. 

4-(-1)^(/11^1/)^(////: Lk). 

• Operator of electrostatic interaction. We will, c- 

-ne matrix element U in the ' p.1 -representations . The 

function according to (15.3) has the form 

▼«►mV ■■ {▼«► (5,) ▼«>' (5,) -- ▼«!!. (5,) ▼mV' (5,)}. 
▼«►(S)-<P,«(r)ôi|4. 

Therefore 

Will compare (17.49) with (17.14) and (17.15) 

<mm'SMs!U¡mm'SMs^ f'+K’ f“°- 
5 (/-/f, 5«l. 

both expression (17.49) and (17.50) can be written in singl 

with the help of the exchange operator of electron spins 

J-hm. 
2 

It is easy to show that the matrix elements (17.49) and (17 

values of the operator 

/-4(1+45,«,)* 

respectively in the mpm V - and mm1SM„-representations 
0 * 

in the first case 

(17.46) 

(17.47) 

» leulate 

wave 

(17.48) 

(17.49) 

(17.50) 

e form 

(17.91 ) 

.50) are 

(17.52) 

Actually, 



1. H-l»'. 
o, Hifrf*' 

and in the second 

<5^1(5*5Afp- 

""7+^^+*)”‘5,“ { i s—i.* 

Likewise it is possible to write expression (17.41) 

tfLMMI (/¡SlMfMj') - £ {/, f*- o*|. (17.53) 

According to (17.44) is the eigenvalues of operator (C^C^) in 

the nonantisymmetric state ^1½¾. As for coefficients gk, they 

^ra determined by nondiagonal matrix elements of operators (cjc^). 

Naturally the question arrises: is it impossible to construct 

operator so that the coefficients gk are its eigenvalues. Using 

formula (13.64), it is possible in the following way to convert 

coefficient Lk) in (17.45): 
« 

r(/m; ¿*)«^(—i)¿***'(2r+1) W(irw-, ir) water-, r*). (17.54 ) 

We will compare (17.54) with the general formula (14.63) for matrix 

element of scalar product of arbitrary tensor of operators ur and 

Ug of the order r 

-(- iy*''-M/ii«'ii/)(ni«'ii/'> wane-. Lr). (17.55) 

If we select the tensor operators ur so that 

then 

(Mn-ôü-, (17.56) 

w(irn-.Lk)~ 
+1) W(lirr-,rk)«lí,LMLIM)I/,/;£Aft>. (17.57) 



') 

Putting (17.57) in (17.45), we obtain 

l)'(2r + 1) W(lll'F\ rk) x 

X <l%iiLML I (*(*,') / /,/'/, Aft>. (17.58) 

(17.60) 

We will also express through matrix elements (17.55) 

/* - M1C*||/) (t’\\C*\\l')<l%ïtLML I ( 17.59 ) 

Thus, the operator of electrostatic interaction of electrons W Is 

determined by the expression 

*-?{ (/¡1O1/) (/*110*110 M)f*-i± (/iic*ho* 2(-irx 

X (2r +1J IT(//f /*; rk)(u'u\) 0*[. 

The energy oí electrostatic interaction of electrons in state 11 * SLM M 
S L 

is determined by the eigenvalue of operator W in the state lA l SLM M 
1 2 S LJ 

i.e., by the matrix element 

</,/¿¿^1 víij'slMsM#. (17.61) 

The coefficient W(¿Zl'Z»; rk) is different from zero if the conditions 

of triangles A(lZr) and A(Z'Z'r) are fulfilled; therefore 

0<r<2/. 0<r<2T. (17*62) 

The number of members in the sum over r is obviously small. If, e.g.f 

the least of moments ZZ' is equal to 1, r = 0, 1, 2. 

In the sum over r in (17.60) it is convenient to separate the 

member with r = 0 

The matrix element 

I («înft I l/,LML> « ( -1 y*/- -1 |T(/r/r; ¿0) 

does not depend on L, since according to (13.59; 

V <a+i) + 

Also considering that 

(17.63) 

(17.64) 

(17.65) 

we wi.lt 01;.,' i ri 
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(17.66) Ç™ grrorrn++ vwr* r*) (bî*î). 

Formulas (17.46) and (17.47) for equivalent electrons can also be 

conveniently written with help of operators (u^u^) 

/t-ilüfMWSLAÍ^L IM) J rSLMsMj. (17.67) 

Expressions (17.60), (17.66) and (17.67) will subsequently be used 

in examining many-electron configurations. 

Using formulas (17.44) and (17.45), it is possible, as Racah 

has shown [RI], to present ffc and gk in the form of polynomials 

accordingly as A * As an example let us give the expression 

for operator W as the function A for configurations npn'p and p2: 

w*-.r+tx'+g-*- r. 

(17.68) 

(17.69) 

In general f^ constitutes a polynomial of degree k over A. with 

formulas (^7.68) and (I7.69) one can simply obtain expressions (I7.32) 

and (17.33). 

For thià it is sufficient to calculate A using the relationship 

-4 {¿(¿4-1) — /,(/, +1)-/,(/, -f H (17,7°) 

Formulas (I7.6d) and (17.69) and also analogous formulas for other 

two-electron configurations, allow us to interpret electrostatic 

interaction of electrons in the framework of the vector model as 

a coupling of vectors ¿2, and s^ Sg. 

7* Jj^Psltl011 °f configurations. Above in analyzing electrostatic 

splitting we did not consider the connections between terms of 

different configurations. By I and II we will designate configuration 
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nílí and nii¿ní nîi4i» for Which the matrix element 

<«,/, nt¡iSLMsAlL J U\ tiulu n’^SLM^^ *= í/m (17,71) 

is difíerent from zero. This matrix element determines the correction 

to terms AeL and AE^Î1) 
.Lb LS 

Agß IW, , A£<»n JW, (17.72) 

According to (17.72) the corrections to terms I and II have different 

:*igns; therefore calculating the nondiagonal matrix elements UT 
J* XX 

leads to an increase in the distance between terms. We usually 

call this effect repulsion, the interaction of terms or interaction 

oí configurations. Recently the term imposition of configurations 

has also been used. In certain cases corrections (17.72) turn out 

to be on the same order of magnitude as diagonal matrix elements 
\ 

UI j and Ujj IT, or even larger than them. This means that the 

single configuration approximation becomes too rough. To determine 

the terms we must solve the secular equation 

1*41—® í/m I 
k... . í/....-er°- (17.73) 

The wave functions corresponding to the roots of this equation e , 

e2’ constitute linear combinations of functions Therefore 

there is no sense in relating the real terms in this case to any 

definite configuration. 

The different effects connected with imposition of configurations 

will be discussed in § 18. in this section we wil^l only consider 

the calculation of nondiagonal matrix elements of the type of . 

In exactly the same way as single configuration matrix elements 

TII 1’ Un it’ two-configuration matrix 
to quantum numbers 5LMf,MT. Furthermore 

elements Uj ^ are diagonal 

, due to the invariance of 
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U relative to inversion of coordinates it follows that matrix elements 

UI II are dlfferent froin zero only for configurations I, II of the 

same parity. 

Calculation of matrix elements Uj is conducted by the same 

methods which were used alone (see conclusion of formulas (17.41), 

(17.44), ,(17.45) and (17.46), (17.47)). 

Thus, 

Of, *,fSLMaMl I U\ «T. WSLMsM,} - 
irr)*k±Rk{*i, 

"J 7FP“ l*“.) ftrr (^,) /2.7' (/• J R,-r‘- (rt) r\drxr\drt, 

airrf"r"fr)— 

• j* 7^7 (r.ÎÂi.'HrJ/WKJrîilr.rJrfr,, 

“MU c* )|r)(riic*i|r") W(irrr\ lh), 
p, - </^4^ I p4 («■ «) i ¢/ r '¿Afp - 

—iy+r ”4 J Pa(cm m) I ij'7 "lAíp - 
-(—if+^(/|c*ur,)(r||c*iin w{wrT; u). 

(17.74) 

(17.75) 

(17.76) 

(17.77) 

(17.78) 

The "+" sign in (17.74) corresponds to singlet terms; the 

sign, to triplet terms. For interaction of configurations l2 and l'2 

we likewise obtain 

ifSLM^ 1Pt(CM m) J r'SLMgM,} » 

J (r,) (r^rjrfr/.rfr,, (17.79) 

«, - I Pkicm m) I A/.'lAfp - 
D'-k (/|| c*|| r)* W(tirr,Lk). (17.80) 

The radial integral in (17.79) is nothing else but the exchange 

k 
integral G (n¿; n'l»), formula (17.23). Therefore1 

Coefficients o^. are tabulated in work: Ya. I. Vizbarayte, A. 
P. Yutsis, Transactions of Academy of Sciences of Lithuanian Soviet 
Socialist Republic, series B, 1 (17)j 1959. 
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.:. ’ :! J., 

n't). (17.81) 

In conclusion we will consider the interaction of1 configurations l2, 

l'l" ( most frequently one meets the case of Z2, ZZ») 

* 

VSLMsMjg -gL. {costa) fnmS¿MsML> m, 

* Pf 2 («/ »rAT)(at±ßt), (17.82) 

«* ” «¿iI P4(cos &>) I /,7 « 

- ( ~ 1 y+i- -1 (/ II c* I, /') (/(K^ur) IT(///T; ¿4), 
P» -(- iy+1* -i </|/i¿A,i I p4(COS w), = 

-(/||C*iir)(/||c*||V) w(urcM). 

§ 16. Electrostatic Interaction in a LS Coupling. 
Many-Elect ron Configurations- 

(17.83) 

(17.84) 

1‘ Configuration Zn. Electrostatic interaction of electrons 

"-Er- .>7'" 

constitutes a syimietric two-electron operator of the type (16.2). 

Therefore, departing from general formula (16.39) and changing the 

diagram of summation of moments Z^^S^MS^ZSL - ln'2[y S L ] 
2 !c 2 

11[3^L^]SL , one can simply obtain 

x0Zwii: 4e /|s.¿iísüx 

'«-I, « 

(18.1) 

1The matrix elements <7SD^ML¡ U|7SLMSML> do not depend on quantum 

numbers Mg, ML; therefore everywhere below these quantum numbers will 

be dropped. 
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Suirjaation over designates summation over all allowed terms of 

configuration l2. 

In principle formula (l8.1) allows us to calculate electrostatic 

splitting of levels of any ln configurations. However, practically 

this formula is not very convenient, since it requires time-consuming 

calcv When the ¿erms of configuration l11"1 are known and 

their number is small, it is possible to use recursion formula (16.42). 

In general calculating matrix elements U with the help of this formula 

is also too complicated. 

We will therefore consider one more method of calculating matrix 

elements U. We will present each of the two-electron operators in 

the form of (I7.I8), where 

P4 ico« «•„)-<(*}). (18.2) 

All Single electron functions entering in ¥(zn), correspond to identical 

values of quantum numbers n, 1} therefore 

<rySi|(/|/v/.>«Ç <fySL \g{CÍd¡)\rvSL>- 

^(/11^10* </-y5¿ I rw, 

where in accordance with (17.56) 

Thus, electrostatic splitting of levels of configuration Zn is 

determined by matrix elements of the operator 

Jl/llcV)* to? «/). ( 18.3 ) 

This operator can be converted in the following way: 

(18.5) 

(18.4) 
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(18.6) 

(18,7) 

j - q» 3; «î) - 2 («î«îi -(ü'vi-ç»«;.;). 

iT(r)-.ir(/")+ir (n= 

y(l8-si 
* * * 

We will start from a calcrlation of matrix elements of operator 

W'il11). For matrix elements (UkUk), using the general formula 

(14.62), we obtain 

<rySm(/U*)irySL>~ 

-3TTÏ irvsWSurysLwysmVurySL). (18.9) 

Thus, the problem leads to calculation of given matrix elements of 
lr 

operator ü . According to (I8.7) this operator constitutes the sum 
lr 

of single electron operators u^. Therefore in calculating the given 

1c 
matrix elements U it is possible to use the general formulas obtained 

in § 16 for operators of the type f—V/,. Thus, from formula (16.20) 

it follows that 

«iWiolMY«-,., y * 
ti Pili 

X (r-tY,slL^l/HySLuuZ\\r-• [y.v.] /ysn (18.10) 

Further, using formula (14.70) and considering (l8.4), we obtain 

(/•-• (y,V.1 WUiúir- (y.5/,1 lysn - 
.(_-I-1*y{2L + 1H21’ + 1 ) WilL/L'U,*). (18.11) 

(t'ysniifury'sn -/1V (_ i)<■,+* 
uStLt 
xVTãTf wyuL’iL^), (18.12) 

(PySilItnryíi-)|/f|I tu.., 

irySLmv-ySL)- ■ 

Let us now turn to the calculation of matrix elements of operator 

r-puM). (18.13) 

This operator is the sum of single electron irreducible tensor 

operators of zero rank 



tf-(«<**), (18.14) 

therefore 

irySLMgMd rV'ySLM^t} -( -1/ -«t (rySL\\r\\l*ySL)x 
x/ L OL \VySLm\rySL) 
x i-iHtO AfJ yá+l • (18.15) 

Using the same formula as in calculating (18.12), we obtain 

liSih 

-»r 

Further, 

( 18.16 ) 

</• I <• |te> - ÆB; - </« J («V) I /*> 

UII«V)(/'ll«*ll/)=2~. (18.17) 

therefore 

Thus, 

/2+1 ’ 

(/ysimrySL)-* y ^±-J mm, 
KñfSLM^ I r I -/»</«!/• I ^. 

<rySL I IT(/*) I rvS¿> - 

(18.18) 

(18.19) 

(18.20) 

(18.21) 

(18.22) 

The second member in the braces in (18.22) is identical for all terms 

of configuration in. This member appears only in the shift common 

to all terms and can be dropped when calculating the relative position 

of terms. The given matrix elements Uk in (18.22) are calculated 

by the formulas (18.12). 
2 

As an example we will calculate the given matrix element U , 

connecting terms ^P, ‘0 of configuration pJ. From (18.12) we have 
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’P H ¿y* IIP* *D) - 3VTS {O^o’í * 0112; 12) -G'.^g r (111¾ 22)} . 

The values of fractional parentage coefficients are contained 

in Table 19 

g£—Ov-pi=. O^o"— O’a“ 

Further, 

r(UI2;12)-^; r (1112:22)--^. 

Thus , 

(pß,Pllt/tllptlP)-~V~S 

The given matrix elements (18.12) will be needed below to solve a 

series of other problems; therefore their values at k =» 2 for 

configurations pn and dn are given in Tables 35-42 at the end of 

this section. Using these tables considerably simplifies calculation. 
3 

As an example let us consider configuration p . In this case 

/.«-j on cw {jrVr £1 (SL 11 ^11 sn 1,-1} • 
yOIICW-£. 

Çiesiii^me-o, /.es)—g. 

ÇI (VII I! ¿'Jr-3. /t(V)-0. 

Çi(*i>iicri,T)i*-3. 

Thus, 
(•P)-fD)-¿f. (*D)— (‘S)-| « 

(*P)—(*D) 2 
(**)-(*S)“ 3 ■ 

2. Configuration lnl» . As a rule, we can apply the approximation 

of the parentage diagram to configuration lnl'. In this approximation 

the energy of electrostatic interaction of an electrons in state 

Lnr3^]Z1y3L, as this was shown above (see § 16), is formed from 

two parts: the energy of group ln in state and the energy 

of interaction of electron ¿' with group ln. 

The latter is determined by matrix element 



(18.23) 

• . 

<nvA*.]te I £ -rzV-p^\rIy,V.I- 
ßmt 

y»/*T)—P40*(/i/rt7':«7'/1/), 

where 

«.—¿I «Ôí: r<r- MAl/,.,1vAM 

<« HÄtvAy (18.24) 

p*-* ^I^IV-[YtS,£.IlYÄi,]/^¿|(CÄ. iC#) 

l***1 ItA^KdflYAMíÁr-rSO. (18.25) 

The matrix elements In (18.24) can be simply expressed through two- 

electron matrix elements of the type (17.42), (17.43). For this 

in these matrix elements we must change the order of summation of 

moments. Let us give the results 

(18.26) ..,> K-v - * 

2.. i<íáí;i*(s./../[SAiMiis,/,,u-[s/.iä)x 
X(5,£,. n[V.Î SL 15,£,/[5,¿,] fSL) x 

X««f -»(^5,^,1 (Cw-.C*v)|/a/ (18.27) 

Putting expressions (17.44) and (17.45) for two-electron matrix 

elements and also (13.51) in (18.26) and (18.27), we can express 

ctk and ßk through the given matrix elements (i¡¡Ck||?, •) and the sum 

of products of three W coefficients. In o^. enter sums of the type 

(13.57), which lead to a product of two W coefficients. Therefore 

calculation of coefficients ak does not require great expenditure 

of time. We cannot in this way simplify the expression for ß, , in 
K 

consequence of which calculating these coefficients by formula 

(18.27) is a very labor-consuming problem. We will not consider 
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tr.i.3 cuestión in detail (see paragraph 5 of this Section), inasmuch 

8r' belOA we wil1 G°nsider another method of calculating matrix 

elements (IÓ.23), analogous to that used in conclusion (18.22). Each 

of the two-electron operators in (18.23) can be presented in the 

form of (17.60) 

WV". /')«2(/HC*||/K/'||CV)/^ 2 (a,Vv)- 
* 4=1 

“ °*2t— 1^(2/- + 1) W{llir-,rk) y (18.28) 

We will convert operator (18.28) Just as operator (18.5) was converted. 

First of all we will use formula (I8.7) 

£(«?«*) «(i/*ii4v). (18.29) 

In (id.28) we put ocher operators 

which can he expressed through irreducible tensor operators vlr, vlr 

of rank Ir (see (1^.86)-(14.87)) N 

and 

where 

*.v) = (vYv'n) 

* 
tá ttx) *= 2(®*r * •/) ** ( 

(18.30) 

(18.31) 

(18.3?) 

We will Place (18.29) and (18.31) In (18.28) 

W tf", /') « £ (/||C*||/) (/'||CV) F'iUVv) - 

— Ç (/110*11/')’ 0*^) (—1 )r (2r + I ) IT (iUTirk) v 

X rl.V'.S}. (Í8.33) 

According to (18.33) calculating matrix elements W(in, u) leads to 

ca LCu^iting matrix elements of two types 
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</“lY.V,l to U^«Á)|r[Y,v,l4>s¿>. (iS. ) 
<r[Y,A>,ltou^yi)jr[Y,v.l to>. (18.35) 

Operator Ur does not contain variables of electron N; therefore In 

calculating (18.34) we can use the general formula (14.63). 

Considering (18.4), we obtain 

<r [Y.V.] to i (U'*a) I r iv.V.i to> - 
-MrY.Vjii/'iir'Y.v.) *0-/1/-, ir). (18.36) 

Thus, matrix elements (18.34) are expressed through Racah W 

coefficients and the given matrix elements (18.12), whose values 

are given In the tables at the end of this section. 

lx* Ir* kT 
Operators V and v are particular cases of operators R , 

which behave as tensor operators of order k with respect to S and 

tensor operators of order r with respect to L. The general properties 

of such operators are discussed in § 14. Using formula (14.84), we 

can express the matrix element (18.35) through the given matrix 

elements 

(fW.II nU-Y.SA) ana (/' {||t,''||/' {) . 

From formulas (14.82), (14.44) and (18.4) it follows that 

(18.37) 

Therefore 

<r lY.V.] to I ( I r [Y.S/.1 to> - 

-l- -51/X 

X W\L/L/-, ¿r) IT (5,1S, i ; 51 ) , (18.33) 

XW[L/L/', Lk), (18.39) 
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(18.40) 

ß* = tfHC*|in,2(— D'tfr + I) W(IUT; rk) x 

+2l-l)1'+i,+''+T-1-ij/|(^ViVi|in|rYA£)i< 

x r(s.4s-ï: si)} • 

The given matrix elements ( 1^0J'Vlr¡"2r7 s L ) are 

calculated by the same method as (18.12) 

t/W,ll V'urw.) - ¢¢,¾ o ir ■ ■ ¡y¡s,i,i 

l.V.S.L.Hv'X r-[y,s,L,i/. Y,SA)-" J'i'0!iï,o:’>£ x 

x/|(2ii +1)(25 +nx 

x^(tt1K,:V)T(-ïi,4 S,;S,l). 

At r = 0 from (17.66) it follows that 

( y V*) - s,sM 1 
1) ‘ 

Therefore 

(^,5/,11 /•lirY.V.) - Vs, (5, + 1)(25, + 1) j/ÇtEI. (18.42) 

The values of given matrix elements V11* for configurations pn 

(13.41) 

ana d are given in Tables 43-54. Furthermore, Table 53 gives the 

values of given matrix elements U2, V12 for basic terms of configuration 

Formulas (18.39) and (l8.40) allow us to rather simply calculate 

elect.rostatic splitting of levels of configurations pnl and dnl. 

As an example we will consider term d2[5P]pi+3 of configuration 

1 p. In this case r - 0, 1, 2; . (tñ,P, 

f Pn 

npTho'ie tab:es are tsken works [R TT, R TXT]; in Tables 43 
,48 errors are corrected. Table 35 iö taken from work: G.M 

4 r 'As • ;-j0lßin°v, 0. A. Zhltnikov, Optics and Spectroscopy, 
V ■ I f cJjj , lÿou # 1 ’ 
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<#V!!(/»il#V)— j/|g, (^*P|!KM|!^*/>).0 y/~*, {<r PT" d»*P)= 

-/1 , r (1111; 00)»-5.. rdlll; 01)= 

— y. V(lilt; OS)» y, r (2311; 01) - pL. r(22II; 11)---^, 

W (2211; 21) - ¿ |^y, .r(lj ll; } l) =(21! C* |¡ 2) - /si 

(2|C*02)*— y ÿ (inC*||l)«/T.(l!;C*!!l)=-|/|, (2||Ci| 1)-/2 

OICII1)- 

^,-2. a,—j, 

>•—T* 

rw»m p*S)-2P-|p+|.G'-|o» 

2 3 4 
To obtain the total energy of term d [^P]p S, to this expression 

we must add the energy of interaction of electrons of initial ion 

d2 in state ^P. 

Through the given matrix elements 

{rvSL\\^r\\ry•S,L,)**^lmySL\\V''\\ry^S'L^) 

we can also express matrix elements 

<r [yte i lí/Vv) i r [Y;5;C) te>, 
^[Y.vJteii/yoi/- [Y;.s;¿;jte>, 

diagonal to quantum numbers SL, but nondiagonal to quantum numbers 

of the initial terms 71S1L1. Using the same method as in calculating 

(18.36) and (18.38), one can simply obtain the following expressions: 

</"Iy,Vi] te Kir/oir WXl,] te>=(-i x 
X (rv.S,£,11(/^5,£¡) ru.a;/'; ¿r) 05,51. 

^Iv.V.lteKV'V.OirivÄ'ite)» /,0 
i /-*■ ( 10.43) 

= i-‘>i,+,,+r+T-£-*x y jir^L^wryXi,) . 

Matrix elements (18.43) are necessary during calculation of terms 

of configuration ini' when the approximation of the parentage diagram 



is inapplicable. 

Let us return to the above considered example. A series of 

... 4 
identical terns, e.g., two D terms correspond to configuration 

2 2-3 4, p 3 4 
d p: d [ P]p D and u '[ ?]P D. In the zero approximation of the 

parentage diagram these terms are determined by mean value W = W(d2) + 

+ W(d , p) according to states d P]p D and d [^F]p D. 

If, however, we do not disregard matrix elements W,2 * connecting 
2 3.4 p 3 4 

states d [ P]p D and d ['r]p D, then to calculate the energy of 

4 
states d we must solve the secular equation 

(.<P[tP\p*D\V(<F, p) I ltP\p*D) + E (<P, */>); 
«P[*P|p40| «'(d*. p) I d* l*Fl p*D) 

<d’[•>•■] p‘D ¡r(d*,p> |d» [VJ p*D>; 
<d*[VIp*D\V(d*. p)jd*[V|p'£)>+£(d*. V) 

In this equation by E(dL, ^P) and E(dI", ^F) we designate the terms 
p 

oi' tne inicial Ion d". 

Shells more than half filled. In Tables 35-55 give the 

values of given matrix elements U , and V for configurations Zn 

and with n f 21 + 1. This is connected with the fact that formulas 

(18.12), (1.8.41) and (15.35) allow us to establish an agreement 

between the given matrix elements IT , Vlr for configurations ln and 
4 14-? -n 

1 • Let us give the results. For the given matrix elements 

of a symmetric Hermitian operator 

7*'~yt*r 

witii k + r i this relationship + holds 

(rySL h r*'!!) -1 -1 , (/41+' ' ”ySL h - "y'S'í (18.44) 

ConseqU'.mitly, during transition from configuration ln to configuration 
4 . ..., 1 1? 

'• the given matrix elements ïb , V" ", ... do not change, and 
O 

i1'.. V ... change sign. 

'or scalar operators To0 (see (I0.19), (1.8.20)) 

(/^**■^5^,1 T**\\l*t*t~my'SL)=^ (/VÜI T"\\iySL). 
(18.45) 
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Thus, with an accuracy up to a shift constant for all terms the 

structures of the terms of configurations ln and i^l+2-n are identical. 

We should specially emphasize that what was said does not signify 

the equality of 

From (18.22), (18.44) and (18.45) it is easy to obtain 

**0 /tiPySt.) -/*(/4'+,~‘YS£) -+■ (/||C*ii/)*t 
* - 0 A ir vs¿) - i (flic-w l+J (fli.-ufl. _ j. 

d, 
UrrSL)__ f, 
«Â-^ÎF (4Í + 2—1—/1) * 

(18.46) 

(18.47) 

(18.48) 

Likewise it is easy to establish a conformity between the coefficients 

in expressions W(lnl') and W(¿1|Z'+2"nl ' ) 

<*l*\ f»-a,(rf)r+ £ <**(/•. r)F*+w(r, n 
A gc 0 'OiM* 

n>-^!a.{r. rif-£ (-11¾.(r. 
* ^ o 

(18.49) 

(18.50) 

Coefficients «*cr(/||C*l!/)(/'||C*l!n are different from zero only for even 

values of k. Therefore at Fk for k ^ 0 in (18.49) and (18.50) the 

coefficients are equal in absolute value and opposite in sign. 

Coefficients ßk are expressed through the sum of the given matrix 

ï* l ï* 
elements U and V multiplied by the coefficients depending on r. 

Therefore there is no general relationships between ßk(i", l') and 

ßk04U2‘n, l'). 

^ Filled shells. For a filled shell 

(/^00(1^11/^00) = (4/ + 2)(- 1 )* VP(/0/0; /*) = 

1o6m; exact definition undetermined, probably "exchange” 
[Tr. Ed. note] . 
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PuU.ing this expression in (18.22), we obtain 

/*=4 WtâW* {4(2/ + 1 )Ô*. -2} =(/!lC*Ü/)* {(4/ + 2)0*.-!}. 

<W{l'Ul)> =<4^2M4/+1)^-^ 
(18.51) 

(18.52) 

Let us also consider the interaction of electron 1' with a filled 

shell. In this case 

a* =l/||C*||/H/'||CV)(/*,+* 00||i/V,+* 00) 1T(0/’ Of; /'*) =(4/ + 2)fl»#l 

ß* = U!IC*||f),^(- l/(2r + \)W(IUT; r*)i(/‘^*00||i/'|!/4^t00)x 

X r (Of Of; 
äI “f* I 

/')>^2,rÇMIC'll/')-0-. (18.53) 

Due to the spherically symmetric distribution of charge in a filled 

shell formula (18.53) does not depend on orientation of the orbit 

I n 
of electron l'. Therefore the energy of interaction of group 1 

with a filled shell l^l+<L can be obtained by multiplying (18.53) by 

n 

<lT(/4,+*, f")> = fl(4/ -f 2) £(/||C*||f )• 0*. ( i8.5k ) 
* 

At n = 41' + 2 we obtain energy of interaction of two filled shells 

/'•'•+»)>-(4f +2)(4/ + 2)^-22(/11^^0^. (18,55) 
* 

In the general case of a single electron atom the matrix element 

<ySL\U\vSL> 

contains four types of members: 

1) interaction of electrons of each of the filled shells, 

formula (15.5?) ; 

9) Interaction between electrons of different filled shells, 

f 0 rm u i 3 ( 18.55 ) ; 

5) interaction of electrons of unfilled shells with electrons 

of ililoo ertlLls, fonraiici (he.1,3), (18.58-)* 

... 



4) interaction of electrons of unfilled shells. 

Tne members of first three types are immaterial for splitting 

on terms and show up only in a shift common to all terms. Thus, in 

calculating electrostatic splitting we can generally disregard filled 

shells, considering that the contribution of these shells is included 

in the centrally symmetric field and is already considered in the 

zero approximation. Exceptions are when the problem is to determine 

the evident form of a centrally symmetric field. 

Calculating the energy of electrostatic interaction of electrons 

of unfilled shells is a very complex problem. Usually we are basically 

interested in calculating the terms of the ground and first excited 

configurations. Such configurations, as a rule, are ln and inZ'. 

These two configurations were considered above in detail. 

Two-configuration matrix elements. In calculating two- 

configuration matrix elements the same methods are used, as in 

calculating single configuration. Let us consider, e.g., the matrix 

element 

(18.56) 

By changing the order of summation of moments, we can simply obtain 

the following expression for (18.56): 

¿g (5,1,, i[S'LjrSL |S,£„ it [V,]SL)(5,£„ ti"’ [S,£,], SL \ 

’S//’ I5*£.] /"'5£)(V-, I —-(1 — P,v-i,v) I /,v—» £v 5,£, ). 

^ 1 (18.57) 

We will place in (18.57) the evident expressions for conversion 

factors of the diagram of summation of moments and will replace the 

indices N - 1, N by I.2 
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<Y.V../[V.iraft/iY.s/,, r[¿t¿f]/-5¿>=» 

-/(2JL.+1)(24:+ 1)(25.+ 1)(25.+ 1) x 

t2¿. + 1)(25, + I) W(L¿LV.LtL¿x 

x V Wir- LtLt) r (5, {5± ; 5.5.) r (5, J-5 { : 5^. V 

^ »17^^ i ^*^*)* 

We will place (17.7^) in fl8.58) 

(^Alíl'-O/Cí.O^ 

= ^)(/(1 C*||r)(r |!C*||/'") lT(//77"‘: /.,*) 

+(_,)/• */--,5,^/?.(//.. r«T)(/||c*||/’»)(/'||c*nr)wavrr-, ¿.*) ’ 

consider that 

x (¾ + „ r (î, 14 : ÎA) r (s, f 4 ; . 

£<- t)M2í1+ o r (544: iA) »-(î44; s; s.). 

^(-1^(21,+ 1) WUJW; 1.,1.,) W{i,ru-: 1,1..) W[im"-. L,k), 

«( -1 rf: £,*) W[L/i, £*)' 

This give.. 

<YA¿„ /[5,¿,]/'5¿I i/|y.5/,, r[5;¿;]/"'5¿>- 

-Ç{Ä4(//'; /*/"')a, + /?,(//'; /"T) ß.}, 

a, = ( - !/♦« x 

x /(2¿. + 1) (2¿,4 1) W(LtÍLtr; ¿,*) «'(¿.ri^'"; a), 

ß4=(-1/ ^+s,+4+,*s,+s*(/||c*ii/"')(/¡|G*llr)x 

x: /(2¿,+ 1)(2¿;+ 1)(25. + I)(25t~T) y , 

X ^ (S' T T5: Vi ) Z(2¿» + D lT(¿,/¿/'; £.¿,)X 

(18.58) 

(18.59) 

(18.60) 

(18.61) 

(18.62) 

(18.63) 

X IT(£,/'£/'”; £,£,) !P(//'/"T;¿,A). 
(18.64) 

Relationsiiips (18.6O)-(18.62) are the simple 
go from W coefficients to 6j symbols and use 
in I 13. 

s>. of all to obtain, 
the rule of sums 



It is easy to check that at = 0, = 0 the right side of (18.58) 

leads to one two-electron matrix element without any cofactors, but 

and coincide with the coefficients at radial integrals R^. in 

(18.59). Actually, in this case 1,—I, S.-j-; J-, S.-S, 

W{0iLrjL)«{(2/-I-1)(2¿ + !)}-**; w^rirfi) = 

W(lirr,0k)-(- iy+i*-*{(2/+ !)(2T+ l)}-*; 

Wr(04T5; 7t)“4* 

In calculation of interaction of configurations we usually consider 

configurations containing equivalent electrons, e.g., f— 

/•/*—r"'/T > etc* As this was already noted above, in 

calculating the corresponding two-configuration matrix elements we 

use the same methods as in calculating single configuration. In a 

number of cases, by separating one or two electrons from group ln 

with (IS.??), we can reduce the problem to calculation of matrix 

element of the type ( 18.56).1 

6. About the applicability of the single configuration 

approximation. We have already noted that the number of Slater 

Ir Ir 

parameters F , G is always less than the number of terms. This allows 

us to eliminate parameters F , G and obtain for distances between 

terms a series of relationships, not depending on the specific form 

k k 
of the centrally symmetric field and absolute values of F , G . 

2 
A typical example is the configuration p , whose terms obey 

condition (17.3^). Comparing (17.3^) with experimental data shows 

how well are those general assumptions fulfilled (approximation of 

1See [R III], and also N. Rosenzweig, Phys. Rev. 88, 58O, 1952. 
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L3 coupling, single configuration approximation, etc.), which were 

assumed as the basis of calculation. In the case of more complicated 

configurations it is convenient not to find a relationship of the 

type (17.34), but simply to subject parameters Fk, Gk to experimental 

data so that the divergences are least. It is also possible to give 

quantitative characteristics of the utilized approximation. 

The basic question to be discussed in this section is that of 

the applicability of the single configuration approximation. This 

question has important value for atomic spectroscopy, since cases 

of strong interaction of different configurations are by no means 

a rate exception. 

Configuration pn, the simplest of many-electron configurations, 

has been studied most fully. The terms of these configurations obey 

the following relationships: 

P* 

P* 

P4 

„ J'SJ-CO) .1 
"-"(•Dj-fP) ~ 2 ’ 
n-CP)-^» 2 

~ 3 • 

—('D)—<'P)“T' 

(18.65) 

(18.66) 

(18.67) 

There is a large systematic divergence between these formulas and 

experimental data. Thus, in the isoelectronic sequence 2s2p2 Cl 

for R instead of (18.65) we have 1.12-1.14. The same ratio for 

p à 
spectra of isoelectronic sequence 2s 2p 0 1 is equal to 14-1.17. 

Likewise in isoelectronic sequence N I experiment gives R on the order 
2 

of 0.5 instead of The regularity of deflection of experimental 

ñata, from calculated is notable. In all cases the experimental 

values of ratios (18.65)-(18.67) is less than the theoretical. 
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Spectrum Cl Nil OUI FIX' Ne V 
• 

Na VI Mg VII AI VIII Si IX PX 

R 1,14 1.14 1.14 • .14 1.14 1.14 1.14 1,13 1.13 1,13 

Spaotrum NI OU FUI Ne IV MgVI Al VU StVIII P IX 

R 0.5 0.51 0.51 0.52 0.52 0.53 0,54 0.54 0.54 

Exactly this type of deflection can occur due to interaction of 

configurations. Inasmuch as interaction is possible only between 

configurations of one parity, we can expect mutual perturbation 

(repulsion) of terms of configurations 2s22p2 and 2p4. In a number 

of cases there is a direct indication of the existence of similar 

interaction. Thus, in spectrum 0 III the deviation from theory in 

the case of configurations 2s£:2p2 and 2p11 have different signs. The 

magnitude R for configuration 2s22p2 is less than the theoretical, 
ji 

and for configuration 2p it is larger (see Table 3b). Calculating 

the interaction of configurations in this case is facilitated by the 

fact that the radial integral in the matrix element connecting terms 

of the considered configurations coincides with the Slater parameter 

G^(2s, 2p ), which one can determine from splitting of terms 2s2p1P; -^P 

22 4 
or 2s2p P; P. 

2 2 
Calculation shows that the interaction of configurations 2s 2p 

4 
and 2p is comparatively great, but does not completely explain the 

divergence of theory with experiment. Apparently, interaction with 

other even configurations also plays a considerable role. Approximately 

such a situation, as follows from Table 3k, also occurs for other 

configurations pn. In Table 3b experimental values of R are 

compared with the theoretical obtained without calculating the 

interaction of configurations (R ) and taking this interaction \ -reop 
into account (R* ). In every case only interaction with one of 

Teop 
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the nearest configurations is considered.

Table ?4. Comparison of Experimental 
Splitting on Terms in Configurations with 
the Calculated

Ciptic t rjB.

OIII
Oli
OI
OIV
orii
oil
o V
OIV
OIII

ConfiauntSct.

Jf*?)**
2*2p»
2<2^
2i2p*
V
IS

«-3JCp

*th»or

Uak^r.g int«r«cti&r. 
r cor/i^upatior 

- r.tc, a-CDunt ;

0.76

0.76
0.76
1.30

I.3S
1.26

2.11
2.13

2.06

1.15
1.16 
I.IS 
1.30 
I.3S 
1.26 
I.SO 
1.53 
1.56

We must note that on the basis of such calculation we can make

only a negative affirmation about the roughness of the single

configuration approximation. Selection of perturbing configuration

is to a great degree arbitrary. For instance, from nowhere it does

not follow that during calculation of terms of configuration 2s^2p^

can we disregard interaction with configurations 2s^5p^, 2s^5d^,
2 2

2s ^f . Moreover, direct calculation shows that calculating these 

configurations is considerably improves the results.^ Thus, for 

C I; N TI; 0 III we obtained R = 1.1; 1.2; 1.2 and for N I; 0 II,

R = 0.5; 0.5.

Among the atoms with d optical electrons of greatest Interest 

are the atoms of the iron group, for which deflections from LS 

coupling are still small and therefore the conditions for analysis 

of experimental data are more favorable. The presently accumulated

*■

L)

^For this matter see work: Ya. I. Vlzbarayte, A. P. Yutsis,
Transactions of Academy of Sciences of Lithuanian Soviet Socialist 
Rfpubllc, .series B, 1, 17, 1959, in which the multiconfiguration 
upproximstion in the theory of .spectra of isoelectronic sequences 
of 0 1, 1, I, 31, is investigated in detail.
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extensive material shows that interaction of configurations for atoms 

with d optical electrons plays an even larger role than for atoms 

with p optical electrons. This circumstance found reflection in 

the above noted irregular filling of d shells. As compared to those 

that occurred for configurations pn, the calculations of terms in 

the multiconfiguration approximation is complicated, for two reasons: 

the considerably greater number of terms and the large number of 

interacting configurations. 

In a number of cases the agreement of experimental and computed 

values of terms is considerably improved if we introduce in formulas 

the correction member1 aL(L + 1). We must, however, note that the 

nature of this correction is not quite clear, although theory allows 

us to obtain members of such type.2 

For atoms of group Pd interpretation of experimental material 

is hampered, since start noticeable deflections from SL coupling. 

For majority of atoms of the Pt group there is an intermediate type 

of coupling; therefore calculation should be conducted with 

simultaneous calculation of electrostatic and spin-orbital interaction. 

A series of calculation carried out during the last few years shows 

how in these cases the interaction of configurations plays an 

important role, where introduction of the empirical correction 

aL(L + 1) essentially improves the results. 

Spectra of elements with f optical electrons are studied 

comparativp" r little. For these spectra, as for spectra, as for 

spectra of other atoms at the end of the periodic table, the central 

iR. Trees, Phys. Rev. 83, 

2G. Sacah, Phys. Rev. 8C>, 
Soc. Japan 10, 1029, 1995. 

756, 1951 ; 1089, 1951. 

381, 1952, S. Yanagaws, J. Phys. 
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question Is one about the type of coupling. This question Is 

discussed in § 20.

7. Perturbation of series. In rome cases interaction of

configurations appears especially graphically in the so-called

perturbation of series. This effect appears during perturbation of

terms of one series by the presence of an outside term. A typical

example is perturbation of the series 3d'’np*p, , of Cu, shown on Fig. 16,
TT

As can be seen from Fig. l6, levels 3W**4i4p*/^, •/», are located between
■ r

undisturbed positions of levels As

• r r V

a result Just these levels are perturbed especially strongly. In 

accordance with formula (17.72) the terms located above and below 

the perturbed experience displacement of different signs. The 

characteristic peculiarity of perturbation of series in the case 

is conversion of doublet splitting of terms *rf**6^*p, , and

The distance between undisturbed positions of levels 3d'*6p*P, and
7

3d*is4p‘P, is less than between levels id'’6p'P, and Sd'4s4p*P,. Due to this
• 7 ;

displacement level considerably exceeds the total quantity
7

of displacement of level and the initial doublet splitting.

An analogous cause explains the conversion of doublet
» 7

From the considered example it is clear that interaction of

configurations can not only disturb serial regularities, but also

change the character of multiplet splitting.

Perturbation of series is conveniently characterized by the

d<'pcndonco ol' the difference n - n^ from wave number of the term c .
* n

For undi.;turbed scries this magnitude should monotonously decrease 

during approach to the boundary of the series. The presence of ao
-207-



-202/ 

% 

Sd'wp fe 

*m¡t *y - -V— 

S/m4p 
—í 

'0*0 

Fig. 16. Petturbation of series of 
terms 2P of Cu. 

perturbing term leads to characteristic disturbances of this monotony 

of the same type as in Fig. 17. The curve in Fig. 18, showing how 

multiplet splitting changes due to interaction of configurations, 

is just as typical. 

Fig. 17. Dependence of difference of 
the principal quantum number n and 
effecti/c principal quantum number n* 
on wave number ë for perturbed series 
of terms 2p of Cu. 
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Fig. î8. Conversion of 
Multiplet splitting of terms 
due to interaction of 
configurations . 

Interaction of configurations is intimately connected to one 

more interesting phenomenon autoionization or the Auger effect. 

Displaced terms'corresponding to excited states of the initial ion 

are located above the lowest ionization boundary of the atom. In 

principle such terms can interact with levels of a continuous 

spectrum. This interaction obeys the same conditions as interaction 

of levels of discrete spectrum. Levels of identical parity and 

with identical moments J, L, S (equality of L, S is necessary, 

of course, only in the approximation of a L5 coupling) can interact. 

Due to interaction a nonradiating transition of an optical electron 

in a continuous spectrum, ionization of the atom, is possible. As 

a result of reduction of the lifetime of an atom in the excited 

state the corresponding spectral lines are expanded (see Chapter X). 

This phenomenon was observed repeatedly [K. Sh.]. 

p 11 IP 
The Given Matrix Elements U , V , V for 
configurations pn, dn (Tables 35-5^) 

Table j6 

1 « V 1 *D 

•s 
•p 

•D 

©
 

©
 
o

 

0 

0 

(3)"» 

0 

- O)"* 
0 
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Table 37 
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Table 40 

9 



Table 4l 

*s 0 

0 

•D 0 

\D 4<70)'' 

\P 

If 

\F 

\0 

\0 

V* 

0 

0 

0 

0 

0 

0 

0 

{é*>L II MC/* II áW) tm±. 

Table 42 

» = -i- 

> :*> 

;d 
V 
\o 

0 

-7(15)1 • 

0 

0 

TOS)1* 

0 

-8 (35)1 • 

0 

0 

8(35)'* 

0 

—15(14)'* 

0 

0 

ISiM)'* 

0 

Table 43 Table 44 

« *P •D 

•S 
•P 

»0 

0 

2(3)’'' 

0 

2 (S)1'* 

0 

-(IS)'* 

0 

(IS)"* 

0 

1 •* 1 *0 

•s 

•P 

•D 

0 

(6)’» 

0 

-yOO)'* 

3 

(6)1 * 

0 

—,jiSO)’’ 

0 
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Table 45 

! 
¡ «PSl\\V''\yPS'L') 

•S •P •O *F •G 

•s 

•P 

'D 

•F 

•0 

0 

(!)" 

0 

0 

0 

(t)- 

(ro)- 
/2iy/t 

\‘X>) 

0 

0 

1 

0 

^21 \i/« 
\20/ 

0 

(«'■ 
0 

0 

0 

(’)'■ 

(?)" 

-(fo)" 

0 

0 

0 

-(ro)" 

0 

Table 46 
(^vtlian* n^»4t'4'» 

1 ‘5 •P 'd 

•S 

•P 

lD 

0 

0 

0 

0 

-(6)% 

-3 

0 

—3 

0 

Table :!7 

^1L II 
•* 1 * 1 </- 

•S 

*P 

•D 
1__ 

0 

0 

2 

0 

U 

—2(2)*'« 

0 

—(M)*« 

Table 48 



T
a
b
l
e
 

) 
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Table 50 

(d’vSL I |70yu * *¡ jPu'S'L') 

¥ 

\r 

P 

’S 

4S 

Jo 

l" 

’S 

— 19(H)*/* 

28 

0 

—8(35)'/* 

-8 (H)'/* 

22 (M)1'* 

0 

0 

*P 

-28 

M(35)'* 

0 

- 28 (IO)'1* 

-56 

-28( 10)''* 

0 

0 

P 

0 

0 

35 (6)*/* 

0 

0 
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§ 19. Multlplet Splitting In a LS Coupling

1. Introauctory remarks. In the theory of many-electron atom 

relativistic effects can be considered by including the so-called 

Breit members in the Hamiltonian (see paragraph 6 of this section).

The best possible at present approximation is thus attained. The 

fact is that already for two electrons there is no exact relativistic 

equation of the same type as the Dirac equation for one electron.

A relativistic equation for a two-electron system can be constructed 

only with an accuracy of members on the order of (v/c) inclusively. 

The Breit equation is such an equation. Besides effects of the same 

type as in the case of a single electron atom (dependence of mass 

of electrons on speed, spin-orbital interaction proportional to 

the Briet equation contains a number of others, in particular, the 

interaction of spin of one electron with orbital motion of an other; 

interaction of magnetic moments of electrons; effect of delay of 

electromagnetic interaction of electron charges. All these effects 

are on the order of (v/c)^. Nonetheless we usually calculate fine 

splitting taking into accoiint only spin-orbital Interaction

(19.1)

This is connected with the fact that for atoms of elements located 

in the middle and at the end of the periodic table interaction (19.1) 

plays the main roll (see the last paragraph of this section). For 

this reason in a large number of cases the simple approximation (19.1) 

is sufficient for purposes of systematizing spectra, since it 

correctly transmits the qualitative peculiarities of splitting. 

Basically the light atoms are exceptions. For instance, expression 

(l'(.i) is absolutely Insufficier.t to describe fine structure in the
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spectrum cf helium; this question will be considered in detail below. 

2. The rule of the Lande' interval. In calculating fine 

splitting in the first approximation we can disregard nondiagonal 

matrix elements W, which are connected with different LS terms, and 

consider splitting of each term separately. In this case the 

magnitude of splitting is determined by the matrix element 

<ySLJM\ W\ySLJM>. (19.2) 

Each of the single electron operators in sum (15.1) constitutes a 

scalar product of irreducible tensor operators of the first rank, 

where a^)^ commutates with S, and si commutates with L. Therefore 

<y&L/Af| W\ySLJM>or>W(SLSL\ J\)<s>{J(J+1)- 
1)-5(5 + 1)} (^9.9) 

or 

A£y-^(YS£){/(7+ !>-£(£ + 1)-5(5 + l)}. (19.4 ) 

The constant of fine splitting A(7SL) depends on electron configuration 

and on SL. 

According to (19.4) every term is split into (2S + 1) components 

if S S L, or into (2L + 1) components if S > L. The distance between 

neighboring components of the multiplet is equal to 

A£,- , = , ^ ( 19.5 ) 

This relationship is called the rule of Lande' intervals. As has 

already been noted in f 7, the constant of multiplet splitting A can 
have either sign, in consequence of which one meets normal and 

rotated multiplets. From (19.4) it also follows that the energy of 

splitting does not depend on M, which has a simple physical meaning: 

the energy of an isolated atom cannot depend on the orientation of 
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it;-; mcjíicnt ,1 in snnc», 'the multiplicity of degeneration of level 

oLJ according to ?.1 is equal to 2J + 1. It is easy to show that 

|| this relationship holds 

2 (27+1)^, = 0. 
it-si¿7«¿+s 

This means that "center of gravity" of the multiple1 

(19.6) 

^7(27+1) - (19.7) 

coincides with an unsplit term. Therefore the distance between terms 

must mesh the. distance between "centers of gravity" of multiplets. 

The distance between extreme components of the multiplet Jmtli—L+S 

ana /„j, = ¡£ —¿’j is equal to 

1 AL (25 + 1), $>£. (19.8) 

¡'nus, full splitting is approximately proportional to LS. The 

magnitude j (7(7+ l)—¿(¿ +1)-5(5+.l) is an eigenvalue of operator 

£5 = 1-(71—£* — S*) in state SLJM. This indicates that for term ySL the 

operator of spin-orbital interaction can be recorded in the form 

W~ALS. (19.9) 

For atoms of the middle and end of the periodic table, even when 

'll'- apjToxirnatiöm oí a SL coupling is applicable it frequently 

appears necessary to calculate the nondiagonal matrix elements W. 

The corrections of the second order of perturbation theory to levels 

ySL.J are equal to 

chose corrections are one of most important causes 

) tne rTT.. of 1/:ride’ Interval/:. 
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One electron outside filled shells. Operator (19.1) is a 3. 

symnetric operator of type (16.1). Therefore the diagonal matrix 

element w in presentation 7S^L^¿SLJM is formed from two parts 

<yStL%; ¡„SUM | W„ | yS^; l¿UM) ( 19.11 ) 
and 

<YV.: llfiUM\gWpIySxL¿ lsSUM>> (19.12) 

where in this case = - 0 and the energy of spin-orbital 

interaction of the initial ion (19.12) is equal to zero, and (19.11) 

takes the form 

<Y°0: ¡Ns¡jm I yOO. ¡„sljmy = <s//m ¡ als \ sljmy. (19.13) 

Thus, the problem leads to a calculation of spin-orbital splitting 

of levels of an electron in a centrally symmetric field created by 

the nucleus and filled shells. 

According to see also (26.17): atO —2^î7â7 anci 

A^,/-Ç.I y í/(y+Í) -/(/+ 1 ) - S (i + 1 )}, 
(19.19) 

Thus in the case of hydrogen, the level with given value of l splits 

1 1 
into two components: j = Z, + t,, j = Z -75-. Displacement of these 

components from the initial level is equal to 

(m.®) 

and distance between components j = Z ± if 

^/,/-1 “Cn/Z-C»/ (/"6 y)* (19.1' 

To cfilçulnte the constant of splitting Cn¿ we must find a clear form 

-'i' ! 1..- ;\T sYuounrio fini,1 U(r) and radial function IL, wit'. 
Ti L 

.......... 
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...

the help of some method of approximation. As a rule, this is a very 

complicated problem. Therefore in a number of cases for appraisals 

we use a simple, semiempirical formula, founded on graphic, 

quasi-classlcal presentations. The effective field U(r) for an optical 

electron at large distances coincides with the Coulomb field 

where Z e' is the charge of the atomic remainder, but at small distances
8i

it can be approximated by the Coulomb field . This allows us 

to put

(19.17)

An appraisal of the relative time an electron stays in fields 

and —^ shows that in the first approximation we can keep for 

factor (i) in (19.17) the same expression as in the case of the

hydrogen atom, replacing by

nr:

Thus,

Ry. (19.18)

The number Z„ determining the effective charge of the atomic 

remainder, for neutral atoms is equal to 1; for single-charge ions, 2, 

etc. The effective principal quantiun momber n,^ is determined from 

experimentally known values of terms (see § 9). It is somewhat more 

difficult to select the value of Z^. Substitution of experimental 

values of in (19.18) shows that, as a rule, for electrons

Z - 4 and for d electrons Z^^ Z - 11. A presentation about 

the accuracy to which it is possible to calculate with such selection 

of Z^ is given in Table 56. This table gives values of determined 

from experimental values of fine splitting of np levels.

O ^R. G. I^rnes, W, V. Smith, Phys. Rev. 95, 95, 1954,
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For heavy nuclei in formula (I9.18) it turns out to be necessary 

to introduce relativistic correction Hr(ZZ^) (see § 26) 

*;zï/fr</z,) _ 
.a -;-r-r-Ry. 

•îl(/+l) RI (19.19) 

This correction starts to essentially affect the magnitude only 

at ¿a»50 . For smalx values of Z the correction factor Hr practically 

coincides with unity.- The dependence of Hr on Zi for p electrons 

is shown in Fig. 2J>. 

Table 56. Values of Effective Charge 

El ament « J z. 7 J Element Hi It 
1 

Ul 
Bell 
Bl 
BUI 
Cll 
CIV 
N III 
NV 
OIV 
OVI 
FV 
FVII 

1' 
?" 

& 

to 
to 

I.9T 
1.95 
1.29 
2.96 
2,60 
3.96 
2,69 
2.S6 
2.90 
3.97 
2,'18 
2.97 

0.94 
2.06 
3,40 
3.17 
4.11 
4.21 
5.06 
5.14 
6.30 
6.19 
7.12 
7.20 

3 
5 
5 
7 
7 
9 
9 

II 
II 
13 
13 
15 

Nal 
Me II 
All 
AMU 
K 1 
Ca II 
Cul 
Rbl 
Sr II 
Arl 
Ba II 

to 
to 
to 
to 
7p 
to 
4p 
7p 
6p 
to 
8p 

5.14 
5.70 
4.71 
5,40 
5.29 
4.55 
l.*6 
4.33 
3.64 
4.97 
4.50 

7 62 
9 85 

10.05 
11.12 
15.10 
17.00 
23.4 
31,3 
34.5 
42.2 
53.6 

„! 
>31 
131 
15 
19 
211 
29 
37 
39 
47 
57 

Formula (19.19) is used not only for rough estimates of the 

factor Cni. Of significantly greater interest is determining with 

the help (19.19) the effective charge Z^, since this magnitude also 

enters into the formula for hyperfine splitting (see § 23). 

Formula (19.19) in general correctly transmits the basic 

regularities of doublet splitting of terms of the alkali elements. 

There are exceptions of separate cases when the utilized approximation 

becomes inapplicable and splitting is determined by some additional 

effects. For instance, when interaction of configurations plays a 

large role. 
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■'í'. figurât Ion lu. 'frfore we calculate the constant A(lnySL), 

determining splitting of terms of configuration ln, we will return 

to formulas (19.15)* (19.1.'-). from (14.63) it follows that 

<tlim I « (r) to I i//m> = (- 1 (s\\s\\s) (/||/||/) W (stsl-, /1 ). ( 19.20 ) 

Inasmuch as 

MWk)(/ll/lin 
n (/+1)(2/+1) =(í||í iií) (/ii/!I/)=(í/iiw" U,/) (19.21) 

(see (14.43), (17.56)), (16.37)), formula (19.20) can also he rewritten 

in the following form: 

<il/m j ais I ,//«> *= 

-l— ^1/+1)(2/ + 1)(,/11^^1,/) W(slsl; j\). ( 19.22 ) 

Thus, matrix element (19.20) is expressed through the given matrix 

11 element of operator v . Likewise matrix elements 

O'ySUM J £ a (r,) llSl | rySLJM> ( 19.23 ) 

1 1 
can be expressed through given matrix elements (7SLÜV Ib&L) 

<rySLJM 12 a (r,) /,5, | ¡"ySLJM) = 
« 

= (- > )S+L~J* 2 I I *(/"-1 [Y.S.i.l /%/-!|/.v!|/""1 IYi5,^,!/.%¿)X TiOiXt 
X(/"" [y,V.1,a-S|!,a'I|/"" [Y.5,4,1 vS) W(SLSL\ 71) = 

= g|0T«ii,.x 

x(/"-' [7,5,1,1/^11^^1/-^,5,/:,)/^) W[SLSL:71). (19.24) 

Comparing this expression with (l8.4l) and (19.4), we obtain 

(I'ySLJM I £ a (/-3/,5,-1 l'ySLJM> = 

=(_ 1 V7(/+ 1)(2/+1)(/"y5¿]|^‘•HZ-yS/) !F(S¿5/x71). 

WM* In, 5(5 + 1)(25 -r I )11/. +1) (21 +1) (^Y^lt 1^"II/"y5¿). 

(19.25) 

With the ho.) p of formula (19.26) and the tables given in | 18, 

It is easy to calcrulate splitting for any configurations pn> on, 
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and also the fcasic terras of configurations fn. Furthermore, 

formula (19.26) allows us to clarify a number of general regularities 

of splitting. For shells less than half filled /\(Zn7SL) > 0. During 

transition from configuration ln(n < 21 + 1) to configuration ikl+2~n 
A A 

the given matrix elements V change sign (see (18.44therefore 

negative values of the constant A, i.e., rotated multiplets correspond 

to shells more than half filled. At n = 21 + 1 A(i2l4SsL) = 0, 

and matrix elements (19.25) are equal to zero. This, of course, 

does not signify that multiplet splitting is absent, since in general 

the corrections of the second approximation (19.10) are different 

from zero. For matrix elements W, connecting different terms of 

configuration ln, instead of (19.25) it is easy to obtain 

<r\SLJM IÇ a (r| ry'S'L'JM) - 

-l- 1)(2/+nx 

xi/wi^ii/ys'/:') »HSLS'r;/!). ( 19.27 ) 

5. Approximation of the parentage diagram. The constant of 

fine splitting A of a term 

Y,V,. «/$£ 

can be express through the single electron constant and fine 

structure constant of the initial term A(7^ 1^). 

Let us average operator (19.1) over a state with given value 

of moments and si. This averaging gives 

A (y +C«/*- ( 19.28 ) 

Further, averaging expression (19.28) over the state with given 

values of full moments LS with help of formula (14.74) we obtain 

from which 
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^>4 (Y,5,¿,) L<Lz}}±L£j±V-1(‘ + ») x 

5(5^1)+5,(5, + 1) 

25(5 + 1) 

£ 
' 4 . ¿(¿ + l)-¿,(¿,+ 1)+/(/ + 1),. w ___ x 

5(5 + 1)-5,(5,+ 1)+4 

X 2ST5+T) ‘ (19.29) 

Formulas (19.29) Is easy to generalize for configurations containing 

two groups of equivalent electrons. For term 

LS of such configuration we have 

A-A{rytStLt)k*±x 

.. 5 (5+ 1)+5 (5,+ 1)-5, (5.+h . 
25(5 + 1) + 

+A (r'v.v.) n * 
^5(5+1)-5,(5, + 1)+5,(5,+1) 
X_; 25(5+1) * (19.30) 

Formulas (19.29) and (19.30) can be simply obtained with the general 

methods of $ 1,4. 

9. Fine splitting of levels of He. In the same approximation 

in which calculation of fine splitting of levels of hydrogen is 

conducted we can obtain (Breit) the following expression for the 

Hamiltonian of a two-electron atom [B. S.]: 

(19.31) 

where 

//, 

T-P.) —— — — + — , 
rl f* 'it 

~ P»), 

ip p 4 ÎÜÜWM/M 
" l r» I 

S?* ô(r„), 

2m*? 

(19.32) 

(19.33) 

(19.34) 

(19.39) 
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(19.36) 

(19.37) 

Hamiltonian (19.32) corresponds to the nonrelativistic approximation. 

The remaining members (19.33)-(19.37) are connected with relativistic 

effects. Members (19.33) and (19.3J+) calculate the dependence of 

an electron's mass on velocity and delay of electromagnetic interacticn. 

These members, and also do not contain spin operators, i.e., 

they are purely orbital, and therefore are immaterial for splitting 

of terms. Subsequently we will assume that the corrections caused 

by these members are already considered in the energy of the 

term. 

Splitting of terms is determined by the last two members, spin- 

orbital interaction (19.36) and interaction of electron spins (19.37), 

more correctly by (19.36) and the second component in (19.37), since 

the first component in (19.37) is also immaterially for splitting. 

It is convenient to spearate members of type (19.1) from spin- 

orbital interaction. Then the operator responsible for splitting 

of terms can be written in the form 

(19.38) 

(19.39) 

» ru 

+(-[r..p.]+2K^,r»*.)Ry, (19.90) 

(19.91) 

We will subsequently speak of the three components in (19.38) as 

interaction of spin and its orbit, spin and another orbit and spin- 

:-.1)1 n . 
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) 

ir.'i zne corrections caused by perturbation (19.38) to 

triplet tem::; of' 0orífipruraSions 

not ïn.ve n.âft structure, llsiu;.- 

ascribe the state Z' to electron 

1.snZ. Singlet terms obviously do 

the general results of § 16, we can 

1 and state l to electron 2. The 

two-electron operators H”q and Hgs must be replaced by H" (l - P ) 
s o 12 

and Iss(l - Pj2). However, in this case the exchange members, 

proportional integrals of the type 

f/(r) Rmt(r)Ru{r)r*,dr, 

are small and can be dropped. Actually, in the region where function 

Ris essentially differs from zero is small and conversely. 

Disregarding the exchange members considerably simplifies the 

calculation. 

We ’will start from calculation of the mean value of W. Inasmuch 

1 
^ = ^> ¿2 - L, = tjS, we obtain 

<"-> “°,z(^a) Ry Ry = 

I 
'-Ta,z(7j)W++1)-5(5+lURy. (19.42) 

In calculating the corrections caused by interactions H" . H 
so# ss’ 

we can use the fact that electron Is is on the average considerably 

nearer to the nucleus than electron nZ. Therefore rg )>> r^ and in 

the expression for H" H we can place 
o U S S 

in this, wo obtain 

(19.43) 

(19.44) 
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it is easy to see that the conducted simplification of H" , H 
so’ ss 

leads to errors of the same order as disregarding the exchange 

members. 

Prom the general expression for matrix element of the product 

of operators 

<Yl/lflY>-£<Yl/lY'><Y'ltf!v> 

it follows that 

<ÏV,l>-0. 

since matrix elements r2 are not equal to zero for = land 

matrix elements p^ are different from zero only for transitions 

*1 ll * and 

<«;>—«■», £ —4 «)_ 
* r» 

We have only to consider perturbation (19.^4). The expression in 

the braces in (19.^)» 

{*,1,—3 (*,*) (i,*)} => S 5 U5,* {Ô,*—3/1, «J (19.46 ) 
•• A 

can be presented in the form of a scalar product of irreducible tensor 

operators of the second rank. The tensor 

(19.47) 

is a symmetric tensor with track equal to zero. From the components 

of this tensor we can construct a spherical tensor of the second 

? 
order D , where 

(19.46) 
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(see the conclusion of formula (14.61)). 

tensor can be presented in the form (14.8) 

íiís»*—3**i*,4¡*d* y(í,í5,*—stksi¡) + 

+ 2 ('li*»* + — J). (19.49) 

where in (19.46) only last member, having the same symmetry as 

contributes. The products of the first two members (19.49) and 

Dik are equal to zero« The only irreducible tensor of the second 

order which can be constructed from components s2> is 

CP-IíJxí;]*. (19.50) 

Therefore 

i*.*. - 3 Mnm»—co«s> 2, _, ruic. 
(19.51) 

To determino the constant in (19.51) It is sufficient to compare the 

coefficients at member in an<i ln the last member of {lgA9) 

1 rom (ly.pO) and (19.49) we have 

11120)iifvf, 

(110011120)- 1/^, 

T (*u*u + i,^If — 3* *,*« ) “ y (i,^„ + 

Also considering (19.48), we obtain 

coast-2 |/|, 

—* V^fa,Ry-4•(ü¾,), 

4 Vïa'Ry (¾ <l'sJ*sx LSJM i iro i /¡X,/, j, ; 

(19.5?) 

,£5/Af>. (19.53) 

Operator !/ is a pure spin operator and therefore commutates with 

orbitai moment L. Operator commutates with S; therefore for the 
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matrix element in (19.53) we have 

(_ I II u* II ViS) ltC¡¡/;/t£)ir(£SLS;J2). (19.54) 

Inasmuch as in the considered case = 0, = L, 

(¾ ¿ i c* h o.i) -une“ ni)—VjéîSS:-!)- (19.55) 

In calculating the given matrix element U we can use formula (14.66) 

Calculating (14.44) for triplet states S = 1, we obtain 

(•ASIIt.’Xjyilv.i)- j/f 1)vT. 

(19.56) 

The 9j symbol in (19.56) is calculated with help of the 

formulas of Table 60. Thus, 

«V-5l\ ' . ÎX(Xr±l)-U(L±n Ry 
" V i*/ 7 (2L—l)(l¿+3) l<y, 

(19.57) 

(19.58) 

The second member in (19.57) is immaterial for splitting and 

therefore can be dropped. Gathering together (19.42), (19.45) and 

(19.57), we obtain 

where 

•(4> 1)(211-3)( • 

(-2(1+1), / = 1-1, 

[+21, /=1+1. 

(19.59) 

(19.60) 
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We will compare expression (19.59) with (19.42), i.e., with 

the formula of fine splitting in approximation (19.1). According 

to (19.42) the terms of He have to constitute normal triplets, obeying 

the rule of the Lande' intervals. Calculating the interaction of 

spin and another orbit leads to replacing Z by (Z - 3). The rule 

of the Lande' intervals is not disturbed. However, the sign of 

the constant of splitting turns out to depend on Z. For He Z - 3 = 

=-1, which corresponds to rotated splitting. 

In the case of Li* Z - 3 = 0 and calculating member H" leads 
so 

to full compensation of effect. Tor Be** Z - 3 = 1 and, consequently, 

again the normal order of location of triplet components is restored. 

Factor (Z - 3) is obviously connected with shielding of nuclear charge 

by electron Is. The greater Z, the less effectively the charge of 

the nucleus is shielded. 

The interaction of spin-spin leads to deflections from the rule 

of Lande' intervals. In order to estimate the role of this member 

in fine splitting of He and Li+, we will give the relative magnitude 
s 

of splitting of •'T terms 

A£ya -. 

i ~ Jxt 
l (19.61) 

for three cases: 1) perturbation H' : 2) perturbation H' + H” ; 
so ' so so’ 

and 3) perturbation H' + H" + H : 
so so ss 

H. S.-3 —3 -1.| 

Ll* - ¢.-s i 
Experimental values of f are equal to 

(19.62) 

5lVPHe)-0,08, 6(3/>7>He)«0,Q8, —0.41. (19.63) 

Thus, formula (19.59) correctly transmits the character of splitting. 
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For He the distance between components J = 2 and J = 1 is small as 

compared to the distance from these components to component J = 0. 

The incorrect mutual location of components J = 1, 2 must be attributed 

to the simplifications made during conclusion (19.59). Let us note 

that calculations taking the exchange member into account and without 

disregarding r^ in comparison with r^ give correct sign and somewhat 

improve the numberical value of [see B. S.L Agreement with the 

experiment value is best for Li. 

Formula (19.59) shows that interactions of spin and another 

orbit and spin-spin are especially important for light atoms. 

These interactions are proportional to Z , since the factor 

is general for all three members in (19.59). whereas 

For many-electron atom H" and H contain members of three 
o0 ss 

types: interaction of electrons of filled shells, interaction of 

electrons of filled shells with electrons of unfilled shells and 

interaction of electrons of unfilled shells. For splitting of terms 

only the last type of members is essential. Thus, snldthing of 

terns of configuration nsn1l of an alkali earth atom is approximately 

described by formula (19.59). in which we must replace Z by the 

effective charge of the atomic remainder. At a sufficiently large 

value of this charge members </£„> and </£,> are small as compared 

to H* . This circumstance justifies approximation (19.1) during 
s o 

calculation of fine splitting. In conclusion we will note that 

deflection from the rule of Lande' intervals is not necessarily 

determined by interaction of spin-spin. When 

the corrections of the second approximation from H' can have a 

larger value than <H„>. 
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7. Interaction of spin-sp,,.n and spin and another orbit. 

The relative contribution of interactions H" and H in splitting 

of terms of other many-electron atoms also drops with increase of 

atomic number. This question was specially investigated in a whole 

series of works." The simplest calculations are conducted for 

configurations lr\ since in this case exchange members are absent 

and, furthermore, matrix elements H and H" can be expressed 
s s so ^ 

'trough given matrix elements of operators Vlk. 

We will give the results of calculating the fine structure of 

terms of configurations pn. For configuration p2, considering the 

correction of the first order of the perturbation theory from 

îfso + Hss and the correction of the first and second orders of the 

perturbation theory from H' , we can obtain 
s o 

-CP) - (S' - 55AÍ.) - U.V., - 

+ igAij*-!-. 

CP,)-CP.)-~(C'-55Af.) + 

+ 30Af, +2 (;•+ 
ICS)-(Vi) ’ 

(19.64) 

where is the radial integral in matrix elements H" and H 
u so ss 

Splitting of terms of configuration is determined the 

same formulas, in which we must replace (Ç - 5M by ). 
P 0 P 0 

Comparing (19.64) with experimental magnitudes of splitting allows 

us to determine parameters Ç and M . The results are given in 
P 0 

Table 97. The fact that with increase of / the relative role of 

interaction of and 11^ drops is noticeable. The magnitudes 

•Jh. Marvin, Phys. Rev. 71, 102, 1947; R. E. Trees Phys, Rev. 
Ö2, 683, 1951; H. Horie, Rrogr. Theor. Phys. 10, 296, 1953. 
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Table 57. Experimental Values of 
Parameters £ and M 

P 0 

V Çp. cm-* Aï,, CM-* 2p* AI,, CM~l 

C I 
N (I 
o m 
F IV 
Ne V 
Na VI 
Mg VII 
aTviii 
Si IX 

32.8 
»7,0 
m.2 
436.0 
786.9 

1394 
2054 
3080 
4368 

0,079 
0.202 
0.38 
0.61 
1.10 
1,64 
2.57 
3,67 
3.93 

O I 
F II 
Ne III 
Na IV 
Mg V 
A! VI 
Si VU 

146,4 
320,0 
606 

1039 
1667 
2556 
3743 

0.274 
0,471 
0,92 
1.22 
1,53 
2.75 
3,57 

Ç and M , given in the Table, with good accuracy to fall along 
It w 

a straight line a), a'), where a and a* are shielding 

constants. Additional data about the relative magnitude of the 

considered interactions can be obtained from splitting of terms of 

configuration p^. In this case 0, ; therefore in the same 

approximation as (19.64), 

,85Af . 5 r 
im-CD); ’ 

(*Pj) ~ (*Pi) ““T^ + i'* 14((•/>)!(*D)1 + } • 

(19.65) 

(19.66) 

If the first members in (19.65) and (19.66) are larger than the second, 

then splitting is rotated. If, however, the main role is played 

by the second members, then normal doublets have to be observed. 

The experimental data given in Table 58 show that splitting is 

rotated only at small values of Z. With increase of Z the correction 

of the second order from H' exceeds <//*> and <// > . For SO ** 
configurations 3pn interactions H and H1' play an even smaller s s so 

role than for configurations 2pn. 



Table 58. Splitting of 2D and 2P 
Terms of Configuration p3 

(^/.)-(^7.)- 

N 1 
0 II 
P III 
Ne IV 
Na V 
% VI 
Af VII 
SI VIII 

—8 
-21 
—36 
—25 
—25 
—21 

60 
280 

0 
-1.5 

0 
10 
39 

122 
270 
580 

There is an anlogous situation for configuration 3dn, the 

corrections of the second order from H¿o lead to larger deflections 

from the rule of Lande’ intervals than the first corrections from 

Hss and Hso- 

§ 20. jj and Other Types of Couplings 

1• 41-90UPling-_Wave functions. In the approximation of 

the jj coupling an electron in a central field is described by wave 

function (12.38), and a system of electrons by determinant 

(15.2), in which the letter a designates the totality of quantum 

numbers n£jm. For two electrons 

^""ÿT(Ê')♦'t'/v«'(5.) — tml/rn (5,)}. /20 

Wave functions ÿjm, describing states of system with given values 

of full moment J and its z component M, can be constructed according 

to the general rule of summation of moments (12.34). In this the 

same methods are accurately used as in construction of functions 

^LSM M - Thus, for two electrons 
L 0 

VjmUJ*) )<>/'•' (5,), 

^ jmUJi) “ (5,), 
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(20.4) 

Using the properties of symmetry of the Clebsch-Gordan coefficients 

(13.12) 

Of/**' I jf JM) =(-1 )*-/'-'(//*'* I/Â'Af). (20.5) 

we obtain 

fm - Yf (20.6) 

Por equivalent electrons n = n’, £ - £' at j “ j' 

therefore f 

--g-VjmUJ,)- (20.7) 

In (20.7) we accept that at j = j' the standardized factor in (20.6) 

1 l 
should be equal to j, and not ——. Prom (20.7) it follows that 

¿ /T 

fjjyj ^ 0 at odd values of 2j - J. 

Inasmuch as 2j is odd, and J is an integer, 

W/M ® 'fjmUJt), J ( 2 0.8 ) 

^//1 *"0. J od-ä • 

Relationship (20.8) Is in accordance with the table of allowed terms 

In a jj coupling. For n = n', £ = £', but j = £ ± j' = n + I, the 

wave function is determined by relationship (20.6). This shows 

that by equivalent electrons in the case of a jj coupling we must 

mean electrons with identical values of n, £, j. 

Using the approximation of the parentage diagram, the wave 

function cf the system of electrons can be presented in a form 

analogous to (15.33). 
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(20.S) yv’''ym U,./,). 

where 

y/ü(A. /<) - 2 CMtmVAM,t/m (5j). ( 2 0.1Ü ) 

In (20.9) and (20.10) ^ is the full moment of the initial ion. The 

wave function of the initial ion y, is antisymmetric relative 
11 

to electron 1, 2, ..., i - 1, i + l, ..., N; thereiore the linear 

combination (20.9) is antisymmetric relative to all N electrons of 

the system. 

For equivalent electi’ons, just as in the case of a LS couplings 

the fractional parentage characteristic of terms does not have 

meaning even In the first approximation. Wave functions Y,.,.(111) 

can be represented in the form of a linear combination of functions 

C .3 ) » obtained by addition of an electron with moment j 

to state J1 of configuration n11“1, with the help of fractional 

parentage coefficients 

(20.11) 

(20.12 ) 

Coefficients G1? are calculated by the same methods as the 
dl 

coefficients G^3^.1 We will not consider this question in greater 

detail. 

‘C. Schwartz, A. de Shalit, Phys. Rev. 9'4, 1257, 1954; see also 
A. h. hdmonds, B. H. Flowers, Proc. Roy. Soc. A214, 515 1952* 
Proc. Roy. Soc. A215, 398, 1952. ’ 
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Among terms of configuration jn, as a rule, we encounter terms 

with the same values of J. As an additional quantum number, allowing 

us to distinguish identical terms, we can introduce the seniority 

number v. Classification according to v is introduced in precisely 

the same manner as in the case of a LS coupling. Identical terms 

of configuration Jn are divided into two classes. States JM of 

the first class can be obtained from states of the same type of 

configuration jn~ by addition of closed pair j [J = 0]. States of 

second class cannot be obtained this way and in this sense appear 

for the first time in configuration jn. 

Quantum number v shows at what value of n = v term jnvJ first 

appeared. Thus, for configuration j values v = 1, for which 

(j2[0]jJ|}J3J) ¿ 0, and v = 3, for which (j2[0]JJj}j3J) - 0 (see 

S 15)» are possible. 

2. Coupling of the jj type. Spin-orbital and electrostatic 

Interaction. In this case we must first consider spin-orbital 

interaction of electrons and then electrostatic. As before we will 

start from expression (19.1) for spin-orbital interaction. In this 

approximation the correction to the energy of level n^^, ls 

the sum of single electron members 

A£/iA...-£A£b*a, (20.13) 

A£-*™ “ j (A+1 >-/*(/» + • (20.14) 

Thus, spin-orbital splitting in the diagram of a jj coupling is 

determined by single election parameters ;;n£. The level 

is degenerated by J. For instance, one value of energy corresponds 

to states (|- !■) 1 and |-)2. 
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Regeneration by J is taken to be electrostatic interaction of 

electrons. This splitting will be calculated with help of the 

oârne methods as in the case of a LS coupling. We will snow this on 

the example of splitting of revel nJijn'n'j' of a two-electron system. 

Putting wave functions (20.6) in the matrix element 

we obtain 

- iv+r-j ^ J/.V.y/w), 

/* = </, ítJM ! CÎCtljJ'JM) = 
( 1 ),+l'~J{slJ II C* H slj) {sl'f j] C* I] sl'f) WUfjf- Jk\. 

= ( - I ICÎCÎ = 

The given matrix elements C ' in (20.18) and (20.19) are determined 

by formulas (19.77) and (19.78). From these formulas it is clear 

that the coefficients f^ do not depend on l and are simply 

determined by magnitudes jj'. These coefficients, in particular, 

aie identical for interaction of electrons tipi ; n'pt and ! 
t r T 

n'dt_, npt ; n’d% and nd t -, n'f% , etc. 
* * • • T 

Evidently also do not enter into the formula for g, . 

However, th~*se coefficients indirectly depend on since different 

expressions for given matrix elements Ck correspond to two possible 

cases yw±±,/ = /'±1 and . 

For equivalent electrons 

(20.15) 

(20.16) 

(20.17) 

(20.18) 

(20.19) 
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A - ( - l)v'/ (î/y II c* I) sij)' wyjjji jk\. 

For n = n', a = but j * j ' (j = * t j ’ = ä + |) , Fk = Gk; 

therefore, 

(20.22) 

Formulas (20.17)-(20.22) allow us to express electrostatic splitting 

for any two-electron configuration through Slater parameters Fk, Gk. 

In calculating many-electron configurations we also use the same 

methods as in the case of a LS coupling. In particular, in a number 

of cases we can use a recursion formula of type (18.4). For instance, 

for configuration 

(20.20) 

(20.21) 

. (20.23) 

3. Transformations between diagrams of LS and jj couplings. 

Wave functions and correspond to the following two 

diagrams of summation of moments: 

/+r=¿, (20.24) 

(20.28) 

«+*-/. (20.26) 

(20.27) 
Therefore 

U'[L\J\sl[j\t s'l'[j']A^sLMsmL. (20.28) 

In decomposition (20.28) all terms are represented for which 

For instance, in the case of configuration npn'p the wave function 

¥ 
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car: oe represented in the form of decomposition by functions 

VCDt), 'VCD,), 

The transition from a LS coupling to a jj coupling is a change in 

the diagram of summation of four moments; therefore the coefficients 

of transformation in (20.28) are expressed through 9j symbols. 

Prom formula (13-75) it follows that 

u*' i5]; u \l\ j\ siyy, s'r 
- /' (i/' [¿I «' [SJ y I /í [y] /'5' (/]/) = 

(It L\ 

-V^2S+1)(21+i)(2y+1)(2/-M) 
/// (20.29) 

The 9j symbols in (20.29) can be calculated in evident form.1 

The values of the factor 

/ t 1% 

{ { 7 [ -A(SLJ JfJ) 

2 2 

(20.30) 

are given in Taules 59-62. 

Transformation between diagrams of a LS and jj coupling in 

the case of equivalent electrons requires special consideration. 

At j = j' 

Yj* (/) - g (fSLJ I fj) Vju (ns). (20.31) 

At J + f (/-/+1-./=/+1) 

Vjm (jf) - g V'SLJ\jfD Vjm (rsi ). (20.32) 

Using the above given expression for functions YJM(j ), 

V m(ji2;;L), and also the properties of symmetry of 9j symbols, it is 
J 1*1 

Ml. Matsunobu, H. Takebe, Progr. Theor. Phys. I1!, 589, 1955- 



simple to obtain 

(PSU 1//) - (ss IS)M [LUI siy\ Í/[7)/), 

[fsu I jfj) = /2 (s, [51://(/) J\sl\j]sl[j'\J). 

(20.33) 

(20.34) 

Formulas (20.29)-(20.34) allow us to present functions Y..,.,.,, in 
jj'JM 

the form of a linear combination of functions for any two- 

electron configuration. 

4. Coupling of the intermediate type. If electrostatic 

interaction of electrons U and spin-orbital interaction W are of 

one order of magnitude, then neither the approximation of a LS 

coupling nor that of a jj coupling is applicable. We call similar 

cases a coupling of the intermediate type, or simply an intermediate 

coupling. The qualitative picture of location of levels in a 

coupling of the intermediate type can be obtained by comparing the 

diagrams of levels of the two limiting cases of LS and jj couplings. 

In a quantitative consideration of an intermediate coupling 

to determine the energy we must solve a secular equation composed 

of matrix elements of perturbation U + W. In carrying out specific 

calculations it is convenient to use the fact that as functions 

of the zero approximation we can select either functions of the 

central field or any independent linear combinations of 

these functions. In particular, we can start from functions v . 
oLi J rl 

In this case the matrix of electrostatic interaction U is diagonal 

to SLJM, which essentially simplifies calculation. Inasmuch as 

matrix W is also diagonal to J, M (but not to SL), the secular equation 

corresponding to definite values of JM has the form 

ja.VAfI{/+ IFIL,StJM>-e; W¡LtStJM>... 

j <L,StJM J W lLtStJAt>; <LaStJM |i/+IT[ LtSt/M>-e... 0. (20.35) 
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Table 59 
S-O. £_/ 

1 r AiSUijj'J) 

/+'/. 

¡ru 

HU 

h-'lt 

rru 

rru 

r «+/'+/+2)(/f/'-/+D i V. 

/. 

il"1 

12(2/ +1) (2/ + 2) (2/' +17(2/7+2) (27 + 1) J 

r (/-/'+^+i) (-/-»-/'+/) T 
1.2 (2/+ 1)(2/+2)(2/) (2/'+ U (27 + l)J 

r ni (/-/+7)(-/+/+ +1) 
1 1 L2 (2/)(2/ +1) (2/' +1)(2/+2)(27 + l 

T (/+/+7 + 1)(/ + /-7) 1«/. 
[2 (2/) (2/ +1) (2/') (2/' +1) (27 +1) J 

Table 60 
S-l. ¿«7 + 1 

1 r AiSUijj'J) 

/+’/. 

/+'/, 

/-'/. 

y-*/. 

/'+•/. 

/-*/. 

/'+’/. 

/'-•/, 

n/+r+7 + 2) (/ +/+7+3) (/—/+7+1)(— /+/ +7+11 P 

r'- 

r'- 

L3 (2/ + 1)12/ +2) (2/' +1) (2/' +2) (27 +1) (27 + 2) (27 + 3) 

r(/+/'+7+2) (/+/-7) (/-/ + 7 + 1)(/-/ + 7 + 2) 1 
L 3W +1) (2/ +2) (2/') (2/; +1) (27 +1) (27 + 2) (27 + 3)J 

[(/+/+7+2) (/ + /-7) (-/ + / + 7+1) (-/ + /+7 +2)- 
L 3(2/)(2) + 1)(2/ +1) (2/' +2) (27 +1) (27 + 2) (27 +3) 
/ ,)[(/+/-7-1)(/+/-7)(/-/+7+1)(-/+/+7+1) 

H 3(2/)(2/+1)(2/)(2/ + 1)(27 + 1)(27+2)(27+3). 

Table 61 

S-l, ¿«7—1 

I r 1 AiSUijj'J) 

/+*/* 

/+.'/. 

/-V. 

HU 

rru 

/-•/. 

/+•/. 

/'-•/. 

(-U 

(-0 

f(¿ 

[0+/-7+1)(/ + /-7+2)(/-/+7) «-/+/+7, r 
].ü 

V. 

L3 (2/ + 1)(2/+2) (2/^0(2//+2, (27-0(27)(27+1) 

[0+/+7+1)(/+/-7+1)(-/+/+7—1)(—/+/'+7) 
1 3(2/ + 1) (2/+2) (2/') <2/' +1) (2>-l) (27) (27 + 1* 
+ /+7 + 1)(/+/-7+1)(/-/+7-1,0-/ + 7)1- 

L 
[ 

3(2/)(2/ +1) (2/ + 1)<2/ +2)(27-1) (27) (27 +1) J 
0+/ + 7)(/+/ + 7 + 1,(/-/+7,(-/ + / +7)T/» 

3 (2/) (2/ +1, (2/', (2/ +1)(27-1, (27) (27 +1 ) J 
1 
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Table 62 

S-l. £-/ 

/ r A (SU; //'/) 

/+’., 

¡VI, 

/-*/. 

i-'l. 

i'+'U 

r-'i, 

/'+■/. 

/'-•/. 

(/—/') L (/+r+/+2)(/+/'-/+i) i./. 

(/+/'+!) 

(/+r+i) 

(-/+/') 

<2/ +1 ) <2/ + 2) (2/* +1) <2f + 2) / </ + 1 ) (2/ + Í) J 

r if—r+j+\)(—i+¡'+j) iv. 
L®(2/ +1) (2/ + 2) (2/') (2/' +1) / (7 +1 ) (2/ + J) J 

r (/-/'+/)(-7+/'+/+n T/. 
1® (2/) (2/ +1) (2/' +1) (2/' +2) / (/ +1) (2/ + l)J 

r (i+r+j+vu+r-j) vu 
L® 12/) (2/ + 1) (2/-) (2/- +1) / (/ +1) (2/ + 1 )J 

The roots of secular equation (20.35) ..., ..., ef are the 

sought corrections to energy. By solving the secular equation we 

can also find eigenfunctions 

As an example let us consider the configuration p2. 

Electrostatic splitting in the case of a LS coupling is determinea 

by formulas (17.33). Pine splitting can easily be obtained from 

formula (19.26) and Table 43. Thus, 

f.-g, 

<*/>.) 
(20.36) 

In the other limiting case, in the approximation of a jj coupling, 

from formulas (20.13), (20.14) and (20.20), (20.21) it follows that 

(y y —-j C,,+ 

("S’ t), ^(y y y :v+ f«— 5f„ 
0 

( 7 t). 

(20.37) 

lor the coríjaos It ion oí secular equation (20. jt) we must calculate 

the matrix of spin-orbital interaction. In the case of interest to us 
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I f F „ > > ç , 
¿ np’ 

e.^^.+y Z7,—y Ÿ 1 + ß ff { ^-5^, 

'¿*^F.-2F% + \zm,?3F. /l-|^{ ^^ + TCM’ 

(20, 

Thus, in the limit of weak spin—orbitai interaction we obtain 

tne approximation of a LS coupling 

(1¾. «.—m. «.—w. «. — W. e. — Cß.)- (20. Ü7) 

Relationships (20.^7) simply establish the conformity between level: 

of the approximation of a LS coupling. This allows us to use the 

terminology of a LS coupling when the actual approximation of a 

LS coupling loses meaning. Using this circumstance, we frequently 

designate levels e2 through 1S¿, 3P¿ etc. The wave functions 

corresponding to these levels are connected with functions ^SLJM 

the following relationships: 

Vi'PJ-à^CPJ + b^ïD'), 
V('Pt) + VCD,). 

The coefficients in right sides of (20.48) are determined together 

with the corrections to energy e1, e2, .... A comparison of (20.4?) 

and (20.48) shows that in the limiting case of small spin-orbital 

Interaction 

cnt c**""*l» ct»* ^i»< 

i-'ormui as 

interaction ti 

(20.48) show that in the presence of spin-orbital 

e states of an atom cannot be characterized by definit 
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values of L and S. Orbital moment and spin are not, retained 

separately. Thus, state 1S(!) is a superposition of singlet state 

with L = Û and a triplet with L = 1. For the enaracteristies of the 

relative magnitude of electrostatic and spin-orbital interaction it is 

convenient to introduce the dimensionless parameter y=4- c • o rt 

Values X << 1 correspond to small deflections from the LS coupling. 

At X >> 1 there is a transition to the jj coupling. Actually, by 

decomposing the roots of (20.^3) and (20.45) by degrees of l/x, it 

is easy to obtain formula (20.37), wnere 

(20.49) 

The full picture of transition from a LS coupling to a jj coupling 

is shown in Fig. 19. 

At small deflections from the LS coupling (x << 1) the 

coefficients in wave functions (20.48) can be presented in the form 

of a decomposition by degrees of x 

*n“*»«“1 9 X d-**** 

*.i - «i.-4 ^ * (1 *‘"‘I *’+ • • ) ’ 

♦il“*«*“1 — +•• •. 

Above we nave shown that in the approximation of a LS coupling 

we can obtain a series of relationships independent of Skater 

parameters Fk and G^1 for the relative distances between terms. 

Likewise for series of configurations and in the case of an 
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intermediate coupling we can exclude parameters Fk, Gk and ç 

(in this case P2 and cnp) and express the relative distances between 

levels through dimensionless parameters characterizing the relative 

magnitude of electrostatic and spin-orbital Interaction. In the ' 

above^considered case of configuration p2, and also for configurations 

P , P , this parameter is x. Knowing from experiment the relative , 

location of levels of a given atom, one can determine the magnitude 

X and thereby give a quantitative appraisal of deflections from the 

LS coupling (or jj coupling). Simultaneously one can determine the 

coefficients In decomposition of wave functions of an Intermediate 

coupling according to functions This has large value for 

a number of applications.-. Deflection from the LS coupling Is also 

characterized by the magnitude of nondlagonal matrix elements 

connecting terms and L2S2. 

5. ¿^.couplings. As a rule, a ji coupling is realized when 

the optical electron is on the average a large distance from the 

electrons of the atomic remainder. Just then the electrostatic 

interaction of an optical electron with electrons of the atomic 

remainder can appear small as compared to spin^Mtal interaction 

of the electrons of the atomic remainder. Exactly this situation 

is encountered in inert, gases (see S 10). 

In the approximation of a j* coupling the levels are characterize« 

by quantum numbers yS^J, £[K]J. Such characteristics obviously , 

have meaning only if the distance between two components of level 

j£K J = K ± i is considerably less than the distances between 

1 Se -1 the collection of works "Physical Droeps«**»!* in 
gaseous nebulae," IL, 19H8, Chapter XI, where configurations b§ 
p3 and p*1 are Investigated in detail, comigurations p , 
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tin, 

o 

i 

« ■* . » I l 1 « « H I I 1 

V V turns* 9 

Pig. 19. Transition from LS coupling to 
jj coupling with increase of Z for 
configuration p2. 

different K levels. This condition is the small size of spin-orbital 

interaction of an optical electron, and also the small size of the 

exchange members in electrostatic interaction. The second condition 

is connected with the fact that exchange interaction depends on mutual 

orientation of moment K and spin of the optical electron. 

This circumstance allows us to drop the exchange members during 

calculation of electrostatic splitting of levels S1L1J «,K and ¿K'. 

Therefore for the two-electron configuration 11' 

-(- lyw-jc (tf/iicV/) (nicV) W{jtjV\ Kk). 

(20.bl ) 

(20.52) 

Formula (20.52) embraces practically the most important case of 

inert gases. In this case Interaction of an electron with an 

5 
almost filled p shell has the form 

(20.53; 



'■HW IW.i; irpmiwr-wM, 

o 

where in accordance with the general rule fixed in § 18, 

(20.50 

In calculating spin-orbital splitting of level yS;]L1<j£K we can start 

from expression (19.28) for the operator of spin-orbital interaction. 

In the given case the mean value of the first member in (19.28) 

for state yS^jJlK 

ÿ {/(/+1) (/. + 1)-5. (5. +1)} 

does not depend on orientation of moment j relative to moments l, 

K, s, and therefore thi^ member can be dropped. Thus, 

<ylStLJI[K\$JM\W\ylStLJt[K\sJM>^ 

-ti(- ly^-'t/Mfll/liyMOWMIi) W(KsKsi Jl). ( 20.55 ) 

Using (1^1.72) and putting in the corresponding expressions for 

given matrix elements l and s, we obtain 

<rfl[KltJM}W\^ß[K\sJM>^ 

» - 7} ■ (se.s« 

In general, spin-orbital interaction must be considered jointly 

with the exchange part of electrostatic interaction. However, such 

calculations will be of no use to us subsequently; therefore we 

will not remain in this question in greater detail. In conclusion 

let us consider how transition from couplings of types LS and Jj 

to a j ï. coupling is accomplished. The transformation from a jj 

coupling to a j£ coupling is especially simple, since during such 

a transformation it is sufficient to change the order of summation 

of three moments. During transition from a LS coupling to a jt 

coupling we must twice change the order of summation of three 

moments. Using the genreal formulas of § 13, wo obtain 
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(y, W |yn*] */) - (— i y'—u, WI / [*1 *-0 » 
- VWTnWTT) iri*/v/. /10. 

(5,# I5j ¿.r [¿] y 15t¿,yr [â] »d - 
- (-[L\5,1 [5J y I £,5^r [AT] »y>. 

-KW+ »>(84+1)(25+ l)(2tf+1) W{$L%Kr:jL\ WyßLS.Ki Js). 

(20.57) 

(20.58) 

6* Experimental data. A qualitative presentation about how 

well the system of levels corresponds to the approximation cf a 

LS coupling can be obtained by comparing the magnitude of fine 

splitting of terms with differences of terms. Such comparison is, 

of course possible only when the deflections from LS couplings are 

small. To obtain some quantitative characteristics of the type 

6f coupling we must conduct joint calculation of electrostatic and 

spin-orbital splitting. Such calculation was conducted above for 

configuration p . In this case the relative magnitude of 

electrostatic and spin-orbital interaction is characterized by one 

dimensionless parameter x * ^ ^jr1. For a LS coupling x - 0; for 

a JJ coupling x **■ “• 

A comparison of the experimental values of energy level with 

the calculated values allows us to determine parameter x and thereby 

give a quantitative characteristic of the type of coupling. 

This question was investigated in detail for a number of atoms 

and ions with basic configurations p2, p3, p\ 1 in Pigs. 19, 20, 

and 21 the computed values and experimental data on splitting of 

levels are given as functions of parameter x- The values x obtained 

from a comparison of theory and experiment are given in Tables 63-65. 

]U. A. Robinson, G. H. Shortly, Phys. Rev. 5?, 713, 1537. 
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These data show that parameter x monotonically li creases with 

increase of Z. For atoms of the beginning of the periodic table 

the diagram of a LS coupling ensures a sufficiently good 

approximation. For heavy atoms, such as Pb and Bi, deviation from 

the LS coupling is so great that classification of levels in terms 

of a LS coupling becomes conditional. Such a regularity is also 

observed for atoms of other isoelectronic sequences [K. Sh.] . The 

greater Z, the more the LS coupling is disturbed. 

í’i.g. 21. Transition from LS coupling to 
jj coupling with increase of Z for 

configurations p\ 
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formula (19.27) gives 

<P*SUM p'srUJM) - 

.(—i)»H'-^/6o»*5¿||v',ilp,5'^') rtsm'ï yiv 

Putting ln the values of the given matrix elements V1 from 

we obtain 

•5. «P. 'P, 'P. ‘O, 

V. 

V. 

‘Ai 

-v%. 
-/It* “tv 

“■{•tv 

ytv 
«, n6« 

’ n6* 

In accordance with (20.39) secular equation (20.35) will be 

In the following form: 

7-0 

/-1 

/-3 

k+iof,-«: -/a:., 

l-nc^ 

jilt«! 

Prom (20.^0)-(20.42) it follows that 

e. - ( p. - 2P,+i CM) T / 9/: - 4 +^CV 

(20.38) 

Table 43, 

(20.39) 

written 

(20.40) 

(20.41) 

(20.42) 

(20.43) 

(20.44) 

(20.45) 



Table 63. Experimental Values of Parameters 
X, F2 and ip for Configurations p2 

For elements of the main groups of the periodic table the 

dependence of the type of coupling on Z is approximately the same 

as in the above considered case of configuration pn. In analogous 

situation also occurs for elements of intermediate groups. For 

atoms of the iron group the approximation of LS coupling turns 

out to be sufficiently good. For atoms of tne palladium group 

deviations from the LS coupling are increased, but still not too 

much to make this approximation absolutely inapplicable. For atorru 
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of the platinum group spin-orbital Interaction is so great that 

the intermediate type of coupling occurs. 

Table 65. Experimental Values of .parameters 
X, P2 and çp for Configurations p4 

Tables 63-65 also give the experimentaly determined values of 

parameters Fg and . The magnitude of Fg grows linearly with 

increase of Z, whereas Çfco(Z--o)*,, where 0 is the shielding constant. 

Thus, the relative role of spin-orbital interaction will increase 

very rapidly with increase of Z. 

Atoms of inert gases and rare earths occupy special places. 

In the first case there is a coupling. As already noted above, 

this type of coupling is also characteristic for strongly excited 

states of a number of other atoms. In the case of rare earths the 

situation is still unclear, since even now for a number of atoms only 

a very small number of levels has been identified and classified. 

At the same time cases are known when the levels of configurations 

fn£ and fnu' are well suitable to the diagram of Jjj and JjJjj 

couplings; is the full moment of group fn, is the full moment 

of group l!,' . 
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Of approximately this type are the levels of configuration 

n II, given In Pig. 22.1 -he lower levels of the considered 

configuration correspond to state 2F7/2 0f group f«. inasmuch as 

for configuration sp states and 1P1 are possible in the 

case of JjJjj coupling we must expect the following grouping of 

levels: 

*•/>, 
a 

fF±*p*Pt, 
a 

sp7>, 
a 

Jm3i 

S 7 • 
'T* ?• T 

1 level 

3 level 

/3 ». 

7.9 II 
7* 7' 7 

/'"F^$p'Pv /-f; £; » 

5 level 

3 level: 

Pig. 22. Levels of 
configuration 

f136s6pYb II. 

Namely such mutual location is characteristi 

for the levels shown on Pig. 22. The upper 

2. levels of Pig. 22 correspond to state 2p 
no . 5/2 

of group f . These levels are also well 

suitable to the diagram of a coupling: 

'"V'’" '-T-f T 

1 level 

3 levels 

,/r.L>p,,V ■/“7* 7* 7* 7* ï 

J V* 5 7 9 
7» 7 y 

; 5 '"le?#is 

3-levels 

,v.l. Cent- COnf- 0f Atomlc sPec tros copy. 



In this case, indeed, the position of two levels remains unknown. 

We have already noteu above that for atoms at the end of the 

periodic table a coupling of the intermediate type is characteristic, 

in a number of cases it is closer to a Jj coupling than to a LS 

coupling. 

,, As an example we will give the results of calculating the 

levels of configurations d , ds and fp of Th III.1 

Tables 66 and 6? give the squares of moduli of coefficients 

of decomposition of wave functions of states, obtained by 

di^onalizatlon of the full matrix of electrostatic and spin-orbital 

interaction by functions of LS and Jj couplings. Parameters Fk, Gk 

and the constants of fine structure were determined from experimental 

values of energy levels. The coefficients are standardized so that 

they give a mixture of the corresponding state in percents. For a 

pure LS coupling the contribution of one of the LS terms is equal 

to 100ÍJ the contribution of all others is zero. Likewise in the 

case of a pure jj coupling all 100¾ was apportioned to one definite 

" JJ' state. 

The data given in Tables 66 and 67 show that for levels of 

configuration fp there is an intermediate coupling very close to 

a JJ coupling. Thus, in the second line.of the table the share 

of state j) ^ is 96.7¾, whereas during decomposition by functions 
Oh O 

of a LS coupling the contribution of three terms JG, "‘'G and JF is 

approximately identical. In all the remaining cases, with the 

exception lines 3 and 4, the deflections from a pure JJ coupling 

do not exceed 5¾. In this case it Is natural to classify the state 

In terms of a JJ coupling. Namely this classification is given in 

the first column of the table. 

1G. Racah, Physica 16, 661, 1950. 
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Table 6?. Squares of Moduli of Coefficients 
of Decomposition of Wave Functions of 
Configuration fp of Th III by Wave Functions 
of the Approximation of LS and JJ Couplings 

JJ oouplin« IS coupling 

Laval 
S 1 
TT 

7 1 
TT 

5 5 
TT 

7 3 
TT •0 *0 •F *F •D *D 

(ii). 

(tt). 

(tt). 

(«). 

(tt). 

(tt). 

(tt). 

(tt). 

(tt). 

Ut). 

(tt). 

(tt). 

M.4 

0.0 

0.5 

0.1 

0S.S 

5.3 

0.5 

•5.7 

0.5 

3.7 

0.0 

•5.0 

0.4 

3.7 

1.0 

05.3 

10.1 

0.5 

0.0 

50.1 

0.5 

3.3 

56.0 

0.0 

100.0 

100.0 

1.7 

11.1 

•7.8 

0.1 

3.5 

1.0 

56.4 

0.5 

0.0 

50.5 

100.0 

40.9 

50,5 

0.0 

06.4 

1.3 

31.3 

l.l 

17.6 

34.7 

57.7 

• 

33.5 

34.8 

41.7 

7.» 

43.8 

37.0 

12.3 

63.4 

33.6 

3.0 

24.7 

18.7 

39,0 

27.6 

1.0 

37.3 

2.8 

89.0 

15.5 

50.9 

33.6 

100 

31.1 

15.5 

63.4 
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2 
The levels of configurations d and ds, as follows from the 

table, correspond to a coupling of the intermediate type, equally 

far from both a LS and also a Jj coupling. In this case for 

designation of levels the terminology of a LS coupling Is used. 

7. Other types of couplings. Besides the above considered 

types of couplings, LS, jj and and Jj, a number of others are 

also possible. Let us consider as an example the electron 

configurations containing one strongly excited electron n’t'. The 

distance between this electron and electrons of atomic remainder 

on the average is much larger than the interelectron distances of 

the atomic remainder. Let us assume that for the atomic remainder 

there is a LS coupling. We will designate the full spin and full 

orbital moment of the atomic remainder through SQ, LQ. The 

character of the coupling of the excited electron with the atomic 

remainder in this case Is determined by the relative magnitude of 

spin-orbital Interaction of the electrons of the atomic remainder 

0 
W , the Coulomb and exchange interactions of electron i' with the 

remainder H', H' and spin-orbital interaction for electron 1' if !. 
00M * 

In principle the following types of couplings are possible: 

is, SSPIISUW. iu>r. rr, 
w.i «>*>14*, rr, 
*■ SMWWM. wr. 
■» *'>«•: w»«-. IL, 

If for atomic remainder there is a Jj coupling, then two types 

of couplings of electron V with the atomic remainder are possible: 

Jfi K*. 
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Additional types of coupling LSQ and Jqä, can be realized in a whole 

series of spectra.1 Thus, e.g., the levels of configuration 

2s2p4f C II are well packed in the diagram of a LS0 coupling. 

Couplingb of type LS0, Jt, Jj, JqA, etc., are frequently 

called nonuniform couplings.2 

5 21• Hartree-Rock Method 
of a Self-Consistent Field3 

1. Approximation calculation of energy levels and wave 

functions. Above, in §§ 17-20 we were exclusively interested in 

the relative location of levels; therefore we did not discuss 
1C K 

questions connected with the calculation of radial integrals P , G , 

and so forth, which determine the absolute value of splitting. These 

calculations, Just as the calculation of other energy parameters, 

in particular ionization potentials, are of interest for a whole 

series of divisions of the theory of atomic spectra. The wave 

functions found as a result of such calculations can be used during 

calculation of probabilities of radiative transitions, effective 

^his question is considered in work: A. M. Gutman, I. B. 
Levinson, Astronomical journal 27, 86, I960. 

21. B. Levinson, A. M. Gutman, Transactions of Academy of 
Sciences of Lithuanian Soviet Socialist Republic, Series B, 1 (24), 

85, 95, 1961. 

3There are many different methods of constructing approximate 
wave functions. A very detailed discussion of these methods is 
beyond the scope of this book. Therefore below we will consider 
(and only very briefly) just the Hartree-Rock method of a self- 
consistent field. This is because the approximation of a 
self-consistent field is used above as a zero approximation during 
analysis of the structure of atomic levels. Furthermore, the 
conclusion of the Hartree-Rock equations is a good illustration of 
the effectiveness the Racah "technology". 
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cross-sections of excitation and any other characteristics of an 

atom. This essentially is the main problem of calculation of 

many-electron atoms, since energy levels are easy to obtain (with 

great accuracy) from experiment. 

We have already noted above that exact solution of the 

Schrödinger equation is possible only for the hydrogen atom and 

single electron ions. In all the remaining cases we must use some 

methods of approximation. Usually during calculation the energies 

are based on the variational principle. As is known, the Schrödinger 

equation for steady states 

H9-E9 (21.1) 

can be obtained from the variational principle 

»Î1-WMT-0 (21.2) 

under the additional condition that 

$*•**-1. (21.3) 

Considering E as a Lagrange multiplier in problem about 

conditional extremum we obtain 

*(J *•*<*) -o. 

Executing the variation on we find 

(21.^) 

J»»[W-OT]rfr-0. 

from which In view of the arbitrariness of ÓV» (21.1) follows. 

In the simplest case of a dielectron atom (helium or helium- 

like ions) it Is possible to use some of the direct variational 
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methods, e.g., the Ritz method, or a combination of the variational 

method with the perturbation theory. Calculations of such type 

start from a selection of a certain test function v, whicn is set 

in analytic form and depends on a series of parameters. The 

variation is conducted over just these parameters. The accuracy of 

calculations naturally st^/ongly depends on the selection of the 

test function and the number of modified parameters. A classical 

example of the application of methods of this type are the 

calculations of the helium atom.1 A series of calculations was 

also carried out for element? of first and second period of the 

periodic table.2 

With increase of the number of electrons in an atom the 

calculating difficulties increase rapidly, so much that methods 

of such type are unsuitable for complicated atoms. 

Por many-electron atoms the method of a self-consistent field 

is considerably more effective. In this method the class of 

modified functions is limited to only one conditions, the sought 

function is assumed to be built from a single electron. No 

assumptions are made about the analytic form of the sought functions. 

These functions are results of numerical integration of a system 

of integro-differential equations. 

The system of equations of a self-consistent field was obtained 

by V. A. Pock from the variational principle. The Pock equations 

are frequently called equations of a self-consistent field with 

exchange. The Hartree equations are simplified variant of these 

equations. 

^or a detailed survey of the methods of approximation and 
results of calculation on the helium atom see [3. 3.]. 

2For the results of these calculations see D. Hartree, 
Calculation of atomic structures, IL, I960. 
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In this section the basic place will be allotted to the Fock 

equations of a self-consistent field in a single configuration 

approximation. In the conclusion of these equations we will use 

the general methods of calculation of matrix elements of a single 

electron and two-electron symmetric operators, presented in 

§5 I6-I8. Atomic units will be used everywhere. 

2. Fock equations in single configuration approximation. 

We will look for an approximate expression for wave^ function ¥ of 

a many-electron atom, assuming that this function is built from a 

single electron functions 

?)-1f), (21.5) 

corresponding to a certain definite electron configuration, taking 

into account the requirement for antisymmetry, and, furthermore, 

that it is an eigenfunction of operators S2, S . L2, L , where L 

is the full orbital moment and S the full spin of the atom. The 

radial functions will be assumed orthonormal. In order to obtain 

the sought equations for radial functions P (r), we must require 

that the functional J fVfMt has an extremum under the additional 

conditions 

SP:tr)P.uir)ér-ò„' (21.6) 

(in case of a * £' the orthogonality of functions 

is ensured by the orthogonality of angular parts Y4m, Y£,m,). This 

requirement can te written in the form 

JX.-, Î P«{r)P',{r)dr} -0, 



where the variation shoule be conducted over functions P* . The nil 

parameters xn£n«£are Lagrange factors. Inasmuch as variations 

and fiPn't' are indePencient» (21.7) is equivalent to this system 

of equations 

0(/¼) {Sv/fFA-S*-.*! S lrW =°. (21.8) 

where ^(P*^) signifies variation over functions P*^. The nuraber 

of such equations is evidently equal to the number of the sought 

functions. To execute the variation we must express in evident 

form functional JwfFrft through radial integrals containing 

functions P*fc, This problem can be solved with the same methods 

which were used above during calculation of matrix elements of 

electrostatic Interaction of electrons. 

The nonrelativistic Hamiltonian of many-electron atoms in 

atomic units has the form 

(21-9> 
* i>* 

The symmetric single electron operator l( — is a scalar 

operator, i.e., an Irreducible tensor operator of rank 0. Considering 

this circumstance and using the general formulas of § 16, one can 

simply obtain (compare with conclusion of formula (18.20)) 

« 

“21 ^ [—y A —7-] PmtYimdrdO. (21,10 ) 

Summation in (21.10) is conducted over all single electron quantum 

numbers n, s> : N „ signifies the number of equivalent electrons In m 



'If: ; 
., . ■ .1 .... 

ctate n, ä. Inasmuch as 

A 7 Palir) Y,m (®’ V) " {4 (r*¿) yPm,(r) Ylm (d, V) , 

f), 

in (21.10) we can execute integration over angles, after which 

Î ^ p*i l')*' - 2 N.t (^/)./. (21.11) 

where 

Of __ I # , lil + ll 2 
** TZ.+-W-. (2112) 

Now we have to express the member V* through radial 

integrals. Sections 17 and 18 were devoted to calculation of <U> 

with help of function . of the considered type. In these sections 

it was shown that in the most general case of electron configuration 

(ru) , (n i ) , (n Ä, )‘ , ..., containing several groups of equivalent 

electrons (Including filled shells), <U> can be written in the form 

where 

+ iz 

r> 

-ïjfc-P'tWrir)«*' 

(21.13) 

(21.14) 

(21.15) 

(compare formulas (17.22) and (17.23)) and the prime over the sign 

of the second sum means that (nfc) ^ (n'i1). 

The first sum In (21.13) determines the interaction of 

electrons inside each of groups (nt)N, (n'f)N, the second sum 

determines Interaction of electrons of various groups. 
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i -, 1-1* . 1-1114,(1--,, . , 

Now it is no longer difficult to execute variation over function 

p* * A nl 

¿{^»1#tP,¡(O+22A(«/) JPh{r‘)-pfc Pm,(r')dr'Pm¿r) + 

+E Plr lr') /VH'')*'/>.,<')- 

j Pmtir')dr'Pm.r (r)~ 

"”2l Pmt (r) f dr. 
• I (21.16) 

By equating the coefficient to zero at òP*£ and introducing the 

designation 

ji'r-lO-JP.'rtr')P«{r-)dr', 

*ut 

we will obtain a system of integro-differential equations 

i_L É. i z 2 v* *, _ . 
« 

+ ^221^(^. «'/'íyvr..-/- (/-)-8.,1 
"•'If ■ I • • 

Z'Z ß. («0 n’nylr. .,(0 P.-r (r) - .,, />.,<{r)^0. 

(21.17) 

(21.18) 

(21.19) 

(21.20) 

This system is the Rock system of integro-differential equations of 

a self-consistent field in the signle configurational approximation. 

The solution to this system can be found only as a result of 

numerical integration. 
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If In (21.20) we drop all members containing integrals yx(r), 

and also nondiagonal parameters then we will obtain a radial 

equation for an electron in a Coulomb field of The potentials 

ayl;-m'r{r) and determine the averaged over 

interaction of electrons of shell ni with the remaining electrons 

of the same shell and with electrons of all other shells. This 
I,..' ,-::11 

interaction Includes both the usual electrostatic and also exchange 

interaction. 

In general coefficients fx, ax> and ßx depend not only on 

quantum numbers ni, but also on the whole totality of quantum 

numbers y, determining the considered level of atom. In particular, 

they depend on S and L. Thus, the various terms of the same 

electron configuration correspond to different equations (21.10) 

and, consequently, different radial functions Pn(l, Pn»fci» •••• 

Therefore it would be more correct to change the designation, 

supplying radial functions and potentials with Index y. Below 

we will retain the designations accepted in (21.20), but will 

remember that this system of equations corresponds to a certain 

defined value y. 

In connection with what was said it is necessary to note that 

radial functions P for two different terms of the same configurât ion, 
n it 

in general, nonorthonormal, since they are a result of the solution 

of different systems of equations. Coefficients fx, a* and ßx are 

calculated with help of formulas obtained in §1 17 and 18. Let us 

give for convenience a number of the most frequently encountered 

formulas. 

For unfilled shell at *-0 , 
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(21.21) x n-ai, 2/-2,... 

The given matrix elements U are contained in Tables 35-^2. For 

filled shell tN (N - 2(2* + 1)) 

*-2/, 21-2; ...,0. (21.22) 

For the interaction of unfilled shell with filled (fc1)^ 

(N* - 2(21' + 1)) 

•mNN’bm"*N2 (V +1)0,,, (21.23) 

^•"i^T(fllc*Ilí'),. *—l+r*t+r—2,... (21.24) 

If shell *N is also filled (N = 2(2* +1)), then 

^-4(2/+ I)(2f +1 )fiw; p%-2(t\\C\\r)\ (21.25) 

The nondiagonal parameters enÄn1Jl are selected in the process 

of solving the equation so as to ensure orthogonality of functions 

P ., P ,.. In certain cases (at the maximum values of S and L, 

permissible in the given configuration) it is possible to consider 

that these parameters are equal to zero. Let us note that in 

principle the requirement for orthogonality of radial functions 

P . and P ,. is not obligatory. It would have been possible not 

to set condition (21.6), but then in the conclusion of the system 

of equations it would be necessary to consider the possible 

unorthogonality of radial functions. 



Frequently In specific calculations there is a possible 

impairment of accuracy when in equations we drop all members 

containing nondiagonal parameters e . .1 
nfcn’fc 

The diagonal parameters eni are determined in the decision 

process as eigenvalues of the problem. Let us discuss the physical: 

meaning of these parameters. Multiplying equation (21.20) by 

Pn£and integrating over dr, we will obtain 

•* "(^)*«rj- 
■ Mm'e a 

Z P. K 0,(«/sV'). ■»'I* « (21.26) 

Let us assume for simplicity that shell nl is the only unfilled 

shell of the atom; then 

and 

*.W./I+2 j(ir+1) .fl. 

■'I* a 

Let us compare this expression with the difference 

(21.27) 

(Y./'Vl)— Z I I* ^ YA¿,), (21.28) 

vhere 

(y./^) - J (y./ao (Yi/*)rfT. 

^ (Y.^-YÄi.) - J ▼r'.í.t, (Y./"“*) W.í.z. rfr. 

(21.29) 

(21.30) 

1 por‘ this matter see the quoted book of D. Hartree. 
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H is the Hamiltonian of the atom; H. is the Hamiltonian of the ion, 
E 

ŸySL^Y0A ' ls the el8en wave function of> the Pock equation for the 

N-l 
atom, and t „ T (ya1 ) is the wave function of the ion, built 

Ylùlijl u 

from the same radial functions Pn¿, ••• as wave function 

'‘'ySL^O^^ 

Considering (21.11), (21.13), and also the relationship 

for fractional parentage coefficients and putting in ox and ßx 

from (21.23) and (21.24), we will obtain 

Ae-{X,U+(/*iSL IÊ ¿ I '"YSi) 
m-t 

- £ id&.r^-T.v.l Z 
l>* 

+£a(ar+0 i-(w/«r> - £ £ cr [nt n’t). 

However, from formula (16.44) it follows that 

(21.31) 

£ ioSL P(i»-w.| 2 ¿k-ï.s.0- 
a 

Thus 

(21.32) 

•--«.(t/“»«)- 2 1055...11 ¿(Y/*-ÏAt.). (21.33) 
lAl* 

It is possible to show that this formula is also correct and in the 

general case of an electron configuration containing several unfilled 

shells. In the case of Nn£ = 1, NnJl = 2 and NnJl * 2{2l + 1), i.e., 

for one n*, electron, two equivalent nl electrons and a filled shell, 

there is only one initial term and 
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•■I (21.34) 

According to (21.34) the energy parameter en£ is equal to the 

difference of energies of the atom and the ion, if both these 

magnitudes are calculated with the same atomic radial functions. 

It is also possible to say that Ej is the energy of a "frozen ion," 

the distribution of electrons in which remained the same as it was 

in the atom before removal of the nt electron. It is obvious that 

EJ is larger than energy of the true ion ("unfrozen"), calculated 

with help of the Pock equations. Consequently, 

(21.35) 

where Inj, * Ea ” Ei ls the ionization potential of the nil electron 

and 

à—et-4, (21.36) 

where As<0 and 

In general (21.33) en¿ is the difference between the energy 

of the atom and the energy of the "frozen ion," averaged over all 

possible terms of the latter. If we Introduce the average (in the 

sense of (21.33)) ionization potential Injl, then 

'«""Árf+A*« S<0. 

3- Examples of conclusion of the Pock equations. The system 

of equations (21.20) is applicable to any single electron atom. In 

order to write this system for some specific case, it is sufficient 

to calculate the coefficients^, ax, ßx. This problem is solved 

with formulas (21.21)-(21.35) and the formulas of §5 IT and 18. 
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As an example we will consider the basio configuration of 

2 2^ 
the nitrogen atom, Is 2s 2p . This configuration corresponds to 

Ü 2 2 
three terms: S (ground), P and D. 

For shell (Is)2, (2s)2 

2 

For shell 2p^ 

2 2 
For interaction of shells (Is) and (2s) 

S-«. fc-t. 

For interaction of shells (Is)2, (2p)^ and (2s)2, (2p)^ 

We will write the system of equations (21.20) for term ^S. Shell 

(le)2: 

{” T £+¿“7 (r>+^îm (^)<')“•„} Pu {')- 

(d + *uw|p*«(r)—ÿ(?)Pfp(r)■“0. 
Shell (*»Fî 

(21 37) 

“ { »lu (')+«»M [pu (')-4(r> Ptp <r)-0. 
Shell (2p)*! • t 

{“ W-T^W <'>+^?m (')+ 

«m} PU(0— jn'utf (')Pu(')-0. 

2 2 
The systems of equations for terms P and D will differ from 

(21.37) in only the third equation, since coefficients f , a , and ß 
Jv A A 

in the first two equations do not depend on S and L. We will 

therei’ore write only the third equation of the system. 

2 
For term P 
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{-JV+.Í-T+Kv í'> +¾^. « (D- 

-vl^W-T'Vw'.W-a (2!.38) 

Por term 2D 

rTÍ’+i-T+^U (^-8^^+^(0+ 

+«A-M-v}+*W-i<lw(o+„W4i,(o,. «o... (21.39, 

^ ËâriJ^-SâüâMons. If in equations (21.20) we disregard 

the exchange members, multiplet Interactions, which have 

approximately the same order of magnitude, and nondiagonal parameters 

en£n,£’ then these equations will take the form 

{“ T2?+7 +W«—O/L* 2' Nfe/mWrirl- 
•*r 

(21.tO) 

Each of these equations Is a radial equation for an electron In 

a self-consistent, centrally symmetric field, created by the nucleus 

amd all the remaining electrons of the atom. The system of 

equations (21.to) was offered by Hartree; It was based on graphic 

presentation on a self-conslstentcy of Interaction of electrons. 

These equations are frequently called the equations of a self- 

consistent field without exchange. We must emphasize that the Hartree 

equations differ from the Pock equations not only by the fact that 

exchange Interaction Is not considered In them. Equations (21.to) 

do not contain multiplet Interaction; therefore these equations 

Identical for all terms of the considered configuration. 



The Hartree equations are considerably simpler than the Pock 

equations; therefore these equations are frequently used as a first 

approximation of the method of a self-consistent field. Let us 

note that during integration of the system (21.40) we must ensure 

nonorthogonality of functions P„,.(r). 

5. About a multiconfiguration approximation. Above during 

conclusion of equations of a self-consistent field (21.20) we 

assumed that the sought approximate wave function f is built from 

single electron functions ^nAm> corresponding to a certain definite 

electron configuration. The Pock method allows us to find the 

best approximate functions of such type. Further more precise 

definition of the method requires expansion of the class of modified 

functions. One of the methods of more precise definition of the 

utilized approximation consists of rejecting full separation of 

electron variables. The sought wave function v is assumed to 

depend in evident form on rik and 9lk.1 

Another means is the multiconfiguration approximation. In 

this approximation the wave function Y is set in the form 

(21.41) 

where ¥r are the monoconfiguration wave functions. 

In § 18 It was shown that a number of experimental data tesyify 

to the evident Insufficiency of the monoconfiguration approximation. 

Among such data we can first relate the systematic divergence 

between the calculated and experimental values of the ratio of 

2^4 
differences of terms in configurations p , p , p (compare § 18). 

1 See the quoted work: D. Hartree and V. A. Fock; M. G. Veselov 
and M. I. Petrashen', ZhETF 10, 723, 1940. 



If we assign the sought wave function in the form (21.41) and 
f 

consider parameters A(r) as being subject to determination from 

variational principle simultaneously with functions 4- then we 
r 

can obtain a system of integro-diff'erential equations of a more 

general form than system (21.20). 

The Fock system of equations in the multiconfiguration 

approximation is considerably more complicated (from the point of 

view of specific calculations) than system (21.20). Different 

methods of simplification of these equations are possible. 

It is possible at first to find function ¥r (usually are 

limited by the small number of terms of series (21.41)), by solving 

the Fock equations in the monoconfiguration approximation and then, 

considering 4^ as known, determining coefficients A(r) from the 

variational principle. Such a way, however, has an essential 

deficiency. The asymptotic behavior of the wave function of the 

monoconfiguration approximation 4^ at large r Is determined by the 

magnitude of the energy parameter er. Adding correction members 

A(r,)¥r' to ¥r noticeably worsens the asymptotic behavior of the 

wave function, especially in case of a large difference between 

er and er,. This circumstance plays an important role if the thus 

obtained wave functions are used for calculations in which the 

region of large values of r is essential. 

A considerably more general variant of the multiconfiguration 

approximation was developed by A. P. Yutsis and his colleagues.1 

A. P. Yutsis showed that if functions ¥r and A(r) are determined 

lSee, e.g., Ya. I. Vizbarayte, A. P. Yutsis, Transactions of 
Academy of Sciences of Lithuanian Soviet Socialist Republic, series 
6, 1, 17, 1959, and the references on other works of A. P. Yutsis 
and his colleagues contained In this work. 



simultaneously from the Pock system of equations in the multicon¬ 

figuration approximation, then the energy parameters e^, £pf» ••• tu 

out to be approximately Identical, and wave function (2U41) turns 

out to be considerably more exact. 

This method also allows different simplifications. For 

instance, it is possible to assume that in sum (21.41) all 

coefficients A(r), besides one AÍTq), are much less than unity. In 

this case function can be taken as equal to the solution of 

® configuration equation of Pock, and in finding v (r ^ Fq) 

we can disregard exchange. With such a method of solving the 

equations by members F ^ ro determine the correction to the wave 

function of investigated configuration r0. Calculating such 

corrections in a number of cases leads to a. considerably more 

precise determination of the results. 
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HYPERFINE STRUCTURE OF SPECTRAL LINES 

§ 22. Magnetic Dipole and Electrical Quadrupole 

Moments of Nuclei1 

. 

1• Independent particle model (shell model). In nuclear theory 

model presentations are widely used; different properties of the 

nucleus find explanation in the framework of different models. Later 

we will be most interested in the Independent particle model. 

Numerous experimental facts testify that the nuclei for which number 

of neutrons N or number of protons Z coincide with one of the "magic" 

numbers 2, 8, 20, 50, 82, or 126 differ in stability. We have 

already encountered an analogous situation in examining electron 

shells of atoms. The latter are especially stable at numbers of 
♦ 'Y 

electrons Z » 2, 10, 18, 36, 54 and 86 (inert gases). The assumption 

naturally appears that in nuclei, just as in atoms, the existence 

of definite proton and neutron shells Is possible. The independent 

particle model is constructed on this analogy; according to it each 

See M. Geppert-Mayer, I. lensen. Elementary theory of nuclear 
shelis, IL, 1958; A. S. Davydov, Theory of atomic nucleus, Finmatgiz, 
1958; L. Landau, Ya. Smorodinskiy, Lecture on the theory of atomic 
nucleus. State Technical Press, 1955. 



nucleon In the nucleus moves In a certain effective field created 

by all the remaining nucleons of the nucleus In exactly the same 

way as an electron of the atom moves In a self-consistent field 

created by the nucleus and all the atomic electrons. It is simplest 

tó assume that the effective field in which the nucleon moves in the 

nucleus is centrally symmetric.1 

The information presently available about Eder forces allows 

us to make only the most general assumptions about the form of this 

field V(r). The problem consists of selecting such a potential V(r) 

Which would explain the experimental data in the ver./ best manner 

and especially the existence of magic numbers. To satisfy the last 

condition is not so simple, since in the framework of reasonable 

assumptions about the form of V(r) it is impossible to obtain such 

a grouping of levels which would give the correct magic numbers. 

The existence of all magic numbers could be explained only after 

M. Geppert-Mayer, and also Khaksel, lensen and Zyuss assumed that 

for nucleons in nucleus an essential role is played by spin-orbital 

interactionj this interaction so big that there is a coupling of 

the Jj type. 

A number of essential successes in nucleus theory is connected 

with the independent particle model. In particular in the framework 

of this model it turned out to be possible to establish a selection 

rule for B- and y-transitions in good agreement with experiments. 

^he assumption about sphericity of the effective field is by 
far not fulfilled for all nuclei. One testimony to nonsphericity of 
a number of nuclei is the large magnitudes of quadrupole moments. 
There are even more direct proofs. The most important peculiarity 
of nonspherical nuclei is the characteristic system of rotary levels. 
Such systems of levels are revealed for many nuclei. 
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The shell model allows us to explain many other* properties of light 

nuclei. During specific use of the independent particle model, of 

course, a number of additional effects are considered. Thus, 

analysis of experimental data shows that although spin-orbital 

interaction In nuclei plays so important a role in the pure form, jj 

coupling Is carried out extremely rarely. In most cases there is 

a coupling of the intermediate type close to the jj coupling. In a 

number of cases interaction of configurations occurs. 

2• Magnetic moments of nuclei. The magnetic moment of a 

nucleon is composed of orbital and spin moments 

(22.1) 

Orbital magnetic moment of a proton Is determined by formula 

/. (22.2) 

where mp is the mass of the proton. 

Magnetic moments of nuclei are expressed in nuclear magnetons, 

i.e., in units of 

(22.3) 

In these units factor g^ for a proton Is equal to unity. Por a 

neutron, obviously, g « 0. 

As experimental data show, the intrinsic magnetic moment of a 

proton is directed along spin and gs ■ 5.58. The intrinsic magnetic 

moment of a neutron Is directed counter to spin and g ■ -3.82 
s 

Thus, 

proton: ft— 5,58. ft—1. 

neutron: ft—— 8,82, ' ft-0. 
(22.4) 
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In the framework of the independent particle model the operator 

of nuclear magnetic moment is determined by the sum of single nucleon 

operators 

(22.5) 

The maan value of (21.5) in the state with given value of nuclear 

spin I is directed along I (see (111.7*0); therefore <\i> can be 

expressed through I 

<*>-*/• (22.6) 

Factor gj In (22.6) is called the gyromagnetic ratio. To find gT 

we must calculate u, e.g., 

<Y'*/IH*IY'*/> -<ytM,\l(gllz+gttx)IyIMl>. ( 22.7 ) 

The matrix element of (22.7) is proportional to M^. Putting, 

therefore ■ I, we will obtain 

( 22.8 ) 

Nuclear magnetic moment usually means the maximum projection of 

magnetic moment along the direction of the field 

p-f/. (22.9) 

Nfimely this magnitude is given in the tables. 

The magnitude of gj essentially depends on how moments i. and 3 

of the nucleons are added into the full moment I. In the approximation 

of a jj coupling the following diagram of summation of moments is 

used : 
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(22.10) 

When finding the possible values of I and also when calculating the 

matrix elements in the right part of (28.8) we can use the same 
: 

metnods as in atomic theory. Just as in the atom, filled shells do 

not contribute to nuclear spin; therefore it is sufficient to consider 

only nucleons of unfilled shells. 

In the ground state of the nucleus, as a rule, all protons and 

all neutrons, not in filled shells, have identical moments j 

(the value j for protons and neutrons, of course, can be different), 

iherefore in calculating the magnetic moments it is necessary to use 

methods analogous to those which are used in calculating the matrix 

elements of operators of type P in the case of equivalent electrons 

(see § 16). 

Ht experimental data indicates, the ground state of the nucleus 

is always that state which corresponds to the highest possible 
O -i#.,■ 

number of closed pairs j with moment equal to zero. Using the idea 

of seniority of states (for seniority see § 15), we can say that 

the ground state of the nucleus Is always the state with least 

values of quantum number v for both protons and neutrons. Thus, if 

the nucleus contains an even numbe ’ of protons and an even number 

of neutrons (even-even nuclei), nuclear spin and magnetic moment 

are equal to zero. If the number of protons even and the number of 

neutrons is odd (even-odd nuclei), nuclear spin coincides with the 

moment of a neutron ^ conversely number of protons is odd 

and the number of neutrons is even (odd-even nuclei), then I » ] 
J(p)* 

If both the number of neutrons and the number of protons are odd, 
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where the protons and neutrons are in states with identical values 

of j and identical parity, then I * 2j. These empirical regularities 

considerably simplify calculation. Thus, for even-odd and odd-even 

nuclei spin and nuclear magnetic moment are determined by the last 

unpaired particle 

W. 
What was said above shows that the magnitude of nuclear magnetic 

moment essentially depends on the specific peculiarities of the 

structure of the nucleus. Por this reason measuring the magnetic 

moments of nuclei allows us to obtain valuable information about the 

structure of a nucleus. 

âi:.ylr.uPole moments. The second important characteristic 

of nuclear structure is electrical quadrupole moments Qag. Usually 

the tensor of quadrupole moment is determined by the relationship 

(22.11) 

In accordance with this determination the operator of quadrupole 

moment of a proton (neutrons obviously do not contrubute to electrical 

moments) has the form 

(22.12) 

In nuclear physics, however, it is accepted to drop charge e and 

measure quadrupole moments in barns (10"24 cm2). Thus, for a nucleus 

Q*-2<3Vp-V>- (22.13) 

Summation in (22.13) is conducted over all protons of the nucleus. 

The magnitude of quadrupole moment is characterized by the mean value 
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.) 

of component Q2z in state I, M « I. This magnitude is designated 

Q** <y/M¡ Q" I y¡M> M .,. (22.14) 

Calculations (22.14) are essentially simplified if we go over to 

spherical coordinates and determine the tensor of quadrupole moment 

by the relationship 

(22,15) 

Considering that Q 
zz 2Q20, we obtain 

Q-2<Y//|Q„IY/(> =»2(Y/IIQ|| Y/>, 

(22.16) 

1 
Thus, in state I - 0, I * ^ quadrupole moment Is equal to zero. 

From formulas (22.14) and (22.16) it also follows that In state 

M ^ I 

<Y/<WI Q«lv/A*>-2(YI 110,11 Y/)(- l)t 

" V .r • 

K-mom)' 

(22.17) 

rfe will determine the quadrupole moment of a charged particle in a 

centrally symmetric field in a state with moment i. Considering 

I * Ä, it is easy to obtain (see (14.38)) 

(/|lQJ|/)-<r*>(/,|C*||/)—<r*> /g±$g±| 
(22.18) 

From which 

O as —. .. M 
“ \* X 4| ■ l • (22.19) 



Por a particle with spin in a centrally symmetric field in state 

sfcj with help of formula (14.80) we can likewise obtain 

(22.20) 

(22.21) 

According to (22.21) for states s^, p1/? Q = 0. Formula 

(22.21) determines the quadrupole moment of a nucleus in that case 

when there is only one proton outside filled shells and I = J. The 

magnitude Q can also be calculated when there are several protons 

outside filled shells. These calculations give approximately the 

same values of Q (in order of magnitude) as formula (22.21). 

As has already been noted above, for a number of nuclei the 

values of Q turn out to be significantly larger than this follows 

from (22.21), which is connected with the nonsphericity of these 

nuclei. For an evenly charged ellipsoid of rotation with semiaxes 

c (along the axis of symmetry) and a 

Q “-J T<e* (22.22) 

where q is the full charge equal to Ze for the nucleus. Magnitude 

of this moment rapidly increases with increase of nonsphericity. 

Formula (22.22) can be used to determine quadrupole moment Qq of a 

nonspherical nucleus in the system of coordinates connected with 

the nucleus. Experimentally we always measure the value of quadrupole 

moment Q averaged over rotation of nucleus (of course, we are concernea 

with nonspherical nucleus). Magnitudes Q and Qq are connected 

in the following manner: 

Q-Qm 6(/) /(2/-1) 
(/ + 1)(2/+3) • 
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Factor £(1) at any values of I is less than 1. 

An analysis of experimental data shows that for a number of 

heavy nuclei nonsphericity can be very great. The ratio of semiaxes 

As a rule, for nonspherical nuclei Q > 0, i.e., these 

nuclei elongated eiipsoids of rotation. Nuclear quadrupole moments 

-2 A 2 
Q are equal to 10 cm in order of magnitudes (see Table 68, in 

which values of Q are given for a number of nuclei). The values 

of Q for different nuclei vary within very wide limits. 

For a number of applications it is useful to express the operator 

of quadrupole moment in the state with given values of I through 

components of I. The tensor Qag is symmetric and has a track equal 

to zero. The only tensor of this type which can be constructed from 

components of vector I is 

A* ■■ 4/p + /p/# — y rt*. (22.24) 

Putting Qag * ADaß« °ne can determine constant A by comparing 

matrix elements Qag and D^. According to (22.17) 

<YMf I A, |y/Af> - A <T/Af I 2/J _ */»IvAiO- 

(22.25) 

from which 

(22.26) 

¢22.27) 

In the case of (22.19) 

iSnri) (*!+*) {Vp+y.“y• (22.28) 
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Table 68. Spins and Quadrupole Moments 
of a Number of Nuclei 

Nucleus 
1 

i Q . j Nucleus f 0. I0-» CM» 

Be* 
B" 
0” 
o* 
AI» 
S» 
ff* 
a» 
Cu* 
Ota* 
Ge" 

3/2 
3/2 
3/2 
0 
5/2 
3/2 
3/2 
3/2 
3/2 
3/2 
3/2 

+0.02 
+0.03S5 
—0,004 

0 
+0.149 
—0,064 
+0.038 
-0.0789 
-0.15 
+0.178 
+0.112 

As" 
Kr» 
Kr“ 
In»* 
In"* 
Eu'" 
Eu'« 
Te'" 
Re'« 
He** 
U»' 

32 
9/2 
9/2 
9/2 
9/2 
5/2 
5/2 
7/2 
5/2 
3/2 
0 

+0.3 
+0.15 
+0.25 
+0.75!) 
+0.761 
+ U 
+ 2,5 
+ 5.9 
+ 2.8 

0.65 
+ 11 

5 23. Hyperflne Splitting 

1-* The general character of splitting. Nuclei with moments 

u and Q different from zero experience additional Interaction with 

the electron shell 

(23i) 

Here H and * are respectively magnetic field strength and electrostatic 

potential, created by electrons at the location of the nucleus. 

Interaction (23.1) leads to splitting of the level with moment J 

into a series of components, each of which corresponds to a definite 

value of the full moment of the atom P 

This splitting is called hyperflne. The physical meaning of hyperflne 

splitting is obvious. Due to interaction (23.1) each of moments 

I and J is not separately retained. Only the full moment of the 

atom P Is retained. Interaction (23.1) is always very small; 

therefore splitting of each level can be considered Independent of 

splitting of all the others. In this approximation to determine the 
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energy of splitting we must average (23.1) over state JIFMp, in 

this case the situation is completely analogous to that which we 

met above in examining of spin-orbital interaction in a LS coupling. 

Let us start with the first member in (23.1). Nuclear magnetic 

moment with spin I is directed along I and is equal to g, I. The 

mean value of H in the state with given value of J is directed along 

J; therefore 

and 

W*\yJIFM>- J (23.2) 

1)-/(/+1)-/(/+1)}. J 

formula (23.2) with an accuracy of replacement J -*• L, I -► S and F •* J 

coincides with formula (19.4) for spin-orbital splitting of terms. 

Thus, due to interaction of nuclear magnetic moment with electron 

shell level J is split into a series of components 

f-/+/, /+/-1.|/-/|. 

At J > I (J < I) the number of components of hyperfine structure la 

equal to 21 + 1 + 1). Hyperfine splitting obeys the rule of 

Landé intervals 

ill 

Af>.t mmAF. ( 2 3.3 ) 

This rule Is analogous to the rule of Lande intervals for multiplet 

splitting. Just as in case of fine splitting the ’’center of gravity" 

of hyperfine structure of a level is not displaced 

^(2^+ !)A£>-0. 

-291- 



Let us now turn to quadrupole interaction. The second member in 

(23.1) can be conveniently written in a somewhat different form. Let 

us consider the interaction of two charges distributed in space 

with densities p(r) and p’ir'), where these densities are different 

from zero in the region of r' < r. In this case 

^"J^5? ¢(^ 8'^ (cos a) 

-Jdrrfr'Q (r) ç' (r')Ç ~ (C*(M C*(6>')). (23.^) 

The member k ■ 2 corresponds to quadrupole interaction in the sum 

(23.((). Let us determine quadrupole moment Q2m by relationship (22.15) 

(23.5) 

and introduce the designation 

(23.6) 

Then the member k « 2 in (23.(() takes on the form 

(23.7) 

According to (23.7) interaction of quadrupole moment of the nucleus 

with the electron shell can be written in the following way: 

(23.8) 

(23.9) 

Expression (23.8) is a scalar product of irreducible tensor operators 

of the second rank, where Q2rn does not contain electron variables, 

and n2m does not contain nuclear variables. Using therefore formula 
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(14.63), we obtain 

<yJ!FM\ Wq JyJ/FM>*» 

-A+flC(C+l), 
C- F(F+1)-/(7+1)-/(/+1), 

(23,10) 

(23.11) 

where the constant of splitting B and shift A independent of P are 

determined by expressions 

/t_2_«*(Y/HQ»« Y/) (Y/ïn.!1 Y«0 
2 V JW + »KW—0(2/ + IM¿+3)/(/ + 1)(2/-1)(2/ +1)<2/ + 3) • 

a _ o y/) íy-' im. li y/) / (/+ D /(/+ D 
/7(7+1 )(2/-1 )(2/ +1 )(2/ + 3)/(/ +1 »(2/ -1 )(2/ +1 )(2/ + 3) * 

(23.12) 

(23.13) 

Using (22.16), it is also easy to obtain 

8—7 riff-» • <23.») 

4 ” '"»-V K V (j +!> (iWIcM + I'j'm+J, • (23.15) 

Thus, the full expression for hyperfine splitting of a level has the 

form (the member independent of P is dropped) 

Aftr £C(C+1), 

€-^+1)-/(/+1)-/(/+1).1 (23.16) 

The splitting of a level determined by formula (23.16) is considerably 

more complicated in character than purely magnetic splitting (23.2). 

In particular, at B * 0 the rule of Lande intervals is not fulfilled. 

Sometimes the constant of quadrupole splitting B is determined 
somewhat differently, by writting member BC(C + 1) in the form 

5 C <C 4- n . 3 s> 
7^/01/-1,7,^-1,- •mTmnrnTãT=Tf 
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2‘ Calculating constant A of hyperflne splittings. Having 

experimentally determined the constants of hyperflne splitting A 

and B, in principle one can find the magnitude of nuclear moments 

M and Q. Por this, however, it is necessary to know the connection 

of constants A and B with m and Q. Establishing this connection 

consists of calculating the constants of hyperflne splitting. Prom 

expression (23.1) it follows that to calculate the constants A and 

B we must know the value of the magnetic field and also the second 

derivative of electrostatic potential at the point of location of 

the nucleus, i.e., at the origin of coordinates. 

The magnetic field H(0) created by the electrons at the point 

of location of the nucleus can be presented in the form of the sum 

The first member is caused by orbital motion of electrons, the 

second by electron spins. The magnetic field created by a charged 

particle accomplishing stationary motion is determined by the known 

formula 

The substitution in this expression of |rv]«->A/ gives 

(23.17) 

The corresponding member in energy of interaction has the form 

WH- (23.18) 

where 

(23.19) 
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'rt'-

is the fine structure constant; The magnetic field
■ ie

created by the intrinsic magnetic moment of an electron 2|i^

is determined by expression

(23.20)

where n Is a unit vector directed along r. From (23.20) it follows 

that

(23.21)

Thus, the full expression for the energy of interaction of nuclear 

magnetic moment with an atomic electron has the form

vr - a^/—a, - 3 (M) m) /• (23.22)

Will start from consideration of the single electron problem. In 

this case to calculate the energy of splitting we must average 

expression (23.22) over state ajIF. Using the results of § 14, we 

will write (see (14,52) and (14.61)) the second member in (23.22) 

in the form

Therefore

-yiou//iiic*x.*rii*//n f\)-

(23.23)

(23.24)

The given matrix elements contained in the right part of (23.24) 

are determined by formulas (14.42), (16.67) and (14.76); the 9J symbol 

in (14.67) can be calculated with the formulas given in paragraph 3 

of S 20. Comparing (23.24) with (23.2), we obtain

■«‘>wrn<7)reTll'>'- (23.25)
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Expression (23.25) is inapplicable at * = c. In this special case 

the interaction of an electron with nuclear magnetic moment has the 

form 

w-«A 

<W> FI). 

Thus, in general 

( 0,> 7(7+1) 

Por a hydrogen-like atom 

(23.26) 

(23.27) 

(23.28) 

(23.29) 

i^(0)¡s- 
Mj«* 

and 

1+0 a,-—îSiÆ!_(”) Ry 
•• 0+7)/(/+1) y’ 

Ry. 

(23.30) 

(23.31) 

(23.32) 

(23.33) 

Formula (23.39) is also applicable to atoms of alkali metals, m 

this case, however, factors <l/rî. and |»s(0)|2 cannot be calculated 

exactly. Therefore instead of (23.30) and (23.33) we must use 

different approximate expressions, «ulte frequently the approximati 

assumed as the basis of (19.18) and consisting in a replacement of 

factor 5 by -i-' is used. In this case 

See, e.g., [L. L.] , page 5^7. 
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/<)-_ ^ 
' «ï(/+l)(l+-j)/’ (23.34) 

where parameter can be determined from the magnitude of multiplet 

splitting. It is also possible to directly express a^ through ç 

•*0 • (23.35) 

In the same approximation it is simple to calculate |*s(0)|2. For 

this it is sufficient to replace in expression (23.21) ** by 

and to put Z1 = Z. However, the best results are obtained if we put 

M£|). (23.36) 

where a is the quantum defect for terms ns2S1/2. In this case 

'♦•‘“"‘-âO+ISD- 

Formula (23.38) is called the Fermi-Segre formula. The dependence 

of quantum defect A on n is small and (l + |~|) is close to 1 

since A is almost constant for the given series (see S*''9). Nonethelesi 

calculation of member f~in a number of cases turns out to be essential. 

The above expressions for the constant of hyperfine splitting 

A are obtained in a non-relativistic approximation. For hydrogen 

(23.37) 

(23.38) 

111 ?r the basis and conclusion of the above given approximate 
expressions for constant A see works: S. Goudsmith, Phys. Rev. 43 

Phvs 182J;?2Q Aiq^?kf DfN i,iH56,m 933i E’ Ferml > E* Segr*e. Zs. f. ihys. o2, 729, 1933, L. L. Foldy, Phys. Rev. Ill, 1023, 1958. 



and hydrogen-like ions with small value of Z the relativistic 

corrections are not substantial. At large values of Z calculation 

of the constant A in the framework of 

relativistic theory gives values strongly 

differing from those given above. This 

divergence is compensated by introduction 

in nonrelativistic formulas of correction 

factors the so-called relativistic 

corrections. In formula (23.35) together 

with Pr(JZi) it is necessary to introduce 

the correction Hr(ll^), For a more 

Fig. 23. Relativistic 
corrections F„ and H at 
£ - 1. r r 

precise definition of expressions for 

constant A we also consider certain 

additional effects which lead to additional 

corrections. The most Important is the 

correction for final dimensions of the nucleus, which is written 

in the form (1 - 6). Let us give the final formulas 

'*«4— 

"5<fé+T?»í®)(,“ô)CS)Ry- 

(23.39) 

(23.^0) 

Calculation of corrections Fr(jZ1), H^nZ^ and (1 - 6) is given 

in S 27. Figure 23 shows the dependence of Fr and Hr or at 1=1. 

From the figure it is clear that calculating the relativistic 

corrections is necessary at Zi I 20-30, where and Hr Increase 

rapidly with Increase of 
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Factor U - *) also becomes essential at larBe Z. with Increase 

of Z 6 monotonloally increases. For not very large values of 

Z 6 4 0nlï at 2 " 80-3° « attains values of 0.15-0.20. The 

dependence of i on Z Is shown In Fig. an. The values of (1_ 

j-tj Z) and (1 + |_|) for a number of atoms are gUen ln Table 

Let us now turn to many-electron 

atoms. Let us first consider an 

atom among whose valence electrons 

there is a s electron. As a rule, 

in this case hyperfine splitting is 

determined by the interaction of 

nuclear magnetic moment with this s electron. Therefore we can 

approximately place 

*'"*#■ (23.41) 

Operator (23.41) can be averaged in several stages. First let us 

average (23.41) over the state with the given value of spin of atom S. 

This gives 

(23W) 

where S, is the spin of the /c „ 1 P n oi tne initial ion (S - S1 + s). Then let us 

average S over the state with given value of J 

<S>-£í'±Ü±3<3-H)-¿J¿.»li 
W+TF-•* (23.^3) 

Using (23.42) and (23.43), it Is easy to obtain 

“U*«» 8¾¾-=“• (23.44) 

het us also consider configuration tn. In this case 

(23.45) 

Averaging the first member Is obvlousiy not difficult. In averaging 

immbci it ia again convenient to use formula (23.23). 



\ 

Table 69. Values of Correction Factors in the 
Formula for the Constant of Hyperflne Splitting 

Element z Level . «1! 
,+ £1 K(t‘) (1-6) 

Li/ 
Na/ 
Kl 
Selit 
*kl 
tmtti 
a/ 
U/l# 
(%// 
Till/ 
BiV 

a 
11 
w 
21 
ar 
« 
SB 
87 
SO 
81 
as 

IMS,,, 
at *5,., 

Si'S./, 

»•%. 
fc,s.a 
fc,s.fa 
fc,SV. 

fc,\ 

1 
1 
1 
a 
1 
a 
1 
a 
a 
a 
5 

4.02 
4.31 
8.85 

13.48 
6.88 
9.127 
8.532 

18.53 
4,943 

30,40 
12.98 

1.00 
1.03 
1.06 

1.06 
1,124 
1,101 
1,06 
1,943 
1,100 
1.14 

1.00 
1.01 
1.04 
1,04 
1,15 
1.29 
1.39 
1,43 
2.26 
2.32 
2.46 

1.00 
1.00 
1.00 
0.996 
0.9% 
0,973 
0,96 
0.965 
0,88 
0,88 
0.86 

This allows us to express the mean value of the considered operator 

through the given matrix element of operator V12 (see §§ 18 and 19). 

Let us give the final result1 

X-<a<>. ( 23.46 ) 

r-y {/(/+1)-£(I +1)-5(5+ I)}, ( 23.47 ) 

yLandé factor), (23.48) 

(23.¢9) 

This formula is a generalization of (23.25) for the case of several 

equivalent electrons. For n = 1, L » £, S = |(£nY8Ll|V12|| £nYSL) ■ 

» /37T, 0 * -1 and expression (23.46) passes into (23.25). With the 

tables of given matrix elements V12 (see § 18) it is easy to calculate 

the values of A for any of the configurations pn, dn. In the case 

lE. E. Tress, Phys. Rev. 92. 308, 1953. 
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oompiex configurations constant A contains several different 

parameters <af/, „hich sharply increases the inaccuracy of numerical 

appraisals. 

g^-culau^ the constant B of hyperflne SElming Por an 

atom „Ith one valence electron calculating the constant of „uadrupol. 

splitting B according to (23.6, and (23.», leads to calculating 

the given matrix element 

to/HlI/«/)- (tt) (fr/l|C||/iy). 

Using (14.80), we obtain 

(23.50) 

mwm—i/iS+a+mlEll, 
(23.51) 

(23.52) 

in the nonrelativistlc approximation (light nuclei) the factor <l/r3. 

can be calculated with the approximate formula (23.31,). 

Constant B can also be expressed f 
¿.pressed through the constant of 

multiplet splitting ç Using (23.42) and <?-* Iio\ 
e2 1 ' ; nd (23.4u) and considering 

I . . i I . 9* J _mm 

ao 2Ry, we obtain 



(23.54) 

Let us also consider how to calculate constant B for a group of 

equivalent electrons Jtn. In this case 

(rvSu\\W\rYSLJ)- (jf) (/iic'ii/HrYSiyiiS b'i¡/-v5¿a (23. (23.55) 

2 
Where is the unit tenoor of the second order introduced in §§ 17 

and 18 and determined by the relationship 

(23-56) 

Operator 

(23.57) 

does not contain spin variables. Therefore 

irysu\\if\\rysu)m. 
-l-')s+t-L-J{rySL\\Lri\rySL)(2J+ I) W(LJLJ; S2), (23.58) 

(^) X 
X(-1^-^(2/+ IHíVi^lü'lirYSl/) W(LJLJ\ 52) 

(23.59) 

and 

(23.60) 

The values of given matrix elements U¿ for terms of configurations 

pn and dr' are given in Tables 35-42. 

4. Radiative transitions between components of hyperflne 

structure of levels.1 Electrical dipole transitions between components 

1 In this section the basic results are enumerated without proof. 

For greater detail about radiative transitions see Chapter IX. 
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of hyperfine structure of two different levels yj and y'J' (it is 

assumed that transitions between these levels are allowed) obey 

additional selection rules 

AF-o,±1; F+r»i. (23.61) 

For the relative intensities of transitions we can formulate the 

following rule of sums. 

The sum of intensities of all lines of hyperfine structure of 

transitions yj -+ y’J', starting from the F component of level yj, 

is proportional to the statistical weight of this component, 2F + 1. 

The sum of intensities of all lines of hyperfine structure of 

transition yj +- y'J' finishing 0n the F' component of level y'J» is 

proportional to the statistical weight of this component, 2F’ + 1. 

Electrical dipole transitions between components of hyperfine 

structure of one and the same level are forbidden by the selection 

rule of parity. Only magnetic dipole transitions and quadrupole 

transitions are allowed, in the first case we have selection rule 

(23.61); in the second 

AF-O, ±1, ±2; F+P&2. (23.62) 

5* ^-Íertnlnlng nuclear spin I and moments u. Q from hyperfine 

Hyperfine splitting of atomic levels caused by nuclear 

magnetic moment in order of magnitude and equal to 

«Kç)(¿W,*'«!'£)(;=). (23.63) 

¡^uxtiplet splitting has an order of magnitude 

«•*i(ír)Ky. 

Thus, the ratio of hyperfine to multiplet splitting has an order 
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of magnitude gj ^ 10"4. Nonetheless in spectra of almost a] 1 
P 

elements for which nuclear spin 1^0, there are lines whose 

syperfine structure can be resolved with instruments of high resolving 

power, such as the Fabry-Perot interferometer. (Let us remember 

that factor <l/r3> increases rapidly with increase of Z^.) To 

determine nuclear spin I from hyperfine splitting of spectral lines 

we do not need exact measurements of splitting. The magnitude I 

can be determined from the number of component^ the ratio of intervals 

between components or the relative intensities of components. It 

is simplest to determine I from hyperfine splitting if J, j• > i. 

In this case each of levels is split into 21+1 components, and 

the number of components of a line is simple to find by using selection 

rule (23.61). At J « J* the number of components of hyperfine 

splitting of a line is equal to 6l + 1, and at J = J' * l, it is 

equal to + l. 

If in the Initial or final state J < 1, then to determine I 

we must use the rule of intervals or the ratio of intensities of 

components. Very frequently splitting of one of the levels remains 

unresolved. Splitting of lines, just as splitting of levels, obeys 

the rule of Lande Intervals and the intensity of hyperfine components 

is proportional to 2F + 1. Furthermore, In this case at J > I the 

number of components is equal to 21+1. For instance, the series 

of lines Pr II, connected with transition to level ¿Kj, is split 

into six components. The intervals between these components follow 

the regularity 19: 17: 15: 13: il, rather well and the Intensities 

of components relate to 10: 9: 8: 7: 6: 5. All this certainly 

indicates that nuclear spin of Pr is equal to 5/2 and 21 + 1 = 6, 
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:..üür.^MfgjM 

9 /Tail?. H. ,5. >3 11 
r 2- T* 2 • y! T: 2 • 
2F+1-20; 18; 16; 14; 12; 10.' 

Investigation of hyperfine splitting is one of the simplest ^ 

ana most effective methods of determining nuclear spin. For most 

of approximately 130 stable and long-lived unstable Isotopes with 

I X 0 the value of 1 „as for the first time determined from hyperfine 

splitting of spectral lines. 

The problem of determining nuclear magnetic moment „ from 

hyperfine splitting of spectral lines is considerably more complicated. 

The experimentally measured magnitude of splitting is determined 

by the product of u and H(0). The magnitude H(0) cannot be determined 

from any additional experimental data. Therefore the accuracy of • 

obtained values of u is limited by both experimental errors and 

also the accuracy of calculating H(0), i.e.. the constants of splitting 

r’or a long time of the values of „ obtained from hyperfine 

splitting „ere considered not very reliable, since in many cases 

they differed from the results of direct radio frequency measurements 

by 10-15* and more. The situation was changed for the better when 

during calculation of the constant a correction for flnitenese of 

nuclear volume (1 - 4) began to be Introduced. The Ferml-Segre formula 

augmented by relativistic correction and the factor (1 - «), allows 

S In a number of cases to determine u from hyperfine splitting with 

precision on the order of 1*. For Instance, from measurement, of 

hyperfine splitting the magnetic moments of Ag10? and Ag^ .re equ.1 

t o 

State Technical PresstG1948?°PiC cietermination of nuclear moments, 
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m“*-—0,129, 

whereas later radio frequency measurements gave 

I»'** —0,113064±4-10“*, 
|»,##0,129914±4-10-* .1 

The values of the magnetic moment of cesium obtained by the raido 

frequency method and from hyperfine splitting of the 6s2S,/? level 

differ by 0.4*. The Permi-Segre formula without the factor (1-6) 

gives divergence of 3-9*. Likewise for La III introducing the factor 

(1 - 6) decreases the error from 4.2 to 0.1*.2 

Additional difficulties appear during determination of the 

quadrupole moment of the nucleus from hyperfine splitting. The 

presence of Q * 0 leads to disturbance of the rule of Lande intervals. 

Usually these deflections are smally especially for light nuclei. 

In separate cases (large Q and small y) the character of splitting 

completely changes. In principle one can determine Q by these 

deflections. For this we must know the second derivitive of the 

electrostatic potential *"(0), created by electrons in the nucleus. 

Although this magnitude, or the constant of splitting B proportional 

to it, is calculated in the same approximation as A, the situation 

here is considerably worse. At present there are no sufficiently 

accurate direct measurements of Q which would allow us to estimate 

the accuracy of these calculations and the role of different 

*H- Kopferman , Proceedings of the Rydberg Centenlal Conference 
on Atomic Spectroscopy, Lund., 1955. 

2M. P. Crowford, A. L. Schawlow, Phys. Rev. 76, 1310, 1949. A 
detailed discussion of data on hyperfine splitting and their 
Interpretation is contained in surveys: G. Breit, J. 0. S. of 
America 4?, 446, 1957; Rev. Mod. Phys. 30, 507, 1958. Various 
question connected with a more precise definition of formulas for 
constant A are discussed in the work: C. Schwartz, Phys. Rev. 105 
173, 1957. 
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corrections. In particular, it is not fully clear in what measure 

and how we must consider the correction for polarization of electron 

shells to nuclear quadrupole moment (the so-called Sternheimer 

correction)-.1 Due to these circumstances the accuracy of determining 

Q is considerably less than the accuracy of determining y. 

If y and Q are known, then from hyperfine splitting one cán 

determine H(0) and <J>"(0). A number of typical values of these 

magnitudes is given in Table 70. 

T^ble 70. Values of H(0) and 
4» (0) for Atoms Na, Rb, Cs 

• »(Ofc « f*(0). •¡CM* 

Hi 48-10* 
4,2-10* 
2.5.10* 9-I01* 

th 1.3.10* 
1.6-10* 
0.6-10* 7.5.10» 

Gi 2,1*10* 
to* 10* 
1.3* 10* 11*10« 

Highest multipole moment of the nucleus. The potential of 

the electrostatic field created by distribution of charge p(r'), 

can be represented in the form of a sum of the potentials of different 

rnultipole moments (see (23.4)) 

• I 

4«* mrn-4 64) 

where ■ï-,) h. : 

W- 

S r'lcí*í*'. (23.65) 

lR- Sternheimer, Phys. Rev. 80, 102, 1950; 84, 244, 1951; 86, 
316, 1952; 95, 736, 1954; 105, 158, 1957. 
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Values £ = O, 1, 2, ... correspond to a field of full charge 

of system, to dipole moment, quadrupole moment, etc. 

In accordance with (23.66) the operator of multipole moment 

Qi* the nucleus on the order of £, m has the form 

Qi.-ÇrfCÍ.í«*,), (23.66) 

where summation is conducted over all protons of the nucleus. 

Inasmuch as during the operation of inversion the spherical functions 

with even value of l do not change, and those with odd i are 

multiplied by (-1), the mean value of operator (23.66) in the state 

of nucleus of defined parity is different from zero only for even 

values of Ji. Thus, the nucleus has different from zero, electrical, 

multipole moments on the order of ä « 0, 2, 4, .... All odd moments, 

e.g., dipole moment U « 1), are equal to zero. 

Likewise the magnetic field of the nucleus is represented in 

the form of a decomposition by fields of magnetic multipole moments 

^lm* We can show that in this case, conversely, all even moments 

M^m are equal to zero. 

The presence of highest multipole moments also affects the 

magnitude of hyperfine splitting. Apparently, the biggest value 

belongs to octet (£ * 3) nuclear magnetic moment. In principle the 

magnitude this moment, just as moments y, Q, can be determined from 

the magnitude of hyperfine splitting.1 However, due to the small 

size of the corresponding addition to splitting, caused by y and Q, 

during realization of this possibility a number of difficulties 

will appear. At present the question on the role of highest 

multipole moments of the nucleus in hyperfine splitting of atomic 

■ bee e.g. îchwartz, Phys. Rev. 97, 380, 195| o, 173 , 1957. 
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lines has been studied very little. 

§ 2^- Isotopic Effect1 

^' Isotopic—shift of atomic levels and structure of nucleus. 

The energy levels of two isotopes of certain elements shift relative 

to each other. The simplest example of this isotopic shift is the 

difference in terms of hydrogen and deuterium. In this case 

-«(i-S). (24.1) 

where is the energy of the zero approximation, corresponding to 

a motionless nucleus. For hydrogen M = mp; for deuterium M - 2m ; 

therefore the levels of deuterium are shifted relative to hydrogen 

downwards by a magnitude of Thus, the lines of the deuteriur 

spectrum are shifted in the direction of larger frequencies or 

smaller wave lengths. 

Isotopic shift (21(.1) Is connected With the motion of the 

nucleus relative to the center of Inertia of the atom. As M -. . 

Isotopic shift disappears. Por complicated atoms the effect of 

finiteness of nuclear volume is added to this effect of mass 

finiteness. The field inside the nucleus is not a Coulomb field, 

which naturally finds reflection in the location of terms. Audition 

of one or a pair of neutrons to the nucleus leads to a change in 

the radius of the nucleus r0 and, consequently, to a displacement 

of levels. The binding energy of electrons in the atom is less for 

an isotope with larger mass (M* > M; r¿ > r0). The levels of this ■ 

.. detailed.account of experimental and theoretical data 
isotopic effect is contained in thp anmrotr nr a o , on 
P. Dontsov, UPN c°^a“«d lh the survey of A. R. Strlganov and Yu 
-<¡0 c,ny 10 c 0. on • , ’ °et dlb0 3. Breit, Rev. Mod, Phvs 
I ’ Y UP- Brxx, H. Kopfermann, Rev. Mod Phvr' 'in 'r~u 

Kopferman , Nuclear moments, IL i960 > J-SdS, 



isotope are correspondingly shifted upwards. Thus, the effect of 

volume is opposite in sign to the effect of mass (24.1). Isotopic 

shift is considered positive if the spectral line corresponding to 

the heavier isotope is shifted in the direction of larger frequencies 

(as in the case of (24.1)). Thus, the effect of volume gives a 

negative shift. 

The nuclei of isotopes can differ not only in mass and radius, 

but also by other properties. For instance, these nuclei can be 

differently nonspherical, which also leads to isotopic shift. We 

will call all these effects connected essentially with distribution 

of proton charge in the nucleus, the effect of volume. For light 

elements the effect of volume is negligible as compared to the 

effect of mass. Conversely, for heavy elements (Z > 60) the effect 

of volume is decisive. For elements in the middle of the periodic 

table the magnitude of both effects is approximately identical. 

Investigation cf the effect of volume allows us to obtain some 

valuable information about the structure of the nucleus; therefore 

namely this effect is of greatest interest. To separate the effect 

of volume we must calculate that part of isotopic shift which is 

determined by the differences in masses of the isotopes and subtract 

it from the observed shift. 

During analysis of isotopic effect for even-odd, odd-even and 

odd-odd nuclei we must consider the possible presence of hyperfine 

splitting. Isotope shift in these cases is determined from the 

distance between the centers of gravity of the hyperfine structure. 

2. Effect of mass (normal and specific), in the system of 

the atom's center of inertia the momentum of nucleus P and the 

momentum of electrons pi are connected by the relationship 
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Therefore the kinetic energy of the nucleus in this system of 

coordinates can be expressed through 

S~£lïr“S-{Efi+Ea?}* (24.2) 
i <** 

According to (24.2) the kinetic energy of the nucleus is approximately 

H times less than the kinetic energy of the electrons. This allows 

us in the first approximation to consider the nucleus as motionless, 

and the motion of nucleus can be considered in the framework of 

the perturbation theory. In accordance with (24.2) motion of the 

nucleus leads to a shift of levels by a magnitude 

(24.3) 

The first member in (24.3) is called normal displacement, the second, 

specific. Calculation of normal displacement is not difficult. 

Por periodic motion the mean value of kinetic energy is equal to 

the mean value of total energy (virial theorem) taken with reverse 

sign 

-S* (24.4) 

Thus, the normal effect is determined by the same expression as 

isotope shift in case of the single electron problem (24.1). 

The second component in (24.2) 

jf Stet—¿y.#i#a (24,.5) 
i#* i>* 

is a symmetric two-electron operator. Therefore in calculating AEC 

we can use a number of results obtained above in § § l6-18. We will 



Start from a consideration of the simplest case of two-electron 

configuration £1'. In calculating the matrix elements of operator 

tr 1 
V « we can ascribe state i to the first electron and state n ’ 

to the second and add the exchange member to V 

<VSL\ßjtW$L>- 

-«,4ai#i#i|i/ts¿>-</l/^£\ßtßt\iXsL>. (2^.6) 

Inasmuch as the matrix elements of operators p2 are different 

from zero only for transitions ^ * 1, + *» * i, the first 

member in (24.6) turns into zero. For the exchange member have 

-</¿s¿ 1,.,,1/,/:50- 

1)-^^/,/^1,.,,1/,7,50. ( 24.7 ) 

The matrix elements p1 and p2 can be expressed through matrix elements 

r^ and r2f inasmuch as p » mr 

<« I# I *> — — iw»,/« J r J A>. 

Therefore the matrix element in the right part of (24.7) can be 

written in the following form: 

—•Ç-'ia; m<1/¿LIr,I/;tiL-></;/^(r,i/;. (24 8) 

If in this sum we disregard the dependence of frequency u(£L; £'L") 

on L" and put w - then expression (24.8) will take the form 

•Vtt' </,/& J r.r, I /,/,5¿> » . <r>j,. </|/rs¿ j cjç; j /i7>5¿>> 

Now It is easy to obtain 

âEc-¿¿(/UC* JJ O* Wilirti ¿1)*VV <r>*/. a 

(24.9) 

(24.10) 



o 

The upper sign In (24.9) corresponds to singlet states, the lower, 

to triplet. The coefficient W in (24.9) satisfies the condition of 

triangle ¿(£¿'1), therefore AEC / 0 only under the condition that 

* = * 1. Thus, specific displacement occurs only when the electrons 

are in states among which doublet transitions are possible. Thus, 

for configurations npn'd, nsn’p, ... aec * 0, and for configurations 

nsn a, npn'p, ndn’a, npn'f, ... aec « 0. From the given conclusion 

it is clear that specific displacement has a purely exchange character. 

Tne factor m2<i)fcÄ’<r>££' can be expressed through an oscillator 

strength of transition nil + n'*’ (see (31.47)): 

m. —, f I 
2mmf Lã 1 * 

A£t-±5y*«(2/+l)ir(/r/7; ¿I)/,,. «•I'. (24.11) 

greatest practical interest are configurations containing an 

s electron (helium and helium-like ions). Putting V - 0, we obtain 

1 r(iooft ¿i) 

p%P) mm ^ 

Mc iiuïp'P)-¿y/.»). 
(211.12) 

(211.13) 

According to (24.12) and (24.13) the accuracy of calculation AEC 

is determined by the accuracy with which It Is possible to calculate 

tns oscillator strength fnl> Prom conclusion (24.9), ánd aleo 

from comparing (24.9) with (17.45) It Is easy to see that <V> 

coincides with member .g^1 of the exchange electrostatic Interaction 

of elec 
Irons a,£'. If we replace the radial integral G1 by im2«2 ,<r> 

a somelhat1?^»^ o®0lllftor strength of transition In this case has 
a somewhat formal character, since both state nt and n'il are occupied. 



Let us now turn to many-electron configurations. In the same 

approximation as was used above in calculating <V> for configuration 

U.', AEC - <V> can be obtained from the exchange part of electrostatic 

interaction by replacing the Slater integrals G1(n£; n'£') by 

1 2 2 2 » 
föfli “ <r>n)l, n'i* an<^ dropping all the remaining members with k / 1. 

The Integrals G can enter: in exchange interaction of two filled 

shells (-2U||C1||£* )2G1), in exchange interaction of a valence 

* electron t with the filled shell = £ * K-Qz + D^UUc1^')^1) • 

and in exchange interaction of valence electrons. 

Thust AEç Is composed of three parts 

Alíe ■■ A^c + AFc+ 
a£(io—- ¿a/.,, </•>;,., /-/' ± i, 

A^(if)——im,r±\. 

Members aE¿ and aE» in (24.1^ are determined by the sum of members 

(24.15), (24.16) over all shells. All these members have the same 

sign as aEh. Member aEJ» is different from zero when among the 

valence electrons there Is oñe or several pairs of £, £’ = ¿ * i 

The contribution of each such pair £, £' in AEjJf is equal to 

¿f,*V <!•>?,., (24.17) 

where g1 is the coefficient in the expression for energy in the 

Slater integral G1. In contrast to AE¿ and AEg, aE£' can have either 

sign. For terms 1L and of two-electron configuration ££' (see 

(24.9)) 

*.-±/^*(//77: ¿i). 

^or configurations containing three or more electrons, coefficients 

g-^ can be calculated with the methods expounded in § 18. For a 

large number of many-electron configurations of practical interest ( ) 

(24.14) 

(24.15) 

(24.16) 
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the values of these coefficients can be taken directly from the 

known expressions for energy [K. Sh.; R II; R III]. 

A characteristic peculiarity of the effect of mass, both normal 

and specific, is the proportionality Thus, for two isotopes 

with mass numbers and A^ 

At sufficiently large values of A (practically at Z > 10) we can 

2 
approximately set A^ ^ A and In this case isotopic shifts 

with sufficiently good accuracy are proportional to the differences 

of mass numbers 

(24.18) 

If M,—>»,1*14,—^4,1=(4,-4,1..., the intervals between lines of isotopes 

are Identical. As for the sign of the shift, even when AEC has the 

same sign as AEH, the shift of the line is not necessarily positive. 

It is still necessary that the upper term is displaced less than 

tne lower. Otherwise the shift of spectral line will be negative. 

If we disregard the change in states of the internal electrons 

during optical transition, then member AE¿ is identical in the Initial 

and final states of the atom. Therefore the shift of the llné Is 

aetermined by the difference of values of sum 

A£<c +ÃJfe 

for initial and final terms. 

A comparison of the obtained formulas with (24.2) shows that 

specific displacement of a line has the same order of magnitude as 

normal. In principle the full shift due to effect of mass can be 

either positive or negative. However, as a rule, this shift is 

positive (Table 71)• 



Depending on mass Isotopic shift rapidly decreases with increase 

of A ( according to (24.17) approximately as 1/A2). At Z ^ 20 this 

shift is already thousandths of a cm”1. As an illustration Table 71 

gives the data on isotopic shift for certain lines of a number of 

light elements. In the last column of the table there is a comparison 

of experimental values of shift Av3Kcnand the calculated values of 

AVH+ AV When Avc * ^ these calculation require knowledge or 

calculation of the forces of oscillators of transitions f 
n£, n'£ * 

(#ee I 33)* Therefore it is impossible to expect very good agreement 

hitween calculation and experiment. 

With rare exceptions the divergence of calculated and observed 

Values of shift is small. However, it is of note that in cases of 

large divergence, e.g., for Ne or Mg, the computed value of Av 

1» less than the observed. One possible cause of this is disregarding 

the deformation of internal electron shells during optical transition. 

As a result of this deformation the magnitude AE' is different in 

the initial and final states. Change of AE¿ during optical transition 

by no means can give a basic contribution in the observed displacement1 

For atoms with number of electrons Z < 10 AE¿ is identically equal 

to zero, since such atoms have only two filled shells, (Is)2 and 

2 
(2s) . Member AE^ first appears for Ne and Mg (interaction of 

shell 2p with shells Is and 2s ). Exactly for these elements the 

computed values of Av^, turn out to be sharply understated, while 

for lithium, boron, carbon, nitrogen and oxygen the calculated data 

will agree with experimental. 

lI. Gol'dman, ZhETF 24, 177, 1953. 

'.) 
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?able 71. Comparison of Calculated and Experimental Values of 
Isotopic Shifts 

£1 emei a 

H'-H* 

He*—He4 

B1*—B" 

C—C* 

O^—O" 

Ne1* — Nt** 

Mg“-Mg** 

a**-a»’ 
K**-K« 

Transition K A tom*» «T' 

U*S 

3c’5 

2c*S 

2p*P, 
*» 

2p*‘S.- 

3c*S,- 

3s- 

3i*'S,- 

3s*’S,- 

toip'P, 

41*5,- 

4s*S, - 

-3p'P 

-3^*P 

-3s*S, 

T 
-2p3i 'P, 
-iipV. 

-3p 

-3s3p'P, 

- 3s3p *Pi 
- 3s3d 'D, 

4p*P, 

■4p'P i 

1318.7 

8018.7 

3888.8 

3407.7 

2478.8 

8446,4 

7173,0 

2852.1 

4571.1 

8806.8 

4810.1 

7600,0 

22,300 

0,840 

1,404 

-0,168 

-0,156 

0,14 

0,068 

0,061 

0,083 

0,)85 

0,035 

0,008 

Av-, «T* 

22,386 

0,803 

1,153 

0,108 

0,142 

0,05 

0,034 

0,062 

0.038 

0,020 

0,018 

0,000 

Avc, CM"1 

-0,117 

0,178 

-0,386 

-0.295 

0,08 

-0,0038 

-0,0094 

0,012 

0,024 

AVg+AVo mT Av,„. * '• 

m mmm 4mR#4HiO 

0,7718 

1,338 

—0,188 

-0,153 

0,13 

0,030 

0,053 

0,050 

0,044 

8,8 

8.4 

0 

1.8 

7.1 

88 . 

13.1 

38,7 

48.2 

The magnitude of isotope shift can depend on certain additional 

effects, such as interaction of configurations. For instance, there 

is a systematic divergence of the calculated and experimental values 

of shift for Is ns S- and IsndD terms of He. In this case one would 

expect exact agreement, since for these terms specific displacement 

is equal to zero. 

For atoms with number of electrons Z > 20 the effect of volume 

starts to play a role; therefore an analysis of experimental data 

should be conducted taking this effect into account. 

3* The effect of volume. Isotope shift of energy level of an 

s electron, caused by a difference in nuclear radii àrQt is 

determined by formula of Racah and Rosenthal, Breit: 

4iwJ - . . -_«, 
(24.19) 

-317- 

: 



where y = /l - a2g2 . a fine structure constant^ | tp (0)|2 is 

the square of the modulus of the nonrelativistic electron wave 

function at point r * 0. Factor B(y) depends on "the distribution 

Of proton charge in the nucleus. If we assume that the nucleus Is 

spherically symmetric and that the charge is distributed evenly 

over the surface of the nucleus 

then 

V{r) 

VW 

M 

’ r • 

V /■<r„ 

(24.20) 

(24.21) 

For equal distribution of proton charge over the volume of the 

nucleus 

B<m 
Í»Y+1)(2y+3] 

(24.22) 

(24.23) 

Factor B(y) can be calculated in a number of other cases. For 

instance, for potential of very general form 

J W "^+n+î)(2Y + l) * 

'<r. •• (24.24) 

(24.25) 

Formula (24.19) was obtained in the framework of the perturbation 

theory. Also perturbation equal to the difference of true potential 

V(r) and Coulomb potential - ~rt increases without limit r + 0. 

This circumstance makes an additional appraisal of the accuracy of 

this formula necessary. A stricter conclusion of the formula of 

volume effect, without using perturbation theory (see 5 27), shows 

that in case of potential V(r) (24.20) in formula (24.19) it is 
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necessary to the introduce correction factor1 

(Y+I)(2+y) (24.26) 

Por light nuclei Z % l. Por heavy nuclei the difference of ç from 

1 becomes substantial. Thus, for mercury ç » 0.8. 

Formula (24.19) can be simply generalized for the case of ä * Q. 

However, of greatest interest is namely the case of a « 0, since at 

l/O the effect is considerably less than for an s electron. 

The structure of an atom’s electron shell is reflected in 

formula (24.19) through factor |^s(0)|2. In calculating Ws(0)|2 

we can use formula (23.37). This formula, as was shown above, 

ensures fair accuracy. Substituting (23-37) in (24.19) gives 

(24.27) 

According to this formula the effect of volume is opposite in sign 

to the normal effect of mass and increases with increase of nuclear 

charge and radius. If we assume that the radius of the nucleus is 

proportional to the cubic root of the mass number 

r.-*A (24.28) 

then displacement is proportionally to increase of mass numbers 

(24.29) 

For convenience of comparing formula (24.27) with experimental data 

we will present it in the form 

(i+IÊDctr. (24.30) 

1 Ya. A. Smorodinskiy,ShETF, 27, 1034 , 1947. 
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Magnitude C does not depend on the structure of the electron shell 
"Jr. 

of an atom and is wholly determined by the properties of the nucleus. 

Comparing theoretical value of C calculated by the formula (24.31) 

in the framework of some definite model of the nucleus with experimental 

value 

(l+|^|) , (24.32) 

allows us to estimate the fitness of the model. An analysis of 

experimental data shows that the theory in general correctly transmits 

the basic qualitative peculiarities of the phenomenon. In particular, 

in accordance with the above given formulas, isotope shift increases 

with increase of Z. Setting some specific distribution of proton 

charge p(r), from the volume of the nucleus we can quantitative 

compare the theory and experiments. 

If in (24.31), (24.34) we place the value of X = 1.2,10~1^cm 

(this value follows from experimental data according to scattering 

of electrons on the nuclei), then on the average for potentials of 

the type (24.20), (24.22) and (24.24) the ratio of ^ I to r* 
0 pa.cw 2 ^ 

Thus, detailed calculations give oversized values of displacement. 

Introducing the correction factor £(Y) leads to a certain decrease 

of the other computed values of C, but does not save the position.1 

Considerably better agreement is obtained if we start from 

continuous distribution p(r) (without clearly expressed boundary). 

1 For a discussion of other possible causes of the noted 
divergence see A. R. Striganov and Yu. P. Dontsov, UFN, 55, 315, 1955. 
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"" Pc-sible to show that in this case the shift of levels is 

expressed through average-square radius 7«-(|e.rVr)V.. This 

magnitude also determined certain other effect, e.g., scattering 

of fast electrons on atoms. An analysis of all these effects, 

including isotopic shift, leads to close values of '39(l.14-1,2))( 10a* 

The ratio of C 3Kcr/Cpacil has sharp peaks in the region of 

rare-earth elements, and namely in spectra of neodymium, samarium 

and europium (N = 88, N* * 90). Such jiynps, although less sharp, 

also occur at values of N = 50, 82, 126. 

Lr.iks and Kopferman 2 connected the presence of these anomalies 

with nonsphericity of nuclei. The biggest displacement is given 

by isotopes of ^Eu1^ and g^Eu^-p. Anomalous large values of 

quadrupole moments are characteristic for this pair of isotopes; 

quadrupole moment for Eu1-^ ls approximately twice as large as 

for Eu151. 

The even-even isotopes 62Smg^° and 62Sm^2 according to the 

shell model should not have quadrupole moments. Briks and Kopferman 

assumed that nuclei Sm150 and Sm152 are nonspherical and have 

quadrupole moments approximately the same as for Eu nuclei with the 

same number of neutrons. If from the magnitude of these quadrupole 

moments we estimate the degree of nonsphericity of nuclei of 

samarium and then calculate the corresponding increase of isotope, 

shift, then we obtain good agreement with experiments. Likewise 

one can explain the displacement of lines of isotopes ¿„Ndlí8 

..,150 60 88 
60Nd90 ’ 

1k. R. Bodmer, Proc. Phys. Soc. A66, 1041, 1953; N. N. Kolesnlkn 
Dissertation, Moscow State University, 1955. Koiesniko 

-See G. Kopferman, Nuclear moments, IL, i960. 
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CHAPTER VII 

RELATIVISTIC CORRECTIONS1 

§ 25. Dirac Equation 

1. Dirac equation. In relativistic theory the steady states of 

an electron in an arbitrary electromagnetic field characterized by 

potentials <p and A are determined by the Dirac equation 

pf.-aUp + M)}!!««). (25.1) 

p 
In this equation E0 = me is the energy of rest mass, p = -ihV is 

the pulse operator, a , a , a , and ß are matrices 
A Z 

000 K /0 00—/\ 
00,0 . „ /0 0i 0\ 
OIOOJ* a/“lo-i 0 0 J* 
1000/ \/ 00 0/ 

0 1 0\ /1 0 0 (h (25.2) 
oo-M.../0! 0 o\ 
00 oJ*P-loo-i 0 • 

-10 0/ \oo 0-1/ 

Members E and eq> in the braces in (25.1), not containing a and ß, are 

assumed multiplied by a unit matrix 1. The wave function u, satisfying 

1In the theory of atomic spectra necessity of calculating the 
relativistic effects appears extremely rarely, and the actual effects 
play the role of small corrections. Therefore, below are only 
expound the basic information on the Dirac equation for an electron in 
a Coulomb field necessary for understanding the method of calculating 
these corrections. For the same reason in this chapter we will not 
consioer questions connected with the interaction of an electron with 
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equation (¿ú.i)j ís also a four-row matrix 

-§)• (25.ï) 

In equation (25.1) the usual law of multiplication of matrices is 

accepted. For instance, 

(ßii)i ™ Js Pi*®*; (®*P)j “ JS b*Pmï (®**) — 2 •***• 
Asi Ami 

(25,4) 

Thus, in relativistic theory the state of an electron is characterized 

by four functions, u^r), u2(r), u^r), and u4(r), components of wave 

function u. Equation (25.1) is a system of four equations relative 

to these functions 

-(cpM+tAt)Ht — ¡(cp, + *A,)at +(cpt +«*,)«„ 
(£+rf—£,)11,- 

- {‘P* +1 (cp,+*A,) *, - (epa+*Ag)ßt, . . 
(£+í^+£,)■,- . (25.5) 

- {‘Pm + ^*)«, -1 (‘P, + **,) «, + {‘Pm+**m) 
(£+*? + £,K *> 

“* {‘Pm + *^m) «, +1 {‘Pf + », — (fpf 

According to (25.4) the probability that an electron is located in a 

unit volume dr is equal to 

(25.6) 

Likewise one can generalize the remaining relationships of 

nonrelativistic theory, in particular the formula of perturbation 

theory. To Integration over coordinates, as this occurs in the 

[FOOTNOTE GONT'D FROM PRECEDING PAGE], 
field of radiation, e.g., the Lamb shift. These very important, 
fundamental questions do not have large practical value for 
spectroscopy. Por greater detail about relativistic effects see: 
¡_B. S.]; A. I. Akhiezer, V. B. Berestetskiy, Quantum Electrodynamics, 
Fizmatgiz, 1959. 
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Schrödinger theory, we add summation over components of u. Thus, 

matrix element of a certain operator H’ is determined by the following 

formula: 

<«• I #/'!•>- J J •iHuioJr. 
f. Tal (25.7) 

We must remember that operator H’ is built with help of Dirac matrices 

a, ß and unit matrix I. These operators are, e.g.. 

^10°1 
00 1 Oj-f* 

0 0 1; 

0 1 
0 0- 

1 00 o)Mr 
-1 0 

(25.8) 

Equation (25.1) can also be written in a somewhat different form. 

Let us express matrices a , a , a through two-serial Pauli matrices a. y z 

(25.9) 

and matrix ß through a two-series unit matrix, which we will designate 

just as the four-row unit matrix by means of I 

Let us also introduce two-component wave functions 

(25.10) 

*“(x)- (25.11) 

By putting (25.10) and (25.11) in (25.1) we obtain a system of 

equations relative to two-component functions ¢, x 

(£+*¥+^)X+»(«#+M)$«0. / 
(25.12) 

In such form of recording, as this is easy to see, the first and 

second, ana also third and fourth equations (?5.5) are united. 
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Let us note that a, and also a are not vectors in the usual 

meaning, inasmuch as cx^, a^, a^; a^, c^,, do not uepend on 

r!»'lf:ctu-n Of tho system of coordinates. Designa ting operator 

,/) -/ j, i a7pz by means of ap (and analogous designation of other 

operators of the same type) is only a convenient form of recording. 

From a determination of matrices a this identity follows 

W){aF)-aF+ta[Or\, (25.15) 

where G, F are arbitrary vector operators. In particular, at Q = F 

(v^(aF)»F\ (25.1^) 

2. Electron spin. For convenience of interpretation we will 

convert equation (25.1) into a second order difierential equation. 

Acting on (25.1) through operator 

{£+#*+ß£,—«(c*+M)} 

and using (25.14) and (25.15), and also permutable relationships for 

matrices = a^, ay = a= a^, ß =» 

*20^. (25.15) 

one can easily obtain 

{*+«*-^-¿ (,+7 *)’+jU, (£+-£,)•- 

-SS^+'SS«*}*-«. (25.16) 

where t, H designate the intensities of electrical and magnetic 

fields 

g—Vfp; //-rotA 

and 

*-(;¡¡). (25.17) 

Let us compare equation (25.16) with the Schrödinger equation 

corresponding to the relativistic Hamiltonian 
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(25.18) /1-^+ j/V(#+¿4)'+*V. 

DecomT^oßing the root in (25.18) in series by degrees of p we have 

+ -g-i?(*+■£*)• (25.19) 

As 0 (25.19) passes into the usual nonrelativistic Schrödinger 

equation 

(r+.*-£)*-0, e-mc'-v. (25.20) 

In approximation (25.19) 
•V" - . :.,--.¾. ' i. 

^f.+rAV-tf+^—iV-tC+^-^'HC+^ + i-e^ 
\ 9 * - «■(£+ «9—JM*) 2mc'. 

Therefore the first three members of equation (25.16) are contained 

ill the relativistic Schrôdinger equation (25,19). The last tw0 

members 

-(-1H - «S (25.21) 

are characteristic namely for the Dirac theory. Only these members 

contain matrices Z and a. The first of these members can be 

interpreted as interaction of the magnetic moment 

(25.22) 

with the magnetic field; the second, as interaction of the electrical 

moment, with the electrical field. 

Let us consider in somewhat greater detail the first of the 

members of (25.21), for which we will introduce matrices sx, sy, s^, 

having determined them by the relationship 
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(25.23) 

These matrices satisfy the permutable relationships 

•**, 

Vr~V, 
SM*M 

*0*. / (25.24) 

which coincide with the permutable relationships for the components 

ji angular moment, furthermore, we can show that upon rotating the 

system of coordinates on an angle 60, directed along unit vector 

n, the wave function u(0) (the particle is located at the origin of 

coordinates) will be converted according to the law 

*(0)=(! -f itfuu)u'(0). (25.25) 

Inasmuch as for a system with angular moment k. the operator of 

infinitesimal rotation is 

and orbital moment in this case is equal to zero, from (25.24) and 

(25.25) it follows that matrices s = are an operator of intrinsic 

angular momentum of an electron, spin. Putting in (25.25) the two- 

component functions ij/ and x, we obtain 

(25.26) 

Thus, components u^ and ug of function i¡/ during rotation of the system 

of coordinates will be transformed one by the other, without 

affecting the components u^ and u^ of function x. The latter in 

turn will be transformed one by the other independent of components 

U1U2* ^10 two-component function which transformed during rotation 

of the system of coordinates in accordance with (25.26) is called a 
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spinor. Wave function u, being the totality of two spinors V7 and x> 

is called a bispinor. 

Comparing (25.22) and (25.25) shows that the ratio of the 

magnetic moment of an electron to its angular moment is equal to 

-2Hq, i.e., is twice as large as the usual value, 

5. Nonrelatlvistlc approximation (Pauli theory). In a weak 

field |e<p| « mc^ there is a steady state in which v « c. The 

full energy E is close to the rest energy E0; therefore 

(ff + <f — £,)«V* MC*, 
iF -L J? I «h. Oat#* (£ 4 #!j> + £,) *v. 2*»c\ 
•(<# t eA) -v mvc^mc*, 

and from the second equation of (25.12) it follows that 

(25.27) 

Thus» at v « c the components u^ and u^ are small as compared to 

u^ and Ug. This allows us to obtain an approximate equation relative 

to only single large components u^ and Ug. This is most simply done 

proceeding from equation (25.16). 

Putting (25.11) in (25.16) and designating the energy of an 

electron and deduction of rest mass E - Eq through W, we obtain 

+/¿*.*,-0 (25.28) 

(we did not write the second equation connecting functions y> and x). 

Member 'as0** in order of magnitude is equal to 

Therefore in the first approximation by — we have 
V* 
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o 

■!Jr!*n:rí:!' 

(25.29) 

nils equation is called the Pauli equation. It is the fundamental 

equation of the nonrelativistic theory. The difference of this frcap 

the Schrödinger equation is that (25.29) contains the member -HqOH, 

caused by electron spin. Thus, in the nonrelativistic approximation 

the electron behaves as a particle possessing Intrinsic angular 

moment 

*"T0 (25.50) 

and intrinsic magnetic moment -2n0s. The states of motion of an 

electron are described by a two-component spinor ^(x —0). Components 

u^and Ug of the spinor function ^ have a simple physical meaning. 

Putting Ug = 0, we have 

” t(o — Î) (5‘) “ T (S') " T *' (25.31) 

If however u^ = 0, then 

“ ï (Ò - Î) (2,) — T (2,) — (25.52) 

In the first case the function if/ describes a state In which the 

i h f^miH i r .n 

dr *.uî(r)Kt{r)dr 

eigenvalue of operator s„ is equal to The magnitude 

determines the probability that the electron is located in the unit 

volume dr and that the z component of its spin is equal to i. In the 
2 

second case the function <(/ describes a state in which the z component 

of spin is equal to 

Functions u^ and u? satisfy equations 

(25.33) 



In the general case of u1 / 0, u2 / 0, the probability that electron 

spin is directed along the z axis is equal to 

J «V)«,(r)</r, 

and the probability that electron spin is directed opposite tb 

z axis is equal to 

JaTifKW*- 

Thus, the subscript at the spinor components u^, u2 plays the role 

of a fourth variable, one determining the direction of spin. In 

contrast to the coordinates of an electron r this variable is discrete 

and takes only two values. 

With such interpretation Instead of a two-component function 

we can describe the state of an electron of a usual wave function 

^(r, n), depending on r and an additional spin variable u. As this 

variable it is convenient to select the magnitude of the z component 

1 1 
of spin. Thus, u takes two values: and If the electron is 

located in a state with definite value of u = M-q* then 

♦(r. a)(r)Ô(|i|i,). ( 25.3*0 

Between the values of function ^(r, u) in points u = 2, and 

components u^, u2 there are evident relationships 

The spin functions 6Í jpj and ÿnj are mutually orthogonal 

—® (tt)® (“ït)“**® ("ï' -î)-0’ 

therefore the arbitrary wave function ÿ(r, |jl) can be represented in 

the form of a linear combination of functions 
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§ 26. Central Field 

1. Nonrelativistle approximation. Putting in the Pauli 

equation -eq> = V(r); A = 0, H = 0, we obtain 

(26.1) 

this is equivalent to two independent equations for two components 

of ^ 

In the absence of an external magnetic field u1 and u2 satisfy the 

same Schrôdinger equation. This is connected with the fact that the 

Hamiltonian 

(26.5) 

does not contain spin operators a. The difference is only that in the 

state u1 the z component of spin p- is equal to and in state u2 

'1 
it is equal to -5. Therefore u^ and u2 can be obtained by multiplying 

the solution of aquation (26.2) 

(26.4) 

respectively 

(26.5) 

The general solution of equation (26.2) has the form 
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♦-»„«•»i',. <H>( r { ... 
yc.d (“j i*)/ 

(26.6) 

Inasmuch as wave functions (26.4) are standardized, coefficients 

C2 fulfill the condition that 

i 
At 

K.r+ic.r-1. 
■ 1 and C2 =» 0 (26.6) determines the wave function of a state 

in which z components of orbital moment m and spin u are given; 
V 

where M- - g 

If - 0, Cg - 1, then 

I'«,!«»)(?)• 

In the general form we can write 

(26.7) 

(26.8) 

(26.9) 

where are the spin wave functions, being eigenfunctions of 

operator sz. These functions have the form 

*1 (26.10) 

The particular case (26.6) also holds for wave funct ions ^ ..jm, 
pop 

eigenfunctions of operators z , s , j, and j (j designates the full 
la 

moment of the electrons j = l + s). Using the general rule of 

construction of wave functions, upon summation of moments we obtain 

or 

*Um 2 CmpVmp 

««(<■) {c' , , 
\ "“l • 1 

(26.11) 
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The Cíe':: s ch-Gord an coefficients in (26.11) are determined by the 

following formulas: 

W* 2 m~~J • 
• • • 

l/,+"+7 ... I r — . 

l/ /—(W+ i. ( 
r 

V '-"+T ,., I 

r Z5±L’ y ,+T 

^ “îrrT2. y-/ 

(26.IP) 

i 
T' 

2. The second approximation by —. Fine splitting. Putting 

the function x from (25.2?) in (25.28) and preserving members on the 

order of we can obtain1 

{r+*»-fi('+f*) ~Ei*H+G??(*+ 7*)'— 

-K'IM+Sá4*}*-0- (26.«) 

In the case of a central field this equation takes on the form 

{ *- IW-t+jgj.-jk « [g,] - A^W-O. ( Iî6.14 ) 

The last three members in (26.14) 

(26.15) 

1In solving this equation difficulties appear with normalization 

of ■<//. With normalización of the exact theory member 

X*'X has an order of (■£)%•♦ and therefore can be omitted In this 

approximation. Namely during correct calculation of this circumstance 

the equation of the second approximation by takes on the form of 

(20.15), For a detailed discussion of this question see A. I. Akhlexer, 
V. B. Berestetskiy, Quantum Electrodynamics, Fizmatgiz, 1959. 



determine corrections on the order of to the nonrelativistic 

theory. The first of these members calculates the dependence of 

an electron's mass on its velocity. The second member 

*1 (26.16) 

gives spin-orbital interaction. Putting in (26.16) 

Si 
and using the determination of orbital angular moment hi[rß), we obtain 

( 26.17 ) 

The last member in (26.15) does not have a classical analog 

and therefore cannot be interpreted through any graphic presentations. 
pop 

’Hie operator (26.I5) commutates with operators I , b , ¿ , ¿z, 
but does not commutate with operator Z; therefore equation (26.14) 

does not have solutions of type (26.6) with arbitrary coefficients 

and Cg. In particular, steady states W ln whlch the 

z components m- of orbital moment and electron spin are simply 

determined, are impossible. Only with a fully defined selection of 

these coefficients, so that function f is an eignefunction of 
operators j2, Jz 

v*+r. 
(26.18) 

it is possible to satisfy equation (26.14). The function (26.18) 

describes steady states in which absolute values of moments a, l, ,j 

and the z component of full moment m are given. 

Putting (26.18) in (26.14) we can simply obtain a radial equation 

for determination of R(r). This equation differs from the radial 

equation of the firct approximation (Pauli equation) for functions 

-534- 



Rnz(r) in the members on the order of r^y. Therefore to determine 

functions Hfr), and also the corresponding energy levels, we can use 

ih'": r.o r'.<j ru.ut i o.n theory. 

It is easy to see that states j « l + and j - l - i correspond 

to different levels of energy. This follows at least from the fact 

that the radial equations for these states are different. Actually, 

«4 o- /</+!)-*(*+d}= 

/“/+-J-. 

"H-V+Dt,,.. y-/-|. (26.19) 

Thus, under action of perturbation (26.17) the nl level Is split 

into two sublevei.s j = Z + |. This splitting is called fine 

splitting. The magnitude of fine splitting is obviously determined 

from the difference of corrections A£ , and , where Mfmt+Y f 

^- ^/+ A&,+AE'H;h ( 26.20 ) 

( 26.21 ) 

« Í Jr '•♦-i/-( 26.22) 
J^/-A^1/-( 26.25 ) 

Before we calculate these corrections, we will show that AE'/t is 
j 

different from zero only for s states (Z = 0). Actually, /,E' 
*J 

is proportional to matrix element Aqp = -amp, where p is the density 

of charges creating the field. If the field Is created by a nucleus 

with charge Ze, then p - Zel(r), Therefore 

- 2üçr J 1**4 (r) ♦„/, dr » 1 ipHi/m (0) j*, (26.2H ) 

and !^nZ jrr/0^|r ^ 0 only at 1 = °* Thus, in the case of l / 0 

- A£i,y+A£¡i/. ( 26.29 ) 
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We will calculate the correction (26.20) in the case of a Coulomb 
2 

field V(r) = - =y~ (a hydrogen atom and hydrogen-like ions). 

Calculation (26.25) was already conducted in § 4. At l / 0 

àB^fm ÒEtH +â£n " 0*1 ——T I I i+jí 

(26.26) 

(26.27) 

(26.28) 

At I - 0 to (26.25) we add member (26.24), which in this case is equal 

to (eee formula (25.31)) 

“ WIV-<°) r " W (îr)'" °* I* Ry- (26.29) 

Furthermore, in this case expression (26.27) loses meaning, inasmuch 

as both the numerator and denominator of (26.27) become zero. This 

uncertainty is simple to remove. Above during conclusion of (26.14) 

we used the approximate expression (25.27) 

(26.30) 

whereas the exact expression has the form 

(26.31) 

If basic contribution in the integral is given by the region of small 
p 

p 7pc 
values of r, for which the condition me » is not fulfilled, 

in the denominator of (26.31) member V(r) cannot be disregarded. 

Preserving this member, we obtain 

-1». A* J ♦*/«. y 7 (W^W) dr - 

- »C f ^7^(1 +1^7-) V*ljmdr- 
(26.32) 
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The radial integral in (26,32) is final; therefore at l = 0 (Co.32), 

in contrast to (26.27), turns into zero. Consequently, l = 0, we 

have 

+ AE-) — a* { 2-¿} £Ry +V^ Ry - 

-(26.33) 

The same expression can be obtained by placing in (26.28) l - 0 

j = |. Thus, at all values of l, including l * 0, 

AÇ-/-4 
l+ll 

Ry. 
(26.34) 

The essential peculiarity of this expression is its independence from 

l. Relativistic corrections on the order of (f) lead to splitting 

by j, but do not remove degeneration by l specific for a Coulomb 

field. 

3, Dirac equation. In the case of a central field equation 

(23.1) takes the form 

(26.35) 

the Hamiltonian 

H-pE,+ V(r)+*cß (26.36) 

does not commutate either with components of orbital moment l, or 

with l2. Therefore the Dirac equation (26.32*) does not have solutions 

that are eignefunctlonals of operator l2. At the same time Hamiltonian 

(26.36) commutates with operators j2, Jz and the operator of inversion. 

This indicates the existence of solutions u.^, describing steady states 

with given values of the square of full moment, j and its z component 

m. Each such state is also characterized by definite evenness. In 

nonrelativistic theory parity is simply determined by the value of 
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orbital moment Z. At even value l = j + | state j, m is even; at 

odd value it is odd. In this case orbital moment of an electron is 

fïoc determined. Nonetheless it is convenient to characterize the 

parity of a state by index l, which at given value of j takes two 

values j + ■£, j - 75, one even and one odd. The wave functions u. 

have the form 
jm 

(26.57) 

(26.38) 

--(2:)- 

(¢.-L. .i-,... <•*> \ 

Where t - 2j - Z. At j » Z + T - Z + 1, and at j = Z - T = z - 

It Is easy to see that wave function (26.37) is not an eigenfunction 

of operator l2. Actually, 

therefore 

J\.*/(/+1)^,. 

We will present wave function u^ in the form of the sum of 

uu2+ ulj2 

*»<.)■ 

Then 

■*/(/+ *)«}/• +7 (7+ I)«/*«** 
=/(/ ++{i(7+1 ) -/(/ +1)} oí;:. ( 26.39 ) 

. C 2 ) 
For function u?v only small components of x, • are different from 

^ uAii 6 jm 

zero. Therefore at small velocities of an electron the 



second member in (£6.59) is small (approximately (~) times less than 

the first member), and with an accuracy corresponding to disregarding 

small components of x as compared to ÿ, the absolute value of orbital 

moment is preserved, ihus, in the nonrelativistic approximation 

tndex l takes on the meaning of orbital moment, m the general case 

Of relativistic velocities the idea of orbital moment does not have 

Physical meaning. Conversely, the idea of spin is not connected with 

any approximation, since operator s2 =. | as any constant commutates 

with any operator, including the Hamiltonian (26.56). As for the z 

component of spin, it maintains its magnitude only in the 

nonrelativistic approximation. 

Radial functions g(r), f(r) satisfy the system of differential 

equations 

(Í ^ 7) i?.- »0 r/(r), 
(¢-7)^)- -£(e-C.-V)rg(r), 

y-/+4. 

(26.40) 

■f 
/a»/_L * * O • (26.41) 

wn^ch can be obtained by placing (26.58) in (26.55). if 

a, 

~ m r—*0, 

then functions g(r) and f(r) have to satisfy the boundary conditions 

?}— “ 

OO aa 

.-. , 

r—00. J (2^.42) 

Inasmuch as the angular parts of functions p and x in (26.58) are 

standardized, from the general condition of normalization 

? Í *‘Vr - J +x'Wdr' -1 
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it follows that 

J UN-/*} I. 

The boundary conditions (26.42) ensure the existence of this 

Integral, îhe asymptotic behavior of functions g, f is determined 

by the system of differential equations 

£.)//-°. 

£<r/>+¿(«- V- o- (26.43) 

The general solution of this system has the form 

nrM-c/t'+cy»', 

'/W- 
(26.44) 

Solutions of system (26.40) as r-► 00 have to coincide with (26.44). 

This condition, augmented by the condition of normalization, allows 

us to determine constants C^, C2. Solutions of system (26.40) depend 

on the energy and moment of an electron; therefore 0^, Cp are functions 

of two parameters E and h. 

Prom (26.44) it follows that the solutions of system (26.40) 

possess essentially different properties at E > E0 and E < Eq. In 

the first case are imaginary and functions rg(r), rf(r) are 

limited at any value of E. In the second case X± and X2 are real, 

«there X^ > 0, X? < 0. If / 0, then the members proportional to 

eXir, increase exponentially as r -► 00; therefore we must require 

that 

C,(£. x)-0. (26.45) 

Thus, at E > E0 the spectrum of E is continuous, and at E < EQ it is 

discrete. The possible energy levels are determined by the roots 

of equation (26.4¾). 
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(26.46) 

4. CouloKc field. Energy levels. Placing in (26.4o) 

V(r) = , we have 

(I+t)'*')-{¿(f.+£)+«4} r/(0. 

(i-7)//(r)«ji (£,-£)-« £jr£(r)t 

where is the fine structure constant. For E < EQ solutions 

of system (26.46), satisfying the necessary conditions of finiteness, 

exist at the following values of E: 

M, 21} I 

-»«/o, I, 2, ..... x<0, 
I I, 2. 3. .... x>0, 

X*x/|'4-|K|»x'-f*, |x|»*. 

(26.47) 

(26.48) 

(26.49) 

Thus, energy levels of an electron in a Coulomb field are determined 

by two quantum numbers n and k. The principal quantum number r (below 

we will show that as - -*> 0 quantum number n coincides with the 

principal quantum number of nonrelativistic theory) takes integral 

values of 1, 2, 3, .... Quantum number k is simply determined by 

the value of j, since k = j + i. At a given value of the principal 

quantum number n different values of k are possible: 1, 2, 3, ..,, n 

Each value of k, with the exception of k = n, in turn corresponds 

to two values of l : j+-|*k, j--|»k-i. At k « n n* » 0. This 

can take place only under the condition that vi < 0, and, consequently, 

1 = j - •|=k-l. 

Inasmuch as in the nonrelativistic approximation quantum number 

l determines the orbital moment of an electron, state n, h, l can 

be written in usual spectroscopic notations: 
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Thus, we have 

•l Fl *• â* A A ... 
• ■ * • • T # 

— I 1 -2 2 —3 S —♦ ... 

.-i .-i (y~¿) 

«»2 k*m 1 (/^4) l<mf5, 1 

(/-y) /-1 

—s (y-4) '-0-1 

*-2 (y-y) /-1.2 

*-* (y-y) /-2 

«.4 *-t (y-y) /-0. 1 

*“2 XJ^i) iamXr2 
*-3 (y-y) /-2. 3 

3-4 (y-4) /-3 

F 

2f. 2p, 
T 7 

tp* 
• • 

3f13p1 
T F 

3p. 
• 7 

W. 
¥ 

7 ¥ 

4pL4rfL 
7 ¥ 

4I/.4A 
¥ ¥ 

♦A 
1 

Por light nuclei Z « I37 an approximate expression can be obtained 

for energy by decomposing (26.47) into a series by degrees of aZ 

(26.50) 

Subtracting the energy of rest mass E0 = mo2 from (26.50) and 

considering that 

aW —• 

we will obtain with an accuracy of memebers on the order of a2Z2 

„_|1+î£/J|_i\) r0v 
\ + * (/+^ 4«)j5»Ry- (26.51) 

The first member in (26.51) is the nonrelativistic expression for 
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energy (balmer formula). The second member determines fine splitting 

of levels. Fine splitting, as this was noted above, does not depend 

on l. Essentially degeneration by l is not connected with the 

approximate character of formula (26.51), inasmuch as (26.47) also 

depends only on j (on k) and does not depend on l. All levels 

n, k (k / n) are doubly degenerated by l. 

Considering in decomposition of (26.50) members of a higher 

order according to otZ, in particular members on the order of a^Z^, has 

no meaning. The fact is that the Dirac equation (25.1) does not 

contain interaction of an electron with its own field of radiation. 

This interaction leads to the so-called radiation corrections, 

which for small values of Z exceed Rya4z4 (but are less than Rya2Z2). 

For this reason formula (26.47) is not exact in the same measure 

as approximate formula (26.51). 

For heavy nuclei the difference of formulas (26.51) and (26.47) 

becomes substantial. In approximation (26.51), l.e., with an accuracy 
■yr p 

of members on the order of (-) inclusively, the distance between 

levels j' = Z + ! and j" » l - ! is equal to 

(26.52) 

At the same time from the exact formula (26.47) It follows that 

<x'»/+i; *' -/+U ***— —ft *'«/; y'-^*-“«,*,> 

The difference 7 - k is small as compared to nj therefore 

--*---L 
ln-Hv-Siip <i*+2»<y-Ap-~~%r-• 

Placing this expression in (26.53) and breaking down the roots in 



, pp 
(20,53.) into a series by degrees of a Z we obtain 

The radio of magnitudes (26.54) and (26.52) is equal to 

f** -£«** ?/(/+!) Iy'-Y'-M 

(26.54) 

617. rr (26.55) 

Thus, 

= Ry. (26.56) 

The magnitude Hr(ZZ) is called the relativistic correction to the 

formula of doublât splitting. 

The value of Hr(ZZ) at l - 1 are given in Table 72 (see also 

Pig. 23). For small values of Z, Hr(iZ) practically coincides with 

unity. Thus, for Z = 1, 2, 10 the values of Hr(lZ) are correspondingly 

equal to 1.0000; 1.0001; 1.0023. During further increase of Z Fr 

increases, attaining for the heaviest nuclei of value of ~i.25. 

5. Coulomb field. Radial functions. Radial functions of 

discrete spectrum Sn>1(r) and fn..(r) satisfying the system of equations 

(2Ó.46), and also the boundary conditions (26.42), have the form 

where 

« - c.r T y " {-1« - ^ «+*+1 • 2v-h • ® > 
+ (A/-x)Fl-» + *, 2y+ ». Oh 

/^(,)- -C,aZ«'"’oT-‘{(«-*) fl-n + A + l, 2Y+ ». e) + 

+ (4V—x)F( —« + *, 2y + ». ¢)}. 

**ixi ¢-¾. y 

r » i/LETÍEÃ±I> (?L V • t'»*Ar(2Y+i) V (n-k)'.ÒN\N -x> \NnJ 

JV-b]/ /1*—2(« —*) [fc —]/** —a’Z*]. 

(°6.67) 

(26.58) 

(26.59) 

( 26.bC) 

¡■'irst of all we will clarify in what relationship are the functions 

(26,57). (26.56) and the Schrödinger radial function R , (r) from n L 
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(2.18). Putting az = O, x = k. = I, we have N = n, 7 = I 

Vjli'S-lii'iifilNIl!: 

and 

ri2Y + «-*+l) = l« + *)!. r(2Y + 1)-l20« 

I (»+/)! /2Z\7 
C»"Jm2)T K («-/jl&.(«-/) • (26.61) 

Furthermore, for function F(a, ß, x) there is the recurrence 

relationship 

f(a+î, ß. ß, x)’m^F(a-ï I. ß-r 1, <), (26.62) 

with the help of which we can obtain 

• Xr 

x ^+/+1.2/+2,^):/.,(/-)-0. (26.63) 

Let us consider, further, the behavior of functions gnx, fnH at 

large and small values of r, being limited by the case of light 

nuclei 

Z<£137, oZ<l, N^n-^aT. 

Comparing formulas (26.57)# (26.58), and (26.63) shows that 

in all region p ,> 1 the difference of function g from Rni is extremely 

small. The ratio 

MS^m i* 
*ia 

,2^2 
in order of magnitude does not exceed a Z . The same order of 

magnitude in this region also belongs to the ratio (jj“-)*. 

At small values of r 

Mir' Min 
It is not difficult to show that for states y%|m|«/ 

(26.64) 
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(26.65) cwa'Z* 

In the region of aZ<(~^<^i the difference gnx - does not 

exceed aZRni. For smaller values of r this difference increases 

rapidly. 
A 

For the states j =» l +-^, I the difference gnK - Rnl 

also increases with decrease of r, but more slowly than in the case 

of j 7 1 L — 

At j = ^ in both the cases of Z » 0, w - -1 (state s^) and 

2 
1*1, (k » 1 (state p^) functions gr and fnx have a peculiarity 

in origin of coordinates, inasmuch as 

Y^M(i,Y — 1 =51 — -y-. 

Thus, for light nuclei Z « 137 the difference of functions nn 
op p 

and (g^K + i*^H) from RnZ Is negligible everywhere with the exception 

of the region of small values of r. 

For large values of Z(aZ ^ 0.5) the difference becomes more 

noticeable. 

Let us now consider in somewhat greater detail the region of 

small values of r. At sufficiently small r in the second of 

equations (26.46) it is possible to disregard member E0 - E in 
e2<7 

comparison with Then excluding g(r), we obtain 

+ (26.66) 

+ (26.67) 

The solution of equation (26.66), satisfying boundary conditions 

(26.42), has the form 
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i 

f(r) - const /--/,, ( y^—). (26.68) 

where are Bessel functions of the first kind. Using the known 

formula of differentiation of Bessel functions 

—/« — Jl / +/ 
ás s *p~*P~* 

and designating the constant in (26.68) through CaZ, we obtain 

(26-69) 

(26.70) 

At small values of r 

whereas from (26.58) we have 

/(r)--C.az($y" (n+N-k-x). 

Comparing formulas (26.72) and (26.75) gives 

c-- c, (*+/V-* - K) ri2Y +1) V-* (¾). 

(26.71) 

(26.72) 

(26.75) 

(26.71) 

§ 27. Relativistic Corrections 

1. Calculation of certain radial integrals. In different 

applications, e.g., during calculation of the constants of hyperfine 

splitting of levels, one meets the integrals 

í<**+/V-Vár, 

¡g/r'Vdr. 
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At p ä 2 the basic contribution in these integrals is given by the 

region of small values of r. This allows us during calculation of 

(27.1) and (27.2) to use the approximate expressions (26.69) and 

(26.70) for functions g, f1. 

With help of these functions integrals (27.1) and (27.2) can 

be calculated in evident form 

(U\* t«<-2»+gH-2K+y-l)-<q«y(g.-3)l 
(27.3) •'(V-I)í (ÍY+« (Sy+i”IT” (2y—• 

(27.4) 

Formulas (27.3) and (27.4) have meaning at q è 1 (p ã 2). In 

the nonrelativistic approximation 

(27.5) 

Putting (27.5) in (27.3) and considering aZ » 0, h = l, 7 =• ï. we 

obtain 

(27.6) 

(27.7) 

Expressions (27.6) and (27.7) differ from (1.26) only by a 

factor ß. At n » l 

«•- (/-n* 
p 1?— (27.8) 1. ir 

1C. Schwartz, Phys. Rev. 97, 38O, 1956. Let us note that this case 
is the most interesting one. If the contribution of the region of 
small values of r is small, then it is possible to be limited by a 
nonrelativistic approximation. 
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Thus, utilized this approximation gives results at small values of 

Z and large n (at 7' = °> ß is exactly equal to unity). According to 

the terminology of the Bohr theory this case corresponds to strongly 

stretched orbits. For j * 1, especially for n = ¿ + i, z ^ 0, the 

difference of (27.3) and (27.4) from exact expressions becomes 

substantial. We can somewhat decrease the error if we determine 

the constant C so that in the nonrelativistic approximation (27.3) 

it gives a correct expression for <r'p>, i.e., we assume C2 - 

Formulas (27.3) and (27.4) can also be used for nonhydrogen-like 

atoms, assuming that in the region essential for integration the field 

U(r) is approximated by a Coulomb potential. In this case, however, 

functions g and f at large values of r are unknown; therefore appear 

difficulties in determining the normalizing constant C. 

For atoms of the alkali elements good results are obtained by 

determining constant C from experimental value of doublet splitting 

&E. In accordance with (26.56) 

Putting in this expression 

we obtain 

7(/+.,(1+4) 

(27.9) 

(27.10) 

/«_ ni+i)/6e\ i 
(27.11) 

?* iM.,gallon 21 hyperfine splitting constant A. From equation 

(23.1) it follows that the interaction of an electron with the magnetic 

field is determined by expression 

if tuA 
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where A is the vector-potential of the field. If the field is created 

magnetic dipole moment \i, then 

4- (27.13) 

where is the operator of angular moment, 

M-q iß the spherical component of vector p., 

I1*“IV I1**“ (27.14) 

We will introduce the designation 

-Ur-'mLC^Hi-T,. (27.15) 

Then 

(27.16) 

Expression (27.16) is a scalar product of irreducible tensor 

operators of the first rank; therefore during calculation of matrix 

elements H' we can use the general formulas of § 14. 

In presentation 7JIPM (I is nuclear spin, F is the full moment 

of the atom) the matrix element H» has the form 

<V/FM\if\Y/IFM>- 
“l- ly+'+'Wl JIt/My/HfIIy/) ry/jii n). (27.17) 

Putting in the corresponding expression for coefficient W and 

considering that 

t*/|||*lï/»-f,»7(7+ïîô7+ïï(i)|.„ (27.18) 

we obtain 

2/72/+V* VV+ r'+/(/+ ni. (27.19) 

Comparing this expression with formula (2j5.2), we find 

-350- 



. fy/iiri, y/) 
7 W/ViW+i>W+T) ' ( 27.20 ) 

To determine the given matrix element T it is sufficient to calculate 

matrix element <y/m| r,| xjm> at m = j, inasmuch as 

<yjj\ T, I v//> = -MMML, 
ViU+UM-rh (27.21) 

From (27.15) it follows that 

“ {Î+ J rfr}. ( 27.22) 

where wave functions Xjm are determined by formulas (26.38). 

Considering that 

r- (¿Cjax - (¿ar-C..) x = (£ar-ClfX)-r-C,. (^). 

•and also the Hermitian character of operators 

J tfm (t*r-C,tX/j rfT»J 
instead of the first of the integrals in the right part of (27.22) 

we obtain 

J r-C„xym dr-j dr. 

Likewise it is possible to transform the second integral in (27.22). 

Further, from a determination of functions * y (26.38) it follows 

that 

Thus, 

1)-((/+11-in;._ 

--(«+D»,.. 
•lx,. -2.ÍX,. -{/(,+1) -/(/+1) -1} 1,. .(* -1, ^ (27.23) 

According to 

<V/M 1 r»lVm> =ie2x {Î <;«. r-'C»t,mdx + J /(.rfr}. ( 27.21 ) 
(r-O.38) functions qXjrn are eigenfunctions of operators 
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j2, s2, l2; in state these operators have eigenvalues j(j + 1), 

I , l (l + 1), and in state xjrn j(j + 1), T(l + 1). Therefore, 

separating the integration over angular variables in (27.24), we obtain 

(27.25) 

(27.26) 

<yJm\Tt\yJm> - -<tljm(Clt|ii/my Jg{r)/(r)r-%>'ir, 

-4**S i/r-r*dr(s/JIIC,Hs¡A 

Thus, 

(27.27) 

For the given matrix element we have 

Therefore 

A~**' (íç)lt»nrFT)Sefr~'r'dr- 

(27.28) 

(27.29) 

For the integral in (27.29) we will use the approximate formula (27.4) 

fo- y * - c* ¿ ( g) * (-^ ,^¿y _, ). (27.3o) 

Ama ft (;) itííiw-hYRy' (27.31) 

'0 

(27.32) 

Putting in (27.31) k = Z, 7 =» l, and also C2 » (see formula 
n^a 

(27.5) and the following discussion), we obtain 

A-«’*/ (i)-i7—n 

which in accuracy coincides with formula (23.32). 

If we introduce the designation 

(27.33) 

then formula (27.30) can be rewritten in the following form: 
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[gfr-Vdr 
J" SÍV«./ ^/0 + 1)(21+1) (27.3^) 

Using (27.3^), one can simply obtain the following approximate 

expression for constant A: 

A Z'F,UZ) 

*V(/+l)^/+-j- 
TRy. (27.35) 

Factor (jZ) is called the relativistic correction to the constant 

of fine structure A. At aZ = 0 Fr = 1. The values Fr(jZ) for values 

1 3 
of j = 2' 2 are Siven in Table 72 (see also Fig 23). 

Table J2. Dependence of Relativistic Corrections 
Fr, Hr, Rr on Zi 

If we use expression (27.11) to determine constant C, then at 

l ¿ 0 

or 

A _Ul+Il , Fry, 
/ (/ +1) (/ + -^2^ (27.36) 

Am. ru+wM (27.37) 

where C, is the constant of doublet splitting. 



3. Calculation of hyperflne spllt.tlng constant B. The 

Interaction of an electron with an electrical field 

#--1 (27.38) 

does not contain Dirac matrices a, ß; therefore during calculation 

of constant B we can start directly from expressions (23.8) and 

(23.9). The difference from the conclusion of § 23 consists only 

in the fact that now 

<Y0»l n.. - j* «/»ri,, Uym dx = 

-{J ïr-'r'drWm\Cx%\ljm)+ [f'r-'r'dr<ïjm\Ctt\ïjmy\, 
<y/KIIy/)- ' 

- J fV-V dr(slj\\ Ct (I stj) + J fr-'r'dr (j/y || C, |j sîj). (27.39) 

Inasmuch as the given matrix element {slJUCJst/) does not depend on l 

and 

W/llc,IIi/y)-(s/yIlC,IlS//1 - — I /dj+3,27=0, (27.40) 

from (27.39) and (23.14) it follows that 

mu-lQ)j (7+7) J +/*) r-r* dr. (27.41) 

Formulas (27.41) and (23.52) differ only in racial integrals. For 

the radial integral in (27.41) let us use approximate expression 

(27.3) 

U?+f)r-radr~ ?(**)' 2(2*-2)(2x-l) + 4„»Z» , ¿ , 
j Va*/ (2Y + 2)(2y+I)2y(2y —i)(2Y—27* [¿(.le) 

Formula (27.42) is conveniently copied in the following form: 

Sig'+ñr-'r’dr^C'Í^Y_*r 
J U/ /(2/+1,( (2/+1,(2/ + 271 (27.43) 

R - /(2/+1) (/+1) ,, 
' Y(Y*—l)(4v*—1)'3x^x~ I) —Y*+ 1>. ( 2 /,44) 



In the Honrelativistic approximation (h = l, 7 = I, aZ = 0, C2 = 2 

rr ar 

Rr ~ ^ ar']^ formula (27.44) passes into (23.52). Factor R is called 

-he relativistic correction to the hyperfine splitting constant B. 

The values oí tactor R^ for states Z = 1 are given in Table 72 (see 

also Fig. 25). Placing (27.43) and (27.41) in (27.41) gives 

o_ 3 <Ga-*>*•*, 

+i)tRy- 

xf constant C in (27.43) is expressed through the doublet splitting 

constant then 

3 (Qa ~ *) R 

B=*WiH2i-i¡l{j+UHrt*- (27.46) 

Ãv..ü.t0P:Ic shift of levels (effect of volume). At distances 

r on the order of dimensions of a nucleus field V(r) is not a 

Coulomb field. Lev us consider that 

V{r) 

V{r)^. i? 
‘ r ’ 

r>r„ 

r<r|t 
(27.47) 

where as r — 0, V(r) — VQ. Let us assume that E, g, and f as before 

designate the energy of an electron and radial functions in a Coulomb 

iield, but I + E, G, and F are energy and radial functions in the 

:.ield of (27.47). Then for x = -1, which subsequently will be of 

interest to us, in the region of r > r0 we have 

(¿-7)^“{¿í£+£.) + °t}'A 

(íL_iy0„|¿(£ + f#+e)+a£Jr/r I 

(| + T)rf=={¿(f-f. + «>-a fJrQ. [ 

(27.48) 

(27.49) 

Fe will multiply equations (27.48) and (27.49) by rF, -rG and -rf, rg 
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(27.50) 

respectively. Then adding all four equations, we obtain 

and 

m 

i\[F(r¿g{r¿-G(r,)/lr.)} -¿( ¿7.51) 

Functions G, F differ from functions g, f in the small region of 

r ~ Tq. Disregarding the contribution of this region in the 

normalizing integral, we obtain 

$ {/F+gtyr'dr^tf+g^r'dr = 1. 

Thus, displacement of level e is expressed through the values of 

functions g, f, G, F at point r = Tq1 

« {F(r%)g(rt)-0(r,)/(r,)}. (27.5?) 

During calculation of (27.52) we can use approximate expressions 

(26.69) and (26.70) for functions g, f. Considering only the first 

members of decomposition of g and f, we have 

r/'m0lZYi&+\) ( v)1- 

(27.55) 

(27.5*0 

In the region of r > r0 function G, F satisfy the same 

equations as function g, f. There is, however, an essential 

distinction; it is that now the potential V(r) as r -» 0 does not 

turn into -oo. For this reason it is not necessary to put the first 

of boundary conditions (P6.*j2) on function G. Equation (^,.56) 

satisfies both function r-1J?ry and also function which as 

1Ya. Smorodinskiy, JhETF, 17, 103^, 19^7. 
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, -7-1 
r — 0 is proportional to r ' . Therefore r > r 

0 

(27.5t) 

(27.56) 

The additional constant r will be determined below from the 

condition of linking (27.55) and (27.56) with functions G, F in the 

region of r < r^. 

Let us assume that r < r^ 

vw-v.—*t. (£7>57) 

Then for this region in the same approximation as (27.55)-(27.56), 

one can simply obtain 

rU~Ar, (27.5Ö) 

rF—AT-. (27.59) 

At r = rQ equating (27.55) and (27.59), and also (27.66) and (27.58), 

we obtain two equations relative to the three constants C, Ç, A, 

which allow us to express Ç and A through C. Subsequently we will 

need only constant Ç. This constant is the simplest of all to 

determine ny equating at r = rQ the ratio of | from (27.58) and 

(87.59) 

(tL.—a- (27.60) 

and from (27.55) and (27.56) 

{tU- ■ 

From (27.60) arid (27.61) it follows that 

C -aZ (2Z)t ) f. 

(27.61) 

(27.62) 

.....Hlllllllllilllll 
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Considering in (27.55)-(27.56) that r = r0 and putting che 

corresponding expression in (27.52), vie obtain 

(2—y) 2V /2Zr.\*t 

^Tri3V+Tjffrf?)IV) * (27.65) 

If the radii of two isotopes differ by a magnitude of 6r0, then the 

corresponding levels of these Isotopes are displaced by a magnitude 

(27.64) 

Using (27.63) and putting the nonrelativistic expression as constant 

C (see (27.5)) 

(27.6¾) 

we obtain the following expression for Isotopic shift of levels: 

(S7-66) 

Let us introduce the designation 

then 

«• -E i.*,. (27.66) 

In the nonrelativistic approximation az = 0, 7 = 1, Z - 1, and 
formula (27.68) coincides with the formula of Racah and Rosenthal, 

Breit (24.19). 

5. The correction for flnlteness of nuclear volume in the theroy 

of hyperfine splitting. The radial integrals In the constants of 

hyperfine splitting A and B were calculated above with help of 

functions g, f of a Coulomb field. During calculation of the final 

volume of a nucleus In the corresponding integrals we must make the 

replacement 



g— o, /— F. 
(27.69) 

This is equivalent lo introducing correction factors in the expression 

lor constants of splitting: che correction of such type to constant 

A 

(1-6)= 

w 

Jcfr-V«r 

(27.70) 

v/as introduced by Crowford and Schawlov.1 In approximation (27.57) 

the corrected factor (27.70) was calculated comparatively simply, 

since in the region of r essential for integration we can use the 

above obtained expressions for functions G and F. 

Calculation can also be given for potentials V(r) in a more 

complicated form. In the quoted work of Crowford and Schawlov 

calculations were conducted in the following manner. Let us define 

the parameter r1 by the relationship 

J QFr~*r*dr « Jgfr'r'dr 
• '1 

^d place (27.71) in (27.70). This gives 

.J tfr'Vdr 

(27.71) 

ihe integre in numerator can be calculated by using functions 

( 27. b 7 ) and (27.5^) 

(27.72) 

V-M rîT- 
inW+TTT* ïÿ—7 * (27.73) 

JM. F. Crowford and A. L. Schawlov, Fhys. Rev. 76, 1/,10 (1949). 
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The integral in the denominator is determined by formula 

Putting the corresponding expression in (27.72), ue obtain 

This formula corresponds to the state x = -1. At x / -1 

a"• (27.75) 

Parameter r^ is determined either by direct calculation of the 

integral in the left part of (27.71) or graphically. Calculations 

show that for potential (27.57) and a number of other potentials 

close to (27.57)i 
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P A R T III 

îAwITAIION and irradiation of atoms 
ELEMENTARY PROCESSES 
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CHAPTER VIII 

AN ATOM IN AN EXTERNAL FIELD 

§ 28. Electrical Field. Stark Effect 

1. Quadratic stark-effect. The stark effect consists of 

splitting and displacement of atomic levels under the effect of an 

external electrical field.1 

'The energy of an atom in a uniform electrical field is equal to 

the scalar product of the intensity of the electrical field t and 

the dipole moment of the atom D, taken with reverse sign 

tf-(28.1) 

The matrix elements D, connecting the states of one parity and 

including diagonal matrix elements are equal to zero. Therefore in 

first the perturbation-theory approximation interaction (28.1) does 

not lead to any change in the energy of an atom. Splitting of levels 

is determined by corrections of the second perturbation-theory 

approximation. We will direct the z axis in the direction of 

field 8. Then H'— — £Dr and for the correction to energy of state 

7JM we will obtain 

lfrhis phenomenon was discovered by R. Stark in 1913. 



(28.2) 
AfTw£ Iíy^,d,,vv^ 

The dependence of matrix elements D on M can be calculated in z 

evident form (see § 31) 

ÍJ/ y» Ä y J 
M, fm*J, 

/-y+1. 

Prom this it follows that 

Thus, during imposition of a uniform electrical field level 7J is 

split into components 

1*1-/. /-1. (28.5) 

where the magnitude of splitting is proportional to the square of the 

electric field strength. All levels, with the exception M = 0, are 

doubly degenerated by the sign of the projection of moment. Levels 

J » 0, J * 1/2 are obviously not split and experience only shift. 

The characteristic peculiarity of (28.4) is asymmetry of splitting. 

What was said almost completely exhausts the general regularities 

of splitting. Further investigation of formula (28.2) requires a 

more precise definition of the specific peculiarities of the considered 

case. Of greatest interest for application is the case of a LS 

coupling. If we disregard the multiplet structure of the perturbed 

(28.3) 

(28.4) 

1It can appear that constants A^T and B7J can depend on M in an 

unclear manner, since at M = J in sum (28.2) members J' = J - 1 
are absent (the biggest value of M' in this case is equal to J - 1). 
In fact this is not so. The missing members, proportional to 

2 2 
(J - M ), turn into zero at M = J, and therefore the distinction is 
immaterial. 
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terms and put £.,,,, » ,, then it is possible to calculate in 
1 o ï 

evident form the dependence of A^j and Ry, on J [L. L.], p. 291). 

Let us give the results: 

(28.6) 

(28.7) 

(28.8) * toi_mi k ' (27-1)(2/+3) 

Here ß , are new constants; 7 stands for the totality of quantum 

numbers characterizing the term and 

2<£/>-/(/+!) + £(£+I)_S(S+1). (28.9) 

Due to its complexity formula (28.2) is of small use for specific 

calculations.1 The ground state and the case of strong interaction 

with the nearest level, when the basic contribution in (28.2) is 

given by one of the members of the sum, are exceptions. In the case 

1In recent years several works were published (see, e.g., 
A. Dalgarno, L. Lewis, Proc. Roy. Soc. A233, 70, 1958; C. Schwartz, 
Ann. of Phys. 6, 156, 1959) dedicated to calculation of polarizability 
of an atom and founded on an operational form of writing the sum of 
type (28.2) 

where K is the Hamiltonian of an undisturbed system. Calculation 
consists of approximate solution of the differential equation for 
function f 

and subsequent integration 

^Vfdt 

In principle the same method can be used for calculation of the 
constants of Stark splitting of excited states. Till now, however, 
such calculations were not conducted. Let us note that inasmuch as 
exact expressions for eigenfunctions are lacking, we cannot expect 

good results. 
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of the ground state the energy differences E^j - E7IJ, in (28.2) for 

levels Ky,j, of the discrete spectrum are larger than Er, but less than 

E^. Inasmuch as E^ - Er < E^, Er (remember that for hydrogen Er = ' ' 

sum (28.2) can be approximately written in the following form: 

I <\JM\D,I y'J'M> f «£T' <yJM | /¾ | yJM>, 

where I has an order of magnitude of Er, E^. By putting I = E or 

I * E^, we can give a rough estimate of sum (28.2). 

For excited states such appraisals turn out to be too rough, 

since the magnitudes of E^j - E7,j, change within very wide limits. 
i 

The second case usually occurs, if one of the differences 

Eyj - E^j, is much less than all others. For two such strongly 

interacting levels it is approximately possible to put 

- £1 v)-1 <yJM I D, I y’J‘M> r, ( 28.10 ) 
A/ÿ,'** I <y'J'M\Dt\yJM> |*=-*EUM. ( 28.11 ) 

In formulas (28.10) and (28.11) the square of matrix element D can be 

replaced by oscillator strength of transition f(7J; 71^) (see § 31) 

AfvJMr-A£Tv'Ai-^,(2y+i)/(Yy; y’^)(_^Q• (28.12) 

Formula (28.12) is useful only for rough estimates. The 

contribution of the whole totality of small members omitted in (28.2) 

can be on the same order as (28.12). Let us note that for a number 

of closely located interacting levels experiments show that the 

characteristic symmetry of splitting for the approximation of two 

levels is (AE7JM = -AE^j,^,). As an example let us give the splitting 

of levels of singly ionized argon 4d2D^ (172,830.65 cm"1) and 

2 -1 ^ 
4p (172,817.14 cm ). The distance between these levels is only 

■5 _1 
13.5 cm , while the other closest perturbed levels will be several i¡ | 
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thousana cm x apart. Information about the behavior of the considered 

levels in an electrical field can be obtained from splitting of lines 

X = 1174.76 A and X = 4537.65 X. 
The first of these lines starts with 

level the second is finished on 

1*1=# 
■*i=4«r 

>1*1=4? 
1*1*# 

level (Fig. 26) 

2 

Levels 4f F 

Fig. 26. Splitting of lines 

^ 4537.65, X 4474.76 A of Ar 
II in an electrical field. 

and 3>dL"DV do not have close perturbed 
y 

2 

levels; therefore we can expect that 

their splitting is immaterially. 

If splitting of levels is determined 

by formula (28.12), then in an 

electrical field both lines have to be 

displaced in the direction of large X by the same magnitude. Namely 

p 
such type of displacement was observed. At # = 10 ' kv/cm 

for Xat 4474,76 Av 
for X-4537,65 Avs 

-1,42 cm~'; 
1,45 c*-\ 

Formulas (28.10) and (28.12) are just as long as the corrections 

to energies are small as compared to initial splitting > - E^,j,. 

In general we must simultaneously consider interaction with field H' 

and intra-atomic interactions H", leading to splitting of levels 

7J, y'J'. The last one forms from three parts: centrally symmetric 

potential, electrostatic interaction of electrons and spin-orbital 

interaction. The matrices of all these interactions are diagonal 

to quantum numbers J and M. Let us define H" so that the matrix H" 

is also diagonal to quantum numbers 7, where 

«£. + <Y-MÍ|/nY/A!>»£. + A, ) 
£ïy'“£. + <Y'^Af|/riY'/'^> = £.~Ai J (28.13) 
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(28.14) £,-j +£,*,/'). A 

It is simple to see that this selection of H" is indeed possible. 

In the absence of a field the corrections of the first perturbation- 

theory approximation from H" give correct values for the energy of 

states 7J and 7^'. During simultaneous calculation of interactions 

H' and H" the energy levels are determined by the roots of the secular 

equation 

A 
2 ■\E 

(28.15) 

Putting in (28.15) H' = -tfD , we find 

A£,.. » ± /(17+1 <yJM\ Dt\\'J'My ¡'f ( 28.l6 ) 

In the absence of a field, as it should be, 

A£i. i ■» ±-j-. (28.17) 

If (y)I<Y^IO,Iy'SM>I*tf, breaking down the root in (28.16) into a 

series gives the formula of the quadratic Stark effect (28.10) and 

(28.11) 

M,—(?e.l8) 

If, however, interaction with the field is so big that the second 

member under the root in (28.16) becomes significantly larger than the 

first, then 

3.19) 

Aflt- 

Thus, at large fields there is a transition from the quadratic effect 

to the linear. 

The full dependence of splitting on field strength appears in 
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L-li 

::7. Thi- c ..'-'..r.aence is characteristic, of course, only for 

ipprcxima’-ion of cwo levels. With increase of é an even greater 

quadratic according to ti¬ 

róle oegrins to be played by the omitted members of sum (28.2), 

Due to this the linear dependence on 

is replaced by a more complicated one. 

The applicability of the general ti 

formula of the quadratic Stark, effect 

(28.2) is also limited by the condition 

of small size of as compared to 

the differences - E, tj,. If shift 

•E-yjy becomes comparai le with one of these 

Fig. 27. Transition from 
quadratic effect, into 
linear. 

differences, then the quadratic 

dependence of splitting on # is 

dis tur; ed. A special situation appears 

during exact degeneration of levels 

7J, 71J ', when splitting linearly depends on ti at. values of ti as small 

as desired. An example is hydrogen, whose levels are degenerated 

by ï. This case will be specially considered in the following section. 

Let, us now turn to splitting of spectral lines. This splitting, 

lust as polarization of radiation, depends on the direction of 

observation. During observation along the z axis (in the direction of 

field 8) radiation is polarized in plane x, y and is connected with 

transitions M -* M + i. The components of lines corresponding to 

such transitions are called 0 components, in the direction 

perpendicular to the z axis besides the 0 components m components 

are also observed, polarized along the z axis and caused by transitions 

M ”*• M. The frequencies of ir and a components are determined by the 

e Vi0 e n t r e1ation ship s 

-369- 



«!. (¿O - «O. + {M - ¿*) + (fi-Ä*) M*} £\ 

m, ( AO - «*. + {(A - A') + BAT-ff (Af± 1 )*} £'. 

The intensities of electrical fields, with which we usually must deal, 

do not significantly exceed 10^ v/cm (0.33*10^ absolute units). 

Putting this magnitude in (28.12), we find that at f » 1 and 

fSiM -*£,'/•)*>• 10* cm"* splitting has a scale of magnitude on the order 

of 1 cm . The magnitude of splitting drops rapidly with increase of 

Eyj " &yijt* therefore, as a rule, the observed splitting of the line 

is wholly determined by splitting of the upper term. In this case 

••* (AO +(A + ÄAf*) £*. Í 
(28.20) 

Let us also give the results of calculating the relative Intensities 

of the Tr and a components of the line during transverse observation, 

Table 73 (these calculations are conducted in § 31). 

Table 73. Relative Intensities of 
TT and a Component of a Line During 
Transverse Observation 

Transition 1 

W — 

yJ—yJ-l 
Y/—yy+l 

tM* «/M+U-M* 

o/W-h + AI* 

a W* 

a—1 «t M #OsncI/2 at Ala-0 

2. Hydrogen-like levels. Linear Stark effect. As was noted 

above, the energy levels of hydrogen due to degeneration by l 

experience splitting proportional to ë. This linear Stark effect 

is caused by mutual perturbation of states with the same value of n 

and different. I, For lower levels (small n) calculation is comparatively 

r. imp U , iu;pcV ln. I 1 ,y when we can disregard fine spLi ti i ng, which is 

fully justified for hydrogen. Let, us consider the 1 • v< ! n = 2. Four 
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States pertain ¡.o this level (without calculating fine splitting): 

l = 0, in 3; l — 1, m - 0, +i, where only the matrix element 

<00 j Dr/1 Í0>. 

Therefore the general secular equation determining splitting of 

level n = 2 is broken up into two equations of the first order for 

n = +1 

A£t-A£_,«0 (28.21) 

and an equation of the secono order for m = 0 

I Af. <00|0,1 !<»* n 
l<10|0.|00>^ A£. -°- 

Afi" « + <00 j0,| I0> Afl*’ = —<001 Ot ¡ !0>if. 

(28.22) 

(28.23) 

Consequently, level n = 2 is split into three sublevels, one of which 

is doubly degenerated. This splitting is symmetric. Let us also 

consider splitting of level n = 3. These states pertain to this 

level: ! = 0, m = 0; 1=1, rn = 0, +1; Z => 2, m = 0, +1, +2. The 

corrections to energy are determined by equations 

*=«±2 

• *® i I 

■ »0 

Af'wAf.'aO, 

I Af. <l«|0,|2«>tfl 
|<2« jO,| 1«># A£. I ' 

Afl” « A£^i - <1«» J O, j 2i»> . 

Afl^-Afíü-<l*[0,|2«>tf. 

(28.2^) 

(28.25) 

( 28.26 ) 

(28.27) 

Thus, level n 

symmetric and 

A£. <00|0,|!0>^ 0 
<l0|0,|00>^ A£, <10|0,|20>i -0. 

0 <2010,| 10> £ A£. 
Af.-O. 

AÄ” -1^1 <00 J 0,110> 1*-h| <10 J 0,| 20^^, 

Aft11 «— Vi <00l O,| 10> I* +1 <10 j O, j 20> 1¾ 

3 is split into 5 components, where 

linear according to é . The diagram 

(28.28) 

(28.29) 

(28.30) 

(28.31) 

splitting is 

of splitting, of 
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levels n » 2 and n = 3 (in an 

arbitrary scale), and also the 

possible radiative transitions 

appear in Fig. 28. 

From this figure it is clear 

that an electrical field line 

Ha is split into 15 components 

(8tt components and 7 ° components). 

It is Inexpedient to continue 

these calculations for other 

excited levels, since for this 

we must solve a secular equation 

of high orders. It is more convenient to use the fact that transition 

from Cartesian coordinates to parabolic 

l-yF+7+?+«-rll+co.l>. (28.32) 

—cosí), (28.33) 

f-MStfJ (28.34) 

puts the matrix Dz = - D^) in a diagonal form.1 In paraboloic 

coordinates the steady state of a discrete spectrum is determined 

by "parbolic" quantum numbers n^, n2 and magnetic quantum number m. 

The principal quantum number n is connected with n^, n? by the 

relationship 

a—«, + *t+|i«| + f. (28.5p) 

mmff m**f **tt 

Fig. 28. Splitting of levels 
of hydrogen n - 2, 3 in an 
electrical field. 

1 For the investigation of the Schrodinger equation for hydrogen 
In parabolic coordinates without calculation and taking into account 
an electrical fiele, and also for the conclusion of formulas to be 
mentioned later see [K, Sh.], [L. L. ] and A. Zommerfel'd, Atomic 
Structure and Spectra, State Technical Press, 
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At ¿iven n the ráster ¡mj can take n different values O, 1, 

n - i. For each ¡m: the r.unter n1 passes values O, 1, ..., n - ¡m| - 1. 

The corrections of the first perturbation-theory approximation to the 

energy levels have the form 

AS” = (28.36) 

At given n the difference (n^ - ng) can take values n - 1, n - 2, 

n - 3, ..., -(n - i). 

Thus, level n is split into 2(n - 1) + 1 = 2n - 1 components. 

This will agree with the above considered examples of n = 2, 3. 

Splitting of a spectral line corresponding to transition n n', 

is characterized by possible values of the difference 

(*;-«;). (28.37) 

The selection rules for magnetic quantum number m remain as before 

A* ==0 7T components 

A***±l a components (28,38) 

In parabolic coordinates we can also obtain a simple expression 

for correction of the second perturbation-theory approximation 

A***-£ {ITn’-aii«,-«.)*,!»«** 19} fal ( 28.39 ) 

In contrast to (28.36) the quadratic effect depends on jm|. 

Thus, at large values of £ there is further removal of degeneration. 

Comparing (28.36) and (28.39) shows that disturbance of the linear 

dependence of splitting on starts at fields of 

^->-0,1 at( 

/1* 
unit 3101 ev> 

m 
(28.40) 

A Stark effect of the same type as for hydrogen is also characteristic 

for a number of strongly excited hydrogen levels of other atoms. 
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3. Nonuniform field. Quadrupole splitting. In the case of a 

nonuniform electrical field to dipole interaction (28.1) we must add 

members considering higher multipole moments of the atom. If the 

change in the field at distance on the order of dimensions of the 

atom is small, then quadrupole interaction plays the basic role. 

Later we will be most interested in fields created by charged particles, 

by electrons and ions. In this case the energy of quadrupole 

interaction can be written in the form of (23.7). 

Let us place the origin of coordinates in the center of the atom 

and direct the z axis towards charge e’, which creates the field. 

Then 

(28.41) 

where R is the distance to charge e'j Q20 is the component q =* 0 of 

the operator of quadrupole moment of the atom 

(28.42) 

From formulas (22.14) and (22.1?) it follows that 

-(28.43) 

¢-»(T/|q.llvJl/^T¿g-|l,,,y+|,- (28.44) 

Thus, for levels J / 0, 1/2 there is quadrupole splitting linear 

according to the field. 

For single electron atoms (one electron outside filled shells) 

Q-(28.45) 

(see (22.21)); therefore 

(28.46) 
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J - ;:/r i.ing is symmetric 

(yyIíw'íyII)—(y| {("'IyIt). 

For all other values of j splitting is asymmetric. Let us also 

find the dependence "of splitting on J in the general case of LS 

coupling. From (28.44) we have 

O-KYMIlOJyaK-iy1-1-' l/lSTWrrr V{LJLJ-521 (28.47) 

The given matrix element (7SL. Q.¿.;;YSL) can be calculated only in 

separate specific cases. We will consider the two simplest 

examples: configurations 11' and ln. In the first case, using 

the general of §§ 14 and 16, and also (22.18), it is easy to obtain 

KU'SL H <?, [j WSL) = H Q. ( 1 ) (j l^SL) + (/,4SZ. || (?, (2) || ifèi) - 

-^,/(/11^11 /)(-1/- -1-1(24 + 1) lF(/¿/4;/'2) + 

-h Kt II C* U /')(- 1 / -<' -i (2£ +1 ) r (/-£/'¿;/2). (28.48) 

Thus, 

Q(//'S4)-(- l)»-AH-«-2{<rî>(/||C*||/)ir(/4/4:f2) + 

+ <r¡> (/* « C* Il O 1T(/'4/'4; /2)) (24 + 1 ) x 

xr(4y47î52). (28.49) 

n 
In the case of configuration I 

(tySL U Q, Il l'y SL) - g | oftf I* {y’S‘L'lmSL || 0, («) || y'S*47.54) - 

“"rît'1 d^'1' ,,<r,>t/|l ^ Ill)4'-4-1 (24 + 1) W(tUL\ 4*2). 
Q(t*ySL) -<r*>(/¡| C* || /)(24 + 1 )(- 1)-*^ /1 £ | CF$.L. |*(- l)f x 

x WittJL; L'2). (28.90) 

Above we considered the special case of quadrupole splitting in a 

field of charge e'. All the results are easy to generalize for the 

case of an arbitrary nonuniform field having axial symmetry. In the 

above obtained formulas it is sufficient to replace by 40» 



where 9 is the electrostatic potential. 

4. Variable field. We will start our study of the Stark effect 

in a variable field from a consideration of the general case of 

perturbation V(t), depending in evident form on time. Let us assume 

that before the start of perturbation (t < t0) the atom is located 

in state n. Let us expand the wave function ^n(t) according to 

wave functions of an undisturbed atom 

(28.51) 

•♦.W-Ç«..*.«"*'*'. (28.52) 

Hie coefficient of this decomposition «^(t) are determined by known 

equations of the perturbation theory 

(28.53) 

*•**-£*-£. (28.54) 

and satisfy the initial conditions 

(23.55) 

Later it will be convenient to make the substitution 

(28.56) 

and to put t0 = 0. After that we obtain equations 

' (28.57) 
i*4 áààm « «+ 2' V»s*ta*** 

with initial conditions 

a„(0)-0. (28.58) 

Integrating system (28.57) in the framework of the perturbation theory 

in the second equation we can drop the sum over s, containing small 
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Then iîiagnitufJes of a, 
ns 

(28.59) 

Placing this expression in the first equation of (28.57) in which 

v;e also assume eian = 1, in the second approximation of the 

perturbation-theory we obtain 

In the general case phase an(t) in complex 

(28.61) “■(0-.1.(0-'TJO. 

Let us clarify the physical meaning of magnitudes and Prom 

(28.60) one can simply obtain1 

(28.62) 

The right side of (28.62) coincides with the usual expression for full 

probability of transitions with level n to all the remaining levels.2 

Thus, the imaginary part of phase characterizes "damping" of state 

n, evoked by perturbation V(t). The physical meaning of t|n is most 

simply clarified if we consider constant or slowly changing 

perturbation. In this case, Integrating in the second member (28.60) 

1During conclusion (28.62) this evident relationship is used 
t r i r t r 

lhrf£®<f')<rIm®«')tf'fim®(0<K*, and also the 
• ft • • • f 

fact that for an arbitrary function f 

j / j / <n dr-^\§hr)dt' |*. 

orrnula (^1.2) in [L. L. ]. 



by parts. vre obtain 

• » r 

(28.63) 

Therefore 

(28.64) 

The expression in the braces under the integral is a shift of level 

n under the effect of perturbation V. 
» 

is an increase of phase \ caused by displacement Thus 

of level n (let us remember that the phase of the undisturbed wave 

function *n is equal t° ^ J dt*, and a shift of level AE^ in a constant 

i 

w- 

Prom (28.63) and (28.64) it follows that perturbation, changing 

1 
little during the time on the order of -=—, does not evoke transitions 

ns 

from state n to other states. With an accuracy of the small member 

omitted in (28.63) phase an is real. 

Placing Vmm—fDg, 16,.-0, in (28.64), we obtain the formula for 

the quadratic Stark effect 

Afin-finç . ( 28.6 
o 

Now only the time-dependent magnitude « (f) enter in this formula. 

(28.66) 

Thus, at every given moment of time the level shift is determined by 

the same formula as in the case of a constant field. 

There is another situation for a fast-changing field. We will 

assume that the field is effective for the short time At, which is 

small as compared to periods of motion of electrons r„- —. In this 
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, j!ï 

factor car. . t. taken out from tehinô the integral 

by taken;-; its /alue at the moment of imposition of perturbation. With 

this phase an turns out to be purely imaginary and rln = 0. Thus, 

rapidly varying perturbation evokes transitions between levels, tut 

does not give a shift. Let us consider this effect in greater detail 

in the particular case of perturbation constant for the interval 

it (t0, tQ + At). Integrating in second member (28.60), we will 

obtain the following expression for the increase of phase during 

the time At: 

(28.06) 

Calculating the same magnitude by the formula of the quadratic 

Stark effect for a constant field gives 

(28.67) 

Thus, the instantaneous level shift turns out to be considerably smaller 

than in a constant field of the same magnitude. The atom, as it 

were, does not manage to escape from the field. This effect has a 

simple physical meaning. In the absence of a field the atom does 

not have dipole moment. The latter appears only due to polarization 

of an atom by a field, i.e., due to deformation of electron shells. 

If the field is effective for the short time interval At < Tns, then 

due to the inertness of the system the shell is not deformed. 

In the above considered example the decrease of shift due to the 

effects of delay is determined by factors • For an at-'orn» as a 

rule, T , ft 10”lJ| sec. Thus, by variable fields we must mean fields 
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whose magnitudes change substantially during the time on the order of 

-14 
10 sec. Such times of change of electrical field are fully real. 

If, e.g., a charged particle passes an atom at a distance of 10“^ cm 

3 / / 
with velocity of v =0 10 cm/sec (in case of an electron this velocity 

corresponds to kinetic energy on the order of 3 ev), then the field is 

-IS 
effective for the time on the order of 10 sec. In this case the 

calculation of the variance of the field turns out to be very 

significant (see § 39). 

Let us also consider periodic perturbation 

V-—(28.66) 

In this case integrating the second member in (28.60) is not 

difficult labor. For the time-average value of phase ãn we obtain 

(28.69) 

Thus, the average shift of level £En is connected with mean value of 

the square of field strength =¿’î by the relationship 

(28.70) 

In the limiting case of a static field œ0 (28.70) passes into the 

usual formula for the quadratic Stark effect. At large frequencies 

cu » o>ns the corresponding members of sums (28.70) and (28.65) differ 

by approximately (—f)* times. 

5. De-excitatlon of level 2s of a hydrogen atom in an 

electrical field. From the selection rules for radiation it follows 

that radiative transitions from state 2s to state Is are forbidden. 

It is not difficult to show that this ban is removed even by a very 
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weak electrica field. 

During imposition of an electrical field level 2s is split into 

components n. = 1, nn = 0, m = 0 and n, = 0, = 0, m = +1. 

Consequently, the eigenfunctions of Hamiltonian H0 - *Dz are 

"parabolic" functions n These functions can be presented in 
1 2 

the form of a linear combination of functions ty. , The coefficients 
6 m 

of decomposition are easily determined from the general formulas of 

the perturbation theory 

1>...«y=($,,+V. (28.71) 

Let us assume that at the initial moment t = 0 as a result of some 

process of excitation the atom turned out to be in state ip n. At 

t > 0 the time-dependent wave function of the atom in an electrical 

field 'F(t) can be recorded in the form of a linear combination of 

wave functions of steady states n^ = 1, = 0, m = 0 and n1 =» 0, 

ru = 1, in = 0s 

(28.72) 

where in accordance with (28.36) 

Coefficients A, B are found from the Initial condition: at 

t = 0 Ÿ(o) = iPsQ. Putting (28.71) in (28.72), we obtain 

+ (28.75 

I-’rom (28.73) it follows that in an electrical field the orbital 

moment of electron is not retained. If at 1: = 0 ¥(0) = ip then 

through time r»~~ |tp |. The atom transfers from state '<p 
so 



to state ^p0 and back with a period of T. We will estimate the 

magnitude of this period. At #^ 1CGSE (300 v/Cm; ^7,5-10*. Consequently, 

even in such a weak electrical field the atom will cross from state 

2sO to state 2p0 during the period of time on the same order, as 

the time x necessary for radiative transition 2p0 - IsO. 

Thus, if we place an electrical field on an atom in state 2s0, 

then radiative transition to state IsO is possible. The probability 

of this transition for # ~ 300 v/cm is approximately equal to the 

probability of transition 2p0 - IsO. 

In a strong electrical field, when T » x, during all the time 

of de-excitation of the state 2s0 and 2p0 are settled approximately 

equally (independently of which of these states the atom was in at 

the initial moment t = 0). Therefore the probability of radiative 

transitions 2s0 - IsO and 2p0 - IsO in the presence of strong 

electrical fields are identical and equal to It is obvious 

that an electrical field also removes bans of other transitions 

ns - n’s. 

§ 29. Magnetic Field. Zeeman effect1 

1* A weak field. In contrast to an electrical field, a 

magnetic field completely removes degeneration of levels by M. 

Interaction of an atom with a magnetic field has the form 

a*. (29.1) 

where u is the magnetic moment of the atom. This moment, in general, 

is formed of two parts: electron and nuclear. The latter, however, 

is at least three order less than the first. Therefore for the 

Splitting of spectral lines in a magnetic field was first 
observed by Zeeman in I896. 
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(29.2) 

ma¿--i2 mor:er.2 oí an atom in state 7J we can place 

Here is the Bohr magneton; J is the full electron moment; 
•JftC 

g is the gyromagnetic ratio, which is frequently called simply the 

g factor (see § 22). By directing the z axis in the direction of 

H, we will obtain 

(29.3) 

Thus, in a magnetic field level 7J is split into 2J + 1 components: 

M = 0, +1, +2, ..., +J. This splitting is linear according to H and 

symmetrical. The absolute value of splitting is determined by 

the magnitude of H and the g factor. In order of magnitude g =* 1, 

T1 
“"üL 6 *1- «»jjj 

therefore the absolute value of splitting in cm -H. 
, 2mc‘ 

At H on the order 10 oe splitting attains 1 cm . The magnitude of the 

g factor essentially depends on the type of coupling. The g factor 

is most simply calculated in case of a LS coupling. The operator of 

magnetic moment of an electron is determined by expression 

I*-—M. («/+&*), (29.^) 

where gj = 1, gs = 2; therefore 

gJ-<(*£*< + - <(L + 2S» ( 29.5 ) 

(see § 22). Averaging in (29.5) is understood to be averaging over 

a state with given value of full moment. Using equality 

£+2$«S+S 

and calculating the mean value of S with help of formula 

t29-6) 

we obtain 
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(29.7) 
1 tJV+')-UL+l)+S(S+\) 

This is the so-called Lande' g factor. At S = 0 g = 1, at L = 0 

g » 2 and at L = S g =* 3/2. In general for components of fine 

structure of terms L â S 

and L < S 

¿+2S_£—2S+ f 

L+2S_2S+1-1 
r+j >*>s-L+i 

For one electron outside filled shells 

1) +"T- 

¡npnr ■ (29.8) 

For certain levels (e.g., \) the Lande' g factor is equal to 

2 
zero. This means that in the first perturbation-theory approximation 

such levels are not split. 

In the case of a «Jj coupling calculating the g factors turns out 

to be a considerably more complicated problem. Simple general 

formulas can be obtained only for configurations j,j' and jn. In 

the first case 

iJ-MM+gV)/». 

f U)- g<AJJ/-+ ""Jÿ+tl**1 (l+- + 

+MÍ£±±-¿«+"+r<r+i) 
(29.9) 

where each of the g factors in the right part of (29.9) is determined 

by formula (29.8). In the second case 

$iM-gUU 

therefore 
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iM-gU). 

Z) 

(29.10) 

Bor a. cöd'pllng oi uîie interinç'ciate type the g factor for level ctj 

can be expressed through g factors of the approximation of a LS 

coupling. Levels aj and eigenfunctions ^aJ are a diagonalization 

Ox the matrix ox electrostatic and spin-orfcital interactions of 

electrons, where 

(29.11) 

Therefore 

l(Y^L/Ia/)fV(vS¿). (29.12) 

In the single configuration approximation summation over 7SL 

signifies summation over all terms of the given configuration for which 

L + Sëjâ IL - S j, Prom property unitarity of the transformation 

factors (YSLJjaj) 

2(vS¿y |a/)(a/| Y'S'r/)« 

an important rule of sums follows 

$*(yS¿)- (29.19) 

Thus, the sum of g factors over all levels of the given 

configuration having the same value J does not depend on the type 

of coupling. In particular, this sum is Identical in the two 

limiting cases of LS and jj couplings. 

As an example we will consider the levels j = 1 of the 

con figurât, ion npn'p. In the approximation of a LS coupling 

)-1. «CSJ-1 ,(-0,). i, Yt-5, 

In the approximation of a jj coupling 

ff(¥Í)~*(TT)~r 2*-5- 
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When there is strong interaction of any two configurations, 

summation in (29.13) must be spread over terms of both configurations. 

Let us turn to splitting of spectral lines in a magnetic field. 

Just as in the case of the Stark effect, in direction of the z 

axis we observe a components (AM * +1) and in the direction 

perpendicular to the z axis, a and v components (AM = 0). From 

(29.5) it follows that 

J ( 29. i4 ) 

If g - g\ 

(29.15) 

Consequently, in this case along the field we observe a doublet; 

the components of the doublet are displaced on both sides of ü>0 

by an equal distance UqH. During observation perpendicular to the 

field a triplet is observed: an undisturbed tt component is added to 

the d components. According to tradition splitting of such type is 

frequently called the normal Zeeman effect; the general case of (29.14) 

is called the anomalous effect. This name is connected with the 

fact that before the discovery of electron spin the splitting in 

(29.14) had no theoretical explanation, whereas (29.15) followed from 

classical electron theory. AtS=0g=gf =1. 

In the general case of formula (29.14) splitting has a 

considerably more complicated form. As an example Figure 29 shows 

splitting of spectral lines corresponding to different transitions 

between terms S * 0 and S = 1/2. On this figure the accepted 

designations of tt and o components (v component from above, a component 

from below) are conventional. The relative intensities of m and a 
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components of a line are 

calculated In § 32. The 

results are gathered in 

Table . From Table Jb 

it follows that the 

intensities of tt and also 

a components, located 

symmetrically relative to 

oJq, are identical. During 

transverse observation the 

intensity of g components is one half of that during longitudinal 

observation. This is explained by the fact that during longitudinal 

observation the Dv and D,r components of dipole moment contribute to a y 

intensity, but during transverse observation only one of them 

contributes (the Dx component during observation along the y axis 

and the Dy component during observation along the x axis), 

A number of general regularities for distribution of intensity 

over tt and a components of a line also follow from these formulas. 

Thus, for transition the intensity of tt components increases 

during removal from o>0 (increase of M), and for transitions 

7J “♦ 7'J + 1 it decreases.1 In Fig. 29 the intensity of each of 

component is characterized by the height of the corresponding stroke. 

In a magnetic field levels J = 0 are not split. Usually in the 

second perturbation-theory approximation such levels experience a 

shift, since the correction to energy 

1A detailed consideration of the different possible cases of 
Zeeman splitting is given in the monograph: M. A. Yel»yashevich. 
Spectra of rare earths, State Technical Press, 1953,- in the same place 
there ire extensive tables of g factors and relative intensities of 
m and a components. 
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(29.16) 

at J * M = 0 Is not equal to zero. Matrix elements W are different 

from zero for transitions between components of fine structure of 

a term. Therefore when fine splitting is small, correction (29.16) 

can also play an essential role for levels J / 0. 

Table 74. Relative Intensities of Components 
of Zeeman Splitting 

Transverse observation 

Transition /. /,<*—tf-D /,(4(-4( + 1) 

T/ — YV 

—Y'tf + O (y+o'-Af* 

!(, + *)(/ +l-AO 

-i (-/ + 40(-/-1+4() 

-J-tf + l+Af) iJ+M) 
m 

-^-(/—4()(/ + 1+4() 

1(/-4()(/-1-4() 

1(/ + 1-4()(/-4() 

longitudinal observation 

Transition /. /,(4(-♦AI—1) /,(4(-4( + 1) 

Y/ —YV 

y/_y'(-/-1) 

Y/ — Y'(-/ + 1) 

0 

0 

0 

1-(7+4()(/ + 1-4() 

y (/ + AI)i/-l + Af)' 

ÿ|/+I+4f) (/ + 4() 

1(/-41)(/ + 1 + 40 

1(/-40(/-1-41) 

1(/+1-4()(/-40 

Investigation of Zeeman splitting of spectral lines is 

exceptionally important for systematizing spectra. According to the 

character of splitting and the distribution of intensity one can 

establish the type of levels responsible for a given spectral line. 

From splitting one can also find values of g factors for corr.r.ining 

levels. This gives very valuable information about the type of 

coupling, in particular about the degree of deflections from a 

LS coupling. 

-388- 



41 • Strong field. When the energy of an atom in a magnetic 

field W becomes larger than spin-orbital interaction, the character of 

splitting changes substantially. Let us consider splitting of term 

7SL in limiting case of W » ALS, when spin-orbital interaction in 

general can be disregarded. From (29.1) and (29.5) we have 

IF-+ 25,). (29.17) 

Now we must find the mean value of ¥ for a state with assigned 

moments L and S, since in the absence of spin-orbital interaction each 

of these moments is retained separately. Considering that averaging 

simply leads to replacement of L by MT and S by we obtain 
Z Li Zb 

<VF>-^,//(^+2^). (29.18) 

According to (29.18) term 7SL is split into a number of components, 

each of which is characterized by definite values of the sum 

(Ml + 2Mg). In general some of these components are degenerated, 

since the same value of (M^ + 2Mg) can be obtained with help of 

different combinations of NL, Mg. 

The correction to energy of state SLMgML caused by spin-orbital 

interaction has the form 

<ALS> = AMlMs, (29.19) 

therefore in the following approximation energy levels are determined 

by the formula: 

tësLMf ml — %H(Ml + 2Ms) + AMSM. ( 29. 20 ) 

Radiative transitions between components of splitting of two terms 

obey the selection rules 

(29.21) 

therefore 

AAfj—0, AMl — 0, ± 1. 



•y-Î ) (29.22) 

Thus, splitting of line 7SL-*■ in broad terms is the same 

as under the normal Zeeman effect. In this case, however, each of 

the ir and a component has a multiplet structure. "Without calculating 

multiplet splitting formula (29.22) coincides with the formula for 

normal Zeeman splitting (29.15). Splitting of lines of this type 

is called the Paschen-Back effect. Similar splitting was first 

observed by Paschen and Back in 1912 on a series of lines of Li. 

We must note that the Paschen-Back effect is observed in pure form 

very rarely. Even when multiplet splitting is comparatively small, 

this effect should appear in fields of H ~ 2*10^ oe. We usually 

4 4 
work with fields on the order of 3*10 -4*10 oe and considerably 

less often, with fields of H £ 10^ oe. At such values of H, as a 

rule, an intermediate case is observed: deflection from Zeeman 

splitting becomes substantial, but still not very great. 

In the general case of W ~ ALS both interactions have to be 

considered simultaneously. Moreover as functions of the zero 

approximation we can select both functions M , and also any 
S L 

independent linear combinations of these functions. In particular, 

it is possible to originate from functions In a number of 

cases this turns out to be the most convenient, since the matrix of 

spin orbital interaction in representation JM is diagonal. Matrix 

(Lz + 2£2) in representation JM is diagonal to M, but is nondiagonal 

to J. Therefore the corrections to energies of M states are 

determined by the roots of the secular equation 

References on examples of such type can be found in the survey: 
J.' C. van den Bosch, Handbuch Der Phys. XXVIII, 296, 1957. Springer 
Verlag. 
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<YJ.M¡ W+ALS \ yyM) - <yJM \ W \ yJ'My... 
i,yJ'M J W¡ yJM) <yJ'M\W + ALS¡\J'M>-áE... =0. (29.25) 

A secular equation of the type of (29.23) corresponds to each possible 

vatue of M, where for M = L + S the order of this equation is equal to 

unity (J = L + S); for M = L + S - 1 it is equal to (J = L + S; 

L + S - 1); for M - L + S - 2 to three (J = L + S; L + S - Ij 

L + S - 2), etc. 

Let us consider how the nondiagonal matrix elements W entering 

in (29.23) are calculated. Matrix Jz is diagonal to J; therefore 

(29.24) <ySUM 11, + 25, [ ySLJ'M> = <Y5£/Ai 15, | ySLfM>. 

Further, using the general formulas of § 14, one can simply obtain 

<YS¿yAf|5,|YS£/^> 
J 1 / 

— M 0 Af J- 
^\ÿ~M(ySU\\S\\ySLJ')Ç (29.25) 

(Y5£y II5 (J Y5¿7') 5= (— l)¿+,_,_yx 
(29.26) X^5(5+1)(25+1)(27+ 1)(2/+ ¿1>. 

2 
As an example let us consider splitting of term P. In this 

case J = 3/2, 1/2; M = +3/2, +1/2. The matrix elements do not depend 

on M and are determined by expression 

<*/», MLJI'/V—jA. <y\ >—-A. (29.27) 

where A is the fine structure constant of the given term. The 

diagonal matrix elements W are equal to 

where g(' P.-), g(‘ P,/ are Lande' g factors for the corresponding levels. 

2 7 
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The nondiagonal matrix elements W are calculated with formulas 

(29.24)-(29.26). For M = ±-2- 

fP4M\W\9Pt 
r • • 9 

Hierefore for M ** ±%k 

j.igirM+|4-A£-o 

anõ for M » ±0 

^kHM+jA-le mwÇ 

’Hius, the corrections to energy have the form 

4 . i 

+ j4) ( ). 

— ^-j-mWAi+y m ^ ^ j • 

(29.29) 

(29.30) 

(29.31) 

(29.32) 

(29.33) 

(29.34) 

For a weak field from (29.33)-(29.34) the formula of the Zeeman effect 

follows 
à£ ¿-^A+jvJiM-jA+gpPjtiJM. 

Af«« A-^—gfaHM^'yA +gPPt)mHM. 
T 

2 4£‘®* t — 4 +-J m»M — 4 +* (V1) |»^Af. 

(29.35) 

In the case of a strong field in (29.33)-(29.34) it is possible to 

put A = 0, after which 



It is easy to check that formulas (29.56) coincide with (29.18). At 

M » ±3/2 Ml = ±1, Ms =» ±1; therefore + 2Mg * -jM. At M « ±1/2 

there are two possibilities: * 0, Mg - ±1/2 and » ±1, 

Mf, =» +1/2. In the first case + 2Mg = 2M, and in second 

+ 2Mg = 0, 
p 

Figure 30 shows splitting of term P depending upon the 

magnitude of magnetic field strength. A qualitative presentation 

about the character of splitting in region of intermediate values of 

H can be obtained by comparing the two limiting cases of a weak 

and a strong field. With increase of field strength H Zeeman splitting 

continuously passes into Paschen-Back splitting. This transition is 

always carried out so that levels with identical values of M do not 

intersect.1 This condition ensures the uniqueness of the comparison. 

Figure 30 illustrates what was said. 

Deviation from Zeeman splitting in the region of intermediate 

values of H can also be considered as introduction of corrections 

of the second pertubation-theory approximation. Of special interest 

is mutual perturbation of any two levels 7JM and TJ'M. In this case 

from (29.16) and (29.24)-(29.26) it follows that 

1Intersection of levels with identical M is a corollary of general 
theorem determining the behavior of an eigenvalue when the Hamiltonian 
of the system depends on a certain parameter [L. L.]. Let us note 
that calculating the correction of the second perturbation-theory 
approximation leads to repulsion of levels with one value of M, the 
more so, the less the distance between levels. 



AP... m Wm’-t+SHSm+l—SUi + S+t +/m)(L +S+t—Jmt 

XUÍ-AT)'^-, (29.37) 

Jm is the biggest of numbers J, J*. Due to perturbation (29.37) 

different M sublevels can correspond to different observed values of 
■ 

g factors, where this difference should increase with increase of H. 

? 
Pig. 30. Splitting of terms P in weak 
and strong magnetic fields. 

3. Splitting of components of hyperfine structure in a magnetic 

field. Splitting of components of hyperfine structure in a weak field 

(splitting is small as compared to hyperfine) is determined by the 

mean value of operator (29.2) according to state JIFM. 

The mean value of J according to a state with assigned value of 

P is equal to 

therefore 

<J> * <Jr> tir+ï) F= 
F(F+l)+Jtf+l)—I(/ + 1) * 
-~WW+T)-F' 

<yJlFM\ 71yJJFAt> - 

(29.38) 



Thus, splitting of components of hyperfine structure in a magnetic 

field is like splitting of J levels in all respects. The relative 

intensities of tt and a components are also determined by the formulas 

of Table 74, in which It is necessary to replace J by P. The scale 

of splitting is determined by the g factor which is connected 

with the Lande' g factor gj by the relationship 

(29.39) 

Due to the small size of hyperfine splitting the applicability of 

formula (29.38) is limited to the region of comparatively small values 

of H. In the limiting case of a strong field (splitting is great as 

compared to hyperfine) hyperfine splitting is put as a small effect 

on the usual Zeeman splitting of a J level. The situation here is 

completely analogous to that which occurs in the case of the Paschen- 

Back effect. Level 7J split into a series of components, each of 

which is characterized by definite values of quantum numbers MXMX 
J X 

(29.40) 

where A is the constant of hyperfine splitting,. Inasmuch as radiative 

transitions satisfy the selection rule AMj = 0, from (29.40) it 

follows that each of the Zeeman components in turn is split into 

(21 + 1) components. Thus, when this splitting is resolved by the 

equipment, one can determine nuclear spin I. For instance, the series 

of Zeeman components of line X = 4722 X Bil in turn is split into 

10 components. For the nucleus of Bi20^ this gives a value of 

I = 9/2. 
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CHAPTER IX 

INTERACTION OF AN ATOM WITH AN ELECTROMAGNETIC FIELD 

§ 30. Radiation of Electromagnetic Waves 

1, A field of radiation In a wave zone. An arbitrary electro¬ 

magnetic field can always be broken down into monoenergetic waves; 

therefore below we will only consider a monoenergetic field with 

frequency of cd. In this case all the magnitudes describing the 

field, intensities E, H, potentials A, ¢, and also the densities of 

charges and currents, creating the field, p and j, depend on time 

through factor e”iU)t. 

In a space free of charges the field strengths E and H are simply 

determined by assignment of the vector potential of the field, A 

H mm toi A, £-/1-rot rot 4. (30.1) 

In determining vector A we will originate from the known 

expression for a lagging potential 

(30.2) 

Here R, r and r’ designate the radius vector of the point of 

observation, the radius vector of the volume dv, over which 

integration is conducted, and the distance from this volume to the 

point of observation. 



"s 1 oiiov.'S - rom {$0.2), ouring imegration the values of J are 

taker, at the moment of time t - £ , we thereby consider the delay 

0i lnteraction. Let us select the origin of coordinates somewhere 

inside the system of charges and consider the field of radiation 

in the so-called wave zone, i.e., at distances large as compared to 

the dimensions of the system of charges and also as compared to the 

length of light wave X. With this we have the relationship 

SzxR-mr, ar<£R. (30.» 
In the fxrst approximation in the denominator of expression (30,2) 

we can replace r' by R; in the numerator in general factor 

ifnr 

e cannot be replaced by unity. For this it is necessary that 

(30.4) 

which cannot take place. Therefore 

(30.5) 

In the wave zone calculation of field strengths E and H is considerably 

simplified, since with sufficiently good accuracy we can consider 

that in limited sections of space the field has the form of a plane 

wave e1^-^), k = k-n, k = f. 

In this case from relationships (30.1) it is easy to obtain 

‘I*'4!* (**]]. (30.6) 

Let us find the energy dl, radiated by the system of charges in an 

elementary solid angle dO = sin 0 d0 d<p. This magnitude is equal 

to the energy content flowing in 1 sec through an element of 

spherical surface R2dO, or, in other words, the average density of 
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energy flow ÏÏ, multiplied by R£dO. The expression for energy flow 

(the Poynting vector) S - Sn in the wave zone according to (30.6) 

has the form 

(50.7) 
.'Y 

Here ReA, is the real part of the transverse component of vector 

potential, i.e., the projection of A on an area perpendicular to 

k. Having designated the ek unit vector of wave polarization by 

we obtain the following expressions 

(30.8) 

Inasmuch as a plane wave of arbitrary polarization can be represented 

in the form of a superposition of two plane-polarized waves, the full 

intensity can be obtained by summing (30.8) over the two mutually- 

perpendicular directions of polarization e^: p * 1.2, 

2. Radiation of an electrical dipole. Let us now assume that 

condition (30.4) is fulfilled. For this it is necessary that wave 

length X » is much larger than the dimensions of the system. 

Putting eikr » 1, we will transform the integral in (30.8) by using 

the equation of continuity 

which in our case takes the form 

dlV/a-toO. 

We will multiply this relationship on x and integrate over an 

arbitrary volume 

* dl*/- div (*/)—/grid x - dlv (*/)—/„. 
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Integral from div(xj) can be converted into an integral over surface. 

Inasmuch as the density of current j beyond the borders of the system 

turns into zero, this integral is equal to zero. Ihus, 

Analogous relationships can easily be obtained for jytJz. Therefore 

where D is the dipole moment of the system1 

"-TO- Z \*»D\'dO. (30.10) 
P«H.i 

We will direct the z axis along vector D. The vectors of polarization 

e„, , e„, can be chosen so that 
Ik* 2k 

Ö—0 cos (#,*0) D iln 8, *t*D—Q 

and 

(30.11) 

By integrating (30.11) over d<P from 0 to 2v and over Q from 0 to m 

we will obtain the full intensity of radiation 

/--£-D\ (30.12) 

We will also find the full intensity of radiation polarized in the 

direction, e . by averaging over all possible orientations of vector 
pk 

D in space 

á¡. — louDI*Yjpr coi^rfO- (30.13) 

i^jhen the field is created by a point charge oscillating with 

frequency o>, \ jdr—t9. J^rdr—tr, and relationship (30.9) obtains an 

especially graphic meaning v = -ia>r. 
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P <1 
Mean value of cos over orientations of vector D is equal to j; 

therefore 

(50.14) 

(50.15) 

Important pecularities of (30.14) and (30.15) are isotropism of 

radiation and independence from selection of the direction of 

polarization. This permits writing (30.14) in the form 

(30.16) 

By multiplying (30,15) by 2, which corresponds to two independent 

directions of polarization, we can obtain the former result for 

the full intensity of radiation, formula (30.12). Thus, radiation 

of a dipole averaged over its orientation in space, and also the 

radiation of all freely oriented dipoles is nonpolarized and 

isotropic. ,- 
i^nr 

Continuing to break, down factor e c into a series by degrees 

of %r, we can obtain in supplement to (30.12) the radiation determined 
V 

by the magnetic moment of the system 

(30.17) 

(magnetic dipole radiation) and the electrical quadrupole moment 

Q* - J Q (3r. •—r*) dr (30.18) 

(electrical quadrupole radiation). Further decomposition uy degrees 

of ™nr gives radiation of the highest electrical and magnetic multipole 
V# 

moments. This question is considered in § 32. 
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J. Quantisation of a field of radiation. An arbitrary field 

of radiation in a volume V free of electrical charges can be 

presented in the form of decomposition by plane waves 

AIM)—Ç {«**<*'a* -N. « (30.19) 

The magnitudes simply determine the field at any point of the ' 

considered volume V. Therefore describing the field of assigning a 

discrete set of variables a^ is fully equivalent to describing the 

field by means of continuous functions of coordinates A(r, t) or 

E(r, t), h(r, t). Let us express the energy of the field through 

magnitudes £^. 

* -¿ +üfV* - ¿ J £* <f*. (30.20) 

For each of the plane waves participating in decomposition (30.19), 

the vector potential akelkr + a£e"ikr is connected with field 

strength E by relationships (30.6); therefore 

(30.21) 

Putting (30.21) in (30.20) and considering the condition of 

orthogonality 

we obtain 

(30.22) 

1In this section it is assumed that the potentials of an 
electromagnetic field are selected so that 9-0, dlv A » 0, This is 
a particular case of calibrating div A + I9 » 0, which corresponds to 
formula (30.2) for A. The condition div A = 0 ensures transverseness 
of A. Similar selection of A is convenient because the longitudinal 
component of A is not related to the field of radiation. 



Thus, the energy of the field is presented in the form of the sum of 

energies of plane waves participating in decomposition. 

A plane wave of arbitrary polarization in turn can be represented 

in the form of a superposition of two plane-polarized waves. Therefore 

vectors a. have two independent components 

Ml. • 
(30.23) 

The unit vectors e1k and e~. are mutually perpendicular, 
«JL XV £_XV 

accordance with (30.23) 

In 

2 £#• éi»1 f •». • 
V* 

s***»*. (30.21) 

Let us go from variables a„f. to new variables 

^ “ V +p* - -'«* - 4 V (30.25) 

Introducing the "car.oi.i jally conjugate" variables Q and P is convenient 

because the Hamiltonian function expressed in these variables and 

coinciding with total energy has the same form, as the Hamiltonian 

function of a linear harmonic oscillator 

“7«¿O»*). fV*~Q*. (30.26) 

Thus, the Hamiltonian function Is broken up into the sum of 

independent members each of which corresponds to a wave with 

defined wave vector k and polarization e , . The energy of each of 

such waves coincides with the energy of a linear harmonic oscillator 

with frequency and amplitude Q^. Therefore the above obtained 

decomposition Is frequently called decomposition into oscillators. 

According to (30.26) variables Q, ^ satisfy the ecuations of 

motion of a linear harmonic oscillator 
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Ö* ul Qu » 0. ( 3® • 2? ) 

These equations play role of equations of motion for the field. 

Let us assume for simplicity that volume V has the form of cube 

with edge L. In this case the components of vector k pass a discrete 

number of values 

2n 
T*« 

2n 
TV 

. 2* (30.28) 

where n - n . n„ e integers. Thus, the number of oscillators for 
X y z 

which the components of wave vector k . k . k are included in X y z 

intervals Ak . Ak , Ak , are equal to 
X y z 

^“^^«.“@514*^*^ (JO. 29) 

This expression determines the number of oscillators for which the 

absolute value of the wave vector is included in the interval dk, 

and the direction, in the elementary solid angle dO. 

Actually, dk = dkxdkydkz - k dkdO; therefore 

'{Sip - dlïi ** ** *0- (30.30) 

Inasmuch as dnzr>V, is the number of oscillators per unit of volume. 

The representation of a field in the form of a superposition of 

plane waves, i.e., decomposition of the field into oscillators, 

permits an extremely simple conversion to a quantum-mechanical 

description of the field. For this it is necessary to go from the 

classical equations of motion for field variables to quantum- 

mechanical. This is most simply done by subordinating the canonically 

conjugate variables Q, P to permutable relationships 

l/*. Ql - PQ—QP-—fll- (30.31) 

The result of such quantization in the application to a harmonic 
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oscillator is well-known. The eigenvalues of the energy of the 

oscillator are equal to 

. (30.32) 

where n v are integers determining the number of quanta in the field 
pK 

of radiation, i.e., the number of photons with wave vector k and 

polarization epk. The state of the field of radiation is now 

described by numbers npk for all oscillators of the field. The 

classical amplitudes Qpk in quantum theory will correspond to the 

matrix (Qpk)nnM whose elements are equal to 

/¾5. (50-53) 

Qh'.pO, ^^.±1. (30-5^) 

Using (30.33), we can also obtain 

(«*k (50.55) 

(vv..,.- /^±5. 

ail the remaining matrix elements (apk)nn, and (apk)nn, are equal to 

zero. 

4. probabilities of radiative transitions and the correspondence 

principle for spontaneous radiation. Now we can calculate the 

probabilities of radiative transitions. The small amount of 

interaction of an atom with the field of radiation permits us to 

use the perturbation theory. In the zero approximation (without 

taking interaction into account) the state of the system, atom + field 

of radiation, is determined by assigning the state oí. the atom and 

numbers of photons Interaction leads to transitions of the atom 

from one steady state to another, accompanied 'ey radiation or 
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a,í',sorp"...Ion of c/uanoa of light. The probability of these processes 

is determined by matrix elements 

(30.36) 

Here are atomic functions; U...n... are functions describing 

the state of the field; H’ is the interaction of the atom with the 

field of radiation. In atomic spectroscopy we can limit ourselves 

to a nonrelativistic approximation; therefore 

where p is the momentum of the electron. 

are different from zero only for such transitions during which 

Thus, in quantum numbers n decrease or are increased by one. 
rA 

the first approximation only one photon can be radiated or absorbed. 

Let us consider radiation (or absorption) by an atom of a photon 

with frequency wave vector k and polarization e In 

decomposition of vector potential A by plane v/aves this photon 

corresponds to the member 

Therefore Interaction of an atomic electron with an electromagnetic 

field can be written In the form 

This expression is easily generalized for the case of several 

electrons by replacing p by 2*¡- electrons 

Putting (30.37) in (30.36) and considering (30.33)» for 

radiation and absorption of a photon we obtain respectively 

*«I+I “ — = («*)*. !»♦ »*Mr <® I P*ttr ¡ *> “ 
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AW * («Í*W <*|^ I «> - me 

** 01 P*,tr I a> (30.39) 

(for simplicity of writing we omitted indices pk at npk). The 

probability of transition a -*■ b, accompanied by radiation of a 

photon with wave vector in interval k, k + dk and polarization e 

according to the general formula of perturbation theory is equal 

to [L. L.] 

4Wm. f l*^. « (£.- £.+*..) £. 

The presence of a 5 function in this expression ensures the 

Conservation of energy. In order to obtain the full probability 

(per unit of time) of radiative transition a “♦ b, we must sum 

this expression over p » 1, 2 and to integrate over dk 

pk* 

*•*- 21. j fi £.+A«,) ií**¡. (30.40) 

Designating f (Eft - E^) by cü and considering that 6(- too) => 
A 

- ~ we obtain 

Due to the presence in the integrand of a 5 function integration 

over doi^ leads to a replacement of cj^ by co. Therefore finally 

>" 2! js r-.*- 5 \dW„ 

where dW is the probability of radiation of a photon polarized along 
r 

epk in the elementary solid angle dO: 

(30.41) 

Here npk is the average of light quanta of a given polarization on 

-406 



«P*!.... 

<-l Ihr,;..,, , 

an oscillator with wave vector k in the interval k, k + dk. 
Likewise 

2 Í ‘v- 
f*». • 

for -he probability of absorption we obtain 

*W' “ãSS? * **<A "/ír I «> I* (30.4 2 ) 

Multiplying (30.41) by the energy of quantim 1m, we will obtain the 

intensity of radiation in the elementary solid angle do 

(30.43) 

Accoroing to formula (30.43) this intensity consists of two parts. 

The first does not depend on the intensity of radiation existing 

before in radiation and and is connected with the so-called spontaneous 

raoiation of an atom. The formula for the intensity of spontaneous 

radiation with an accuracy of replacement 

(30.44) 

coincides with classical formula (30.8). This is a particular case 

of the general connection between quantum-mechanical and classical 

magnitudes, following from the correspondence principle. In the 

particular case of periodic motion with frequencies », which 

considering, this principle can be formulated in the following 

way: the square of the modulus of matrix element |fab|2 of a 

certain physical quantity 

/* ! co* w ®. y {/>•«* + -<W#J 
(30.45) 

in the classical limit passes into ¿f 2 _ 4 | , p 
p ino° 21 * ipv! , where the line 

signifies averaging over time.1 

elements^fn,er?n o^assîca! the matrix 
a.b limit pass into Fourier components fou of 

ela.uo.Ieal function f(t), where <o = (e& - )/4. 
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1,1 ...—— ...... ..... 
”1' 

Thus, the correspondence principle permits us to obtain the 

formula for the intensity of spontaneous radiation by direct 

generalization of the classical formula. For instance, from formula 1, ) 

(30.11) for dipole radiation it follows that 

»’-jpi<«i®ií>r. (30.46) 

These formulas can also be easily obtained in the dipole approximation 

directly from (30.41) by summing this expression over p = 1, 2 and 

integrating over angles Just as this was done during conclusion 

(30.12) . 
5* Induced radiation and absorption. Einstein coefficients. 

If ïïpk / 0, then to the intensity of spontaneous radiation a member 
Is added proportional to ïï^. This additional radiation is called 

forced or induced radiation. The existence of induced radiation 

was postulated by Einstein even before the creation the quantum 

theory on the basis of thermodynamic considerations (these 

considerations will become intelligible later). 

Let us introduce the idea of spectral intensity of incidental 

radiation with polarization e^, having determined this magnitude 

so that 

(30.47) 
Q 

gives the energy incident from solid angle dO on 1 cm^/sec. This 

magnitude is connected with spectral radiation density by 

the relationship 

V„-7$r*äO. (30.48) 

Let us also define spectral intensity Ik and spectral radiation 

density U(JJ regardless of its polarization as the sum ,r.„ 
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(50.49) 4-2 4.»/*+/*. £/.- 2 

Prom (50.47) and (50.48) it follows that U is the energy in a unit 
r 

volume, or the density of energy arriving at a frequency interval 

do). This magnitude can be found by multiplying the number of 

oscillators of the field by the average of quanta, by oscillator 

ñ . and by the energy of a quantum iioo 

(50.50) 

Comparing (50.48) and (50.50), we obtain 

z_»xv, (3 
**"“¿7 4». 

According to (30.51) the probabilities of absorption dW^orjI and 
r 

induced radiation dW^H are connected in the following way with 

the probability of spontaneous radiation dW^n and the spectral 

intensity of incident radiation 

dwram-dw;m(a, *)-dw;a(a, b^i*. (30.52) 

From (30.41) and (30.52) an important pecularity of induced 

radiation follows. This radiation has the same frequency, the 

same direction and the same polarization as incident radiation. 

If incident radiation isotopically => Ipü) and 

(30.53) 

then integrating (30.82) over all angles gives 

- rl'ia, 4.- IFÍ-1«. b) ^ £4.. (30.54) 

If, furthermore, incident radiation Is naturally polarized 
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(30.55) 

-- : ..i 
1 ■ 

then 

wn*. «)- *?"<«. 0- ^“(a, *)^r/.- 

(30.56) 

The coefficient of proportionality between wj?orjI, W^K, anc1 W^n in this 

case does not depend on the direction of polarization e^; therefore, 

summing (30.56) for p « 1, 2, we find that the full probabilities of 

W110™, WMH, and Wcn also satisfy the relationships (30.56). 

All the above given formulas for radiation and absorption 

pertain to transitions between two states a and b. Let us generalize 

these formulas for transitions between degenerated levels 7, 7'. Let 

us assume that the multiplicity of degeneration or statistical weight 

of level 7 is g and of level 7' is g'. Let us assume that an atom 
i,1' 

with identical probability, equal to —, can be in any of states a, 
8 

pertaining to level 7. Then the full probability of transition 

7-7' can be obtained by summing W(a, b) over all states a, b of 

± 
the initial and final levels and multiplying the result by —; 

6 

Wn,am-fXW^a,â)' (30.57) 

Analogously 

(30.58) 

Let us write the probability of radiative transitions between levels 

7, 7’ in the form 

pmt. a 

2 BCIyy')«*!:'//.. 
♦■I. • 

2 Wr'iY'V-ßr'iV. 
••i. a 

(30.59) 
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gBrj.-g’B,.,, 

Èm* tm* ff* 
Arr* “-spr ^Tf “ ¡RT J ^i't 

(it is assumed that the radiation incident on the atom is Isotopic 

and is naturally polarized). Magnitudes A_^,, Ryy,, and ,y are 

called the Einstein coefficients for spontaneous radiation, induced 

radiation and absorption. In accordance with (30.56), (30.57)# 

and (30.58) these coefficients satisfy the relationships 

(30.60) 

(30.61) 1 

If the concentration of atoms on levels 7, 7' is equal to ÎL,, N^,, 

then the number of transitions 7 -*• 7» and 7' -► y per sec is 

respectively equal to 

{Arf+Bn'UJN, and Bf^NrUm. (30.62) 

In the state of thermodynamic equilibrium the number of transitions 

7 7' is equal to the number of transitions 7' 7, and, besides; 

£- 

therefore 

UmA-n‘ < 

if *•* 
(30.62') 

Expression (30.62) is the Planck formula for spectral distribution 

of the energy of radiation of a block body. At small frequencies 

koo « k? (30.62) passes into Rayleigh-Jeans formula 

U 'JÒ 

1J.f 

1 ~J 

0) 
from angular frequencies a) we go to frequencies v = then 

a nn relationship (3O.6I) takes the form 

) 
. Snhy* „ inhv* m 

. y- m ■—y —. 



Both these formulas, the Planck and the classical (not containing 

*) Rayleigh-Jeans, can be obtained only under the condition of 

existence of induced radiation. Namely from these considerations 

induced radiation, and also relationships (30.0O) and (30.61) were 

postulated by Einstein. 

Let us return to the general formula for the probability of 

radiation (30.41) and consider transition 7J-*Y'J', assuming that 

an atom can with equal probability be in any of M states. Then 

in accordance with (30.57) 

áW^j- y’f)dWt(Y^. y'J*M). (30.64) 

Averaging over transitions M — M* is equivalent in classical theory 

to averaging over all possible orientations of the radiating system 

in space. As is shown in §§ 31 and 32 (see formulas (31.17) and 

(31.18)), such averaging gives a result analogous to (30.16) 

Thus, 

yV’)". (30.65) 

1 . íaV , iO 

(30.66) 

(30.67) 

where is the Einstein coefficient for spontaneous radiation 

corresponding to transition 

6. Effective cross section of absorption. The coefficient of 

absorption. Let us define effective cross section of absorption 



.. ... 

t;hí ratio of afcsoroet energy dl^0rjl to current density of 

energy I , drcO in solid angle cO. In calculating dln0rjl we must 
iÄ p 

bear In mind that spectral lines always have width different from 

zero. An atom can absorb and radiate not a strictly monoenergetic 

frequency cs, but a whole interval of frequencies around 10. Below 

we will show that due to the interaction of an atom with an 

electromagnetic field spectral lines broaden. There are also other 

causes of broadening (see Chapter X). The probabilities of transition^, 

which we operated above, are integral characteristics. Thus, the 

probability of spontaneous transition A can be written in the form 

(30.68) 

where a^dco is the probability of spontaneous radiation in the interval 

.-1. 
of frequencies des. Inasmuch as a^dcu has dimensions of sec ; 

magnitude a,^ is dimensionless. 

Considering what was said, for the energy absorbed by an atom 

in the interval of frequencies dco we obtain the following expression: 

(50.69) 

where g = 2J + 1, g' = 2J' + 1. Dividing (30.69) by Ip^doxjO, we find 

(30.70) 

The same expression is also correct for the effective cross section 

determining the absorption of radiation polarized in an arbitrary 

manner, in particular that which is naturally polarized: 

(50.71) 

This follows from the fact that in general and the 
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current density of energy and proportional to (L,k + I2k). Likewise 

for the effective cross section of induced radiation one can simply 

obtain 

(30.7?) 

Knowing ^norjI and a1111, one can find the weakening of a bundle of 

light passing through a substance. This weakening is characterized 

by the coefficient k^. Let us assume that light spreads along the 

X axis. Then 

élm—kjmáx. (30.73) 
« 

According to (30.73) the spectral intensities of the bundle at 

points Xq fluid X are connected by the relationship 
% 

4<*) - /.(*,) #-*■(•-*). ( 3 o. 7*0 

Thus, during passage through a 1 cm layer of substance a monoenergetic 

beflun is weakened e’^03 times. 

From a determination of a^orjI, a^H, Kx it follows that 

¡,Nr (30.7' ) 

where N^, are the ‘concentrations of atoms on levels 77'. Formulas 

(30.73)-(30.75) are correct for any polarization of the bundle. The 

only limitation is the requirement of equal population density of 

each of the states pertaining to equations 77'. The second member in 

the parentheses in (30.75) determines the correction for induced 

radiation. This correction leads to replacement of N^, by 

In conditions of‘ thermodynamic equilibrium 
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ar.. ci 

Q (30.76) 

In the region of large frequencies leu » kT this correction is 

immaterial. 

P-«W7 
In unbalanced conditions valu«-.s ^ 1 arid K <1. This 

S f ^ 

means that during passage through a substance the bundle is not 

weakened, but is strengthened. This effect is frequently called 

negative absorption. This phenomenon has large practical value, 

since it permits using quantum systems (atoms and molecules) for 

strengthening and generating of electromagnetic waves. Sources of 

light built on this principle (coherent generators) are characterized 

by a very high moncenergetic nature and directivity of radiation. 

As a rule, for levels 7, 7’ (E^ > E^,,), responsible for radiation 

and absorption in the visible region of the spectrum, « liy, and 

(30.77) 

Magnitude (30.75), having dimensions of cm“1, is called the coefficient 

of absorption. Let us note that the effective cross section of 

absorptions ohO?Ji is frequently called the coefficient of absorption 

on one atom. 

Let us consider absorption by a layer of gas of final thickness 

l. According to (3O.7I) 

I 
+ —tip Jèjfjcl 'j » 

‘ M, (-0-76) 

where 
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t.-f *»*•-«T'I«-(i-f£) <*- 

(•-$)“* (J0-™) 

Is the optical depth or optical thickness of the layer. For a 

uniform layer 

(30.80) 

At » 1 the Intensity of a bundle on frequency cd is weakened 

e times. 

Let us designate the distribution of intensity in the incident 

beam through Iq(cd) and the distribution of intensity in a line of 

absorption, determined by the difference (30.78), through I (cd). 

In accordance with (30.78) 

4«)-4(a)[l -«-M. ( 30.81 ) 

If I0(o>) changes little In the region of the line of absorption and 

T « 1 for all frequencies on which absorption occurs, then 
•U 

l{m)-Nm™Nr 0-¾) • (30.82) 

Consequently, in this case (and only In this case) an absorption 

line has the same form as a line of emission. Integrating (30.81) 

over all frequencies, we obtain the full change of intensity of a 

bundle 

J /(«)*»- J /.(»HI _«-*„] da. (30.83) 
In accordance with (30.83) the energy de absorbed from a bundle with 

intensity (cd), angular dimensions dO and cross section S (It 

is assumed that angle dO is so small that the cross section of the 
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Gundle car; r,e ccr.sicerec constant over the length of absorption l ) 

is equal to 

* . JSdO ~SdO J /, (w) [ 1 —e-'«] diù. 

Frequently the magnitude of absorption is characterized by the ratio 

of absorbed energy de to incident de^ 

This magnitude does not depend on S, or on dO. If I (<jo) * const » I_ 
^ kJ 

(in the region of a line of absorption), then 

If, furthermore, for the whole line « 1, then 

4* “ ^TT* g> 'y K 1 dO. 

Using (30.67) this expression can also be written in the form 

dB-dW**a (y’y)JU,.5/V^/. 

In general, when for the central part of the line condition « 1 

is not fulfilled, the expression for de has a much more complicated 

structure. This is connected with the fact that only the atoms of 

the external layer with optical depth ~ 1 participate in 

absorption of light with frequency of co. Radiation practically 

does not penetrate any farther. Consequently, the number of atoms 

participating in absorption is different for different values of co. 

Let us note that the form of an absorption line is determined by 

formula (30.ÖI) only when the atoms of the absorbing volume do not 

radiate in the considered region of frequencies and if a number of 

additional conditions are also fulfilled. In general the formation 

of an absorption line is determined by a whole series of different- 

processes. An atom that absorbs a photon can then radiate it in that 
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same interval of frequencies Acu and directions AO, i.e., return it 

to the primary tundle. Furthermore, a photon can leave a bundle not 

only as a result of absorption, but also due to scattering. The 

propagation of radiation in a medium taking into account all possible 

processes of absorption, radiated of photons and their redistribution 

over frequencies and directions is described by the so-called 

equation of radiation transfer.1 

7. Intensity of spectral lines. Excitation of spectra. The 

intensity of spectral lines usually means the energy radiated in 

1 sec by a unit volume (erg/cmsec) as a result of spontaneous 

transitions. For transition i -► k of an atom, or an r-multiply 

ionized ion, this magnitude is equal to 

(30.84) 

where Alk is the Einstein coefficient for spontaneous radiation; 

is the concentration of atoms on level i(r =* 0, a neutral atom, 

r « 1, a single ion, etc.). The magnitudes n£ essentially depend on 

those conditions under which the radiating medium is operating. 

In general population of level i can be found by equating the 

number of acts of excitation and de-excitation of level i in 1 sec. 

Let us designate the total probability of radiative and nonradiative 

transitions from level i to all the remaining levels (including 

continuous spectrum) through (sec ) and the full number of acts of 

1For a discussion of the problem of radiation transfer see: 
A. Mitchell, M. Zemansky, Resonance radiation and excited atoms 
ONTI, 1937; D. A. Frank-Kamenetskiy, Physical processes inside stars, 
Flzmatgiz, 1959; L. Kh. Aller, Astrophysics, IL, 1955; A. Unzol'd, 
Physics of stellar atmospheres, IL, 19^9; V. A. Ambartsumyan, 
E. R. Mustel1, A. B. Severnnyy, V. V. Sobolev, Theoretical astro¬ 
physics, State Technical Pi ess, 1952; L. M. Biberman, ZhETF 1?» 4lo, 

194?. 
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.C» —~ J V S.-^ * i ’‘-J <4-. 1 

stationary conditions 

The magnitude qi, r’i can be determined by a whole series of the most 

diverse processes. Among such processes are: spontaneous and induced 

radiation of atoms, absorption, collision of atoms and ions with 

electrons and with each other, collision with walls, etc. The 

relative role of these processes strongly depends on specific 

conditions. Thus, at low densities the magnitudes are determined 

by radiative transitions and collisions with walls; at large densities 

they are determined by collisions with surrounding particles. 

Depending upon conditions the magnitude can also be determined 

in just this manner by collisions, radiative transitions or both 

processes simultaneously. 

We will not analyze all possible processes of excitation and 

de-excitation of levels in detail, but only consider several of the 

simplest and typical cases. 

At sufficiently large densities radiative transitions play a 

negligible role as compared to nonradiative, and the medium can be in 

a state of thermodynamic equilibrium. This means that the full 

concentrations of ions Nr and the concentration of electrons N0 satisfy 

the Saha equation 

(30.85) 

and the distribution of atoms and ions over levels is of the Boltzmann 

We 

(30.86) 
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In formulas (30.85) and (30.86) n£ is the concentration on the ground 

level; “Sfi •***[—H^] ls the statistical sum; is the statistical 

weight of levels; I is the ionization potential of an r-multiple 

ionj are energies calculated from the ground level. 

Inasmuch as N® + N1 + ... » N and the concentration of electrons 

Ne can be expressed through the concentrations of ions (it is assumed 

that the plasma on the whole is neutral), the assignment of density 

(l.e., N) and temperature completely determines all numbers Kt*. 

According to (30.85) and (30.86) at small T ions are practically 

absent and « N® « N°. Upon increase of T the numbers (1 / 1) 

at first increase, and then due to ionization of atoms start to 

decrease. It is necessary to note that ionization starts not at 

kT ~ I* but at considerably lower temperatures. This is connected 

with the magnitude of the pre-exponential factor in (30.85). At 

kT ~ I the gas is almost completely ionized. Inasmuch as and I 

are magnitudes of the same order, the concentrations of atoms in 

excited states are always small (Ni « N^). This type of dependence 

on T (with maximum at a certain temperature) also occurs for numbers 

(r / 0). Thus, at assigned density the spectrum of certain 

r-multiple ions can be observed only in a certain definite interval 

of temperatures. 

The sources of light in which conditions (30.85) and (30.86) 

are observed, are frequently called "Boltzmann radiators." 

According to (30.86) the intensity of a line i k is equal to 

/¡t • ( ¿O. 87 ) 

and the intensify of two lines i k, j -+ I are related by 
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(30.88) ht B/ Ah mit 

Ei-Ej 
e~ kf~. 

I:* lines i — k, j — l are components of a multiplet for which 

(Ei - E,) « kT and ^ik - t he intensities of these lines satisfy 

the relationship 

As will be shown in § 31, the above formulated rule of relative 

intensities for components of a multiplet follows from this 

relationship. 

net us note that under certain conditions the distribution of 

atoms over levels can also be of the Boltzmann type when the medium 

is not in a state of thermodynamic equilibrium. Thus, in a gas- 

discharge plasma the distribution of electrons and atoms by speeds 

is frequently Maxwellian, or close to Maxwellian; however, the 

temperature of electrons Tg considerably exceeds the temperature of 

atoms Ta# It Is possible to show that if besides excitation 

de-excitation of levels is carried out due to collisions with 

electrons (the probabilities of radiative transitions are relatively 

small), then atoms are distriouted over levels in accordance with 

the •'oitzrr.a.nn formula, which contains the temperature of electrons 

Te. Wich an accuracy of replacing T by Te the formulas for 

intenseness of lines (in particular, (30.87)) coincide with those 

which hold at thermodynamic equilibrium. 

.¡.n the other limiting case of small densities, when the basic 

contribution in la given by radiative transitions f « and 
i 

A* — Aik # 

before we consider the discussed processes, which can be 
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Il MUPPIPHJII III ... 

responsible for magnitude we will note one important circumstance. 

If rp&fi = A., . i.e.,, the considered transition is the basic cause of 
i ih 

devastation of level i, then =* q; does not depend on A^, 

i.e., it is completely determined by the number of acts of 

excitation of level i. 

8. Effective cross sections of excitation. The number of acts 

of excitation k “♦ i (E^ < E1) due to collisions of an atom with 

particles of a certain definite sort can be expressed through the 

concentration of these particles N and the effective cross section 

of transition a^. The probability of transition relative to unit 

flow of incident particles is called the effective cross section of 

transition (dimensions cm2). The probability of transition per unit 

3 
time wkl and the number of such transitions per sec«cm qkl are 

respectively equal to 

wu<mN<vaM>, qt — —.AyV<w*,>, (30.89) 

where N, is the concentration of atoms on initial level and the 

brackets signify averaging over the relative speeds of colliding 

particles 

m 

<.vam> — £ vOy (tí) f{v) dv. (30.90) 

• % 

In this expression f(v) is the distribution function standardized 

per unit over vj Vq is the minimum value of v at which transition is 

possible. The magnitude vQ is determined by the evident condition 

f*. where n is the given mass of colliding particles. 

M-v£ 
The energy E0 = is called the threshold energy. 

From (30.89) and (30.90) it follows that the effectiveness of 

excitation essentially depenas on what is the form of function 
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In the case of excitation, of a neutral atom ty electrons the 

typical form of function \i(E) for optically allowed transition 

k “*■ 1 is shown below in Fig. 69. At E = Eq ct^ = 0. At E > Eq 

a increases and attains a maximum value in the region (E - EQ) ~ 
ki 

~ (i-2)Eq. Upon further increase of E ^or °pfica^ly 

forbidden transitions the general form of : unction (£) s 

approximately the same; however, the maximum is located somewhat 

closer to the threshold. 

For ions the effective cross sections of excitation attain 

maximum right at the threshold (° / 0 at E Eq)» 

In gas-discharge plasma the average kinetic energy of electrons, 

as a rule, is less than EQ; therefore excitation occurs due to the 

"tail" of Maxwellian distribution, where the magnitude <va> is larger 

(at the same value of a^) the closer the maximum of function 

o(E) is located to the threshold. 

The effective cross sections of excitation of atoms by heavy 

particles (atoms and ions) attain maximum values at considerably 

higher energies, on the order of 10%. In the region of 

E ~ (1-2)Eq these cross sections are small. For this reason in most 

cases in gas-discharge plasma excitation of atoms by heavy particles 

can be disregarded.1 The difference (depending upon energy) of 

effective cross sections of excitation of atoms by heavy and light 

particles is connected with the fact that at identical energies the 

•‘■Let us note that nonelastic collisions of atoms with 
particles have been studied very little. In particular, 
experimental data is almost, completely lacking. 

heavy 
reliable 
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velocities of atoms are much less than the velocities of electrons 

(/? times, where M is the atomic mass, m is the mass of an 

electron). At the same time it is easy to show that collisions are 

accompanied by transitions between levels only when the relative 

•peed of colliding particles is sufficiently great. It is necessary 

that the ratio —, where p is the linear dimension of the region of 
P TP 

r0 
interaction, is on the order of the frequency of transition 

For electrons such values of velocities are attained at E ~ EQ. 

For heavy particles they are attained at £*v. Collisions of 

excited and unexcited atoms with close or coinciding levels, at 

which resonance transfer of excitation energy is possible, are 

exceptions. The effective cross section of such collisions can be 

very great at small energies. Collisions of such type are considered 

in § 41. 

Let us return to the general formula for and assume that 

excitation of level i is caused by collisions with electrons, where 

the basic role is played by transitions from the ground level. In 

this case q. m NîNe<vali>, where Is the concentration of atoms 

on the ground levelj N is the concentration of electrons, and 

(30.91) 

As was noted above, the magnitude <va^i> strongly depends on the 

value of excitation threshold Eq. Therefore this magnitude is 

conveniently expressed through where 0^ is the effective 

cross section of transition i -*• 1, inverse to transition i -* i. 

The magnitude <vc;j^>, evidently does not depend on the excitation 

threshold E() ( transitions i-* 1 are possible at any energy of 
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electrons) anc is determined basically by the maximum rrja,*>;nitude of 

cross section A connection between magnitudes <vali> and 

<v^il> can oe found by using the fact that in conditions of 

thermodynamic equilibrium the number of transitions 1 -*> i is equal 

tc-the number of reverse transitions i -*• 1 : N NXva^ .> » N NXva,^ 
el il e i il 

Expressing also through we will obtain 

c, 
<vauy^t~kf<Vatl>\ (30.92) 

Consequently, 

(50.93) 

This expression differs from expression (30.87) by the factor 

Ne<vail>rz • According to (30.93) the ratio of intensities of 

lines i -* k, j -*■ l is equal to 

(30.9^) 

In contrast to (30.88) this ratio evidently depends on the 

effective cross sections of transitions cr^ and 0^, which can lead 

to a disturbance of the rule of relative intensities for components 

of a multiplet. However, the exponental factor depending on T is 

evidently identical in both cases. 

Excitation of level i can occur not only due to transitions 

from the ground level, but also through different intermediate levels 

i'. For excitations of such type in the considered conditions 

formula is correct of course only at Maxwellian distribution 
of electrons by velocities. In general we must use the principle 
of detailed equilibrium for cross sections a., and o, . • see 
Chapter XI. lk ki 
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£ h,*. <«,,,> X <^^al 
f t. i4- 

Thus, the number of acts of excitation through an intermediate level 

p 
is proportional to N'e. 

The so-called cascade transitions are also possible. Due to 

collisions with electrons level 1' (E^ > Li), is excited; atoms pass 

from it to level i as a result of spontaneous radiation. In this 

case 

~TT Ai-t. (30.90) 

Let us note that cascade transitions must be considered during 

experimental determination of the effective cross sections of 

excitation. In this case atoms are excited by a monoenergetic 

bundle of electrons. Inasmuch as electrons with energy E can excite 

only levels E^, < E, we have 

fi l*) - jW|, (t>) + * X A,. J - N./V.cq (V). 
(50.97) 

•«i. <» 

By measuring the intensity of spectral lines at different values 

of V one can determine functions q^(v) and Q^(v). In general due 

to the presence of cascade transitions Qi / ihnction a^fv) 

can be determined only when cascade transitions are absent or play 

a small role. The role of cascade transitions during measurement of 

effective cross sections of excitation was investigated in a number 

of works of S. E. Frish and his colleagues.1 

In collision let us note that the above introduced formulas 

allow us to calculate the intensities of spectral lines only for an 

xSee, e.g., S. E. Frish, UFN, 6l, 4Ö1, 1937. 



J 

opt i; :hi/; rae; ,_n 6 -a:. 

optically thin 

(see paragraph 

we must solve 

6 oi' t h a s sec t 

r. If the radiating layer is not 

the problem of radiation transfer 

on). In the other limiting case of 

large optical thicknesses the Intensity is determined by the Planck 

formula for radiation of a black body. 

§ 51. Electrical Dipole Radiation 

1. Selection rules, polarization and angular distribution. 

In the particular case of electrical dipole transitions between 

states YJM, Y'J'M' the general formula for probability of spontaneous 

radiation (sec (30.41)) takes the form 

dWtfJM-, v'/Af) - ¿¡b I <YhM ! D \ y'/AO I* dO, ( .1 ) 

where D is the operator of dipole moment of the atom; e Is the 

unit vector of polarization of a photon. Subsequently to 

simplify the writing we will omit index k at e,.^. 

We will transform expression (3I.I) by using theorem of addition 

for sperical functions (12.16) 

*D - Ocosft.0 - D 2^(1. «p# )Clf - ¿¡ SD', 
• « 

(31.2) 

#, <iJM IDI y'VAO - yC" (0, <p, ) <YyAf 10, f y'/AI'> » 
/ (31.3) 

Here e , D are sperical components of vectors e and D. In 
q q P 

accordance with general formula (14.14) 

<Y'Af I O, ¡ Y'-r AO « I- IK - -(Yy II o n Y'r )( ( 3i. 4 ) 

l-'rom the properties of 3j symbols (13.3), (13.6) it follows 

L.nat ma.-rix elements (31.4) are different from zero only when 

AY-y-r-o, ±1; y+y-^l, 

AAí-Af-AT-O. ±1. 
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To the selection rules (31.5), (31.6) we must and the selection rule 

for parity. The components of dipole moment D, like the component 

ftny polar vector, during transformation of the inversion change their 

sign. Therefore electrical dipole transitions are possible only 

between states of different parity. 

Even stateodd state. (31.7) 

For each of the three allowed transitions AM = 0, +1 in sum 

(31.3) only one member is different from zero. At AM = 0 

(31.8 ) 

At AM » +1 

£- <yJMp,( v'/Af-D<Y7iW| I y'/Af-b. ( 31.9 ) 

At AM ■* -1 

Z-«’-. D_, J Y\r * + 1> - 

—y (*«+¿*,) <y/aí loM—¿oyi y'/aí +1>. (31.10) 

Thus, transitions AM = 0 corresponds to radiation polarized along the 

z axis and transitions AM « +1 in the xy plane (right-circular and 

left-circular polarization). The angular distribution of radiation 

for each of transitions AM » 0, +1 is determined by factor 

> Clq(0e<pe ) I ; 9=0, +1, in which angles f>e, 9e characterizing the 

direction of the vector of polarization e ^ must be expressed through 

ök “ 0 and <Pk « 9. In general angular distribution turns out to be 

very complicated. However, with special selection of the polarization 

vectors elk and e.,k the formulas are considere.,ly simplified. As an 

example let us examine transition AM = 0. In this case the vectors 

elk' e2k can tje selected so that 

et»8#1 sin6, €Mt*,~0. 
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i \ y s i 
2¡ú?1 ID* í V ^ Aí> j'sin*« dO, 

‘VAvmy'fMl-O. (31.11) • , !-f W y, \ 

Su iimar izin s- ovpr r — n « 
' x> í:- ancí Integrating over an-rioca . . . 6 tr antíles, we obtain in 

accoreance with (30.46) 

•"'»/iM; i (y/Mi d,Iy'SM> I*. (31.18) 

If n0t °ne °f the dlreCU°- ^ 1S separated by any ’ ^ 
external perturbation, then the atom can w*v, 

, atom can we.h equal probar,llity be 
in any of 7JM states. Therefore the protabiltt,, e 
level we,. Probability of transition from 

7e to level Y'J. can be obtained by summina ,, 

averaging over K g ^ ^ ^ M’ and 

‘"r’(ry' ^)_ Spain £.I*.<y"ii oivVbwir</o. 
M Am 

Putting (31.3) and (31.4) in the 

obtain 

(31.13) 

sum over MM' and using (13.1b), we 

j¡.l*,<YyMtD¡y'SAr>r- 

-I(T'»oHyV)i'S Zc;,U.T.)C„.„ / ¿.ru ¿.y, 

v (31.14) 
expression (31 141) ^_^+ , 

U j ooes not depend on selection of 

correct for any component of vector D an, , ^ ' 
vecuor D and, in particular ^ 

V 3' 3- Therefore ’ ” COmP°nm 

¿IWMIOJy-W. £j<pMio,iys„>r- I 

Je-1 Wl °IyVao r-KY/joii y-r) c 

ep> 1.0., it is 

and 

(31.13) 
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(yJ:ŸJ')zf+l 2 l<Y^IIfly'/Af)PdOam 

-¿feil+iiMOlMrdO. 7 (31.16) 

The factor at dû in the right part of (31.16) does not depend 

on angles or on the direction of polarization. This permits 

integrating (31.16) over all angles and Slimming over two independent 

directions of polarization. As a result we obtain 

«W; sjLçim Dlly'f)l\ 

**,<*/:yin-*V(y/; y'/)£, 

IT(vy; y'/) - g ^ ( iyj || D || y'J') \\ 

dW(yJ; y*/)- W(yJi Y'/)g. 

(31.17) 

(31.18) 

Thus, full radiation of an atom during transition 7J -► 7'J' is 

isotropic and nonpolarized. This result has a simple physical meaning, 

As long as an external field is not superimposed on the atom all 

directions in space are equivalent. 

2. Strengths of oscillators of transitions and lines strength. 

Let us introduce the idea of oscillator strength f(7J;7'J') of 

transition 7.1-^7^, determining this dimensionless value by the 

relationship 

-/W yV*)-~~X I<yJM\D\ÿSAr>c 

"á? íiy+r * (Yyll DU yV*) r ‘. (31.19) 

where 

The physical meaning of this idea is easiest of all to clarify. 

1According to this determination oscillator strength is positive 
for absorption. 
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'./ í:;r • ■ ua:,tur.'¿-mechanical expression for polarizability 

of a;y aoom, averaged over all M states of level 7J 

•m—4E 
*rr “*1 

(51.20) 

with the classical formula for polarizability of an oscillator with 

frequency ay, 

(51.21) 

If we use formula (31.19)» then (31.20) can be rewritten in the 

following form: 

TV'®*/; TV' 
(51.22) 

Thus, the polarizability of an atom is equal to the sum of 

polarizabilities of atomic oscillators, in which each oscillator is 

represented with effective "strength" of f(7,J'; 7J). 

According to (31.19) the probability W(7J; 7'J') is expressed 

in the following way through the oscillator strength of the 

corresponding tran sition : 

V'J') - ^ 1/tVh Y'/) I ( 31.23 ) 

(we have omitteo indices 7J; 7'o' y oí). From (31.19) it follows that 

(27 + l)/(Yy: y'/)-(27* + l)/(Y'/: yj). ( 31.24 ) 

•“■Polarizability of an atom in state n a(n) can be obtained from 
s 

the relationship gjíAf,)*—<*(/»)¢, where AEn is the level shift in 

electrical field &• Using expression (28.70) for this magnitude, we 
have 

I <yJM I D, I y'J'M) (1 

* TV* wt/;tV-- 

/iveragiryg level 7J over M states leads according to (31.15) to 
replacement ot by j|(Y7|!D||yV'jj* and division by (2J + 1). 

-431- 



The strengths of oscillators of transitions are convenient in that 

they are dimensionless and, furthermore, satisfy an important rules 

of sums (see § 33). The sum of squares of matrix elements, entering 

in (31.16) and (3I.I9), is called the line strength of transition 

and designated by 

5 {yJl y'f)^S(y'r; y/)~ <Yy¿f | D{ YfAT) I" » 

-IWI!0|!y'/)|'. (31.25) 

Due to their symmetry relative to the initial and final states of 

line strengths are a very convenient characteristic of transition. 

The probability of transition and oscillator strength of transition 

are connected with line strength by relationships 

rwy.o-igjJ-jsevjivV), (31.26) 

(3Í.27) 

The idea of line and oscillator strength can be determined in the 

general case of a transition between any levels 7, V, degenerated 

with multiplicity g, g1: 

S(ïY')-S(Y'Y>-3l««|I>|»>|\ j 
(31.2ft) 

(31.29) 

As an example let us consider transition between the two terms 

7SL and 7'3L', disregarding fine splitting of these terms. In this 

case +1)(25 +1)]"\ ?'=* [(21* -hl)(2S' + 1)]"* and 

S [ySL; y’SL') -^ j <ySLJM[D|y’SL'J'M'> J* = 
J -^SlySiy; y'SL'f). 

Thus, the total probability of transition 7CL -* Y’SL' is 

(31.30) 

-432- 



T 

determined ty formula (31.29), in which as line strength we must place 

the sum of the line strengths of ail components of the multiplet. 

Likewise if we disregard electrostatic splitting, the total 

probability of transition between levels corresponding to any two 

electron configurations 77', is also determined by formula (31.29), 

where 

SlYY#)~S>$5(ay: aV')“§5(a«'). (31.31) 

(31.32) 

Here a, a' designates zhe totality of quantum numbers characterizing 

the terms of configuration 77'. The probabilities of additivity 

(31.30), (31.31) are also an important peculiarity of line strength. 

The corresponding relationships between probabilities of transitions 

(or strengths of oscillators of transitions) are more complicated. 

Thus, from (31.29) and (31.30) it follows that 

V(ySL\ y'SL')- 

-m+ms+Tt £<2/+'> y'm'a 

AySl; Y,^,)-grTf,',te+|)£(ay+ D/w v'A j 

ué low in this section as the basic theoretical characteristic of 

transitions we everywhere use line strength. The probability of 

transitions, and also oscillators strengths can be expressed through 

line strength with formulas (31.26), (31.27), and (3I.29). 

It is also convenient to characterize transitions by lines 

strengths because line intensities are proportional to line 

strengths. Actually, the intensity of lines in a spectrum is 

proportional to the probability of transition and i,he number of 

atoms taking part in raoiation. The concentration of atoms on level 

7 in turn is proportional to the statistical weight of this level 

Inertfore 

togWçs>g\/\&S, 
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3« The approximation of a LS coupling. Relative: .1 n; ens I ties oí' 

multiplet components. In the approximation of a LS coupiinr. the state 

of an atom are characterized by quantum numbers 7SLJM; therefore line 

strength is determined by expression 

SiySUi yTL'S) » (ySLJ\\D\W'S'L'f). ( 31.33 ) 

The dependence of line strength on J can be found in evident form. 

Inasmuch as the operator of dipole moment D commutates with S, 

{ySLAWlyWJ’)- 
m 1)s+i-L-j- /(2/+1 ) (2/ +1 ) ^ {LJL'Si S\) ôsr. 

From this relationship, and also from the condition of triangle 

A(LL,1), these selection rules hold for W coefficients: 

A5»0. 
±1, i+r>i. 

(31.35) 

Thus, in the approximation of a LS coupling the general selection 

rules (31.5), (31.7) are supplemented by conditions (31.35). In 

accordance with (31.3^ ) 

S(ySLJ; y'SL'f)^ 
■o(2/+l)(2/ + l)lT(¿/r/;Sl)|(Y¿||DilY,r)|\ (31.36) 

It is convenient to transform this expression so that line strength 

(31.33) is expressed through the total line strength of the multiplet 

S(ySLiy'SL')=* ^ S(ySU; y'SL'r). 

According to (13.51) and (13.55) the coefficients W(LJL'J'; SI) 

satisfy the following rule of sums: 

£(2/ + 1) W* (LJL’f; 51) = 21+1 * (31.3?) 

Furthermore, 

Ç(2y+1) = (21 +1)(25 + 1) 



(see (i,.. 1 ) ). Therefore 

5(Y5¿; Y'«Sn = (25+I)|(Y£||¿)i|Yr)|* (31.38) 

and 

S(ySU-, y'SL’f) = S(ySL; y'SL')Q(SLJ\ SL’f), (31.39) 

Q(SLJ; SL’f) = + (T* (UL'fî 51 ). (31.^0) 

The magnitudes Q(SLJ; SL’J') obviously determine the relative 

intensities of multiplet components, where 

Z.wu- sL-ry-gr?,^,. 

^QiSU.SL'S^l. (31.42) 

The coefficients W in (31.40) are simply calculated with the 

formulas given in § 13. For convenience of calculation Table 75 

gives a summary of formulas directly for factors Q. As will be 

evident later, functions Q(xyz; xy'z') enter another series of 

formulas for line strengths. These functions determine the relative 

intensities of different multiplets. 

Table 75. Summary of Formulas for Factors Q, 
Determining the Relative Intensities of 
Multiplet Components 

/ 

9 

9-1 

9 

9+1 

/ 

a 

a 

t-l 

a—l 

a—l 

Qljyr. jyVt-ÇUyV; *IP) 

tirp+n+M«+ 1)-^+1)^ + 1) 
%(» +1)1^ +l)i U + l)<2x+l) 

l«+f+«+lH»+<—*)(*+»—» (i+i—y+D <>? + !) 
4«(*+lH2y-l)(íy+l)y(2«-H» 

1*+»+»+ l)«y+i—i)U+»—yMy+jr+|~» 
<»(f+l)(2y+1)*(2« + 1) 

(»+i+i)(y+«+i+1) (y+i—i—i>(y+i--jr) 
. 4(2y—l)yi2y+l)i(2* + l) 

(i+i—y—î)l« + i-y)(x+y-i+H(x-»-g—i4-g> 
4tfy+l)(y+l)(2y<t-3)i(2x+i) 

i 
( ( 
1 
I 
I 

l 
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An analysis of the formulas in Table 75 shows that among the 

multiplet components those are most intense for which changes of 

J and L are identical. Such lines are called principal. The 

largest values of J of the initial level correspond to the most 

intense principal lines. With decrease of J the intensities of the 

principal lines decrease. The remaining components of the multiplet 

are called satellites. In accordance with their intensities 

satellites in turn are subdivided into satellites of the first order 

(AJ =0, AL = +1) and satellites of the second order (LJ = 1, 

AL «* -1 or AJ » -1, AL = +1). Satellites of the second order for 

Which J and L change in opposite directions, have the least 

intensities. Prom (51.39) and (31.41) it follows that 

JJStlfÆ ŸfWV +1), and y'J') does not depend on J. 

Thus, the total probability of all transitions (and also the sum 

of oscillator strengths) within limits of a given multiplet, 

beginning from level 7J, does not depend on J, and the sum of line 

strengths is proportional to (2J + 1). Therefore when the relative 

concentration of atoms on levels J1, J2 is determined by the ratio 

of statistical weights of these levels, 

+ I)?(2/i+1) 

(this occurs, e.g., for Boltzmann distribution with temperature 

kT » AEt , , see paragraph 7, § 30), we can formulate the following 
Jld2 

rule for relative intensities of multiplet components. 

The sum of intensities of all lines of a multiplet having the 

same initial level Is proportional to the statistical weight of the 

given level. 

It is possible to show that analogous rule also holds for all 

lines of a multiplet having the same final level, inasmuch as all the 
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formulas used during conclusion of this rule are symmetric with respect 

to transposition of initial and final states. 

The suit1 of Intensities of all lines of a multiplet having the 

same final level is proportional to the statistical weight of this level. 

In a number of cases the formulated rules permit us to 

determine the relative intensities of multiplet components without 

resorting to the formulas of Table 75. 

We will find, further, the total probability of all transitions 

within limits of the given multiplet W(7SL; T'SL'). Let us assume 

that all states corresponding to term 7SL, have identical 

probability, equal to [(2L + 1) (23 + l)]"1. Then the probability of 

finding an atom on level J is equal to (2J + 1) [(2L + 1) (23 + l)]"1 

and 

y'SL') = (2L+ij(2s+i)jL^2J 4 ^ *" 

" 3*c* <2£ +1) (25 + 1) X Ujj SW)- 

If we disregard the difference in frequencies of different components 

of the multiplet and put cSjj, = cüq, then this probability turns out 

to be the same as in the absence of fine splitting, and is determined 

by the strength of line S(7SL; 7^’). 

4. One electron outside filled shells. In this case the 

quantum numbers SLJ coincide with quantum numbers slj of the valence 

electron; therefore formulas (31.56) and ( 1.40) give 

S(fUr. nT/)-2Q (I//; {O') |(/!/|!0||/ir)|\ 

Since D = -er = -ern, where n is the unit vector directed along r, 

then 

<fl/||0[|flY) -- f J RntRnu’rr'dr UMlO. (31.43) 
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Introducing the designation 

(31.44 ) 

and using (14.54), we obtain 

Si/iji tef ) - 2Q ( j (A I r/) )*. 

-/(«lit «'l'/ï-ÿÿ^Q(|/yt ji* 

«(i-wiiyJ-jw+mv+Dw 

(31.45) 

In accordance with (31.42) the total line strength and total 

oscillator strength of the multiplet are equal to 

5(sit «T)« (31.47) 
—/(Sit «'f )-¾1 

These magnitudes obviously determine the full intensity of all 

components of the multiplet if we disregard the small difference in 

frequencies . In this approximation spin-orbital Interaction 

leads to splitting of line nl - n'l' into a series of nij - n'l'j' 

components, but does not affect the full Intensity of transition. 

5. The approximation of the fractional parentage diagram. 

In the approximation of the fractional parentage diagram according to 

(31.38) and (31.39) line strength is expressed through the given 

matrix element 

(«S,£t. CLWDHaS^, tSL^aS^, I^IHOJoÂ/,, 

The quantum numbers cxS^L^ characterize the term of the Initial ion. 

Transitions are possible only without changing the state oí the 

initial ion. The operator commutates with ¡ therefore 

iaS^ l^LWD^aS^, ¡„SL’)- 

1)(211 + T) W(lLtL’; 1,1)(/^1^1^ 



From this, and also from (3i*3^)-(31.^0) and (31.43), it follows that 

SiyJi y'f)— 
• + L/mmtx(eR],)\ (31.48) 

where QfL^iL; L±l'L') is determined by formula (31.40), in which 

j t is necessary to make the replacement S -4, , L — l, J -*■ L. Table 

75 can also be used for calculations. 

In the designation of the radial integral R^, in formula (31.48) 

we consider the fact that in general (in particular, in the 

approximation of a Fock self-consistent field (§ 21) single electron 

radial functions depend not only on quantum numbers nl, n’l1, but also 

on all the remaining quantum numbers of sets 7, 7'. 

As will be evident later, the line strength of transition S 

/ 7 \ 2 
can always be presented in the form of the product of (eTL,,) and 

factor s, which does not depend on the form of radial functions 

(31.49) 

Everywhere below, as a rule, we will give formulas only for factor 

s(771 ). 

By summing (31.48) over all transitions J-" j> within limits of 

the given multiplet we obtain the line strength of this multiplet 

1(05,4,. iSL‘, o5,£,. tSL )»» 
»(25+ 1)(24,+ 1)(3(4,/4: 4///)/..,. (31.50) 

Summation over LL', also accomplished with (31.42), gives the line 

strength of a supermultiplet1 

j (a5,4,/5: 05,4/5) - (25+ 1)(24, +1)/.,,. (31.51) 

1Let us remember that supermultiplet means all transitions between 
terms of one multiplicity aS^L^lSL and aS^L^l'SL', and totality of 

transitions means all transitions between terms of two electron 
configura-: ions. 
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MPPWMI^IMIM I ... 

Finally, summarizing (31.50) over all terms of configurations I, II, 

we obtain the strength of line S(I II) of the totality of transitions 

I-* II, generated by the single electron transition nl -*• n'l >. 

From (31.41) it follows that 

Jlu,{3S+l){U'+l)Q{L'lL; L'rL,)~ 

^ •rf5st(25í+1U2¿, + ,)?Qt¿'/¿: ¿,rn" 

“flTÏ S 125+1)(21 + 1)-^, 
•S.LJl 

(31.52) 

where gI is the statistical weight of configuration I. Therefore 

(31.53) 

It is not difficult to write the corresponding expressions for 

oscillator strengths of transitions (see (31.28)). These strengths 

of oscillators have meaning when introduced only in case of small 

spin-orbital electrostatic splitting, when the distances between terms 

of the considered configurations are small. In this approximation 

the total oscillator strength of the totality of transitions 

aS^lSLJ-► aS^l’SL'J' is the same as the oscillator strength of the 

single electron transition nl n'l', calculated without taking 

electrostatic interaction of electrons and spin-orbital interaction 

into account. Inasmuch as LttLf)</3(2L + l), the sum of line 

strengths (31.50) over L» is proportional to (2L' + 1) (2S + 1), 

just as the sum of line strength (31.50) over L is proportional to 

(2L* + 1) (2S + 1). This allows us to formulate a rule for relative 

Intensities of different multiplets SL-*■ SL' of the same type as the 

rule relative intensities of multiplet components. 

Th sum of Intensities of multiplets beginning from the term 

SL is proportional to the statistical weight of this term (2L + 1) 

(2S + 1). The sum of intensities of multiplets finishing on term 

o 
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SL', is proportional to the statistical weight of this term 

(2L1 + 1) (2S + i). One more rule can be formulated for the relative 

intensities of different supermultiplets. According to ('51.51) the 

full intensity of a supermultiplet is proportional to (2S + 1). 

ó. Equivalent electrons. The formulas of the preceding section 

are inapplicable to transitions in which one of the electrons of the 

group l particípales. These transitions must be considered 

separately. It is sufficient to sort out two cases: transitions 

IK I " ~l ■ and transitions ZNl'P-* '?+1# since all the 

remaining allowed transitions are simply brought to these two. In 

the first case from the general formula (16.21) for matrix elements 

of symmetric operator F it follows that 

(¿Vii w'" [Y.V.1 «n- 
-VWo$i.(rA¿„ /«MiuyivAi..'««'). (31.54) 

This expression differs from (31.48) only by factor vwoKi.. therefore 

the line strength of transition can be obtained by multiplying the 

right side of (31.49) by GÇfj-.xj*. Thus, for transition 

tiyJiy’S)— 

^1^.^(25+1)(21,+1)0(517: SL'S)Q(LJL; L/L’)^ (31.55) 

In the particular case of two equivalent electrons N = 2, for allowed 

terms SL of configuration /* *■ 1 (see § 15); therefore the strength 

of an oscillator of transition Z^SLJ -* ll'SLJ is twice as large as 

that for transition n^ZnlSU-♦ n^Zn'Z'SL'J'. 

by summing (31.35) over J, J», it is easy to obtain the line 

strength of a multiplet 

s(If/YSL;¡^m\StLtrSL,)m. 

"NI J*(2S +1)(21, + 1) <?(!,/£; (31.56) 
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This expression is a natural generalization of (31.50). In contrast 

to (31.50) the intensities of multiplets L L' in this case are 

proportional to I!*Qtfttt; LtrL% Inasmuch as the additional factor Q 

does not depend on L' summation (31.56) over L' is carried 

out JUst as summation (31.50); I*vsi0]%^+1)• 

Ihus, the sum of intensities of multiplets beginning from term SL 

is proportional to I |,(2£+1)(25+ ly. 

It is impossible to Siam (31.56) over L just as simply as (31.50). 

For this reason it is impossible to formulate rules for the sum of 

intensities of multiplets finishing on a given term. 

Let us sum (31.56) over all terms of configurations lN and 

§ JOJÃi. P(W+1)(21, +1)£ £/£') - 

- z (31.57) 
T$l.T»S|£t 

Inasmuch as fractional parentage coefficients satisfy condition 

Sio&.r-i (31.58) 
TiW-t 

(see § 15), sum (31.57) is equal to where g(ZN) is the 

N 
statistical weight of configuration l . Therefore 

.<* . ) 59) 

-/(ft J 

Expression (31.59) differs from (31.53) by factor N. Thus, the total 

oscillator strength of the totality of transitions l —* l ‘ l1 is N 

times more than the oscillator strength of the single electron 

transition l -*■ Z1. 

Let us turn to transition ^[y,5,/,1. —[yÄJ. lY^X]«S£t 
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The general expression for the matrix element of symmetric operator 

F, corresponding to transition of such type, was also obtain in 

§ 1Ó, formula (16.24). According to this formula 

wiy>sA], /''[y.V,] 5111011^- [y'M] r" « 

■ (- î o;v^; • o;^. X 

XÍY^^ÍS/J, r'[ytStLt}SL\\D,\yliÚ, 

^"IyAMV^')- (31.60) 

In the right part of the givtn matrix element in (3I.6O) let us 

change the diagram of summation of moments 

s¡¿i, rStLt (SX] SL'—s\l'S [5,1,1 StLtsC 

This is carried out with formula (12.39) 

r'^s^sLWD^XC, » 

-2/(2^ + 1)(25. +1 >(2¿; + 1)(21, + l)W(s:±55.; SX)x 
M. \ J 

xW(CrvLti lXhvXú^lj, 

5111^^:5:1^(5,1,]. r'[YAi.]5i'). 

After this transformation during calculation of the given matrix 

element we can use the general methods of § 14 

(^[5,1.] 5.1.51110^15:1;/; [5,1,15,1^1') - 
-(i^ii.ii.iiio^i:/; [¿.i 1,1') - 

-(- !)*.♦-*.-* y(21TWF+1) ^(1,11,1'; lt!)x 

X (- ,^:^^^/(21,+1)(21,+1) if (/i/i,; lit) (mn 

Gathering all these results together and considering that 

transitions are possible only under condition = S^, for the 

square of the modulus of the given matrix element (3I.60) we obtain 

the following expression: 



(25;+1)(3¿¡ + 1)(2¿ + 1)(2¿' + I)x 

X (2Lt +1) (3S, + l)V (i,' ~SSt; S,5¡) | wm?) \'x 

X| J(2¿,+1) W iÚrVLj tú) W{LtUJL'i £.1) VT(«./£,; £,1)^ 

The sum over can be expressed through a 9j symbol, which we will 

designate by X 

T-íí,! £,)jx (31.61) 
^ W V £|J 

Therefore finally 

S(Y/: Y'/) -S(oS£; o'5£') Q(5£7; 5£'/), 

, IfiSLi ¿SU)-N{p +1) I tf Jÿ. j* 1|*(2S 4* 1) (2£ + D X 

X <2S, +1) (2£t +1) (2S; +1) (2£| +1) (2£' 4-1) X 

xw(sl^ss%;s/t)jrim»'). 

(31.62) 

(31.63) 

The line strengths (31.63) are easily summed over LL!. Using the 

rule of sums for 9j symbols (13.78), we obtain 

and 

<(■& (^l* <2s+t)«s,+mît.+i>x 

xtâ+DVÏ+Dr^;^: ^)(2,-+|,7¿. + „. (31.64) 

This expression determines the line strengths of a supermultiplet. 

Let us sum, further, (31.64) over S. Inasmuch as 

^■At p = 0 formula (3I.63), as it should be, coincides with (31.56). 
In this case L2 = S2 « 0, S1 = S, L± = L, * 1/2, = Z'; 

therefore 

and 

:e~Wí¿Li’L'i 1 
ÜZTÜWTî) * 

r*(s;i.so; s _!_ 
2; 2(25+1) 

í-Afíú^, 1 'vX :‘t2S+^(2i + 6{2L’ + » ¿I»)-AfjoU^j* (2S+1) (2¿;-r 1) Q (l[lL; L’/L') t. 
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TTW-rDWfsl^SS,; 5^,} 4 * 

we obtain 

íyA^*1. ^[yA£,I: ^W^X] t'+' [yÄ]) - 
-^(p +1) [ o; AS j* 10¿s¿* I * 1 (25, + 1)(21, + 1)X 

x(25;+i)(2¿;+i)(2i+;-r^. (31.65) 

Inasmuch as 

<V¡Í ^ 
w 1, I. 

summation (31.65) over terms of configuration lN-i and l p gives 

f (/* IyAMP-'r'" IyA¿;d - /V(p +1) X 

X ^ (25, +1) (2¿, + l)(2s; + 1) (2¿; + 1) (-gT^TÏT . (31.66 ) 

In certain cases we might need the sum of line strengths (31.65) 

N-l 
only over terms of configuration l , or only over terms of 

configuration z'p. These sums are obviously calculated as simply 

as (31.66); therefore we will not give the corresponding formulas. 

Further 

2(25,+1)(2^,+1)-^, 2 <2s;+i>(2¿;+i)-*(/"n 
^ VA 

where ¿(V), g,(l'^+1) are the statistical weights of configurations 

iN and ï p+‘; therefore finally 

« d*/"*, z*-*/"**) - fa+uSr+i) v ( 31.67 ) 

) (^+1^ + 1) (31.68) 

The statistical weight of configuration ln is equal to the number of 

possible combinations over n from 2(21 + 1). It follows from this 

that 
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(31.69) 

*(/*♦•> 4T+3-P-I 
tU^T-—• 

(4T + 2 —p) ♦ ( 

At p = 0 formulas (31.67)-(31.69) coincide with (31.59). 

Formula (31.65) for line strength of a multiplet is considerably 

simplified in the special case of transition pNs -*■ pN_:1's2, which 

is of great practical interest. For such transitions 

#-1, £twmL, f-0, S, -y, £, ^ mS, Lt-L\ £¡-0. 

‘m.-'- «áíí-*. ^-Tar+iiWi)' 
*. o)-^. 

«(r'P. £1. » [I oj SL, t loo]«') - 

-«ia6?r&±i<!“±!>. 
3 (31.70) 

Hie above obtained formulas are easily generalized for 

transitions between more complicated configurations. As an example 

let us consider the transition 

nvAî.l/'MvAi.ltt /w-,lYA£l]fSl£¡. r\ytS,L,)SL\ 

The given matrix element D for such transition is simply expressed 

through the given matrix element 

i'VíilW'-'hr.s.i.Kv;). 

already examined above. Actually, 

(FlYrV-Jr*l¥Á¿.]SLWDWl*-' [^£,)/-^. 

wrivAM. 

. S£||£>*||/*- lY.V.1 Wir*iyam^*)- 

•VTvOíáèt- 1)^-^^/(21 + 1)(21-+1)W{L¿L¡L-; £.l)x 

X i/*-* [y.v.i WW**" [ya¿.] wù~ 

^¢£¢,(- 1)^^^/(21 + 1)(21- + 1) W(LtLL¡L’; £.i)X 

X( l)t,+",*i' Y12£,+ 1)(2¿; + 1) W(IL/L¡; £,1)(/110^). 



Thus, the whole difference of the considered transition from transition 

W£ —/A'-'h'.SAJrsi' is that in the expression for line strength 

S(7J; 7'J') factor 

iri/irr; £,1) 

is replaced by 

12£, + !)(2£;-f 1) £,1) £.1V 

Reduction of other allowed transitions to the two considered above 

is also just as simple«1 Thus, the above given formulas embrace 

practically all the possible cases of radiative transitions in which 

equivalent electrons participate. In particular, with these formulas 

one can simply obtain the expression for strengths of oscillators 

of transitions, presented in the tables of Goldberg, and also for 

a whole series of transitions of the same type, not included in 

these tables.2 

7* jj coupling. Using the fractional parentage diagram, we 

will characterize the states of an atom by quantum numbers a«^ jJM, 

where J± is the full moment of the initial ion, j is the full moment 

of the optical electron and J is the full moment of the atom. 

The line strength of transition aj^jjaj,« j ' j' according to 

(31.28) is determined by the following expression: 

S{yJ; (51.71) 

The given matrix element D in (31.71) is calculated by the same 

methods as for a LS coupling 

"A numoer of cases of this type are considered in the works of 
F. Rohrlieh, Astrophis. J. 129, P. 441, 449 (1959). 

2L. Goldberg, Astrophis. J. 82, 1, 1935i D. H. Menzel, L. 
Goldberg, Astrophis. J. 84, 1, Î936. 



..........'"»»«H'lpraiil’IIHW'" 

o 

(JJAmJJf)- 

«(__ /(2y+1)(27- +1) WUJ/r-, 7,1)(/11011/). 

(/li0ii/)-(í//iioiiír/)= 

- -(-1)741 -‘-Vw+1)(2/-+7) "(w/i T 1),'l|D|fV 

Therefore 

KY/.-y'/)-(2/+1)(2/+1) ir (////; /,1)(2/ + 1)(^/+ l)x 

X *•(///•/; 5-l)u- 

-2(1/,+ 1)0(/,//:7//)5(+/: (31.72) 

This expression has the same structure as the corresponding formulas 

of the approximation of a LS coupling. Thus, 

ÇSIY/; yffysipf +1). ^5(v/; y’/')c/5(2/+1). 

Prom this it follows that the relative intensities of the transitions 

aj^jj ’J' obey a rule analogous to that which occurs with 

IiS-bonds. 

The sum of intensities of lines having the same initial level 

J (or the same final level J')» is proportional to the statistical 

weight of this level 2J + 1 or (2J' + 1). The factors Q^jJ; 

1 1 
which determine the dependence on JJ', and also Q(^j; can 

be found with the help of Table 75. 

By summarizing (51.7?) over JJ>, one can determine the line 

strength of the "multiplet" -* 

*WJi 0/^)-2(2/, + 1)^(1//: Ir/)/.,,. (51.75) 

We will also find the total line strength of all transitions between 

the considered configurations I, II. Just as this was done in 

calculation (51.55)/ 
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£ 2(2JX +1) Q (~lj\ /'/) = 
./ if ' • 

- £2(2/,+1)2 Q (y//. ÿ/T*) = 
(31.74) 

Thus, just as in the case of a LS coupling, the strength of line 

S(I, II) is determined by the same formula as for one electron outside 

filled shells. In calculating the strengths of lines of transitions 

^ .n-1 ., .n.'p .n-l.'p+l 
J , etc, we can use the same methods 

as in the preceding section. We will not conduct these calculations, 

since they do not contain any new moments. 

In conclusion let us note that in the case of a jj coupling to 

the general selection rules (31.5) and (31.7) this condition is 

added : 

4/=0, ±1, y+/>i. 

8. Relative intensities of Zeeman and Stark components of lines. 

During investigation of Zeeman splitting of spectral lines 

observations are usually conducted along two directions of propagation 

of light, along the field (along the z axis) and perpendicular to 

the field (along the x axis). In first case vector k is directed along 

the z axis and the vectors of polarization epk lie in the plane x, y. 

As two independent directions of polarization p = 1, 2 it is possible 

to select directions x and y. From (31.1) we obtain 

<MF = dWx + dWx<s>{\^JN[ [ £>, I + |<Y-W| D, I *0 

or 

dlPc/5 2 J £), I YVtW'X*. 
*«±» 

(31.75) 

rhus, light spreads along the z axis with right-circular (transitions 



AM = 1) and left-circular (transitions AM » -1) polarization. The 

intensities of the corresponding line components, called a components, 

according to (31.4) are proportional to squares of 3j symbols. 

AAf-l j 

i (si-re) 

During transverse observation (along the x axis) the vectors of 

polarization e^k lie in the plane yz. By selecting directions y, z 

as two Independent directions of polarization we obtain 

4T-dWt+*Wtv> {|<Y/Af|Of|YVbW>|* + \<';JM\Df\y'T M>\') dO 

or 

4Wv>{\<yJM\£ \<yJM\D'[y‘f AT)!*}dO. (31.77) 
*■** 

Thus, in a direction perpendicular to H, besides a component we also 

observe v components (transitions AM =» 0) polarized along the z eaís. 

The intensity of these components is determined by expression 

**-« "«u ; i)‘- (îi-78) 
As for the cr components, their intensity one half of what it is during 

longitudinal observation. The 33 symbols in (31.76) and (31.78) are 

calculated by the formulas of § 13. The results of these calculations 

are given in Table 74. 

The relative intensities of Stark tt and a components of a line 

(the quadratic Stark effect is considered) are calculated in exactly 

the same manner. The difference consists only in the fact that the 

electrical field does not remove degeneration by the sign of the 

z component of moment. All levels, with the exception of M = 0, 
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doubly are degenerated; two states M and -M pertain to each. 

Therefore the intensities of tt components are proportional to 

) 
3 

and the intensities of 0 components are proportional to 

//i / y // i / y / /1 / y 
Wi liW-V -m+x) « m-\) 

during longitudinal observation and 

\( j ' r y // 1 / y / /1 / y 
T\—iM 1 M-\) —1 —M+ Aí 1 Af-j 

(31.79) 

(31.80) 

(31.81) 

during transverse observation. If splitting of one level is 

considerably less than that of the second, and the 0 components of line 

M m + 1 are not resolved by the equipment, then instead of 

(31.80) it is easy to obtain 

</ / 1 / y / j « / vi 
2\V—** 1 +M— I) — M — I At4-1/ / 

These formulas pertain to longitudinal observation. During transverse 

observation the intensity of the a components, as this was noted 

above, is one half as much. The relative intensities calculated 

by formulas (31.79) and (31.82) are given in Table 73. 

§ 32. Multipole Radiation 

Fields of electrical and magnetic multipole moments. In 

§ 30 we noted that radiation of highest multipole can be obtained 

from (30.8) by continuing to break down factor e by degrees of kr. 

However, it Is difficult to divide fields of electrical and magnetic 

multipole moments in this manner; therefore it is more expedient to 
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determine these fields directly from the wave equation. 

In a space free from charges field strengths E and H, just as 

the vector of potential A, satisfy the wave equation 

A6+A*G«o. (32.1) 

Solutions of this equation can be obtained by the operator of 

angular moment —i(Äy] acting on function ¢, which satisfies the 

scalar wave equation 

AQ+iro-o. (32.2) 

This follows from the fact that operators L and A are commutative 

AKD+**¿0) - ¿ ( A<D + **0>) 0. 

We will look for a solution of (32.1) having the form of divergent 

spherical waves. Such solutions can be constructed by assigning 

* in the form of where 

(-O' I (ZÍ-1M1 i .. 
[ l»=ip“iw*»• )• 

(32.3) 

We will introduce the designation: LYlm * Y^. The vector functions 

Yjmf as can be simply checked, satisfy the condition of orthogonality 

J»C. Kr.«?-/(/+H««««,-- (32.4) 

Inasmuch as operator L acts only on angular variables, we have 

G. 
lm 

L<î> lm VW 
Thus, 

SLzlE.* y. kR<ë. I 
(32.5) 

1aü = g*4»6...a, if a is an even number, and a] ¡ = l*3*5...aj 
if a is odd. 
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With (32.5) we can doubly determine E and H 

(32.6) 

and 

“alaßlw Him “—ro* 
(32.7) 

Here a^ is an arbitrary constant. 

Selection of signs in (32.6) and (32.7) is dictated by convenience 

of writing the subsequent formulas. Let us consider both possible 

methods of determining the fields. According to (32.5) 

(32.8) 

Therefore, in the case of (32.6) eRHln] = 0, i.e., the magnetic field 

does not have a radial component. The radial component of E is 

different from zero; at kR<^\ Thus, at close distances 

there is the same dependence on R as there is for a static field of 

electrical multipole (see § 23). In the case of (32.7), conversely, 

eRElm =! and elHZm / °* At This dependence on 

R is characteristic for a static field of magnetic multipole 

moment. Let us designate the fields of (32.6) and (32.7) respectively 

In general the field of radiation of a certain system of 

charges can be represented in the form of a superposition of fields 

/ 

£■■2 2 {id«+ 
« mm-I 

(32.9) 

i 

{Nfim + MimY (32.10) 

where constants a|m and are determined by relationships 
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•““ra^Tpi j/sTT*'-*'1' (32.11) 

¢.,0-.- (32.12) 

(32.13) 

j(padYlm(0.Ç))[jr\dr •>. (32.14 ) 

In the limiting case of cd — o (32.12) coincides with a static 

electrical multipole moment of the order l, m. Simultaneously, as 

can he easily checked, formulas (32.6) and (32.11) give the field 

of this moment. Likewise formulas (32.7) and (32.13) in the 

limiting case of co 0 determine the static field of magnetic 

multipole moment. 

Let us consider as an example the particular case of l = 1, 

m - 0. From (32.11) and (32.13) we have 

«»*** i/"-y-QÍ,—A* «j**e(r)dr = *■ }/"~ D„ 

1M. 

The fields of (32,6) and (32.7) are called the fields of electrical 

and magnetic multipole moments of the order Z, m. 

The total field energy and angular momentum K are determined 

by expressions 

1Formula (32.14) can be transformed into a somewhat different 
form 

LM ljr\ ¿Y divIM 

the integral from divL/rl^Kj» can be converted into an integral over 
surface, inasmuch as outside the system of charges j = 0 this integral 
turns into zero. Thus, 

I f*r*d ¿Y& («9» [jr\ dr- J ¿Y», t*»i div [rj\ dr. 

(32.13) 

(32.16) 
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If we place the expressions for Efm, or E“m, In both case 

the following important relationships can be obtained: 

(32.17) 

These relationships will be used below. Now we will define the Idea 

of parity oi the radiation field. Inasmuch as operator (A + 

is invariant with respect to inversion, this idea can be introduced. 

It is convenient to determine the parity of a field of multipole 

radiation so that it coincides with the parity of the corresponding 

multipole moment or pi^. This is attained by determining which 

parity of the field coincides with parity H. The field of radiation 

is even if during inversion (X - -X, Y -*■ -Y, Z - -Z) the magnetic 

field strength H does not change sign, and it is odd if H changes 

sign. Inasmuch as in a free space E and H are connected by the 

relationship 

-IkE-rottf, (32.18) 

even H corresponds to odd E and, conversely, odd H corresponds to 

even E. Thus, 

=* 1/(.-Ä), £(/?)=—£(- — aveu wave ,( 

i/(Ä) —//(-£), £(£) = £(—*) — odd wave, J (32.19) 

Let us now establish the parity of fields of electrical and magnetic 

multipoles. Parity of Ylm, as was shown In § 4, is determined by 

factor (-1)1. Therefore parity of Is equal to (-1)1. Parity 

01 ^Zm accoròing to (32.7) is equal to (-1)^. Thus, parity of 

radiation of an electrical multipole l, m is equal to (-1)1 • parity 

of radiation of a magnetic multipole Z, m is equal to (-1)^, It is 

not difficult to see that the selected determination of wave parity 



(wave parity is determined by parity of H, not E) satisfies the above 

set condition. The parity of the field coincides with parity of the 

corresponding multipole moment Qîm or 

2. Intensity of multipole radiation. In the case of purely 

electrical or purely magnetic multipole radiation of the order l, m, 

2 
the intensity of radiation dl in the solid angle dO = sin 0 d0 d<p 

is equal to 

(52.20) 

where time average currer t density of energy S in this case is 

determined by expression 

(52.21) 

Therefore 

ét “-jjj- *1® ® (52.22) 

Putting the expressions for Hfm in (32.22), we obtain 

(52.25 ) 

Expression (52.23) can be integrated over angles by using relationship 

(32.4). Finally 

+ Q|J.. (32.24 ) 

For radiation of magnetic multipole of the order l, m vre likewise 

obtain 

c -H) » ti) {i ai,. |‘. (52.25) 

In general the intensity of radiation can be obtained by placing 

(32.9) and (32.10) in the general expression for intensity 
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«in Miftp. 
(32.26) 

We »ust consider that fields of different electrical and magnetic 

nmltipoles interfere; therefore (32.¾) is not broken up into the 

sum of independent members dl3 and djM u 
ers aijm and dl¡ln. However, during integration 

over all angles due to the condition of orthogonality (32.4) the 

interference of sobers turn into zero. The full intensities, thus, 

are additive 

'-2(/,-.+¢.), (3g>27) 

The order of magnitude of members of sum (32.27) can be estimated by 

using formulas (32.24) and (32.25) 

(32.28) 

Here a is the order of magnitude of linear dimensions of the radiating 

system of charges; X is the wave length of radiation; and v is the 

velocity Of charges. In atomic spectroscopy in practically all cases 

a « X (e.g., atomic dimensions of 10^cm and X i„ the visible region 

of the spectrum is cm,; therefore Ifm, 1^ very rapidly decrease 

with increase of Z. As a rule, it is sufficient to consider only 

the first member of the sum over z in (32.27), which does not turn 

into zero. The order of the ratio £ can also be estimated in the 

following way. For an atom and for the optical region 

of the spectrum fc** he h* „ . 
« Au *# "T*"«?* Consequently, 

The velocity Of orbital electrons of an atom has an order of magnitude 

of 10 cm/sec; therefore the ratio v/c is approximately the same as 

the ratio a/X. It follows from this that members » and 13 
. w 171 4>1 jYl 

can be of the same order of magnitude. 
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The total Intensity of radiation of multipole moment of order 

l can be obtained by summing (32.24) and (32.25) over m 

21 (32.29 
•* -I 

Ao can be easily checked from (32.29), the necessary expression for 

dipole radiation follows at l = 1 

(32.30) 

The quantum-mechanical formulas for intensity of spontaneous 

multipole radiation can be obtained by using the above formulated 

correspondence principle. In this case in the corresponding 

formulas it is necessary to make the replacement 

l<&J,-4|<«IQ*.l*>r. II*4|<aJJé>|*. (32.31) 

Dividing the intensity by the energy of radiated quantum icu, we 

will obtain the probability of radiative transition. According to 

what was said above the probability of transition 7JM 

accompanied by multipole radiation of the order xq, is determined 

by the following expressions: 

K~%f+wiV 7' (32.32) 

' wi+iwrtr nr ■U i f^>r. (32-53) 

In accordance with (32.12) and (32.14) operators Q^, have 

the form 

(32.34) 
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(32.35) 

^ -crfïTc Z(pii rK M - 
i 

*_rn ^ Z(gr*d ^ 
« 

1 
where [riPi] is the operator of angular momentum and summation 

over i signifies summation over all the electrons of the atom. 

Expression (32.35) does not consider spin magnetic moments of 

electrons. It is possible to show that calculating the latter leads 

to replacement of member ± in (32.35) by (^-^- l± + si). 

This question is also discussed in the section dedicated to magnetic 

dipole radiation. 

The above given formulas for spontaneous radiation are easily 

generalized for absorption and induced radiation. 

3* Selection rules. From general formula (14.14) and 

properties of 3j symbols it follows that matrix elements 

<Y/Af|a»lf|Vv'^r> (32.36) 

are different from zero only when the condition of triangle 

A(JJ'x) and M - M' = q. Thus, multipole radiation of the order h, q 

obeys the following selection rules: 

IA/I-Jt*—yi—K, *-!.0; y+y'>K, 

AAf-itr-Af-f—X, —x + I,.... X. 

These selection rules have a simple physical meaning, 

radiative transition of the order h, q is accompanied by quantum 

emission lei). Inasmuch as the radiated energy Is connected with the 

square of angular moment and z component of moment by relationships 

^32.17), each quantum of the field of multipole radiation corresponds 

to an angular momentum determined by the order of multiplicity x, q 

(the square of moment 1^h(x + 1) and z component of moment Iq). Along 

(32.37) 

(32.38) 

A multipole 
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with conservation of energy the law of conservation of momentum 

J » J' + h also holds. The selection rules (32.37) and (32.38) express 

this law of preservation. 

Besides the selection rules for moment there is still a selection 

rule for parity. The matrix elements of (32.36) have to be 

invariant with respect to the conversion of inversion. Parity of 

the operators of electrical and magnetic multipole moments is 

respectively equal to (-1) and (-1) . Thus, during an electrical 

multipole transition of the order x 

parity of the atomic state changes as the magnitude (-l)*1 

and during magnetic transition (32.39) 

parity of the atomic state changes as the magnitude 

(-1)H. (32.40) 

The selection rules for parity and selection rules (32.37) and 

(32.38), connected with preservation of moment, are absolutely strict. 

Besides these rules in different specific cases (e.g., in the 

approximation of LS or coupling) we can formulate additional 

selection rules, the fulfillment of which depends on how applicable 

the utilized approximation is. 

4. Electrical multipole radiation. The full probability of 

electrical multipole transition of the order x from level 7J is 

equal to T'J' 

y'-O-itVt £ n(Y<w YV'Af)- 
1MM‘ 

2(2K+t)(x + l) ** +1 I 

{(2M+l)I!{tx ¿ 27+1 
MM'i 

(32.41) 

Let us introduce the idea of line strength of electrical multipole 

transition of the order x, determining this magnitude by a relationship 
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analogous to (31.25) 

S, (y/; y'-O-s, 

^(y/; y'/*)- 

(v'J'l Y-0“^ Ky^IQ^Jy'/AT^* * , 

.2(2>C+1)(1« + I)^» 1 
{(2x + l)!!|*x il 2/ + 1^^- Y J ¡- 

(32.42) 

(32.43) 

In the general case of a transition between levels 7; 7', degenerated 

with multiplicity g; g', 

s.<yy'>- 

WîlYY') 
2 (2x+l)(x+!)*"+' 1 
■((2x+l)H}*x A g SArt’). 

(32.44) 

We can also introduce oscillator strength of transition f^(77'), 

determining it by relationship (31.29), 

In order of magnitude /,^x[(2x+ !)!!]-• With (14.17) we can 

find 

S.ty/; yIO-IMIQ.IIyV')!*. (32.46) 

Proceeding from this expression and using the general 

relationships for matrix elements of tensor operators, one can simply 

generalize all the results of preceding section for the case of 

electrical multipole radiation of an arbitrary order. 

In the approximation of a LS coupling 

SAv* y'-O—! (Y$¿y|| Qjty'SL'f) | •. 

-(27+1)(2^+1)1^(471^-5x)|(Y£||Q1|lY'¿')r. (52.47) 

' Let us note that the sum <yJM | /yJ'M|jj—yS,(yj; //*> is 

called the given probability of transition. With an accuracy of a 
constant factor this magnitude coincides with r.W; yT). 
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Further, It is necessary to distinguish two cases: transitions 

between levels of different configurations and transitions between 

levels of the same configuration. Let us consider the first case. 

In the approximation of the fractional parentage diagram the 

matrix element in (52.47) can be expressed through the corresponding 

radial integral. Repeating exactly the same reasoning as in the 

case of dipole radiation, we obtain 

«Y.sAlWQ.iiiY.v.i/ysn- 
«(__ !)• WdLCV', ¿.«Mw/IIQ.II*'/')- 

Now we must determine the single electron given matrix element 

Considering that 

= -1 Y'tMYr.> «inAlr' P -,-(fkV*dr, (52.48) 

nZ 
and designating the radial integral in (52.48) through \nA*)> 

we obtain 

(ji/||Qs||/iT) - - etfr (x)(/||C*!ir). ( 52.4 9 ) 

The formulas for given matrix elements (l|¡Cv1U') are given in 

§ 14. Just as in § 51, below we will extract the formulas for 

factor s, determined by the relationship 

S—seR\-(x). 

Thus, 

MY* Y'«0-<2-'+i)(2*+i)ir,i*ft'.r: Sx)<2£ + i)(2r + nx 
xW*(ILrL’: ¿,x) I (/HC* HO I*. (52.50) 

From the rule of sums for W coefficieni:s it follows that 

2*,(y* Y'*)^(2y+l). Therefore the above formulated dipole radiation rule 

of relative intensities ol multiplet components is also in general 

correct for arbitrary electrical multipole radiation ol the order vt. 
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Summing ^32.50) over 8.11 possible values of J, J', we obtain 

(Y-Sl; Y'-Sl') - (2S + 1 ) (24 + I ) (24' + I ) x 

X r*(/£r4'; 4,x>((fliciir)|*. (32.51) 

The same rule holds for relative intensities of transitions ySL—fSC 

as in the dipole case. This again follows from the rule of sums for 

W coefficients. 

Exactly as in summing over all L, L' transitions, we obtain the 

full line strength of a supermultiplet 

MyS,4.. /: Y A4,, n-(2S+ 1)(24,+l>|(/|lC||r)|\ (52.52) 

Summing, finally, (32.51) over all terms of configuration I, II 

just as this was done in conclusion (31.52), we will find the strength 

of line sx (I, II) of the totality of transitions nl -*• n'l' 

«.a, (32.55) 

(32.54) 

At x =« 1 all these formulas are transformed into the corresponding 

formulas of the preceding section for dipole radiation. Thus, 

at x = 1 and (32.53) coincides with (31.53). 

Exactly it is just this simple to generalize for x > 1 all the 

remaining results of the preceding section, in particular the formulas 

for equivalent electrons, for jj coupling, etc. 

For instance, in the approximation of a jj coupling instead of 

formulas (32.50) and (32.51) we will have (the fractional parentage 

characteristic of terms is used; J± is the full moment of the initial 

ion) : 

My* y'*)-(W+D(2/+Dir'iyy/y'; y,x)(2/+1)(2/+i)X 

x ^((//7:^))(/11(711/-)^, (32.55) 
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I 

•.WJi r/.n-<V+i)»*(/./r/;*x)|<;|nn|\ (52.56) 

The total probability of all transitions generated by single electron ( ) 

transition nl •**■ n'l', in this case will also be determined by formula 

(?2.54). 

Besides dipole transitions of biggest interest for atomic 

spectroscopy are quadrupole transitions. In this case h = 2, and the 

selection rule for J takes on the form 

A/a»0, ±1,12; (32.57) 

At «-? (IflCTin^O for r-/, /±2 (.«.(14.35)-^14.37)). 

Consequently, A7- ■ 0.2. This selection rule also ensures the 

selection rule for parity; quadrupole transition is possible only 

between states of identical parity. 

In the approximation of a LS coupling we can formulate an 

additional selection rule 

atAS-0 *¿-0, ±1, ±2, ¿+r>2. (32.58) 

In the case of a jj coupling the line strengths of quadrupole 

transitions are determined by formulas (32.55) and (52.56), in 

which it is necessary to put vi ■ 2, The W coefficients entering in 

(32.55) and (32.56) at h s* 2 are different from zero when 

4/-0, ±1, ±2; /+/>2. (32.59) 

Let us now turn to transitions between levels of one electron 

configuration. Such transitions are possible only at even values of 

H. Of the biggest practical interest is configuration Zpj we will 

limit ourselves to a consideration of it. In wave function 

¥(lp) enter single electron functions with identical values of quantum 

Í ) 
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numbers n, l. Therefore the given matrix element (/'yS4||QJ|#Y«&') 

can be written in the form 

t ) 

=- (K)(W)(rYS¿||crf!rY's¿'), (32.6o) 

where 

í/i 

the given matrix elements were calculated in § 18, formula (18.12)* 

For configurations p and dn the values of these given matrix elements 

are in Tables 35-42 (at k = 2). 

Thus, 

tt(l'ySL); Fy'SL'f) — 

«(2J + 1>(ZT+ l)ITV£y¿V';5x)|(^5£||í/irY'S¿')!*I(/||C-í|/)|*. ^ ^ j 

5» Magnetic dipole radiation. For atomic spectroscopy 

magnetic multipole radiation at h = 1 (dipole radiation) is of basic 

interest. Putting h - 1 in (32.35), we will obtain 

^—s 2 (*«<» '¡cí («ífí) //. (32.62) 

or in cartesian components 

(32.63) 

*-s£i<Y/*i*iY'<™'>r. (32.64) 

(32.65) 

As was already noted above, expression (32.65) considers only the 

orbital magnetic moment of electrons. The intrinsic magnetic moment 

of an electron has the same order of magnitude as orbital; therefore 

in (32.65) it is necessary to adci the corresponding members. Further 

£) consideration will be based on the following expression for the operator 

» 



of magnetic moment: 

*“ S5(v'.ob) 

Let us again define the line strength of transition by a 

foçmula analogous to (31.25). Then 

WMW-ïÉ îTÏT^^Y^'* Y '-^)- 

(32.67) 

(32.68) 

Let us start the Investigation of formulas (32.67) and (32.68) from the 

single electron problem. In this case 

—¿é (*sm'M'*rn - ~ (*sitmn’*rn (32.69 ) 

With formulas (14.75) and (14.76) it is easy to show that transitions 

are possible only at n- n1, l » l1, j - j* +1, i.e., between 

l l 
components of fine structure of levels ¿ I + y = l - where 

(52-70) 

In just this manner we will introduce the calculation of line 

strength for a many-electron atom in the E^proximation of a LS 

coupling. The operator of magnetic moment in this case can be 

written in the form 

■—¿tt+an. (52.71) 

The given matrix elements L and S are different from zero at L' = L, 

S' = S, 7 ■ 7', therefore magnetic dipole transitions are possible 

only between components of fine structure of one term. The expression 

for line strength S(7SLJ; 7SLJ - 1) can be obtained by replacing In ( ) 
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' ) 

•' "1 

s) 

{$2.70) n, l, j respectively by 7, L, S, and J: 

SevSU:ySU-\)- 

- [¿¡f fÜ:s-*-y+1)^+5-y+i)(S4.y-¿)(/+¿_^ 
(52.72) 

The selection rules for magnetic dipole radiation in the approximation 

Of a LS coupling have the form 

A¿-0.: AS-O, Ay- + 1. 
* (32.73) 

In the approximation of a jj coupling calculation of given matrix 

element (7J||pi||7*J-) is considerably complicated, m particular, 

expression (32.71) loses meaning in this case. Let us present 

|J1 in the form 

-êxi', 

M——-J W*  4¾ V*' 
ane'* 2¿Tc2«*r 

(32.74) 

Wie given matrix element jn- is different from zero only when 7 « 7., 

J = J'. Therefore radiative transitions are determined by member 

PI . The given matrix element pi" is calculated with help of the 

general methods used above in examining of electrical dipole 

radiation. For instance, in the case of transition 

VJJM—yJJfM' 

WJJmwjf)—¿L (vy^vYW)- 
,)(2/+Dx 

(32.75) 

From this it follows that 

SViJJJ-. yjjf)r* 

"7(á),<2y+1>(2y' + ,)Wr,(yy/y'; jt\)x 

X(2/+1)(2/ +1) W*(s/sf ; /1). 
(32.76) 
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The formulas for the probability of magnetic dipole transitions do 

not contain radial integrals. Instead of radial integral (more 

exactly, instead of eRjJ^,) the Bohr magneton enters 

(32.77) 

where a li the fine structure constant. Thus, the probability of 

magnetic dipole radiation is aP times less than the probability of 
electrical dipole radiation of the same frequency. 

6. Transitions between components of hyperfine structure. 

Radio emission of hydrogen X - 21 cm. The line strength of 

electrical dipole transition between components of hyperfine structure 

of two different levels yJ and y'J' is determined by the expression 

(32.78) $WIK 't'flF) - jg I dJlFM IDI y'flFM') | \ 

Inasmuch as the dipole moment of an atom D commutates with nuclear 

spin, from (14.69) it follows that 

+ i)(2r+d W(jFfru\)\(yj\m,r)\\ 

Using (31.25) and (31.40), we obtain 

(32.79) 

(32.80) 

S{yJ/ñ y'f ¡F)-W+l)Q{ljp. /fr)S(yJ\ÿf), 
%S(yJIF; y'f/F).(2/+1)5^7; y’f). 

If we put 1*0, then the sum of line strength (52.79) over all 

allowed transitions F, F' coincides with the strength of line 

S(7J; y’J'). At I ^ 0 in (52.80) the cofactor 21 + 1) enters. This 

is connected with the fact that in the case of I / 0 the statistical 

weight of level 7J is equal to (2J + 1) x (21+1). It is easy to see 

that the expression for the full probability of transition 7Jj y'J* 
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remains the former, since 

*(*/5 v'y*)— 
3? ôThTwTT, ^ S{yJ/Fi y'fiFh 

•S&ítÍt5^ (32.81) 

The relative Intensities of t> tnsltions 7JIP - j,IP, are deteralne(S 

by factors ¢, which can be calculated from Table 75. Fro», (32.79) 

and (32.80) we get the rules of stuns for relative Intensities ' 

of components of hyperfine structure of a line of the same type 

as for components of fine structure. 

From the law of preservation of angular moment during radiation 

these selection rules follow 

¿F-0. ±1, j 
^-0, ¿-i. I (32.82) 

Electrical dipole transitions between components of hyperfine 

splitting of the same level are forbidden by the selection rule 

for parity. Obviously only quadrupole and magnetic dipole 

transitions are allowed. Quadrupole transitions are possible only 

when 2J è 2. 

For this reason for transitions between components of hyperfine 

structure of basic levels and P1/g magnetic dipole radiation 

is of special interest. Magnetic dipole transitions are the only 

cause of de-excitation of the upper sublevels of hyperfine stricture 

of such levels. Let us consider the transition between components 

of hyperfine structure of a single electron atom (nydrog.n atom 

or alkali metal). In this case 

(32.83) 
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V ■ 

N- 

wiFmnjin* 

l)(2F + n r^r; «Xv/iSRiíyA 

. **"“«I1+ — ^VJu+ 1)W+1). 

(52.84) 

(52.85) 

¡fri '". ' 
6 expression In the braces is equal to the Lande» g factor; therefore 

ï « 

t SiyjlFi yj/F')- 

? (5î),(2/r+ ^(ar-h 1) V'UFjr; l\)JV+ 1)(2/+ 1)- 

vnjv-ruw+D. (52.86) 

Likewise in general transitions between components F, F» the 

hyptrfine structure of level 7SLJ is 

SiyJIFi yJin- 

- «• Í¿)\2F+1)(2/^+ 1) W*(JFJF*: /1) 7(7+1)(27+ 1)- 

‘ -^(^(2/+1)^(/7^/7^)/(/+1)(27+1), (52.87) 

Where g is the Lande» factor for this level. 

Formulas (52.86) and (52.87) do not contain radial integrals. 
¡it'; ' ' ÿ • 

Ulis circumstance considerably simplifies obtaining numerical 

results. As an example let us consider the transition between 

components of hyperfine structure of the ground level of hydrogen 

ISjL/g, Putting j » 1/2, I =» 1/2, F » 1, F» = 0, in (52.86), we 

obtain 

(52.88) 

The magnitude of splitting in this case is equal to 2a-1420.4-10'cm'1. 

Hierefore 

*«2,85-IO-" sec-'. 

2-¾ 
This magnitude is 10 ^ times less than typical values for the 

probability of electrical dipole transitions in the optical region of 

the spec: i.rurn. 
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In spite of this exceptionally small values for the probability 

of transition, the line X * 21 cm, corresponding to the considered 

transition, is observed in radio emission of interstellar hydrogen. 

The first detection of discrete radio emission X » 21 cm was made 

in 1951. 

This event played an important role in the development of a 

new division of astronomy, radio astronomy.1 Till now the 

investigation of radio emission of hydrogen has produced a whole 

series of very important data about density and temperature of 

interstellar gas, about the structure of the Galaxy, etc. 

§ 35. Calculation of Oscillator Strengths 

■L* Methods of approximation in calculating the probabilities 

£- _geclative transitions. In the preceding sections it was shown 

that in the approximation of full separation of electron variables 

the probabilities of radiative transitions 7-7' can be expressed 

chrough single electron radial integrals *„.«J/>,<,)rPT-(r)j>v Therefore 

the basic problem appearing during calculation of the probabilities 

of transitions is finding the radial functions /V(r). " i 

For all atoms and ions, with the exception single electron 

(H atom and ions of He+, Li"*^, ...)2 radial functions can be found 

only with some methods of approximation. The basic methods of 

approximation in calculating radial functions are: different 

variants of variational methods (the method of the Hartree-Fock 

self-consistent field, direct variational methods based on the utte of 

analytic functions) and semi-empirical methods. There are different 

Press^l^ó* S* Shlclovskiy' sPace radio emission. State Technical 

sFor calculation of the probabilities of transitions in 
hydrogen-like spectra see [E. S.] 
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semi-empirical methods. They all use experimental values of energy 

levels. 

The variational methods are the most exact methods of 

calculating the energy of an atom. From this circumstance, however, 

it does not follow that the wave functions obtained by variational 

methods have to give the best results in calculating other 

magnitudes. Variational methods ensure good quality of functions 

P7(r) in the range of values of r which is the most essential during 

calculation of energy. At large values of r these functions can be 

very inaccurate. For instance, the Fock. method permits obtaining 

terms of alkali atoms with accuracy on the order of 1-2$. The 

accuracy of calculating the probabilities of transitions is much less. 

With help of semi-empirical methods, as this will be evident 

later, it is easier to obtain functions Ey(r), exact at large values 

of r, i.e., exactly in the region which the most important in 

calculating the probabilities of transitions. Therefore it can 

appear that the considerably more simple, semi-empirical method gives 

better agreement with experiment (considering the accuracy of 

calculating the probabilities of transition) than, let us say, the 

method of a self-consistent field. The semi-empirical method will 

be discussed in greater detail in paragraph 4 of this section. Now 

we will discuss certain specific questions appearing during 

approximation calculation of the probabilities of transition.1 

2. Three possible forms of writing the formulas for probabilities 

of transitions. In the nonrelativistio approximation interaction 

of an atom with the field of radiation is determined by the operator 

^■These questions are considered in works: M. G. Veselov, Herald 
of Leningrad State University, No. 8, series mathematics, physics and 
chemistry, î8l, 1953; S. Chandrasechar, Astrophys. J. 102, No. 2, 
233, 1945. 
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(33.1) tf 

where u. are operators of rocinentuin of electrons. In accordance 

with (33.1) in the dipole approximation, i.e., disregarding delay, 

the matrix element of transition a b is proportional to 

The matrix element can be presented in another form by expressing 

Pj through r^. or p^. 

For the arbitrary operator F, which does not evidently depend 

on time, and its derivative F = this relationship holds 

f-jiw-wi. (33.2) 

where H is the Hamiltonian of the considered system. Consequently, 

-j-(£«—£,) (33.3) 

Therefore 

(33.^) 

(33.5) 

Thus, 

'f (f. - f—/* (33.6) 

Inasmuch as all three operators ^r/t ^9t and are tensor operators 

of the first rank, calculation of the angular parts of matrix 
f 

elements ,]ab in all three cases is conducted identically. The 

difference is only in the radial integrals. 

Using evident form of operator #,—/4?,. and also the fact that 

in the nonrelativistic approximation, when 

) 
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< I • i>ê * • 

from the evident relationship it follows that 
* fA 

and we obtain 

•n*#ir -«*n' J *. ( 33.7 ) 

(33-8) 

(33.9) 

The sign + in (53.8) corresponds to transitions z_/—i,/-./+1,/-w 

is the biggest of numbers l, 1'. 

If during calculation of the matrix element of interaction H’ 

we use exact wave functions, i.e., eigenfunctions of operator H, then 

all three forms of writing H^b are absolutely equally justified and 

should lead to one result. In the case of approximate functions 

the results can be absolutely different. The basic contribution 

in radial integrals (33.7)-(33.9) is given by different regions of the 

values of r. It is obvious that the best results are obtained when 

functions Ry, Ry, are determined with the greatest accuracy for 

Just those values of r which are the most important during 

calculation of integrals R^y,. 

Let us note that in (33.7) and (33.9) we have not experimentally 

observed frequencies, but differences , where 

(33.10) 

Substituting the observed values of in (33.7)-(33.9) leads 

to additional errors. The method of determining the frequency of 
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transi:ion should 

matrix ciernent. 

coordinate«., with the method of calculating the 

-n the aoove quoted work of M. G. Veselov the procacilities of 

radiative transitions were calculating the matrix element. 

In the atove quoted work of M. G. Veselov the probabilities of 

radiative transitions were calculated 

Irtp’P— Ij*‘5, lí 2/>*P—1í2x*5, \s2p'P- ls2x'5, 
'5- 'Paru 'P- lst2s2p 'P 

in spectra of a number of two-electron and four-electron atoms and 

ions. Calculations were conducted with analytic functions obtained 

by the variational method, where the first two expressions for 

ftyryi iri (33.7) and (33.8) were used. In these two cases for all 

transitions, with the exception of transition IsGp^P-lsSs^S, the 

results for neutral atoms differ by 20-50$. For ions the difference 

is less, since in isoelectronic series the accuracy of utilized 

functions is increased with increase of the charge of the nucleus. 

calculations showed that small variations of parameters of 

wave functions, having little effect on the value of energy, can lead 

to a substantial change in the value of the probability of transition 

Transition ls2p1P-ls2s1S was calculated with the least exact 

functions, the parameters of which were taken as the same as for 

triplet states ls2s^P and ls2s'S. In this case the results differ 

by 1-5 times. 

The methods of a self-consistent field, and also the direct 

variational methods on the average ensure an accuracy of wave 

functions which is necessary during calculation of energy. The 

accuracy of these functions at large r is considerai.ly worse, since 

this region gives a small contribution to energy. Therefore during 
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calculation of the probabilities of transitions with the help of 

methods of such type one should have a preference for formula (33.8 

In the semi-emipirical methods one should use formula (33.7). 

The third form of writing (through operator p^ ), apparently, 

does not generally have meaning when using approximate calculations. 

The single electron operator Pj, as was shown above, is equal to 

the full force V,K. acting on electron j from the side of the nucleus 

and other electrons of the atom. However from operator the 

shielding interaction of electrons decreases. Shielding enters only 

through functions P^, F^,. Therefore these functions should be 

determined in the region of small values of r with very great accuracy, 

which it is doubtful we can ensure in calculations of many-electron 

atoms. 

5» The theorem of sums of oscillator strengths. During 

calculation of the probabilities of radiative transitions we start from 

the expression for oscillator strength of transition f, connected 

with the probability W and the strength of a line of S transition 

by relationships (31.23) and (31.27). 

As was already noted in § 31, the oscillator strengths „f 

transitions satisfy the so-called rule of sums. This rule can be 

formulated for an arbitrary many-electron system. 

The operator of pulse Pj and the radius vector of an electron 

rj satisfy permutadle relationships 

Ifi-rjfj—iA. (33.11) 

Summing (33.11) over all electrons of the system, we will obtain 

-Oku, (33,12) 

«vhere N is tne full numser of electrons. Inasmuch as the operators 
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pulses and tn.a coordinates of different electron s coiuïïiutate 

(53.13) 

relationship (33.12) can also be written in the following form: 

(33.14) 

The diagonal matrix element of he left part of (33.14) is equal to 

^ (2 r/)*« — (2 r'/)•» (2#/)*« } • 

:ut in accordance v;ith (33.t) 

(2>/U ■» //imi),, (^] ry)rt. 

(33.15) 

(33.16) 

Therefore 

?"•* i <« i 2m*>í‘--¾/V. (33.17) 

Let us assume that state a is a certain arbitrary state of the 

atom 7JM. Then 

-aZ-tv* -yvixl £ '/¡v'Atr > f-M (53.18) 

In § 31 it was shown that tne sum over M' in (33.18) does not 

depend on M. Therefore the left part of (33.18) can be written in 

the for/., (see (3I.19)) 

2m 
-à* (27+1)-^^(^ Y'7) <Y<hW J £r,| yVAT > ^ 

-¿/(Y7; y'T'). 
rr 

(33.19) 

Thus , 

^/(y7; y'T'J-M 

Relationship (33.19) is the general theorem of tne sum of oscillator 

w V-. u.. .tj • '- e .. 3..a0 0lOTib • j. • G s.-: .GOÜTo.o G XciC S ifiCG* r]"uT' 1.r- f* *]_t s 
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conclusion v/e used only permutable relationships and formula (33.3). 

For a hydrogen atom and single electron ions N = 1. 

In the case of a many-electron atom summation over Y'J' in 

(33.19) spreads to levels of discrete and continuous spectra of the 

atom, where transitions of all atomic electrons, including electrons 

of inner shells, are considered. 

In this general formulation the theorem of sum of oscillator 

strengths does not have large practical value, since we are usually 

interested only in transitions of one of the valence electrons. 

For such single electron transitions there is no exact theorem of 

sums. Nonetheless it is possible to formulate approximate rules, 

useful in a number of applications. With the help of rules of this 

type we can estimate, e.g., the boundaries of the most intense 

transition. 

Let us consider transitions from level 7SLJ of an electron 

configuration containing, besides filled shells, the group of 

M 
equivalent electrons (nl) , i.e., transitions 

Y, (nWySU—y. («*VV‘ V, V S'rS'L'f. 

Let us assume that wave functions 

iY. W). MViv. (y.(*/Vv“ 'y.S/, *' /') 

are built from single electron functions and are antisymmetrized 

for all Nq electrons of the atom. Furthermore, we will assume that 

these functions are eigenfunctions of a certain approximate 

Hamiltonian H. (Let us remember that the wave functions of a 

single electron approximation are not eigenfunctions of an exact 

Hamiltonian. From tne results of § l6 it follows that for any 
Nn 

symmetric single electron operator — F this relationship holds 
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Therefore, by repeating trie conclusion of formula (33.19), one can 

easily obtain 

y^ntŸ'-^S.L^TS'L'D^N. 
(33.21) 

For one electron outside filled shells 

g/(*</; «'/*/)=1. 
■ T/' (33.22) 

In contrast to (33.19) the rule of sums (33.22) is approximate, 

since it is fulfilled only when the expressions for oscillator 

strengths contains the frequency cu* equal to the differences of 

eigenvalues of the approximate Hamiltonian. Just this Hamiltonian, 

whose eignefunctions are functions ¥, is used during calculation of 

f. 

If in determining f the matrix elements or are 

calculated with the help of any method of approximation, and the 

frequency of transitions is taken from experiment, then the rules 

of sums (33.21) and (3^.22), in general, should not be fulfilled. 

There is one more important peculiarity of conclusions (33.21) 

and (33.22), which must be noted. Based on (33.20), we exclude 

from consideration the electrons of filled shells, replacing them 

oy a certain effective field. The magnitude of matrix elements 

and (in the considered approximation) is not affected by 

tnis, since in conclusion (33.20) no additional simplifying 

assumption was made. However, summation over b in the sum 

Tnus, for a Na atom 

# 

also encompasses filled states. 



in sum (33.22) for oscillator strengths of transitions from level 

np we must consider transitions to levels Is, 2s as practically 

nonexistent. 

It is also obvious that experimental values of f are not obliged 

to satisfy the rules of sums (33.21) and (33.22). This circumstance 

is very significant. It is known that in a number of cases 

experimental data contradict the rule of sums. Thus, the most 

exact measurements carried out by the Rozhdestvenskiy hook method 

(anomalous dispersion) show that the sum of oscillator strengths 

for resonance series Na, Rb, and Cs considerably exceed 1 (by 

approximately 20#). 

Above in conclusion (33.22) we set very hard conditions on the 

type of wave function utilized during calculation of f. For instance, 

wave functions obtained by the method of a Fock self-consistent field 

do not satisfy these conditions. A special consideration of this 

question showed2 that exchange interaction of the valence electron 

with electrons of filled shells leads to the appearance of a 

correction member in the right part of (33.22). For alkali elements 

this correction member is small. For instance, for resonance series 

of Na it is equal to -0.006. The physically unrealizable 

transition 2p-3s has a considerably larger error, since 

f>2p-3s:= Calculation of both corrections gives 2/v-m*1.031. 

This value also differs from experiment. 

For an electron in a centrally symmetric field we can establish 

1See X. P. Penkin, Reports on a conference dedicated to 
measurement ano calculation of oscillator strengths in atomic spectra. 
Press of the Leningrad State University, 1969, p. 99. 

■^V. Fock, Zs. Phys. 89, T*-4, 193^ * see also § 9 in the survey of 
latest literature in [X. Sr..]. 
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still another series of aaditional rules of sums (e.g., for 

strengtr.s of oscillators f(nl; n-Z - 1) and f(nZ; n-Z + 1) (see 

[B. ä.] §§ 61, 62). 

4- methods of calculating oscillators strensths 1 

In the method of a self-consistent field wave functions are found 

simultaneously with the eigenvalues of the system of differential 

equations, the energy parameters er In calculating the probabilities 

of radiative transitions another approach is more expedient. It 

is possible to set values of e7 beforehand and search for such single 

electron radial functions P7(r), so that the calculated values of 

ev coincide with the selected. The problem of a self-consistent 

field is usually not solved, merely replacing the system of equations 

by one equation for an optical electron in a certain effective 

field. This equation has the form 

í ~t5-7+Ü^í1+ I'M-., } P, M-o. (33.23) 

As was shwon in § 21, the energy parameter e7 is equal to the 

difference of energies of atom Ea and the ''frozen” atomic remainder 

1» I 7i > I7, where I7 a |Ea - | is the ionization energy of 

an electron. (If the considered electron is one of the equivalent 

electrons of group ln, by e7 we understand the mean value over 

terms of the atomic remainder, see § 21.) 

It is obvious that the accuracy of functions P7(r) in great 

measure depends on how close the selected value e7 is to the true 

value of the difference Ea - E^. In the semi-empirical method the 

oscillator stJe^Ki.^see":^^T^Sash^^and f 

osciïîator ^renfrhiTin atomi^60 t? measure”ent and‘calculation of - 3-reng.hs in atomic spectra. Press of the Leningrad 

Fhy 
o X C G 
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energy parameter Ey is equated to the experimental value of 

ionization potential Ly. Thereby an error is allowed, which is 

connected with disregarding the average polarization of the atomic 

remainder by the optical electron. Inasmuch as the difference 

i 

Ea - cannot be measured experimentally, the magnitude of 

this erroy can only be estimated by comparing Ly with the Hartree-Pock 

value of |£*—With such comparison we must consider that Ly 

includes instantaneous interaction of electrons (correlation), which 

is not considered in the approximation of a self-consistent field. 

Therefore in principle both cases /T>|£r#_ ft I,.* and < I 

are possible. In the first case the correlation effect exceeds the 

effect of polarization. In the second case, the opposite is true. 

Inasmuch as both and Ly are less exact then the value 

K-41. one should expect that the semi-empirical method will give 

the best results when /»l^— 

The effect of polarization is greater the more the wave 

functions of the optical electron and of the electrons of the atomic 

remainder overlap. Therefore it is most essential for ground states 

of atoms having many electrons in the outer shell. For example, 

for the ground state of an oxygen atom (6 electrons in states 

2 4 V 
2s 2p ) the Hartree-Pock method gives while 

I =* 0.500.1 In this case |£.—£Î|t#>/f and the Hartree-Fock function 

P2p(r) should have better asymptotic behavior than the semi-empirical. 

But already for alkali earth atoms and all the more so for 

alkali atoms the reverse relationship Ift—ft!,.*</ holds. Thus, for 

XD. Hartree, W. Hartree, B. Swirles, Phil. Trans. A238, 229, 
1939. 
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the ground state of Ca i£ _i ,0c ^ T 
^ °'195' and 1 = 0-225.1 In just such 

cases it is most expedient to aoply the semi i -> 

. y y one semi-empirical method of 
calculation. 

Ih selecting the effective potential v(r) different 

approximations are possihle. As a rule, different authors decide 

thlS ,UeStl0n ln the ”°St manners. The character of these 

approximations naturally affects the accuracy of the results, „oweve 

even with the roughest approximations (we will meet one of them in 

following section) the functions P7(r) have good asymptotic 

behavior, since the behavior of these functions at large r is 

casicaily determined by selection of e 

The selected values of is not an eignevalue of equation 

(33.23). Therefore this equation, in general * u 
genera1' does n°t have solutions 

imultaneously satisfying both boundary conditions P(o) = o, 

2(0-) - 0. This difficulty can be bypassed with two methods. During 

numerical integration of equation („.23) Ke can depart fron ^ 

values of r. We have already noted above that during calculations 

radial Se”'i'e”,PlriCal "eth°d °ne should usa expression (33.7) for the 

^ n egral. In this case the form of functions P7< p^ at 8mall 

stances from the nucleus Is immaterial and integration can be 

broken down into o^t»-■ — 
t*- "bite value r without bringing it to zero. 

The other method consists of selecting the potential v(r) in the 

form of a function of a certain parameter whose value is chosen 

SO as to satisfy both boundary conditions.2 

^ mrtree’ "• ôartree. Froc. Roy. Soc. 51j 702> 19K> 

I. V. Aborenk¿vSandeeL!nA.Xnshte^? WOrkS M- I- petrashen' and 
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It is necessary to note one more advantage of the semi-empirical 

method, connected with the fact that during calculation of oscillator 

Strength of transition the method of determining the frequency of 

transition should be coordinated with the method of calculating the 

matrix element. In the framework of the semi-empirical method it is 

necessary to place an experimental value as the frequency of 

transition in the formula for f. 

5. The Bates-Damgaard Tables. The potential —i-+v{r) in 

equation (35.23) at large distances from the nucleus has an 

asymptotic form where Ç=Z -N (Zis the charge of the nucleus, 

N is the number of electrons in the atomic remainder). For a neutral 

atom Ç « 1, for a single ion Ç = 2, etc. Using the fact that the 

basic contribution in the radial integral /?,T--//>(/■)rPT.(r)rfr is 

given by the region of large values of r. Bates and Damgaard1 

suggested simplifying the problem by putting 

—f- (33.) 

With this the solution of equation (33.23) is expressed through 

a degenerated hypergeometric function. With the help of an 

asymptotic series for these functions we calculated the radial 

integrals for transitions s-p, p-d, and c-f. fne results of 

these calculations can be presented in the form 

(33.23) 

♦ -to- 

Here ni_1, n¿ are the effective principal quantum numbers determined 

1D. R. Bates, A. Damgaara, Phil. Trans. 24 2, 101, 19^+9. 



exp er unen\a..L values of er ms 
-J7 expre.seo in Ry 

«i-, (33.26) 

* * 
Tue integral 1(^^, r¡l I ) was tabulated. The values of this integral 

i or transitions s-p (Z = 1 ), p-o (I = 2), and d-f ( l = 3) 9-re given 

in Tables 7b, 77, and 78. 

These tables obtained wide 

useo for rougn estimates of ore 

In spite of the roughness 

propagation, and they are frequently 

illator strengths of transitions, 

of the utilized approximation, the 

Bates-Damgaaru method gives good results in a number of cases, 

especially for transitions between strongly excited states. 

It is obvious that the Bates-Damgaaró method has the best 

foundation when the maxima of both functions p ,, p . lie 
n i7 n't' 

outside the atomic remainder. This condition can be formulated 

in evident form. The inequalities *>«,, where n0 is the 

tiggest of the principal quantum numbers of electrons of the atomic 

remainder, must ¿told. Furthermore, the condition */>/4.-1 should 
2 

ie fulfilled. As a rule, both conditions are fulfilled simultaneously, 

cut the first is somewhat more rigid. 

In a number of cases, in particular for transitions to the 

grouno state ot Divalent elements, these conditions are disturbed, 

Then the 3ntes-Damgaard leads to absolutely incorrect results: 

v:.o error in oscillator strengths sometimes attains an order and 

'.ior.-. ..,/ ins lean of t he .'ate s-Dar.gaard racial func 

fan la 1 functions Detained .v numerical integration 

(33.23) with a potential calculating the specific c 

consicert a case, zne error r ecomes considerably les 

clone we take the 

of equation 

naracter of the 

s. As a rule. 

w n the approximation 

exceed 100/1. 

coup 15n,_, is appllcar-le, the error does 

0 

..‘■»"•»»»lifc 

.not 



Table j6. Radial Integral n^Z)! = 1 Transition s-p 

it. 

2.0 2.0 1.0 1.0 4.0 4.1 6.0 6.6 0.0 6.0 7.0 

•*■4,0 

3:! 
-4,4 3:J 
—1,1 
-4.0 

=M 

=î:ï 

d:5 

—4,1 
-4.0 
—1.0 
-1.0 
-1.7 
-1.0 
-1.0 
—M_ 

—1,3 
-1.2 
-1,1 
-1.0 
-0.0 
-4,0 
-0.7 
-0.0 
-0.5 
—0,4 
-0.3 
-0.2 
-0.1 

0 
+0.1 

0.2 
0.3 
11.4 
0.5 
0.6 
0.7 
0.0 
0.9 
i.o 
U 
1.2 
1.3 
1.4 

1 
+0.000 < 

0.001 
0.001 
0.012 
0.020 
O.OIA 

0.000 
0.120 
0.100 
0.240 
0.329 
0.410 
0.514 
0.612 
0,703 
0.797 
0.875 
0.937 
0.900 
1.000 
0.996 
0.967 
0.915 
0.842 
0.749 
0.043 
0..'20 
0.409 
0.292 
0.101 - 

+0.0U 
-0.(04 
-0,071 
-0.120 

«MB 

—¿To» 
-0.029 
-0.000 
-0.030 
-0.019 
—0.1X13 
+0.023 

0.000 
0,100 
0,170 
0,244 
0.329 
0.422 
0,5£0 
0.619 
¢,715 
0,004 
0.060 
0.941 
0,901 
l.l'OO 
o:m 
0,965 
0,913 
0.M39 
0.740 
0,643 
0.330 
0.412 
0.297 
0.107 
0.04 

4 0.0 >4 
—0,0,:3 
-0.112 

• • 

¿T 
-0,000 
-0,000 
-0,001 
-0.000 
—0.000 
-0.010 
-0.010 
-0.024 
-0.032 
-0.041 
-0.040 
-0.051 
-4),0:0 
-0.011 
-0.024 
+0.004 

0.045 
0,091 
0,163 
0.241 
0.320 
0,424 
0,524 
0.624 
0.720 
0,006 
0,804 
0,943 
0.903 
1,00© 
0.994 
0.964 
0.911 
0,037 
0.747 
0. (.13 
0,531 
0.415 
0.300 
0.192 
0.094 

+(',011 
-0.056 
-0.1(13 

+M07 
0.000 
0.000 
0,007 

+0,004 
-0.001 
-0.031 
-0.016 
-0.027 
-0.338 
-0.040 
-0.050 
-0,063 
-0.033 
—0,055 
-0,0.17 
—0.007 

+0.035 
0,090 
0,150 
0.2» 
0.321 
0.425 
0.526 
0,627 
0,723 
0,011 
0.807 
0,945 
0.904 
1.000 
0.99,1 
0.910 
0.909 
0,t*36 
0,746 
0,643 
0.531 
0,416 
0.303 
0.1% 
0.099 

+0,016 
—0.051 
-0,1(10 

0 
+0.000 

O.Ofc 
0.000 
0.001 
o.«s 
0.004 
0,000 
0.000. 
0.011 
0.013 
0.015 
0,015 
0,014 
0.010 

+0.004 
-0.005 
—0,010 
-0.029 
-0,042 
—0,056 
-0,066 
-0.072 
—0,673 
-0.004 
-0.046 
—0.015 

+0,020 
0,004 
0,154 
0,235 
0.327 
0.42S 
0,527 
0,629 
0,725 
0.813 
0.880 
0,§46 
0,964 
1,000 
0,992 
0.961 
0,908 
0.035 
0,745 
0.642 
0.531 
0.4S7 
0.3O4 
0,1% 
0.102 

+0.O19 
-0.047 
—0.096 

(-J.S 

loS 
-4,063 
-4.001 
+0.W 

0.003 
0.005 
0.010 
0,014 
0.018 
0.020 
0.021 
0,920 
0.015 

+Ö.0O« 

-0.015 
-0.» 
—0,044 
—0,039 
-0.072 
-0.071 
-0.000 
-0,071 
—0,063 
-0,022 

+0,032 
0.000 
0,161 
0.233 
0,326 
0,425 
0,520 
0,630 
0,727 
0.615 
0.890 
0,947 
0,986 
1,000 
0.992 
0.961 
0,907 
0,834 
0,744 
0.642 
0.532 
0.418 
0.306 
0,200 
0.104 

+0,021 
—0.044 
-0,093 

-0.006, 
-4.008, 
-0.09¾ 
-0.00¾ 
-0.00¾ 
-0.00¾ 
+0.002 

0.001, 
O.Oil, 
0.017 
0.021 
0.024 
O.DSi 
0.024 
0.019 

+0.011 
-0.000 
-0.014 
-o.oro 
—0,016 
—0.052 
-0.075 
-0.0« 
—0,004 
(-0,076 
—0.050 
—0.026 

+0,018 
0.077 
0.140 
0,232 
0,325 
0,425 
6,520 
0,631 
0,7¾ 
0,616 
0,191 
0.946 
0,905 
1,900 
0,992 
0,9® 
0,907 
0,033 
0,744 
0,(-42 
0.532 
0.419 
0,307 
0,202 
0,106 

+0.023 
—0,042 
-0.091 

+IMÔ» 
0.037 
0,011 
0,617 
0.021 
0,013 

+0.001 
-0.014 
—0,031 
-0.0« 
—0,084 
-0.077 
-0.085 
—0,067 
-0.079 
—O.O'.I 
-0.1)20 

+0.016 
0,074 
0,146 
0,230 
0,324 
0.425 
0,520 
0,632 
0,729 
0,817 
0.892 
0,949 
0,985 
1 ,(00 
0,992 
0,9(0 
0,905 
0,832 
0.743 
0,(42 
0.532 
0,420 
0.308 
0.203 
0.107 

4-0,024 
-0.041 
-0.O90 

+0¾ 
0,029 
0.030 
0,029 
0,023 
0 014 

+0.(¾ 
-0,014 
-0,032 
—0,019 
-0,066 
—0,079 
-0,087 
—0,099 
-0,0« 
—0.063 
—0,0(1 

+0,014 
0.072 
0,145 
0.229 
0,323 
0.425 
0,528 
0,632 
0,730 
0.818 
0.892 
0,949 
0,985 
1.0(0 
0.992 
0,960 
0,90() 
0,031 
0,743 
0.642 
0.532 
0,420 
0.109 
0.204 
0,1(18 

f 0.()25 
-0.040 
-0,089 

+<M07 
0.CÎI o,m 
0,031 
0,024 
0,01.5 

+0.,603 
-0,014 
-4,033 
-0,050 
—0,066 
-0,000 
-0.» 
-0,090 
-0,312 
-0.064 
—0.03:' 

+0.013 
0,071 
0,144 
0.228 
0,322 
0.424 
0,528 
0,613 
0.731 
0,819 
0,69( 
0.949 
0,986 
1.000 
0.991 
0,959 
0.906 
0,630 
0,743 
0.(.12 
0.5(2 
(1.421 
0.310 
0.205 

+M20 
0.032 
0,033 
0,033 
o.es 
0,016 

+0,001 
—0,014 
—0,034 
-0,051 
-0,067 
—0.M1 
-0.» 
-0.031 
—0,083 
-0.075 

0.0 .(, 

+0.0S2 
0.0¾ 
0,143 
0.228 
0.322 
0.424 
0,5¾ 
0,633 
0.731 
0.819 
0.8¾ 
0.949 
0.986 
1.000 
0,991 
0.959 
0,900 
0,830 
0.743 
0.642 
0.532 
0.421 
0.311 
0.200 
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Table 77 (Continued) 

fc/Ll—»*' \y 

! 3.0 

1 
i 

9.5 4.0 4.6 M 

1 
5.6 6. 0 6.5 7.0 

—•,4 

-4.t 
-3,1 
"3,0 
-2.9 
—2,9 
-2.7 
-2,9 
-2,5 
-2.4 
—2,3 
-2.2 
-2.1 
-2.0 
-1.9 
-1.3 
-1.7 
-1.6 
-1.3 
-1.4 
-1.3 
-1.2 
-1.1 
-1.0 
—0,9 
- 0.9 

-0.7 
-0.« 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 

0 
4-0.1 

0.3 
0.3 
0.4 
0.3 
0.0 
0.7 
0,9 
0.9 
1.0 
1.1 
1.2 
1.1 
1.4 
1.1 
1.0 ^ 
1.7 
I.M 
1.9 
2.0 

+M9I 
0.131 
0.192 
0.242 
0.311 
0,35» 
0,472 
o,m 
O.lMH 

0,734 
0,914 
0,995 
0,944 
0.007 
1.011 
I. 014 
1.000 
0.933 
0,907 
0.934 
0.74ft 
0.540 
0,540 
0.4.31 
(1.321 
II. 222 
0.129 

-1 0.019 
- 0.017 
• 0.007 

0,t0| 
0.120 
0.121 
0.117 
0,090 
0 0/0 
0.04» 

(+OT0091 
(0,047) 
(0,097) 
(0.189) 
0,232 
0,315 
0.405 
0.499 
o.M5 

0,699 
0,776 
0.564 
0.919 
0.999 
1.000 
1.01(1 
1 .000 
0.999 
0.918 
O.M44 
ft. 754 
().(«0 
0.554 
0,4I*> 
0.3(6 
0,233 
0.139 

t 0.017 
0.011 
0.0 ,.4 
0.0*19 
0.119 
0.123 
0 119 
0.102 
0.0/1) 
(t.O.il 

—0^095 
—6,047 
-0,069 
-o.w 
-0.077 
-0.002 
-0.092 
-0,074 
>0,^8 
—0.0S2 
+0.U06 

0,035 
0,117 
0,190 
0,273 
0.304 
0.401 
o.r,ti<i 

0.657 
0.750 
0.533 
0.961 
0.917 
0.991 
I. 007 
1.000 
0.971 
0.021 
0.»62 
0 7(17 
0.670 
0.594 
0.435 
0.346 
0.242 
0.147 

i 0.063 
-O.IMIfi 

0.0 4) 
II. 1197 

- 0.119 
• 0 | 2li 
- 0.120 
• 0.104 

0 MM2 
0.034 

t-oToao) 
(-0.094) 
-0,049 
—0,093 
—0.075 
-0.086 
-0.099 
-0,066 
-0.073 
-0.051 
—0,016 
+0.032 

0.092 
0.164 
0.247 
0..138 
0.430 
0,/.37 

0,537 
0.732 
0,5(5 
0.592 
0.949 
0.999 
1.008 
1.000 
0.913 
0.925 
O.NI* 
11.774 
(1.677 
0.372 
0.4 :3 
0, (r>4 
0.249 
0.153 

• 0.098 
-1),002 
-0.057 

0.095 
•0,118 
0,120 
0.121 

- O.I00 
—U.OM4 

0.056 

+0^019 
0.083 
0,» 
0.» 
0,028 
o,#s« 
0,« 
0,014 

+0,004 
—0,001 
—0,025 
-0,042 
-0.0¾ 
—0,074 
—0,086 
-0,093 
—0.093 
—0,083 
—0.063 
—0.030 
+0.01C 

0,075 
0,146 
0.229 
,0.321 
0.420 
0. !fJJ 

0.623 
0.720 
0.909 
0.984 
0.94.1 
0,994 
1,001 
1.000 
0.975 
0.92» 
0.862 
0.779 
0.6M3 
0,578 
0.469 
0.(60 
0.25.5 
0.158 
0.073 

H 0.002 
—0.054 
-0.09( 
-0.117 
-0.120 
-0.122 
- 0.107 
—0,085 
-0.058 

+0,016 
0.« 
0.« 
0.030 
0.031 
0.030 
0,028 
0.021 

+0.011 
-0.002 
-0.018 
—0,037 
-0.055 
-0.072 
-0.086 
—0.096 
-0.097 
-0.089 
-0.071 
-0.040 
+0,005 

0.063 
0,133 
0,215 
0.308 
0.408 
n.r,i i 

0.613 
0.711 
0.90( 
0.879 
0.9.19 
0.991 
1.001 
1.000 
0.976 
0.931 
0.996 
0,783 
0,087 
0.58.1 
0.475 
0,305 
0,260 
0.163 
0.077 

■ 0.0)5 
-0.052 
—0.002 
-0.116 
-0.125 
-0.123 
-0.108 
—0,087 
—O.(M) 

+0,006 
0,012 
0,019 
0.« 
0,031 
0,034 
0,035 
0,032 
0,026 
0.016 

+0,003 
-0.014 
-0.033 
-0,062 
-0,070 
-0.086 
-0.097 
-0,100 
—0,094 
--0.077 
-0,048 
-0.004 
+0,053 

0,123 
0,205 
0.298 
0.39» 
0,:.01 

0,604 
0.703 
0.794 
0.872 , 
0.935 
0.979 
1.000 
1 .)00 
0.977 
0,933 
0.869 
0.786 
0.691 
0.587 
0.479 
0.369 
0.204 
O.IOO 
0.080 

-t 0.008 
— ).()50 
-o.oÿi 
-0.116 
-0.120 
-0.123 
—0. |o9 
—0,088 
-().061 

+M36 
0,037 
0,034 
0,021 
0,018 

+0,005 
-0,012 
-0.031 
-0.¾) 
-0.069 
-0,086 
—0,098 
-0,103 
—0,098 
—0.082 
-0.054 
—0.011 
+0.046 

0,115 
0,197 
0.290 
!l, Í90 
O.-ltH 1 

0,5:)7 
0.(97 
0,789 
0.168 
0.912 
0.97« 
0.999 
1,000 
0.978 
0.934 
0.870 
0.787 
0,094 
0,500 
(1.482 
0.372 
0.267 
0.16*1 

+CMÖ7 
0,035 
0,035 
0.029 
0,019 

+0.006 
-0.011 
-0.0¾ 
—0,049 
-0.068 
—0,066 
—O.Oï® 
-0.193 
-0.101 
—0.086 
—0.059 
—0.016 
+0.040 

0.109 
0.100 
0.283 
0.383 
0. 186 

0.590 
0.091 
0.794 
0.184 
0,923 
0.974 
0.99i 
l.ooo 
0.078 
0.935 
0.871 
0..90 
0.696 
0,513 
0.485 
0.375 
0.270 
0.173 

~~ 
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O. Possible methods of more precise determination of 

calculations. The above stated methods of calculation were based on 

the approximation of full separation of electron variables. There 

are, naturally two methods of more precise determination of 

calculation: incomplete separation of variables and the 

multiconfiguration approximation. As specially conducted 

calculations show, the use of the multiconfiguration approximation 

in certain cases can change the magnitude of f by several tens 

of percents. Rejecting full separation of variables, i.e., 

calculation of the dependence of the wave function on r.,, 0., , also 

leads to an improvement in the results.1 Unfortunately, both methods 

require very labor-consuming calculations and therefore it is 

doubtful whether they can be used at present for carrying out 

systematic calculations of oscillator strengths. 

• A considerably simpler method of partial calculation of 

correlation in the motion of electrons is the introduction of a 

correction for polarization of the atomic remainder by the field 

of radiation.2 Calculating this effect allows us to replace the 

operator in the formula for matrix element of dipole transition 

by 

See: Reports on a conference dedicated to measurement and 
calculation of oscillators strengths in atomic spectra, Press of the 
Leningrad State University, 1959, p. 36-38; and also A. B. Bolotin, 
A. P. Yutsis. ZhETF 24, 537, 1953; A. P. Yutsis, K. K. Ushpalis, 
V. I. KavetsAis and I. B. Levinson, Optics and Spectroscopy 1, 602, 
1956. 

‘''This correction was offered 
Academy of Sciences of the USSR, 
1958) from graphic considerations 
in the wort of X. d. Veselov, I. 
of Sciences of the series physics 

by I. 3. Bersuker( erald of the 
series physics, ft, 749, 
anc later theoretically founded 
B. Bersuker, herald of the Academy 

f ÖO r: — ' -y 1 • 
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very 
er.e -'onerai expression for il 

complica*cd . 

For approximate appraisals of the 

cas use the following formulas: 

'0 correction member 

magnitude of this effect we 

0{rt)-< 
'b ri<r» 

-¡rt, r¡>r9, 
1 

(33.27) 

where a is the polarizability of the atomic remainder and r is 
0 

its radius. Such appraisals show that in case of alkali elements 

the correction for polarization of the core can remove the earlier 

notec divergence between theoretical and experimental values of the 

sum of oscillator strengths. Approximate formula (33.27) is 

obviously very nought and cannot give any exact quantitative appraisal 

ox the magnitude of the effect. The general expression for G(r1) 

nas not been usee till nov: in concrete calculations. 

Calculation of magnetic interactions. In the diagram 

oí a LS coupling intercombinational transitions, i.e., transitions 

with change of full spin of the atom S, are forbidden. However, 

in reality the selection rule AS = 0 is disturbed from magnetic 

interactions. 

Above in § 19, we have already shown that magnetic interaction 

increases rapidly with increase of Z. The intensities of inter- 

comcmationai lines behave in the same manner. For instance, as was 

mentioned earlier, in the spectrum of He such lines are practically 

absen1', and in the spectrum of Hg line 2337 A (transition 
' < y , 

os b-osepyp) i£ very intense. 

J-n calculating the oscillator strengths of intercombinational 



transitions it is necessary to reject the approximation of a 

LS coupling and conduct calculations taking into account electrostatic 

and magnetic interactions simultaneously. 

In general the wave functions of steady states 'iQL can be 

presented in the form of a decomposition by the function of the 

LS coupling Vy Therefore the matrix elements of dipole moment of 

an atom D in the a-representation can be found if we know the matrix 

D in the diagram of a LS coupling D^,: 

0«'-2!<a!Y)IMY'|a')- (35.28) 

To find the conversion factors (ot|7) it is necessary to calculate 

the matrix of the operator of electrostatic and magnetic 

interactions H in the diagram of a LS coupling and put it in 

diagonal form, i.e., solve the secular equation 

I tf*-«V l-o. (33.29) 

After that the conversion factors (a|7) are determined by the system 

of equations 

iXtfn'-e.VHY'laKo, (33.30) 

where ea are the roots of the secular equation (33.29). 

As an example let us consider the transitions between levels 
p p 

of configuration s and sp.1 Configuration s^ always corresponds 

to one level *Sq. Therefore only configuration sp requires special 

consideration. For such configuration in the diagram of a LS 
i ^ 3 

coupling levels are possible : ^0’ Si-nce matrix 

1Below we use tne results of work: L. A. Vaynshteyn, 
I. L. Poluektov, Optics and Spectroscopy 1?, AÓ0 (1962). 
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n is diagonal to o, of the nondiagonal matrix elements , only 

element OP, I/y I ■/>,> is different from zero. 

For energy levels obtained by diagonalization of matrix H, 

below we will use the designation 1P,', 5p^ ^p^ (compare with 

paragraph 4 of § PO). 

A calculation of levels of configuration IsnZ of He taking 

into account magnetic interaction of spin and its own orbit, spin 

and another orbit and spin-spin was conducted in § 19. In this 

calculation, however, the exchange members were omitted and certain 

additional simplifications were made. In the general case of 

configuration nsn'Z of an arbitrary atom this approximation can be 

too rough. More exact calculations of matrix H for configuration 

si give the following results (indices 1, 2, 3, 4 respectively 

designate levels %, 'L^ 

rç*“—r—j-’ £+7 • 

where 

f-0 + 4. d—JC-3M-.V + 2AC, 

(33.31) 

(33.32) 

In these formulas the members 

central field are omitted: G 

integrals, where G correspond 

C and r1 are the interaction 

are ; n.o direct into eac r.ion of 

responsible for interaction with the 

, C, C1, M, M', V, ana M° are radial 

s to exchange electrostatic interaction; 

of spin and its own orbit; M and M' 

and another omit; v is tne exchange 
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interaction of spin and another orbit and finally. M° is the 

interaction of spin-spin. To calculate these radial integrals we must 

know the radial functions R and R .7. In the framework of the 

semi-empirical method it is possible to simplify the problem by 

determining the value of these parameters from the experimentally 

known distances between levels. In this, however, we must resort 

to additional assumptions, since the number of energy parameters 

exceeds the number of independent energy differences e... in the 
IK 

considered case three power differences are at our disposal. 

The number of unknown parameters is equal to 4 (g, 6, h, and M°). 

Using (33.28), one can simply obtain the following expression 

for the given matrix elements D: 

(#• lSMtp lP\) - pL (s* 'S,\\D\\sp -P,), • (33.33) 

(s* 'SillDH V «Pl) (*' 'S.llOllsp 'P,). 
(33.34) 

where 

(33.35) 

Passing to the oscillator strengths of the considered transitions, 

we will obtain 

/ (•/»,'-'S.) £(•*;)-£<'S ■ 
“ Ei'P'O-El'S.) (33.36) 

Putting the matrix elements of (33.31) in (33.29) and (33.30), wc can 

express the energy differences and also the conversion 

factors (1P1pP^) ’chrougn parameters g, 6, n, M°. 

A comparison of the thus obtained formulas shows that this 

relationship holes: 
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(33.37) 

¿»ÿ-i. A-/F+7-ir« 

” (t ew~et«) ——A,. 

In accordance with what was said above we cannot completely exclude 

the unknowns radial integrals and express ß only through energy 

differences 

It is possible to show that the smallest of the radial 

integrals entering in (33.31) is M° (compare also paragraph 7 of 

§ 19). Therefore in most cases a sufficiently good approximation 

is ensured by formula 

(33.38) 

However this formula becomes inapplicable during very weak magnetic 

interaction. Actually, if t, yp, and x are small as compared to 

G, then g » x and even at x>Af* can be of the same order 

of magnitude as M . In this case in determining ß we can use formula 

obtainec by Pauli, and then by Hauston :1 

(33.39) 

This formula can be obtained from (33.3I) and (33.37) if we 

disregard the exchange part of magnetic interactions and to consider 

that g » x, Ç = Ç1. Formula (33.39) considerably yields to 

formula (33.38) in accuracy and it is expediently to use only 

who:, for the above noted reasons formula (33.38) loses meaning. 

A. Mitchell and M. Zemansky. Resonance radiation 
j atoms, OKI, 1937 
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With help of the acove formulas we calculateo oscillator 

strengths of intercombinational transitions s2lS0-sp5P,1 for atoms 

of Mg, Ca, Zn, Sr, Cd, Ba, and Hg. The results are given in 

Table 79. As can be seen from this table, in all cases, with the 

exception Mg (che least value of Z and, consequently, very small 

magnetic interactions), formula gives very good results: 

divergence from experiment does not exceed In the case of 

Mg, for which the best approximation is given by formula 

(23.39)j which in all the remaining cases leads to considerable 

errors. 

Table 79. Results of Calculating Oscillator 
Strengths x—/OV-Vfr/('V- 

Clement Ca. JMH C4.Z-M Ba. Z-St H*. 2»S0 

experi¬ 
ment 

Formule 

(33.34 
r 0 nr.ul a 
(33.33) 

4.7.1» 

1.07.1» 

347.I» 

SX» 

3.«-l» 

tM-m 

74.I» 

C.3.I» 

4.1» 

1.06.1» 

1.81.1» 

1*1» 

6.8.1» 

5,70.1» 

I.7.I» 

1.651» 

1.69-1» 

1.27-1» 

0.47-1» 

0.5-1» 

0.20.1» 
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processes responsible 

'■t . Continuous Spectrum 

1• Çlftsa! float Ion of processes. The basic 

for continuous radiation considered in this section are: 

1) transitions of electrons from states of a continuous spectrum 

to state of a discrete spectrum, recombination glow. 

2) transitions of electrons between different states of continuous 

spectrum bremsstrahlung. 

Inverse processes are also possible. In the first case photoioni¬ 

zation or photoeffect, i.e., absorption of a photon accompanies 

transition of an electron to a continuous spectrum. In the second 

case there is bremsstrahlung. 

Recombination is possible not only during collision of an electron 

with an ion, but also during collision of an electron with a neutral 

atom. In the latter case recombination leads to formation of a 

negative jon. The inverse process is photodissociation of the negative 

ion. 

Frequently transitions of electrons between states of continuous 

ana crlscrete spectra are called free-connected transitions, and 

transitions between states of a continuous spectrum are called free- 

free. it Is necessary to note that this terminology, convenient due 

to Us brevity, Is not quite successful, since the state of a continuous 

spectrum Is by no means the state of free motion. In examining of Í 

above-mentioned processes our basic attention will be allotted to 

questions presenting the biggest interest for continuous radiation irt 

t.e vi oíble, ultraviolet and partly near X-ray regions of the spectnlm. 

therefc,,, wlll be limited to the nonrelativistlc approximation 1 
•I 

. will aisrcgaru delay in the interaction of the system with thé 
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field of radiation.1 

In certain special cases two-photon transitions are also of 

interest.2 Probability of two-photon transitions is much less than 

the probability of single photon transitions. For instance, the 

probability transition 2s - Is of a hydrogen atom, accompanying 

radiation of two photons + hu)2 = ^ Ry, is equal to 8.2 sec-1 

(the most probable in radiation of photons' of approximately identical 

frequencies =» u>2). Nonetheless this two-photon transition3 can 

play an important role in the formation of the continuous spectrum 

of planetary nebulae, adjoining line La. 

2. Photo recombinat ion and photoionization. ;^eral expressions 

for effective cross-sections. Let us start our consideration with 

the single electron system. The probability of a spontaneous radiative 

transition of an electron from a state of continuous spectrum a to a 

atate of discrete spectrum b, accompanied by radiation of a photon 

with wave vector k and polarization vector e^, can be calculated 

from general formula (30.41). As the wave function t in this formula 
9 

we must place the wave function of an electron in a state of continuous 

spectrum. The motion of an electron in the field of an atom or 

scattering of an electron on atom is descrited by a wave function 

Which at large distances from the atom constitutes a :: ;.o err. os it ..1 on 

of the plane wave incident on the atom 

(34.1) 

1For a consideration of photoprocesses at relativistic velocities 
of electrons and a discussion of the effects of delay see [B. s. ]. 

ai-":r the theory of such transitions see: A. Akhlyezer, V. 
Bierèstetskiy, Quantum electrodynamics, Fizmatgiz, 1959. 

3See L. Spitzer, J. Greensteln, Astrophys. J. lit, 107, 1951. 
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1 
where p is the momentum of electron, q = -r-p is the wave vector, and 

the divergent spherical wave (the latter appears as a result of 

interaction of the electron with the atom) 

(54.2) 

In 5 41 it will be shown that a wave function of this type has the 

form 

t 

®^(34.3) 
* i* 

where the radial function is 8,tandardized by condition 

(34.4) 

At large values of r 

(34.5) 

The normalizing constant C is conveniently determined so that the 

current density of electrons incident on the atom is equal to one. 

In this case the effective cross-section of the process do, connected 

with probability dW by the relationship da » S'^dW, is simply equal 

we find to dW. Inasmuch as for the plane wave Ce^P S « vC2 » ^C2, m 

C2 = § and 

/tV- 

Placing (34.6) in (30.41) and being limited to the dipole approximation 

we will obtain 

éa-áW—¿-(£)£ m (v) 7 • 
(34.7) 

2_2 
wnere hkc - hu) = + jE^I. Formula (34.7) determines the effective 

cross section of recombination accompanying radiation of a photon in 
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the solid angle àO^. In contrast to the total cross section integrated 

over dO^, the magnitude (3^.7) is called the differential effective 

oross section. 

Let us now turn to calculation of the effective cross section of 

the inverse process, i.e., transition from the state of a discrete 

spectrum to the state of a continuous spectrum. Let us assume that 

as a result of the absorption of a photon with wave vector k and 

polarization e^ the atom passes into the state of continuous spectrum 

ÿ . We will also be interested in transitions into the state of a a 
continuous spectrum in which an electron moves at large distances 

from the atom in a definite direction. States of such type are 

desctibed by wave functions (see § 41) 

♦-OW. (54.8) 
* ^ 

In contrast to (34.3) function at large distances from an atom has 

the form of a superposition of plane wave Ceiqr and a convergent 

spherical wave. Let us use the general formula of the perturbation 

theory for the probability of transition1 from a certain state 

fQ to states of continuous spectrum f, f + df 

(54.9) 

In this formula it is assumed that during calculation of matrix 

elements of perturbation M_ - wave functions of continuous spectrum 

if/f are used, standardized by condition 

(34.10) 

1See [L. L.1, formula (43.11). 
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Let us consider the transition to the interval of states 

q, c + dn. in this case in formula (jH.9) we must replace df by dq 

ana, in accoraance with (34.10), standardize the departing plane 
V» J 

waves Ce M over the 5-function of 6(q - q ). Inasmuch as 

/e-Vo-q }r 
dr = (2iT)'?&(q - q’), it is necessary to put ip = (2m) *ip—, 

a ' 7 rq 

The matrix elements of interaction of an atom with radiation (30.38) 

and (30.39) were calculated on the assumption that volume V contains 

photons with wave vector k and polarization . This 

means that there is a flow of photons on the atom with density 0¾½ 

V 
and, consequently, dc = — dW. If in expression (30.39) for the 

matrix element of interaction K we put n = 1, V = 1, then 

2n 
(34.11) 

The energies of the initial and final states of system Eq, E are 

1 2 2 
equal to Eq = -¡E^| + hx, E = , therefore 

-Ã‘(*-TV^l*-V.I')- (34,12) 

Placing (34.12) in (34.11) and integrating over dq, we will obtain 

- 5 j I j f^ J *¿0f. |fj. (34.13) 

Comparing (34.7) and (34.13), and also (34.3) and (34.8), it is 

easy to see the differential effective cross-sections of the considered 

direct and inverse processes are connected by the connection 

» ík*? «i** 
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It Is not difficult to clarify what relationship connects the total 

cross sections. Wave functions ip+, ii)~ can be broken down into 
q q 

spherical functions 

(54.15) 

(54.16) 

Let us place (54.15) in (54.15) and integrate over dO^. Inasmuch 

as 

(f ♦ I !*»)• (f ♦! !>') do, - j* (^-1 Â|»)# (*-1XY) do, - 0,. 

we obtain 

V*«)-«a* $7 EI liW- (54.17) 
* ’ il» 

Integration over dO^ in formula (54.7) can be executed in exactly 

the same manner if we use the fact that integration over all direc¬ 

tions of vector k is equivalent to integration over all directions 

of vector q: 

<^;*>-4*,!£-££|<iVk,l»>r. (54.18) 

From (54.17) and (54.13) it follows that 

f**, (54.19) 

Formulas (54.17), (34.18), and (54.19) pertain to transitions as a 

result of which a photon of some definite polarization is radiated 

or absorbed. 

All the above obtained formulas for effective cross-sections are 

easily generalized for the case of a many-electron system. It is 

sufficient to replace r by ^(rjt in the matrix element and to add 

to quantum numbers qAM additional quantum numbers (we will designate 

them by means, of a), characterizing the state of the atomic remainder. 
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Let us also consider the fact that quantum numbers qXu do not completely 

determine the states of an electron. It is still necessary to assign 

the value of the z component of spin mg 

«, (fc •«,»-«e i ¿ £ i <*i o, i i •. 

i*. 

Let us now examine recombination of an electron on certs in defined 

level 7. To obtain the full effective cross-section of this process 

we must sum the second of expressions (34.20) over all states b 

pertaining to level 7 and average over all states a and 7' of the 

initial ion, and also over m3. It Is also necessary to sum over two 

independent directions of polarization of the emitted photon. 

Likewise the full effective cross-section of the inverse transition 
i 

7 7 q can be obtained by summing the first of expressions (34.20) 

over all final states a and mg and averaging over all initial states 

b and p = 1, 2. Summation over a, b always includes summation over 

magnetic quantum numbers. Therefore 

(see § 31)> i.e., does not depend on p, in consequence of which 

summation over p = 1, 2 leads to multiplication by 2. Considering 

this circumstance, we obtain 

•(v>! (34.21) 

(34.22) 

According to (34.21) and (34.22), 

Y) -*ty(Y: Y'?)- ( 34.23) 

(34.20) 
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Relationships (34.14), (34.19) and (34.23) are particular cases 

of the principle of detailed equilibrium.1 Frequently during calcula¬ 

tion of the effective cross-sections (34.21) and (34.22) it is 

convenient to go from functions qx^? , some new system of mutually 

orthogonal and standardized functions ^b,qx» describing the state 

of the system in which an electron of continuous spectrum has 

momentum p = 4q and angular moment X. In particular, such functions 

can be eigenfunctions of operators of full moments of the system of 

the atomic remainder + electron S, J. Using the known properties 

of unitary transformations, it is easy to obtain2) 

«*íM«f>|,-j;i<í|í>|A'?X>|\ (34.24) 

Let us replace, furthermore, radial function RqX in integral 

<b|Dpjb'qX> by function — , standardized over a scale 

of energies, i.e., over the 5-function 6(E - E»): 

After all these transformations formulas (34.21) and (34.22) can be 

written in the form 

ga(Y'£i Y) -E2!<*'£> \D\b>| \ (34.25) 
I *r W 

y a (r. -Et 7" 21 <* I i>l I*. ( 34.26 ) 

1For the conclusion of the general formula connecting effective 
cross-sections of the direct and inverse processes, see [L. L.]. 

2The coefficients of the unitary transformation 2(o|y)YT 

satisfy the relationship-Ç(«íy)(v'; therefore 

Çl<P l<ß|flY><Y'|A|ß>(o|Y)(Y'l«)- 

i 
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In calculating the effective cross sections of radiative transi¬ 

tions in which states of a continuous spectrum participate we can 

disregard fine splitting. This means that the states of an atom and 

an ion can be characterized by quantum numbers S, L, M0, MT. 

We will start our consideration from the process of photoioniza¬ 

tion. Let us assume that as a result of absorption of a photon an 

atom initially on level SL, is broken up into an ion in state 
1 i 

and an electron in a state of continuous spectrum with energy E. As 

the wave functions describing the final state of the system it is 

convenient to select functions T 
SKEWS' where 

+ X, S' =8^+8 are the full orbital moment and full spin 

of the system. In this case in formula (34.26) 

E £ !(SIMtMtIDIS'I'EIS'L'm'sM'oP- 
*4*4 * MS 

-(at + p4*1 (St H D (I StLtEkSL') I •. 

In the approximation of the fractional parentage diagram for 

ionization of an l electron by using formulas (31.38) and (3I.50) 

and replacing X by l', we will obtain 

-«•(2t, +1) (J (34.27) 

where Zmax is the biggest of numbers 1,1. Thus, the effective 

cross section of the process of ionization S^nlSL — S^E is 

determined by expression 

«(y; v't)- 

4x* 
T S+r, £, Ç Q^iL- L/n 4-. (f R/Rcrr' dry. (34.28) 
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The corresponding formulas for the effective cross section of the 

process of photorecombination S^L^, E — S^L.nlSL can be obtained 

with relationship (34.23), which in this case takes the form 

-^(25+1)(21 + 1)0(717^./--. (34.29) 

j For one electron outside filled shells (and also for a single electron 

atom) = 0, L^=0, L=l, S=-| from formulas (34.28) and (34.29) 

4 it should follow that 

* ^ “iTSTT^S,(J Ruf Rtf**')'. ( 34.30 ) 

f*o(f; mí)-2(2/+1)^0(/1/: f). ( 34.31 ) 

If we disregard the dependence of radial functions R , on S^L.SL 

then we can simply find the full effective cross sections of single 

electron transitions nl -*> E and E -*• nl for many-electron atoms. It 

is easy to check that these cross-sections coincide with (34.30) 

and (34.31). Formulas (34.30) and (34.31) are easily generalized 

for the case when one of the electrons of the group lN. By using 

(31.59) we obtain 

“^1 °rTAt. ! '«r(7,5,1,0451: 7,5,1,5), ( 34.32) 

0(/^:/^5)-Afar (/;£). (34.33) 

Relationships (34.29) and (34.31) are obviously kept. 

3. Bremsstrahlung and absorption. General formulas for effective 

cross sections. The effective cross sections of transitions between 

states of continuous and discrete spectra. Let us start from a 

consideration of the simplest case of an electron in a centrally 

symmetric field. The effective cross sections of transition of an 

-5O6- 



electron from the state of continuous spectrum q to the interval of 

t t i 
states of continuous spectrum q , q + dq , accompanied by absorption 

of photon ho), can be obtained from formula (34.13) by replacing 

q by q' and by =■ /1 tf in it. Consequently, for the 

differential effective cross section of bremsStrahlung we have 

***r,i< 
mV kg' 

2a¿*9 *!>» j* (♦* )#nIV dr\ d09>. 

Èm t*q* . ¡tV 
~si—2¡a- 

* 

(34.34) 

In calculating the effective cross section of the reverse trans- 
I 

ition q q, accompanied by emission of a photon with wave vector 

k and polarization in general formula (34.9) we must place 

df = dq-liilL. and as wave functions of the electron in the initial 

(2rr)5 

1 + 
and final states we must take the functions —■■¡//li and 

A7 q 
(2rr) 

3^q* After 

integrating over dq we obtain the following expression for the 

differential effective cross section of bremsstrahlung of a photon 

from frequencies in the interval do) and direction of wave vector in 

interval dO, 

♦* - (¾¾ 71J W«'>#nrf- dr I * </« do, dOv (34.35) 

According to (34.34) and (34.35) the obtained differential effective 

cross sections are connected by the relationship 

(2â)* itdJ&Jféò' • (34.36) 

At a fixed value of the initial energy of electrons E* photons can 

be absorbed with frequency 'x in the interval 0 < x < co. Photons 
i 

whose frequency is included in the interval 0 < x < 4— emitted. 
h 

t 

’thus, each value of £ corresponds to a definite high-frequency 
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boundary of bremsStrahlung. 

Later we will be interested in cross sections integrated over 

all directions of motion of electrons and photon. Placing (^4.15) 

in (54.34) we will integrate over dO^, and average the obtained 

expression over all possible mutual orientations of vectors q and k. 

With the help of (34.15) one can easily obtain 

¿ $ dOidO, I « , J HfVnMr J * - 
* * »iav * 

L i<vi<-nv>r. 

Therefore 

*,(**:*') (34.37) 

Likewise, placing (34.15) in (34.35) and integrating over dO dO 
H 

will obtain 

k’ 
we 

doAf - 9*) 4i* mV 
44# 

(34.38) 

Expression (34.37) must be summed over final spin states m' and 

averaged over m_ and the directions of polarization of a photon 
s 

p = 1, 2. Expression (34.38) must be summed over m , p and averaged s 
I . t 

over ms (quantum numbers ms and mg we have not yet extracted because 

matrix elements D do not depend on them). Inasmuch as 

£|<*|»|l>lXy>P-«1.4 R^.rR'Sár, 

as a result we will obtain 

«* Sn*V». / r „ \* 

(3^.39) 

(34.40) 



Formulas (34.39) and (34.40) are easily generalized for transitions 

in a field of an arbitrary many-electron atom. Let us assume that 

she considered transitions occur in the field of an atom located on 

level 7q. Repeating the conclusion of formulas (34.25) and (34.26) 

without any essential changes, it is easy to obtain 

• C—2 T XI <Y.O« IOIY. i 
‘•‘-“V*- l (54.41) 

-4r £ rSl<Y.£'iv|0|ï.a.>i‘. j 

E, ísp-f*. Aw+f-r (34.42) 

In these formulas a(a ) is the totality of quantum numbers giving the 

system of an atom + electron; g is the statistical weight of the 

considered atomic level. 

As radial functions we use the functions ■ 

standardized by a scale of energies. 

Let us consider the transitions in the field of an atom with 

full orbital moment and full spin S1 and will select as wave 

functions Y^EXa the functions *n this case 

¿ = (2S^ + 1)(21^ + 1) and summation over a signifies summation over 

S1McKt. Repeating the same reasoning in conclusion (34.28), we will 

obtain 

****•» .ft* 
y -¾ 

-?•**■£ £¡VÍTQt£‘U: (ÍRtSKrtS*)'. (54.45) 

If we disregard the dependence of radial functions R£^, on L, 

l' and S, tnen summation over L, L , executed with the help of (31.42), 
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and over S = 1 -g» like one should have expected, gives the same 

result as in (34.39) and (34.40). 

4. Radiation and absorption factors. Knowing the effective 

cross sections of photorecombination, photoionization and bremsstrah- 

lung processes, we can calculate the energy emitted or absorbed by 

a unit volume of the medium. 

Let us designate the energy emitted by a unit volume in 

1 sec (erg/cm^*sec) as a result of recombination of electrons with 
* I 

velocities v, v + dv on level y by ■ ^(o>)duo, where y assigns the 

level of the initial ion. This magnitude can be obtained by multiply- 

ing the effective cross section of recombination o(y E; y) (cm ) by 

the current density of incident electrons Nevf(v)dv (Ne is the 

concentration of electrons, f(v) is the distribution of electrons by 

velocities standardized in units of the function) by the concentra¬ 

tion of ions Ny on level y* and by the energy of a photon huo. 

Inasmuch as 

vdv~£dw, (154.44) 

<$,(«)*»-Y~(Ä« — I £T' |)) a(y'E, \)do, ( 34.4 5 ) 

where E = h'jo - | E^ |. 

The full intensity of recombination glow Q/p(a>)d'jo is obtained 

from (34.45) by summation over all levels y and y, for which 

|E7| < fc'-u: 

Qn»)dm(34.46) 

Frequently it is also necessary to know the full (integrated over 

all frequencies) loss of energy on recombination radiation. This 

magnitude is determined by expression 
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i'fl 

Qp -jQP(w)<to-/VeÇiVT. j/(V)W(Y'£,Y) [^+|£,|] dv> 

*“^•¿1 ^r'(w(Y'f. Y) 
(34.47) 

As a rule, it is sufficient to consider only the ground state 

of the initial ion 7 {the population density of the remaining states 

is practically equal to zero), in this case summation over y% is 

omitted. 

Likewise we can simply calculate the intensity of bremsStrahlung 

Q^o(^)d'i) in the field of an atom on level 7 This magnitude can be 
u da » 

obtained by multiplying the effective cross section —? iiSH hV 
dw J 

h'i^oNeVf(v)dv and integrating over dv from to 00. Therefore 

<S»-AW* vW)dv. 

i* 

(34.48) 

The full loss of energy on bremsStrahlung is obviously equal to 
ll, 

tf-Jo'i«*)*». (34.49) 

The intensity of radiation Q(co)d'i> is conveniently expressed through 

the radiation factor of a unit volume e,^, determining this magnitude 

by the relationship 

QM-J«-** (J)t.50) 

If radiation is isotropic, then Q('jd) = e, »kn. 

Let us now turn to the calculation of the coefficient of absorp- 

tiün ku) (cm ) • determining the attenuation of a light beam of 

i requency oj during its passage through a substance (see paragraph 6 

of § JO). 
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The coefficient of photoionizational absorption can be obtained 

by multiplying the effective cross section of photoionization 

a(7; 7 E) (cm ) by the concentration of atoms on level 7 and 

summing over all levels for which the ionization energy |E^| < hco: 

âu-^N|®(r. (54.51) 

The effective cross section of bremsStrahlung absorption has 
4 

dimensions of cm «sec, since in this case the probability of transi¬ 

tion per unit of time is equal to the effective cross section multi¬ 

plied by the current density of photons and electrons. The role of 

effective cross section for absorption of photons (cm“) played by 

the magnitude 

N» J •/(•) •«; ré* ■* V, <vff£»; r>. 

Therefore the coefficient of bremsStrahlung absorption of photons is 

determined by expression 

<eo£lk. £* (54.52) 

Here V is the concentration of atoms (ions) on level 70> oe,k>e« (70) 

io V.*- __i.^ctive cr .s section of bremsstrahlung absorption in the 

field of an atom (ion) on level 70. 

In examining the radiation processes with participation of 

states of a continuous spectrum along with spontaneous radiation 

and absorption, in general we must also consider induced radiation. 

When necessary the corrections for induced radiation to thej above 

obtained formulas are easily introduced in precisely the same manner 

as in the case of transitions between states of discrete spectrum 

(see § 50). Thus, the effective cross section of photon emission 

must be multiplied by +^~7 />) • If radiation is isotropic 
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T C 
= this correction factor can also be written in the form 

The correction for induced radiation to absorptivity depends 

on the form of the distribution function of atoms and electrons over 

states. Below we will designate absorptivity, calculated taking 

induced radiation into account forced, by k^. In conditions of 

thermodynamic equilibrium (see (30.76)) 

km 

*--*„(1—(34.53) 

In conditions of thermodynamic equilibrium between the radiation 

iactor e_ ana absorptivity k,^ there is the universal relationship 

ij-àãpTT-(34.54) 
i 

where Ux is the density of radiation energy of an ideal black body 

(30.62). Relationship (34.54) is called the Kirchhoff law. 

It is interesting to note that for bremsStrahlung emission and 

absorption relationship (34.54) can be fulfilled in absence of full 

thermodynamic equilibrium. It is suffici - only that the distribution 

of electrons by velocity is Maxwellian. Let us consider the 

b rems s t rahlung processes in the field of an atom on level 7o. From 

(34.48) and (34.53) it follows that 

V •!= 
* m 

0 î 
J «£<; £• ./I») 

(34.55) 

From 

that 

relationship (31.US) it foUow8 

»: -AiiAr.d ^ 
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Placing the Maxwellian distribution function in this expression 

f(v)rfiy—4*^dv (3^.56) 

i 

and passing to integration over v , we will obtain 

1>£ f £*LE!L*'f(v')dv'. 

' Ä 
(34.57) 

It is easy to see that at any values N^0 (not satisfying the Boltzmann 

formula) the ratio of e/ju and is equal to (34.54). The only 

assumption made above is the assumption about Maxwellian distribution 

of electrons by velocity. At the same time from conclusion (34.57) 

it is easy to see that at any other distribution function f(v) we 

cannot obtain relationship (34.54). 

Relationship (34.54) for coefficients of recombination radiation 

e, and photoionizational absorption k can be obtained likewise by 

using formula (34.23) and assuming that: 1. The distribution of 

electrons by velocity is Maxwellian. 2. The population density of 

discrete levels is determined by the Boltzmann formula. 3. The 

concentration of ions is determined by the Saha formula (30.85). 

We will not give the corresponding computations because they 

do not contain any new elements. 

Formula (34.54) permits expressing the intensity of radiation 

Q('jb)du) (when the conditions of applicability are carried out (34.54)) 

through the absorption coefficient k,^ (see (34.50)). 

5. Photorecombination and photoionization. Hydrogen-like atoms. 

Let us consider the processes in which the ground state of a hydrogen¬ 

like atom participates. In accoraance with (34.30) and (34.3i) f°r 

the effective cross section of photoionization o$ and photorecombina¬ 

tion oP we have 
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(54.58) 

In the nonrelativistic approximation for radial functions R, A, R-. 
1U El 

the integral in (3^.58) can be calculated exactly (see [B. S.], § 7I) 

where 

(ÍR^R‘trtdr) -Fir(r^?)Vw. (3^.59) 

m I-«-*“ ' 
X (34.60) 

V is the velocity of an electron. 

Transition of an electron from state Is to the state of a 

continuous spectrum is possible during absorption of a photon 

E 2 
frequency x è o)r = —= t Here cür is the cutoff frequency of 

photoabsorption. From the determination of h it follows that 

X, X and 'jor are connected by relationships 

(54.61) 

Putting (34.59) in (34.58) and considering (34.61), we obtain1 
#. 

o* 

o* 
(34.62) 

Let us clarify what form formulas (34.62) take in the case of large 

and small values of h. 

Near the absorption boundary h » 1, x - a) « x 
r 

irfhe effective cross sections of radiative transitions is usually 

expressed in units of (¿3) -«rtoj . We use atomic units aQ for 

convenience of comparison with the effective cross sections of excita- 
tîon of atoms by electrons. 
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and, consequently. 

(34.63) 

For h ~ 1 

(1 +T^r-) * »•»)- (f i—t) • 

Finally, far from the absorption boundary n « 1, co - 'xr » xr 

and 

Thus, the effective cross section of photoeffect is maximum at 

the boundary of photoabsorption 

^ "T (2^) T*' Q 

With increase of x 0$ decreases at first according to the law x ^ 

4 
and then at x » Xp according to the law x . The crocs section of 

2 
~ o 

op at 'jo » 'Xp decreases according to the law 'jo . During approach 

to the cutoff frequency 'jOp oP -*• 00. 

Formulas (34.64) coincide with the results of so-called Born 

approximation, which can be obtained from (34.58) by placing as 

H the radial function of free motion. The term born approximation 
El 

is borrowed from the theory of atomic collisions (see § 42): the 

born approximation consists of taking a plane wave as functions of 

continuous spectrum. The condition of applicability of the Born 
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y 
approximation to electron scattering in a Coulomb field -Ze /r has the 

form Ze2/iv « 1, i.e., x « 1. 

In the nonrelativistic approximation exact analytic expressions 

can also be obtained for the effective cross sections photoprocesses 

corresponding to levels n = 2, 3# ^ ....1 

However for n > 2 these formulas are very bulky and unsuitable 
1 ..5¾ , . 

for calculations. Usually for different appraisals the simple 

quasl-classical formulas, first obtained by Cramers, are used. The 

condition of quasi-classicality (see § 41) for a Coulomb field is 

opposite to the Born condition Ze2/hv » 1. Consequently, these 

formulas are correct for small frequencies x < x^. We will not remain 

on the conclusion of the Cramer formulas and will give only the final 

results for effective cross section and a^1 (according to (54,23) 
* a* 1 - 2mc*£ I ■ 

they are connected by the relationship ** » since 

&Y = 2n2) 

«S- WT' 
•f < 

ot- 
Um • f*r\'4 
Í7?* Mi- 

(34.65) 

Here as before xr = Z¿Ry/ii. The boundary of photoabsorption from level 

n is determined by condition x ê xr/n2 = Z2Ry/im2 or x - 'x/n2 - E/k s 

&• 0. Comparing (34.65) with exact formulas shows that quasi-claasical 
. # 1 , f ' jé',.' ■: 

approximation gives good results for both large and small values of 

n. Thus, for n = 1 the ratio of cross section op (34.65) to (34.6¾ 
JL» i,.- 

.¡r; equal to p|á(~) * • Near the boundary of‘ absorption 

xSee [B. S.] and D. A. Frank-Kamenetskiy, Physical processes 
inside stars, Fizmatgiz, 1959. "* 
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d ~ o>r the difference is immaterial. With increase of oo it can become 

noticeable. 

It is interesting to compare the cross sections of the quasi- 

I 

classical (aK) and Born (eg) approximations. At «-1 • 

Frequently according to tradition the cross sections of recombination 

and photoabsorption are written in the form of the quasi-classical 

cross section multiplied by the correction factor g, the so-called 

Gaunt factor. This writing of formulas is convenient because for the 

visible and ultraviolet regions of the spectrum the Gaunt factor is 

close to unity. At *-l . For 

t 

a) - 03r< ojpg w 611-/5(2.72)-^ * 0.8. For large • (ir)* • 

Let us now turn to the calculation of the photoabsorption 

coefficient of a hydrogen-like gas. In general we must consider 

absorption from both ground and excited levels. For a certain fixed 

frequency x. 

(34.66) 

where n0 is the least of possible values of n, satisfying the 

Rv 72 
condition 03 > -£ = ^ % . For x > x„ nn = i. 

n hn¿ u 

We will assume that the distribution of atoms by levels is 

Boltzmann, and calculate the energy of levels En from the ground 

level . Then 

where N is the full concentration of atoms; gn is the statistical 

weight of levels (for a hydrogen-like atom ^ 2n2), s is the 



Statistical sum. The contribution of excited levels in che sum 

over n is different at different temperatures. 

According to (34.65) ojc««-* . Consequently, at Boltzmann 

distribution by levels the members of sum (34.66) decrease as 

_*Y£ 
*-•« During calculation of at frequencies x > x , as a rule, 

we can disregard all members with n > 2. At small values of cu for 
€ 

which n0 / 1, in the sum over n many levels give approximately 

identical contribution. Putting in (34.66) the values of cross 

section a|> (34.65) multiplied by the Gaunt factor g(n, x), we will 

obtain 

(34.67) 

It is interesting to trace the dependence of the absorption coefficient 
2 

(34.67) on frequency. In the region of Jarge frequencies a> > 

all levels participate in absorption and n0 = 1. Consequently, k, 

2 
during approach from the side of large frequencies to x = RyhZ 

increases (at g(n, x) = 1 proportionally to of-5). At the point 

Rv Z ^ 
u) = the jump decreases by a magnitude equal to absorption 

from level n = 1, since in the region R^2 > x > n0 = 2. 

Hie magnitude of this jump is greater the lower the temperature. 

During further decrease of x k,^ increases up to the boundary of 

absorption from level n = 2. Then the jump again decreases, since 

for the region > x. > n0 = 3. If n0 is great (it is 

usually suifxcient, so that nQ > 4.5)» summation over n in (34.67) 

can be replaced by integration and putting . in the 

Cramers approximation this gives 
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(34.68) K . 64,1 ^ ^ 
'm 's 

Multiplying (34.67) and (34.68) by the corrected factor 
Vjp 

*Tpf t 
(1 - e ) considering induced emission one can find and with 

(34.54) and (34.5O) one can find the coefficient of recombination 

radiation e,^ and the intensity of radiation Q('x)d'i). 

In approximation (34.65) (g(n, a>) = 1) it is also easy to find ■j»* 
the full intensity of recombination radiation. Inasmuch as for 

Maxwellian distribution by velocity j7 , from (34.47) 

it follows that 

•r-wL&ft+zg))- 
64n«*a¡ Ry*Z* 

ÍVtm 
^<v-> JT**: Mo^Ry*^ 

“3^3- 
N,V{. 

(34.69) 

A formula analogous to (34.69) can be obtained for large values 

of T, i.e., for high speeds of electrons when the Cramers approxima¬ 

tion becomes inapplicable. An analysis of the results of numerical 

calculations of number of authors and the formulas of the Born 

approximation shows that in whole interval x « 0-3, i.e., for co ,> a>r, 

the following approximate relationship holds1 

2 o;M1.20+0,28x) a*. 

In the same approximation 0.04. Using this approxima 

tion one ca.. obtain 

10-** Z*NtNl T~ "• erg/cm^sec 

•‘•V. I. Kogan, Collection "Physics of plasma and the problem of 
controlled thermonuclear reactions," Press of the Academy of Sciences 
of the USSR, Vol. 3, I958. 
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(Ni, Ne are expressed in cm"5, T in ev), which practically coincides 

with (34.69). 

The above given formulas for o$ are frequently used for rough 

estimates of the effective cross sections of photoabsorption by 

electrons of internal shells of complicated atoms. In this case It 

is necessary to replace Z by » Z - ß. To find the parameter ß 

there are a series of empirical rules [B. S.]. Furthermore, in 

accordance with (34.33) the cross section must be multiplied by the 

number of electrons in the shell. 

6. Photorecombination and photoionization. Hydrogen-like atoms. 

In case of hydrogen-like atoms or ions the radial integral entering 

in expressions for the effective cross sections of phctoreeombination 

and photoionization cannot be calculated exactly. For rough estimates 

of k^ and in the region of small frequencies, for which only 

strongly excited states are essential, we can use formula (34,68), 

Ry Z2 i iPf “or 
replacing e by e , where I is the ionization potential of 

the atom, and putting z = 1 for neutral atom, Z « 2 for a single ion, 

etc. 

Sometimes we try to spread the formulas obtained for hydrogen¬ 

like atoms to weakly excited states (including the ground state) 

of hydrogen-like atoms. With this Z is replaced by the effective 
.iilji1 . . 

charge Z^ and certain additional correction factors are introduced. 

Generalizations of such kind are absolutely not founded and, as a 

rule, give bad results. 

A very effective semi-empirical method of calculating the cross 

sections of photorecombination and photoionization for hydrofeen-like 

■. 



atoms was offered by Burgess and Seaton.1 This method is a generali¬ 

zation of the method of Bates and Damgaard (see § --.-.) for transit,Lons 

in states of a continuous spectrum. The radial function of a discrete 

spectrum is determined in precisely the same manner as in the 

method of Bates and Damgaard. 

In calculating the radial functions of a continuous spectrum 

Rgj, the method of quantum defect2 is used. The quantum defect 

AjifE) is a magnitude determined 

from the experimental data on 

energy levels. This magnitude is 

obtained by extrapolating the 

quantum defect i for a series of 

4* 14-/// 

i 

l -terms on the region of a 

continuous spectrum as is shown 

In Fig. 31. 

Fig. 51. Extrapolation of 
quantum defect A t for the V V» A V* w | A v A Ui 1 

region of continuous spectrum. 

The results of calculating the effective cross section of 

photoionization with these radial functions can be written in the 

form3 

(34.70) 

where in the approximation of the fractional parentage diagram for 

transition S^niSL -*• S^El ' 

xk. Burgess, M. Seaton, Rev. Mod. Phys. JO, 992, 1958; Mon. Not. 
Roy. Astr. Soc. 120, 121, i960. 

"See F. Ham, Solid State Phys. 1, 12?, 1955; Academic Press Inc. 
New York: M. Seaton, Mon. Not. Roy. Astr. Soc. IIS, 504, I958. 

3In the formulas of this section, just as in radial integral 
(34.28), all quantum numbers characterizing the term except n, l 
are omitted. 
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c''”2TTr2>£,/£; 

and for transition lN-ySL -*■ • 

(see formulas (34.28) and (34.32)). For one electron outside filled 
l max 

shells C£ i = The parameters v (effective principal quantum 

number for a level of discrete spectrum) e’ are determined by- 

expressions 

(34.71) Ini 

where Inl is the ionization energy of state ni of a discrete spectrum, 

For values v % l + 2 the functions g{vl; e'l1) has the form 

g(xl-, tT) « 

*1— ly*’ 0«.(v)[H-e'v,l-v*' cosa[v +A(e')+x(v/;*'/')|, 

v* Tr+r; 

Coefficients a^^, b^,, c^|, i * function Grjjt(v),, 

7u,(v) for a series of transitions Z -*> i » are given in Tables 80 

and 8l. 

(34.72) 

(34.73) 

Table 80. Value of Parameters a,,,, b 
llxi llx* 

CZZ,, aZZ,, ^or ^erles oT Transitions 
l —*■ l 1 

l r •«* Ptr 

0 
1 
1 
2 
o 
3 

1 
0 
2 
1 
3 
2 

—0. M7 
-0.216 
-0,1¾ 
—0.247 
-0.117 
-0.362 

+0.2313 
-0.171 
+0,«D 
-0,272 
+1.170 
+0.» 

-0,078 
0,000 
0,000 
0.000 
0.000 

-2.432 

+0.3S0 
0,000 

+0,« 
-0.010 
+0.321 
-0.390 

0.000 
• 0,«« ■ 
+0,(¾½ 
-0,019 
+0.106 
+0.050 



Table 8l. Functions G^if(v), for the 

Series of Transitions l -*■ l* 

Û|l' (v) 

0—»I 1-0 1-2 2-1 2-3 3-2 

.1 

a 
4 
5 
6 
7 
a 
9 

10 
11 
12 

2.723 
2.093 
1,«» 
1.713 
1.923 
1.» 
1.4» 
1.« 
1.414 
1.381 

XI» 
1.327- 

1.028 
1.117 

.1.1« 
1.1« 
1.175 
Í.177 
1.178 
1.173 
1,170 
1.1« 
1.181 

2.M0 
2.264 
2.010 
1.866 
1.749 
1.6« 
1,601 
1.546 
1,501 
1,461 
1.427 

0,669 
0,818 . 
0.899 
0.952 
0.9« 
1.014 
1.033 
1,047 
1.(68 
1.0« 

3,0» 
2,413 
2,139 
1,971 
1,854 
1,7« 
1,694 
1,635 
1.5« 
1,543 

o”*s§ . 

0,5» 
0,704 
0,793 
0.8« 
0,933 
0,991 
1,041 
1.0« 

7«*<v> ' 

1 
2 
3 
4 
5 
6 
7 
a 
9 
m 
11 
12 

1,754 
1.0» 
l.»l 
I,» 
l.»l 
1.894 
1.Ü6 
1.8» 
1.001 
1.003 
1.105 
1.807 

1.867 
l.«7 
1.«? 
1.067 
l.«7 
1.« 
1.07 
1,«7 
1.M7 
1.067. 
1.817 

1,574 
1.582 
1,5*« 
1,5» 
1,587 
1,893 
1.8» 
1,6» 
1.6» 
1,614 
1.618 

1,819 
1,771 
1,741 
1,722 
1,707 
1,897 
1.6« 
1,682 
1,676 
1,672 

1,447 
1,535 
1,544 
1,649 
1,5« 
1,564 
1,573 
1,581 

. 1.5» 
1,596 

1.850 
1.9» 
1,918 
1.920 
1.921 
1.922 

.1.924 
1,926 

/ 1,928 

A(e ’) is the value of quantum defect A^, = , - v^tîoT terms 1' 

extrapolated for continuous spectrum. In the second from quoted 

works of Burgess and Seaton the expressions for function g(vl; e'l') 

in the case of v < l + 2 (transitions l = 0 -*• i « =1, i = 1 -*■ i* = o 

and l * 1 -*• l » = 2) are also given. In this work they conducted a 

detailed comparison of the formulas obtained for a with the results 

of calculations carried out by a number of other authors using 

variational methods, in the Hartree-Fock approximation, etc. This 

comparison, and also an analysis of the approximations utilized in 

calculating radial integrals show that this method gives approximately 

the same accuracy as the Bates-Damgaard method for transitions in a 

discrete spectrum. The conditions of applicability of both methods 
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(in particular, the conditions imposed on the magnitude of the 

effective quantum number for a discrete level) are also identical. 

It is necessary to note that the error in the coefficient of 

absorption (during calculation of which summation Is conducted over 

a large number of levels) should be less than the error in effective 

cross section of transition from a certain definite level. 

Although formulas (34.70) and (34.72) for the effective cross 

section oí photoionization are relatively simple, calculating the 

coefficient of photoionizational absorption with the help of these 

formulas in generally a very labor-consuming problem. In a number of 

cases, by using certain additional simplifications, we can obtain a 

comparatively simple formula for the coefficient of absorption.1 

Very important objects which the above stated method cannot 

encompass are negative ions.2 Negative ions occupy a special position, 

since they do not have a system of levels. Till now not one stable 

b,&te of a negative ion is known. For this reason, the Burgess- 

Seaton method is not applicable to negative ions and it is necessary 

to turn to direct numerical integration of the Schrödinger equation 

in one or another approximation. 

At present there are a considerable number of calculations for 

zhe negative ion H~", carried out by different methods. The obtained 

th^maÎÎIÏ See L- Blberi,lan. 0. Norman, Optics and Spectro 
scopy VIII, 433, I960. 

2In a whole series_of cases radiative transitions with participa¬ 
tion of negative ions H , 0 and so forth have paramount value. For 
instance, photodissociation of the negative ion H-, and also the 
reverse of this process, photorecombination, play exclusively important 
roles in the formation of visible spectrum of the Sun and several 
other stars. L. Aller, Astrophysics, IL, 1955. 
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results can be considered sufficiently reliable.1 However in these 

calculations for the bound state variational wave functions with a 

liarge number of parameters were used; it turned out that the 

requirements for accuracy of these functions are very high.2 Similar 

i&etltods are unfit for more complicated negative ions. 

Lately calculations were carried out for other negative ions. 

In a number of cases semi-empirical wave functions were used for the 

bound state; the magnitude determined from experiment was electron 

affinity.3 

- 7. BremsStrahlung and absorption in a Coulomb field. The 

effective cross section of brems Strahlung in a Coulomb field was 

calculated by Sommerfeld in the nonrelativistic approximation and 

Without taking into account delay. The exact Sommerfeld formula 

for the effective cross section of bremsStrahlung in the spectral 

interval tu, cd + dco (integrated over all directions of motion of 

electrons and photons) has the form 

• (!»■ I •. I—j) (I -1*, n, I) *• I I — • (3^.7^) 

here F(x0) = F(-n2, -n2, 1; x0) is the hypergeometric function; 

Ze2 .Ze2 n? 
a i^v_, “n2 = ^ITv-’ x0 --a is the structure 

1 2 (n2 * ni) 

constant; v^, v2 are the initial and terminal velocity of electrons. 

1Values for the coefficient of absorption by negative ions can 
be found in the work: S. Chandrasekhar, Astrophys. J. 104, 444, 1945; 
see also L. Aller, Astrophysics, Vol. I, II. I955. 

¿See [B. S.], § 74, where this question is discussed and references 
to original literature are given. 

3See, e.g., M. Klein, K. Bruckner, Phys. Rev. 11.1, III5, I958; 
R. Breen, J. Planet. Space Sei. 2, 10, 1959. 
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Inasmuch as v± > v2, )^ | < {n2|. 

Formula (3^.7^) is rather complicated and has little suitability 

for numerical calculations; therefore usually we use one of two 

asymptotic expressions for (34.74), corresponding to large and small 

values of (oj and |n2|. Below we will consider both these cases,1 

Small values of (nj and jn2j correspond to high electron velocities, 

for which the Born approximation is applicable, m this approximation 

in formulas (34.34), (34.35) it is possible to replace the functions 

'V by plane waves, after which calculation are conducted 

comparatively simply. Born formulas can also be obtained from the 

exac-, formula (34.74) as a result of decomposition by degrees of 

InJ and (n2|. 

For large values of jnj, |n2| the quasi-classical approximation 

is correct. 

Let us assume that ln„ I « 1 In I ^ -t t,, 4.U4 1 i ^ I 2 • * Xu "tinis cãs© expansion 
X cl 2 

0ïïx^iF(x0^l by degrees of l^j, |n2j gives 

da 
'■ [£(■+/.1¾] 

. 

(34.75) 

where E± Ls the initial energy of an electron hco = ^ - Eg and 

= 1 + a;n1|2 + bjr^j4 is the correction factor on the order of 

unity. Coefficients a, b, generally speaking, depend on the ratio 

hVEl' ThlS aePen<3™«. however, is so weak that it can be disregarded 

and for the whole frequency interval we can put 0 s -.o s a = 12, 

4.4. The argument of the logarithm in (34.75) can be expressed 

through the momenturns of an electron p and p 
_ 1 2 i 

n tbMS we use a number of results of work* v \t 

nSleafrea tS“ ^ probleHf•coniroile^Äo- 
1958. ieactlons> Press ox the Academy of Sciences of 
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p,+pt 
p.-p*‘ 

(54.76) 

If the stronger condition 2^)^) « 1, 2rr|n2| « 1, is fulfilled, 

then from (34.75) the simple formula of the Born approximation 

follows 

de^ I* In - - * ^aVZ* (—YI« 3 Pt—P, <• 3 • \0tPj pt~pt 
dm 

During approach to the low-frequency boundary of co = 0 the 

to 00 as In 

(34.77) 

magnitude i.e., as P2-*■ p^, aspires ^ -.. p - p ' 

Near the high-frequency boundary p2 -► 0, hco-► formula (34.77) 

is inapplicable, since the condition |n2| « 1 in this case is not 

fulfilled. It is, however, possible to obtain from (34.74) an 

approximate expression correct at In^j « 1 and |n2| -+0) 

(34.78) 

J _ 
Consequently, as p2-► 0 aspires to the final limit. At 

2ir|ni| « 1 formula (34.78) passes into 

(34.79) 

As Elwert1 has shown, at [n^l « 1 and any values of |n2| 

with sufficiently good accuracy expression (34.74) can be approximated 

by the formula 

da—P. +A*• 
S®“»1*'1 |«,|TZ7^Mh7Z^-. (34.80) 

which differs from the Born approximation by the factor 

(34.81) 

1G. Elwert, Ann. Physik 34, I78, I939. 
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At 2tt jI « 1, 2 Jn2j « 1 the Elwert correction factor fE = 1 and 

(34.80) coincide with the Born formula (34.77). At Sn-jn^l « 1 

but |n2| -*• œ (Pg^O)» i.e., near the high-frequency boundary. 

fE-*• 2jt j n21. Simultaneously In P1 + P2 P n. 
—» g.,-£ m 01.^: 

P2 ^ ^'n. Consequently, 

P1 + P2 
fE ln p“' - p2 and the Elwert formula (34.80) give the same 

results as formulas (34.78) and (34.79). 

Let us now consider what form expression (34.74) takes at low 

electron velocities [r^j » 1 (inasmuch as joj » |n2|, condition 

|n2| » 1 is simultaneously fulfilled), 

h jtjy ^ 
For » -rzr-r, i.e., for practically the whole frequency interval n. 

E, 

0 < ^ < F"' with the exception of a small region near the low-frequency 

boundary u> = 0, the following approximation is correct: # 

do "* ®*®î I a, I* X 

(34.82) 

For low frequencies 4a> « |n^ 

where In 7 is equal Euler's constant c * O.577 and 7 » 1.78. 

(34-.83) 

hO) h'jüi In the region of quite low frequencies ^ In 
J1 17 Xn fflnl I <<: 

this simple expression holds 

... 7- (54.8¾) 

If in expression (34.82) we disregard the second member in the braces. 

éæ mb iS aßhß I jtt la mÊàtáJ^ 
j * * » I ^ j 



(54.85) 

then we will obtain the Cramers formula1 

From this it follows that this formula is just under the condition 

(in supplement to general condition of quasi-classicality Vjo w 1 

[^1 » 1). The region directly adjoining to the low-frequency 

boundary is described by formula (54.84). 

The effective cross section of bremsStrahlung absorption is also 

frequently written in the form of the Cramers formula multiplied 

by a correction factor, the Gaunt g factor. 
i 

The effective cross section of radiative transition E, x-+E , 

the inverse to that just considered, can be found by using relationship 

(54.42): 
£'xfc*4r£.; Bm 

ffgmi £' “* £ "JJ» jj • (54.86) 

Here E is the initial energy of the electron; E is the final; 

co is the frequency of absorbed radiation. According to (54.8o) the 

effective cross section of bremsStrahlung absorption can be written 

in the form 

I6*V ... „ I&t'ZV 
(54.87) 

where v is the initial velocity of the electron; g is the Gaunt 

factor. Putting this expression in the formulas for the coefficient 

of absorption = NgN^<va>, we will obtain 

AW- (54.88) 

In the Cramers approximation (g - 1) and at Maxwellian distribution 
I 

of electrons by velocity ^<tr*>«.) from this formula taking into 

1For the conclusion of formulas (54.84) and (54.85) in the frame¬ 
work of classical electrodynamics see L. Landau, Ye. Lifshits, Field 
Theory, Fizmatgli, i960. 
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account the corrections for induced radiation it follows that 

(54.89) 

The intensity of brems Strahlung Q(cu)du) = -j^do) can be found by using 

relationship (54.54). 

Let us return to expression (54.67) for the coefficient of 

photoionizational absorption and assume that the number of atoms N 

(in the general case of hydrogen-like ions) is connected with concen¬ 

tration of ions N. and the concentration of electrons N by the 
1 “ 

Saha formula (50.85). In this formula in this case 

S—22n*i *7. 
* 

Expressing N through NiNg and putting it in (54.67), we will obtain 

*;. (J4.90) 

»VI*** W»*1 

This expression differs from (54.89) only by the factor in the 

brackets, which permits uniting (54.89) and (54.90) and introducing 

the total coefficient of absorption, considering transitions from 

levels of discrete spectrum to a continuous spectrum anâ transitions 

between states of a continuous spectrum: 

• 3 Kl («y».' L «• + Jx 

If summation over levels n > n^ is replaced by integration, then 

»r*1 

(-.-). 
jyidU»*,(*D 8 •• 

x(—.-S). (5“.92) 

With (54.50) and (54.54) we can also find the total intensity 

of radiation Q(a))dcü. 
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For a number of applications the full (integrated over the whole 

spectrum) intensity of bremsStrahlung QT is of interest. Let us 

assume that distribution by velocity is Maxwellian and use the 

Cramers approximation. In this case Q(íü)da> can be found with 

either (34.89), (34.54) or directly from the general formula (34.48), 

which in this case takes the form 

l^vmáv. 

After integrating over dv 

Q(m)dmtmW^a%a*z'T (Ût) * N'NS*d*- (34.93) 

In calculating QT we can disregard the logarithmic increase of 

do in the small region near the low-frequency boundary and expand the 

Cramers formula for the whole interval of frequencies. In this 

approximation 

* - * 

O'-J<?(•) A.-NJN^ ( 34.94 ) 

If we measure T in electrovolts, then 

Q,-lt54.10-,,iV-/V1Z,rî' 9i>/cm3sec (34.95) 

It is interesting to note that calculating Q7 in the Born 

approximation gives an expression different from (34.95) only by 

the factor iOasi.i. 

The formulas of this section, obtained for bremsStrahlung processe 

in a Coulomb field, can be used for rough estimates of the effective 

cross sections of bremsStrahlung transitions in the field of hydrogen- 

like ions. In this case the basic role is played by the region of 

large distances, in which the field close to Coulomb. Errors connected 

with the difference of the field from C oui ora c at small distances are 

small. 
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In the case of bremsStrahlung transitions in the field of neutral 

atom the situation is considerably worse. The basic difficulty Is 

the calculation of functions of a continuous spectrum. As will be 

shown below, this problem is intimately connected with the problem 

of elastic scattering of electrons on an atom. Therefore the basic 

peculiarities of approximation calculations of effective cross 

sections of such transitions will be discussed in paragraph 8 of 

§ 44. 
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CHAPTER X 

BROADENING OF SPECTRAL LINES1 

§ 35. Radiation and Doppler Broadening 

1. Radiation broadening of spectral lines. The free oscillations 

of the radiating system certainly have to be attenuating, since 

the radiating system loses energy. But damped oscillation is not 

monoenergetic, and contains a whole set of frequencies. Thus radia¬ 

tion damping, inherent to every radiating system, leads to broadening 

of spectral lines. In the framework of classical electrodynamics the 

distribution of intensity in a spectrum of radiation of an oscillator 

with frequency is described by the so-called dispersion formula 

The magnitude 7 is called the constant of radiation damping. This 

magnitude determines the energy losses on radiation . 

XA discussion of theoretical and experimental works dedicated to 
broadening of spectral lines is maintained in the surveys: V. Veyskopf, 
UFN 13, 396, 1933; H. Margenau, W. Watson. Rev. Mod. Phys. 8, 22, 
I936; A. Unzol'd, Collection oi articles ''Contemporary problems of 
astrophysics and physics of the Sun," IL, 1951, p. 7; I. I. Sobel'man, 
UFN 54, 552, 1954; R. Breene, Rev. Mod. Phys. 29, 94, 1957; S. Chen, 
M. Takeo. Rev. Mod. Phys. 29, 20, I957 (Russian translation: UFN 66, 
391, I95Ö); H. Margenau, M. Lewis, Rev. Mod. Phys. 3I, 56, 1959; 
G. Traving, über die Theorie der Druckverbreiterung von Cpektralllnien, 
Karlsruhe, i960. 
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According to (35.1) the peak intensity1 corresponds to frequency 

'-V At a dlstance |o) - co0j from the intensity is equal to 

1 
Therefore the damping constant 7 is a also called radiation 

line width. At large distances from |oi - » y, 
I(ca) « I-2- 

27r(o3 - a)0)¿ 

For linear harmonic oscillator with frequency oJq, constituting 

particle with charge e and mass m, on an elastic suspension 

(35.2) 

Putting the charge and mass of an electron as e and m, we obtain 

V 2 4rti*l . „ „1 

Consequently, for the visible region of the spectrum X « 5.IO“5 cm 

~ 2.10“ . With increase of X (infrared spectrum) the ratio X- 

,Jjo 
decreases, with decrease of X it increases. 

Quantum-mechanical considerations*3 also lead to form of line, 

(35.1). The probabilities of radiation of a photon with frequency in 

the interval 'u, a) + doj during transition from state a to state b 

(^a " determined by expression 

sr (35.3) 

In general, damping also leads to a small displacement of 

peak intensity on the order of However, this displacement is 
0 

very small and is not of interest. 

* 

See V. Cay Lier » Quantum theory of radiation, IL, 1956 
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where Wab is the full probability (in a unit of time) of transition 

a -*• b, where / W(a>)da> * Wab. 

According to quantum theory line width 7 is equal to 

(35.4) 

Magnitudes 7a, 7b are called radiation width levels. According to 

(35.4) the radiation width of level a(b) is equal to the sum of the 

probabilities of radiative transitions from level a(b) to all the 

remaining levels. The magnitude t& = 7"1 determines the lifetime 

of an atom in state a. Thus, the radiation line width forms from the 

radiation width of the initial and final levels. For the ground 

state 7b * 0 and Tb = 00. Therefore the width of lines connected with 

transitions to the ground state are determined by the radiation width 

of the upper levels. For resonance line a -► b 

2g%* 
(35.5) 

This expression differs from the classical formula (35.2) by the 

factor Jfab (the numerical coefficient 3 is connected with the fact 

that (35.2) corresponds to a linear oscillator). That fact that in 

radiation corresponding to transition a -► b there is represented not 
E - Eb 

one frequency 'jOq = , but a whole spectrum of frequencies, by 

no means signifies a disturbance of the law of conservation of energy. 

The energy of a photon is always exactly equal to the energy lost 

by the atom. Simply, in accordance with the relationship of 

uncertainty AE.t ~ h, in a state a with final lifetime ta the energy 

of the atom can differ from EQ by the magnitude AE 
Q. 

—. In what 
T 
a 

measure all possible values of energy allowed by condition AE ~ ~ are 

realized depends on the conditions of excitation. Radiation broadening 



of the type noted above occurs only under the condition that the 

spectrum of excitation is sufficiently wide. Thus, if excitation is 

carried out due to absorption of electromagnetic radiation (resonance 

glow), then one should distinguish two possibilities. 

1) the incident radiation has a continuous spectrum. In this 

case the line width of resonance glow is determined by formula (35.5) 

and 7 = 7 . 
a 

2) The incident radiation is concentrated in a narrow frequency 

interval r « 7& wide around a>n, where 

£ and (£-£)| < y«. 

In this case the form of the line of resonance glow coincides .with 

the form of the line of primary radiation and, consequently, It is 

7 = F « 7a wide1. During excitation of an atom due to collisions 

with electrons, ions, other atoms and molecules, obviously, the same 

situation exists as during excitation by electromagnetic radiation 

with a continuous spectrum. 

In formulas (35.3) and (35.4) it is implied that the atom is 

not subjected to radiation which it can absorb. If the intensity of 

the radiation incident on the atom Is sufficiently great, then 

in calculating the form of the line we must consider absorption and 

in induced radiation. In this case, e.g., the lifetime of atom 

in the ground is certain (it is determined by absorption). It is 

necessary to note that broadening of a line, connected with induced 

transitions, in general Is not determined by the simple dispersion 

formula (35.3). For instance, in a strong monoenergetic field with 

frequency in the region of the line of absorption (ju> - < 7) 

■‘•Calculation of the form of the line of resonance glow was 
conducted In work: V. Weisskopf, Ann. d. Phys. 9, 23, Í93I. 
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the line of spontaneous radiation can be split into three components1 

Pgppler broadening. In the overwhelming majority of cases 

the line widths of emission spectra many times exceed the radiation 

Width, but the contours of lines turn out to be considerably more 

complicated than dispersion. The causes of this additional broaden- 

ing are Doppler effect and interaction of the radiating atom with 

the particles surrounding it, other atoms and molecules, ions and 

electrons. In this paragraph we will consider Doppler broadening, 

where at first we will assume that all other causes of broadening, 

including radiation damping, can be disregarded. 

The frequency of an oscillator, whose velocity component in the 

direction of observation is equal to v, in accordance with the 

Doppler principle is displaced by the magnitude Let us 

assume that the distribution of radiating atoms over v is determined 

by function W(v). Then = a>0 + lxQ, v = 
X - X, 0 

X 
■c and 

J0 

(35.6) 

At Maxwellian distribution 

v* », 
where », , we obtain 

/‘“’'—Ti “"[-OS?)*] 

(35.7) 

(35.8) 

lhe distribution of intensity (35.8) is symmetric with respect to 

the frequency of the oscillator Xq. The magnitude of broadening is 

1See S. Rautian, I. Sobel'man, JhETF 41, 456, I96I. 

o 
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of A from u>0 
determined by the parameter Ao^. At a distance 

Intensity decreases e times. Parameter expresses'llne width 

— we Win desiste hy means of 6, and^intensity at the maxi 

1(¾). Let ue determine line width 6 just as this was done above 

in the case of radiation broadening, l.e., as the distance between 

points of the contour for which 1(¾) » 1(¾) , ^(¾). 

In accordance with (35.8) 

í-arííJA»» (35.9) 

''••’"TTSÍ (35.10) 

(frequently A'Up is directly called the Doppler width of a line) 

According to (35.8) at * - -¾ < Aa^ „ comparatively slowly decreases 

'ncrease of x - xQ. At x - -¾ > Ao^ the decrease of intensity 

becomes very fast. 

When the distribution of atoms by v is not Maxwellian, Doppler 

broadening is determined by the general formula (35.6). Let us 

note that the applicability of this formula is limited by the condi- 

tion of small size of wavp i 2rrc 
¿¿e oi wave length X » _ as compared to vT, where 

T Is the time in which the radial velocity of the atom v does not 

change. In the case of pure thermal motion of atoms this condition 

takes the form 

(35.11) 

where L is the length of the free path. This question will be 

d-scussed in detail in paragraph 6 of § 56. 

3- actlon of r—ation damping and Doppler effect Taking 

radiation broadening into account the distribution of intensity in 

a line of radiation of an atom htving radial velocity v, has the 

f-rm 
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4<rfi- 055.12) 

To obtain line contour of radiation of the totality of atoms, it is 

necessary to sum (55.12) over all atoms. Let us again designate 

distribution of radiating atoms standardized per unit function, over 

radial velocities v through W(v). Then 

■iÍFi .-Aw*) (35.13) 

At Maxwellian distribution (35.7) 

m '"¡¡Thj 
Kr* A3w (35.14) 

In the following paragraph it will be shown that in a number of cases 

«Joint calculation of radiation damping, Doppler effect and interaction 

of an atom with the particles surrounding it also leads to formula 

(35.14)# where the constant 7 can be on several orders greater than 

radiation width. For this reason below we will consider both 

limiting cases Aa^ « ^ and Au>q » although during pure radiation 

damping Au^ « .is practically not realized. 

At Au^j « ^ in the denominator in (35.14) we can disregard 

member after which integrating over v taking normalization of 

the distribution function W(v) into account gives dispersion 

distribution with width 7. Consequently, at Ao^ « ^ Doppler 

broadening can be disregarded. At A^ » ^ two regions of v: 

03 - a>0 

v ~ 0 and v ~ ————c can give an essential contribution in integral 
0 

(35.14). In the first of these regions we can disregard member 

03 - 03-, 

030 in the denominator, and in second we can replace v by ——-¾. 
“0 
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After that it is easy to obtain two approximate expressions for 

1(a)), correct for center of line a) - a)0 « ^ and wing co - 

where is determined by condition 

Qi-4i.il« [a.7 îse(“a)*]. (35.15) 

In the region a) - i(co) coincides with the usual Doppler 

distribution (35.8). In the wing of line 1(g)) = g, . g^)-2. 

Thus, at any relationship of 4¾ and ^ at sufficiently large values 

of (a) - íüq) the Doppler distribution is changed by the dispersion 

wing. According to (30.68) and (30.77) the coefficient of absorption 

in a line widened in accordance with (35.11)) is deter,nined by 

expression 

where A is the Einstein coefficient for spontaneous transition, 

corresponding to a given line; N is the number of atoms on the 

lower level; g, g are the statistical weight of the upper and 

lower levels. (In calculating induced radiation N* must be replaced 

by where N is the concentration of atoms on the upper 

level, see § 50). 

With the above obtained approximate expressions for I(u>) one 

can simply obtain simple approximate formulas for In general 

calculating by formulas (35.16) requires numerical integration. 

Let us write (35.16) in the form1 

1T° avoid misunderstanding, let us note that the value k in the 

maximum of the line kftlax ¿ kQ. ^ 
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Table 82. Function i-= * H(a, u) 

K0 

■ • 
#—0 «-OJ «*1 «-1.8 ■-2 

« 
«»10 

ä a a a • a a 

M 
•.t 
0.4 

\i 
!:« 
M 
t.0 
3,2 
2.4 
2.0 
2.0 
2.0 

i.ono 

§¡1821 
0,0077 
0,1173 
0,207» 
0,390» 

.0,1400 
0,ff73 
0,0902 
0.0103. 
0,0079 
0.0092 
0,0012 
0,0004 
0,0001 

0.0 
0.2 
0,4 
o.o 
0.0 
1.0 
1.2 
1.4 
1.0 
1.0 
2.0 
4.0 
0.0 
0.0 
10 

0.6187 
0.0018 
0.8013 
0.8011 
0,4204 
0.384» 
0.2040 
0,2233 
0.1798 
0.1333 
0,1094 
0.0183 
0.Q0S1 
0.004 
0,003 

0.4270 
0.4218 
0,4030 
0.3700 
0.3438 
0.3047 
0.2002 
0.2202 
0.1964 
0.1667 
0.1402 
0.037 
0.010 
0.000 
0.008 

0.3210 
0,3100 
0,3007 
0.2088 
0.2779 
0.2071 
0.29« 
0,2123 
0,1002 
0,1008 
0.1804 
0,0407 
0,02» 
0.0131 
0,0003 

0.287 

0,282 

0,236 

0,212 

0.178 

0.148 
0,0806 
0.0291 
0.01« 

0 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 » 
24 
26 
28 
30 
32 
34 
36 
30 « 

0.0661 
0.0841 
0.0486 
0.0414 
0.0344 
0.0283 
0.0232 
0.0191 
0.01» 
0.0134 
0.0114 
0.00965 
0.00835 
0.00720 
0.00637 
0.00064 
0.00802 
0.00«! 
0.00406 
0.00306 
0,00333 

y ^1/2 
-L- on under the 

action of Doppler and 
broadening. 

simultaneous 

radiation 
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IlifÄllffiilfc 

where 

í g¿5+ii“ «). 

_»_ —b _«-'-S .. T 
7 % «too* too * 2too* 

(35.17) 

There is a whole series of different approximation methods for 

calculating the functions H(a, u)1. The values of function H(a, u) 

for a = 0; 0.5; 1; 1.5; 2; 10 are given in Table 82. With this table 

one can simply find the values of u which correspond to ik 
2 max 

and, consequently, 1(a)) = Thereby parameter a is connected 

the magnitude of the ratio where Aguj^ is the count ours 

55.14) /(«')»J.j , From the determination width 

of u it follows that 

“ “Tir-YsS’ When 

Knowing ho^, from the magnitude of we can find a and, 

consequently, we can determine the magnitude of constant 7. The 

dependence of the ratio 7/^ on 7^/2 is shown in Fig. 52. At 

large values of a (practically at a > 5) ^/2 As a -* 0 

§ 36. The General Theory of Pressure Effects in 
the Binary Approximation .... 

Model of an oscillator with variable frequency. Broadening 

of spectral lines caused by Interaction of the atom with surrounding 

i¿ee A. Mitchell, M. Zemansky, Resonance radiation and excited 
atoms, ONTI, 1957; M. Born, Optics, Kharkov, Kiev, 1957. At a « 1 
function H(a, u) can be represented in the form of a series by 
aegrees of a. See D. Harris, astrophys . J. 108, 112, 1948 (Russian 
translation: Collection of articles ^Contemporary problems of 
astrophysics and physics of the Sun," IL, 1951). 
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particles depends on the concentration of the perturbing particles. 

Therefore this type of broadening we will subsequently call the 

pressure effect. 

Calculating the contour of a spectral line talcing into account 

al|. possible interactions is an extremely complicated problem. 

Pot Äü reason it is expedient to start the study of pressure 

effects from a consideration of the most simplified model. Let us 

make the following assumptions: 

1) the relative motion of an atom and a perturbing particle is 

quasi-classical, which permits us to use the idea of trajectory of 

the perturbing particle; 

2) this trajectory is rectilinear; 

3) the basic role in broadening is played by interactions with 

the nearest perturbing particle (binary interactions); therefore 

triple and other multi-partial interactions can be disregarded; 

4) perturbation is adiabatic, i.e., does not cause transitions 

between different states of the atom. 

In the framework of these assumptions the mechanism of broadening 

of spectral lines is sketched in the following way. During flight 

of the perturbing particle an external field is placed on the atom: 

(36.1) 

where R is the distance to the perturbing particle at the given 

moment of time t; t, p is the sighting distance; tQ is the moment 

of the greatest approach and v is the relative speed. As a result 

of the energy levels of the atom and, consequently, the frequency 

of oscillations of atomic oscillator change in time. Therefore the 

oscillation of an atomic oscillator can be written in the form 

* 

/(0 — «xp i £ x(f) rffl. (36.2) 



where co0 is the undisturbed frequency and x(t) is the shift of 

frequency caused by interaction. Disturbance of monoenergetic 

oscillations leads to broadening of the corresponding spectral line. 

Under the given law of change in oscillator frequency >i(t) the form 

of the line is determined by expansion of function f(t) in the 

Fourier integral 

T 

r 

'+<*«** r. 
(36.3) 

ft 

t 

110- J »{Odf. ( 36,4 ) 

Usually broadening of line is characterized by two parameters, width 

and shift of maximum. Everywhere below under line width will be 

understood the distance between points of contour ax, and u>2, for 

which 1(0^) = I(cu2) = ^max* 

Let us assume that the perturbing particle, located at distance 

R from atom, leads to a shift of frequency 

(36.5) 

where n is an integer, but Cn is a constant. Then as a result of a 

large number of collisions with parameters t^ we have 

(36.6) 

For simplicity in all members of sum (36.6) velocities v^ generally 

different, are taken as equal to the average speed of relative 



motion V, 

As one will see below, although the selected model permits us 

to establish a series of important general regularities of broadening, 

it does not transmit many essential features of this phenomenon. 

Therefore in last paragraph of this section we will discuss in 

detail the limitiî of applicability of the obtained results. A more 

precise definition of model, consisting of a rejection of certain 

of the above made simplifying assumptions, will be conducted in 

§§ 37-39 in examining different specific types of interactions. 

Later it will be convenient to convert the general formula 

(36.5) for I(cd) to a somewhat different form. Formula (.3) can 

be rewritten in the following way: 

r 

(36.7) 

Let us cross in expression (36.7) new variables t0 = t and 
2 

tA - t2 « T 

(36.8) 

where 

/*(<)/(*+t). (36.9) 

Let us call the function ¢(1) the correlation function. In 

accordance with (36.8) the distribution of intensity in the line 

is a component of the Fourier correlation function. .asmucn as 
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l(ü¿) is real, the correlation function should satisfy the relationship 

(36.10) 

(it is easy to see that (36.9) satisfies this condition). In 

calculating 4>(t) this allows us calculation to be limited by the 

region of positive values of t. Therefore 

/(«•)-¿-Re jV'-'O(T) dr. (36.11) 

The line above (36.9) signifies averaging over time. As happens in 

the theory of stationary random processes, this averaging can be 

replaced by averaging over the statistical assembly of magnitudes 

determining the function f(t). Designating such averaging by angular 

brackets, instead of (36.9) we can write 

®W-</(t)/»10)>. (36.12) 

After substituting expression (36.2) in formulas (36.9) and (36.12) 

we obtain 

00 

(36.I7.) 

© (T) - exp [/ J * (0dt'] » expl —¿{tj +t>H (36.14) 

or1 

<D (T) - <cxp [/Jx (O dt']> ( 36.15 ) 

As can he seen below, in calculating I(00) it is considerably more 

"In general, in accordance with (36.9) the correlation function 

must be defined as ¢(1) = exp !’iuu-T - il ,(t) -“7(1.-r i))!. ii'".<wever, 

later it will be convenient to separate the factor exp ! io>nT]. As 
.. a rule, determination (36.13)-(36.15) will be- used below. u 
L/ 
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convenient to use formulas of the correlation theory (36.13), (36.14) 

or (36.I3)» (36.15) than it is to use (36.3) directly. 

In conclusion let us remember one known corollary of the theory 

of the Fourier integral, which will be repeatedly used lower. 

If there are two statistically independent mechanisms of 

broadening spectral lines, where the first is characterized by 

correlation function ^(t) and the second by correlation function 

$2(t), then during joint action of both mechanisms of broadening 

(36.16) 

and 

!<«)- J /,(•-*) /, (X) ix. ( 36.17 ) 

where 

/, (•) - Re J #-< «—J ’ ¢, (T) rfr. 

I ? 
/,(»)--i- 

2. Impact theory. In calculating line contour I(a>) from the 

general formulas (36.3) and (36.6) or equivalent formulas of the 

correlation theory one meets with serious difficulties. Therefore 

in solving this problem we usually go on to further simplifications. 

In this paragraph we will consider the approximation, called impact 

from analogy with the Lorentz impact theory of broadening. In basis 

the Lorentz theory lies the assumption that the decisive factor of 

line broadening is disturbance of coherence of oscillations of atomic 

oscillator during collisions. Lorentz did not definitize the 

mechanism of collisions, which were considered instantaneous. It 

was assumed simply that due to collisions the ose Illation of an 

oscillator is spread ever a series of independent trains. Within 

limits of each train the frequency of the atomic oscillator is equal 
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to OV,. Breaking down the totality of trains in the Fourier integral 

is not difficult, since full intensity forms from the intensities 

of separate trains 

zip-"—f. 

Ua 1 T » —co> (»—atg) Tf 

I{m) - liai 1 
r-MolsX 

Designating the time t of the free run, averaged according to all 

possible values, by angled brackets, we obtain 

/<»)- um -L—(ir:CMT\ —L/1 \ 
T-+m ** ' (•-:*«)* • «T, \ (u—U()t / • 

where Tq is the mean free path. The standardized per unit distri¬ 

bution for t has the form 

T 

*• 

therefore 

1—-cot(a>—mJt I 
* 

(36.18) 

According to (36.18) broadening has the same dispersion character 

as radiation. In this case line width 7 is equal to —, where i— 

lü ” ” 1o 
is the frequency of collisions or number of collisions in 1 sec. 

Line width is conveniently expressed through the effective cross 

s<. et ion of collisions 0, determining this magnitude by relationship 

~-Afoa, V-2MW, (36.19) 

where N is the concentration of perturbing particles. Formula 

(36.19) for 7 is analogous to formula (38.6) for radiation width. 
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1 
In this case 7a » 7b = since tq is the lifetime of atom on 

levels a, b. The Lorentz theory did not give the magnitudes a. 

The question naturally appears: How to approach the appraisal 

of a? 

It is absolutely clear that there are no bases to equate the 

effective cross section o to the gas kinetic value, inasmuch as, 

according to the basic assumption of the Lorentz theory, collisions 

which disturb the coherence of oscillations of the atomic oscillator 

are essential for broadening of line. 

This question was first solved in the works of Lentz and 

Weisekopf. Preserving the presentation about the decisive role 

of strong collisions and Just as in the Lorentz theory considering 

collisions to be instantaneous, Lentz and Weisskopf indicated the 

specific mechanism of disturbance of coherence. During flight of 

the perturbing particle the frequency of the atomic oscillator is 

displaced. Although the actual intervals of time during which 

X / 0 are extremely small, the phase of oscillator as a result of 

collision obtains an additional increase. If this additional phase 

shift Tj is sufficiently great i.e., if it exceeds a certain value 

n0 then the coherence of oscillations is disturbed. Thus, collisions 

must be considered as flights in which tj è t] . Proceeding from 

(36.5), one can simply find the phase shift q for a flight at the 

sighting distance p 

,W)_ 

* y+*viT 
(36.20) 

where 

(36.21) 
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o 
Putting the values n = £, 3, 4, 5, 6, In (36.21) we obtain 

«*2 3 4 a 6 
a.-« 2 a/2 *3 3*8 

by equating the right side of (36.20) to r,Q one can determine 

the biggest value of p0 at which flights are still effective, l.e., 

one can determine the effective radius of collisions. There 

immediately appears the question about selection of tj0. According 

to Weisskopf it is necessary to put n0 = 1. This gives the following 

expression for the effective radius of interaction (the so-called 

Weisskopf radius): 

,.-• 

Thus, 

The above stated method of calculating 7 suffers from two deficiencies. 

First, because of the arbitrary nature of selecting the limiting 

value of phase r¡0 (why 1, and not, e.g., v or ^ ?) formula (36.25) 

cannot give more than the order of magnitude of 7. Secondly, 

flights outside of Pq are absolutely not considered. From nowhere 

it aoes not follow that small, but then much more frequent phase 

shifts are immaterial for broadening. Both these deficiencies of 

the impact approximation are simple to remove. Let us return to 

expression (36.13) for 1(a)) where function ¢( i ) will be defined by 

relationship (36.15). (The same result can be obtained if we 

start from (36.14)).1 

(36.22) 

(56.23) 

„ ..of calculating $(t) expounded below was offered 
Ln ^oik: P. Anderson, Phys. Rev. lo, 647, 1949. 
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Let us form the difference Aí» = 4>(t + At) - 4>(t); in accordance 

with (36.15) 

Mm,<#* (36.24) 

where through rj we designate the phase shift during the time Ax. 

In the impact theory approximation magnitude tV does not depend on 

the value of phase at the time x; therefore averaging both cofactors 

in the first member of the right side of (36.24) can be conducted 

separately. Thus, 

Let us designate the number of perturbing particles, flying in a 

unit of time through ring element 27rp.dp, by P(p)do. Then 

<1 —^>—át I P{q) 4 (1 -^1, 

A#—1—4HA», (36.25) 

where 

la» J PtyáQ II — <»>1. 

Inasmuch as P(p)dp = Nv2irp dp, from (36.25) it follows that 

«•'-‘IO t 
(36.27) 

(36.26) 

where 

o' » 2n {11—cosh(q)}q</ç, (36.28) 

(36.29) 

Putting (36.27) in (36.13), it is easy to obtain 

(36.30) 

^•Formulas (36.28)-(36.30) were first obtained by Lindholm: 
E. Lindholm, Archiv. Mat. Astr. 0. Fys. 28b, No. 3, 1941. 
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This expression is analogous to (36.I8), but now line width is 

determined by the relationship 

Y-2Ato' (36.31) 

and the maximum of the line will shift from oo0 to the magnitude 

A-Afea*. (36.3?) 

Zxpression (36.30) exactly coincides with the Lorentz formula (36.18) 
± i » 

if in the latter we place — = Nva = Nv(a - io ). Just as in 
T0 

the Lorentz theory, line width is proportional to the concentration 

of perturbing particles N. At large values of - íoq, i.e., in 

the wings of the line, the Lindholm formula gives the same expression 

as the Lorentz formula 

i®— 

Let us estimate the contribution of distant and near flights 

» " 
in a and a for n à 3. (At n = 2 a special situation appears 

which will be considered separately). Let us write (36.28) and 

(36.29) in the form of the sum of two integrals, taken from 0 to 

the Weisskopf radius p0 and from p0 to 00. For 0 ë p s p0 r¡(p) & $,:1. 

consequently, cos r,(p) and sin r,(p) oscillate rapidly, according 

to which 

${1 — CQ8 H (¢) } 2j!Q• d^IÏÇj, 

Ç «in r, (¢) 2«ç • í/ç nçj. 
• . : - ,r; • ' 

Thus, flights inside pQ give line broadening of approximately the 

same magnitude as in the Weisskopf theory and do not noticeably 

contribute to shift. Conversely, flights outside p0(q(p)< 1) are 

of little importance for broadening, since 
0» 

j {1 — COS n (¢)} 2nç • </Q s; JIÇ*, 



ti 
but give a basic contribution to o . From what has been said it 

follows that during rough estimates of line width we can use the 

Weisskopf formula. From (36.29) it follows that during change 
ft 

of sign n(p)a changes sign. If the collisions of various types 

accompanied by phase shift n < 0 and n > 0, are équiprobable, then 

the total shift A of the line is equal to zero. In contradiction to 

this o' > 0 at any sign of n. 

If in the integrals (36.28) and (36.29) we change the variables 

o C ' 
n(p) * .--—-y » X, then it is easy to show that the ratio does not 

vp11“1 o 

depend on Cn. Thus, the ratio of width to shift for assigned value 

of n is constant. 

By putting n(p) from (36.20) in (36.28) and (36.29) one can 

obtain the following expression for y, A: 

«—3 

«■>4 

jb-6 

y—ix'C'N, 
JL JL s i \ JL i. ±-L y-2 r^jjc;****: 11,4C* vN, 

J.« t 1.15, 

Y-8.16C; vtN, -J—2,8. 

,6.33) 

The obtained values of y at n * 3, 6 are a little more than those 

TT 1 
according to Weisskopf 1.35 and 1.2 times respectively. 

At /1-2 . A corollary to this is the divergence of 

integrals (36.28) and (36.29). At large e [l—cosTitQ^ecoQ-1 , and 
I 

sin n(p)*pdoes not depend on p. Therefore o diverges as in p, and 

o" diverges as p. This divergence obviously does not have physical 

The magnitudes of a at n = 3 and y, a at n = b are not of 
interest for atomic spectroscopy. 
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ûince - oíTjUias (3ó. 23) and (36.29) are obtained in the 

oínary approximation. This approximation is known to be inapplicable 

at values of p larger than the average distance between perturbing 

particles, i.e., at p % N , Therefore the divergence of integrals 

(36.28) and (36.29) can be Interpreted as an indication of the 

possible unfitness of the diagram of paired collisions. In any case 

it is obvious that distant perturbations must be considered taking 

into account multipartial interactions. We can affirm that this 

calculation will be equivalent to cutting of integrals (36.28) and 

(36.29) at a certain effective distance p^. Therefore we will give 

the corresponding expressions for y and a, useful for different 

appraisals : 

= {»•*“+1* (¾) + ¿ (&)* +... J, 
(36.34) 

\-2mN 

i» «"’-»(Sh- 
.-¾. 

(36.35) 

3* Statistical theory. The problem of broadening of spectral 

lines aue to pressure effects can also be approached from another 

.point of view. The radiating atom is in an external field. The 

pie^ence ci a fiele reads to displacement of terms and, consequently, 

to a shi:t of frequency of the atomic oscillator. If the external 

■*. xc-.d t “j cj uäS* 1 — scati cal, l.e. , ii It changes suf: Iciertly slowly, 

wiifer* wt c j.n c o31,(a trr* l ¿.^ ^ ) ciu# x 3 s :1// 
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Statistical weight of the configuration of perturbing particles at 

which the frequency of the atomic oscillator is Included in the 

Interval w, w + du. In the binary approximation the frequency shift 

Is created by the nearest particle. Consequently, to calculate 

I(w) we must find the probability W(R)dR that the nearest particle 

is at a distance R, R + dR from the atom. This probability is equal 

to 

¿(¿)t (36.36) 

where * Placing < ■ u - * CnR”n in ( 36.36) we will 

obtain the probability distribution for frequency shift of the atomic 

oscillator. According to the basic assumption of statistical theory 

this distribution determines the form of the spectral line. If we 
C 

Introduce the designation Au ■ then from (36.36) it follows that 

i" 

**NCj 

(36.37) 

In this paragraph we will not be concerned with the question about 

boundaries of applicability of the statistical theory itself, but will 

only note that expression (36.37) has meaning only for sufficiently 

large values of (w - uq), for which Rwm (t?) is conslde--ably 

less than Rq. At R * Rq the binary approximation is unfounded. Thus, 

expression (36.37) knowingly does not describe the internal part of 

the line. Condition R << Rn means that Au << u - wr. Tnerefore u 0 

in (36.37) it is possible to omit the exponential factor, after 

which we will obtain 
• 

4mMCm 

*(•—«S) * 

(36.36) 



ií' -‘-e reIati°ns^-lp and boundaries cf acplicahuitv of 

— esticai theories. The Impact and statistical theory give 

sharply diffeiing expressions for the form and width of a line. 

This circumstance compels us to as* the question about the boundaries 

of applicability of both theories, the relationship between them and 

their connection with general expressions (36.3) ana (36.D). 

At the basis of the statistical theory lies the assumption about 

the quasi-static nature i.e., about the sufficiently slow change of 

perturbation. To establish the boundaries of applicability of 

statistical theory, which incidentally, it is more correct to call 

the quasi-static theory, we must clarify what is the criterion of 

the quasi-static nature. 

Lot us return to general relationships (36.3) and (36.1)). Let 

us first consider (36.3) for large values of = „0 . If 

is great, the integrand expression in (36.3) strongly oscillates 

everywhere except in the environment cf points t, , in which 
¿Í 

($)*-*<«- 

Therefore the basic contribution in (56.3) is given by small regions 

of arouna these points and, instead of (36.3), we can write 

(36.39) 

Let us expand function s(t) into a series near t, by degrees of t - t 

Slnce W4-4“ • the members linear with respect to t - tk are reduce 

in the index of the exponent in (16 '-¡q'i onrq 4-K 
^ * 'vJu.jy;, ana the series starts from 

member 

7 -**>“* 
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During integration the region At^, where this member is less than 

unity (after this strong oscillations start), is substantial. Hence 

it is easy to obtain the dimensions of this region 

'36.40) 

If within limits of this region the following member of decomposition 

(36.ÍU) 

for the fulfillment of this inequality is necessary 

K^Moir-K^i-K^ro- <36.42) 

then the series can be broken at the member proportional to (t - t^)^, 

and in every member of the sum (36.39) the limits of integration can 

be spread from -« to « (outside of At^ due to oscillations of 

integrand integration gives zero); with this1 

/(••)- r!¿ I £ **P*fo(<*) +K—«*)M J exp /X 

•t'.+T] (S)4" f. 
/W4.-rto|Ç(î);V 

It Is easy to see that XfîJi* is the time during which 

•c(t) is included In the interval m - u>0, u - u>0 + dw. Actually, 

i 
Here It is assumed that phases a, * [nit.) + (u - w)t. ] are 

K. K. U rC 

independent. Below It will be shown that this assumption is 
fulfilled. 



ci'T^ ana or. ?i¿*. 33 are connected by the relationship ***■■** 

therefore (36.43) is exactly the same as the statistical distribution 

of intensity W(u> - u)0)do). Let us replace summation in (36.43) by 

integration. The number of flights through ring element 2w dp during 

the time T will be equal to Sup dp NvT, where M is the concentration 

of perturbing particles. Considering that every collision at 
C 

max 
ji 
n i ûw or gives two points tk (Pig. 33), we 

will obtain 

'»m 
/{<»)dat * da J (^ ) '^vdQ 

4nNC Ü 
* da,- 

n&m * 

(36.44) 

i. e 
• > the statistical distribution in the wing of the line. 

ták 
Pig. 33. Function <(t). 

If we disregard the small environment around the moment of the 

greatest approach tQ, then 

¿ji (36.45) 

and relationship (36.42) takes the form 

(36.46) 

As can be seen from Fig. 

those flights for which 

in collisions with 

33, points tk (at which give only 

-gr < Au, in other words, we are interested 
* i 

P 
» 

“(ï»)* ‘ Considering this, (36.46) can be 

-ib'i 

rewritten in another form: 



o. (36.47) 

a 

cr* 

Relationship (36.47) is the condition of applicability of the 

statistical theory. Prom it it follows that the statistical theory 

is applicable for large Aw, i.e., in the wing of the line. 

Let us now consider (36.3) in the limiting case of small Aw. 

If Aw is so small that ~ is much larger than the period of 

collision 

¿>f. (36.48) 

then the change of phase during collision can be considered 

Instantaneous. But the instantaneous nature of collision is exactly 

the initial prerequisite of the impact theory, which allows us to 

extremely simply calculate I(w)dw. The basic role in impact broadening 

1 

of a line is played by collision with . Putting pQ in 

(36.43), we obtain a relationship the reverse of (36.47) 

m 

<5- 
Thus, in the center of the line Aw << n the impact (dispersion) 

distribution of intensity is correct. For large values of Aw, Aw >> n, 

the impact distribution is changed to statistical. The statistical 

wing can be disposed from both the longwave and from the shortwave 

side depending on the direction of shift of terms. 

Let us now clarify under what conditions a large part of integral 

line strength is concentrated in the impact region. It is easy 

to see that for this it is necessary that ß considerably exceeds 

« 

impact width y. Considering that , we will 
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whence 

2ae^<û»f!^ŒJL, 
Qb 

C-» 

9 - 

3>gW<l or 2*(^)'"a/<i. (36 jjgj 

Thus, for low pressures and high velocities, when Inequality (36.-.9) 

is fulfilled, tne impact mechanism of broadening Plays the decisive 

role. A relatively Insignificant part of the total intensity makes 

up tne share of the statistical wing. At large pressures and small 

velocities, when inequality (36,1.9) is disturbed, l.e., at 

l, (36.50) 

the impact theory is inapplicable even to the internal part of the 

line. 

let us note that if condition (36.119) is not fulfilled, then, 

in general, there are no bases to use the binary approximation. 

Actually, relationship (36.50) means that the effective radius 0() 

!.. approximately equal to the average distance between perturbing 

P leles. Although pgN > 1 the statistical theory is applicable 

to practically the whole contour, expressions (36.37) and (36.38) 

describe part of the line. As is easily seen these formulas 

ere applicable to the wing of the line Actually, large shifts of 

frequency are created by the strongest perturbations, l.e., interac- 

tion with the nearest particle. 

Above in concluding formula (36.A3) an assumption was made 

about the inceoencienc'e nf rtacoo ,, -, 
‘ 0 k‘ for Points tk, tj, pertaining 

w.^fe.ceijb cc^llslons} the independence of phases ak, is 

c viden ^ . * « 1¾ not diificult to show that thi ^ -,.-4...--..4 . oiiuw -.lat v-nio assumption is also 

k+I* y^rtainir.g to one collision. Actually, 
: unt for points t,,, t 



with an accuracy of a factor on the order of unity ^ is the 

full phase shift during collision. Consequently, according to 

(36.^6) the basic role in the formation of the statistical wing is 

played by radiation during strong collisions for which n >> 1. Hence 

(«í ®ir) >ÿ i» where this difference is different for various k+1 " “k 

collisions. 

The analysis conducted in this paragraph gives, of course, only 

a very general presentation about line contour. Thus, the question 

about distribution of intensity in the intermediate region w - oiq ^ n 

remains unsolved. Furthermore, it is still not clear how well the 

dispersion distribution describes the central part of the line if 

inequality (36.49) is fulfilled with a small reserve, i.e., if 

fl, although larger than y» has the same order of magnitude as it. 

These questions can only be answered by calculating lU) without 

simplifying assumptions of the impact or statistical theory. Such 

calculations were conducted by Anderson and Taimen.1 It turned out 

to be impossible to obtain general analytic expressions for the all 

contour. Therefore Anderson and Taimen in detail investigated the 

limiting expressions for I(u>), correct for all the internal parts 

and for the wings of the line, and, furthermore, they constructed 

interpolation expressions for intermediate part. These calculations 

gave a whole series of more precise determination for contours of 

spectral lines. All these more precise determinations, however, are 

small and are of interest more for fundamental than from a practical 

point of view. The corrections to the contour obtained by a smooth 

connection of the dispersion distribution with the statistical wing 

i 
See the previously cited work of S. Chen and X. Takeo. 
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--6 wij-in limits of accuracy whicn generally can be calculated In 

tne framework of the considered model. 

b• Discussion of boundaries of applicability and possibility 

of more precise definition of model. The above stated theory of 

pressure effects was based on the following main assumptions: 

1) the motion of perturbing particles is quasi-classical; 

2) broadening is connected with frequency modulation of the 

atomic oscillator, where this modulation obeys a simple law (36.6); 

3) binary interactions play the main role. Also, in the process 

of calculations certain additional simplifications of less fundamental 

character were made. Thus, the trajectory of perturbing particle 

was considered rectilinear; instead of averaging over speed the 

average speed was simply placed in the corresponding formulas, etc. 

Simplifications of such type will not be discussed in this paragraph, 

since the errors connected with them, as a rule, lie within limits of 

the accuracy obtained in the framework of this model. When this 

is necessary, a corresponding more precise determination of calcula¬ 

tions does not present special labor. 

First of all it is necessary to clarify how fundamental the 

utilized model is and in what cases Is it necessary to reject one 

or several of the main simplifying assumptions. If perturbation 

is created by heavy particles, atoms, molecules or ions, then the 

condition of quasi-classicality is always fulfilled (special 

consideration is required only for the lightest atoms H and He at low 

temperatures). For electrons the quasi-classical approximation is 

generally not correct. Therefore in paragraph 3 of § 37 the quantum- 

mechanical theory is expounded and the conditions, under whicn 

broadening oy electrons can be descrioed quasd-fiassleally are 
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clarified. 

Let us now go to the discussion of formula (36.6). It Is 

obvious that the simple dependence of <(t) on the parameters of 

collisions of type (36.6) is just only for fully defined (usually 

sufficiently large) values of p, e.g., in the case of perturbation 

of a nonhydrogen-llke atom by charged particles at large distances 

(the quadratic Stark effect in field £v>R~* ). At small 

distances we must consider nonstatic perturbation. In a number of 

cases quadrupole Stark effect is essential (see § 28). 

Above it was Implicitly assumed that perturbation is adiabatic, 

l.t., that collisions do not induce transitions between different 

steady states of an atom. This assumption is essential from two 

points of view. First, it permits considering that perturbation 

appears in a change of phase of the oscillator without affecting 

its amplitude. Secondly, the absence of transitions between degener¬ 

ated states within limits of one level permits considering the broaden¬ 

ing of separate components of a line independently from each other. 

In calculating the energy of splitting of a term it is convenient 

to direct the z axis along the perturbing particle. In this case 

due to the axial symmetry of perturbation the energy of interaction 

does not depend on coordinates x and y of the atomic electron. In 

the matrix of coordinate z only elements for transitions without 

change of M are different from zero, and therefore states with 

different M behave during application of perturbation theory 

Independently from each other. However, this selected system of 

coordinates does not remain motionless in space. During the time of 

collision the z axis, following after the perturbing particle, 

turns on angle rr. If transitions between different H states in 
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such a revolving system of coordinates are lacking, then the vector 

of full moment J "adiabatically" follows after the z axis and the 

atom is reoriented in space. The word adiabatically is in quotes 

because in this case its use does not have a simple meaning. Actually 

in a motionless system of coordinates reorientation of an atom is a 

corollary of disturbance of adiabaticity. 

Splitting of a level on M in a revolving system of coordinates 

has an order of magnitude . If C p"n >> -. where £■ 
n p * V 

is the duration of collision, then perturbation does not cause 

transitions between M components. In other words, for sighting 
I (C \mmm% 

-jj perturbation is adiabatic in a revolving 

system of coordinates. 

Thus, close collisions (flights inside the Weisskopf radius) are 

accompanied by reorientation of the atom. As a result of distant 

flights (p >> Pq) the orientation of angular moment of the atom in 

space does not change. In the intermediate region p ^ Pq incomplete 

reorientation can take place. 

This discussion shows that the simple method of calculating shift 

of frequency of an oscillator, assuming independence of separate 

components of the line (absence of transitions between sublevels), 

fits only for strong collisions, responsible for the statistical 

wing of the line. In the region of impact broadening separating 

the individual components of the line does not have meaning. 

Therefore degeneration on M must be considered already at the first 

stage of calculations. 

Let us discuss, finally, the last of the above mentioned 

assumptions. As was already noted in the preceding paragraph the 

domain of applicability of the binary approximation to the central 



part of the line is determined by condition 

^i. ( 36.51 ) 

In the alternative case h >> 1, and also at h ^ 1, we cannot 

disregard the simultaneous perturbing action of many particles. Prom 

qualitative considerations it is clear that at given values of N and 

V parameter h is less the larger n is i.e., condition (36.51) is 

easier to satisfy in the case of short-range interactions. Conversely 

for long-range interactions, such as, e.g., the linear Stark effect 

(n ■ 2), limitation (36.51) can appear very strong. 

Going outside the framework of the binary approximation extremely 

complicates calculation. First of all the question arises about 

the law of summation of interaction. Above we indicated that calcula¬ 

ting the splitting of a level is considerably simplified If we direct 

the z axis along the perturbing particle. If perturbation is 

created simultaneously by several particles, this cannot be done. 

Therefore difficulties appear connected with the necessity of solving 

a secular equation. These difficulties are usually bypassed by 

going to the "vector” law of summation of interactions. Let us 

explain this term on the example of perturbation created oy charged 

particles. Each of the perturbing particles creates at the location 

of the atom an electrical field with intensity ( i Is the number 

of the particle). One can easily see that in calculating the full 

splitting it Is impossible to summarize the splitting created by 

each of the perturbing particles separately » since the 
! 

secular equations for perturbations — and Vk~— ¿t» give 

correction to energy , AI ^, ..., AE^ and 
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V A - ( K ) 
ar, • 9 

( K) 
corresponding to absolutely different 

(t) ( J 
f and *1 

This difficulty can be bypassed if we first find the resultant 

states of the atom y > " ' , ... and 

field 

( 36.52) 

and then determine the splitting of a level in this field. 

Summarizing everything said, the following conclusion can be 

made. The theory of pressure effects, founded on the model of an 

oscillator with variable frequency and on the binary approximation, 

is extremely simplified and does not reflect many important properties 

of the mechanism of broadening of spectral lines. The results 

obtained in the framework of this theory can be considered as 

preliminary and liable to be seriously changed in a more detailed 

approach. 

6• Joint calculation of radiation damping. Doppler effect and 

pressure effects. Inasmuch as radiation broadening and broadening 

caused by interaction, are statistically independent, joint 

calculation of both these effects in accordance with (36.17) leads 

to a distribution of intensity 

A«) - J Am, (*) Am,. (<a—s) dr - ¿ J -imil , ( 36.53) 

where r is the radiation line width. Usually r is much less than 
f ! 

impact line width y « 2Nvo and, furthermore, the condition 

fmß X _1_ 
ls always fulfilled. Therefore radiation broadening 

does net affect the distribution of intensity in the statistical 

wing of the line. This permits placing the impact distribution of 
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intensity (36.30) as I 
BSaiiM 

in (36.53). Integrating, we obtain 

/(,,)-1+11 (36.5^0 

i.e., dispersion distribution of the same type as (36.30), but 
i 

with width y * 2Nv0 + r. 

Now let us include in the consideration Doppler broadening. In 

principle both cases Au^ << ß and Auip >> ü are possible. In the 

first case the central part of the line u> - Wq << ß In accordance 

with (35.7) and (36.5*0 is described by formula 

In the wing of the line w - Uq >> ß there is statistical distribution 

of intensity. 

Formula (36.55) with an accuracy of replacing Wq + a « wq + Nvo" 

by Wq coincides with formula (35.1*0, which was investigated in 

detail in § 35- If y << Aoj^, then in the region of frequencies 

(w - Wq - A) £ ßjQ there is Doppler distribution of intensity. In 

the Intermediate region ß^ << (w - Wq) << ß Doppler distribution 

Is changed to dispersion y [?it(w - Wq) ]“ , which in turn at 

(w - Wq) >> ß passes into the statistical wing. If f¿D £ ß, then 

Doppler distribution in the wing of the line is changed to statistical. 

For Awp << y Doppler broadening can generally be disregarded. 

As was already noted In § 35, everything said above about 

Doppler broadening is just only under the condition of small length 

of light wave y as compared to the length of the f^ee path L. Let 

us consider this question in somewhat greater detail. In concluding 

(35.8) we Implicitly used the approximation of the statistical theory 

of broadening, Inasmuch as we assumed that the spectrum of an 
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u.; i í:í’-oí' witn radial velocity v contains only one frequency 

•*•(1+7) • i’nis indeed is so if v does not change in time or remains 

a constant magnitude over a sufficiently long time x. It is necessary 

that the Doppler shift of phase is much larger than 1. Radiation 

in the interval t contribute to intensity In a narrow spectral 
n 

interval (width -) around + Putting for v and t the mean 

values v- and xQ (time of free path), we obtain 

or 

In general Doppler broadening is determinec by decomposition 

in the Fourier integral of the function 

i 

*(<>- J ( 36.56) 

Putting (36.56) in (36.ll) and (36.12), we obtain 
0» 

A»)—¿ReJ*-1«—( 36.57) 

If we are limited to a consideration of the case when for the 

random variable x(t), constituting displacement of an atom during 

the time t, Gaussian distribution is correct, then the correlation 

function ¢(1) can be expressed through <x (t)> . Actually, 

O(t) ^ H-iÄ <jctTl>+-¿ <x* (t)>+|(/ Ä)’«» (t)> +... 

The mean values of odd degrees of x(t) are obviously equal to zero. 

For mean values of even degrees of x(t) at Gaussian distribution 

relationship <x^‘‘ ( 1 ) > * (2n - 1) 11 <x^(t)> holds. Therefore 

, 
w,-2<x,(t». ( 36.58) 

1 
?4. I. Poagoretskiy, A. V. Steppanov, ZhFTF 90, 56I, I96I. 



Motion of radiating particle in a dense gas has the character of 

i 
Brownian movement. For motion of such type 

-■-«o [T-i=ÿr]. t, kT 
‘ÜS- (36.59) 

where D is the coefficient of diffusion; m is the mass of the particle. 

Placing (36.58) and (36.59) in (36.57), we can calculate I(u>). These 

calculations require numerical integration. However it is not 

difficult to investigate different limiting cases and clarify the 

general character of function I(w). At small t, ßx << 1, 

2 ^ .kT 2 22 
w Z 2-=-t ■ v.T and 

m u 

(36.60) 

Putting (36.60) in (36.57), it is easy to obtain the usual Doppler 

distribution. In the limiting case of ßt >> 1 

"5 
(36.61) 

Substituting (36.61) in (36.57) gives the dispersion distribution 

1 

WÏ 
(36.62) 

2 2 u) 0 g- 
with width y ■ 2-w-D * —jD. The coefficient of diffusion D In order 

C X 

of magnitude is equal to LVq, where L is the length of the free 

path. Consequently, 

W t t 

where tq “ r“ and the conditions of applicability (36.60) and (36.61) 
v0 

can be written In the form of x << x0 and x >> tq. Thus (compare 

with the discussion of boundaries of applicability of impact and 

See S. Chandrasekar, Stochastic problems in physics and 
astronomy, IL, 19^7, p. ^9. 
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|| ...... 

statistical distributions) 

tne lor. of frequencies 

formula (35.8) is applicable only in 

" “o' >:> T~' The int^:,nal Par>t 9f 

tne line ¡u 

(36.62). 

— is aescribed by the dispersion distribution 
tO 

? . 
practically the whole line contour falls within the domain of 

applicability of the usual Doppler distribution (35.8). In the 

opposite case 2trL < < X a very large part of intensity is concentrated 

in the region ju - on¡ << —. Consequently, in this case the line 
u T0 

should have a dispersion contour (36.62). Only in the far wing 

of the line [—• 

small densities, when 2ttL >> X ana 
411*0 
TT m r 

% 

2 TT 
and Aud = ~v0 is approximately equal to -1. Consequently, with 

increase of density (in the region 2rL << X) there is a decrease of 

Doppler width by approximately times. A similar narrowing of 

the Doppler contour can obviously take place only when broadening 

is absent or small due to interactions! We must note that in 

general there is no basis to separate the effects of interaction 

and the Doppler effect. Actually, the disturbance of coherence of 

oscillations during collision can be caused by a phase shift and 

The ratio of contour widths (36.62) and (35.8) 

1 

82 ^73nÍ1353)Ult WaS flrSt 0btalned by Dlcke (R* Dicl{e» Phys. Rev. 

2 

In certain special cases Doppler broadening at large densities 
X.e., at L << X, is not camouflaged by tne effects of interaction. In 
the optical region of the spectrum an example of this type is Rayleigh 
scattering in a gas. As is known, the line of Rayleigh scattering 
does not experience broadening due to collisions, since this scattering 
is determined by Induced, and not natural oscillations of an 
oscillator. 
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also by a change in velocity of the atom. Joint calculation of 

both effects requires calculating the correlation function 

(36.63) 

If we assume that the increase of phase n(t) and displacement of 

atom x(t) are statistically independent, then ¢(1) = $. 

* ^OnriJl^ and are determined by convolution of the independently 

calculated I U) and I flonnji • B3aMM 

In the impact approximation 

(36.64) 

£—/Vo (o' — lcT)x—-J- A*»ó T*j , 

Aftrtff'—/oOt—¿i'Dc J , r^>r,. (36.65) 

It is easy to see that expression (36.64) leads to formula (36.55) 

for IU), and expression (36.65) gives a dispersion contour with 

2 
i wn " 

width 2Nvo + 2-ÿ> and shift Nva . 
c 

We will not consider the correlation function (36.63) in greater 

detail because exactly in the optical region of the spectrum Doppler 

broadening usually is of interest just under the condition L > A, 

when (35.8) is correct. Actually, the characteristic Doppler 

parameter Au>D can be written in the form 

where o0 is the gas kinetic effective cross section of the atom; 

a is the effective cross section of impact broadening and y is 

the Impact width. In the optical region of the spectrum, as a rule, 

o £ Oq and consequently, A»0< • On the other hand, the 



Doppler effect; substantiably contributes to broadening, in the case 

of Au)d £ y, i. e., under the condition that _ > . 

3 37• Quantum-Mechanical Generalization 
of the Theory 

1• Method of Fourier analysis. In the quasi-classical 

approximation the influence of surrounding particles on an atom 

can be described by introducing time-dependent perturbation V(t). 

In this case the coordinates of perturbing particles can be 

considered by assigned functions of time, and not dynamic variables, 

which permits going from perturbation V(R) to perturbation V(t). 

.therefore in this paragraph we will show how the form of a line is 

calculated when the atom is subjected to arbitrary perturbation 

V(t). 

Using the general methods of the perturbation theory. It Is 

easy to show that the distribution of intensity in a line corresponding 

to transition between states a, ß of an atom is determined by expression 

(37.1) 

where Pag(t) is the matrix element of dipole moment of the atom, 

calculated with the help of the perturbation wave functions y (t) 
a ’ 

Vg(t). These iunctions are solutions of the Schrodinger equation 

for the Hamiltonian 

m (37.2) 

Formula (37.1) is a natural generalization of the classical formula 

(36.3). Later it will be convenient to write it in a form analogous 

to (36.11). Repeating the same transformation as in concluding 

formula (36.11), we obtain 
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(37.3) 

where 

®U>-P+{t+1) /»i (õ -/^(/ + T) Py (0 (37.^) 

or 

(37.5) 

Let us consider further a transition between two degenerated levels 

af b, where indices a and g will number states relating respectively 

to the initial and final levels. We will consider that all states 

o are filled with equal probability. In this case 

/«(«h 

therefore instead of (37.^) and (37.5) it is necessary to put 

(<+ 1)^(0. (37.6) 

or 

®<T>(37.7) 

The perturbation wave functions ^(t), i'g(t) can be presented in 

the form of a decomposition by functions of an isolated atom 

In this 

*0 W ~ 2 a* (0 aa (/) P*., (37.8) 

where %»n —Et—Ef, Pm- is the matrix element independent of t <s|P|s'>. 

In general sum (37.8) covers all steady states of the atom. 

However, in the problem of interest to us, i.e., calculating the 

intensity in narrow frequency interval around the unperturbed 
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/, cniy those members of this sum for 

r Ut 

P„(0-e"V 2 ‘¿■'WayAVP. y 
«T 

By putting (37.9) in (37.6) or (37.7) we can expresses the function 

¢(0 through mean values of the product of coefficients a(t). Let 

us assume that perturbation starts at time t = 0. Then 

P<(0)-<4|P|P>-P^ 

and from (37.9) and (37.7) it follows that 

O (T) - '2 P.r Pf. < a,-. (X) ar} >■ 
•JO* 

(37.10) 

Coefficients a^^, are determined by known equations of perturbation 

theory 

(37.11) 

where 

VxrM-lÿVitWrdq. 

Equations (37.11) have to be solved at initial conditions 

«TT'(O) —ôn*. 

Tnus, formulas (37.6), (37*7) and (37.9) in principle permit 

caxculauing the distribution of intensity in a line taking into 

account degeneration of the initial and final levels and for any 

perturbation V(t), both adiabatic and also nonadlabatic. Prom 

these formulas, in particular, it is easy to obtain all the results 

of the preceding section. If perturbation is adiabatic, i.e., does 

not cause transitions between different states, then matrix a is 

diagonal and from equations (37.13) it follows that 
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Therefore 

« 

QD 

where NW-jí*'-“»'») is the instantaneous shift of frequency of 

transition a + ß, and 
« 

(»). o*(T)c« <exp [i J(/')rf/'] >. 

Thus, we came to the model of an oscillator with variable frequency, 

where every component of line a -► ß is broadened independently of 

all the others. 

Formulas (37.6) and (37.7) are easy to generalize for the case 

when the line is formed by the totality of transitions between two 

groups of closely located levels. Let us number index a the states 

pertaining to the initial levels, and by ß the states pertaining 

to the final elvels, and by Wa the probability of settlement of 

state a. Then 

(37.12) 

and 

® M - J r.A#«+T) M) IP. < /V, (T)/V(0) >. (37.13) 

Formula (37.13) is obviously just in the case of degeneration. 

Expressions (37.13) can also be written in the form of a track of 

operator Q « pP(t + t)P(t) 

® (T) -Spur Q Ptf+ t>/»(0«Spur ß < P(0) >, (37.14) 

where p is the statistical matrix or density matrix, SpurQ—^Q« • 

In (37.14) it is assumed that quantum numbers a are selected so that 

matrix p in presentation a is diagonal. Under this condition 

i*-*.«.,. 
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In tris form of writing tne connection of the above given formulas 

for s>(t) with formulas of tne preceding section becomes especially 

graphic. According to the general relationship between classical and 

quantum-mechanical magnitudes operator F corresponds to a certain 

physically observed magnitude f; the observed value of f for the 

system described by the statistical matrix p is equal to Spur(p*F). 

Putting (37.9) in (37-13), we obtain 

® w - 2 */•«'?'* P.-yP'i < al. (T) a?.? (T) >. ’ (37.15) 
*1* r 

In this formula, as was already noted above, indices a,ß number 

tiie states pertaining to two groups of closely located levels, the 

transitions between which form the considered line. In general 

calculating the correlation function o(T) by formulas (37.10) and 

(37.15) is a very complicated problem; therefore in specific 

calculations we usually make additional simplifications. In the 

following paragraph we will conduct this calculation in the impact 

approximation. 

The formulas given in this paragraph for IU) and o(T) pertain 

to radiation of a definite polarization. In general in these 

formulas we must replace Pa'„t Peo by Pa,s,Pßcl. This replacement 

can affect the result only when one of the directions in space is 

separated. Everywhere below to simplify the writing we will consider 

radiation of a certain definite polarization, implying that summation 

over polarizations can be fulfilled in the final formulas. 

2* -mpact theory of broaaenlng taking into account degeneration 

of levels and the nonstatic nature of perturbation! Let us first 

^his paragraph is based on works: A. Kolb, H. Griem, Phys. Rev. 
xll, 514, 1958; H. Griem, A. Kolb, K. Shen, Phys. Rev. 116, 4, 1959; 
uu. A. Vaynshteyn, I. I. Sobe 1 'mar, Optics ana Spectroscopy 6, 440, 



consider the case of exact degeneration. We will start from general 

formula (37.10) for the correlation function; to simplify computations 

we will assume that perturbation of one of the levels can be 

disregarded. This is not a serious limitation of community. All 

the final formulas can easily be generalized even in the case of 

perturbation of both levels. Let us assume that level b is not 

perturbed. In this case a0lß(T) » 6g,ß and 

• (T) - P0PN < <£; (T) >, (37.16) 

where 

it*.: - 2 ‘'■'t *i. “'»[j ^ I • (37.17) 

Summation over y in (37*17) is distributed over all steady states 

of the atom. 

Before we calculate (37.16), it is convenient to copy this 

expression in a somewhat different form. Coefficients aa,a are 

matrix elements of a certain operator a(t) 

where in (37.16) there are the mean values of these matrix elements 

over the parameters of collisions. Transposing the order of fulfill¬ 

ment of the operations of averaging over collisions and integrating 

over coordinates of an atomic electron, we obtain 

i*. WM <•'!« Wl«> 1 -<«' U«(t)} |«>, ( 37.18 ) 

( 37.19 ) 

Starting from these formulas, to avoid confusion we will designate 

averaging over collisions by braces. Equation (37.17) can also be 

written in operational form. Let us introduce the operator 

(37.20) 
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?or matrix elements #*" we have (»^* Vi‘®tt' . This relationship 

can be simply obtained by decomposing «T1** into a series and 

calculating the matrix elements from each of the members of the 

series. Therefore VV,— «T** and instead of (37.17), we 

obtain 

iic « Kb. (37.21) 

We will look for the solution of this equation by the method of 

successive approximations. Considering the initial conditions 

/1 \ ( o ) 
a(0) * 1 (a ,(0) = £ ,), we obtain a(t) = 1 + a (t) + a (t) + ... 

YY y Y 

âa'" - /. Mi«** « K««’». /¡ta"1 « V«"-», 
> 

a(0-l + (-j) jK(n«' + 

» #• 

y^PtorffJ^(nrf/'+ 
» (37.22) 

Averaging over collisions (37.19) can be executed with the help of 

the method presented in § 36 (see conclusion of formula (36.29)). We 

will form the difference 

A {a (T)} =* {a (T+At)- a (t)} - {a (t) «(t, t + At)) - {a(T)) 

and use the approximation of the impact theory. If collisions are 

Instantaneous, then the Increase of operator a in the interval 

t, t + At does not depend on the magnitude of aft) and averaging 

both cofactors in the first member of this difference can be conducted 

separately. Therefore 

A {alt)} - {a(t)} {a(t. t + At)} - {«It)} - {a{T)} J P(v) rfv [a — t ] At 

and 

{a(T)}-exp[ï|/»(v)dv[a(v)-l]], (37.23) 
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where a(v) is the increase of operator a caused by a collision of 

the type v (v means the totality of parameters characterizing the 

collision) P(v)dv is the number of collisions with parameters 

v, v + dv per unit time. If we designate the perturbation caused by 

collision with parameters v, through Vv(t), then a(v) will be 

determined by formula (37.22), in which it is necessary to replace 

V(t) by Vv(t) and put t ■ ». Considering that only a small region 

on the order of around the point of the closest approach t0 

contributes to the integral we can also set the lower limit of 

integration equal to -* and tQ ■ 0. Then 

« 

• I* 

( 37.2*1 ) 

Putting (37.23) in (37.19), we obtain 

(37.25) 

where 

(37.26) 

If states a pertain to a group of close levels, then, proceeding 

from (37.15) and repeating all the reasonings, it is easy to obtain 

Thus, 

•w - «X1 #-*• |a*>. (37.27) 

Rtf■> 

(37.26) 
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í\ 1.: ..'/v dime Uii lo a how that in the adiabatic approximation 

formulan (37.27) and (37.26) pass into the usual expressions of 

the impact theory. If the matrix of operator a(v), and consequently 

6, is diagonal, then 

<a| •“*** I oO 1 ^ t(L', 

®#(T) - ¡ P* J»*-<• I’*!■>», 
„Y-* 

(m—mj—â+f + ^ j 
ï • 

(37.29) 

(37.30) 

where 

Y4-2Re<ai|è#|a>, 1 

A4»lni<a|ft*|a>. J (37.31) 

Furthermore, in this case from equation (37.21) it follows that 

■» a, 
» 

.-«P 

and 

<«|l»la>-JPWd« [l-«p [j J<a| ^(n|a><«'] - 

(37.32) 

Putting (37.32) in (37.29), we obtain an expression of the same 
V 

type as (36.25). 

Let us note that formulas (37.29)-(37.31) are also Just when 

perturbation V is nonadiabatic, but matrix elements a(v) and 6 are 
t . 

diagonal to quantum numbers a, a . It is not difficult to see (at 

least from (37.24)) that matrices a(v) and e can also be diagonal 

during nonadiabatic perturbation. It is only necessary that 

operator V does not have matrix elements different from zero for 
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transitions between components a, a' of one level. 

It is not difficult to check that the normalization of distribu¬ 

tions (37.28) and (37.30) is identical. In both cases the integral 

from I(ui) over all frequencies is equal to . Actually, 

J rftj »f 23«0(T)#-^dT-JI, 
» • g 

therefore from (37.28), just as from (37.30), it follows that 

Î/<••>*• ( 37.33) 

In order to obtain the distribution of intensity I(u)dw standardized 

per unit we must divide the right side of (37.28) and (37.30) by 

(37.33). In general calculating by formula (37.28) is connected with 

large difficulties, since It is necessary to calculate the matrix 

elements of operator [i(w - ^'g) + 0 ]”^. However, for the wing 

of the line in this case it is easy to obtain a simple expression. 

At large values of (w - u i0) 
o 8 

The first pure Imaginary member of this expression does not contribute 

to I(w). Therefore, considering normalization (37.33), we obtain 

(37.34) 

(37.35) 

Thus, the wing of the line is formed by imposition of dispersion 

contours with widths Ya,g« In the far wing of the line, when the 

-562- 



where ^ is the mean value of frequencies u i j. I ¿rene e ^ r — ^ t 
■J as 

^agJ is much less than (u - uQ) 

(37.36) 

(37.37) 

In the adiabatic approximation, and also when the matrix e is diagonal 
t 

to aa , formulas (37.35) take the form 

Yi*»~2Re<a'|9|a*>, (37.38) 

^ 37.39) 

A comparison of formulas (37.35), (37.37) and (37.38), (37.39) 

permits answering the question, what role in broadening of a line 

is played by nonadiabaticity of perturbation. 

Let level a be nondegenerate and let us assume that, furthermore, 

the distances to the nearest neighboring levels are great as compared 

to broadening. In this case from (37.25) it follows that 

®(T)-JJ*exp[— t J P(v)dv(I -<«I«• (»)|«»]. ( 37.40) 

Later it will be convenient to introduce phase 6^, determining it 

by the relationship <aja|o> ■ e i(5a. Putting this expression (37.40) 

and omitting immaterial factor |Paß|2, influencing only normalization 

of IU), we obtain 

®(t) -exp {t ]}. ( 37.41 ) 

Phase 5a was calculated above in § 28 in examining the Stark effect 

in a variable field, formula (28.60). Using this formula and 

repeating the same reasoning as In conclusion (37.24), we obtain 
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«tw-y J<«|^(0|0>^- 

-=£' *>*+r«x 
» —OB 

r 
X J +••* 

’* •' ( 37.42) 

This expression is obviously in full agreement with (37.22) and 

¢37.24) and could be obtained directly from (37.17) or (37.21). 

Let us be limited to the first two members of (37.42). In 

this approximation phase is more complicated 

Ä.-iL-fl1.. ( 37.43) 

where, as was shown in § 28, 

*>¿Il Í <o I y, (01 *> dt |* ( 37.44) 
» —• 

is the full probability of transition from state a to all the 

remaining steady states of the atom. The real part n is determined 
a 

by the displacement of the level. 

Formula (37.41) is simply generalized for the case when both 

levels are perturbed, the initial and the final. By repeating all 

computations, instead of (37.41) it is easy to obtain 

O It) . «av exp [—T J P(v) rfv ( 1 - <a | a*(v) |a><ß|a (v) | ß»] . 

»exp {»[iw,—JP(v)rfv(l—_ 
(37.45) 

Phase » ne - irg is determined by formula (37.42), in which it is 

only necessary to replace index a by Index ß. 

From (37.44) dispersion distribution of intensity follows 

/(a) JL 
2» (37.46) 
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where tne width and shift are determined by expressions 

Y—2 £/»(v) rfv [1 —« a*i|lv)] 

A—$ sfo i|(v), (37.117) 

where r(v) = ra(v) + rß(v)» n^v) “ na(v) ~ ng(v)* 

If by V we understand the sighting distance p, as in 5 36, then 

Y-2/W. (37.^8) 

01 

¿L-Ateo", «•-2nJee-r»»dBt|(Q)rf8. (37.49) 
0 

Thus, calculating the nonadiabaticity leads to additional broadening 

of the line, which has a simple physical meaning. Transitions from 

state a to other states under the effect of perturbation lead to a 

decrease of the lifetime of the atom in state a, which is equivalent 

to broadening of the corresponding level. This broadening of the 

level is symmetric; therefore it increases the width and decreases 

the shift of the line. In the language of the model of an oscillator 

the transitions induced by perturbation signify damping of the 

oscillations of the oscillator. The nonadiabaticity of perturbation 

also affects the real part of phase n. This circumstance will be 

discussed in detail In § 39 on the example of broadening of lines 

of nonhydrogen-like spectra due to the quadratic Stark effect. 

3. Quantum-mechanical theory of broadening of spectral lines 

i 
by electrons. Above it was shown that when the relative motion of 

As the point of departure in this paragraph we will 
use the work of A. Jablonski, Phys. Rev. 63, 78, 19^5, one of the 
first works dedicated to the quantum-mechanical theory of broadening 
of spectral lines. Although this work considers broadening by heavy 
particles and specific calculations are conducted in the framework of 
the statistical theory using quasi-classical wave functions, the 
general formulation of the problem is such that it permits including 
electrons in the consideration. The problem of constructing the 
quantum-mechanical theory of broadening in reference to electrons 
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an atom and perturbing particles can be described in the framework 

of classical mechanics, the theory of broadening of spectral lines 

Is a natural generalization of the classical theory founded on the 

model of an oscillator. Therefore by quantum-mechanical theory we 

will understand the theory of pressure effects in which not only the 

motion of atomic electrons, but also the relative motion of an atom 

and perturbing particles is described by the Schrödinger equation. 

The necessity of construction of such a theory appears essentially 

only in one case, namely the case of broadening by electrons. 

Subsequently all calculations will be conducted taking into account 

this circumstance. 

Let us consider a system consisting of an atom and p * NV 

particles interacting with it included in a certain volume V 

(subsequently we will turn to the limit V keeping the concentra¬ 

tion of perturbing particles constant). The interaction of this 

system with the field of radiation leads to radiation and absorption 

of light quanta. During radiation of light quantum in general the 

state of the whole system changes. If the system passes from a 

steady state with energy Wn to a steady state with energy Wn» , then 

in accordance with the law of conservation of energy a quantum is 

radiated 

(37.50) 

The probability of this transition is proportional to the square of 

the matrix element of dipole moment of the system, calculated from 

the wave functions 4'n of the whole system 

[FOOTNOTE CONT'D FROM PRECEDING PAGE]. 
was considered In the works of I. I. Sobel'man, Optics and spectroscopy 
1, 617, 1956; M. Baranger, Phys. Rev. Ill, 48l, 1958; 111, 1958; 
112, 855, 1958. 
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/{«)c/¡j J ▼¡(«r.r, ... rf)PVa- (q^ ... rf) dq drx... drf\* 
(37.51) 

where q are cooráinates of atomic electrons; r1 are coordinates of 

perturbing particles. If interaction between an atom and the 

particles surrounding it Is absent, then during optical transition the 

Suäte of motion of the latter does not change and the frequency of 

the quantum is equal to the difference of the initial and final 

terms of an isolated atom. If, however, interaction occurs, then 

part of the excitation energy of the atom can turn to external degrees 

of freedom, which is the cause of broadening of the line. The 

distribution of Intensity in a line Is determined by the dependence 

of I on (W^ ” ) » or’ which is the same thing, on u>. To simplify 

(37.51) we will assume that the basic contribution in integral 

(37.51) is given by the region of large values of ri> It is not 

difficult to see (this will be also confirmed by the below obtained 

results) that this approximation Is equivalent to the approximation 

of the impact theory. Disregarding the region of small values of 

r1, we thereby disregard radiation during collisions, which is 

exactly characteristic for the impact theory, in which collisions 

are considered instantaneous. The selected approximation is based 

on tne fact that according to the appraisals of the classical 

theory in § 36 electrons always create Impact broadening (see 

§§ 38 and 39 on this matter). Let us also consider that the 

perturbing particles are not interacting with each other. In 

this case for >> rQ, where rQ is on the order of atomic dimensions, 

it is possible to put 

▼«■fata *i ... rp... 
(37.52) 



Wave function (37*52) describes the motion of perturbing particles 

in the field of an atom in state a; the wave function of the atom 

*a in turn dePends on the coordinates of the perturbing particles 

as on parameters. Inasmuch as we are interested in the spectral 

composition of radiation in a small frequency interval around the 

unperturbed frequency of the atom Wq, in expression (37*51) it is 

possible to put P - eq. Then 

x4rt ... ¿r,]*. 
(37*53) 

where 

«»•«r, ... V-ffTtfr, ... r,)f* («r, ... (37-5^) 

At large values of r. (37.5^) coincides with matrix element q , 
A clcl 

of an undisturbed atom. Let us therefore present (37.54) in the 

form 

•-'(r, ... ... r,), ^ 

where e(^ ... r ) -* 0 as r. 
P i 

Let us place the first member of decomposition (37.54) in 

(37.53). This gives 

... II*. (37.56) 

Wave functions (>ai, and »at ft correspond to different potentials U (r) 

and Ua« (r) and therefore are nonorthagonal. Consequently, the 

integral of covering 

<*rI ♦.'/■> - J ♦I/lr) ♦«•/■ ir)dr, ( 3 7.5 7 ) 

in general is different from zero at any quantum numbers f, f* . 

Thus, already in the zero approximation (37-57) radiation of quanta 
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with frequency a ——WV)?fcû>, is possible, since during optical 

transition a a change of states of motion of perturbing particles 

f -* f is possible. Therefore below we will be limited to a 

consideration of just this zero approximation. Expression (37.56) 

determines the probability of radiation of a photon with frequency 

where Ea, Ea are the initial and final energy levels of the 

undisturbed atom; iS the energy of the i-th particle in the 

field of the atom in state a, is the energy of the i-th particle 

in the field of the atom in state a . 

Calculation of I(u>) is considerably simplified if we first 

find the correlation function ¢(0, and then look for 1(0. In 

accordance with the determination of the correlation function (36.8), 

(36.13) 

a>(T)c*> J /(®) «'Í-—•>*du>. (37.59) 

Integrating over w can be replaced by summation over all the possible 

final states of the system f1, f2, 

with (37.56) and (37-58) 

f . Therefore in accordance 
Jr 

• * • > 

(37.60) 

Let us consider one of the cofactors in (37.60) 

* in I <*./| ¢.,r> !■ e*p -L _ ¿r) T. 
f * (37.61) 

In general, It is necessary to average (37.60) over all initial 
states. In this case this averaging signifies averaging over 
velocities of moving electrons. For simplicity we will omit this 
averaging, since when necessary it can always be executed at the 
last stage of calculations. 
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For definitiveness we will assume that the volume V, which contains 

the system, is a sphere with radius R; the atom is in the center 
1 

of the sphere. Let us assume that on surface of volume V are 

assigned such boundary conditions that at large distances from 

the atom wave function v _ has the form 
ax 

y JV(2/ +11«'V,(cos-Lllíül). ( 37.62) 

A wave function of such type as £0 * °» describes the state of a 

particle in a centrally symmetric field, in which at infinity has 

a plane wave distributed in direction k and a divergent (scattered) 

spherical wave (see 5 41). Phases are determined by the form 

of the potential at which scattering occurs. In this case we 

limited the sum over angular moments £ of incident particles by 

the condition £ £ £0, since the final volume is considered. As 

V -*■ « £q •+ ». Let us standardize wave functions (37.62) by the 

condition 

( 37.63) 

i.e., so that volume V contains one particle. Putting (37.62) in 

(37.63) and considering that 

(cos^^JO«jj¡j-j-yó|7, (37.64) 

« 
y+%)*'’*“ y ft. (37.65) 

we obtain 

?.2«5¿(2f+l)-1. (37.66) 
* 

1 
In view of the great difference in the mass of electrons and 

atoms, me atom can be considered motionless. 
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Az -arge values of £, when the motion is quasi-classical, 
Ji 4 

2*1(2/+I)=ö2j«C-rfc , therefore 5^(2/+1)¾^ constit 
* tmO 
section of the incident wave. Let us select £0 so that 

utes a full cross 

i. 
2Ä*52(2/+1).^, c»-j=. 

Õ (37.67) 

We will now calculate the correlation function (37.61) 

f (T) - JI <*>«, I *«.*.> I* « T w \ ( 3 7.6 8 ) 

Putting functions (37.62) in the integral of covering and considering 

that 

<2/+ 1)(2/ + l) J /»(CO. **) p7 (cos ((rr) do. 

J'totGsf*) J'îilôè^pr) J Ytm('xp) >7i(4ç)sin(t 

-in47(2/+l)P4(cos(W). 

we obtain 

- piy 2 (2/ +1) (cm fc*) A, 

(37.69) 

(37.70) 

-/“(^-T+^M^-f+n;)«'. (37 71) 

Summation over k in (37.66) can be replaced by integration. The 

number of states with wave vector k', k' + dk’ is equal to 

vatt Vk'^dk’dO^ 
s?—-¡sr1 ! ther,efore 

JasF- 

Integrating over dO^« gives 

j/»acOBlsr) (cos - j~í ««.. 

thus 

f w««45 2 (2/+nj (#-^1/,1-. 
(37.72) 

In the radial integral (37.71) it is possible to put 
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y+¾J ris [vr~Y+ n'^ 

r+<\—^|M J( 

t 

omitting members containing the fast-oscillatory factors ei^k+k 

Q„j _-i(k+k )r ré. 
and ® • Let us note, further, that 

* 
J {¿tt»-*'"***-V« f- Mi* -\»1J _ 

• ^ 

where 

0. 

-2(1),-¾.). 
jr<0, 

JK>0. 

(37.73) 

(37.74) 

And, finally, considering that and j&£~~Ak-v\k , we 

will replace in (37.72)1(^) by v(k - k’). After all these 

jtrans format ions the integral in (37.72) takes on the form 

Î**' SÄ^», JáJttMp|/(*-4')vfle»p{/I(*-*')x, + íi(x1)]l — 

l(*-ru (*,)!)• 
(37.75) 

At first we will integrate over k . Replacing (k - k') by y and 

integrating over y from -» to +», we will obtain 

e * , 

î J + JE,“ JEg) f ¿jf fl* l*>lg —i% («, +VT) 
-w-e Zf * 

- 2Ä-wr 
(37.76) 

Thus (see (37.67)), 

j JR 
f (T)^ V p 2 i2/ H-1 ){2/? - rr [ 1 - /< V- ^J). 

Et 

« 1 —yjf + 
t (37.77) 
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From (37.77) it follows that broadening of the line created by one 

electron an volume V is an effect proportional to 1/V, and, 

consequently, aspires to 0 as V -► <». The total broadening created 

by all p = NV electrons in accordance with (37-60) is determined by 

the correlation function 

®(T)C«lç(T)K-[Ç(T)]^. 

Passing in this expression to the limit V + tQ ■+ <»t we will obtain 

im» 

(37-78) 

(37.79) 

^ ? 2 i2/+1 ) lio 2 tu,—n¡ ). 
im» 

(37.80) 

formula (37* 78) exactly coincides with the earlier obtained expression 

^36.27) for the correlation function. Thus, the sought distribution 

of intensity in the line I(w) has a dispersion character; width and 

shift are connected with the effective cross sections (37.79) and 

(37.80) by expressions (36.31) and (36.32). Expressions (37.79) and 

(37.8O) establish a connection between broadening of lines and 

elastic scattering of electrons. Inasmuch as both these phenomena 

are determined by the same phases n (see § 41). Cross sections 
i ir 

O and 0 are determined, indeed, not by the phases n themselves, 
Ar 

similar to effective cross section of scattering (see (41.19)), but 

by the difference n£ - n£. When perturbation of one of the levels 

can be disregarded, a* * -|-a. (Let us remember that width of lines 

y is defined as 2^0’.) In § 41 it will be shown that in quasi- 

classical approximation formulas (37.79) and (37.80) passes into the 

formulas of the classical theory (36.28) and (36.29) and 2(r, - n*) 
£ £ 

exactly coincides with n(p) from (36.20). 
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Thus, the broadening created by electrons carries absolutely the 

same character as the impact broadening created by heavy particles; 

formulas (37-79) and (37-80) for o and q , determining the width 

and shift of a line, coincide with classical expressions (36.28) 

Slid replacing (36.29)» if the latter are appropriately generalized 

by replacing Integration over p by summation over t and phases 

n(p) by 2(nÄ - n¿). Calculation of scattering phase shifts in 

general is a extremely complicated problem. Therefore it is very 

important to clarify under what conditions formulas (36.28) and 

(36.29) are Just. Formula (37-20) is the limiting expression of 

the general quasi-classical formula for phase 2( n - o') (see (41.37), 

Just (in case of field hDjr~m ) under the condition that 

(37-81) 

One can easily see that this condition can be rewritten in the form 

(37.82) 

Cross-section 0 can be expressed through scattering amplitudes 

f(0) and f (6) for initial and final states (see § 41) 

m 

M-iZW+W* -1]/>4(cos0), ( 37.83) 
im* 

9 

( 37- 84) 

Let us consider what form expression (37-87) takes in the Born 

approximation, i.e., at high electron speeds. In this case (see 

S 42) 

1 
This was first done by Lindholm (E. Lindholm, Archiv. Mat. 

Astr. Fys. 28B, No. 3, 1943). 
2 

Expression (37-84) is more general than (37-79), since it is 
also Justly for interactions not possessing central symmetry. 
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(37.85) 
wnere Z is the full number of electrons in the atom; F(q) is the 

faccor (factor of scattering); . Substituting atomic form 

(37.855 in (37.84) gives 

(37.86) 

At high speeds scattering occurs basically at small angles. This 

means that the integrand expression in integral (37.86) is different 

from zero only for small values of 6 and, consequently, this integral 

does not depend on the upper limit (q = 2k at Q =5-). Therefore 

integration in (37.86) can be spread to q = «, After that the 

integral in (37.86) no longer depends on k and 

o'c/îjrc/iy, Y^7- (37.87) 

Thus, at high speeds line width is inversely proportional to speed; 

this occurs for potentials of any type. It is only necessary that 

integral (37.86) be convergent. 

The above obtained formulas are simply generalized so that they 

also include inelastic collisions. As it is known (see § 41), 

formally inelastic collisions can be considered by introducing 

instead of real phases np complex phases 6 = n0 +1$ . All 

calculations up to transition to real cross sections o' and a" 

remain without change. In determining a and a now we obtain 

££(2/+1) 
which gives 

^ - p £ (2/+1 ) [i - r * cm 2 (¾ - tj;)], 

o* » £ £ (2/ +1) Sin 2 (n,— (37.89) 

(37.88) 
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In the quasi-classical approximation these formulas pass into (37.^9). 

If perturbation of one of the states (initial or final) can be 

disregardedt then the expression for cross section of broadening 

takes on an especially simple form 

(37.90) 

where 'ueynp an<* orynp are the cross section of inelastic and elastic 

scattering (compare with (41.60)). All the above obtained formulas 

pertain to transition between two nondegenerate levels. The 

general case of degenerated levels, and also several close levels 

giving covered spectral lines, was specially investigated by Baranger 

in the last of the three mentioned works. We will not expound the 

results of this work, since we will not need them later. Below all 

specific calculations will be conducted in the quasi-classical 

approximation, and the quantum-mechanical theory will be used only 

for appraisal of the boundaries of applicability of these calculations, 

and also for interpretation of the obtained results. In carrying out 

similar appraisals we can disregard degeneration. 

§ 38. Broadening ofLines of,Hydrogen 
Spectrum in PIasmai 

1* Broadening by ions. Holtsmark theory. The basic cause 

of broadening of lines of hydrogen spectrum in plasma is the linear 

Stark effect in fields of electrons and ions. Let us first consider 

broadening by ions. An ion at distance R from an atom creates 

splitting of levels proportional to R~2. Therefore in expression 

(36.5) for shift of frequency of an oscillator in this case it 

ï 
A detailed consideration of this question and also a discussion 

of series of adjacent problems are contained in the above quoted survey 
of Margenau and Lewis. 
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is necessary to put n = 2. 

From formula (28.36) for the linear Stark effect it follows 

that the splitting constant C2 for the level with principal quantum 

number n has an order of magnitude t) cm2/sec. 

Let us estimate the magnitude of the dimensionless parameter 

(see (36.50) and (36.51)). 

From a practical point of view the region of temperatures 

T = 5* 10^ to 30-10½0 and concentration N * 101¿* to io1® cm-^ is of 

greatest interest. Assuming therefore that v ^ 2-10^ cm/sec, 

we obtain 

*■■3 4 S 
ksaZ-lQ-^Nr S-IC-'WZ* lO’^NZ1 

At large values of N (on the order of lO'^'^tolO1® cm) h > 1. This 

means that broadening has a statistical character; the binary 

approximation is inapplicable and we must consider the joint 

influence of a large number of ions on an atom. At smaller values 

of N (on the order of 1014to 1C15 cm) and Z = 1 for the initial 

lines of the Balmer series h << 1. However, even in this case, 

2 
as can be simply seen by comparing Doppler ^idth Aw with íí » 

o 2 

we are basically Interested in the statistical mechanism of 

broadening, since outside Doppler width there is a statistical 

distribution of intensity or one close to it. 

Thus, the first problem appearing in examining broadening by 

ions consists of finding the statistical distribution of intensity 

taking in...o account the simultaneous influence of a large number 

of ions on the atom. If the conditions of applicability of the 

statistical theory are fulfilled, each of the Stark components of 

the line is broadened independently of all the others. 

0 
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Let us consider component a -► 6 of line (by a and ß we 

understand the totality of parabolic quantum numbers nn^m and 

n'rii’ng'm') and designate by 

U .Sis f j (38.1) 

the shift of this component. For field 8 we have 

<38.2 

According to the basic postulate of the statistical theory of the 

distribution of intensity I 0U) is determined by the distribution 
a p 

function V(D»V(|81) , 

(38.3) 

» 

The total distribution of intensity in line I(w) can be obtained 

by summing (38.3) over all Stark components taking into account 

their relative intensities 

W (38.^) 

Thus, the problem of finding the contour of line I( w) leads to 

calculation of the distribution function W(<£). This function was 

calculated by Holtsmark in the approximation of an ideal gas. In this 

approximation the mutual correlation of positions of ions is not 

considered, i.e., it is considered that each of the ions can with 

equal probability be at any point of the considered volume 
1 

independently of how all the remaining ions are disposed. 

Subsequently we will designate the Holtsmark function of distribution 

Vor a detailed account of the Holtsmark theory and also an 
account of the general method of solving a series of analogous 
problems see S. Chandrasekar, Stochastic problems in physics and 
astronomy, IL, 19^7. 
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(38.5) 

°y WyCÍ). According to Hcltsmark 

where 

and 

X sia X exp (38.6) 

^.-2* (b) • . 2.603IZ*aF. ( 3 8.7 ) 

The values of function H(ß) for wide interval of values of ß are 

given in Table 83. Furthermore, the graph of function H(ß) is shown 

In Fig. 3^. The maximum of function H(ß) corresponds to point 

5 = 1'607- In the two limiting cases of large and small values 

of ß the function H(ß) can be approximated by the series 

’ 

hw* 1,496?’MI+5.107^ * H,93?- + ...), ?>1, 

¿?,(I-0.463?,+0.1227?*+ ...), * 

(38.8) 

(38.9) 

If in the expression for H(ß) we determine field by putting 

, where , then instead of (38.0) we will obtain 

H(ß) ^ I.53” , which coincides with binary distribution (3b.36;. 

Let us note that from a practical point of view the difference in 

both determinations of is immaterial. According to (37.8) in the 
_ « 

wing of the line /(u)c/3(tt—0,) •; 

/(») ^ (*.-»,)" T lf5 £ (38.1Ü) 

is in full agreement with binary distribution (36.38). This is 

connected with che fact that the strongest fields are created 

basically by the nearest ion. It is necessary to note that in 

general the distribution function of the binary approximation is 

rather close to H(ß) everywhere with the exception of the region of 

-599- 



small values of ß. Weak fields are obviously created by the great 

totality of comparatively remote ions. Formula (3Ö.10; is 

conveniently copied in the form 

/(.)-/.1,5(-«.f /.-Z/* (3Ö.11) 

where in accordance with (3Ö.1) 

(38.12) 

z ia the coordinate of the atomic electron. A comparison with the 

results of exact numerical calculations shows that for a hydrogen¬ 

like ion with nuclear charge the sum over a, ß can be approximated 

by expression 

(n, n are principal quantum numbers of the initial and final levels.1 

Therefore 

Table 83. Holtsmark Distribution 

» MO) > P HUI 

0.0 
0.1 
0.2 
0,3 
0.4 
0.3 
0.6 
o.r 
0,8 
0.9 
1.0 
M 
1.2 
1.3 
1.4 
1.6 
1.8 
2.0 

O.OOCm 
0.004225 
0.011966 
0,036643 
0.063064 
0.099601 
0.129696 
0.116380 
0.203270 
0,231704 
«.271» 
6,39X113 

■ 0.32402 
0.34281 
0.35620 
0.36726 
0.36004 
0.33618 

2.2 
2.4 
2.6 

: 2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 

0..30951 
0,2 4frS 
0.238 
0,:306 
0.176 
0.150 
0.128 

0.06734 
0.05732 
0,04914 
0,04310 
0.03790 
0,03357 
0.02993 

5.8 
6.0 
6.2 
6.4 
6.6 
6.8 
7.0 
7.2 
7.4 
7.6 
7.8 
8.0 
9.0 

10,0 
15.0 
20.0 
30,0 

0.02683 
0.02417 
0.0211*8 
0.01988 
0.01814 
0.0f66i> 
0.0)525. 
0.01405 
0,01297 
0.01201 
0.01115 
0.01038 
0,00745 
0,00553 
0.00188 
0,00389 
0.00031 

1 
See H. Griem, Astrophys. 

is borrowed from this work. 
J. 132, 883, 19b0. Formula (30.1*0 



Likewise for line contour (38.4) it is also possible to use 

approximate expression 

... /. _ /a>—M. \ 

(38.14) 

Tne dependence ïH(a) on ß is determined in the following way: 

ß-° °.5 • 2 3 5 7 10 15 20 
0,1 0.098 0,086 0,070 0,039 0.02 0,0072 0,0023 0,000¾ 

At large values of ßT^iß) -+ 1.5ß Inasmuch as the line 

contour (38.4), and also (38.13), are symmetric relative to Wq, 

tne Holtsmark line width is approximately equal to . Using 

^8.13/, we will obtain for lines of hydrogen spectrum 

A«,», wf. (3B.15) 

Formula (38.14) sufficiently well describes line contour 

(especially at large values of n) everywhere with the exception of 

the central region. However, the distribution of intensity in this 

region to a considerable measure is determined by the Doppler effect, 

anu dxso be interaction with electrons (this will be shown below). 

Aopralsals show that approximations (3b.13) ano (38.14) lead to 

orrery In the resultant line contour, net exceeding 10¾. 

2‘ go action for thermal motion ana interaction of ions. it 

-s possible to indicate two causes limiting the domain of apfl^ioabilit' 

-601- 



of the Holtsmark theory both on the part of large values of T and 

small values of N, and also on the part of small T and large N. 

These causes are disregarding thermal motion of ions, embodied in the 

actual approach to broadening in the statistical theory, and 

disregarding mutual correlation of positions of ions. Let us 

consider the first cause. The above conducted appraisal of 

magnitudes of h and fi show that disregarding thermal motion of ions, 

in general, cannot be considered founded. This especially pertains 

when the concentration of ions is small and the temperature of the 

plasma is high. The general problem of calculating the contour of 

hydrogen lines widened due to perturbation of the atom by a large 

number chaotically and independently moving ions was considered by 

V. I. Kogan.1 In the framework of the adiabatic approximation V. I. 

Kogan obtained the general expression for distribution of intensity 

in the Stark component, not connected with any specific approximation 

(statistical or impact), and investigated different limiting cases. 

At h » * this expression passes into the Holtsmark distribution. 

At finite values of h 

**•-**• (38'16) 

The second member in (38.16) is a correction for thermal motion of 

ions. Formula (38.16) is Just under the condition that this 

correction member is small as compared to the Holtsmark member. This 

condition is obviously fulfilled at sufficiently large values of h 

and, furthermore, as follows from expressions mentioned later for 

\see. V., I. Kogan, Collection "Physics of plasma and problem 
of controlled thermonuclear reactions" Vol. Publishing House of 
the Academy of Sciences of the USSR, 1958, p. 258. 
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function S, at any h, in particular at h << 1, if (u - u0) is 

sufficiently great. Function S is determined in Table 84 (Fig. 35). 

Table 84. Function S(ß) 

1 ¿«»•ta* » ¿(3M0* 9 ¿(»•to* 9 • ¿(»-Kf 

0.0 
0.1 
0.2 
0.4 
0.« 

— 3,66 
-3.45 
-3.29 
-2.66 
-1.67 

0.8 
1.0 
1.2 
1.4 
1.6 

-0.589 
+ 0.376 

1,09 
1.53 
1.61 

2.0 
2.4 

i 2.8 
¡ 3.2 

3.4 

134 
80,8 
37.9 
13.0 
5.86 

3.8 
I 4.2 

4.6 
5.0 I

t 
1 

1 
V3

 *
* 
W

 —
 

s
t
s
s
s
 

For ß >> 1 and ß << 1 there is decomposition 

. 2. V (38.17) 

(T)Tr(1) {-1 + ?'7Sr(4) ¢-}. f<t. j 

T 
At large values of ß Siß^crß"7 , i.e,, function S decreases with 

Increase of ß considerably more rapidly than the Holtsmark function. 

According to (38.I6) the correction to the Holtsmark contour caused 

-2/3 -2/3 
by thermal motion of ions is proportional to h , i.e., N JT. 

With increase of T and decrease of N the distribution of Intensity 
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1 

in the component is somewhat narrowed. 

The condition of applicability of the Holtsmark theory can be 

obtained by considering the second member in the braces of (38.16) to 

be small as compared to the first. Using (38.8) and (38.17), it is 

easy to show that at h << 1 in full conformity with (36.47) the 

statistical theory is applicable to the wing of line w - <Dq >> ft. 

At large, but finite h the Holtsmark theory embraces not the 

whole contour, but only its external part 

t 

(38.18) 

It is not difficult to see, however, that this condition excludes 

only a small region near <i>0, whose width for Balmer lines is comparable 

to the Doppler width. Therefore the definitized criteria of 

applicability of the statistical theory do not strongly differ from 

those obtained jn a 36. 

Let us now turn to the effects connected with the interaction 

of the perturbing ions themselves. For system of p noninteracting 

particles the probability of configuration R1, R1 + dF^; R2, R2 + dR2, 

...» R*., R + dR is proportional to the element of volume of 
P P P 

configurational space dR1«dR2 ... dRp. If, however, the particles 

interact, then this probability is proportional to 

r<*.ft....jg' ,.. ¿nr 

where V(R. ... R ) is the energy of interaction. Thus, by disregarding 
X p 

interacción we overstate the relative probability of such configura¬ 

tions to which large positive values of V correspond, i.e., small 

distances between ions. In particular, the Holtsmark theory gives 

too high probabilities f^»r large shifts of frequency k, i.e., 

large values of and understated probabilities for small <. The 



most simple, way of introducing the corresponding corrections to the 

Holtsmark theory is calculating the Debye-Huckel shielding. The 

field of an ion surrounded by a cloud of other ions and electrons 

of the plasma at distances large as compared to the Debye radius 

* 

[iSJPo+j*)] (36.19) 

_R_ 

due to shielding aspires to zero proportional to e Rd. Calculation 
i 1 

of the function W(S) taking this shielding into account was conducted 
1 

by Ecker. The difference of Ecker*s distribution function Wg(4?) 

from that of Holtsmark depends on magnitude of parameter 

. 4**1 *. , „ 
., (38.20) 

which is the number of ions inside the Debye sphere. It is obvious 

that at RD -*• =° function WE(J?) should coincide with WH(i ). The 

difference between these distributions is greater the less 6 Is. 

Graphs of function Wg (*) for a number of values of 6 are given in 

Pig. 36. As can be seen from this figure and from (38.20), the 

condition of applicability of the Holtsmark distribution Is the 

inequality 

( 38.21) 

where already at 6 « 10 functions W£ and WH differ rather strongly. 

Putting T = 10,000°K in (38.20), we obtain for N » 1010 6 % 40; 
l8 

for N * 10 6 % k. This shows that at large values of N it is 

necessary to use the distribution function WE(£). 

A special situation appears when we consider broadening of lines 

1 
0. Ecker, Z. Phys. 148, 593, 1957; see also G. Ecker, K. G. 

Müller, Z. Phys. 153» 317, 1958; 0. Theimer, H. Hoffman, Astrophys. 
J. 127, 477, 1958. 
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and in ealculat- of hydrogen-like ions, e.g., ions of He+, Li++, etc., 

ing W(#) we must consider the reverse effect of an radiating ion 

of perturbation (for this matter see the survey of Margenau and 

Lewis). 

3. Broadening by electrons. From appraisals founded on the 

results of S 36, it follows that in all the regions of temperatures 

and concentrations of interest to us broadening by electrons has an 

impact character (all appraisals are again conducted for initial 

lines of the Balmer series). Actually, taking electron velocity as 

equal to 6*107 cm/sec (T % 104 °K), we obtain 

»-M.10—MÍ, 
sea 

It follows from this that even for large values of N (on the order 

of 10^®cm”^)h << 1 and, furthermore, the whole region of frequencies 

practically accessible to observation lies inside the interval 

u «» Uq < Q. 

values of 6. 
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A consistent theory of broadening of lines of the hydrogen 

spectrum by electrons should consider two factors: the nonadiabaticity 

of perturbation and the inapplicability of the binary approximation 

to perturbation that is proportional to fT2. Inasmuch as in this 

case splitting of levels is symmetric (linear Stark effect), the 

results very strongly depend how correctly the nonadiabaticity of 

perturbation is considered. This may be seen from the following 

reasoning. If we conduct all considerations in the system of 

coordinates with z axis directed towards the perturbing electron 

and disregard transitions between different Stark sublevels (we will 

call this approximation the adiabatic approximation In a revolving 

system of coordinates), then the form of the line will be determined 

by imposition of Stark components, widened in accordance with 

formulas (36.3^) and (36.35). Por plasma there are two characteristic 

linear dimensions, which in principle could enter as cutoff parameters 

of Pm in these formulas: the average distance between particles 

R ^ N_3s and the Debye radius RD. Putting aside for now the question 

about the foundation of one or another selection of magnitude p we 
m* 

wilx equate pm to the smaller of these two values, i.e., we will 

put P:n * N_1/3. This gives 

* 

1^.2^-^0,92 +In , 

.1 
A<v2)»,Cît>~*N ~-m -1 in'C.N*', 

(38.22) 

Inasmuch as for electrons i , i.e., C,Af.<. , the 

width of a separate Stark component is much less than its shift 

and therefore the effective width of the whole line is determined 
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by the shift of components, i.e., considerably exceeds the value of 

Y from (38.22). 
% 

If, however, we consider collision of atom with electrons in a 

certain system of coordinates motionless in space and again use the 

adiabatic approximation, we can obtain absolutely different results. 

After averaging over all collisions (this averaging includes 

averaging over ùireotions of vectors p, v) for each of the Stark 

components y ^ 2^¾^-^ and A » 0 (let us remember that the sign of 

shift depends on the direction of the field). In this case the 

width of the whole line has the same order of magnitude as the width 

of separate Stark components. 

Joint consideration of both effects (deviation from adiabaticity 

and inapplicability of the binary approximation) is a very complicated 

problem, which till now has no satisfactory solution. Therefore below 

we will be limited to the binary approximation. 

Earlier it was shown that in the case of interaction proportional 

to R“2, the basic contribution in broadening was given by comparatively 

weak collisions, i.e., collision with impact parameters p > pq. Such 

collisions correspond to large values of angular moments 1. This 

permits using the quasi-classical approximation. Thus, we arrive at 

the following formulation of the problem: 

1) the effect of electrons on an atom can be described by 

introducing time-dependent perturbation V(t); 

2) this perturbation is nonadiabatic; 

3) electrons create impact broadening. 

With such a formulation the problem of calculating the form of 

lines of the hydrogen spectrum in plasma is considered in work of 
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i 
Griem, Kolb ar.l Shen. In this work detailed calculation of contours 

of a number of Lyman and Balmer lines are conducted; very good 

agreement with experiment was obtained. Por this reason below we 

will use this work as a basis. According to Griem, Kolb and Shen 

certain additional simplifying assumptions are made. We will first 

of all consider that perturbation of one of the levels can be 

disregarded. This permits using the general formulas of the second 

paragraph of § 37* At not very high speeds of electrons the basic 

role played by transitions between states pertaining to one level; 

therefore we will disregard all the remaining transitions, This 

means that in equations (37.17) it is possible to set V » - 0 

for y a . In this approximation operators y «,«r,w (see 

(37.20)) can be replaced by V. Consequently, 

£ V.(t')df + 

(3823, 

Let us select a certain system of coordinates motionless in space 

and designate the radius vector and speed.»of perturbing electron at 

the time of the closest approach by p, v. If we are limited to the 

dipole approximation, then collision with parameters p, v corresponds 

to perturbation 

(38.24) 

where r& is the radius vector of the'atomic electron, where it is 

assumed that only matrix elements <a|r0|y> at y * a’. Therefore 
cl 

1 
H. R. Griem, A, C. Kolb, K. Y. Shen, Phys. Rev. 116, 4, i!)59. 
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(38.25) <« «*■ i r«'> 'V 

Putting these expressions in (38.23), we obtain 

+C_^V J JkkíQ.¿ (38.26) 

Averaging over the parameters of collisions in (37.23) implies 

averaging over both the absolute values of vectors p, v and also 

over their directions in space. It is not difficult to see that in 

averaging over different directions of p, v the first member in the 

right part of (38.26) turns into zero. Averaging over directions 

p, v of the magnitude 

r. </+*<) r. (/+«') - ^(0¡ (Ci +1\0 (O* (»* + V') 

gives 

£ (M? (Q? + «$«') -4 £ (r.i)* (Q* +**«') - j r.r. (Q* + v*«'). 
i i ^ 

Consequently, the second member in (38.25) takes on the form 

-• [tf+oV)* "* (e,+o,/'sr 

+7?r 
2 •• 
3 A* -,-r.ru-^r. 

Thus, after averaging (38.26) over all directions of vectorsp, v, 

we obtain 

^n general <« YXtfrJ«^ , therefore ra is not the 

radius vector of electron r in the usual meaning. 
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2 
« te, *)-1 - — J J¡ rS* ÿÿ + (38.27) 

the number of collisions with parameters p, p + dp ; v, v + dv is 

equal to vNf(v) dv 2irp*dp, where f(v) is the standardized per unit 

distribución function for v. Therefore if we are limited in (38.27) 

to only the first member, then for operator 6 in (37.27) we will 

obtain the following expression: 

9 dQ [f J — l r,r,. (38.28) 

Approximation (38.28) is obviously just only when the basic role in 

broadening is played by collisions with large values of p for which 

(see (38.27)) 

This approximation corresponds to replacing in formula (36.28) the 

factor ll-co*nte)l-[t-««^] by the first member of decomposition by 

degrees of ^C?v ^p equal to • Earlier during analysis 

of formulas (36.28) and (36.29) we already noted that 

where pQ is the Weisskopf radius, where this integral is barely 

sensitive to change of the form of function n(p). Therefore 

J* {1 —CM*te)} 2*f +J* [l —«»§] 

«rf+J'iÿ)' 4-In j . 
to ' 

Using an analogous approximation in calculating operator 6, we obtain 

^ J 2«q.48[1 -«te, •)]-{- 

** [»-«(«. «ONJcrfH- -Jr.r. ¿ lo J 
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and, consequently, 

•»- (38.29) 

As <rara> It is possible to take the average for the given level 

of tha magnitudes | <a liyj a> J. As will be shown below, the basic 

role In (38.29) Is played by the second member. Therefore Pq in 

(38.29) can be either absolutely omitted, or replaced by expression 

¿I 

§ fff ' rara. With this 

•- J 7/W rfw [l + 2 In & j. (38.30) 

Let us assume that the distribution of electrons by speeds is 

Maxwellian 

,m-/ï(S0Vs- 
As e-^i A«o|—*«o . But the whole preceding consideration is based 

on disregarding distant collisions, for which p > pm. Therefore 

the lower limit of integration over v can be set equal to v , WO. 
min 

It is not difficult to see that the region of small values of v gives 

a small contribution in the integral and, consequently, this integral 

weakly depends on vmin. Let us define vmir, from the condition 

p0^vmin^ * pm* Then> after partial integration, we will obtain 

J ÿ [|+2,n^j/(t»)rfo — 
*ala 

“(¡Sf)* {e*P [“IST1] +2 J 7e*P [“^] dv) 
(38.31) 
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F^r- tr.e values of N, T, of greatest Interest, —is small 

(as a rule, <0.1). Therefore the first member in (38.31) does not 

strongly differ from 

<*■*>“(»)* “r 
In calculating the second member we can use a simple approximation 

J y0,577 
*ata 

li’oQ +1* y+0,577 j — la 0,17. 

As a result 

/VpWpeJjjj+O.Ss] Mv ( 38.32 ) 

A simplified theory. Knowing operator e, we can calculate 

the line contour with the help of formula (37.28). Inasmuch as 

such calculations are very labor-consuming and require the application 

of numerical methods, it is expedient at first to consider a somewhat 

simplified problem. Let us disregard the nondiagonal matrix elements 

e (which in general is not equivalent to the adiabatic approximation). 

In this case according to (37.30) I(w) will be determined by 

imposition of dispersion contours I 0U), where the width y „ and 
Û P Op 

shift Aag of each of these circuits can be calculated by the formulas 

(37.31). Inasmuch as operator 6 is the real, the shift of each of 

components Aag is Identically equal to zero. 

It follows from this that the resultant contour obtained by 

Imposition of Stark components is close to the dispersion, with 

width 



»-TwT<W <«>-[»J»+>*7^4- 

rt«»-}^<r^»--.{ (S) Í^—'K^Í- 

(38.33) 

(38.34) 

Here n is the principal quantum number; is the charge of the 

nucleus of a hydrogen-like ion. If we disregard the distinction of 

truth of contour (37.28) from dispersion, then width y can also be 

calculated with general formula (37.37) 

•’.i'5.p)',Z*yv>',-x 
( 38.35) 

t 
Calculating the sum over oßa in (38.35) for a series of levels 

of the hydrogen atom shows that in the case of equal population 

density of all a-sublevels with a sufficient degree of accuracy we 
l 

can set 

(2 ^.1^)-2 **■*.<« iv.io^v (¿y (33.36) 

In approximation (38.36) the magnitude pQ(<v>) in formula 

(38.33) is determined by expression 

<»^(3r)£*. (33.37) 

If, finally, we consider perturbation by electrons of both 

levels, initial and final, then in an approximation analogous to 

(38.37) we can obtain 

(38.38) 

» 

where n, n are the principal quantum numbers. 

1 
See H. Griera. Astrophys. J. 132, 883, I960. 

-614- 



Comparison of formulas (38.33) and (36.3^), (36.35), (38.22) 

shows that the calculation of line contour founded on the adiabatic 

approximation in a revolving system of coordinates leads to strongly 

oversized values of width. Actually, in this approximation line 

width is basically determined by shift of components proportional 

to pm (see (38.22) and subsequent discussion). According to (38.33) 

line width depends on pm only logarithmically. 

As was shown earlier, the relative contribution in y of 

weak (pq < p < pm) and strong (p < pQ) collisions is determined by 

the ratio of the second and first members in the brackets of 

(38.33). Let us estimate the magnitude of this ratio. For this we 

must set the value p . It is obvious that the foundation of one 
m 

or another selection of pm cannot be given in the framework of a 

theory founded on the binary approximation. From a qualitative 

consideration we can expect that a complete examination of multiple 

collisions will lead to one of the following two values: 

°m ^ 011 O«"'* . However, for the most interesting 

le Ig 
from a practical point of view intervals of values N(10 -'-lO ) and 

?(5* 10^-- , 10^ °K) the difference between and FL, is so small 

(5 ^ FUN1^ ^ 1), that In J—Ë. ^ Ir 1IÜ! . Considering this circumstance, 
J 9‘ Q* 

-1/3 we will put p^ * N . With such a determination of p from ^ m m 

(38.37) we obtain 

b^ln- 
Vi 

T<®> 

If n is not very great (e.g., for the initial lines of the Balmer 

m 
series), then at N ^ 1015-10x3 cm-3 and T > 5*103 °K In ^>> 0.33 

anu, consequently, the second member in (38.33) plays the main role, 

'ne re fore member C.33 in the brackets in (38.32) in general can be 
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omitted. 

5* Joint effect of electrons &nd Ions. In a quasi-neutral 

plasma an atom simultaneously experiences the influence of electrons 

àiîd tons* The electrical field I created by ions at the location 

of the atom changes very slowly, so slowly that the statistical 

theory of broadening is applicable to ions. Therefore the resultant 

contour of spectral lines can be obtained by calculating broadening 

by electrons at fixed ionic field /.M and averaging the result 

over all possible values of I . In calculatingit is convenient 

to direct the z axis along field 8. In this case in formula (37.28) 

j <a* |#Pg Ia'>+^ <P 1^,1 P> • 

(38.39) 

where a, 8 designates the totality of parabolic quantum numbers 

nn^m. Putting formula (38.32) for e in (37.28) and assuming that 

all Stark components of level a are settled equally, for /,(u) and 

for total broadening I(w) we obtain the following expressions: 

/.1-)- 
->s 

l*) rtf (38.JU) 

In calculating /,(•) summation Is conducted over all possible 

directions of polarization of radiation. In this case this is 

necessary because one of the directions in space direction z Is 

separated by external field 8. 

In formula (38.40) 

a's£M,ntm, ß - 

1 I 

1' 
——-, —îtf Uv« +i 

*'>. (38.40) 
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Summation is conducted over quantum numbers n1, n2, m, r.'lt n2, n°, 

n2* m > whe^e we use the fact that the matrix of operator ( 38.28) 

is diagonal to quantum numbers m. Calculating the line contour 

by formulas (38.^0) and (38.41) requires labor-consuming numerical 

calculations. Let us therefore clarify what form line contour 

IU) has if for electron broadening we use the above ?vated 

simplified theory. In this case instead of (38.41) we can write 

(38.42) 

Let us find the asymptotic expression for I(u>), correct in the wing 

of the line. Inasmuch as the line is symmetric, it is sufficient 

to consider the region of frequencies u - wQ > 0. At «•— 

and Bag > 0 the basic contribution in integral Fag(w) is given by 

the regions and . At and Baß < 0 a 

substantial contribution in integral Faß(u) is given only by the 

region . Considering this circumstance, we can simply obtain 

(38.43) 
A*>o ' w(ïç*.)t i 
^<0 - V / 

At function Wtf) has the form *(*)=* 1,5 ¿ff"? (see (38t8) and 

(38.10)). Therefore substituting (38.43) in (38.42) gives 

*«>=*(•»-•,)“{1,5+ (ÄU>0). (38.44) 

In this formula it Is assumed that I(u>) Is standardized per unit, 

i.e., that ^A#—l . If electron broadening is absent (y « 0), 

then (38.44) coincides with (38.10). Thus, the first member In 

(38.44) corresponds t>" broadening by ions, the second to broadening 
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by electrons. By estimating the magnitude of ratio (with the 

help of formulas (38.33), (38.38) and (38.13)), it is easy to be 

convinced that electrons give the essential contribution in the 

wing of the line, where the relative role of this contribution 

grows with increase of the principal quantum number «(flrc/3*\ yc»«*) . 

If broadening by ions is described by the simple approximate 

formula (38.14), and broadening by electrons in the same approximation 

ás in (38.42), then for intensity standardized per unit of distribution 

it is easy to obtain 

A;)« ( 38.45) 

where function T(x, y) is determined by expression 

The values of function log T(x, y) are given in Table 85. 

y 0 T(x, y) -*• TH(x). At large values of x 

(38.46) 

As 

Table 85. lg T(x, y) 

0.5 10 15 00 

0.0 
0.5 
1.0 
1.5 
Í.0 
3.0 
♦.0 
5.0 
7.0 

10,0 

looa 
tit 
$74 
m 
m m 
061 

r.000 
im 
2.011 
1.572 
.014 

IjS 
|.«06 

i 
.760 l,m 
.704 2, WO 

ym 
2.4» 

Ü8 

794 
■733 
2.070 
2.000 
2.540 
2.400 

2.020 
2,794 
2.760 
2.742 
2,092 
2.045 
2.000 
2,® 
2.417 

2.»l 
2,4.79 
2.500 
2.502 
2.500 
2.570 
2,545 
2,516 
2.461 
2.379 

2,292 
3,313 
2.3Sft 
2.305 
2. «2 
2.415 
2.417 
2.410 
2.382 
2.324 

3,060 
3,975 
3.060 
2.092 
2,123 
2.135 
2,200 
2.» 
2.241 
2.» 

3.370 
3.455 
3,500 
3 fi§§ 
3,729 
1.622 
Isoo 
3,938 
2.001 
2,(43 

4.996 
3,159 
3,252 
3.354 
3,434 
S.SäO 
3.633 
3.698 
3,706 
3,064 

I960. 
'This talk is borrowed from: H. Griem, Astrophys. J. 132, 883, 
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Vji^n help of formulas (38.^5), (38.33), ( 38.38), ( 38.13) and 

Table 85 It is easy to construct the line contour for any hydrogen¬ 

like ion. A comparison of formula (38.45) with the results of 

numerical calculations by formulas (38.40) and (38.41) shows that 

this formula ensures the accuracy necessary for most applications. 

Formula (38.45) can also be used when besides broadening by 

charged particles there is some other broadening, leading to dispersion 
f 

contour with width y . In this case by y we must understand the sum 
» 

of electron width ybji and y . 

6. Results of numerical calculations. It was already noted 

above that the calculation of line contour by formulas (38.40) and 

(38.41) requires labor-consuming numerical calculations. Such 

calculations were conducted by Griem, Kolb and Shen for lines 

La’ L6’ Ha* Hß» Hy and H6 for a number values of N and T. In 

these calculations they omitted member ttpq, responsible for strong 

collisions; the distribution of electrons by speeds was assumed 

Maxwellian and parameter pm was taken as equal to the Debye radius. 

The Ecker distribution was used as function W(f) (set paragraph 2 

of this section). The results of calculations are given in Figs, 

37-54. On these figures the magnitude in A is placed 

along the abscissa axis. Function 5(a)—^ , 

I(uj) dü) « S(a) da, satisfying the standardization / S(a) da « 1, 

is placed along the ordinate axis. The minimum value of N for 

every line is selected so that Stark broadening considerably exceeds 

Doppler. 
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According to Gricni, Kolb and Shsn ths basic iactom-- ai icoting th 
% 

accuracy of results are replacement of operator V by V during 

2 
calculation of a(v) (see (38.23)) and disregarding member pQ, 

which is responsible for strong collisions. The remaining sources 

of errors (quasi-classical approximation, dipole interaction, 

disregarding heterogeneity of field, disregarding perturbation of 

the lower level, etc) have smaller value. According to their 

appraisals the magnitude of total error does not exceed (10-20)¾. 

The far wings of the line, now shown in Figs. 37-5^» are described 

by asymptotic formula 

• « 

+ [\ + Vï&,K(N, 7)] , (38.47) 

where 
L . 

(36.48) 

and the value of factor R(N, T) is given in Table 66. For a 

number of initial lines of the Lyman and Balmer series from (38.48) 

it follows that 

/ L H H H H 
0-3.440-“ 1.78.10-*»’ I.31Õ-“ 3.57-10-« 61J-“ 9.8 10'“ 

If AX—o^v is measured in A, then the above given magnitudes should 

] ? 
be multiplied by 10 . In this case 

L, h H. H, H Ht 
6-3.4? UT* 1.78-10-' 1.3-lOr» 3.8M0-» «-lb-» .9.8-10'* 

A formula analogous to (38.47) also follows from the approximat 

expression (38.44) for the wing of the line. The same constant 

G enters Into this formula as in (38.47), since the magnitude of 

’in calculation of line contour H a correction was Introduced 

’or perturbation of level n = 2. 



Table 86. Factor R(N, T) according to Griem, 
Kolb and Shen 

\r. *k 

OJIO" 10» 2-10* 4 10* 9.5-10* 10* 2-10* 4-10* 

». 

i
l
l
l
l
l
l
l
l

 

1.S0 
1.34 
1.17 
1 01 
0,35 
0,58 
0.33 
0.35 

1,05 
0.93 
0,88 
0,70 
§sí» 
0,47 
0,35 
0,34 
0.13 O

O
O

O
O

O
O

O
O

 

O
O

O
O

O
O

O
O

O
 

5
S

8
8
«
ÎS

éS
C

8
 

1.39 
1.21 
1.04 
0.86 
0.69 
0,51 
0,34 
0.17 

1.05 
0.93 
0.81 
0.68 
0.56 
0.44 
0.31 
0,19 
0.07 

0.80 
0,71 
0.62 
0.54 
0.45 
0,36 
0.27 
0.19 
0.10 

0,60 
0.54 
0,48 
0.42 
0,35 
0,29 
0,23 
0,17 
0.11 

»T ». 

I0" 
10" 
I0>< 
10»« 
10" 

10" 
10" 
10» 

1.79 
1,56 
1,33 
1.05 
0,84 
0,61 
0,36 

1.37 
1,30 
1,03 
0,87 
0.70 
0.53 
0,36 
0.30 

1.04 
0.92 
0,80 
0.68 
0,57 
0,45 
0,33 
0.21 O

O
O

O
O

O
O

O
 

2.17 
1.87 
1.57 
1.27 
0.97 
0,67 
0.37 

1.66 
1.45 
1.24 
1.03 
0,81 
0.60 
0.39 

1.37 
1.12 
0.97 
0.82 
0.67 
0.52 
0.37 

0.96 
0,85 
0,75 
0.64 
-.54 
0,43 
0.33 

L. h 

I0» 
10» 
10» 
10»* 
10» 
10» 

3.11 
3,01 
1.45 
0.81 
0.60 
0,31 

1.93 
1.54 
1.14 
0.74 
0.56 
0.35 

1.45 
1.17 
0,89 
0,61 
0.47 
0.33 

1,09 
0,89 
0,69 
0,49 
0.39 
0.39 

4.30 
3.31 
2.29 
1.26 
0.74 

3.29 
2,56 
1.83 
Ml 
0.74 
0.38 

2.47 
1.96 
1.45 
0.94 
0.66 
0.43 

1,86 
1.50 
1.14 
0.77 
0.59 
0.41 
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this constant cDviously does not depend on how electron broadening 

is câi-sulatea. As already noted above, the sum over a, ß in (38.48) 

can oe approximately calculated with (38.13). For factor R(N, T), 

which determines the relative contribution of electrons in the 

wing, in approximations (38.44) this simple expression is just 

(38.49) 

It is easy to check that the values of factor R(N, T) given in tables 

differ very little from those which follow from formula (38.49). 

Thus for line n, at T = 10^ °K with (3Û.49) and (38.33), (38.38) 

we obtain (taking * R^) 

Af — IO* 10*« 10» • io» e--» 
K(H. r>-0.78 0,85 0,32 0,09 

Table 86 for selected values of N gives 

7)-0.81 0456 0.31 0,07 

The biggest divergence occurs at /V-.10" , which is connected 

2 
witn disregarding member ttpq in 6 during numerical calculations. 

Let us remember that In formulas (38.49) and (38.33) the contribution 

of strong collisions is considered (although it is very near to 0). 

Above (see formula (38.44)) we have shown that broadening by 

electrons very significantly affects the wing of the line. Electron 

also render a noticeable influence on the central part of the line 

contour. This influence is especially great for lines having 

unperturbed Starx components. As an example Fig. 59 gives the 

-ine contours 1^, calculated taking into account the joint broadening 

effect of electrons and ions, and also the Koltsmark contour, 

* x ö ^ 3 J 

K0.-.0 and Sher¿. 
55 and 56 are taken from the above quoted work of irlem, 



approximations during calculation 
of contour L . Joint broadening by 

electrons and ions. 

Fig. 56. Comparison of different approxi¬ 
mations during calculation of contour Hg. 
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For 
000r 

Pig. 57. Comparison of calculated 
and experimental line contours 

concentrât ion of charged particles N 

connected to ions alone, 

lines without undisturbed Stark 

component, such as Hg, H6, ..., 

the role of electrons in 

formation of the central part 

of the contour is somewhat less 

(Fig. 56). Nonetheless in this 

case too the contours of lines 

obtained in calculation of the 

broadening by ions alone and in 

calculation of the joint effect 

of electrons and ions are 

essentially different. If we 

disregard the broadening effect 

of electrons, then the value of 

determined by the width and 

the wing of the line (a combination of the calculated contour with 

that observed), differ by approximately 2 times. If, however, the 

calculation of contour is conducted taking into account the joint 

effect of electrons and ions, then both values cf N practically 

coincide. Figures 57 ano 55 give calculated graphs and observed 

contours of lines K^, Hg. As can be seen from these figures, 

ohe observed and caxculated contours are very close. Everywhere, 

with the exception of a small region of frequencies near the 

differences between the calculated and observed contours lie within 

_, P-1-S* 1C -.-6 oo-ser/eu contour ^s taken i’r0m w0rk: P. bogen 
Z. rnys. 1^9,^62 (1957). In Fig. 56 we used the data of V. F. " * 
Ki: ay ova ana N. Sobolev, Reports of the Academy of Sciences of 
.---- - " - 1 - * '■ . . ; , t il y 1 d O . 

0 



limits of experimental accuracy. As for the central part, here 

the divergence is fully natural, since during calculation of contours 

Doppler broadening was not taken into account. For line Hg, not 

having a central component, Doppler broadening obviously leads to 

an increase of intensity I(w0) in the center of the line. For 

line H , conversely, the value I(wn) decreases. With increase of T 

and decrease of N the role of Doppler broadening increases. In 

particular, for N, the considerably smaller minima given in Figs. 

37-5^, have a central part basically determined by the Doppler 

effect. The line contour H. in Fig. 58 is a little asymmetric. 
P 

This asymmetry can be connected with the quadratic Stark effect. 

The ratio of corrections of the first and second perturbation theory 

approximations to the energy of a hydrogen atom has an order of 

magnitude 
24 I • ^2AfR\* 

Fig. 58. Comparison of calculated (.) and 
experimental contours of lines H^, Hß. 



Ir is simple to see that for the initial members of the Balmer 

series effects proportional to tf2, appear only at small values of 

R, on the order of a0n2, i.e., at R ^ p0. It is also easy to show 

that with these same values of R, i.e., at R ^ a0n2, heterogeneity 

of the field can be substantial. For collisions p > pg heterogenity 

of the field can be disregarded. 

§ 39. Broadening of Lines of Nonhydrogen- 
Like Spectra in Plasma 

Preliminary evaluations. The spectral lines of nonhydrogen¬ 

like atoms in the presence of a constant and uniform electrical 

field experience displacement (and also splitting) proportional to 

the quadratic Stark effect. Let us assume that the field 

created by charge Q, changes little over the atom (this is just for 

sufficiently large values of R). Then in expression (36.5) for 

the shift of frequency of an oscillator n = 4 and < = C^R-^. Let 

us estimate the magnitude of parameters he (broadening by electrons) 

and hi (broadening by ions) 

(39.1) 

The constants oi the quadratic Stark effect as a rule, have 

an order 01 magnitude 10 to 10 ^ cm /sec, although one can meet 

values of < 10"15 and 'v 10“11 cmVsec. Putting 

c,¡ = 10" -1°1- ^ cm /sec'in (39.1) and taking v = 5*107 cmVsec, 
6 9 

5 v.f = 2*10 cm/sec, we obtain 
..i. 

h¡ =»0,75(10“” 10-M)/V. 

At not very large values of the concentration of charged 

particles N < IG1^ he << 1, h1 << 1 and, consequently, both 

cv^ectrcns ana ions create impact broadening.. 
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According to (36.33) Y«. A*c»*r • Thus, the basic role in 

broadening of a line is played by electrons. The interaction with 

ions only somewhat increases the impact width and shift of the line, 
I. 1 

approximately by 15-20* since (57)”-(¿r)*^5 “6 • Inasmuch as xc^Q* , 

the direction of line shift is the same for ions and electrons. 

Por lines with large values of the constant of the quadratic 

Stark effect the appearance of a statistical wing created by ions 

is possible. The statistical wing is displaced to one side from 

the nucleus of the line, namely from the shortwave (if > 0) or 

W - Uq >> í¡ 

longwave (if < 0). This wing should be located in the region 

V3 
It is not difficult to see that this region of 

frequencies is fully accessible to observation. For instance, for 

broadening of the line Mg 5528 A (3^P^ - ^"^2^ by ^ ions at 

? o i 

5OOO K 

C4*5*10"M 0“4/*«o. •j — io* fim/a*« H Q » 10'* S8S-1, 

A**—ST0“1*75 ^ 

The asymmetry of spectral lines with large values of C^, caused 

by the presence of a statistical wing, was repeatedly observed. As 

an example Fig. 59 6ives the contours of a series of lines of sharp 

and diffuse series of Na in conditions of arc discharge T ■ 5000°K, 

N ■ 3*101^ cm“^.1 These lines correspond to the following value of 

constants and parameters h^, £): 

1, A 4751.8 5153.4 6150.7 4882.8 5688.2 8194.8 
r om4/sao 38-10-« 12,5-10-** 36 10”“ 4M0“,• 8.2 HT'* 
6, W-10-* 2.I-I0-» 6^-10“* 0.7 0.15 12 I0-* 
Q. sec“1 1.11(7' U-M7* 2.4-10" 4.6-10" 8.3 10" 1.6-10" 

“ I 1.5 2.75 0.47 0.9 2.6 
Attn uAq 

Kitayeva, I. Sobolev, Optics and spectroscopy 1, 302, 1956. 
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As can ce seen from Fig. the asymmetry of the contour is maximum 

for line 4962.b A which corresponds to the biggest values of 

constant and parameter 1-^. The line contour 6I6O.7 A 
"•14 

(C¿í = 36*10 , h^ a- 0.006) is symmetric. 

Fig. 59. Contours for spectral lines of' 
sharp (a) and diffuse (b) series of Na. 

At large values of and N the condition that hi ^ 1 can be 

realized. This condition means that ions create statistical 

oroadening; this broadening is connected to the joint influence on 

atom of a large number of ions. In full analogy with (38.4) and 

(38.5) this broadening is determined by distribution function 

■'* (© ) • Let us put 

B'-JgiC,. 
(39.2) 

(39.3) 



Then 

iÿ 

-r (/ïp)*«. 

dtt. (39.4) 

(39.5) 

The width of a line widened in accordance with (39.5) is approximately 

equal to 

(39.6) 

At large values of u> - w0 from (39-5) and (38.8) it follows that 

..1 . • 

m . yWB* N (•-«.) “ £ <C4¿. (*39.7) 
• ■ ,,-+, 

i.e., formula (36.38) of the binary approximation. Let us compare 

magnitudes y 3ji and Aw from (39.6) 

jjjU&SEffi* -0.88 0.58*7- (39.8) 
imcJ»;* 

Consequently, as long as h << 1, y > Aw and broadening by electrons 

plays the main role. 

In the framework of the Impact theory of Weisskopf-Lindholm 

at n • 4 

i JL • i 
Y^U.C? v'N, A-9,8c7w7yv, ^-1,15. (39.9) 

11 
Consequently y. Aciscje* , where the ratio of width to shift is 

constant and equal for all lines. Also, above we showed (see 

(37.87)) that in the most general case at high speeds of electrons 

this dependence Y«5®"' should hold. This shows that the applicability 

of formulas (39.9) is limited to the region of small values of v. 

To the same conclusion can also be reached on the basis of simple 

qualitative considerations. The same conclusion can als : be reached 

on the basis of simple qualitative considerations. The Weisskopf 
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radius pr in the case of broadening by electrons has an order of 
u 

1 / o z 7 
magnitude (C^v ) x 3(10 ^-10- ) cm. It is not difficult to see 

p 0 
that the period of collision — at large values of v is comparable 

ve e 
2 7T 

with periods of motion of atomic electrons —, which makes it 

necessary to calculate the nonadiabaticity of perturbation. Let 

us note that although in many cases the observed values of y, A, 

and also j fully satisfactorily agree with (39.9), there are experi¬ 

mental data in full contradiction to (39-9). Thus, a detailed 

investigation of broadening of series of lines Ar II in spark 
i 

discharge showed that the ratio of width to shift is not constant 

for all lines and for many lines it is not equal to 1.15* The 

magnitude of the ratio for the series of investigated lines turned 

out to be 2-3, and for some 5-10. Furthermore, the dependence of 

y on constant turned out to be considerably weaker than follows 

2/3 
from the law of . Thus, when changes by 2 orders line width 

changes not by a factor of 20, but only by a factor of three. 
2 

2. Broadening oy electrons. The general quantum-mechanical 

formulas of 5 37, describing broadening by electrons, are unsuitable 

for specific calculations, since at present there is no simple and 

sufficiently effective method of calculating the effective cross 

sections of elastic and inelastic scattering of electrons on atoms 

(see Chapter XI). Therefore all further consideration will be 

conductea in the framework of the quasi-classical theory. The 

1 
S. L. Mandel'shtam.and M. A. Mazing, Publishing House of the 

Acaaemy of Sciences of the USSR, series physics 28, 1018, 1959. In 
experimental conditions broadening of the line was wholly determined 
by charged particles, where the condition h «< 1, h. << 1 was 
fulfilled. 1 

2 
In this paragraph the account is based on work: L. A. Vaynshteyn, 

I. I. Sobe1'man, Optics arc spectroscopy 6, 1959- 
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condition of quasi-ciassicaii'cy (37.81) in this case can oe written 

in the form , where m is the mass of an electron *=»^ 

7 -1 
is the wave number. At k on the order of 4-10' cm , which corresponds 

o 15 
to electron temperature Te = 5000 K, we obtain 1.4«10 >> 1. 

Consequently, this condition is fulfilled for lines with constants 

-14 4 
Cjj > 10 cm /sec, 

Just as in examining broadening of hydrogen lines , below we 

will be limited to the dipole approximation and we will assume in 

the beginning that the perturbation of one of the levels can be 

disregarded (in the quadratic Stark effect this assumption is 

fulfilled in most cases). 

In the case of nonhydrogen-like atoms the matrix elements of 

dipole perturbation V are different from zero only for transitions 

between states pertaining to different levels. Therefore in calcula¬ 

ting a(v) (formula (37.24) we cannot use approximation (38.23), i.e., 
_ J- H,t 

we cannot replace operator y««#* v« by V. This circumstance 

essentially complicates calculation. However, in the case of the 

quadratic Stark effect a series of simplifications of another type 

can be made. In the quadratic Stark effect all M components of a 

level are displaced to one side; the direction of this shift does 

not depend on the direction of the electrical field. Therefore 

the results of calculations depend on selection of the system of 

coordim.tes (motionless or revolving) considerably less than in the 

case of hydrogen-like levels. Considering this circumstance, we 

will be limited in the beginning to the approximation of a revolving 

system of coordinates and will direct the z axis along the perturbing 

electron. With this 

K——(35.10) 
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. ./ i:. xúgor.aI ta t:, broaa^./lr.g o:' each of 

: ...,/ : t;/„■  :,ae can be oonsiaeaea inaependently 

of L-a,.n wtijor //. : f >.i e ¡’jene/': on by M wan aboeno. *n pai't i c uiar t 

vff can use fomnaia (37-^7). 

Le: an consider one of tne components of the line n k and 

assume fnat level k is not perturbed. In accordance with what was 

said the stanaardized per unit distribution of intensity in this 

component la determined by the dispersion formula, where width y and 

6 a r e e o u a a. t c 

Y » 2Nv2n q </q [1 — « - r ^ cos ^ iq)|, 

JO 

A »» Nv2n ^QdQe-1 «>' sin i] [q), 

(39.11) 

(39.12) 

.There 

ij—iTi 

--¿■51' j </«i y <*i K(o i n>*-*•*'& 
* —>g|| —>«J| 

m • 
—I¡Z’ î Í <«|V'(/)|s><*|KU-t)|*>Ä. 

* • —an 

By integrating in (35.13), we simply obtain 

’■-‘déE^fc)' 

'4Üÿ Z.c't 
-lit 

(39.13) 

( 39.1^0 

(39.15) 

where 

X 
/{*)--f [•-'Eii*)-i*El(EUX)- j Y*. 

(39.16) 

39.17) 

: < j o: n oelo V/, t : i e e r r o r* s c o n n e :.: t e 
smalj. ana qualitative^,./ do not 

/» ,.4.. ■* .r i t» * ■> «dl 
chango tne result: 
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(39.18) 

At r-0, and (37.14) passes into tne usual 

expression of the adiabatic theory 

C.-£cr 

Deflections from adiabaticity start for impact distances of 

p £ p . At p << p n turns out to be much less than this follows 
3 S 

from the adiabatic theory. Simultaneously the role of nonelastic 

collisions strongly increases, since r increases with decrease of 

P. 

Very frequently the basic contribution in sum (39-14), and also 

in sum ^C, is given by the nearest level for which <n|P2|s> / 0. 

We will subsequently call this level the nearest perturbing level 

In this case 

(39.19) 

To obtain the resultant contour of the whole line we must sum 

the separate M-M components of the line, widened in accordance 

with (39.11) and (39.12). Within limits of accuracy at which 

calculating in the framework of this approximation makes sense, we 

can consider that this summation gives a dispersion contour. For 

the widuh and shift of the line from formulas (39.19) we can 

obtain the following expressions: 

y -2Afoe/ (ß), f(ß) « Aß “ $ [1 - . a» *1 (*)1 * dx. (39.20) 
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ne ^ £ e 
ffl 3 

cross section of broadening and shift of the adiabatic theory 
> 

(formula (36.33)); is the average for 

this line value of the constant of the quadratic Stark effect (in 

the approximation of one perturbing level) and 

¢-(5^)^-(/1¾)1 
A£| 
mo* * 

(39.22) 

where AE is the distance from level n to the nearest perturbing 

_evel; S ana f are line and oscillator strength of transition from 

level n to the perturbing level; g is the statistical weight level 

n. 
i » 

Factors I (3) and I (3), determining the corrections for 

nonstatic perturbation, depend only on the dimensionless parameter 
t t! I tt 

g. At s >> 1 I = I =1. Atß'vl and 3 < 1 integrals I , I 
I !l 

v/ere calculated numerically. The dependence of I and I on 3 is 

shown in Fig. 60. Deflections from adiabatic theory start to appear 

at 3 % 5. In the region 3 ^ 5-0.02 I exceeds unity by approximately 

10-20$, which is caused by inelastic collisions (r / 0). Comparison 

of integrals / (i - e“J cos r)¿ dp and /(1- e“r)p dp shows 

that 3 < 2 line width almost is wholly determined by inelastic 

collisions. This is connected with the fact that at small values of 

3 the keisskopf mechanism of broadening becomes barely effective 
t 

due ,0 strong decrease of n. At 6 < 0.1 tne integral of I decreases 

rapidly with aecrease of 3. 

Ir.elastic collisions have little effect on shift of a line; 
n 

always decrease; therefore with decrease of 3 I monotonicaiiy 

decreases. At s << 1 the asymptotic expression nclcs 
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(39.23) 

( 39.2*0 

With an accuracy of a constant factor of 1/2 in the argument of 
t 1 

logarithm o » 2aHeynp (comPare (39.23) and (**5.30)). As can be 
ir 

seen from formula (39.2*0, at ß << 1 o in general does not depend 

in evident form on magnitude AE. This means that in calculating 

it 
a we cannot generally disregard the contribution of distant 

perturbing levels. Below we will show that in calculating several 

perturbing levels s, satisfying the condition ßs << 1, the expression 

it 

for o has the form 

*L(±) 
2 

\E si- 39.2'5) 
“ sWaJs/ I Afin I 

If we do not resort to the approximation of a revolving system of 

coordinates, but use the general formulas of § 37, then the 

calculations are considerably complicated. Therefore below we will 

use a comparatively simple approximation, which at the same time 

gives sufficiently good results. 

FJjg. 60. Dependence of integrals I , 
l" on parameter ß; the solid line is 
the approximation of a revolving system 
of coordinates; tae dotted 11.0-:.- is one 
motionless system of coordinates. 
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I II 

Art analysis of* the results of calculating the integrals I , I 
i h 

shows that in the region where ï and I noticeably differ from 

unity (deflection from adiabatic theory), the basic contribution is 

given by comparatively weak collisions, i.e., uy large values of 

o . 

For such collisions in (39.20) and (39.21) we can use an 

approximation linear to r and n: 

[ I —- * ~ r ^ cos Tj (x)| ¾ r(x), tf~r",sinii(x) ¾ ii<x). 

This means that in examining collisions in a system of coordinates 

motionless in space, for the width and shift of a line, there is a 

basis to use formulas (39*11) and (39.12), placing in them values 

of r and r, averaged over all directions p and v and over all 
» 

'A-, M components of levels. For such averaged values of n and r we 

can obtain the following expressions: 

(39.26) 

(39.27) 

where 

—j <£x, j dxt-14-¾¾— 
-• -® (l+xî)7(l+^r 

For y >> 1 and y ->■ 0 these expressions hold: 

^ (/)-1. Ä(/) —0. I 

(39.28) 

(39.29) 

tne oasic contribution in (39.26) and (39.27) is given by the 

Ciosest perturbing level, then all calculations are conducted in 

precisely tne same manner as in tne approximation of a revolving 

system of coordinates, 

u ■. t e rm 1 n e a o y f o r m. u 1 a s 

The width and shift of the line will be 

(29.21) and (39.21), on^y one expressions for 
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I and l" will be changed. At ß >> 1, Just as in the approximation 
x • " ^ 
of a revolving system of coordinates, I (ß) = I (ß) * !• At 

g << 1 the new expressions for integrals I , I differ from those 

obtained earlier by the factor V Therefore the asymptotic 
Tt 

expressions for effective cross sections c', c can be obtained 

from formulas (39.23) and (39.29), replacing the numerical coeffi¬ 

cients t.3 and ^ respectively. The results of numerical calculations 

of integrals l' and l" are given in Pig. 60. As can be seen from 

this figure, the two methods of calculating these integrals 

(motionless and revolving systems of coordinates) lead to qualitatively 

identical results. The quantitative difference is maximum [-½) 

at small 6. Figure 60 also gives the graph for integral 

r ¡[l-t-'«*!**' • This integral determines the contribution 

to broadening of inelastic collisions. At ß < 0.2 InsQ = I , 

l.e., broadening is wholly connected with inelastic collisions. 

Formulas (39.20) and (39.21) determine width and shift of a 

line at fixed electron velocity. Of greatest practical interest are 

the values y and A, averaged over Maxwellian distribution of velocity. 

It is not difficult to show that such averaging leads to expressions 

t-22V<«><M<*»/(p>. ( 39.30 ) 

(39.31) 

where 
* t * \7 I AC I _ /_$—N »* « i A£ 1 
P“Va*U/ V3*»auy “SkT 

I CD t 

, <v>5 /!• 

t 

'»M4)‘P'‘'r (£*)“• 

(39.32) 
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The integrals J (ß), J (3) were calculated numerically, where 
I t! 

in these calculations used values of I , I , corresponding to the 

consideration of collisions in a motionless system of coordinates. 

The results of these calculations are given in Table 87. As 

^-(4)^(1-)=0.97. 
1 - it - 

Table 87. Values of Integrals J (3), J (3). 

? j'(h ./'(Ö ï J'tii /*(>> 

64 
32 
16 
8 
4 
2 
I 

0.5 
0.2S 
0.125 

0.625-IO”* 
0.312-10-» 

0.97 
0,97 
1.02 
1.03 
1.06 
1.12 
1.17 
1.20 

' 1.15 
1.09 
0.927 
0.784 

0,97 
0,97 
0,97 
0.96 
0.9« 
0.90 
0.861 
0,746 
0.604 
0.455 
0.326 
0.223 

0.156-IO"1 
0,78-IO"* 
0.39-IO-* 

0,195-10-1 
0,97-ur* 
0,48-10-1 
0.24-10-1 
0.12-10-1 
0.61-10-4 

0.305-10-4 
0.15-10-4 

0.594 
0,451 
0.334 
0.239 
0.171 
0.119 
0.0824 
0,056 
0.038 
0,024 
0.017 

0.151 
0.094 
0,063 
0,0405 
0,0245 
0.0167 
0.0103 
0,0065 
0.004 
0.0026 
0,0016 

Let us now consider in what measure the above obtained results 

can be generalized in the case of several perturbing levels. This 

question obviously arises when for one or several perturbing levels 

the parameter 3 is on the order of or less than unit. Actually, in 

adiabatic theory y and A are expressed through the constant of the 

quadratic Stark effect for the given line. The magnitude of this 

constant is determined by the total perturbing effect of all atomic 

levels. 

If for the nearest perturbing levels, playing the basic role in 

broadening, parameters 3 % 0.1, generalizing formulas (39.20), (39.21) 

and (39.30), (39.31) is not difficult. As was already noted aoove, 
i " 

in these cases the basic contribution in integrals I (3), I (3) 

is given by the region of large values of 3 (weak collisions) for which 
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Therefore width and shift of line can be calculated by the 

formulas 

T-Í*wy«¿Ke»/<*.>. ¢39.33) 

( 39.34) 

Prom (39.34), in particular, follows the asymptotic expression 

(39.25) for o". 
i i ^ 

Although such approximation (summation of o J (ß ) and 
UÖ o 

o J (ß ) for different perturbing levels) is founded for & < 0.1, 
os® 

it also gives good results at B * 0.1-0.4. Moreover, if broadening 

Is determined by inelastic collisions (ß < 2, see Fig. 60), then 

the errors connected with approximation (39.33) and (39.34) in 

most cases are small. As an example in Table 88 a comparison is 

conducted of values of y and a for lines He I, obtained by formulas 
i 

(39.33) and (39.34), with the results of numerical calculations. 

For each of these lines Table 89 gives the level responsible for 

broadening, and also the perturbing levels nearest to it and the 

V Griem, M. Baranger, A. Kolb, G. Oertel, Pays. Rev. 125, 
177, 1962. In this work width and shift were calculated by formulas 

V- IV»(1«;+?*"Nv ? ijC'e > with subsequent averaging over 
h • •. 1 

V, where parameter p0 was determined from condition 

With such selection of pQ passage to the limiting formulas of the 

adiabatic approximation is ensured. The expreimental data given in 
Table 90 were borrowed from this work. 

-646- 



Table 88. Values of y and A for Series of 

Lines He I at N * 10^. 

Calculations h.y formulas 
¢35.33), (39.31) in A 

flumerical calculations of 
Irian, — ranger, Ko It- and 
C-artel in ^ 

Liras He 
MM IC MO J MMoj MOM M00 10000 M 000 MOM 

1 3889 A 
rs-vp 

1 5671 À 
VP-VS 

14713 A 
VP—VS 

13186 A 
m-vp 

1 4121 A 
VP-VS 

15016 A 
VS.—VP 

i so# A 
VP-VS 

•* 

X 
I 

.X 
X 
X 
X 
X 

26.6 
6 

38 
—5,4 

70.8 
40.7 

72.6 
16.7 

188,2 
92 

79.8 
22.3 

128.6 
90 

» 
5.12 

41.6 
—3,6 

83 
40,3 

77.2 
13.5 

190 
tt 

18.8 
10.5 

141.6 
«6.6 

30.4 
3.92 

43.2 
-1.8 

98.4 
36.8 

76.6 
10.4 

206 
78 

70.6 
12.8 

151.2 so 

29 
3.03 

44.8 
-0.4 

98.8 
11.5 

73,2 
7.65 

216 
85 

«3.4 
9.2 

154 
45.5 

21.2 
7.73 

33 
-9.9 

71 
52,7 

85.4 
23.2 

165,8 
114 

80.2 
27.6 

130 
86 

23.4 
5.88 

35.2 
-5.6 

86 
53.7 

71.8 
17.5 

¡».2 
112 

75.1 
22 

151 e.s 

24.8 
4.18 

38.2 
—2,35 

98 
50 

72.4 
13.1 

216 
98 

70.4 
17.2 

183.4 
71.8 

24.4 
2.91 

36 
-0,36 

103.8 
42.7 

69.4 
§,33 

222 
81 

63.8 
12.7 

164.6 
38.4 

Table 89. Relative Contribution to 
Different Perturbing Levels 

? art orb¬ 
ing 
level* 

*£». M-1 
(mÍo* k> (10 000* K) 

Levai 

Haia' lv«! 
oor.tritutlor. 
f paruirt- 
ng 1-avelB 

f? width at 
IC.Ot j°K 

( Í r; % ) 

ro 

« 

« 

PS 

9P 

« 

» 
ro 

m 

r? 
rp 
VP 
vp 
VP 

VP 
VP 
VP 

vs 
VD 
» 

VP 
VP 
0? 
TP 

g.»f 
m 
4SS 
VD 

S8J> 
VP 
VP 

-2330 
547 
41¾ 

V 

—17015 
—5iF 

5115 

7860 

-4732 
•19 

-919 
298 

mm 

454 
1848 
» 

—1344 
—107 

#00 
5300 

—4731 
553 
3003 

0.91 
0,3 
0,97 
2.2 

3 
0,284 
0.« 
2.8 
1.34 

1.88 
1.14 
0.8 

0.68 
0.26 
0.6 

1.4 
0.9 
0.42 
0,34 

0.3 
0.04 
0,82 
*•5 . 

1.4 
0.76 
0,98 

0,457 
O.lfSQ 
0.483 
1.1 

1.5 
0.142 
0.218 
1.4 
0.67 

0.83 
0,57 
0.3 

0,34 
0.13 
0.4 

0.7 * 
0,45 
0.21 
0.17 

0.15 
0,02 
0.26 
0,75 

0.7 
CM* 
0.44 

21.4 
06.7 
4.4 
7.8 

2.4 
88,1 
2.2 

23.1 
4.2 

4 
94 
2 

21.3 
74.7 
4 

5.4 
92.5 
1.8 
0,5 

23.5 
89 

1.5 
6 

2.3 
94.4 
3.3 

-649- 

I 

# 



values of corresponding to them. 
S 

Let us note that at large values of parameters ß formulas 
D 

(39.33) and (39.34) do not pass into the formulas of the adiabatic 
'V 

theory. Therefore their distribution in the region of values 3S * 2 

can lead to absolutely incorrect results. The fact is that in 

approximation (39.33) the contributions of all perturbing levels 

to line width y are summarized independent of the sign of energy 

differences ¿E . This is justified under the condition that 
ns 

broadening is connected to inelastic collisions, i.e., it is 

determined by the magnitude r. It is easy to show that all members 

of sum (39.27) at any signs w are larger than zero. In the 
ns 

adiabatic theory broadening is determined by elastic collisions, 

i.e., by the magnitude ng, the signs of separate members of sum 

(39.26) are different for ûEng > 0 and AEng < 0. 

The above can be summarized in the following way. If the basic 

role in broadening is played by elastic collisions (for the most 

essential perturbing levels ßg > 5, see Pig. 60), then one should 

apply the formula of the adiabatic theory 

Y-tllV<w>7c/, A«9,6AJ<*>7C47. ( 39.35) 

If, conversely, the basic role is played by inelastic collisions 

(8 < 2), then we can use formulas (39*33) and (39.34). When 
s 

perturbation of one of levels n or k cannot be disregarded, we can 

calculate y , and y, , A., and then find the full width and 
n n k k 

shift 

t-Y.+Y*. A-A. 
(39.36) 

At 0.4 £ ß ^ 2 the application of formulas (39.33) ana (39.34) 

can lead to noticeable error. The magnitude of error depends on the 
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location of perturbing levels and their relative contribution to 

broadening. In separate cases the error can attain several tens 

of percents. However, usually it does not exceed 20%. 

If the contribution of elastic and inelastic collisions in 

averaging in approximately identical, in specific case we must 

resort to numerical calculations. We must note that practically 

such cases are met very rarely. 

3. Joint effect of electrons and ions. Knowing the distribution 

of Intensity in a line, caused by the interaction with electrons 

I (w) and ions I4(u), we can simply find the resultant contour, 
e X 

For this we must form a contraction from Ie and ^ (see (36.17)). 

If 1^(u) is determined by the dispersion formula (impact 

broadening), then the resultant contour also will be a dispersion 

contour, where 

Fig. 61. Dependence ©f 
electron width Y . Ion 

e 
width ï^ and full width 

Y on temperature of 

plasma x * pp. The 

dotted line shows the 
dependence of Yg and 

Yj^ on x according to 

the adiabatic theory. 

Y-Y.+Yi. à-A'+A,. ( 39.37) 

The theory developed In the preceding 

paragraph in principle can also be 

applied to Ions. It is easy to show that 

for Ions with charge Ze and mass 
« ^ 'v 2 

„„ Z M ß , . ., 
M ß, « —— . where m is the mass of an 

1 m e * 

electron. In all practically interesting 

cases ß^^ >> 1. Consequently, the 

adiabatic approximation is justified. 

Let us clarify how y and A depend 

on temperature. Figure 61 shows the 

dependence of ye, y^ and y on tne Parameter t - . 

The dotted line corresponds to the adiabatic tneory. At /, < 0.2 full 
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width y ■ Ya + Y-î coincides with the value which follows from 

the adiabatic theory. In the region 0.2 < x < 10 Ye is a little 

larger than follows from the adiabatic theory due to inelastic 
a 

collisions with electrons. At x ^ 30 the dependence is 
L 

replaced by the dependence Y«6*5*”' . At the same time Y/^** 

in accordance with the adiabatic theory, up to x ^ 1<£ , i.e., in 
i 

all practically Interesting range of values of T and AE. Therefore 

in the region 102 < x < 10^ Ye and Yj^ are magnitudes of one order. 

At x > 10** broadening by ions starts to play the basic role: 

Y, >> Y , Y % Y<. From Fig. 61 it is clear that y very weakly 
i e I 

depends on T. During change of x, and consequently, of T, by 6 

orders (10 < x < 10^) y changes less than by a factor of 2 and also 

nonmonotonically. 

The integral I ($) decreases with decrease of ß faster than I (a). 

2 
For this reasion at x > 5*10 a^ >> Ae and a ^ a^. 

In the adiabatic theory the ratio j m 1.15 for all lines. Now 

it depends on a (Fig. 62) and is close to 1.15 only in two limiting 
© 

cases: B >> 1 (both electrons ions are described by the adiabatic 
© 

theory) and Be < 10"4 (electrons, in general, do not play a role). 

In the approximation of one perturbation level ^- > 2.5. In calculation 

for several perturbing levels Eg > En and Eg < En due to mutual 

compensation of shifts ^- > 2.5 is possible. Let us note that for 

ions in the case of small ¡AE| and small p transition of the 

quadratic Stark effect to linear is possible. This can also affect 

the magnitude of the ratio 

Vor not very small values of AE, corresponding to nonhydrogen- 

like levels, x > 10° at a temperature of tens of millions of degrees. 
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i In the adiabatic theory y.AcrCj . For 

electrons outside the domain of applicability 

of the adiabatic theory there is no simple 

dependence of yon C^. Because which 

AE changes in considerably wider limits 

than S, the increase of is usually 

connected with decrease of AE, and 
i tt 

consequently ße. Therefore, the integrals of J and J in most 

cases decrease with increase of C^. 

All these results qualitatively agree with experimental data. 

Thus, Fig. 63 gives the values of the ratio y/A for a series of 
i 

«K iF ^ nr / A 
Fig. 62. Dependence 
of the ratio of width 
to shift on ß . 

1 - adiabatic theory; 2 - 
nonadiabatic theory (approxi¬ 
mation of one perturbing 
level); 3 - experimental data 
for lines Ar II; 4 - experi¬ 
mental data for lines He 
(S. L. Mandel’shtam, M. A. 
Mazing); 5 - experimental 
data for lines He I 

lines Ar II and He I. 

A comparison of the calculated 

and experimental values of y and A 

for series of lines He I is in 

Table 90. When comparing theory 

with experiment we must consider the 

following circumstance. In most 

cases ß <1, and consequently, 
© 

the electron contribution in 

broadening of line Is determined 

by the magnitude of the effective 

cross section of Inelastic scattering 

of electrons 

(H. Wulff). Y-Afc.o^-’+Y/. 

According to works: S. Mandel'shtam, M. 
House of the Academy of Sciences of tne USSR, 
1017, 1959; H. Wulff, Z. Phys. 150, 614, 195c. 

Mazing, Publishing 
series physics 23, 
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Table 90. Calculated and Experimental Values 
Qf y and A for Lines He I 

Lin« 
fc- 
M* 
Sec 

*. 
W" r.»K 

Experiment 
A 

¡.iriem, Kolb, 
Baraiiije, 
Oertal, A 

Pomulas 
(39. i.-, anc 
(39,34) A 

transi¬ 
tion T A T * T 

•Ww 
«it 

fit 

rs-sv 
iV-tfS 

PS-W 
w-w 
rs-4V 
g¥W4«j ii

le
sS
ii
 

1.« 
1.S o.ss 
1.8 
0.88 
1.8 
0.88 
o.s 81

81
11
11
 

13 
14 
3 

4.5 
0.74 

13.4 
4.8 
8.2 

-4.8 
6 
1.5 
1.2 
0.25 
4.1 
2.1 
2.8 

14.5 
15.2 
2.8 
4.2 
0.58 

12.6 
4.6 
6.6 

—6 
8.9 
1.4 
1.1 
0,15 
3.8 
2.3 
3 

14.4 
15 
3 
5.4 
0.9 

14.4 
4.6 
6.2 

-4,7 
5.7 
M 
1 
0.17 
2.6 
2.0 
2.8 

At present there is no sufficiently simple and also effective 

methods of calculating such cross sections. In the framework of 

simple approximations, quasi-classical and born, we can obtain only 

an appraisal of the order of magnitude. Therefore when the 

contribution of electrons cannot be disregarded, it is difficult 

to expect full quantitative agreement of the theoretical value of 

Y with the experimental. The same also pertains to a. 

4. Calculating the heterogeneity of the field. For a nonhydrogen 

like level the correction of first perturbation theory approximation, 

caused by dipole interaction V, is equal to zero. The correction of 

the second order of V (quadratic Stark effect) is proportional to 

R , whereas quadrupole splitting is proportional to R (see § 28). 

Due to this quadrupole splitting in a nonuniform field can play the 

basic role in broadening of a line. As an example we will indicate 

resonance line Ca X » 4227 A (transition 4**). The 

quadratic Stark effect connected to heterogeneity of the field plays 

a decisive role in broadening of this line, leading to width on the 

order of 4*10“DN (N »Ne * hL ), while y^ ^ 4.4*10 N. The 

I. Sobel'man, UFN 54, 551, 1954. 



characteristic peculiarity of quadrupole broadening is the independence 

2 
from V, since at n = 3 Y = 2tt jC^lN and, consequently, ye and are 

equal. At identical density of electrons and ions total shift of 

the line is absent. Appraisals show that for lines with constants 

_lii 4 
on the order of 10 cm /sec and larger quadrupole splitting can 

be disregarded. 

i 
§ 40. Broadening by Uncharged Particles 

1. Perturbation by atoms of a foreign gas (Van der Waals 

interaction). Figure 64 shows the typical form of potential curves 

of Frank-Condon depicting the initial and final terms of a radiating 

atom as a function of distance R to perturbing particle. At present 

there is neither a theory nor experimental method allowing us to 

determine the exact movement of these curves. The dispersion formula 

of London sufficiently accurately describes only the interaction 

of atoms in normal states at large values of R. For excited states 

in a whole series of cases even the qualitative movement of curves 

remains vague. Thus, for strongly excited states V(R) can not 

have a minimum. 

Decomposition of V(R) by degrees of R“1 starts from the member 

— 
proportional to R“ . Therefore we usually consider that 

(40.1) 

rejecting all subsequent members of the decomposition (in Fig. 64 

this corresponds to pointive continuation of curves). Obviously, 

this approximation is Just only when the basic role is played by 

i 
A detailed account of the theory and extensive experimental 

material concerning broadening by neutral particles is contained in 
the above quoted survey of S. Chen and M. Takeo. 



'Pig. 64. Potential 
interaction curves 
of neutral atoms. 

interaction at comparatively large distances 

R i R0. Below we will not consider broadening 

of different M -*• M* components separately, 

but will introduce constant Cg general for 

the whole line. This is connected with the 

fact that in the considered case of 

Van der Waals interaction all M components of 

the level are displaced to one side, where 

the differences in values (Cg)M are small. 

Prom rough estimates, and also from an analysis of experimental 

data it follows that the constant of interaction Cg has an order 

of 1Q"30-10“32 cm^/sec. Consequently, at T % 300-5000°K 

(v % 5^10^-2^10^ cm/sec) 

iVS!#3-10-,,-*-10-,,Ar. (40.2) 

This shows that at low pressures broadening of lines can be described 

in the impact approximation. 
6/5 1/5 

Let us also compare the magnitudes 0 = v Cg and Awd. 

12 1 
In the considered interval of temperatures Q % 10 —, 

¿u) % 1010 . Consequently, 0 >> Au>D, and the region of impact 
D S6C 

expansion spreads far beyond the limits of the Doppler width. 

The distribution of intensity in the statistical wing in the 

case of interaction (40.1) should have the form 

t 

„ , fctfcj (40.3) /(•)-—-j. 

21 
Parameter h attains a mean order of 1 only at N £ 10 , i.e. , at 

pressures in tens of atmospheres. The average distance between 
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particles has the same order of magnitude as RQ (Pig. 64). Therefore 

we can expect that the internal sections of curves start to play a 

substantial role, where (40.1) is knowingly inapplicable. 

Consequently, in constructing the statistical theory of broadening, 

in general, it makes no sense to be based on the law of Interaction 

(40.1). Nonetheless as the first approximation we usually preserve 

expression (40.1) for <. 

The statistical theory of braodening, considering the joint 

influence on atom of a large number of perturbing particles creating 

shift of frequency of an oscillator 

■£c.«r\ (00.H) 

was constructed by Margenau. For Cg < 0 I(w) ^ Oat Wq-w > 0 

(40.5) 

For the width and shift of the maximum of a contour directed 

towards large wave lengths, these relationships hold 

4-(4-)4¾^.} (00.6) 
T-O.íWIÇ.IN*. j 

Thus, in the statistical theory of broadening the shift of a line 

2 
and width are proportional to N (certainly, under the condition 

that xc/5/?*' ). At large values of (a,—®) formula (40.5) passes into 

(40.?). 

Broadening of spectral lines caused by interaction with atoms 

of a foreign gas was investigated by many authors. Experimental data 

are especially numerous for absorption spectra of alkali metals. 

The pressure of a foreign gas (in most cases He, Ne, Ar, Kr, Xe and 

See the survey of Margenau and Watson, 
Phys. Rev. 43, 755> 1935. 

ana also H. Margenau, 
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^2’ ^2^ âttalns approximately thousands of atmospheres. 

The experimental data obtained at small values of pressure, 

lower than 10 atm, are in qualitative agreement with the impact 

theory. Expansion and shift of lines are proportional to the 

concentration of perturbing particles. With increase of pressure, 

usually starting from several tens of atmospheres, deflections are 

revealed from a linear dependence, which is in full consent with 

(40.2). According to (36.33) at n » 6 the ratio of line width to 

shift J ■ 2.8, where for the interaction shown in Fig. 64 (region 

of large values of R), C6 < 0 and lines must have a red shift, 

i.e., must shift in the direction of low frequencies. The magnitude 

of ratio ^ is very sensitive to the form of interaction; therefore 
A 

fulfillment of relationship J » 2.8 can serve as a good check of 

formula (40.1). Experimental data1 show that for initial member., 

of the principal series, as a rule, we observe just this red shift. 

The ratio J for many lines is close to 2.8. In a number of cases 

in the wing of the line, a decrease of intensity was observed 

according to the law /(i*)c/sU*-».fT » which agrees with the general 

results of i 36. 

However, frequently the ratio ~~ noticeably differs from 2.8 to 

one or the other side. In a number of cases (usually for the highest 

members of the principal series) violet shift was observed, where 

sign of shift of the same line can be different for different 

perturbing particles. Thus, for the highest members of the principal 

series of alkali metals the gases He, Ne, H2 and N2 create violet 

shift, but Ar, Kr, Xe, methane, ethane and propane create a shift. 

In separate cases, e.g., for shortwave components ( 

lSee the above quoted surveys of Margenau and Watson, and also 
S. Chen and M. Takeo. 
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resonance doublet of Rb, at first there is a red shift which increases 

up to a certain pressure (in the case of broadening from interaction 

with molecules of N2 this pressure is approximately equal to 160 atm). 

During further increase of pressure the shift decreases and even 

changes sign. All this testifies to the need for a more precise 

definition of the law of interaction, especially at large densities 

when the internal sections of curves start to play a substantial role, 

where (40.1) is inapplicable. 

As was already noted above, at present we cannot calculate 

the slope of curves of V(R) or predict the character of broadening. 

More likely, the experimental data on broadening can be used to 

clarify the basic peculiarities of interaction of neutral atoms. 

Prom this point of view of considerable interest is the distinction 

in broadening and shift of separated components of multiplets. 

Such a distinction was revealed, in particular, for the resonance 

doublet of Rb, broadening of component S1/2 - P3/2 is larger than 

component S-jy2 “ ^1/2* This effect can be explained if during 

calculation of curves V(R) in the region R > RQ we remember the 

presence of quadrupole moment in state P3/2’ 

Frequently besides broadening of spectral lines the appearance 

of satellites narrow diffuse bands is also observed. These bands can 

be related to the formation of a quasi-stable molecules (the minimum 

on the potential curve V(R) corresponds to the quasi-stable configura¬ 

tion atom - perturbing particle). In certain cases several satellites 

were observed on one line. All this is additional evidence of the 

complexity of interaction at small distances. 

*See the survey of S. Chen and M. Takeo, and also J. Robin, 
S. Robin, Compt. Rend. 233j 1019» 1951; J- Robin, These, Paris, 1953» 
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2. Broadening in a uniform gas (Intrinsic pressure). With 

increase of density of a uniform gas the lines corresponding to 

transitions to the ground level are widened considerably stronger 

than under additional pressure of a foreign gas. This is connected 

with the fact that during collision of two identical atoms, one of 

which is excited, resonance transfer of excitation energy is possible; 

the effective cross sections of such collisions are very great; they 

can considerably (by several orders) exceed the gas kinetic cross 

sections. 

Let us consider the broadening of spectral lines corresponding 

to transition from level J to the ground level JQ. Collisions of 

an excited atom with an unexcited one, accompanied by resonance 

transfer of excitation energy, i.e., transition of the first atom 

to level Jq and excitation of the second atom, lead to a reduction 

of the lifetime of the atom on level J. Due to this the spectral 

lines starting or finishing on level J have to be widened. 

Broadening of such type is described by the dispersion formula, 

i 
but line width is equal to 

ImWC—VJj JJ¡>. (40.7) 

where o(JJ0, JqJ) is the effective cross section of collision, 

accompanying transition J - Jq, Jq - J. The effective cross section 

of such type are calculated in 5 45. According to (45.31) and 

(45.32) (at * <2 “ 

V-ie first such mechanical broadening was observed by A. Vlasov 
and V. Fursov (ZhETF, 10, 378, 1936). 
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anere fTT are the frequency and oscillator strength of transition 
U J J o 

Jq, S is the concentration of atoms on level , e, n are the J ^ j „. s i 

charge and mass of an electron. 

Let us estimate with (^0.8) the width of resonance lines of 

atoms of alkali metals. From formula (40.8) it follows that the 

and 
2 2 

ratio of width of components of doublet p 1/2 

¿Sl/2 " ¿P3/2 should oe equal to the ratio of magnitude 

15 -1 
for the corresponding transitions. Taking f = 1 and * 3*10 sec , 

we obtain y ^ 10“^N, just as in the case of Van der Waals interaction 

of different atoms at T = 300°K, y = 6.16C62/3v3/5N ^ 10“8N. 

This explains the considerably larger broadening of resonance lines 

after increasing of intrinsic pressure than after increase of 

pressure of a foreign gas. 

The effective cross sections of collisions accompanied by 

transfer of excitation energy can be very great not only at exact 

resonance, but also in the general collision of two atoms with close 
f I 

levels. We will designate by a(J1J2; the effective cross 

section of collision, as a result of which one atom passes from 

I 

excited level J1 to level J1 and the second from the ground level 

J„ to level JOI where E, - ETt % E,i - ET . 
2 2 J1 J1 J2 J2 

i » 
In tne general case of several close levels and also Jg* 

formula (40.7) should be generalized in the following way: 

V. 
(40.9) 

Thus in calculating the width of component of the resonance 
■ * 

doublet of an alkali atom to member N{*S%\<.vo^*PP±\> in (40.7) 
• • r « *■ 

it is necessary to add member NCS.Xwt'P, This member 
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corresponds to collisions as a result of which one atom passes from 

2 2 ? 
level P^/2 to level 3^2 and the second passes from level 'S-¡y2 

to level ^P3/2* the distance AE between levels 2pi/2* 2p3/2 

is sufficiently small, then both cross sections have one order of 

magnitude. In paragraph 5 of S 41 it appears that this condition 

must be fulfilled: 

_i / A£\T 

* õ*-X~V3Í~2¡^~,/- 
(40.10) 

Por all atoms of alkali metals, with the exception of Li, 

fine splitting of resonance level is so big that in (40.9) we can 
$■ 

leave only one member, corresponding to exact resonance. In the 

case of Li doublet splitting of resonance level is equal to 0.34 cm”1, 

i.e., sec”1 and at v ■ 10^ cm/sec ß * 1. 

Broadening of resonance lines under the effect of intrinsic 

pressure has been well studied for almost all alkali elements. In 

all cases at small pressures (below 1 mm Hg) dispersion broadening 

was observed proportional to N. The values of width within limits 
i 

of accuracy of calculation agree with formula (40.8). 

i 
A discussion of experimental data Is contained in the above 

quoted survey of S. Chen and M. Takeo. 
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EXCITATION OF ATOMS* 

§ A1. The Bases of tnt "‘ry of Scattr-r 1 n;/ 

1. Elastic scattering in a centra^ field. TAfe problem <.-f relative 

motion 01' two interacting particles with masses rn^ and can be 

considered as a problem about the motion of one particle with given mass 

mlm2 
p. = -. m1 + mg 

particles, which is assumed centrally symmetric, and through pg 

tne momentum of particles and go in the Hamiltonian 

fib r, + mpr0 
to variables r = r„ - r0; R = l—E., Then the solution of the 

i ¿’ mi + 

Shellrödinger equation can be written in the form 

Let us designate by U(\rg - rg j ) the interaction between 

^ùf the numerous questions on the theory of atomic collisions 
below we will consider only those which are directly connected with 
calculating the effective cross sections» of excitation of atoms. Our 
basic attention is allotted to collisions with electrons. For greater 
entail on the theory of atomic collisions see: N. Mott and G. Messi, 
Theory of atomic collisions, XL. 1951; 3. Messi and E. Barhop, Electron 
and ion collisions, XL, 195o [L.L.]; Yu. N. Demhov, Variational prin¬ 
ciples in the theory of collisions, Fizmatgxz, £953; G. P. Drukarev, 
Herald of Leningrad State University, series Mathematics Physics and 
Chemistry, No. 8, 153; G. Messi, Achievements in the Physical Sciences, 
8.4, 589, 1958 (also see the above cited book of Messi and Barhop); 
D. Bates, A. Fundaminsky, H. Massey, J. Leech, Phil. Trans. Roy. Soc. 
ib3, 93, 117, 1950; M. Seaton, Rev. Mod. Phys. %, 9/9, 1958. 



where . 
a»+!gi+a! £.0)-0. 

Ao+^-[E-UW10-°: 

E0 is the energy of motion of the system as an Integer, E Is the energy 

of relative motion. Equation (41.3) Is the equation oí motion of the 

center of mass of the system (motion of particle with mass (m1 + m2) 

and momentum P = + P2)• This equation obviously does noo relate 

to scattering of particles. Equation (41.4), describing the relative 

motion of particles, is the equation for a particle witn mass u moving 

in field U(r). 

The scattering of particles is characterized by the ratio of the 

number of particles scattered in an elementary solid angle dO in 

1 sec to the current density of the incident particles, i.e., to the 

number of particles incident in 1 sec over 1 cm . This ratio da has 

the dimensions of area and is called the differential efiective cross 

section of scattering. 

Let us assume that particles are incident on dispersing center 

along the z axis with speed of v. The free motion 01 such particles 

is described by wave function ÿ = eiicz, k = ^ = This wave function 
^ \r f 7 O 

• • n i i —* —U i I—. ^ -, u*. . 

is standardized so that current density is equal to v|e ' = v. me 

scattered particles far from the dispersing center correspond to 

divergent spherical wave e^^r, where angle b is measured from 

the direction of the z axis. Therefore at large distances 

(41.5) 

According to (41.5) the number of particles dispersed in 1 sec in tne 

elementary solid angle dO is equal to 

vr'dO I lip- «“'I * =v|/(f01 * dO. 
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scattering we Hence for the aifierential effective cross section of 

obtain 

do~\/(f»\'dO. (41.7) 

Thus, the problem of calculating da consists of finding function f(6), 

which is callea the scattering amplitude. 

Let us expand plane wave eAlcz by spherical functions. This 

decomposition has the form 

2) ¡‘ (2/ + I) Pt (cos 0)/,{kr), (41.8) 

wnc ?re j (kr) is the spherical Bessel function 
L 

Y (41.9) 

For large values of r 

A l*') fci) (41.10) 

therefore 

t ^ M ^-¿ £ i* (2/ +1) Pl (cos 0) 

+ 55 {?(2/ + (cos h) + I ^ • (41.11 ) 

On the othoi-nand, the Schrödinger equation for a particle in a centrally 

symmetric field has the solution (0^^(^, ¢)^ where at large 

values of r the radial function Ik, satisfying the radial equation xvb 

-í-íi+i»/? + ^ i/(r) 1/? * 0. (al.12) 

has tne form1 

1We assume that with increase of r U(r) decroases faster than —. 

In the case of a Coulomb field in the argument of sine additional member 
(i/k) un 2kr appears , ‘..fanerai a i.’.*ng ail t e ^ i”' 1 - ï s h j. » * special Ccise 
j. O «i O 'Xj VX L -X i- 's-» tA «i. U *—• « J-U • j • 
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(41.15) 

the phase In the asymptotic expressions for functions R^- are 

determined hy the form of the potential in the whole region 0 5 r « co. 

To determine these phases we must find the solution of equation (41.12). 

It is obvious that wave functions (41.5), as any other solution 

of equation (41.4) independent of angle <p, can be presented in the form 

■in ( kr—j+n, 

A|P,(c°*0)# *—gjy 2 (cosb)* *• 

7 .4^7 
Comparing (41,11) and (41.14), we obtain = i (21 + l)e 

f(H) -j-V(2/ --1) 1^'*-1J />, (cos h). 

(41.14) 

and 

(41.15) 

Formula (41.16) permits expressing the scattering amplitude f(&) 

through phases which are called scattering phase shifts. At 

larger r 

i 

Each member of the sum over l ÿ = corresponds to particles with 
l L 

angular moment l. From formula (41.17) it is clear that function ^ 

constitutes a superposition of convergent and divergent spherical 

waves of equal intensity. The distinction of (4l.l7)j and consequently 

ilcz » 
(41.5)j from the function of free motion e in the amplitudes of 

divergent waves. The equality of moduli of amplitudes for members 

is connected with the fact that as iJ and 

a result of elastic scattering the number of particles with assigned 
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energy anã assigned angular moment does not change. 

Let us place (41.15) in (41.17) and integrate over angles. 

Inasmuch as 
« 

J Pt (cos(I) Pf (cos ö) sin 0(Pi — ô/r. (41. l8 ) 

for the full effective cross section of elastic scattering we will 

obtain 

° = (2/-:-1)^ V (41.19) 

Comparing (41.19) with (41.15), we notice tnat the effective cross 

section of scattering can be expressed through the scattering amplitude 

in front of f (0):,, namely 

o «.£ lm/(0)-^ {/(0) —/* (0)}. ( 41.20 ) 

Relationship (41.20) is called the optical theorem. It has a general 

character and is also just in a general noncentral field. 

The above formulas for cross sections pertain to the system of 

center of mass of colliding particles. It is not difficult to go to 

the so-called laboratory system, in which a particle with mass m^ is 

at rest before collision. The total cross sections in both systems 

are identical = a. 

2. Wave functions y”. Formula (41.16) is easy to generalize 

for the case when particles incident on the dispersing center move 

Ir 

along a certain arbitrary direction n = •£. It is sufficient to replace 

in this formula angle Ö by Snr = 0^. Let us designate the function 

thus obtained through 

*¿./«'£,(2/+ 1) (cos 0*,) Ru (r). ( 41.21 ) 

Function (41.21) at large values of r constitutes a superposition of 

î W y* 
plane wave e , spreading in direction k, and divergent wave 
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(41.22) 

Wave function (41.5) is obviously a particular case of (41.21) and 

(41.22) at kx = ky « 0, kz ^ 0. 

In function ^ we will replace factor e by e and designate 

the obtained function by Then 

- j/l* ^£^(2/+1) e_'\Pt (cos 6*,) Rkl (r) 

"*• ¿52^(2/+ licíteos•*,) i —e~tty[t----+ 
4 ' 

(41.25) 

or 
ikr (41.24) 

Consequently, function ^ at large values of r constitutes a 
4 ]/■ y» 

superposition of plane wave e and a convergent wave. This function, 

just as satisfies the Schrödinger equation (41.4). It is simple 

to show that the wave functions ^ are standardized by the condition 

lW)*Vdr- (41.25) 

It is also simple to check that 

*;-(*!•>*• (41.26) 

In the general case of an arbitrary (noncentral) field U(r) wave 

functions fí and i/7 can be determined without resorting to decomposition 
K K 

into partial waves. It is possible to show1 that wave function ip, which 

is a solution of the Schrödinger equation 

(A +**)♦ -¾ U(r)*’ =2j[,£ . 

1See, for instance, L. Shift, Quantum mechanics, IL, 1957* 
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and nas an asymptotic form (41.22), satisfies the integral equation 

t; (O = §Ok(r,r')Lnr')1e;{r')dr', (41.27) 

where f') is Green’s function for free motion. This function 

satisfies the equation 

(A+*’) Gk(r, r')=ò(r — r') 

and nas the form 

0»(r. r') ““to ¡r—r' I * 

With the help of (41.26) it is also easy to obtain 

(r) j 0.*(r, r') U(r')4'; (r’) dr'. 

At large values of r 

«rtl'-r-l 

K-r'l 

whence 

/(4) - - asp J i/(r') 4; (r') dr'. 

(41.28) 

(41.29) 

(41.30) 

In the particular case of a central potential (41.30) is accurately 

equivalent to (41.21). If the interaction of U(r) is small, the 

solution of (41.27) can be found by the method of successive 

approximations 

+ J 0±, (r, r') U{r') ¿»dr'-..., (41.31) 

/(4)-/,(4)+/.(4) + --- . (4l-52)v 

/, (4) — -¿jp J i/(r) i'*" dr, ( 41.33 ) 

/, (0) = 4.-» (-ij¾r), J r-'*> £/(r) 0A (r, r') £/(r') ««'■' dr dr’. ( 41.34 ) 

The first approximation of the perturbation theory (41.33) for 

scattering amplitude is called the first Born approximation, the 

approximation (41.34) is called the second Born approximation, etc. 
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3* Quasi-classical approximation. As was already noted above, 

finding the exact scattering phase shifts i)l in general is a compara¬ 

tively complicated problem, since it requires the numerical solution 

of radial equation (41.12). This problem is essentially simplified 

in the quasi-classical approximation. In this approximation the radial 

part of wave function for a particle with moment l in a centrally 

symmetric field U(r) has the form 

{lí ^ + = 
"T'HtÍ / + (41.35) 

where pr is the radial component of momentum of the particle. For 

free motion 

]/+ + (41.36) 

The lower limits of integration in (41.35) and (41.36), point of turn 

r±, r0, are determined by equating the subradical expressions to zero. 

Comparing (41.35) and (41.36), we can see that tne presence of 

dispersing potential U(r) leads to the appearance of an additional 

phase in argument of sine 

m __ yü|i*-£-(/+i)V-<ír. (41.37) 
r* 

which can be identified with the phase of scattering. 

It is possible to show that the quasi-classical approximation 

gives good results in calculating the effective cross-section of 

elastic scattering under the condition that a large number of partial 

waves ij/l substantially contribute to this cross-section. This means 
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That ir. tr.e sum over I (41.19) the basic role Is played by members 

v;icn large values of l . 

It is simple to see that at large values of i the lower limits of 

integration in (4l.37) also are great: 

* ^ y^w^U) ’ v ' 

If |U(r)( decreases with increase of r so rapidly that for the whole 

region of integration this condition is fulfilled 

then r r^ « Zk”^, where hk /kpE = pv and 

«, _ \ii'{r)dr 

1-=-) k 
lV 

(41.38) 

(41.39) 

In the quasi-classical approximation the angular momentum of particle 

is equal to pvp, where p Is the impact distance; therefore hA(¿ + 1 ) « 

~ hi « pvp and 

/^(, = *0. (41.40) 

Putting (41.40) in (41.39), we obtain 

(41.41) 
? 

If, further, in calculating r)(p) we replace the real trajectory of a 

particle by the rectilinear 

i-,«et + v,l\ *• = -£ (41.42) 

(which is obviously also equivalent to condition (4^ .38), and go to 

integration over dt, then 

m m 

»1 (0) = — J U<V d/ *= — J (/h (41.43) 
• - i» 

It is easy to check that for field U(r) = formula (41.43) gives the 
r 
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same result as formula (41.59). Putting U(r) = in (41.59) and 
rn 

(41.43), it is simple to obtain 

and 

^(Q) 

LÍíHjü 
r(i) 

'(î)i(*ÿ‘). 
r(i) 

(41.44) 

(41.45) 

Inasmuch as (tJ tk 
V, 2r\ = ii(p). 

Let us replace summation over l in (41.19) by integration over 

p. Por the sum —tjZ(2¿ + 1) spread over the interval of values Ai, we 
R> 

have 

therefore 

p £ (2f +1) V|r/A/% tfQ. 

0-4«{[l-CM1|(e)]QrfQ. 

(41.46) 

(41.47) 

By applying formula (41.45) to scattering of a certain particle 

on an atom, we can give a simple interpretation to quasi-classical 

scattering phase shift. Elastic scattering on an atom in the a-state 

is determined by potential Uact(r), which is a result of averaging the 

energy of interaction of the atom with the perturbing particle over 

the a-state. But Uaa is not any different from the correction to * 

energy of the a-state AEa, caused by Interaction with a dispersed 

particle. Consequently, 

t%-nieî— J A&10«. (41.48) 
•• 

In otherwords, in the quasi-ciasslcal approximation doubled scattering 

phase shift on atom is equal to the integral (over collisions) 
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from shift of the atomic level. In lighof all these results the 

connection of the theory of broadening of spectral lines and the 

general theory of scattering fixed in § 37 becomes understandable. 

As was already noted above, the quasi-classical approximation 

just, when the essential contribution in cross section is given by 

partial waves with l » 1. This means that the Impact distances p 

for which there is considerable interaction have to satisfy the 

condition 

(41.49) 

where is the de Broglie wavelength. 

Let us note that if we consider scattering on a certain definite 

angle 0, then in supplement to (41.49) it is necessary that the 

uncertainty in.the transverse component of momentum Ap^ be small as 

compared to p^ ~ p0 and simultaneously Ap « p. Inasmuch as 

Api ~ Tip » we obtain 

(41.50) 

Condition (41.50) obviously automatically ensures fulfillment of 

(41.49). It can also be rewritten in a somewhat different form. The 

transverse component of momentum in order of magnitude is equal to the 

product of force and duration of collision ■£. Consequently, 

or (41.51) 

If IU(r)j decreases with increase of r not very rapidly, e.g,, according 

to the law of r’n, where n is small, then ||^jp ~ U(p) and (41.51) 
ur • -:¾ 

takes the form 

(41.52) 
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4. Inelastic scattering. In general, when both elastic and 

inelastic scattering occur, i.e., absorption of particles or change of 

leir energy (due to transfer of energy to the dispersing system), 

besides the incident plane wave, the wave function should contain 

a whole series of divergent waves corresponding to different types 

ofr, so to speak, channels of scattering. If earlier in the cese of 

purely elastic scattering the Intensities of the convergent and 

divergent partial waves (i-waves) viere identical, now the intensity 

of the divergent wave describing elastic scattering should be less 

than that of the convergent. Considering this circumstance and using 

(41,17)# the wave function ^ describing elastic scattering in general 
■ 

can be written (for large r) in the form 

-«(*'-7) 
t - Z (9i + f ¿ Z ^ (2/+ n P, (COS 0) { - 

(*'-?) 
(41.53) 

where ßj a 0. Comparing this expression wii;h (41.. 7), we obtain 

/W-i Z^+llecos*). (4i # 54 ) 

This expression differs from (41.15) only by the fact that the complex 

rjj + ißj enters instead of the real phase . From (41.7) it follows 

that 

aw - jr Z 1 “ I"- (41.55) 

With (41.53) we can also find the effective cross section of 

inelastic collisions. According to (41.53) in 1 sec into a sphere of 

sufficiently large radius 

Jw|*;|Vdo-t#t2/+n (41.56 ) 

particles enter and 



»; |V dO £ (2/+1) I # +^11 (41.57) 

particles emerge. The difference between these magnitudes obviously 

gives the number of particles undergoing inelastic scattering 

•pt2/+l){l-|«-*+«'*n. (41.58) 

Summing this expression over l and dividing by the current density of 

incident particles v, we obtain the total cross section of inelastic 

scattering 

(41.59) 

and also the total cross section 

«”•*«» 2¾}. .60) 

At ßz = 0 formula (41.55) coincides with (41.19) and a - a 

-2ß 
ynp* 

At ßj = oofe = 0)^ynp = aZHeynp “ + 1)* Comparing this 

expression with (41.56), we notice that I*(2l + 1) is the number of 

particles with moment i incident on the dispersing center in 1 sec 

if the beam is standardized for a unit current density. It was shown 

above that at large Z—^ 2 (21 + 1) * 27rp dp, i.e., in terms of classical 
it ÙX 

mechanics -^(21 + 1) is the cross section of the particle beam with 
it 

angular moment i. 
' 

With formulas (41.55), (41.59) and (41.60) it is easy to establish 

the limits of change of effective cross sections , 0Heynp and o 

O<0l)av<T?(2/+ !)• 

0«WS5<2/+1>. 

o<0|< p(2/+ty. 

Prom (41.61) it follows that the partial effective cross section 

of inelastic scattering cannot exceed the maximum value of -^(21 + 1). 

_ k2 
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Let us note that inelastic scattering will always be accompanied by 
*2ß 

elastic. If e / 1, when at any value of t)7 , including t) = o. 

aynp ^ °* 

§ 42. The Born Approximation 

‘ Application of perturbation theory to the problem of scattering. 

During fulfillment of either of two conditions 

or 

(42.1) 

(42.2) 

the interaction of U(r) in equation (41.4) can be considered as small 

perturbation. In this case it is possible to obtain simple general 

formulas for the effective cross sections of elastic and inelastic 

scattering without resorting to decomposition into partial waves y . 
t 

Actually, extracting the probability of transitions caused by 

interaction U(r) from the general formulas of the perturbation theory 

and dividing it by the current density, we will obtain the effective 

cross section of the process of interest to us. This approximation 

obviously fits not only for centrally symmetric interactions. 

According to (42.2) the Born approximation is applicable during any 

interactions if the speed of the perturbing particles are sufficiently 

great. 

Subsequently to be definite we will talk, about scattering on an 

atom (this does not limit the community of reasonings, since all the 

O 

results can be expanded to cover ions), where at first we will consider 

transitions between states of a discrete spectrum. 

According to the known formula of the perturbation theory the 

probability of transition of an atom between states of a discrete 
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spectrum aQ> a, accompanied by change in the wave vector of the 

perturbing particle k0 k, is determined by expression 

'0 

(42.5) 

where 

«■ 

Um+4* - (r) dr ix— 

(42.4) 

(42.5) 

ft**1 Hw 
■¿•i ♦« are atomic wave functions; are the 

coordinates of atomic electrons; , ^ are wave functions of free 

motion of the perturbing particle. The wave function of the final 
-it;! 

state should be standardized for the 6-function 6(k - k'), i.e.* 

_3 
nipm - 1». y 

^k “ (27r) e • The wave function of the initial state is 
K0 

jLlc ic 
conveniently standardized for unit current density rl/. m -ie 0 . since 

k0 ^ 

in this case the differential effective cross section da coincides 

with dW (compare with § 34). 
. 

Placing in (42.3) 6{£—£t)-£«) + *'.) and integrating 

over dk, we will obtain 

(42.6) 

where k2 » “ E&) + k2. Formula (42.6) is called of Bom's 
h 0 

equation. The case a0 * a, k0 = k corresponds to elastic scattering; 

the case a0 ^ a, k0 / k corresponds to inelastic scattering. In the 

case of elastic scattering kQ =* k formula (42.6), as this ana should 

be, coincides with the general formula for da, if in it we place the 
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first approximation for scattering amplitude (41.33). Replacing 

aQ «S a, Kq «2 k. in (42.6) we obtain 

(42.7) 

Jtalfttionship is a particular case of the principle of detailed 

equilibrium, which we already repeatedly met in § 34. 

2* Collisions of fas1 electrons with atoms. Decomposition by 

multipoles. Por the Bom approximation to be applicable to electrons 

it is sufficient that the speed of an incident electron is great as 

compared to'th# speeds of atomic electrons. In examining collisions 

With electrons we can assume that the system of coordinates with 

origin at the center of the atom coincides with the system of coordi¬ 

nates of the center of mass of the system, and put u = m, where m is 

the mass of the electron. The energy of interaction of an Incident 

electron with the nucleus and N-electrons of the atom has the form 

(in case of an ion N ^ Z) 

Placing this expression in (42.6) and integrating over dr with the 

formula 

(4.29) 

we will obtain 

j (r) rfr - { - ¿6", + fat. JV } (42.10) 

and 

where 

f'-A.-M'-ÎMcoiO,.*, dO 

(42.12) 

(42.13) 
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Formula (42.11) can also be rewritten In the following form: 

(42.14) 

The magnitude F(q) « ^aQaQ^^ the atomic factor of scattering 

or the form factor. 

Calculation of integral F (q) is a very complicated problem. In 
0 0 

the case of elastic scattering this problem is essentially facilitated 

in two limiting cases: q « where a has the order of magnitude of 

atomic dimensions (scattering on small angles), and q »| (scattering 

on large angles, leading to Rutherford scattering on the atomic nucleus) 

We will not consider these questions, since they are expounded in 

detail in most of the above quoted articles on the theory of atomic 

collisions; we will concentrate our attention on obtaining formulas 

more convenient for numerical calculations. Certain approximate 

formulas for appraisal of calculations of effective cross sections of 

inelastic collisions will be obtained in the following paragraph. 

To calculate F (q) it is necessary to separate the radial and 
0 

angular variables in integral (42.12); this is attained by decomposition 
„ lclri 

of e by spherical functions. 

From (41.3) we have 

^r.. (42.15) 

-—¿r--£/. (»MC, (‘ifi'1. (42.16) 

1As will be seen below, similar determination of operator T is 

convenient because as q 0 with an accuracy of the factor -e T ^ 

coincides with the operator of multipole electrical moment of an atom 
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Let us place (42.15) and (42.16) in (42.12). Later It will be conve¬ 

nient to separate members n » 0 and p. =* 0 from the sum over n, p. In 

¢(42.15). Therefore 

(42.17) 

Lét us assume that in general the state of an atom is characterized by 

£he /set of quantum numbers -yJM. Let us place (42.17) in (42.11), 

putting aQ s 7o^O^O* a s 011(1 conduct summation over final states 

M and averaging over initial states M0. After these operations we have 

the sums 

(%q>,) r.',’(®*ff )<Y.A^.IIyJMXyJM\ (42.18) 

which with help of formulas (14.14)-(14.17) are easy to put in the form 

' . 
-l(7AHnil77)|,-c- (42.19) 

Thus, 

¿Sismas ^ i* “ 

"¿{l(7^#^,~^ll7^>l* + 5 (42.20) 

It is convenient to conduct further consideration separately for 

elastic and inelastic scattering. Let us start with inelastic 

scattering. 

Prom the determination of operator T ,, it follows that at k ^ 0 
>11-1 

P P 
e KVoll^ll'VJ)! coincides with the expression for line strength of 

electrical multipole transition of the order of x SH(7oJoj 7J) (32.46), 

if in this expression we replace the radial integral 

rç.T-SW" (42.21) 
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(2k +1 til _¡ $ #1,/. (tf') Ä/* o'. (42.22) 

Consequently, 

l(Yr/.Ilr.IlvJ)I* -*.(y.-/.; y-/)(tf)}*. (42.23) 

where factor SH(70J0; 7J) is determined from relationship 

St (Y.-/.: Y'/) - *\ (y.A: y«/) (42.24) 

with the formulas of § 32. 

At = 0 the radial integral (42.21) turns into zero. Nonetheless 

formula (42.23)# not containing , remains correct in this case. 
707 

Putting (42.20) and (42.23) in (42.14), integrating over dq from 

^nin “ k0 - k to Qmax = kQ + k and including JQ(J) in the set of 

quantum numbers 70(7)# we obtain 

where E0 = -gjp is the energy of an incident electron. If we 

disregard fine structure, then by 70, 7 in this formula it is 

necessary to understand sets of quantum numbers characterizing terms. 

If, furthermore, we disregard electrostatic splitting, then 70; 7 are 

determined by assignment of electron configurations. The sum over x 

in (42.25) contains a small number of members, as a rule, 2-3 members. 

For transitions between levels of configurations differing by single 

electron quantum numbers ni; nV, h is included in the limits 

¡1 - I1) sxsz + i'. 

For different rough estimates is conveniently expressed through 

oscillators strengths f^ of the considered transition (32.45) 
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2 
Where o ■ At h * 0 (42.26) is evidently incorrect, since the 

idea of oscillator strength has meaning only at >i ^ 0. According to 

sin qr^ 
(42.16) Tqq » ZJqÎq^) - Z-Consequently, o0 is different 

from zero only for such transitions >0 -* 7 in which all quantum 

members, with the exception of the principal quantum numbers n, do 

not change. For instance, in the approximation of the fractional 

parentage diagram only transitions of the type 71S1L1niSLJ -* 

"ylSlIln,lSLJ are allowed* 

Let us now turn to elastic scattering. In general the calculation 

of diagonal matrix elements is a more complicated problem than 

calculation of nondiagonal. Jr a number of cases this problem is 

simplified if we express the given matrix elements T ,, through the 

given matrix elements of operator U^, introduced in § 18. Let us 

give the final result for an electron configuration containing besides 

filled shells one unfilled shell l,p: 

(42.28) 

(42.29) 

(42.50) 

(42.31) 

(42.32) 

The number of members in the sum over x is determined by condition 

X ë 2ï', X s 2L. For ï 1 = 0 or l’ / 0, but L = 0 (spherically 
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symmetric distribution of charge) only the first member in (42.28) 

is different from zero. At l1 = i, L ^ 0 in the sum over * there 

remains one member h = 2, which can be expressed through the 

quadrupole moment of the atom Q(l'P7SL) (see (28.50). 

3. Bethe formula. From formula (42.12) it follows that the 

basic contribution in the full effective cross section of Inelastic 

scattering is given by the region of small values of q < i, where a 

is the order of magnitude of atomic dimensions. At q » i due to 
Cl 

strong oscillation of functions e^1 Integral (42.12) is close to 

zero. Keeping this circumstance in mind, we can replace the upper 

limit of integration k0 + k by q0 ~ ¿ in formulas (42.25) and (24.26) 

and simultaneously decompose function JH(qr) into a series by degrees 

Of qr. As qr -*> 0 

(42.53) 

As a result of this decomposition 

*!.t W- *?.x W — *./•#/■ dr < ft,.. (42.54 ) 

Let us consider transition 70 - 7, allowed by the selection rules 

for electrical dipole radiation. In this case in formula (42.25) 

o0 « 0. Being limited in the sum over n to the first nonvanishing 

member a± (let us note that in the especially interesting case of 

s-p transitions the remaining members are absent), we will obtain 

a(Y.Y)-«a«:(g)/;.:(^)l»(i^). (42.55) 

Inasmuch as in the Bora approximation it is assumed that the 

excitation energy is small as compared to the energy of incident 

2 2 
and scattered electrons -^2, iyS_, Ke obtaln 
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^ Ry* ^ ^ i)# which can be calculated in the general form. y0y 707 

The final result is conveniently written in the following form: 

(42.56) 

Formula (42.56) is called the Bethe formula. With the help of this 

formula the effective cross section 0(77') is expressed through the 

oscillator strength of electrical dipole transition. Inasmuch as 

parameter ß stands under the logarithm, the cross sectjon weakly 

depends on magnitude ß. \t small energies formula (42.36) is 

Inapplicable. In particular, at the excitation threshold (Eq *8 E. _ ) 

(42.36) does not turn into zero. 

Strictly speaking, at small energies the general formulas of 

the Born approximation (42.25) are also inapplicable. However, in 

contrast to (42.36) these formulas give at least a qualitatively 

correct dependence of cross section on energy E0 and can be used for 

approximate appraisals. A series of specific calculations carried out 

in the Born approximation show1 that for a large number of different 

transitions the cross sections expressed in threshold units 

(42.37) 

1For a discussion of the results of calculating the _cross sections 
of excitation by different methods of approximation see § 44. 
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behave similarly. Cross sections of excitation attain maximum value 

at X «= 1-2, where the magnitude a is comparatively well transmitted 
lllcUv 

p Of 
by the factor 7ra0 —^—, contained in formula (42.36). This permits us 

to offer the following empirical formula: 

(^2.38) 

where the parameter c is determined by the position of the maximum 

of cross section c = , 0 = o(x ), If magnitude x is max' max ' max'* x j-*» 

unknown, it is possible to take c = 1. In this case 

(^2.39) 

According to (42.38) at x « 1 ac^**, at x » c a = a v and at x » 1 
lUctX 

oc/sp • Let us also give the expression for the product va averaged 

over Maxwellian distribution 

<«•> -/.j ¢/(,.1 .-'10- ¿, 

«„.g: U(I)-4,4,“[1 En-,)]<1.8, 
I 

«<! £/(1)^4,401, 

*>l £/(0)^.4,4*’• . 

Formula (42.38) does not contain à logarithmic factor and 

therefore at high speeds it differs from both the Born approximation 

and experimental values. This deficiency can be removed with small 

complication of formula (42.39) 

• - »: -j|r «C, (¡T??lB ( 4 2.4 0 ) 

where C1, C2 are constants on the order of unity. With such selection 

of these constants, as a rule, formula (42.40) gives goon agreement 

with experiment. 



Formulas (42.33) and (42.40) do not fit for intercornbinational 

transitions. Here it is necessary to note two circumstances. First, 

the effective cross section of intercornbinational transition even in 

the actual rough approximation cannot be connected with oscillator 

strength of tnis transition f. In the approximation of LS coupling 

f • 0, This ban can be removed by magnetic interactions (interaction 

of spin-orbit, spin-spin, etc.). Therefore when f / 0, magnitude f 

is determined by the magnitude of these interactions; the effective 

cross section of intercornbinational transition o ^ 0 even during 

strict fulfillment of the approximation of LS coupling, which is 

connected with exchange interaction. 

Secondly, the effective cross sections of intercornbinational 

transitions reveal essentially a different dependence on E(i. The 

maximum of function a(x) is located considerably nearer to the thresh¬ 

old. Furthermore, at x » 1 c(x) decreases considerably more rapidly 

than follows from formula (42.38). 

The general character of the dependence c(x) for intercomcinationaa 

transitions at large x is considerably nearer to exponential. Let us 

now turn to transitions allowed by the selection rules for electrical 

quacirupole radiation. In general for such transitions oQ and a2 are 

different from zero. Using (42.25), (42.26), (42.27) and (42.34), it 

is easy to obtain 

(42.41) 

A“ ¡Fg; ( fjf) J [*• ~r T s* <Y«Y‘j 

In this case the magnitude of effective cross section very 

strongly depends on selection of pQ, which in general affects the 

groundlessness of the utilized approximation. During rougn estimates 
«• 

it is possible to put f çdçssl. 
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For quadrupole transitions (nonintercombinational) for rough 

estimates it is also possible to use empirical formula (42.58), in 

which it is necessary to replace f by f. In this case, however, the 

maximum is generally located nearer to the threshold; therefore 

c < 1. 

4. The second Born approximation. As was already noted above, 

the Born approximation should give good results at large energies 

E0 
—— » 1. But the basic interest for spectroscopy is in the region 

V 
of comparatively small energies En ~ E i. In this region distortion 

u * 

of the incident and dispersed wave by the field of atom and 

perturbation of atomic wave functions by orbital electron (polariza¬ 

tion of atom) become substantial. In principle both these effects 

can already be considered in the framework of perturbation theory. 

Expression (42.5) for the probability of transition corresponds 

to the first perturbation theory approximation. In the second 

perturbation theory approximation in the general formula for probabil¬ 

ity of transition a0k0 - ak instead of matrix element U 

must place 

(42.42) 

In this expression the sum over a1 signifies summation over all 

possible states of the atom (both discrete and continuous spectrum); 

wave functions are standardized on 6-function 6(k - k1). 

Let us write the second member in (42.42) in expanded form 

X U*t (r') é^dr dr‘ 

ttVir-y 

(42.45) 
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and integrate over dk1.1 As a result we will obtain 

«-“■'¿V (') 0* (r, r') Us,[r') t^dr dr’, (42.44 ) 

i i. 2 i p 

wàere r ) is Green's function (41.28) and = Ea - Eai + 

2 + In the case of elastic scattering in a potential field 

U(r) (al*«a - a , U (r) = U(r)) (41.34) follows from (42.44). 
u aoaO 

For convenience of interpretation of formula (42.44) we will 

separate from the sum over a' two members a' = a0, a' = a and 

designate their contribution in M<2) through M<2>. let us also 

introduce the designation 

fî -*£jOtk(ry)U.t(r’)t^dr’. (42.45) 

±, ± 
According to (41.31) ^(^"q) are the second members of decomposition 

k° 
of functions (41.31)* describing elastic scattering in the field 

U-O(r)(uo o (r))* 3n the case of inelastic scattering with an 
mOt ' # ^ SIqcIq ' 9 * 

accuracy of members of the third order of smallness 

Af" 4- Af.**« J Va.A'"' ■■■ HÍ)dr. (42.46) 

i 
in the case of elastic scattering aQ = a in the sum over a contains 

only one member of the considered type a* = a0; therefore 

" + Mi" - J (r) (e^ - if \) dr - 

- S -r U^, (r) eikr dr. (42.47) 

i (o) 
Let us designate the remaining part of the sum over a through Mi, '. 

For m(2) we have 

(r)e<*'dr, (42.48) 

^■See L. Shiff, Quantum mechanics, IL, 1957. 
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where 

+ ¾ S §Uv>(r)Gk.(r,r') Us Ar'dr'. (42.49) 

Thus, with an accuracy of members of the third order of smallness 

«,*a Af - M"‘ + AP- » J + i/a,ia lr) ^:\dr - 

+ l*-,k'Va<a(r)e“'dr, (42.50) 

«,»« Af “Af1 *-f Af**« J (r) [e'*' 4 «pí J dr -r 

+ S r-'*-'Vo*, (r) e'*' dr. ( 42.51 ) 

Prom expressions (42.50) and (42.51) is follows that member 

describes distortion of incident and dispersed waves by the field of 

the atom. Member can be interpreted as a result of perturbation 

of atomic wave functions, which is equivalent to introducing additional 

potential ^a^a(r), which is called the polarization potential. 

Let us consider expression (42.49) in greater detail. Let us 

assume that the basic contribution in is given by such values of 

2 
K for which Ea^ “ Ea, » •|jj(Kq - k. 2). In this case in the integral 

i 2 
over dk in (42.45) we can disregard the member |j¡jj(h2 - h'2) in the 

denominator, after which 

6(r-r'>. (42.52) 

Formula (42.52) determines Green's function in the adiabatic 

approximation. Putting this expression in (42.49) instead of 

Gk,(r, r ) and integrating over dr', we find 

(42.53) 

Let us place expression (42.8) as Interaction U in (42.53), place 

N = Z (a neutral atom) and consider what form tne potential (42.55) 

takes at large values of r » r^: 
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(42.5^) ^ 4V £ (y + ^ COS ft,.,) « —-jg-ß, 
<«» 

where D -e^r^ cos &r r is the projection of dipole moment of the 

ato» along direction r. Consequently, at r » rr 

(42.55) 

In the case elastic scattering this expression describes the addition 

to the energy of the atom caused by the quadratic Stark effect in a 

constant electrical field i.e., quasi-static polarizability 

of the atom. 

In the general case of (42.49) potential V (r) depends on kn, 
a0ä’ 

i.e., on the speed of perturbing particle. Above, in § 28 it was 

Shown that the quadratic Stark effect in a variable field is well 

described by the quasi-static theory only when the field changes 

little in times on the order of h|E - E 
-1 

a0 a 
Below we will again 

return to the discussion of the properties of polarization potential. 

5. Calculation of exchange. Everywhere above in examining 

electron scattering by atoms we disregarded exchange interaction. In 

principle the corresponding generalization of the Born method is not 

difficult. It is sufficient to add the corresponding exchange member 

to the matrix element of direct interaction. The obtained approximation 

is the Bom-Oppenheimer approximation. 

The form of the exchange member depends on the structure of 

electron shells of the atom (see §§ 16-18). For the simplest case of 

a single electron atom the matrix element of interaction M taking 

into account exchange has the form 

M- J «-"•'■‘♦¡.(r.) £/(#*,#•,)*, (rt) e"* dr,drt + 

+ (—!>*$ (r.) i/(r,r,) (r.) e'*'* drt drt. ( 4 2. tx ) 

-690- 



where S is the full spin of atomic and orbital electrons. In the 

case of a many-electron atom in writing matrix element M we can use 

the formulas of § 18. Calculation of the exchange member in (42.56) 

is connected with considerably larger difficulties than calculation 

of the direct member. In the first place this is connected with the 

impossibility of integrating over dr^ in the common form (compare 

with (42.9)). Therefore the exchange member cannot be presented in 

the form of a simple sum over multipole interactions. 

At the same time calculations conducted for a number of simple 

cases show that calculation of exchange member in the framework of 

the Born approximation in the region of small energies reads not to 

improvement, but conversely, to an essential impairment of results; 

quite often the cross sections in maximum of an order or more exceed 

the experimental values; in most cases the partial cross sections turn 

out to be larger than the maximum permissible (compare with (41,61)). 

6. Transitions to states of a continuous spectrum. Ionization 

of atoms and triple recombination. Born's equation can be simple 

generalized for the case when one of the states of an atom, initial 

or final, is the state of continuous spectrum. Transition of an 

atom from a state of discrete spectrum in a state of continuous 

spectrum signifies ionization of the atom. The reverse process is 

called triple recombination. This process is the capture of an 

electron by an ion during simultaneous scattering on this system of 

some third particle.1 

Let us start with a consideration of the process of ionization. 

Let the atom shift from a state of discrete spectrum a to a state of 

i i . 
continuous spectrum a kc, where a is the totality of quantum numbers 

iThe presence of a third particle is necessary to fulfill the law 
of conservation of energy and momentum. 
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cnaracterizing the state of the atomic remainder. For the effective 

cross section of this process we can simply obtain 

(42.57) do»; «■ ^^|¡TT |J a'tf (t) dr J dkfdO', 
where 

••i** iv,. - *’*; 
-Ç-«» y* -»• C,— IV•*" • 

The effective cross section of the process of triple recombina¬ 

tion, as a result of which the atom passes from the state of 
i 

Continuous spectrum ak^ to the state of discrete spectrum a , is 

determined by formula 

<«*.. r - ¿J-. B, I j ^ f • (42.58) 

where 

IV* <**/ . I»** f irr n- *“ 

Let us compare formulas (42.57) and (42.58) for the process of 

ionization ak - a^k* and the reverse process of triple recombination. 

In (42.58) by replacing a^a' and k^k', we find 

{2n)'j 
d*«*; •’»f* 

W5 * (42.59) 

Later on we will be interested in the differential effective 

cross section of ionization, integrated over all directions of vector 

kf(d°k* k k')' and the differential effective cross section of 

recombination, averaged over all mutual orientations of vectors k and 

kf(d°k k- k'^* For such cross secti°ns from formulas (42.57)-(42.58) 

it follows that 

n t m d«„t: afkfV _daa'kfk‘\ ak 

* T qdkp'dO “ «*0 ~ * 
(42.60) 
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From formulas (42.57)-(42.60) it is clear that whereas the 

effective cross section of ionization has dimensione of cm , the 

effective cross section of recombination has dimensions of cm4 sec. 

Just these dimensions of da are necessary, so that after multiplying 

<-2 “1 
da by the current density of perturbing particles Sk[cm sec ] and 

by the current density of electrons Sk^[cm2 sec i] we will obtain the 

probability of transition dW with dimensions of sec 

All the above formulas pertain to the general case of an 

arbitrary perturbing particle p. ^ m. If this particle is an 

electron, then pi * m. Below we will consider only this special case. 

In carrying out the sj ocific calculations it is convenient to 

present formulas (42.57) and (42.58) in the fom of a decomposition 

by muitipole interactions just as this was done above in the case of 

transitions in a discrete spectrum. 

Let us assume that ionization occurs from level 1/, and let us 

assume that as a result of ionization the ion turns out to be on 

level 70. For this process 

to lYï Y.*/)" 

-ta (£)’ ¿IZibSpí «'<«»■“*»?• (42 -61 > 

Under summation over y \yQ in this formula we should understand 

summation over all quantum numbers of the set y , not entering in 7q* 

For instance, if by y' we understand the totality of quantum numbers 

701SL, where l. S, L are the orbital moment of the electron and the 

full moments of the system in final state, then summation Is conducted 

over Z, S, L. The radial integrals R*. 7,kf(q) are determined by 

formula (42.22), in which it is necessary to replace the radial function 

of discrete spectrum R^, by the function of a continuous spectrum 

R7'V 
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É 
In formula (42.61) it Is convenient to cross from wave numbers 

k, to energies E, E^.. Executing the corresponding transformations, 

we will obtain 

éoiY>V¿,)- 

riT. • 

This formula determines the differential effective cross section of 

scattering, accompanied by transition of one of the atomic electrons 

to the Interval of states of continuous spectrum dE|,. Let us remember 

that q depends on Ef, q = jk - k'|, k*2 - k2 = ^(E^ - E^ - Ef). 

Likewise In the case of the process of triple recombination one can 

simply find 

or 

vu*'*-:., rw>*S 
TIT. • 

" TlT. • 

x*.(y; 

(42.63) 

(42.64) 

In these formulas q = |k - k'l, k2 - k'2 = ^(E , - E - E„) quantum 
7 70 1 

numbers 70, 7 are given respectively to the level of an ion a*, an 

atom. Summation over 7|70, just as in (42.61) and (42.62), signifies 

summation over all quantum numbers of the set 7, not entering in 70. 

In the presentation of full moments of the system, ion + electron 

7qISL, summation over 7¡7q leads to summation over ¿SL. 

Externally formulas (42.61) and (42.62) are close to the 

corresponding formulas for transitions between states of a discrete 

spectrum. However, in fact they are considerably more complicated 

than the latter. Summation over 7'^ (7j 70) includes summation over 
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pAii'i"!>ii|§iii i» "i« ' ...«.J.i..„i.i. 

orbital moments l of an outgoing (incident) electron. Every value l 

corresponds to several members of the sum over n, which are different 

from zero. Thus, formulas (42.61) and (42.62) contain an infinitely 

large number of members. The basic contribution in cross section is 

of course given by several members with minimum values of i, x. 

Considering the roughly approximate estimates of magnitude of 

cross section of inoization, we will put in (42.62) r:\ if (q) * 

=s .yig (0) = R^. ^,E and in the sum over h we will drop all 
Jf •> 1 “f 

members, except one h = 1. Then 

éo (y¡ y¿f)—y (y) ï" X ** ^ ^ (42.65) 

To integrate over dq, in general, we must know the dependence of 

radial integral R^ on Ef Considering the above noted extremely 

approximate character of formula (42.65), we will assume that by 

analogy with (42.35) integration over dq gives 

'•Vi t^-T(?)rZ MWM#r. 
Vh. 

(42.66) 

where 

•* «•#. 
P-ÎI7T+T/ 

In this formula we can express the cross section through the oscillator 

strength of transition, relative to a unit interval of energy 

(r ) (vrfcr,) £ tS?1"»’»*.*"/- <42.67) 

If we introduce the designation 

(42.68) 
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the total cross section of ionization can be written in the form 

«ta Y.>- 8»: (§) £ </(YY')>- (42.69) 

In conclusion let us give the semi-empirical formulas for full 

effective cross section of ionization from level >. The simplest 

formula is the known classical formula of Thomson 

(42.70) 

where ^ is the number of equivalent electrons in shell 7. Somewhat 

more exac t results are given by formula1 

*i"***^ 4C'<r£?F1,,c*x’ (42.71) 

where 

1* 

Let us note that f^ is equal to minus the sum of oscillator strengths 

of all transitions from level "y tc other levels of a discrete spectrum. 

§ 43. General Equations of theTheory of Collisions 
or Electrofs with Atoms 

^• Introduction. The Born method considered in the preceding 

section permits us to calculate the cross sections of any processes 

to the end: elastic scattering, excitation of atom, ionization, etc. 

The problem of calculating the effective cross section of a 

process leads (after decomposition by multipoles) to taking one or 

two radial integrals. Unfortunately, as this was already noted 

above, the domain of applicability of the Born method is limited to 

high speeds of perturbing particles, whereas in the problems of atomic 

spectroscopy of greatest interest are different processes connected 

iH. W. Drawin, Zs. 
(42.40)). 

Physik 164,- 515 (19^1 ) (compare with formula 
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with comparatively slow electrons (in particular, for inelastic 

processes, with energies on the order of one or two thresholds). In 

this case, we can no longer be limited to the approximation of plane 

waves, since distortion of incident and scattered waves by the field 

of atom starts to play a paramount role. Furthermore, and this is most 

important, at low speeds other effects turn out to be very significant: 

exchange interaction, coupling between elastic and inelastic processes 

(the so-called effect of strong coupling), polarization of the atom 

by an orbital electron. 

Calculating the distortion of incident and dispersed waves, as 

was shown in the preceding section, is possible even in the framework 

of the perturbation theory. However, replacing plane waves by 

distortion waves makes it Impossible to simplify the formula for 

cross section with the help of the Fourier transform, i.e., transition 

from formula (42.6) to fomula (42.11), wUhout including in evident 

form the potential of interaction. This circumstance, and also the 

fact that atomic wave functions in general are not spherically 

■symmetric (except ior S states), forces us to return again to 

decomposition into partial waves. In principle this decomposition 

is analogous to that used in § 4l examining scattering on the force 

center. However, now we are dealing not simply with the force center, 

but with a complicated system (an N electron atom), possessing definite 

AfiueiTAal moment and distribution of charge depending on this moment. 

The orbital quantum numbers of partial waves is insufficient to 

describe the whole system, including the atom and orbital electron. 

It is necessary to introduce the quantum numbers of full moments (we 

will basically keep to the diagram of LS coupling). Furthermore, as 

already noted, we must consider exchange effects, i.e., describe the 

system with completely antisymmetric wave functions. Finally, to 
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calculate the connection of different "channels" of scattering, and 

also polarization of the atom by an orbital electron we must, at least 

in initial equations, reject perturbation theory, i.e., we cannot 

describe the process by matrix elements of transition. Instead of 

this we will use a variational principle similar to that used in 

concluding the equations of the Hartree-Fock self consistent field. 

However, inasmuch as the full wave function of the atom + electron 

system contains wave functions of all possible steady states of the 

atom corresponding to different channels of scattering, we will 

obtain an infinite system of connected integrodifferentiai equations 

for radial functions of the orbital electron. Therefore it is more 

correct to say that these equations are analogous to the Hartree-Fock 

equations for optical electron (in the given framework) in the 

multiconfigurational approximation. 

Before we go to a specific realization of the program outlined 

here, we will make a number of remarks about the utilized wave 

functions. Here and subsequently for simplicity we will talk about 

scattering on an atom, although in reality all reasonings pertain in 

equal measure to both neutral atoms and also ions (if we change the 

asymptotic behavior of radial functions in the proper manner). We 

will almost exclusively consider only such inelastic processes in 

which the configurational quantum numbers (nl ) will be changed of not 

more than one electron, which subsequently will be called the optical 

electron. It is assumed that this electron is one of the electrons 

of the outer shell of the atom. As usual, the atom without the 

optical electron will be called the initial ion. 

To carry out real calculations in the case of complicated atom* 

we must separate the electron variables. In this sect lor. we will 

con side r everywnere that the atom is described cy une Hartree-P’ock 
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wave functions built from single electron functions in accordance 

with the defined diagram of summation of moments. 

The actual complication of the conclusion of radial equations 

appears because it is necessary to calculate the possible 

nonorthogonality of single electron functions. Full calculation of 

the nonorthogonality makes the equation in general absolutely immense, 

in consequence of which it is necessary to make certain additional 

simplifying assumptions. 

2. General formulas for cross sections. Let us designate by 

y the completely antisymmetric wave function of a system consisting 
of an N electron atom and an orbital electron. Further, let us 

expand this function by eigenfunctions of the atom As was 

shown in § 15, such decomposition can be presented in the form 
V * 2 »..(i, 

uMm* W+ï 
(45.1) 

where A is the operator of antisymmetrization; is the operator of 

transposition £ 7Ï £ is the totality of spacial (r) and spin (X) 

variables. 

In accordance with the general determination the differential 

effective cross section for transition a0M0mg - aMms is equal to the 

ratio of the number of electrons with projection of spin m3 scattered 

in 1 sec in the solid angle dO under the condition that the atom 

turns out to be in state aM to the density of the incident flux. If 

we describe the incident flux by a pleine wave with unit amplitude, 

then 

4o — ~-wr*dO, 
*• 

where v and vQ and the velocities of incident and scattered electrons, 

and w is the probability of observing one electron at point r(r -* oo) 
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with arbitrary coordinates of the other electrons and with the above 

Indicated conditions fulfilled: 

* - ? S I i' rft* j^- (N +1 ) S [ X 1* dx. (45.2) 

Here designates integrating over all variables (including spin) 

except 1*1, and dx designates integration over all variables except r. 

Inasmuch as we are interested in the value r -► oo, we must write the 

asymptotic expression for ï. However, the asymptotic behavior of 

*aM essentially depends on whether state aM pertains to a discrete 

or continuous spectrum. For simplicity we will be limited to the 

dase of a discrete spectrum. Then as r -*> od in 2 in formula (45.1) 
J 

only member remains with j = N + l(r. = r), for which coordinate r 
J 

describes an orbital electron. All other members contain r in the 

atomic wave function which exponentially attenuates at large 

distances. Consequently, 

V«w(Af4> I)“' VaJlXw* j a..V«/n* 7“ (45.5 ) 

Putting in (45.2) the aMms component from (45.5) and considering that 

function ŸaM of the discrete spectrum are standardized per unit, we 

will obtain for the following expression the differential effective 

cross section: 

^0î3ïî5i»",*“,i^ (45*4) 

As was already noted In paragraph 1 of this section, for a 

practical solution of the problem in general we must separate the radial 

and angular variables. This separation is attained by decomposition 

by partial waves. First of all we will go from a plane incident wave 

to a spherical. For simplification of formulas subsequently for tne 

z axis we will take the direction of the vector k Then 



fl.AÍ./iom.*). y ^ yM*« , (Y. 

The upper indices everywhere designate the initial state. 

Further, let us introduce the full orthonormal set of functions 

<i> : 
7 

®T (5..I». •*.*) - (6,.U) Vim (Í.Ç) X-H (X). (45.6) 

Obviously, is antisymmetric to ..., it is not 

antisymmetric with respect to transpositions ..., ^ from £. 

7 0 
Let us expand i by 4> 

7' 

(45.7) 

where F 
7 

7 

0 (0) 0, and as r -*• x we have the asymptotic behavior 

(45.8) 

Putting (45.7) and (45.8) in (45.5)j and as above replacing the sum 

from A by one member and comparing the result with (45.5), we obtain 

two relationships 

__ tiníkf—-r ^ 
Jbm T+M.&Xm; 1 <J>U, 

c 

W.—•(•.v)x-.*-gBPr.# 1 

Considering (45.6) and decomposing the plane wave to a spherical, 

from the first relationship we find 

(45.9) 

Likewise the second relationship gives decomposition of tnc amplitude 

of scattering by spherical waves 
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(43.10) +1} VW«*)- 
4Ã 

7q 
Thus, Knowing radial functions (r), and consequently also the 

matrix T , one can determine f g(e, 9) and then the scattering 

cross section according to formula (43.4). 

This expression for cross section is conveniently converted into 

a somewhat different form. The presentation 7 used till now is 

actually of little use for actual calculation of radial functions. 

Let'us therefore go to a presentation of full moments with the set 

of quantum numbers F. In the diagram of a LS coupling 

Tmti^LrST.. ais^n^LS, (43.11) 

where L, S are the full moments of the atom (orbital and spin, and 

I*!,, Sj are the full moments of the atom + electron system. If we 

must consider the separate component of the multiplet in the spectrum 

of the atom, then 

fssa/ a (/ij/j) LSy. (4^,12) 

A 
Obviously other diagram is also possible; in it at first s = -l and J 

are summed and the resultant moment is summed with T, giving J^. If 

we do not consider the magnetic interaction of the orbital electron 

with the atom, both diagrams are of course equally correct. (The 

latter diagram is used in examining nuclear reactions.) 

Later formulas do not depend on the specific form of presentation 

F. Let us designate the matrix of transformation 7 ^ r through (7)1). 

Then the entire function of system corresponding to initial state Fq 

will be written in the form 

ir)^, <Dr (43.13) 
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Summation must be conducted over those quantum numbers from set 7 

which do not enter into F. This condition is designated as 7¡r 

(in the case of LS coupling, e.g,, 7jr 2 Mmms; f |7 = L.j.S.p). 

r0 
Function Fr (r) will be converted as a matrix. Using (45.8) and 

the property of the unity state of the transformation, one can simply 

obtain 

F?^òrjrtlaÇk/-^+Tn,e 

2 (Y.IOlYinrrr, 
«•jfc.ni 

(45.14) 

(45.15) 

Finally, putting (45.15) and (45.10) in (45.4) and considering that 

U¡7 = F|a, we obtain the differential effective cross section in the 

form 

rfoSEF*'- 
-^1 Z /c"rK(y.ir.)(yiDrrr.v,^)fdo. (45.16) 

*;j r.ww. n«.« I v ' 

Usually we must deal with collisions of nonpolarized electrons with 

arbitrarily oriented atoms. Polarization of scattered electrons is 

also not of interest, whereas orientation of excited atoms (i.e., 

value M) can appear essential, since it determines the polarization of 

light emitted after excitation. To obtain the corresponding 

s 
differential cross section we must average (45.16) over Mq and iHq and 

we must sum over ms. Furthermore, it is convenient to decompose the 

product Yrm Y~lm, contained in (45.16) by spherical functions 

from the same angles. It is not difficult to show that with this 

u = 0, i.e., cross section does not depend on tp, as one should have 

expected. Let us put the final result in the form 

tól “ Pi (COS 0) dOt (45.17) 
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(aummation in (45.18) is conducted over r0|a0, r^jaQ, Tja, r'ja', 

s s \ m0, m , m). 

In particular, in the diagram a LS coupling (45.11) 

(45.19) 

(summation in (45.19) is produced over LT, ST, ~Q, T'q Q) I Qt I > I > Mq , 

m). 

Let us now turn to a consideration of the total cross section. 

After integration over angles formula (45.17) gives 

ta- 

Let us note that (45.18) and (45.19) for X = 0 i main almost as bulky 

as in the general case. However, we can obtain a considerably 

simpler expression if we sum over all final orientations of the atom, 

i.e., over all M. Using the property of orthogonality of coefficients 

(7|F), we arrive at this final result 

wnere 2g0 is the statistical weight of the atom in state aQ and orbital 

electron (plane wave); gp is the statistical weight of state r of the 

system. 

Formula (45.20) gives a simple connection between the effective; 

cross section a and matrix T for an arbitrary coupling alagram. For 

-704- 



convenience we will separate summation over partial cross sections 

( ) 
¢(10 T). Let us note that 

We will now give particular cases (45.20) for LS and Jj couplings 

In the case of LS coupling (45.11) 

a CiY (gLr±lLígVLL> IT I* a,a{/, ) *J 2 (2L. +1) <257+77 ! r,T* I * (45.21) 

Inasmuch as the full spin moment can take only two values = Sq * ê 

this formula can be rewritten in the form 

o«0* + a-. (45.22) 

(43.23) 
• Lr 

Let us note that subdivision of (45.22) by is possible for 

both partial and also total cross section. 

In the diagram of a Jj coupling (45.12) 

This formula permits us to calculate the cross section of 

transition between components of fine structure of levels a0 and a. 

If magnetic interaction of the atom with the orbital electron is not 

considered (everywhere subsequently this is assumed), then the whole 

dependence on quantum numbers JjJT can be expressed in evident form 

through 9j symbols. Changing the diagram of summation of moments and 

passing again to a LS coupling, we find 

E 57577777^.^- (45.25) 
lr Lr Sr $r 

where I ', Fq differ from r, rQ only by replacement of I+rST by 

and these designations are introduced 
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tuJ. ...)-(2/, + 1)(27,+ 1), (^3.26) 

A ■■ g (LjSjLjSfjJJ^JJ ■ r) X 

(^3.27) 

These formulas bring the problem of calculating effective cross 

sections to one of calculating matrix Trr . This matrix Is determines 
11 0 

according to (43.14) by the asymptotic behavior of radial functions 
ro 

Fr (r). The following paragraphs of this section will be dedicated 

to methods of determining these functions. 

The definition of matrix T used in this section, is caused by 

considerations of simplicity of writing the boundary conditions 

(43.14), which will be used frequently later on. Usually in the theory 

of scattering the so-called S matrix is applied, it is connected with 

matrix T by the simple relationship1 

1 

sit,( jr) * TVr,. (43.26) 

The asymptotic behavior of radial functions is presented in the 

form 

03.29) 

Radial functions with such asymptotic behavior differ fro 

functions defined according to (43.14) only by a constant factor 

1 

2—L’ Mat:rlx s symmetric and unitary 

•In literature matrix (3_r - 5,..,, N i 
i TO i 1 Q ) 

ÍS Í TBGU6 designated by 

Trr • 11 0 
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(43.30) 

From (43.28) and (43.20) it follows that; 

When using approximate methods of calculation aetermining the 

cross section through unitary matrix S of the linearly connected with 

it matrix T frequently turns out to be inconvenient, since the 

approximate expression for this matrix can already be ununitary, 

which leads to disturbance of the condition of preservation of the 

number of particles. It is important to note that in the case of 

approximate solution not only can condition (43.29) be disturbed but 

even the separate components |Srr I2 can be any amount larger. To 
11 0 

avoid this we can use an R matrix connected matrix S by the nonlinear 

relationship 

(43.31) 

where I is the unit matrix Irr = 6rr . 
i i 0 11 o 

Just as S, matrix R is symmetric, Hermitian, but it is not unitary. 

With this the radial functions are real and have an asymptotic 

behavior 

I ®rr, ^11 ^ + Kn-, co* —ï ) |’ * 

They can be presented in the form of a linear combination of functions 

with asymptotic behavior (43.14). 

Independent of the form of the approximate expression of matrix 

R, matrix S, calculated by formula (43.31), is unitary, and the 

approximate values of cross sections satisfy the condition of 

preservation of the number of particles. Actually during transition 

* 
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froíL H matrix to S matrix in (45.31) it is necessary to use not the 

whole ini ini to matrix R, "but its submatrix (which corresponds to 

calculation of a finite number of states). In this case the S 

matrix, although not strictly unitary, disturbance of the unitary state 

will not be too great. 

Sometimes instead of the cross section of transition o we use 
aQa 

the dimensionless value, "collision strength": 

where z * Z - N + 1 is the charge of the atomic remainder (for a 

neutral atom z *= I).1 Putting (43.20) here, we obtain 

2 *f|rrr.f" X *r|Srr.-\r. 
t&h* n* r,i«„ Ha (43.33) 

Introducing the magnitude Q Is convenient for a whole series of 

reasons. As already noted, it is dimensionless. Furthermore, it 

is symmetric with respect to the direct and inverse processes 

(43.34) 

and is additive according to the structure of atomic levels. At high 

energies oinE~> and, consequently. Ci = const or very slowly 

(logarithmically) Increases. Above (see (41,61)) we noted that the 

full partial cross sections of inelastic processes satisfy definite 

inequalities. Inasmuch as the cross section of a definite transition 

cannot exceed the full inelastic cross section, the same inequality 

can be written in the form 

"This determination of Q differs from that ugu&ily accepted by 

-> 2 4) 
the factor z . An identical order of magnitude of Qn m in iso- 

electronic series of Ions is tnereby 
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Qmtmffy) <2^+1- (43.55) 

Finally, let us note that the averaged (over Maxwellian distirbution 

of velocity) of number of transitions in a plasma with electron 

temperature T per unit of time on one electron and one atom is equal to 

<~^>—f 

5* Radial equations. *In the preceding paragraph we gave the 

expression for effective cross sections through matrices T. Elements 

of this matrix could have been calculated by the methods of the 

perturbation theory. However, this way is not always convenient 

and, furthermore, is frequently absolutely insufficient. Another 

possibility is calculation of radial wave functions Fp^(r). Then the 

matrix elements are determined by the boundary conditions of 

(43.14). Functions Fp(r) are solutions of radial equations, which 

can be concluded with the help of the variational principle just as 

the Hartree-Fock equations for states of a discrete spectrum. 

Although the analogy with the Hartree-Fock equations is rather 

close, there are certain essential distinctions, which we will briefly 

consider. 

First of all in problems of the theory of collisions the entire 

function of system Y in principle is multlconfigurational, since it 

should contain different channels of scattering. Consequently, the 

state of the orbital electron is described not by one, but by a whole 

set of functions Fr°(r) satisfying intergro-differential equations 

in coniormity with the system (in general, infinite). 

On the otherhand the self-consistent (i.e., averaged over motion) 

field of the electron in the state of a continuous spectrum is equal 
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to zero. Consequently, atomic wave functions can be determined 

independently of the orbital electron. In otherwords, in solving the 

problem of collision of an electron with an atom we can consider 

atomic wave functions to be previously assigned. In the system of 

radial equations of the theory of collisions enter only tne equations 

for wave functions of the orbital electron. 

Further, in the case of a continuous spectrum we will use another 

approach to the question of orthogonality of radial functions. The 

function of the orbital electron is not limited by conditions of 

orthogonality with atomic functions. The equations are concluded 

taking the possible nonorthogonality into account. This naturally 

leads to expansion of the class of permissible functions, and the 

form of equations is strongly complicated. In general equations are 

obtained excessively cumbersome. However, if we make certain 

additional, not very strong assumptions, then the equations are 

essentially simplified and become analogous to the usual Fock equation 

Finally, let us note that the energy E of the system is also 

considered as previously given, when in case of a discrete spectrum 

it is defined as an eigenvalue of the problem.1 

Inasmuch as the requirement of orthogonality of radial functions 

is absent, the variational equation can be written without single 

electron Lagrange multipliers 

(^3.36) 

where 5(Fr) signifies variation over function Fp standing in the left 

1In general, during application of the variational principle to 
states of continuous spectrum a number of additional questions of a 
more general order arise. We will not consider them, inasmuch as tney 
are unsubstantial for specific conclusion of radial equations of the 
theory of collisions. 
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part of matrix element (since the right and left parts are complexly- 

conjugate, they can he modified independently). Everywhere sub¬ 

sequently the upper index determining the initial state will be omitted. 

According to (43.15) the full wave function of the system is 

decomposed by eigenfunctions of presentation F: 

(43.J7) 
r r 

Putting (43.37) in (43.36), we obtain 

Ç6 (fr) Wr \H—t\ Yr> “0. (43.38) 

Thus, for the conclusion of radial equations we must calculate 

the matrix element <'?r|H - Ej¥r,> = <F|H - E|r’>. 

To simplify the conclusion and final form of radial equations 

we will make the following assumptions: 

1. We will consider only the nonorthogonality of radial functions 

of the orbital and optical electrons. 

2. All atomic single electron functions are orthonormal, where 

this also encompasses functions pertaining to various states of the 

atom on the whole. 

3. The single electron atomic functions satisfy the Hartree-Pock 

equations. 

4. In those members of matrix element which contain Integrals 

of nonorthogonality we can disregard: 

a) change of wave functions of all electrons, except the optical, 

during transition of the atom; 

b) certain potentials of multipole interaction. It is possible 

to expect that these assumptions are not very serious and will 

influence the accuracy of equations very little. Let us note that in 

the case of the hydrogen atom they are exactly fulfilled. 
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We will not consider the rather bulky conclusion of equations,1 

but will immediately give the final formulas. Everywhere subsequently, 

except for specially stipulated cases, the unit Ry is used for energy 

and atomic units are used for all other magnitudes. 

The system of integro-differential equations can be written in 

che form 

(JPr(43.39) 

Operator JPr is the usual Hartree-Fock operator 

-*r-t/r(r), l/r(r) = </? + l/rr, (43.40) 

where tl£ describes the interaction of the orbital electron with the 

atomic remainder, and Uj..,, interaction with the optical electron. 

The potentials Upp, (in particular, at r' = F) are integral operators 

and are expressed through radial integrals 

Utr (0 />-S Brry«* (r) Ft'—2 ßrr (O /V, ■ 1 
m 

/«'«-»fe'W'Mr,)*-.. 
. > 

/if» W-2 f-âïU “p8^>> /»,(rx) Fp (/-,) drt. 
J r> A ^ 

(43.41) 

(43.42) 

P?(r) are radial functions of the atomic electron in state ni. 

Two expressions are possible for parameter Xppi (they coincide 

at r1 =» r) : 

in»—-irr —:[■(—-««'+**)• (43.43) 

Here ea and ea,, the energy parameters of the optical electron in 

states a and a', in general are different from the energy level. 

aSee L. Vaynshteyn, I. Sobe1’man, ZhERF 39, 767, i960. 
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However, in the framework of assumption (4) this difference can be 

disregarded and we can consider that these expressions coincide. 

Parameters a and ß depend only on the quantum numbers of singular 

moments 

urr—T j. j j Mif’. 

Pïr -(-1) ST*T~S*‘** (/y c,, r){i C :r) ¿ ^ I VJ,.. 
(43.44) 

In the approximation of the fractional parentage diagram 

|*rn-0«; ôil£; (—l)» (2¿',«,f/x /. ¿'I 
' UtrL{' 

*fp(— l)''r'T-*'(is+|)-;(25.+|(|- j'Sr Í 4 | 

. r- Í 4 J 
x(2£+1,TW. + l)Tj«rWj."Z(Jtt+11;< 

(‘tj.'ts) 

where quantum numbers S1L1 give the state of the atomic remainder. 

If, however, there are n electrons equivalent to the optical, 

then and v£r, must be averaged over all terms of the atomic 

remainder with weight Æg£Ss . Let us note that at L, = S, « 0 
11 i 1 

(the hydrogen atom and in general, one electron outside filled shells) 

M- = V = 1. 

Potential uj; is expressed through radial integrals analogous to 

(43.41). In calculating the coefficients with radial integrals we 

can also use the methods described in § 18 (see also § 21). 

In all the above mentioned formulas for simplicity limits of 

summation over h are not indicated. These limits are determined by 

conditions of triangle (see § 13). In all parctically interesting 

cases the sum over yi contains a very small number of members. 

The radial equations (43.39) must be supplemented by limiting 
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conditions. At r = 0 all Fp(O) = 0. As for the conditions on infinity, 

2 
they depend on the sign of k : 

*•>0 (^), (43.46) 
#<** 

*,<0 Fr-0. (43.47) 

2 
The magnitude k is determined by the law of conservation of 

energy 

TS-e-e.-T£+BH-E.- (43.48) 

O 
For energetically unattainable levels (k ‘ < 0) on infinity the 

dispersed wave is absent. Inclusion of these levels in the general 

system of equations corresponds in language of the perturbation theory 

to calculating the polarization of the atom. 

4. Integral radial equations. To investigate the system of 

equations of the theory of collisions, and in certain cases for its 

numerical solution, we can go from equations (43.39) to a system of 

integral equations. This transition is carried out by means of formal 

solution of equations with the help of Green's function G(r, r'), 

satisfying equation 

lJ?r+**] Or (r. r'j - fi (r -r'). ( 4 3.4 9 ) 

Green's function can be expressed in two linearly independent 

solutions of the corresponding homogeneous equation 

<V(r, r')«»—?r(r<)Fr (/■>), (^3.90) 

+ (43.51) 
fr(0)*B0, /ír(r)=»ar-7 (r--0), (43.32) 

Fr^./'sta^âr—(‘'"í") (**>0), (43.53) 

Fr#fr, Fre~*r (**<0; q** — ik). (43.54 ) 
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With the help of Gr(r, r') the system of Integral equations for 

Fr w111 be written in the form1 

MO-Âir.fc.i'H-ÎQrir.r,) £' U„.{ri)Fr.(rl)drv (43.55) 
• r* f 

Putting (4?.50) and (4J.5J) here and.comparing the result with 

(43.46), we obtain 

7rr.-^«inHÔn.-j j“h £' U„ F, dr. (43.56) 
• r ^ r ' 

in concluding (43.55) and (43.56) we originated from solutions 

of homogeneous equations (43.51) with operator , defined in 

(^3.40). This operator describes the motion of a particle in field 

ur. Therefore solution F of equation (43.51) is usually called a 

distorted wave. In the above conclusion of integral equations, thus, 

a presentation of distorted waves is used, other presentations are 

also possible. In particular, it is possible in to omit potential 

Ur, l.e., to take the operator of free motion as the basis. This 

presentation is naturally called Bom. We will not consider it in 

detail. Let us only give the evident expressions for functions Fj. 

and Fr in the Bom presentation, which will be needed below: r 

1, StateeTechní?aiapress^b155Í Meit°i| nece^s»6“?10®1 physlcs' Vo1. 
Green's function is Riven for \neCj&sary t0 note that there 

difficult to show thft the same fÓ?ÍSia aiforfiÍ=n?ltl°nS- 14 ls not 
boundary conditions of the type (4™46® at r / '? foJtn°n™sfo™ 

condltiSns0ofh(43?46)°at J’^O^nd thl õthe^as r®“^1?5 the boun,1»f5 
linearly dependent, therefore the sec^olSwo^ ‘°b"e 

occurs at r / r0). Thei Ik 

|"aL"oa^?e®rthathfunc1trÎLTïn??Sduc0efdtheereriStop1c1it°f í“3 ‘55 ^ 

äteSn^iSn-rpäs-? ^ ^ ^ 
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(45.57) 
Ft « krji (kr), F{ =*irti¡'(kr) (Ä*>U), | 

Fe —qrll (qr). Ft -= qrkï (qr) I 

He re and hi1^ 
I l 

are spherical Bessel and Hankel functions; and 
l 

are the same functions for the imaginary argument.1 

5. Introduction of polarization potential. In the preceding 

paragraphs it was shown that the problem of calculating the effective 

cross sections leads to the solution of an infinite system of integro- 

differentlal or integral equations. By solving this system by the 

method of consecutive approximations we can obtain a different 

formulation of the problem, one of whose advantages is the possibility 

of graphic physical interpretation. 

We will originate from the system of integral equations (-43.55) 

and will take, as usual, as the zero approximation the free term 

tf’-irr/,, (43.58) 

Then in the first approximation 

í ò 

Further, going on to higher approximations, we can obtain 

*.-&.+$ <Mr, r') Vt.T.(r')Frt{r')dr', 
m 

Ft - J (Mr, r') [i/rr. (r') + l'rr.(r')] Ft. (r') dr’ 

and for matrix T 

Fr, Vrj.Fr, dr, 

m 

Trr, ■■—-j J (i/rr, + Frr.) Fr,dr (f ^ T,). 

(45.60) 

(45.61) 

LSpherical functions j^ , h^) 
* 

Bessel and Hankel functions J„, I , 
P P P 

are connected with the 

K by the relationship 

usual 



The magnitude Vrr is called the polarization potential. It is 
0 

an integral operator of the type 

CO 

V{r) 9 (r) « J V(r, r') 9 (r') dr’ (43.62) 

(below the nucleus of the integral operator is designated everywhere 

by the same letter, but with two arguments). The polarization 

potential is determined by the series 

V'n-.-S v-ff., I«. - S' . 
r|..arg_| 

00 
'Vrr^.r.-.r, (r/#) - J drt... drm ., (/„, (r) Or, (r. r.) C/r.r, (r,)... 

(43.63) 

(43.64) 

The last formulas fit both for f ^ rQ and also for r = Iq. In the 

sum over ... Tn_1 it is necessary to omit all members in which even 

one diagonal potential Ur _ is encountered. 
Vk 

Thus, the solution of the system of equations of the theory of 

collisions is expressed in closed form (43.60). The correction to 

matrix T^ is given according to (43.61) by the matrix element from 

vrr . From the second formula of (43.61) it is clear that Vrr is the 
u n 0 

correction to the Hartree-Fock potential Urr . This explains the 
11 0 

nane polarization potential. It is clear, strictly speaking, that 

above we have obtained only the formal solution, since the difficulties 

of solving an infinite system of equations are transferred to calcula¬ 

tion of an infinite series (43.63) of complicated structure. Also the 

question about convergence of series remains unanswered. However, if 

the series converges, then using the polarization potential to 

produce an approximate solution has a number of evident advantages. 

In particular, it is sometimes considerábly simpler to formulate the 
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approximate expression for potential than for a wave function. 

It can happen that the series (43.63) (actually this is the 

series of perturbation theory in presentation of method of distorted 

waves) does not converge or converges too slowly. In this case we 

miist solve the system of equations directly for turn to some other 

methods (compare, e.g., § 45). 

In the above mentioned formulas polarization Is actually considered 

in the framework of the perturbation theory. Let us now consider 

another presentation, in which exact wave functions of elastic 

scattering Tt in an arbitrary state r are used. This function is a 

solution of the Schrödinger equation 

lJ?r — f^r yr “0, (^.6o) 

/ r \ 
fr(0)-0, ^«¡„(Ar-ÇJ + r,,, - 

-V««in(Ar-A + ôj, 

where 6 is the exact scattering phase shift, and 7 4- is tne new 

polarization potential. It is not difficuxt to show that -r\ and V: 
Í . 

are connected by the integral equation 

{"') - Vrr (rr1) - $ (rr,\ 0, (<-/,) V'n (rtr') dr%drt, ( 4 3.66 ) 

from which we obtain the decomposition for 

^r-Sp2' (43.67) 

where the prime over the sum, as above, signifies the absence of 

members, including diagonal potentials Up - . The additional condition 
i 1 

that Fp / F noticeably decreases the number of members in the sum. 

By using function's we can write the amplitude of inelastic 

scattering three generally equivalent methods 
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7rr--Tir'(^rr. + Ï»T')art.dr - 
U» 

I ■* 'ï J i^rr* + Fv9 dr « 

-^»'.(«'it.+r-Í.JÍ-r.ír. (43.68) 

Obviously, this corresponds to "initial," "final" and "symmetric" 

inclusion of polarization. It is very important that in using 

approximate expressions for W and ^ the three given formulas lead to 

different results. Let us give the decomposition for nondiagonal 

potentials 

^"•“2 2 Í4p,...r,_,p„ 
TvrS1 

y9™» ™2_ 2 ^nv..r,_ ,r, — ttf*rr,% 
<ri^r«r) 

™ ÍAr.rr, +^[i/rr,r/T, + £/n*#p,iT, + i/nvpr,p#|+... 

(43.69) 

(43.70) 

(43.71) 

(43.72) 

(members of a higher order in AJ*9 have a complicated form). 

It is necessary to note that diagonal potentials V* and V coincide 

in the 2nd order, and the nondxagunai coincide in the j5rd order. 

To illustrate the different presentations it is useful to 

consider a two-level system. In the presentation of distorted waves 

F the amplitude of transitions is written in the form 

T”-(43.73) 

where V^q is the infinite sum of all members of odd order 

Vi, '*> - J dr, (r) 0, (rrt) £/„ (r,) O, (r/) l/„ (r') +... ( 43.74 ) 

In asymmetric presentations of elastically scattered waves 

Kr , i.e.. 
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(Jt3.7^) luxS.*r- 

In this polarization is wholly considered in functions T. Moreover, 

in diagonal potentials only members of the second order are different 

from zero 

f* (rr')-tU'XM"')tr') (^3.76) 

and analogous to f*. 

The symmetric presentation in the case of a two-level problem is 

less convenient, since it leads to an overevaluation of polarization, 

in consequence of which 

—1\.. (^.77) 

However, we must emphasize that this result pertains only to the 

approximation of two levels. In calculating the virtual levels the 

cyrametric presentation can be useful. 

In the case of inelastic scattering it is considerably better 

to use the third presentation, which can be called the presentation 

of two states (compare with paragraph 4 of § 44). Let us assume that 

we are interested in transition Tq -*• F. Then exact wave functions 

F_ and Fr can be presented in the form of solutions of a system of 
r0 1 

two equations : 

I J'r,—+ *¡1 fl. = ( Vf V 7 *1.1 ) Fi , \ ( 4 3.7 8 ) 
-(i/.r.-7 hr.)/7,.. I 

We can show that the new potentials -7'are determined by the series 

yv, ■* V V i/ir,...r.>,r.. 
* rt^r..r 

(43.79) 

where for ^rr and ^»r.r. an analogous formula with pre 

both limitations: ri ^ rQ and r1 / I is correct. 

The new potentials 7" are symmetric in initias and 

In the case of a two-level system ail turn 

servation of 

i .i.ïictJL i'-j at 0 • 
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§ 44. Methods of Approximation 

1. First approximation of the method of distorted waves. If 

we are limited to the first approximation during solution of integral 

equations (43.55)* then from (43.59) we will obtain 

7Í?. —rpríWV.*-. (W.l) 

both functions Fr and Fr are solutions of two unconnected homogeneous 
1 r0 

equations of the type of (43.51) with asymptotic behavior of elastic 

scattering (43.55). As already indicated, these functions are called 

distorted waves, since in their calculation field Ur or Ur is 
1 10 

exactly considered. 

In otherwords, functions Fp are solutions of the Hartree-Fock 

problem for an electron in the state of a continuous spectrum. In 

this case the average "Hartree-Fock" effect of an orbital electron 

on an atom is equal to zero, i.e., the self-consistent problem does 

not appear. Thus, in the first approximation of the method of 

distorted waves distortion of incident and dispersed waves by the 

average field of tV atom is fully considered, but the effect of the 

orbital electron on the atom is absolutely not considered. This, in 

particular, is connected with the fact that elastic scattering is 

determined not by the matrix element, but simply by the phase of the 

wave function. 

The first approximation of the method of distorted waves is 

frequently called just the method of distorted waves (e.g., in the 

known monograph Mott and Messi). 

2. Calculation of exchange. In the preceding paragraph. Just 

as in § 43, as a rule, the possibility of calculating exchange 

interaction is specially not stipulated. Actually this interaction 
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exists in the form of exchange members in potentials Uppi (formula 

(45.41)). 

In the framework of the first approximation of the method of 

distorted waves we must take exchange into account twice. First of 

all the equation for Fp (everything said pertains in equal measures 

to F„ ) V 
|^_líi+i?--í/r(r) + *»j fr»o (44.2) 

turns out to be integro-differential, which strongly complicates its 

solution. With the appearance of computers this problem became 

considerably more accessible. In the following paragraph we will 

consider certain parts of its solution in greater detail. 

Furthermore, exchange members appear in the expression for matrix 

T^p). But here the complication is considerably less substantial, 

sinc< 'i usually leads to calculation of one or two additional definite 

integrals. Let us note that real calculations must almost always 

be conducted numerically. 

The problem of calculating exchange also appears in any other 

method of approximation. Every time it leads to integro-differential 

equations and, furthermore, to an increase in the number of members 

in matrix Trr . Calculation of exchange becomes especially bulky in 
0 

polarization corrections (see below). 

^• About numerical solution of integro-differential equations. 

In this paragraph for simplicity we vill omit the indices F, l, etc. 

In the first approximation of the method of distorted'waves it is 

sufficient to know functions F. In more exact methods it is also 

necessary to detect.-., function F, entering in formula (45.50) for 

Green's function. In numerical calculations it is more convenient 
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instead of F and F to use real functions F' and F", satisfying the 

same equation 

1 ) <,)+*•] f-o 

(F = F' or F"), but with real boundary conditions 

r—rr* 0). 

r«wÂ^*r-^.+nj, F-«. cM^kr—îj.+iÿ (/•—•). 

(44.3) 

(44.4) 

(44.5) 

From the asymptotic behavior of these functions and from (43.53) and 

(43.50) it follows that 

a (,, ,*)— I r <f<) r ttr) r <o. (44.6) 

Practically function F' is found by integrating equation (44.3) 

from point r = 0 to a sufficient large value of r, at which the 

magnitude U(r) can be disregarded (as r ^ 00 U(r) decreases as or 

more rapidly), but the centrifugal potential cannot be disregarded. 

With this 

(44.7) 

where j and ru* are spherical functions of Bessel and Neumann. 
C L 

Amplitude A and phase tj are determined from values F’ (r) at two points 

f rtif M-r (rjf,/r (ftr.) 

iin** (rt)f,«i J (*/,) • 
(44.8) 

To calculate F"(r) we must generally conduct numerical integration of 

equation (44.3) from large r to small, where it is assumed that rj is 

already known. 

Let us now briefly consider methods of solving the integro- 

differential equation (44.3). The usual methods of numerical inte- 

(,   ) g rat ion are directly inapplicable to such equations in view of the 
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presence of Integral operator of the Fredholm type (i.e., the Integral 

from zero to Infinity containing the sought function). Therefore 

usually an equation of type (44.5) is solved by the method of 

iterations. At first the equation is solved without exchange. This 

solution is put into the exchange integral and the obtained nonuniform 

differential equation is solved again. This procedure is continued 

until the new approximation coincides with the preceding at the 

required degree of accuracy. 

Such iterative method is rather simple in principle, but in many 

cases it converges very badly, especially at ¿ = 0 or 1 and small k. 

There is another method of solving such equations, not connected 

with iterations. This method was offered by G. F. Drukarev1 in a 

presentation of integral equations and independently by Persival and 

Marriott2 in a presentation of integro-differential equations. This 

method is based on replacement of equations (44.3) by the totality 

of Independent equations, each of which can be solved by the usual 

numerical methods. The sought solution to equation (44.3) is then 

obtained in the form of a linear combination of solutions of auxiliary 

equations. Let us consider this procedure in greater detail. 

Basic difficulties appearing during numerical Integration of the 

equation are connected with the magnitude yw^(r) entering in U(r), 
Z b 

which according to (43.42) depends on the "future" behavior of the 

sought function F(r). Let us record y'.,.,(r) in the form 
£ £ 

y* (r) as ? /»(n) fin)*’,If I. (44.9) 

F. Drukarev ZhETF 31, 2Ó8 (1556). 

aH. Marriott, Proc. Phys. Soc. 72, 121, 1558. 
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where h^jF] is a constant, which is a linear functional of F: 

(44.10) , 

Then equation (44.3) taking (43.42) into account will be copied in 

the form 

(44.11) <?<*>—fiSPn 

where constants b^ must still be determined. Operator X' in (44.11) 

Let us assume that now Fq and F^ are solutions of nonconnected 

equations 

(44.12) [jr+^.-0. [jr+**i 

Although these equations also are integro-differential, according to 

(44.9) operator JTdoes not depend on the behavior of Fir^) at r^ > r.1 

The numerical solution of such equations is carried out by the same 

methods as in the case of the usual differential equations. These 

methods are well studied, and this problem is comparatively simple 

when computers are used. 

If Fq and F^ (satisfying the same initial conditions as F) are 

found, then the solution of equation (44.11), and consequently 

equation (44.3), is presented in the form 

r- (44.13) 

where A is the normalizing factor. Constants c>t are determined by 

substitution of (44.13) in (44.11). Considering the linearity of 

functional b^[F], we obtain a system of linear algebraic equations 

for c 
H 

i, 
That Is an integral operator of the Volterra type. 
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K 
i :¡ 

I 

(44.14) 

Solving these equations and putting the result in (44.13), we 

obtain the sought solution. In the most important particular case 

of one value of h 

rm,A {r'+ïl%lhF'} (44.13a) 

In principle an analogous method can be used in the case of 

other integro-differential equations, e.g., in calculating the 

potential TMo. 

^* Approximation of two states and calculation of a strong bond. 

I*t us return again to system (43.39). Omitting in it all members 

containing Fpi at F' ^ Fq, we will obtain a system of two connected 

equations 

i^|— -'a —i/r + Ä*j Ft 

This system is frequently called the approximation of two states. 

The first approximation of distorted waves is obtained from this if 

we assume that the connection of elastic scattering with inelastic 

is weak and omit the right side in the first equation: 

r* 40»+o /, , t.i p. n 
[57.-?-t'V.-r*:] fV.=°. 

[jg r. à»lr u F ’ I r* t-, T * j n - Un, Fi,. 

(44.15) 

(44.16) 

It is possible to show that with this 

QD 
Fr.-fi.. 7-rr. = -~ $/\ t/rr./Í,</r (44.1?) 

This result coincides with the first approximation of the method of 

distorted waves (44.1) 

When for some reason we can expect a connection between elastic 

and inelastic scattering, system (44.13) must be solved exactly. 

Then Trr cannot be expressed in the form of an integral containing 
1 1 0 

( ) 

! 
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the solution of homogeneous equations. To determine T. we must 

find the phases of two exact linearly independent solutions of system 

Such solutions have different values of logarithmic 

derivative at r = 0, and r -♦ co they have the form 

where i = 0 for and i = 1 for Fp. Composing the linear 

combination of these solutions and using (43.46), we obtain 

7V r — «i" 5, 

fn  _><|B, rin (n,—Si)_ 

(44.18) 

(44.19) 

(44.20) 

The equations of strong bond (44.15) can also be solved with and 

without taking exchange into account by a method analogous to that 

presented in the preceding paragraph. 

5* Calculation of polarization. In many cases the first 

approximation of the method of distorted waves turns out to be 

insufficient and we must take polarization of the atom into account. 

As was shown in paragraph 5 of § 43, this can be done either by 

preserving the presentation of distorted waves or by passing to the 

presentation of definitized elastic waves. In the first case a 

polarization correction is added to matrix element tÍÍ^ in the form 

àTn.— ijrtyn.ft,ér. (M.21) 

Let us note that magnitude ATpp is complex. However, in the case of 
0 

elastic scattering it is sufficient to know modulus ATr r , since the 

00 
difference of phases and ATp r is equal to the phase of elastic 

0 0 0 0 

scattering t}0 in the zero approximation: 

Tv.- 7r!r; + A7V.rt-#'*/*Jnn#_-£ j/Y.W.r.fr.rfr j 
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where 

In the second case the function describing elastic scattering 

is definitized by means of the solution of the radial Schrödinger 

equation with polarization potential 

(44.25) 

The cross section of elastic scattering is expressed directly through 

the more precise scattering phase shift (and not through the radial 

integral of type (44.21) with F = F0). A more precise definition of 

matrix element of inelastic scattering is broken down into two stages. 

Fir-t, the matrix element is calculated from definitized elastic waves 

ft, Tt., and second, the correction is calculated direct y from the 

nondiagonal polarization potential. 

Let us note that the role of first effect in the presentation 

Ql* distorted waves is reflected only by members of the highest order 

in (44.20). As was shown at the end of paragraph 5 of § 45, in tne 

approximation of two states this correction turns into zero. 

We do not yet have any general discussion of the properties of 

polarization potential or the character polarization corrections. 

Therefore here we will not extract the rather bulky general expressions 

for Vrr or through radial integrals. In practical calculations 
11 0 

it is always necessary to use approximate expressions. Usually we 

are limited to a member of the second order, from which decomposition 

of Vpp and -7 4-1. starts (let us remember that ). However, 

even this approximation turns out to be too complicated. 

Below we will briefly consider an important particular case; 

a diagonal potential of the second order without taking exchange into 
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account.1 We will designate it by T'r. According to (^3.63), (43.64) 

and (43.41) the nucleus is determined by expression 

(44.24) O ”^2'an-.Or.ry//.(r) Or^r, ?)/,,,(?). 

We will note, further that the role of Green's function Gr in 

"l 

similar expressions basically leads to "diffusion" of interaction as 

compared to that of a pure single particle. To qualitatively describe 

this diffusion, we can be limited to the Born approximation with 

l± = 0, since it is determined mainly by the energy of virtual state 

, Therefore we will replace Gp in (44.24) by this function 

(compare (43.50), (43.57)) 

Ok%{r, r') - •Jk, i'-'* r*f j (44.25) 
2 2 

at k± >0. If ^ < 0 (an energetically unattainable virtual level), 

then Gk passes into G (q. = -ik.): 
1 ^ 

¿I«-.... (44.26) 

After substitution of these functions in (44.24) the whole 
rs+ 

dependence on and LT enters into coefficients a— . To simplify 

further discussion it is expedient to average over /.,, after which 

summation over i± is analytically possible. As a result we obtain 

f ’.ir, r’) = yt“'{r)0k lr' (44.27) 

where s&a^, the coefficient in line strength of multipole trau* 

on the order of h is determined by formula (32.51) (see also (42.24)). 

Further simplification of potential 7 V is possible if we cross to 

the so-called adiabatic approximation. In almost all practical 

1For a more detailed examination see the article of L. Vaynshteyn. 
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calculations carried out up to now we used namely this approximation. 

It is obtained from (44.2?) as a result of the replacement 

0*.-(44.28) 
■«HI, 

(compare with (42.52)). With this becomes the local potential; 

using (43.62), we obtain 

nw-(44.29) 

Prom (44.29) it is easy to obtain the limiting expression for 

as r -* 0 and r -♦ ao. In the first case the member with h = 0 is 

different from zero, i.e., i. * l, L, = L, s^o = 1 and 
** 1 

nW —(44.30) 

As r f* öd the basic role is played by the member with x = 1, i.e., 

m i ± 1. From the asymptotic behavior of the integral ¿(r), 

we have 

(44.31) 
#| **• 

where b is the polarizability of the atom, and f is the oscillator 
aal 

strength of dipole transition. 

In practical calculations we frequently use tne simple 

polarization potential of the form 

where r0 is the average atomic radius in state a. This expression has 

regular asymptotic behavior and is limited as r -* 0. 

The adiabatic approximation is correct for low velocities of the 

orbital electron. More exactly: it is necessary that k2 « e , 
aa^ 

In any case the condition k2 = k2 - <0 is fulfilled. For a 
l aa„ 

X 

more precise definition of the results we can use the function G,. 
ql 
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instead of (44.28). Gq^ differs from the 6 function by the final 

width of distribution and, furthermore, by another normalization: 

m 

“«•J01,(/-. rVr'l. (44.33) 
• < 

The first circumstance leads, in particular, to a considerable 

increase of the role of oscillations of wave functions, which can 

decrease the polarization correction. 

^* A brief discussion of the results of cross section 

culations of excitation of atoms. The presently available 

experimental and theoretical data on the effective cross sections of 

excitation of atoms do not permit any full comparison of the results 

of one or another method of approximation with experiment. Therefore 

in this section we will basically compare calculations by different 

methods. Unfortunately, the possibilities of such comparison are 

also very limited, since systematic calculations were conducted only 

by the Born method. 

xn an analysis of calculated data it is natural to allot the 

basic attention to the hydrogen atom, for which exact wave functions 

are known. Moreover for hydrogen a considerable number of calculations 

have been carried out by different methods. 

The experimental study of collisions of electrons with hydrogen 

atoms presents considerable difficulties, since in the usual conditions 

hydrogen is in the molecular state. Nonetheless there recently 

appeared experimental data for both elastic and also for different 

inelastic collisions, obtained by the method of atomic bundles. 

The simplest method of calculating the effective cross section 

is the first Born approximation. However, even in this approximation 

for hydrogen it is generally impossible to obtain results in the form 

any visible analytic formulas; therefore, as a rule, numerical results 

of calculations are given. 
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A discussion of calculations of effective cross sections of 

excitation of series of levels of H and He from the ground state, and 

also certain transitions in other elements, can be found in the above 

quoted surveys (p. 663). In recent years effective cross sections 

of the H atom were obtained for a large number of transitions from 

the ground and excited states.1 An analysis of ail these calculations 

shows that the Bom cross sections, as a rule, arc oversized. This 

especially pertains to optically allowed transitions, although there 

is an analogous picture for optically forbidden transitions. In most 

cases for neutral atoms the maxima of Born cross sections differ 

from experimental approximately by a factor of two. The position of 

the maximum is shifted in the direction of smaller energies. In the 

case of ions the error in the Born method (without taking the Coulomb 

field into account) can be considerably larger. 

In certain cases (e.g., for alkali elements) the partial cross 

sections calculated by the Born method turn out to be larger than the 

theoretical limit + 1) (see § 41). 

In connection with this Seaton2 suggested the following procedure 

to improve the results. The partial cross sections in the Born 

approximation were calculated and those which exceed the theoretically 

permissible limits were assumed equal to —:-x(2c,. + 1). This procedure 

2ko U 

obviously leads to a decrease in the total cross section. This method 

iR. McCarroii, Proc. Phus. Soc. AJO, 460, 19!o7; 3. Moiseiwitsch, 
Mon. Not. Roy. Astr. Soc. HT, x89, 1957; S. Milford, Phys. Rev. II9, 
149, 133j I960; J. MoCrea, T. McKirgan, Proc. Phys. Soc. 73> 335> 
I960; L. A. Vaynshteyn. Optics and Spectroscopy il, 302, 1961, 
T. J. Wu, Cañad. J. Phys. 38, 1.654, i960. 

:'M. Seaton, Proc. Phys4. Soc. A68, 457> 1955. 
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was applied to transition 3-c'-3P of Na and gave considerably better 

agreement with experiment than the usual Born method. (Actually in 

calculations Seaton used the Bethe approximation.) 

Recently a work of Seaton and colleagues appeared in which this 

method was improved11 with the help of introducing an R-matrix (see 

paragraph 2 of § ^3). 

A series of calculation was conducted taking exchange into 

account (Born-Oppenheimer method). In almóst all cases this method 

impairs the results, in particular, the cross sections near the 

threshold of excitation are greatly oversized. 

In calculating the effective cross sections of elastic and 

inelastic collisions by more exact methods it is necessary to resort 

to decomposition into partial waves. The total cross section is 

presented in the form of the sum of partial cross sections a (irJ) 
a0a u 

(see (43.20)). Let us discuss certain general peculiarities of such 

calculations. 

When we use decomposition into partial waves a question about the 

number of partial waves giving an essential contribution to the total 

cross section. 

In the first Born 

approximation, using expression 

(43.57), for F it is easy to 

show that 

(44.34 ) 

where k is the wave number of 

4# JUt * 

Fig. 65. Partial and full (an) Born 

cross sections for transition ls-2s 
of the hydrogen atom. 

the scattered electron, 

and X is the same magnitude in threshold units 

1M. Seaton, J. Lawson, W. Lawson, V. Burke, Proc. Phys. Soc. 77» 
174, 184, 192, 199» 196I. 



Thus, we can expect that in all cases at small values of x the basic 

role is played by collisions 

toMftpjg—tig.ï .it .ITT i 
WWfWWWWWWWutTifiWvvß 

fig. 66. Partial and full (a®) Born 

cross sections for transition ls-2p 
of the hydrogen atom. 

and 2p for hydrogen. As 

can be seen from the figures, 

at x £a(0, 3) in first 

case and o(l, 0) in the second 

significantly exceed all the 

partial Born cross-sections 

confirm this rule. Figures 

65 and 66 show as an example 

with l ss 0 (s scattering). 

of excitation of levels 2s 

Specific calculation will 

remaining partial cross 

sections. 

Calculation of the distortion of scattered and, all the more so, 

incident waves does not change the situation in region of x « 1, i.e., 

in direct proximity to the threshold. However, the region of energy 

in which relationship (44.34) is correct is essentially narrowed. If 

in the Born approximation relationship (44.34) was fulfilled at 

y 1 
x à -p then during calculation of distortion of incident and dispersed 

waves it is disturbed already at x ~ 0.1-0.2. 

The partial cross sections with 7 > 0 start to play considerable 

role practically from the actual threshold of excitation. For 

instance, for optically allowed transitions the partial cross section 

of 1 = 0 already at x ~ 0.1 is negligible as compared to the 

section 1=1. 

cross 



;vh£t was said is illustrated in Figs. 67 and 68, which give the 

partial cross sections of excitation of levels 2s and 2p for hydrogen, 

calculated in the approximation of distorted waves without exchange. 

a* ti is no & is & X 
Fig. 67. Results of calculating 
the cross sections of transition 
ls-2s for hydrogen in the approx¬ 
imation of distorted waves with¬ 
out exchange. an is total cross 

section; oj is the full Born 

cross section. 

0 VV St tsisSfitítttSSSSfllí X 

Fig. 68. Results of calculating the 
cross sections of transition ls-2p 
for hydrogen in the approximation 
of distorted waves without exchange. 
an is the total cross section, 

a® is the full Born cross section. 

In the majority of calculations carried out until recently the 

presentation of partial waves was limited to calculation of the 

partial cross sections with ~ = 0. Prom the above said it is clear 

that this approximation is absolutely insufficient and these works 

cannot give even qualitative information about the full cross section. 

In calculating the total cross sections for the region x < 1 we must 

consider at least two or three partial.waves. 

At x 2 the number cf partial cross sections essentially 

contributing to sum (43.20) becomes too large. As an example we 

will refer to Figs. 66 and 68, where the sum of partial cross sections 

to z = 6 are given. At x ~ 3 for s-p transition this sum is not more 
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than 1/3 the total cross section. At the same time already at x £ 2 

the method of distorted waves gives results very ^lose to the Born 

approximation. Therefore in calculating the total cross sections we 

can use Bom's equation, introducing in it a correction for distortion 

of partial waves with small values of l: 

+ ¾ (44.36) 

where o® and 0® (IqI ) are the full and partial Born cross sections. 

As was shown in § 42, a® can he calculated without resorting to 

decomposition into partial waves. In most cases it is fully sufficient 

to take * 4-6. 
m 

After these preliminary remarks concerning the presentation of 

partial waves let us turn to a general appraisal of the results of 

calculations outside the framework of the first Born approximation. 

Here we have calculations taking into account distortion of incident 

and dispersed wave; polarization; distortion and exchange, a strong 

connection of two or several states. 

An analysis of the results obtained by the method of distorted 

waves without exchange shows that this method leads to essential 

impairment of the results as compared to the Born approximation.1 

The total cross section attains maximum already at x ~ 0.3-0.4. At 

X < 1 the cross section is considerably larger than the Born, when 

the experimental cross section is less than the Born. 

The presently available data do not permit making a final con¬ 

clusion about the relative role of the remaining effects. Nonetheless 

we can affirm that even independent calculation of exchange (in the 

approximation of distorted waves) or polarization leads to noticeable 

•‘•The calculation of distortion by the Coulomb part of the field 
during excitation of ions is an exception. 



improvement of results. Figure 69 compares the cross section of 

excitation of a hydrogen atom for transition ls-2p calculated by 

different methods of approximation with experimental data. Apparently, 

in the case of excitation by slow electrons we cannot expect good 

results without calculating the effect of polarization. But, 

calculating this effect is connected with great calculation 

difficulties even in the simplest cases. In this connection it is 

very urgent to develop new methods in which perturbation of motion 

of the atomic electron would be considered already at the first stage 

of calculations (see § 46). 

Fig. 69. Effective cross sections of transi¬ 
tion ls-2p for hydrogen. 1 - Born method; 2 — 
method of distorted waves without exchange; 
3 — method of distorted waves with exchange; 
4 — second approximation of the Born method; 
5 - experiment (W. Fite, R. Stebbings; R. 
Brackman, Phys. Rev. lió, 356, 1959). 

7. Elastic scattering. Upper limit of scattering length. The 

problem of elastic scattering of electrons in many respects is 

essentially simpler than the problem of inelastic scattering. In 

solving this problem we can use a number of special methods. In 
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turn the radial functions of elastic scattering are used to solve 

many other problems, in particular, in calculating the effective 

cross sections of inelastic collisions, and also the cross sections of 

radiative transitions taking the states of continuous spectrum into 

account. 

In solving the problem of elastic scattering the variational 

methods of Cohen, Hulthen, Schwinger and others have found w.ide 

application.1 In these methods a certain test wave function ^ is 

selected in analytic form with several parameters determined from the 

condition of extremum of the functional 

Ô S'I'll/*-(^.37) 

Frequently scattering phase shift also enters into a number of 

parameters. 

At present the most interesting application of variational 

methods is the solution of general Schrödinger equation with 

indivisible variables,2 The test function includes the distance 

between electrons r^. This allows us to approximately evaluate the 

effects of correlation of electron motion. 

Variational methods are also used to solve a number of general 

problems in the theory of collisions. Thus, variational methods were 

used to prove a practically very important theorem on the upper 

boundary of scattering length.3 

1For an account and discussion of variational methods see Yu. N. 
Demkov, Variational principles in the theory of collisions, Fitmatgiz, 

1958. 

2In the past variational methods were also widely used to solve 
radial equations. Now this direction has become less urgent, since 
with appearance of electron computers the problem of numerical 
integration or ordinary differential and integro-differential equations 
has become comparatively simple. 

3L. Spruch, L. Rosenberg, Phys. Rev. lió, 1034, 1959; 117* 1095» 
I960. 
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We can show that in the absence of long-range interaction of the 

type r n at small values of wave number k there is decomposition 

*ctgÔ. = —^ .... (44.38) 

where &0 is the exact scattering phase shift for the s wave. The 

magnitudes a and rQ are called scattering length and effective radius 

of interaction. At k = 0 scattering is determined by the s wave. 

Therefore from (43.20), (43.66) and (44.38) it follows that: 

ai{0)^4ctali. (44.39) 

In the case of scattering of electrons on a neutral atom as r -*■ oo 

oniy polarization potential remains; it decreases as r-\ Although 

in this case decomposition of magnitude k ctg &0 at small k differs 

from (44.38) (a member proportional to k appears; the expressions for 

coefficients of decomposition are changed),1 it nonetheless as before 

contains a constant member. Therefore formula (44.39) remains Just. 

The general formulation of theorem of the upper boundary of 

scattering length is rather complicated. Therefore we will be 

limited to an indication of only certain particular cases. 

1) If the system of neutral atom and orbital electron does not 

possess a bound state of given symmetry2 then the scattering length 

calculated by the variational method of Cohen or the Hartree-Pock 

method is the upper boundary of exact value of a±. 

2) In the presence of one bound state the property of upper 

boundary belongs to magnitude a1, calculated with wave function 

I960. 
1L* Spruch, F. O'Malley, L. Rosenberg, Phys. Rev. Letters 5, 375, 

2For example in the diagram of a LS coupling at given values of 
..ulx orbital moment of the system Lrp and full spin S,p the formation 

of a negative ion is impossible. 
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(4^.40) 

where parameter b is detemined by the same variational method, is 
t Í ) 

the initial test function (Cohen or Hartree-Pock method) and U£ is the 

approximate wave function of the bound state. The last should be 

sufficiently accurate to ensure eigenvalue e < 0. 

Thus, a number of approximate methods give a scattering length 

that knowingly is not below an exact value. This circumstance is 

very useful in comparing the results of calculations by different 

methods. As an example let us consider elastic scattering of electrons 

on the hydrogen atom. Inasmuch as the negative tT ion (bound state 

of system) does not have triplet levels, the methods of Cohen and 

Hartree-Pock give boundary a_. Appraisals show that this also 

pertains to a+, although at S,j, = 0 one bound state is known. 

The results of calculations of various authors are compared in 

Table 91. Column RSM gives values of a± obtained by the Cohen method, 

where members of type e“cr12 were 

introduced into the test function.1 

The results of the following 

column (BDJS) were obtained by the 

Cohen method also, but by using 

linear members of the type cr:¡_2,£ 

As can be seen, functions of the 

first type are preferable. 

The same table gives values of a+ obtained by means of numerical 

integration of equation (43.65) without potential;-7-1 (i.e., in the 

1L. Rosenberg, L. Spruch, F. O'Malley, Phys. Rev. 119, 164, I960. 

£B. Bransden, A. Dalgarno, T. John, M. Seaton, Proc. Phys. Soc. /"U 
il, 377, 1958. * 1 

Table 91. Values of scattering 
length at ST = 0(a+) and ST = , 

= 1(0 

RSM BDJS H.F. •I 

•- 
6.33 
1.93 

7.a» 
2.33 

8.11 
2.35 

\ i 

S.:«) 
1.70 
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Hartree-Fock approximation) and with use of approximation (44.32). 

As can be seen, calculation of polarization even in a comparatively 

rough approximation (44.32) leads to an essentially more precise 

definition of the results as compared to the Hartree-Fock approximation. 

However, we should note that the solution of equation (43.65) with 

such potential no longer satisfies the theorem of upper boundary, 

so that the values of a± given in the last column can by no means 

be considered more exact than the results of the first column. 

Calculations of the effective cross section of elastic scattering 

of an electron on a hydrogen atom at k > 0 show that polarization 

potential plays an essential role up to energies on the order of 

6-8 ev. However, comparison with the latest experimental data forces 

us to consider that expression (44.32) in the case of p wave leads to 

a noticeable overestimation of the role of polarization effects. 

8* Bremsstrahlung transitions in the field of a neutral atom. 

In this paragraph we will examine certain pecularities of approximation 

calculations of effective cross sections of bremsStrahlung transitions 

in the field of a neutral atom. 

Let us copy formula (34.43) for effective cross section of 

bremsStrahlung absorption, using the designations accepted in this 

chapter: 

0-0+ +o~. 

0 “”3e —jjp«* £ (fti'ixQ*, Ft{r)Ft{r)nlr, 
Uiti.' • 

et _ "t" I ' «. _ I 

* 2(25,-1-Ö' S-5i T 7* 

(44.41) 

(44.42) 

where k0, k1 are wave numbers of the electron in the initial and 

final states; 7max is the biggest of numbers ~0, l±i F0(r), F^r) are 

radial functions of elastic scattering, standardized by the condition 

F(0)—O, F[r)^.f^tín^kr—j.+ tij (r —oo). (44,43) 
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As r -*■ ao and behave as sin (kr + T)). Therefore the radial 

integral p in (44.42) diverges. This divergence, however, does not 

have physical meaning, since the divergent members have the form 

ò(k0 1 Inasmuch as k0 f k1 (at k0 = k^ the energy of the 

emitted or absorbed photon is equal to zero), these divergent members 

can be omitted. Thus, the problem consists of calculating that part 

of radial integral which remains after removal of divergent members. 

Presence of divergence essentially complicates calculation, since 

direct numerical integration during calculation of p turns out to be 

impossible. Removal of divergent members should be executed 

analytically. 

As an illustration let us consider the transition of an 

s-p electron in the field of an atom (lQ = 0, = 1). At very small 

energies this transition gives the basic contribution to sum (44.42). 

At small energies the distortion of the p wave by the field of the 

atom is Insignificant. Let us assume therefore that function F^ is 

the function of free motion, but as Fq will take the asymptotic 

expression 

(44.44) F,-*/>,(*/), f,«sin(V+TUb 

where is a spherical Bessel function of the first order. Putting 

(44.44) in (41.42) and integrating, we will obtain 

Let us now omit all members with functions 6 and b' and introduce 

similar members. Then (for an s-p transition) 

(44.45) 
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Thus} in this approximation after separation of divergences p 

is expressed through scattering phase shift. Hence we obtain an 

approximate expression for the cross section of bi unsstrahlung 

absorption 

32rt’aJ c* t tt\-i •;_« _ 
o* m —ar-'—-ï— (*i — *•) *>n tj, : 

8na; 
'ST (44.46) 

Here aynp(^o^ cross section of elastic scattering for an 
#"w 

incident electron with l = 0.1 

Formula (44.45) fits only for s-p transition. In the case of 

p-s transition it takes the form 

2*: tin t;,. 
-. 

The above approximation (44.44) is very rough, since the phase 

of the p wave is absolutely not considered and it is assumed that the 

asymptotic form for the s wave holds for all r. If we do not make 

these assumptions, the radial integral p at arbitrary lQ and ~1 can 

be presented in the form 

coMnX) \ , i /.(i.-i-i, , 
l '■ 2 (*,4*.) I kTTK + '¿It, ~ ! — 

c«(n*-n¡) F i /.(/.-h» , /.(i.^in , 4 

A *= J (r) F, (r) — sin a, sin a, — «o* ut sin a, — 

—»ina.cosu,j rdr, 

~ , + H*. 

(44.48) 

(44.49) 

(44.50) 

^■Expressions of the type of (44.46) were obtained in works: 
0. Firsov, M. Chibisov, ZhETF 59, 1770, i960; T. Ohmura, H. Ohmura, 
Astrophys. J. 151, 8, i960. 

-745- 



It is possible to show that the integrand expression in (44.49) at 

— i 
large r is proportional to r . Therefore the magnitude A can be 

calculated numerically. Numerical calculations show that in the case 

of bremsStrahlung transitions in the field of a hydrogen atom at 

energies up to 5 ev the approximate expressions (44.45) and (44.47) 

differ little from the exact formula (44.48). 

For other atoms the difference can be very significant. For 

oxygen at small energies the results differ by one order of magnitude. 

It is necessary to note that the number of calculations of 

effective cross sections of brems Strahlung transitions in the field 

of a neutral atom carried out up to now is small and almost exclusively 

limited to hydrogen atoms. Let us note, in particular, the work 

Chandrasekhar and Breen,1 in which Hartree radial functions and the 

matrix element of average acceleration were used. It is possible to 

Show that the radial matrix elements from radius, speed and average 

(over distribution of electrons in the atom) acceleration in the case 

of free-free transitions coincide when Hartree functions are used. 

But when the Hartree-Fock functions are used the matrix element of 

average acceleration gives an absolutely incorrect result. More 

reliable results were obtained in the work of T. Ohmura and 

H. Ohmura,2 who calculated the cross sections of free-free transitions 

and the coefficient of absorption, using formulas (44.45) and (44.47). 

1S. Chandrasekhar, F. Breen, Astrophys. J. 104, 4^0, 1946. 

2T. Ohmura, H. Ohmura, Phys. Rev. 121, 513> 1961. 
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§ 45. I-least ic ollisions in the ^uasi-Classical Approximation1 

The quasi-classical approximation is applicable during calculation 

of effective cross sections of collisions of an atom with heavy 

particles (atoms, ions, etc.). In a number of cases it can also be 

used in examining collisions with electrons. The essential 

advantage of the quasi-classical method is its simplicity. Thus, in 

the approximation of two states taking strong coupling into account 

the quasi-classical method permits us to obtain a number of results 

in analytic form, while the quantum-mechanical consideration of this 

problem requires numerical calculations. 

In the framework of the quasi-classical method the effective 

cross section for transition of an atom from level to level 7^ is 

determined by the formula 

0(t>)-2n$tr(ô, v)QdQ, (45.1) 

where w(p, v) is the full probability of transition during collision 

with impact parameter p and relative speed v. The problem of 

calculating w(p, v) leads to the solution of a system of equations of 

the nonstatic perturbation theory. In the approximation of two levels, 

the case we will consider below, this system can be written in the 

form 

/a,a,+ ^(/) f 

0,(—oo)«l, «.(—I a, (/) I*+1 a, (/) I* ■» 1, 

where to—y%—y*, —K—-j•jV'î,. 

^■In this section we will use the results of work: 
L. Presnyakov and I. Sobel'man, KhETF 43, 518, I962. 

(45.2) 

(45.5) 

L. Vaynshteyn, 



Subsequently, without any limitation of community, one may assume that 

V is a real magnitude.1 Furthermore, subsequently we will assume 

that V(t) is an even function: V(t) = V(-t). The sought probability 

is equal to wB = la^oo))2. 

Integrating (45.2) in the first perturbation-theory approximation 

(i.e., considering in the right part of the second equation of (45.2) 

that aQ = 1, a1 * 0), we obtain the quasi-classical formula of the 

Born approximation 

v»-| J VtMdt\ »I J V cos (at dt |*. (45.4) 
— • —go 

In a number of cases approximation (45.4) turns out to be absolutely 

unfit. This approximation does not satify the condition of 

noimalization (45.3)> due to which w can exceed unity, which 

contradicts the physical meaning of this magnitude. In connection 

with this in specific calculations we must limit the magnitude w 

through some artificial method. Approximation (45.4) frequently 

gives incorrect (oversized) results at w « 1. Calculation of the 

following members of the series of the perturbation theory does not 

essentially improve the results. Therefore in general the system 

(45.2) must be solved without resorting to the method of consecutive 

approximations. 

For this reason let us return to system (45.2). Let us 

introduce the function2 

. (45.5) 

1 . I J5m I * 

If V = jVje T, then substituting a,-v *. * again leads 
to system (45.2), where instead of V we have |Vj. 

2The lower limit of integration f « 0 is caused by selecting the 
beginning of reading of undisturbed phase wt In (45.2). 



It is easy to see that the phase of this function Í2(t) has a simple 

physical meaning; it determines the correction and differences of 
. I 

phases of magnitudes a^ and aQ due to potential V(t). As will be 

shown, to find the probability of transition |a1(œ)J2 it is sufficient 

to know only fí(t). From (45.5) it follows that 

and consequently, the condition of normalization (45.5) is satisfied 

independent of the approximation for R.1 Putting (45.5) in (45.2), 

we can obtain the differential equation for R(t) and then, from it, 

a system of equations for n.(t) and ü(t) 

where 

-V'(/)sin [JalT)dT-ß(/)]^|~, 

I 
(/)COÊ u(T)dx—Q(/)] (I»*(/) -Í 1 ). 

0(/)-0 + ^,(/)-.^,(/). 

(^5.7) 

(45.8) 

From (45.7) we can find the connection between +(t) and Q(t), which 

permits expressing R(t), and also |a1(t)|2 through the phase fl(t): 

f r 

Ä(0-~/tg{ $ cot [5o(r)rft-U(/')](//') •*««". 
•0» t 

i r 
10,(/)1^-1 sin J ycos I Ja (T)rfi-ii (/')](//'[. 

(45.9) 

(45.10) 

Formula (45.10) gives the sought connection between the probability 

of transition and phase &(t). System (45.7) Is not integrated in the 

common form. 

Let us note that if we put fl(t) - 0, then from (45.10) the first 

Born approximation follows for small V. To find the approximate 

xThis method is analogous to transition from S matrix to R matrix 
in the general theory of scattering. 
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expression for Ü(t) we can use the asymptotic methods of the theory 

of differential equations. Let us note that we are talking about the 

asymptotic behavior of a certain characteristic parameter contained 

in the equations and not the asymptotic behavior of variable t. It 

will be shown later that the role of this parameter is played by the 
% . - V 

ratio where v is speed, but X characterizes the magnitude of 

interaction. We can expect that the first member of the asymptotic 

series gives a comparatively good approximation for ft(t). The 

asymptotic solutions of system (45.2) have the form 

** V... (0 X _ 

j/^[y-T/aj—l [-p-qF<aJ )rfTj , (45.11) 

where <P0(t), ^(t) are certain real functions. Formulas (45.11) give 

the following approximate expression for Í2(t), which are conveniently 

written in the form on an integral over trajectory x = vt: 

O(0-R.lA+tIt+'tJ -tIt + 'IJ'- 

■ - V^+t Ir-'v] - -. [r- vj’} • (45.12) 

What was said is just in general for even functions of V(t); if 

is an odd function, then to right side of (45.12) one should 

add As v -*• 0 (45.12) gives 

w I 

0(/) SS 0*(/)-1J dx (a-W+^j » J 
(45.15) 

which coincides with the exact expression for the phase in the 

adiabatic approximation. It is also necessary to note that both 

(45.12) and (45.13) ensure condition Í2(t) -*>0 at v -*■ 0. True, 

according to (45.12) ft(t) -0 faster than il°(t). But from (45.10) it 

. * 

follows that at 0(/)-<^ $a(T)dT |o,(/)| in general does not depend on ft(t ). 



Thua, for quasi-static perturbation (45.12) coincides with (45.13), 

and in strong nonstatic conditions (45.12) and (45.13) can differ 

greatly, but this is not very essential for results. Therefore 

subsequently wla.1 be limited to one approximation ¿2 = ft0 at all t; 

then 

i H .1 
K(*c);»|siii 5 1/(0cos(J . ■U'vth/t)dr sn/ (45.14) 

Inasmuch as 

l'^H ï »,((I'ivrrrr,v,j,'' 
— » / ï 

. « 
« sup I sin J jAi'lh i ilt * = I. (45.15) 

in expression (45.14) we can replace sin Iby I. This replacement 

not only simplifies the formula, but it leads to a somewhat more 

precise definition of results, inasmuch as the introduced error is 

opposite in sign to the error connected with replacing fi(t) by Í2°(t). 

In particular, as we will see later, in cases of a rectangular pit 

and exact resonance we thus obtain exact values of the probabilities 

of transition. Thus, it is possible to take following expression! 
» 

i * J 
w-| J V(0cos (J Ka’lT) - 4rüidt f - 

— 30 § * 
1 ® J 

“j J V(0cos(JK(w + vt— i/,)»TïPrft)dt]*. (45.16) 

Formula (45.16) can also be obtained by other means as the first member 

of the series of the adiabatic approximation. However, investigation 

oi convergence of this series and the character of the correction 

tor the nonstatic nature is connected with serious difficulties. 

Let us note that by partial summation of the series we can obtain 

formula (45.14). If |V| « a, jV1 - V0| « a>, then from (45.16) we 

obtain the Born approximation. 
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Formula (45.16) can be used at any relationships of magnitudes 

u), V1 - Vq and V. Below we will be limited to a consideration of 

the special case when in the subradical expression of (45.16) we can 

disregard member V1 - VQ and (45.16) takes the form 

Let us note, that if basic contribution in w is given by the 

"crossing point of terms" a(t0) = 0, then appraisal of the integral 

in (45.16) gives 

\ const#-4 0 ®i«'(x)|* (45.18) 

At small & this formula coincides with the Landau-Zener formula, and 

at large 6 it differs from it by a constant pre-exponential factor 

on the order of (1-2).1 

Approximation (45.17) is of interest for a whole series of 

approximations, such as transfer of excitation energy during collision 

of atoms with coinciding or close levels, excitation during collision 

with ion, if transition 1 — 0 is optically allowed, etc. In these 

cases the basic contribution in o (formula (45.1)) is given by the 

region of comparatively large values of p, for which V » Vi - Vq. 

To check the utilized approximation it is useful to consider 

the condition that V1 - Vq = 0. From (45.17) it follows that: 

a) square potential well V(t) = Vc at jtj < T and V(t) = 0 at 

|t| > T 

AVl + a* 

b) exact resonance œ = 0 

Sin* [V ]/<•>* 4- 41^]; (45.19) 

1See [L.L.], § 87. 
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m 

w-sin* J V(f)dt. (45.20) 

The exact solution of system (45.2) in both cases gives the same 
results. 

Let us note that (45.20) can be written in the form w = sin2 wB, 

where wB is determined by formula (45.4) (at a> = 0). At small V 

w ** w ; with increase of V, when wB can become larger than one, w 

varies around a mean value of | without exceeding one. The variance 

of w has a single physical meaning. At large V during collision the 

atom goes from one level to another and back many times. Let us now 

consider the general case of multipole interaction proportional to 

R * We will consider that the trajectory is rectilinear and the 

axis of quantization of the atom is directed towards the perturbing 

particle. Then 

V-l;. (45.21) 

Integral (45.17) in the case of potential (45.21) can be calculated 

only approximately. Without considering these calculations, we will 

give the result 

m 

J. (45.22) 

. , (45.23) 

Constant is determined by formula (36.21). 

At cu *= 0 (exact resonance) formulas (45.22) and (45.20) give the 

same result 

i 

»to* (^)-^(^). (45.24) 

j.n the Born approximation (45.4) for potential (45.21) 

K 

Ve-**. {«*K V 
’IT*7; 

(45.25) 
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At ßn « 1 (45.22) practically coincides with (45.25) at all p for 

which w < p and at smaller p it oscillates near a mean value, close 

to ■». Therefore in this case in calculating the cross section o we 

can he limited to the Born approximation, putting 

• » 
*«•2* + 2.tJw'çrfo (45.20) 

• ï’ f 

At ßn » 1 (45.22) essentially differs from (45.25) even in the 

region of small values of w and wB, since w < e*p |-2$ini |'¿p'j . For 

instance, at n = 2 and ßn = 2w<ei+. In this case even with such 

p for which wB « 1, w and wB differ by more than an order of 

magnitude. Obviously, at ßn » 1 formulas of the type of (45.26) 

cannot be used even for rough estimates of a. Putting (45.22) in 

(45.1) we can obtain the following expression for effective cross 

section of transition; 

. .5=1 -»î'HÎ-.i 
' * "'.IP.). 0-2» (j-) 

fa* 

(^i) X 

Xe*p J ~ 2 2pasiii' J + PS”/ - VWn sin J-] J y dy, 

^^(bP.^)’' [2/2-p: sin-=-+ l], p.>1. 

’oPr^J) sin [y(jEi)]. 

/, (0) — j ; /,—► a* In npH ß,— 0. 

(45.27) 

(45.28) 

(45.29) 

The values of In(ßn) are given in Table 92. At small speeds (large 

t j If I 

p) exp v"‘ 1" «a ^ 2 sin j J , i.e., decreases very rapidly with 

decrease of v. This is connected with the small effectiveness of 

excitation of atom by heavy particles noted in paragraphs 7 and 8 of 

§ 30. An exception is the case of small values of a, when values 



'n ^ 1 are por. y i ble even at low velocities. At fixed value of v in 

the region «c(ï)""Tthe 

cross section is close to 

maximum, i.e., has an 

order of magnitude of 

f 

. For 

t 
y.i 

values 

exponentially decreases 

with increase of a>. 

At n = 2 (excitation by charge Ze of optically allowed transition 

0 -*1) and ß « 1, putting , where P2 is the 

component of dipole moment of the atom and S is the line strength of 

electrical dipole transition 0-1 (see (Jl.25)), from (45.27) we 

obtain 

TabJ'; '¿c', yaiutc; of integral I (ß) 

9. 1 a
 1 Co»
 

n — 4 it »6 

0 
0.02 

- 0.04 
0.08 
0.16 
0.32 
0.04 
1.28 
2.S6 
5.12 

12.2 
20.48 
40.96 
81.92 

163.84 

«Hn (l ,ft 
22.4 
16.8 
11.6 
7.00 
3.47 
1.28 
3.41-10-1 
®,% HT* 
3.44-10-* 
1.17I0-* 
4.1010-* 
1.42 I0-* 
4.95-10-* 
1.73 10** 

i 
i 

i 
i 

i 
« 

i 
i 

« 
i 

o
o

o
o

o
o

o
s
o

o
 

•
*
•
»
•
*
•
•
•
»
•
«
 

a
 
•
 
•
 

00 40 CO “■ fr”** CO 
Is» 

7.62-10-' 
8.93 I0-* 
S.W-IO*1 
6.16-10-' 
5.57-10"* 
4.77-10-' 
3.MI0-' 
2.51* 10"' 
1.50 IO" * 
7.95-10"* 
4.14-10-1 
7.23 IO“* 
I.22-I0-* 
6.71 IO"* 
3.71 IO-* 

4.61-IO*' 
4.19-10-' 
4,14-10-' 
3.88-10“' 
3.52-10-' 
3.0510-' 
2.49-IO"' 
1.82 IO"* 
1.21-10-' ! 
7.32 iO"* ! 
4.21-IO"* 
2.47 IO-’ 
1.46 10** 
«.72 IO-* 
5.26 I0-* 

(45.30) 

ti 
a° “ iS the at0mlC unit 0f len«th* m is the mass of an electron. 

Let us also estimate the maximum magnitude of effective cross 

section of resonance transfer of excitation energy. Let us assume 

zhat as a result of collision the first atom passes from level to 

level and second from level J2 to level (Ej > E j Ej < e ,), 

1 J2 J2 

whom between levels and Jg, jj electrical multipole transi¬ 

tions on the order of and ns are possible. In this case 

n + Hg + 1, Putting 

r iis: 
S. St 

(45.31) 
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where &n , SK are line strengths of electrical multipole transitions 
1 2 

J1 Jl' (see (^2^2)) and &X» &2 are the 3tatistlcal weights 

of levels J2, obtain for the quasi-resonance region 

li*.*’. +l + 
'I 

^(01'[<S 
_<*i + «,) 
t+ l)(2xt+ l)g,ßt j l««»K 

(^5.32) 

In rough estimates of the order of magnitude of cross sections the 

expression, in the bracket^ in (45.31) can be put equal to one. Then 

for cross sections of dipole-dipole, dipole-quadrupoie and quadrupole- 

quadrupole transitions we obtain respectively 

Ht)“- • to(f.)'*:- 

At V » 105 cm/sec (£« .0-) these cross sections are related as 

.2. Ji 

,:(r.) = (£) ‘-1:0.1:0.02. These appraisals show that the effective 

cross sections of resonance transfer of excitation energy can be very 

great (for dipole-dipole transitions, on the order of ic^aji); the 

increase of multipolarity of transitions leads to a very small 

decrease of cross section. 

It is necessary to note that potential describes multipole 

Interaction only at distances larger than atomic dimensions. This 

qualitatively shown effect can be described by replacing (45.21) 

by V' — XlrJ + c' + vV) * . All the above obtained formulas for 

probabilities of transition are kept if we put + W in them. 

Similar modification of formulas can appear especially Important at 

small X. 
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In concluding this section we will discuss the question of 

applicability of the above approximation of a "rotating system of 

coordinates" (the axis of quantization is directed towards the 

perturbing particle). We will conduct all considerations in a 

certain motionless system of coordinates and will designate by 

j = + Jg, j ' = + total angular moment of both particles 

before and after collision. With this V will depend on the direction 

of vector p and v and on quantum numbers ^mj^'. To obtain the 

probability of transition from level of the system to level 

we must calculate {231 + 1) (2J2 + 1) (2J^ + 1) (2J2 + 1) 

magnitudes of wjmj,m,(pv), averaging them over directions p, v, 

sum over all possible values of j m' and average over all possible 

values of jm. It is comparatively simple to conduct these calculations 

only at ßn « l, when it Is possible to use the Born approximation. 

It is possible to show that calculation of suca type with an accuracy 

of a numerical factor on the order of unity gives the same result 

as the approximation of the rotating system of coordinates if the 

constant of interaction is determined by relationship (45.31). Thus, 

at n = 2 the correction factor to formula (45.30) is equal to ÍL. 
M 

§ 46. About Possible More Precise Definition 
- of the Born Method! 

Prom what was presented earlier it follows that with help of 

comparatively simple corrections to the Born approximation for cross 

sections of inelastic collisions, such as calculation of distortion 

of incident and dispersed waves, calculation of exchange, etc,, the 

results are not essentially improved. As for the effects of 

polarization, calculation of one or two members of the series also 

1Added during proofreading. 

# 
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does not correct the position.1 Calculation of a sufficiently large 

number of virtual levels leads to practically insurmountable 

calculating difficulties. The deficiency of methods constructed on 

che basis of the presentation of distorted waves is the fact that 

the first plan advances the calculation of attraction of the 

electron by the shielded nucleus and (in wave functions) repulsion 

of atomic electron by incident electrons is not considered. At the 

same time for inelastic collisions exactly this effect has paramount 

value. Therefore it appears necessary to search for such methods of 

solving this problem in which repulsion cf electrons is considered 

already in first approximation, i.e., in wave functions. One of the 

attempts undertaken in this direction is the use of momentum 

approximation.2 The method expounded below, although essentially 

different from the momentum approximauion, is very close to it in 

#:-. 

S'jp JL 3T Ji» "tt • 

Let us consider an inelastic collision of a hydrogen atom with an 

electron, disregarding exchange. The exact expression for the 

effective cross section of transition between two arbitrary states, 

which below are designated by indices 0 and 1, can be written in the 

form 

*, 
•• 4n*k 

where r^, r^ are the coordinates of atomic and incident electrons 

V=n—.r«* is a solution of the Schrödinger equation I rr il r, 

(46.1) 

1This follows from recently carried out calculations: see, e.g., 
R. Damburg, R. Peterkop, Proc. Phys. Soc. 80, 663, 1962; W. 
Somerville, Proc. Phys. Soc. 80, 806, 1962. 

2R. Akerib, S. Borowitz, Phys. Rev. 122, 1177, 1961. 



(46.2) 

satisfying the boundary conditions 

If as r2) in (46.1) we place qp^r^e 0 2, then we will obtain 
iknr0 

the Born approximation. Above we already noted that Born’s equation 

correctly transmits the basic qualitative peculiarities of cross 

sections. Therefore it makes sense to write Ÿ0(r1, r2) in the form 

(46.3) 

In virtue of the above function r2) should be sought without 

separating the variables or decomposing them into a series. This 

function satisfies an equation which is easy to obtain by placing 

(46.3) in (46.2): 

“{lïTFôr—^I'.» 1-.). (46. 

Let us go in this equation to new variables p * -|(r2 - ^), 

R = 2(r2 + rl)^ respectively describing the relative motion of the 

atomic and incident electrons and the motion of the center of mass 

of these electrons in the field of the nucleus: 

{t ¢)- Q. (46.5) 

where Q is the right side of (46.4). 

At present there are no simplifications. Inasmuch as thê exact 

solution for ^(r^, r2) cannot be obtained, we will look for an 

approximate expression for x and YQ, by putting Q = 0. Then function 

X will describe scattering of free electrons one on another and the 

motion of their center of mass in the field of the nucleus. In this 
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equation variables R, p are separated; then integration gives 

**.«>-r( i-¿) r(i +l)f(ç. i;».«-/*.#) X 
(46.6) 

where F are degenerated hypergeometrie functions. The utilized 

approximation ensures the needed asymptotic behavior of function 

although each of functions F contains a Coulomb logarithmic member 

in the phase. Let us go to calculation of the matrix element in 
• 

(46.1). In the Born approximation a contribution different from 

zero in (46.1) is given only by the first member of interaction V. 

Considering the obtaining of the first correction to the Born 

1 
approximation, we will put V = —- 

|r2 ' rl| 

Let us place (46.6) in ¥0 and present 9^(^)^(^) in the form 

of the Fourier integral 

</x. (46.7) 

Then the matrix element in (46.1) can be written in the form 

4 j(/S'* IV-*> j<‘'*F(^, I. ik,R-ih.R)dR ■; 

X j" --^(¿ , 1 : -ikAj11V (46.8) 

Inasmuch asF^j-, l; /*,/?—— las ft - >. and the integral over R 

increases infinitely as s -* 0, we will replace the slowly changing 

function cp(q - s) by <p(q). After such simplification the integral 

(46.8) can be calculated exactly.1 Let us give the final result: 

[/(9)j • (46.9) 
^ ikj - A11 

m ]• (46.10) 

^"In this the method offered by Hordsieck (A. Kordsleck, Phys. 
Rev. 93, 789, 1984) is used. 
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where F is a hypergeometric function. At k0 » 1 f(q) « 1 and 

(46.9) passes into Born's equation. At k0 ~ 1 and k0 < 1 the factor 

Fig. 70. Effective cross 
sections for certain transi¬ 
tions in the hydrogen atom: 
1 — Born approximation; 2 — by 
formula (46.9); points are 
experimental data. 

f(q) determines the corrections 

to the Born approximation. It is 

essential that at any values of 

parameters factor f(q) s? 1. At 

fixed Kq and q -*• 0 f(q) 1. 

The effective cross sections 

of a series of transitions 

calculated by formulas (46.9) and 

(46.10) are given in Fig. JO.1 As 

can be seen, the general peculiarity 

of method is strong lowering of 

maximum of cross section and its 

shift to the region of larger 

energy. In the case of transition 

is ls-2p this leads to very good 

agreement with experiment. When 

the maximum of the Born cross 

section is attained at small energies 

(optically forbidden transitions 

and transitions between close 

levels), introduction of correction 

f(q) leads to very strong decrease 

of the cross section in the region 

of the Born maximum. 

1W. Fite, R. Stebbings, R. Brackmann, Phys. Rev. 116, 356, 1959; 
R. Stebbings, W. Fite, D. Hummer, R. Brackmann, Phys. Rev. 119# 1939# 
I960; 124, 2051, 1961. 
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Por transition ls-2s this is in contradiction with experimental 

data. As for transitions between strongly excited levels of the type 

4s-5p, experimental data are absent for them. 

It Is characteristic that all methods founded on the presenta¬ 

tion of distorted waves lead to strongly oversized results for 

transition ls-2s in the region of maximum cross section. As can be 

seen, the use of wave functions, including repulsion of the atomic 

electron by the incident electron, even in the simplest form leads to 

the opposite effect. 

In an analogous way all calculations can be conducted taking 

exchange into account. In this case the correction factor f(q) in 

(46.9) should be calculated by the formula 
* 

(46.11) 

where f is determined by expression (46.10), and fo6M has the form 
* * Jc' 

(46.12) 

For the transitions shown in Fig. 70 calculation of exchange leads to 

an insignificant decrease of cross sections, not exceeding 10$. 

In principle the presented method can be generalized for 

nonhydrogen-like atoms, although in this certain additional 

difficulties are unavoidable. 

The approximation used above to calculate the correction factor 

f is certainly very rough. However, the results obtained within the 

bounds of even such calculation of repulsion of atomic electron by 

the Incident electron show the importance of this effect. 
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