
Project NW. 007 001 01
Ddpment No.
"TRACOR 67-904-U

DATA MANAGEMENT

A COMPARISON OF SYSTEM FEATURES

T.ý W. Ziehe }[
TRACOR, Inc.
October 1967

6500 r,-), our Lne. At T,7a% 78721, AC 512,9264*2'

Rawr"!ced by ihe
CLEARINGHOUSE

Best Available COPY wtZ i2

I kANt Al-YIN T 7?-'2

FrojecL No. 007 001 01
Document No.
TRACOR 67-904-U

DATA MANAGEMENT

A COMPARISON OF rY"fEM FEATURES

T. W. Zi.ehe

TRACOR, Inc.

October 1.967

65C.G TRACOR LANE AUS11N TEXAS 78721

TABLE OF CONTENTS

Section

Ackn. wledgments

Abstract ijii

IntroducLion i

1 EXTERNAL DATA STRUCTLURING AND ORGANIZAT7ON 3

1.1 Components, Datum Types, and External Names 4

1.2 The Map or Structural Description 7

1.3 The Datum Array 10

2. INTERNAL DATA ORGANIZATION 13

2.1 TDMS and RFMS 14

2.1.1 Internal Architecture of TDMS and RFMS 14

2.1.2 Component Data 17

2.1.3 Value Glossaries 19

2.1.4 Datum Arrays 19

2.2 DM-l 20

2.2.1 internal Architecture of DM-l 22

2.2.2 Logical Data from the User 2b

2.2.3 Logical Data from the System 27

2.2.4 Data Segments 29

2.3 GIS 30

2.4 Catalogs 32

3. CONCLUSION 34

(W?(WO TPACWJP LAN[Au,11N TI XA',, I7

ACKFNOW LEDGMENTS

Thi~s report rupresentl,, work Under contract N00014-67-

C-03'93' wil~h the Office of Naval. Rescarch, Information Systems

Br -ic h. It is based both on public ty available documentation

and in personal conversation. The couopuration of all individ-

uil~s cont-acted is ackinowledged, ic. part icular A. H. Vorhaus and

R. hickhaclter, at S.D.C., A. C. Dale and- J. De,'ine t- The University

of 7exaýS, and J. Sable and H. Stout at Auerbach Corporation. The

aut~hor was personally involved in the development of the catalog

5'/ten;other principal contributors are M. Kay and D. G. Hays

atL RAN"D.

S6500 TRACOR LANE. AU.• rlN TEXA, 78721

ABSTRACT

Features 'f four data management systems, all being

developed, are compared. The four systems are the Time-Shared

Data Management System and a variant of it, the Remote File

Management System; Data Manager-i; the Generalized Inforation

System: and the Catalog System. Comparisons are limited to two

areas: external and internal data structuring and organization.

Several differences among the systems are noted and briefly

discussed.

iii

* 650 TRACO(R LAN(- A)'TIN TEXA% 78721

DATA MANACEMIENT

A COMPARISON OF SYSTEM FEATURES

This paper compares some features of four data

management systems being developed:

1. TDMS and RFMS* - the former under development at

System Development Corporation, the latter at the

Computation Center of The University of Texas at

Austin.

2. DM-l - under development at Auerbach Corporation

and Rore Air Development Center.

3. -IS - under d,•velopment at IBM, Federal Systems

Division.

4. Catalogs - under development at The RAND Corporation,

Linguistics Research Project.

It assumes a familiarity with the field of data management and

some background of knowledge about the systems discussed. The

names used above and in following sections represent more

descriptive titles:

TDMS 'ine-Shared Data MKnag, ement System

RFMS - Remote File MK:iagement System

DM-l - Data Manager-i

GIS -Generalized Information System

Documents listed in the bibliograph! ,,ire the source of most of

the material presented. They also clarify many .'elated issues

not discussed in this report . In many cz-;es definitions and

rules ascribed to a system arc direct quotations taken from

These two systems are treated together since RFMS is largely a
re-implernentation of TDMS for the CDC-6600. They differ slightly
in the areas discussed here, but in ways that need not be made
explic it.

6500 TRACOR LAF- AU,TIN TFXAS, 78721

these documents. In some cases editing changes ,-jere made, in a

few a complete restatement is used. Conversations •i.h individ-

uals working on TDMS, RFMS, and DM-l clarified several points

covered, but if misrepresentations persist, they are the sole

responsibility of the author.

Although none of the systems is in full-scale use,

each has reached a sufficiently advanced stage that documenta-

tion describes the features compared: external and internal

data structuring and organization. External refers to the

structure imposed by a user of the system on his data; that is

to say, hic description of datum relationships. Section 1 deals

wlIth comparisons in this area. Internal refers to the structure

and organization imposed on the data by the system itself. inis

includes the system's handling of both datum values and informa-

tior about those values, some of wnich the user supplies but

some 3f which the system generates. Section 2 contains compari-

sons in this area.

2

I__

S6500 TRAC.OP LANE AUSTIN TEXA% 78721

I. EXTERNAL DATA STRUCTURING AND ORGANIZATION

Each data management system offers its users a capa-

bility for describing a datum array 'i-ich the system is to manage.

In this description the user defines data classes and their

structural relations. The system stores this information, using

it to guide processing of the data.

This capability is of crucial importance. Its design

determines the system's naturalness, from the user's point of

view, in each application. It also influences the number and

complexity of the system's basic processes and contributes to

the system's operating efficieitcy. The four systems show a

similarity in their apprnach to external data structuring and

organizaLion. A sketch of this common ground provides a

vocabulary and framework for comparison.

Each system offers its users a budget of components

with which to construct a structural description. This descrip-

Lion or man is a hierarchy of componcnts, related by inter-

component connections in a manner consistent with system rules.

Given a map, a system is able to construct and deal with a data

base that corresponds a it. Each element of the data base, that

is, each cia turn, corresponds to a componenct of the ma p and exhibits

a p'tteIsn of rela.tionships with its neigh boring data that ,atches

aI pat tern at component'L re lationships in the map. System rules

regulatet, the repetition ()C tf map ,xAttCrnIs InI the data base, hut Lin
eneraI each Componelt Corresponld, to mlany datum occurrences in

the dalta base. Elich dattumi tither clirr-ies i.,,formatioi; directly

in the form of its value or si lv 11 ro.,ups subordinate data. Cnly
theI cita log sys t, a" I lws a1 datuI a U do bath imu taneously

Nime!s aLltiched by th 1USeClr Ito eaCh Comp111oent-1 a1LeII used to access

dat urn va lue s in t ht da tI baMse

The four s\' tets are s imitlar in t oat maps and data

baseIs. ar tree-shaped. Each '-mpent, or datum, carresponds to a

3

650' TRACOR LANF AUI,1iN TEXAS '87,11

node of the tree and has only nne parent, although multiple
offspring are allowed. Components or c. ,ta with a common parent

are called siblings.

In the remaining paragraphs of this section the follow-

ing features are described for each system" the components, the

type of data to which each corresponds, and the facilities

provided for attaching external names; the rules that govern the

composition of a map; and the rules of correspondence between

components in a map and data in an array.

1.1 COMPONENTS, DATUM TYPES, AND EXTERNAL NAMES

The terms used as component nam,,s are listed for each

system with a description of the datum Lype to which each corres-

ponds. For value-hbaring components a summary description of

value encoding is included. External naming conventions for

components are als,) sketched, but additional encoding and naming

convontions can be added to any systc,rn without affecting the

rest of the desi,41..

rDMS a•,d RFMS. Two c emponents are avaLilable in these

sys te'S"

1. An elcment corres-Pds Lo dat.um values that can he

dec 1•ared as nai'cs (alphanumeric), numbers (real

nur.Lber), dats (month day, year), or text (to be

imp 1 t, nttd, in a [, r \' rs ion) . A'n e lement has
0)o 5Ui).. rueC tuf tO i Pc l? ' •,

2. A\ ri'eain t u •e i t,- k. co nent with a substructure

O0 one or Lore co I ponot s , 1Ci t er c 1l men ts or sub-

ord il' V IC 1t C ti 1') Llp . A rtepeatltig group
cat r')ondi~s Ito daLi t.hia t •ro':p".i:ubord mt ae datlal

EaIch oe L can he assiid an11 ý1 external name. Itn
additt i,," fDMS Ind RMS afftr users ..two ohW) device.

Eatch" c ,'e('! nt can n! asiPcned a nu:',ber by tLhe u.s.er which is

PtTZ TT T-7 TPA(,)P L ANF AIJ-, IN Ti-X >AS lk'

indepenident of a component identity numiber assigne~d by the

s ys tem. The second device, an ovurllv canability, defines a

sub-element as a portion of a previousliy defined elemrent. Thi s

adids no s-tructure to the map; it m(erely provides thle user with

an alternate data access, nor-mnlly to ,..rt of a value rather

than the whole.

DM-lI. Maps are constructed from, t-hree components

(in DM- 1 "items" is a synonym for "components"):

1. A field is a terminal -item; that is, it Ila.- no

substructure in the map. It co-responds to value-

bearing data and is defined by its name ard the

type, size, "Ind uiniL ,.ýsiignators foc its val.ues.

A field name is alphanumeric s-tring which J"s

used exte--ally. The type specifies Lthe Coding

scheme used for vo lies, o t the field. it may be

o l~onuer s rtecr ,binarv, oc to i, decimal, or

expone-n tialI. The- size ts S 1easur oft-0 thle lengtLh

Of tie I1d valu-2s(ahnuri chirac t ,rs , binary

bits, deci,1 im, I i-its, etc i ndi m-i be fixed or

viable lehh Ih unt de iga t h . steC if ies

the scaile onl wich the1 ! v, leie 0t 1h fl.,Iel d is

iesuýIr t -(; e.g .i , v o its i I. p -er s , meters, etc.

2.A f ile s, an iter" itonaltrvnmbrOf

su-tes ac II n ~d c tutras

ttS S subst ruLc turC aILch Sub te iS a1 record. Th t

til.,l is do finll' I~ it s nave, and)(thei s*,rue tura.

1ef iL iC 17 "1 S cod. Ih~ dat Lie o f a

ti iei te roun oi l ailucr> ot the ti jidfls subsumred

by al [lktrucid ' ~ 1it

3. A statiorýenL is, an) item- wito te iCiles, or Other

do tifned bV it s Otand ',Oh e fn11In~tor its

6500 TRACOR LANE AUSTIN TFX<AS 78721

sub-items. In effect, the statement is a mechanism

for associating several related items to show the

relationship and permit them to be treaced as a

unit. The data value of a statement is the set of

values of its subsumed fields.

Sections 1.2 and 1.3 will help to clarify the roles of

statements and files in DM-l. At this point, it is sufficient

to say that both correspond to datum-grouping, non-terminal data

while a field component corresponds directly to value-bearing

data. The user assigns each component an external name, a

variable-length string of alphanumeric cha:racters. No provision

is made for referencing portions of field component values as

in TDMS.

GIS. Maps dze constructed from two components:

1. A field is a terminal GIS itei. -- the smallest unit

of data that can be referenced or described. The

required descriptive elements for a field are (i)

its relati-,,e position in the segment, (2) its name

(and synonym, if any), (3) its type, and (4) its

length. Field tvpe may be binary, decimal, floating

point, or aiphanumeric. An alphanumeric field r,•y

be either fixed or variable in length, whereas all

others must be fixed-length. Length control for

a variable length field may be provided by one of

two options: :ount or terminating code. In the

count uption, each occurrence of the variable

length field will be preceded by a "length" field

indicating the number of characters for this

ccurrence of the field. in the terminatinF-

de optioa a user-selected special character is

employed to mark the end of each occurrence. A

set of consecutive fields is called a segment.

6

T. P ~AC A N A L; ,T tN T FX.A; A2.8

?. A file is composed of an arbitrary number of items,

called records, each with the same logical struc-

ture. A GIS record is composed of a single segment

followed by zero or more embedded files. The seg-

ment is a defined set of fields; the structure of

each embedded file tollows the rules of file

struc ture.

"The GIS file corresponds exactly with che TDMS repeat-

ing group and the DM-l file; the GIS field with the TDMS element

and the DM-l field.

Catalogs. Maps are constructed from a single component,

a data cla-s. A class corresponds directly to value-bearing data

and is defined by i-s name and the type of encoding used for its

values. Encoding types include text, binary, and strings of

aiphanumeric characters. Datum values are assumed to be variable

length so no indication of length is given with the class. The

class name is a sequence of three alphanumeric characters.

1.2 THE MAP OR STRUCTURAL DESCRIPTION

In each system rules govern the construction of a

structural description. Thinking of a structural description as

two dimensional, these rules prescribe both the hierarchical and

sibling relationships which are allowed. These features are

described and compared in the following paragraphs.

TDMS and RFMS. The rules regulating the hierarchical

relationships in a structural description are:

1. An element (E) may occur either without a parent

component or with a repeating group as its parent

component. An element is never a parent component.

2. A repeating group (RG) may occur either without a

parent component or with a repeating group as its

parent component. A repeating group is always the

parent of at least one component.

7

S67rO TPCCZ LANE AU rTIN TEXAS 78721

Thus, every structural description is built from these

threc types of hierarchical relationships: E RG RG

E RG

There are no direct restrictions on sibling relation-

ships. A structural description can contain any sequence of

components-without-parents as well as any sequence of components

as sibling offspring of a repeating group.

Two general restrictions are made on structural descrip-

tions:

i. The nurber of levels in the hierarchy must not

exceed sixteen.

2. The number of components used in the description

must not exceed 1023 elements and 255 repeating

groups.

DM-I. These rules regulate the hierarchical relation-

ships in a structural description:

1. A field (D) may occur without a parent or with

either a statement or file as its parent. A

field is never a parent component.

2. A statement (S) may occur without a parent or

with either a statement or file as its parent.

A statement is always the parent of at least one

component.

3. A file (F) is restricted in the same way as a

statement.

Thus, every structural ýcscziptiIn is built from these

seven types of hierarchical relationships: D S S S F F F

8 D S F

8D

'6500 rRACO|P LANF. AS.)T!N. tEXAS 78721

There are no restrictions on sibling relationships. A

structural description can contain any sequence of components-

without-parents as well as any sequence of components as sibling

offspring of either a statement or file.

No general restrictions on structural descriptions are

mentioned in current documentation.

GIS. These rules regulate the hierarchical relation-

ships in a structural description:

1. A field (D) must occur with a file as its parent

component, but a field is never itself a parent.

2. A file (F) may occur either without a parent

component or with another file as its parent. A

file is always the parent of at least one field.

Thus, every stru, .ural description is built from these

two types of hierarchica.l relationships: F F

D F

Sibling relationships are regulated by the following

rule: the offspring of e file component are ordered so that all

fields precede any files which occur. In addition, a number of

rules affect the co-occurrence of fields and subordinate files in

a structural description; for example, records of a subordinate

file can be identified either by a record count or key value in

a field that is a sibling -f the file.

Sg. A single rule regulates the hierarchical

relationships in a structural description:

i. A class may occur either with or without a parent

component. It may also occur as a parent or without

offspring.

Thus, every structural description is built from these

two types of hierarchical relationships: C C• I
C

9

* 6500 TRACOR LANE, AUSTIN, TEXAS 78721

Sibling relationships are not regulated; a class may

have any number of offspring classes. A structural description

c-n consist of no more than 512 classes.

Frr:m the above it should be noted that the catalog

system combines in one component properties that other systems

divide among several. This fact is simply noted here but it is

the root of an important difference in approach: the catalog

system structures the data of an array directly, whereas the

other systems group data under a hierarchy of names.

1.3 THE DATUM ARRAY

Each system creates datum arrays which correspond in a

prescribed way with a map that has been supplied. Datum patterns

in the array correspond to component patterns in the map. System

rules define this correspondence, both the repetitive use of

patterns from the map in the array and the extent to which parts

of the pattern from the map can be omitted in the array.

TDMS and RFMS. The correspondence between map -omponents

and data in an artay is regulated by these rules:

1. The pattern of the entire structural description

can recur any number of times. Each occurrence

is called a logical entry of the data base.

2. Within each logical entry oach repeating group

componenL can cot-' .spond to any number of datum

nodes. The substructure of the repeating group

iý- repeated for each occurrence.

3. Each insua--e of a subordinate repeating group
generated by its parent repeating group can itself
correspond to any number of datum nodes, repeating

its substructure with each.

4. Each instance of an element component generated by

the first three rules corresponds to a single datum

node.

10

S65O0 T '•" C.OFI L ANE, AU'STIN, TEXAS 78721

Each element is an optional participant in each

repetition of its p,1rent. An instance of a repeating group is

said to exist only if there is it least one element value occur-

ring in its substructure.

DM-I. The correspondence between map components and

data in an array is regulated by these rules:

1. Each occurrence of a statement component can

correspond to only one datum node. The statement's

substructure is the substructure of that datum.

2. Each file component can correspond to one file

datum that subsumes any number of datum nodes,

each called a record. The substructure of the

file is repeated in each record.

3. Each instance of a subordinate file generated by

its parent file or statement can itself generate

any number of record nodes, repeating its sub-

structure's pattern for each.

4. Each instance of a field component generated by

the first three rules corresponds to a single

datuo,, node.

Each component is tagged as either required or optional.

An optional component plus its substructure can be omitted from

any occurrence generated by its parent. Required components must

be included in each repetition.

GIS. The correspondence between map components and

dota in an array is regulated by these rules:

1. Each file component can correspond to one file

datum that subsumes any number of record nod2s.

The pattern of the file's substructure is repeated

for each record.

111

o6500 TRACOR LANE, AUSTIN, TEXA
5

78721

2. Each instance -f a subordinate file generated by

its parent file can itself generate any number of

record nodes, repeating its substructure with each.

3. Each instance of a field component generated by the

first two rules corresponds to a single datum node.

No provision is made for optional fields or files.

Thus, each repetition of a structural pattern generates data for

each field and file in it.

Catalogs. The correspondence between map components

and data in an array is regulated by these rules:

1. Each class component can correspond to any number

of datum nodes. The substructure of the class is

the substructure of each datum.

2. Each instance of a subordinate class generated by

its parent class can itself correspond to any

number of datum nodes, repeating its substructure

with each.

Every class is an optional participant in each repeti-

tion of its parent class. When a particular class is not included,

all classes in its substructure are also excluded.

12

6500 TRACOR LfkNE AUST!N TEXAS 781,,

2. INTERNAL DATA ORGANIZATION

A sysLui,,'s provision for describing data structures is

an avenue of approach to its main body uf capabilities for data

management. In this section, we examine the base upon which this

main body of capabilities rests. It includes the form in which

the structural description is stored, the techniques used to

represent the prescribed structure within the datum arrays, and

the format within each system for physical storage. it also

includes any secondary crganizations of information developed by

the system from the datum arrays. This additional information

prepares the system for activity of a particular type or style.

This part of the bise is a measure of the extent to which a

system is committed to processing data in a particular way.

This discussion of system architecture covers the way

each system deals w;ith the user's structural description and

other information about the data, as well as the way each deals

with the user's data itself. At times both kinds of information

will be referenced simply by the term data. When a distinction

must be made, th user's data will be referred to as descriptive

data, data that describe things to which the system does not have

access. Information about the descriptive data, whether provided

by the user or g;enerated by the system itself, is referred to as

logical data, logical with respect to system processes that usc

it.

The four systems under consideration are quite diverse

in thei areas referred to above. Because there are only a few

similarities, a point by point comparison is impossible; each

system i, therefore described separatelyv. The documentation

avai] ibL-2 on TDMS and RFMS anid on DM-4 makes possible a more

extensive description of the architecture of these systems. The

information at hand for GIS is much less complete; therefore, its

description is brief. The Catalog System offers very limited

i3

O 6500 TRACOR LANE AUSTIN. TEXAS 78721

capabilities in the area under discussion. Consequently, its

description is also brief

2.1 TDMS and RFMS

These systems enable individuals and organizations with

large, and often complex, data files to manage their data with

speed and ease. They are oriented to the nonpLogrammer user,

who, after learning some basic commands, can wor z directly with

the computer to manage his data base. The systems permit the

user (1) to describe enitries in a data base, (2) to load them

into the machine, (3) to ask questions about them, (4) to per-

form calculations on them, (5) to have the data displayed :n a

cathode-ray-tube, (6) co obtain hard-copy reports, and (7) to

update and maintain the data base.

These objectives influence the internal architecture

of both systems. A further influence is the fact that both are

designed for on-line operation. Several users can work con-

currently, each with his own data base. Each system maintains a

list of names of data bases to which it has been introduced, but

beyond that each data base is independent of all others. Each

data base, both its logical and descriptive data, is organized

for storage on a secondary device that offers direct access. The

systems block and unblock the data and, together with the operat-

ing system, manage- the storage and retrieval of blocks. Magnetic

tape is used only a,, a back-up for direct access storage when a

data base cannot remain on-line. All active data bases irist be

storvd in an oii-linc, dir•cct-access device.

2. .1 Internal Architecture of TDMS and RFMS

Each dat a base received, both its logical ind descrip-

t iv(data, is organized by anid stored as the content of fourteen

tables . This comple.x of tablos, shown ia schematic form in

Figur. 1 , r,.,val.s the internal architecture of TDMS. Each table

is rpresevited by its symbolic name except for the tables "legal"

14

I 6500 TRACOR LANE, AUSTIN TEXAS 78•21

and "units"; they are as yet undefined and unnamed. The set of

tables CDEFINA, CDEFINB, CDEFINC, CDEFIND, CDEFINE are parallel

in that there is always a one-to-one correspondence among their

entries. They could be combined into one table, but are separated

for increased efficiency.

Many TDMS/RFMS tables are actually a series of sub-

tables. Each table or sub-table is a series of entries and an

entry consists of one or more items. An item type is either

fixed or variable length and contains either a logical or descrip-

tive datum. The logical data that relate one table or sub-table

to another are shown in Figure I as arrows. The significance and

use of these paths through the complex will become clearer in

later paragraph.3.

The design of the table, sub-table, entry, item hier-

archy is independent of the rules provided the user of TDMS or

RFMS for structuring his data. In fact, the availabie documcnta-

tion does not formalize the rules which govern this hierarchy.

As a consequence of this dual approach there is a clear distinc-

tion between extending the system and applying the system to a

task. [n fact, the tendency will be for different '-dividuals to

perform the two tasks. At least appliers of the system will

seldom be aDle to extend the syste2c and its ciipabilitics.

The fourteen TDMS/RFMS tables fall into three functional

ý,•roups . Figure, 2 illustrates this grouping. The tables in the

first group contilin infor:ý'attion about Lhe componen[ts of the data

base -- cich ete1enIt 11n-d epeat n, grou. ,he contetnt of these

taLb les is essen, ti mllV thlt' st1uc tural description provided by the

user. fhe second group o table: con t, ains a vI ue glossary for

0he values of tCjac leme.l t lrhev recCord an orga, ization of the

dalL' gneratcd by the s ist, i addit ion to that provided by the

use r. rThe third Prese'ryes thil datur array as organized by the

user S fap or st ru•turn l description. The rena ining paragraphs

ot this section dsc ribe .L'ch 4roup of tableS and their content.

CDEF I NA
CDEFINB
CDEF I NC
COEF I ND
CDEF INE.NE

CVALDI R
LEGAL UNITS CELS CVALUES

CNAME CENTS

t CF IND

CDAT A

FIG. I - TDMS/RFMS TABLES

/~COEF INA
CDEFINB
"COEF INC
CDEFIND

CDEF IN F

L EGA' NT

U - TSNCTIOAL - TlNS RFCVA TAB 1

.,.c~ l L • UP F S

rlb

C FW I2 NO

i• • 'iowcy -46-.127-3

IO~~~ I f fII [I

S6500 TRACOR LANE AUSTIN, TEXAS, 7R72]

2.1.2 Component DaL.

The eight tables of this group, CDEFINA, -B, -C, -D,

-E, CELS, "legal", and "units", contain items of information

about the components of a data base. Some of the items are

meaningful for both elements and repeating groups, but many apply

only Lo element- Tables CDEFINA, -B, -C, -D, and -E have rixed-

length entriL.-, one m-r each component, stored in the order of

definition. Y7he system-assigned comnonent number indexes each

table. The other three tables have variable-length entries.

CELS contains the alphanumeric name assigned each component.

"Legal" and "units" have an entry iu: each 2lement. An entry in

the former will allow the system to make legality cihecks on

values ascribed to an element. An entry in the latter will record

the units of measurement for an element's values. Their contents

have not been further defined at hjis time.

The following items apply to all components:

L. The component name assigned by the user with a

measure of its lepgth in both words and characters --

a. a pointer to the name: tablc CDEFINA, item

C PNAMEA

b. the name: table CELS, item CARS

c. the number of characters in the name: table

CELS, item CNBCAR

d . the number of words required for the name:

table CELS, item CNBWDS

2. The componeLn nuber assigTne by the user -- table

CDEFINB, item CFHELD

3. The con-ponent number a-si;nec, by the, system --

table CELS, itern C PEL (it >trves as a poineter t rom

thie GELS table back to CDEFINA)

4. The :'om,:poncnt lov,-I number - table CDEFINA, item,

C LEV EL

17

* 6500 TRACOR LANE. AUSTiN. TEXAS 78721

5. The component type tag -- table CDEFINA, item

CTYPE

The following items are defined but have meaning only

for elements:

1. Data which define the location of the value

glossary lor an element

a. a pointer to the CVALUES sub-table for this

element: table CDEFINC, item CPVDIR

b. the number of partitions required for that

sub-table: table CDEFINC, item CVENT

c. the base index for the CNAME sub-table for

this element: table CDEFIND, items CNREL and

CNLOC

d. the base index for the CENTS sub-table for

this element: table CDEFINE, items CEREL and

CELOC

e. the number of characters in the longest value

assigned the element: table CDEFINA, item

2. Data which complete the definition of the component

structure -

all repueaicirg group for an element, element

iccntification for a sub-element or overlay;

table CDJIFli, item CRGID

U. "paren!", "subh-element", "other" tag: table

CDEFINA, item CSPIN

3. Value deJ:icriptor•ci --

a. "'value", "no value" tag: tabLe CDEFINA, item

C NOVAL

b. type tag for numeric input: table CDEFINA,

ite m CF LOAT

18

I 50 6M~O TRACOR LAN(A'J5 TIN TEXAý 78721

4. Pointer to the unit-of-measure -- table CDEFINA,

it i CPUNIT

5. Pointer to thu legality checks -- table CDEFINB,

item CPLEGAL

2.1.3 Value Glossaries

The four tables in this group, CVALDIR, CVALUES, CNAME,

and CENTS, contain glossaries of element-values, one for each

element. Each is in a form convenient for searching, but in

addition maintains connections between a value and the node or

set of nodes in the datum array to which it corresponds. CVALDIR

is a directory of the other sub-tables. CVALUES and CNAME con-

tain the actual value glossaries. CENTS, and in some cases

CVALUES also, maintains the connection between a value and nodes

in the datum array.

Each sub-Lable of CVALUES and CNAME corresponds to a

single element, and each entry corresponds to a distinct value.

The CVALUES entry is fixed-length and accommodates some value

descriptors. An item is also provided for the value or a

truncated form of it. In the latter case the complete value is

stored in a CNAME entry. The CVALUES entry also includes a

pointer to the node in the array to which the value corresponds;

if it corresponds to more than one, that pointer is directed to

a sub-table of CENTS whose entries in turn point to each occur-

rence in the array.

2.1.4 Datum Arrays

The two tables of this group, CFIND and CDATA, record

the node structure of a data base and relate each node to a

value in the value glossaries. CFIND contains an entry for each

set of values in the data base. In TDMS/RFMS a set is either the

values on level 0 of a logical entry or the values in one instance

of a repeating group.

19

6500 TRACOR LANE AUSTIN, TEXAS 78721

r.ach CF1ND entry contains two pointers to other CFIND

entries; these poiiters structure the table into a tree and allow

movement up and down the hierarchy and through sibling sets. One

pointer connects a set with its parent, if the set is not on level

zero. If it is, it has no parent and the pointer connects the

set to its next sibling set. The relationships established by

these pointers are shown in Fig. 3.

The other pointer connects a set to the next following

set within the logical entry which is on the same level. For the

last set on each level of an entry, this pointer i- zero. The

relationships established by these pointers are shown in Figure

4. Arrows represented by dotted lines are not pointers. Rather,

they represent the fact that the first offspring of a set is

always stored in CFIN"D as the rtelŽL [oliowing entry.

Each CFINTD entry also has a pointer to a sub-table of

CDATA that contains an entry for each element-value of the set.

Each sub-table entry is a pointer to an element-value as stored

in the glossary of values for that element and the system assigned

component number for the element.

In addition to the three pointers, each CFIND entry

also contains the number of elements in the set it represents,

the level number of the set, and the system's component number

for the repeating group or logical entry of which this set is a

part.

2.2 DM-l

The basic objective of DM-l is to provide business

organizations with a comprehensive data haadling capability. It

is assumed that the types of users will range from those who

know nothing about the system and who wish to use it without

learning more to those who understand the system well and who

wish to manipulate its inner workings to their advantage. To

this end thŽ system has a convenient user-oriented set of languages.

20

$0
0 0 0 0K~ 4A\

U U 0 0 0 0 0 00

THE UP POINTERS IN CFIND

FIG. 3

0/0

/p-"_-.•--.• ---

THF DOWN POINTERS IN CFIND

FIG. 4

21
Ot) DWG A6-127-I

10/23/67ZIN

6500 TRACOR LANE, AUSTIN, TEXAS 787z;,

Furthermore, all systems exist in an environment of change and

those that can adapt to such changes continue to give useful

service. Two adaptive aspects of DM-l are its modular design,

both with respect to its data base and program library, and its

ability to restructure data, in response to a user's command as

well as on the basis of statistics compiled by the system.

This description of objectives and approaches indicates

a marked similarity to the goal set for TDMS and RFMS, but there

is an important difference in the emphasis. DM-l anticipates

use by programmers as well as data-handlers and emphasizes the

need for system adaptation to change.

DM-I is designed for on-line operation as well as batch

processing. Several users can work with the system concurrently,

each with his own data base, but the system maintains all of the

data under its control in a single data structure. Each user's

data are incorporated into this structure, although each is able

to interact with his array without consideration for other users

or their data. All data, both descriptive and logical, are

biocked and stored on secondary storage. No format distinction

is made between storage on drum, disc, and tape. The system

allows for matching the frequency-of-use with the access speed

of the device. DM-l and the operating system manage the traffic

between the secondary and primary stores.

2.2.1 Internal Architecture of DM-l

All logical data associated with DM-l datum arrays are

stored in a peratuteitt syst-en structure formed by the rules out-

lined for DM--l in Section 1. Each user's array of descriptive

data is in a very real sense an extension of this structure.

Therefore, in DM-l both logical and descriptive data are stored

in a single storage format. A single set of storage/retrieval

operators applies to both. The system's architecture can be

described in terms familiar to the user, enhancing his understanding

22

6500 TRACOR LANE AUSTIN, TEXAS 78721

of system design and internal functioning. This approach also

offers the sysLem a measure ot freedom for evolution instead of

fixing its organization and content at an early design stage.

Perhaps the most significant effect of this policy is

that it formalizes the system's design and regulates its imple-

mentation. Under this policy the list of exceptions and special

cases that characterize much system documentation is controlled,

if not eliminated. This is especially significant since, in

software development, exceptions and special cases are often not

documented completely. Of those not documented, some are

remembered b the system implementors, but others are forgotten.

In DM-l the Data Pool is the repository for all data,

both logical and descriptive. It is a statement which subsumes

four other statements -- the Data Base, the Directories, the

Work Items, and the Scratch Area. The Data Base subsumes all

user arrays given the system to manage. Its substructure is the

combined structure of these arrays and, of course, changes as

these airays change or as they come and go. Work Items receives

output from a job that is to serve as input for a subsequent one.

After an item is used, it is discarded. Thus, this statement's

substructure is a communications area and is controlled by the

jobs using it. The content of the Scratch Area is even more

temporary. Items are stored that are intermediate results,

obtained during the course of executing a job. They must be

used by the same job since they are destroyed when the job

terminates.

The Directories -Latement subsumes all logical data

for arrays under the system's control, that is, the content of

the Data Base, the .ork Items, and the Scratch Area. In addition,

the Directories contain information required in two other system

areas: program and job descriptions and user-related information

including ac'ess and modification rights. The substructure of

23

6500 TRACOR LANE. AUSTIN, TEXAS 78721

the Directories represents the architecture of the system.

Figure 5 shows the first level and its relationship to the rest

of the Data Pool.

The fourteen sub-items that constitute the Directories

can be grouped as follows. The first three, all files, contain

logical data supplied by users for arrays being managed by the

system. The next three files contain additional logical informa-

tion collected by the system at a user's request and under his

control. The next file is the control point for the system's

internal segment storage and retrieval system. The next four

items -- two statements and two files -- are the repository for

the syster's program and job descriptions. They are the inter-

face between the datum arrays and the library of programs that

process these data. The final three files contain information

about system users and their rights relative to data in the Pool.

In this paper we focus attention on only the first chree groups

of sub-items.

Section 1 defined three components or items for DM-l.

A fourth, the record, is referred to although it is not used

directly in structural descriptions. Two additional items are

used in DM-l, the link item and the null node. The former is

defined in Section '.2.3. The latter is simply a place-holder;

it has no sub-items and corresponds to no data. It is an artifice,

used in file maintenance, to reserve a slot in the structure for

subsequent redefinition.

One additional. feature of DM-l must be described prior

to a closer look at the Directories. External names assigned the

components identify each item of a structural description. How-

ever, records and links have no external names, and al.hough

external names are convenient for the user they are cumbersome

for internal system use. Therefore, DM-l uses a logical address

for both components and data. External names are translated into

logical addresses and vice versa.

24

DATA POOL

-1- -- DATA BASL

22- DIRECTORIES
1- ------- TERM ENCODING TABLE

2 ITEM LIST

3 -- C , TERM LIST

4 ------ LINKAGE TABLE

-5 -==IFIELDS TABLE

6 -- -- 'SHADOW OF THE FIELDS FILE

7-----------SEGMENT NAME LIST

-8 - _,r,= PROGRAM LIST
9-9---C== PROGRAM DESCRIPTION LIST

-O---< JOB LIST

-11- C- =JOB DESCRIPTION LIST

12 F-C--USER LIST

.3 "----ACCESS RIGHTS

.14 ---- MODIFICATION RIGHTS

-3 -K-WORK ITEMS

L ---4SCRATCH AREA

Sj STATEMENT

•• FILE

FIG. 5 -THE DM-I DATA POOL - UPPER LEVELS OF THE 'iRUCTURE

2) 5
4- A6 -/12 72

10/25/47Z11HE

6500 TRACOR LANE AUSTIN TEXAS 78721

A node's address contains one number for each hierar-

chical level; the sequence of numbers are separated by periods.

The offspring of a node are numbered sequentially; this number,

appended -o the parent's logical address, is the logical address

of an offspring. The logical address of an item carries the

variable R in positions that correspond to record items and is

called an Item Class Code (ICC). When all of the R's of an ICC

have been replaced by record numbers, the logical address is an

Item Position Code (IPC) and refers to a node in the datum array.

2.2.2 Logical Data frora the User

The three files in this group are the Term Encoding

Table, the Item List, and the Term List. When items (components)

are defined, all of the information provided in the definition

is stored in the latter two. The system duplicates the external

names for items in the Term Encoding Table where they are stored

in alphabetic order.

The Item List and the Term List are parallel files;

each contains one record for each item defined and the records

in both are ordered by the item's log~cal name, its ICC. The

ICC is nit explicitly stored in these files, but is instead

either claculated or retrieved from the Term Encoding Table where

it is -tored.

The Item List records contain nine fixed-length fields,

one of which is unissigned space. Two of the rer[aining eight,

the Item Type and the Iteci, Size, define the structure of the

entire Data Pool. The type identifies each item as a statement,

file, record, field, link (either source or target) or null node.

For fields it further classifies items according to the encoding

form of its values: floating point, integer, octal, decimal,

B-S format, alnh'numeric, or binary. The Item Size gives the

number of items in the substructure of statements and files and

the value size for fixed- length fields. If the values for a

26

S65OO TRAC('R LANE AUWTIN TEXAS_ 78721

field vary in length, the Item Size indicates that fact and each

value is accompanied by a measure of its length.

The other six fields in Item List records contain a

variety of item descriptors. Two specify the level of security

restriction assigned to the item, one for access and one for

modification. Two others indicate whether the syste7 has collected

additional logical data for the item and, if so, the record

number,, in which it is recorded. They are discussed further in

the next section. One field tags the item as optional or re-

quired and the final field specifies whether a definition has

corresponding data or not.

The Term List records contain three "ields, one of

which is unused space. The other two contain the external name

assigned the item and the units associated with its values.

These fields are recorded in a separate file because the first

is variable length and the other two are infrequently used.

The Term Encoding Table contains one record for each

'Term Name used for an item. Associated with each name is a file

of ICC's, the ICC's for the items to which the name has been

ass igned.

2.2.3 Logical Data From tne System

The DM-1 user can request that the system collect and

stork, other logical data relevant to a datum array. Although

the Data Pool is basically a treC structuVe, a user can introduce

special it ems caliled links Lhat relatc separate 1.:a;nches of the

tree. These connections arC recorded in the Linkage Table.

Simiarly, although each datuVI ValuC is stored in the Data Base

according to its log ical address (its lIt), the system can

compile a glossarv of values, cal led an index, together with the

r0cord lnuber of e,.ach occurrcn,. i. n loose glossaries and record

num~be.- Ifiles are stored in paralI-1 "ils -- the Fields Table

and the ShadO% o1 the Fields File.

27

6500 TRACOR LANF AUSTIN TFXAS 78721

Link items are never part of the initial definition of

a structure. The reason for this restriction is that item defi-

nition is by nature a sequential process, while linkages involve

both a source and target item; one without the ether is meaning-

less. Consequently, pairs of links are insert d into an estab-

lished structural description. The source link, in some respects

similar to a statement, is parent to the link criterion, a field

whose value is the key to closing the link. The target link is

parent to the criterion field in the target branch of the tree.

When the values of the two criterion fields are equal, the source

link logically subsumes the target link's parent item. In this

respect the source link is like a file. Its -ecords are the

items of the target structure in which there is a match between

source and target criterion values.

A DM-l linkage is represented by records for the link

items, both source and target, in the Item and Term Lists, 'nd

by iwo records in the Linkage Table, The record numbers of the

records in the Linkage Table are the content of the Record Number

fieolds in the Item List records, one for the source link and one

for the target. Each Linkage Tablc record contains a source/

target aag, the I-CC of its partcner link, and a field for a count

of dhe times the link is traversed. Records arc added to tihe

Term List to kCee it Pwral Iel with the tem List.

DM-1 store)s v-alucs in the Data Base in order by log.ical

addreft. This storag3e o'rdcL makte so 1 cOMLtE"t'C to a partieula-

tv~pi. of ftir1hetr uro -css i T) i tsi,,lv rCcoyds user-definecd
re Lit ionshi ps in y:in imal 1. t. Valuels .ire prese•rved in this

nor:t as 1o1 as VtAu array U ins1),ya rn uder Cste. -V control. An1.y

ad0 itions to tl.e A ,11 'ASrI- A Ia i• t ionS ot Cl- J1sc r1-

t.i\ec d.llta ., n1.,t ,'i .,c. in:• L)+, B ~. anv[l '-- way.

', i ' th, ' si :'•i - •• * • t!-:t• ,-r,'.Auizat innal .form of r

o. n,-5cqucnl Ope'O ionS fs

onl t~h ., . L.luahilitv to index t hC

9 S

6500 TRACOR LANE AUSTIN TEXAS 7872k

values of selected fields. Records in the Fields Table and its

Shadow File in the Directories relate values of an indexed field

to the records in wrhich those values occur.

Three indexing modes are provided; all field values

are indexed or indexing is restricted either to values on a list

provided by the user or to values within a range prescribed by

him.

The Fields Table file contains one record for each

indexed field in the data base. When a field is indexed, the

next available rtecord number is assigned it and recorded in the

Item List record for the field. There it serves as a iink from

the Item List ..o the Fields Table. The Fields Table recorc

itself contains a tag that registers the indexing mode, a count

of times the index is used, and a Field Value Tab 'e file. This

embedded file contains one record for each value in -he index.

Associated with each value, but segregatcd into the separate

Shadow File, is a file of record nunrbers for occurrences of that

va lue in the Data Base.

2.2.4 Data Scgllents

AlI values for all fieids that cor-mprisc the DM-l Data

Pool are stWVd in seg,:ets in secondary stot igt A segment is

fi:.xed- ILen:t h And serven ais Lhe unit a f data t. ansfer beltwee,

DM-1 and the opera' ini', ,;y N.tem. DM- 1 decLuRne.na t ion 01Ientioens a

ser•nt [lnIth o0 92 bits, hut 'I .2"ent : a.,a, in Lp ciric ipIe, be

any LCt1lh.

laCh k.'L I nis S at S T)r Iat S the head, the

index, the body, and thc slack. The head is fixed len.th, 96

hits, and ?nsists ot a se ln e It I:, (54 bi.tsL , a t.it r to the

body (W !,t.), a •£aitr to the, ,I3k 15 (15i hi A1s , and 121, . unassigned

hit s.

IhC sCe1t'eIt i n "x which Iecins i Ci X1t 17, is an

ext'ers tn a th•e it r(list o the, Diractories. It iVý variab •c

29

I &0Q TRACOR LANE AUSTIN TEXAS 7fi721

ler.gth and contains logical data that pertain to a unique position

in the array (an IP) --ather than to a class of items (ICC). The

index contains record counters for files, present/absent flags

for optional items, and lengths for variable-length valueb.

The body of the segment contains datum values as a

stream of bits without field separators. Field boundaries are

determined by values in either the item List or the segm•nt

index. However, a null value bit accompanies each value. A

system convention, prevents the division of a value between

segments. This limits a v-Lue to roughly the segment length

minus 200 bits.

The slack of a segment includes all unused bits between

the end of the body and the end of tne segment.

A set of rules defin2 the manner in which values are

grouped into segments. For present purposes, it is sufficient

to kr.-w that each segment is identified by the IPC of the first

item which it contains. But since DM-l expects the operating

system to control relative and absolute mass-storage addressing,

each segment is given a unique name by the operatrng system.

This name is used by DM-l in data transfer calls to the operating

system. The Segment Name List cross-references t-he DM-l segment

identifiers (IPC's) and these segment names.

The Segment Name List is ordc-'-d by segment identifiers.

Each record, in addition to an IPC, and the corresponding segment

name, includes several ilLids for usage statistics and status

information.

2.3 GIS

The documentation available for GIS is designed primarily

for users of the system and therefore contains little information

on the features being described in this section. However, some

information is provided on data organization within a GIS file.

We will limit the discussion in this section to that one feature

of the System.

30

f, * ,£,J TPACC':S' LANE A T iN TEXAý. 87721

GIS provides three physical fcrmat options for files

shown in Figure 6. In the linear record format the data in each

record of a file is stored in the same sequence as its logical

definition. This datum order corresponds to that used in DM-l

and catalogs.

In the second anA third options, segments from each

Level of the hierarchy are stored separately. In the link-type

split-record format, a link field, the last of each embedded

seament, points to the parent segment on the next higher level.

In the chain-type snlit-record format, each segment is linked

to the first segment of each embedded file and to its next sibling

segment. The last segment of a sibling set is linked to its

parent segment.

2.4 CATALOGS

The Catalog system, as developed to date, is designed

to facilitate long-term storage for files of structured data.

Each catalog, both its map and the data that constitu*e its

array, is written on a logical tape, one or more physical reels

of magnetic tape. The map is the structural description in a

fixed-format, one 36-bit machine word for edch data class. The

map and its corresponding data are blocked. Operations that

block and unblock data as they move between core and tape are

available in the system. The map of each active catalog is

available in core and used by the system programs as they process

data. Although concurrent operations are allowed on several

catalogs, each is an entity, within core storage as well as on

magnetic tape. Catalogs have been used in batch processing.

Two additionial features of the catalog system are of

interest here: the ordor in which data are recorded on tape and

the tape format used. The datum ordering rule is the same as

that used in DM-l although in a catalog all data need not be at

terminal nodes. No structural connections are made explicit,

31

FILE X

FIELD FIELD FILE Y FILE Z
A B ,

FIELD FIELD FIELD
C D E

A GIS STRUCTURE

a, bi ca 1 dl- aI b I (/"d 1 d, ---. a b e

c1d 1 . 2 2 a~2 2 2 2C21 2,2 2

-2 2 1-j 3-3 .e 2 el

c d d c d3 3 444'
el c5 d 5

e2
a 2 b.*)
a d, b.) LINK TYPE c.) CHAIN TYPE

cOd SPLIT RECORDS SPLIT RECORDS

c5 d5

e3

a.) LINEAR RECORD FORMAT

FIG. 6 - GIS DATA STORAGE FORMATS

32

IO/251•7 ziE½I"

I 6500 TRACOR LANE AUSTIN. TEXA5 78721

minimizing the logical data that must be recorded. No commit-

ment is trade to a particular type of further processing.

The bl~ockig format used for catalogs mixes logical

and descriptive data, in contrast to the format of segments in

DM-4. The value of a catalog datum plus a tag that names its

class forms a logical record. Logical records are packed into

blocks and the length of each record recorded. The length of

the logical record preserves the length of the datum value.

Provision is made to continue a logical record from one block

to another, thereby avoiding any limitation on the length of

a value.

33

kI " 65G0 TRACOR LANE. AUSiN. "TEXAS 78721

3. CONCLUSION

Sections 1 and 2 both point out differences among the

systems discussed. This section simply collects these differ-

ences so that attention can be focused on them more easily.

Perhaps the basic difference in approach is the issue

of system architecture: should it be constrained by formal rules,

for example those made available to the user as in DM-l; or should

it be a free form design as in TDMS/RFMS? The motivation for the

latter approach is increased efficiency. The former approach

opens doors to integrating all users' datum arrays with the

system's data structure and to extending the system's data

structure to include such information as validity checks, user

access rights, and program and job descriptions. Some measure

of machine independence is also won by machine independcnt rules

for system design.

A second important area of difference is in the matter

of system commitment to a particular type of future processing.

DM-I, catalogs, and GIS each build much of the system's capa-

bility around data stored to directly reflect the user's

structural description. TDMS and RFMS, however, are committed

to retrieving data from a data base through use of element names

and datum values. The datum arrays are stored in a form that

expedites this activity, and other system capabilities reflect

that organization.

Other differences lie in the area of rules for struc-

turing data. Catalogs offer a single component for constructing

structural descriptions while the other systems offer components

with distinctive characteristics. Catalogs permit actual struc-

turing of the data -- not all data are at terminal nodes; other

systems group data under a hierarchical structure. DM-i offers

a device, the link node, for relating separate branches of the

tree structure; the other systems do not. Finally, the rules

34

SI F500 TRACOR LANE AUSTIN. TEXAS 78721

that govern the correspondence between map and datum array in

each system except catalogs prevent any one-many or many-one

relationships among the sibling data. Such relationships must

be reflected in the hierarchical structure of the tree. This

follows from the fact that repetitions are confined to files and

repeating groups.

Subsequent work under this contract will incorporate

features of these systems into a design for an item management

capability suitable for semiotic systems. Process hierarchies

as well as datum hierarchies characterize such systems. They

also demand an open endedness which allows extension and adapta-

tion, that is an evolutionary growth, as dictated by a particular

application and the individuals which are a part of it. Differ-

ences of approach noted in this report will be resolved in the

light of these considerations. The next report will sketch in

bro'd outline a design for item management in semiotic systems;

following that the details of the design will be developed and

an operational version of the design will be implemented.

35

6500 TRACOR LANE, AUSTIN, TEXAS 787'>1

BIBLIOGRAPHY

1. The Time-Shared Data Management System: A New Approach to
aEtaMagement, "by A. H. Vorhaus and R. D. Wi ll, SP-2747,

System Development Corporation, Santa Monica, California,
13 February 1967.

2. Treating Hierarchical Data Structures in the SDC Time-Shared
Data Management System (TDMS), by R. E. Bleier, SP-2750,
System Development Corporation, Santa Monica, California,
29 August 1967.

3. Compose/Produce: A User-Oriented Report Generator Capability
Within the SDC Time-Shared Data Management System, by W. D.
Williams and P. R. Bartram, SP-2634, System Development
Corporation, Santa Monica, California, 8 February 1967.

4. Working Documentation for Remote File Management System, t V'y
J. Morris, J. DeLine, and GU." E. Autrey, Computation Center
of The University of Texas, Austin, Texqs, July 1967.

5. Reliability Central Automatic Data Processing Subsystem,
VoI-Tand Vol. If, Auerbach Corporation, September 1966,
AD-489-666 and AD-489-667.

6. DM-l -- A Generalized Data Management System, by P. J. Dixon
5.JSable-Auerbach Corporation, Proceedings of the

Spring Joint Computer ConfereiLce, 1967, pp. 185-198.

7. Generalized Information System: Application Description,
International Business Machines, E20-0179, 1966.

8. Reliability Central Automatic Data Processing Subsystem:
Data Management System Survey, Vol. II-I, Auerbach Corporation,
August 1966, AD-489-668.

9. The Catalog: A Flexible Data Structure for Magnetic Tape,
by M. Kay and T. Ziche, RM-4645-PR, The RAND Corporation,
Za'nta Monica, California, October i965.

10. The Catalog Input/Output System, by M. Kay, F. Valadez, and
T. Zihe, RM-4540-PR, The RAND Corporation, Santa Monica,
California, March 1966.

36

SecurtY Clasmsfication

DOCUMENT CONTROL DATA . R & D
(Seewurltp celoseiicatlon of tifle, b"d of abstme, and indej•fd dwmoear o.. muuf b. e if.e d whno Iho ov"all report •.. le. ld)

I ORIG INATIN Q AC TIVITY (Co rpo• ate otAhr) RI.. i I. 5ECUR r, C A .I.CA TIO 1

TRACOR, Inc. Unclasbified
6500 Tracor Lane b. GRoUP

SAustin, Texas 78731
S. REPORT TITL.EI

Data Management: A Comparison of System Features

4. OESCRIPTIVE NOTES (T'7rpo of r"wpotfal m ncIIVe doilea)

. AU T.4OR4b (P)i.t h, ma id d'do WNitaI, fear n)

Theodore W. Ziehe

ii. cPOmif DA-v[70. TOTAL NO. OF PAGES 176. NO. Or Rirs

October 1967 40 i0
Sc. CONTRACT C= GRANT NO, to. ORIGINATO'S NREPORT NUMSECRS)

N00014-67-C-0396 TRACOR 67-904-U
b. PROJECT NO.

NR 048-239
C. S,. OTHER R o-tO NOISM (Any shot numberso 1hdt mapy be aa*gtad

thle report)

10. 019TISIUTION MSTATEMENT

Distribution of the document is unlimited.

II. SUPPLEMENTARY NOTES IS. SPONSORING MILITARY ACTIVITY

i Office of Naval. Research
Washington, D. C. 20360

IS ASISTRACT

Features of four data management systems under development are
compared. The four systems are the Time-Shared Data Management
System (System Development Corporation) and a variant of it, the
Remote File Management System (Computation Center, The University
of Texas); Data Manager - 1 (Auerbach Corporation); the Generalized
Information System (IBM); and the Catalog System (The RAND
Corporation). Comparisons are drawn in two areas: external and
internal data structuring an'l organization. Several differences
among the systems are noted and briefly discussed.

DD I. .NV 473 Unc lassified
Security Classificitio.n

Unclassified
Security Classification

IKEY
LINK A LINK S LINK C

_o-0 L I T *0oL .WT MOLE WY

Data Management
TDMS
RFMS
GIS
DM-I
Catalog System
Data Structures

Unc 1assified
S•eurity Class3fitcmSIIO

