ﬁ .
Q
O
=
O
O
fo
<

This .
for pubiiic =il f50 o
distribution i3 unlimitod.

L noio; a

TM-2621/003/00 (DRAFT)
TRACE-- Model Il User's Guide
Timeshared Routines for Analysis,

Classification and Evaluation

9 October 1967

\ \
(IR

b =

Reproduced by the
CLEARINGHOUSE

for Federal Scientific & Technical
Information Springheld Va 22151

DRAFT
TM=2621/003/00

TEGRNIGAL
MEMORANDUM

(TM Series)

TRACE =- Model II User's Guide SYSTEM
Timeshared Routines for Analysis, DEVELOPMENT
Classification and Evaluation CORPORATION
o 2500 COLORADO AVE.
SANTA MONICA
Richard P, Esada CALIFORNIA
90406

9 October 1967

The work reported herein was supported by SDC
and contract DAHC15=-67=-C=-0277, Bargaining and
Negotiation Behavior, for the Advanced Research SOC

Projects Agency.

(© Copyright 1967 by System Development Corporation.

9 October 1967 1 TM=2621/003/00
(page 2 blank)

ABSTRACT

This document presents a user's description of the
TRACE system, which provides an on=line technique
for scanning data and deriving variables. It is
divided into two main sections: the first a tutorial
guide introducing the user to the basic principles
of the system, and the second a reference guide to
the entire body of the TRACE program. The user is
shown how to initiate an interaction with the time-
sharing system, how to employ every capability of
TRACE, what errors may be expected in operation,
and what statistical products may be derived through
use of the program, A complete index allows the

.) user to refer readily to any portion of the document,

9 October 1967 3 TM=2621/003/00
(page 4 blank)

ACKNOWLEDGMENT

The author wishes to thank the developers of the
TRACE II system for their technical advice and
cooperation in reviewing this document:

Robert J., Meeker
William H, Moore, Jr.
Gerald H, Shure

In working closely with this writer, they shared
in creating and solving the sample problems that
form the framework of the tutorial section, as
vell as contributing to the reference section.

9 October 1967 5 T=2621/003/00

FOREWORD

TRACE II is a system of computer programs designed as
an instrument for prestatistical manipulations of
large, complex collections of data, It is a system
for those users who have a stockpile of data whose
characteristics and perhaps even content is unknown.
It is a tool for classifying, grouping and summarizing
data, and for exploring relationships that may exist
in the data from different points of view, TRACE,
being a system that operates interactively with a
user under time-sharing, permits an exciting inter-
play between the user's conjectural and judgmental
skills and the computer's capacity for rapid and
accurate data processing.

Unlike the typical data management system which is
concerned basically with data retrieval, TRACE
aire~ts itself primarily to the construction of

new data bases from old, te the derivation of new
variables from existing nnes, It is further
distinguisied from rival systems in its adaptability
to widely differing data base structures, There are
no rigid rformatting requirements on the TRACE uager;
ae may manipulate his data freely without having to
write specific programs for this effect, It is
TRACE's responsibility to construct and maintain

the data base,

TRACE is written in the timeesharing system version

of the JOVIAL language (JTS) for the AN/FSQ=32

computer at System Development Corporation. In a
time-sharing syster, a number of users share a large
computer and divide the available time among themselves,
Because of the computer's speed, all programs operate
virtually simultaneously. The users interact with their
programs from teletype or display console terminals

that can be remotely located from the computer; for
example, a user in Boston may participate in sharing
SDC's computer in Santa Monica, The user is said to

be "on-line" in the sense that his data and programs

9 October 1967 6 TM=2621/003/00

are directly available to him from storage in tne
computer memory or associated random access files,
Unless the computer is overloaded, the user receives

an almost immedicte vesponse to any request he initiates
at his terminal,

TRACE has a prodigiocus repertoire of services to offer
the user, It cen perform many 2tatistical operations,
such as Chi-square, Mann<Whi.ney, standard deviation;
it can select variables, assign intervals, select
subsets of date, ccnfigure complex indices, evaluate
indices, and control iteration of these procedures.
Many of these operations ordinarily present sizable
practical problems to the user and are outside »J,

or only awkwardly or inefficiently satisfied vy,
standard programs, Besides these features, TRACE can
perform desk calculations, list input and derived
variable values, allow the user to query the deta

base and retrieve data, include all types of conditions
in any derivation, output information in punched card
format, construct tables of correlations between
derived variables, and perform many kinds of editing
services, A list of the statistical operations
possible is presented in Apnendix 9.

The following publications may be useful as references
to the present document:

Shure, G. H., Meeker, R, J., and Moore, W, H,, Jr,

TRACE -- Timeshared Routines for Analysis, Classification
and Evaluation, Paper presented at AFIPS Spring Joint
Computer Conference, Atlantic City, N. J., April 18-20,
1967, Published in AFIPS Conference Proceedings,

Vol, 30, 1967, pp. 525=530.

Meeker, R. J. Use

System. SDC document TM=2621/002/00, 18 pp.
Paper presented &t the American Psychological
Association meetings, New York City, N. Y.,
September 3, 1966,

\ §

R T N T T VX e

Badd B o f Ge i o

R e o i

A

F

w. w7

9 October 1967 7

(page 8 blank)

Shure, G, H, TRACE == Timeshared Routines for

Analysis, Classification and Evaluation, SDC
document TM=2621/001/00, 12 October 1966, 8 pp.
Paper presented at the American Psychological
Astrociation meetings, New York City, N, Y.,

September 3, 1966,

Moore, W, H,, Jr., Meeker, R, J., Shure, G, H,.

TM=2621/003/00

TRACE =« Model I: Timeshared Routines for Analysis
Classification and Evaluation, SDC document TM-2321.

3 September 1965, 57 pp.

it VoH

9 October 1967 9 TM=2621/003/00

PREFACE

This is a user's manual for the TRACE system written not only for the user but
also literally by the user., It attempts to repeat for the reader the very

same flight of knowledge that brought an understanding of the system to this
writer, It is not intended as primarily a reference manual for the sophisticated
systems user and it is not a primer for the absolutely innocent--there is no
possibility that an instructional manual can be written to please both at once,
not to mention the greates: numder of users who fall between these two extremes.
Roughly put, it is & kind of compromise, trying to satisfy in none wvay every
possible type of user but, in doing that, necessarily failing to satisfy

fully every user.

In fropt of all other considi.rations, however, is the inescapable fact that
it must teach the system to the most naive of users; if it thereby seems at
times to linger on points obvious to the experienced user, it is only because
of that one fact.

The reader will find, as he continues into this manual, that it is of two
separate moods, almost two personalities: one is particularly sympathetic to
the usexr with only little background in the subject; thle otlier, dominant in
later portions of this document, assumes that the reader has become familiar
with the system, hopefully through study of the earlier part of this document.
The first section of this document tries to lead the beginning user cautiously
toward the hearv of TRACE, almost hend-in=hand, The later section exposes
every facet of the system in as terse an approach as possible--it is actually
the reference section,

The first section is presented in the form of a dialogue between a hypothetical
teacher of the system and a new user, Although not quite approaching an actual
conversation, the dialogue does serve to voice two points of view: th. teacher
carries the line of instruction; the user plays the role of the questioner,

the voice that prevents the teacher from lapsing into an endless monologue,

the conscience of the manual dividing the flow of instruction into easily
assimilable waves., It is this section that tangles with the most subtle
intricacies of TRACE,

The second section--the reference section, attacks every operation of the system,
each message in the communication between the user and the system. It is meant
to be treated as a partner to the first section and to this effect there are
reference pointers that link the two parts., You will notice that at the foout
of every page in each section is a refziciice number., 1In general, this number
refers to the pariicular ccciion and subsection of a page. The first digit

in the number is the section number, the second the subsection; for example,
every page in part 3 of the second section will be l~beled 2.3, This number
also serves to link a discourse in the first sect.iun to a discussion on the
same topic in the second. For exumple, the concept of "bracketing'" is outlined
in the second section within a haif page; in the first section virtually an

9 October 1967 10 TM=2621/003/00

PREFACE (cont'd)

entire subsection revolves around it. Therefore, the reader will find in
the reference section a reminder that the subject is amplified in the dialogue
section, for example: (See 1.4)

Thie appendices to this document virtually form a third section themselves, 1In
these pages the user will discover exactly how to put himself in & position to
use the TRACE program: how to make up his card deck, how to become a time-
sharing user, how to bring the TRACE program into the time-sharing system, how
to save his data for another run, and vhat troubles may be encountered during
a run, The part on error messages describes some of the inner workings of the
TRACE system that may not be evident from a reading of the two main sections,

A brief note on metalanguage: whenever a system message carries within it a
name created by the user, for example, a name applied to a variable in the
data base, this document will present that name in lower case to differentiate
it from the rest of the message, which consists of system words printed all

in upper case. Examples:

FOR ID = value DS-VRB variable:name HAS 32 VALUES
ROW IS row:variable:name CODED W

Most teletype machines employ the symbol § as the symbol for zero in order to
distinguish that number from the letter O (upper case), In this document,
the symbol @ will appear only in contexts where such a misunderstanding could
readily take place, for example, in the statement:

AMsM+N+ OOTR @

This symbol will also be used in an illustration of an actual teletype display,

.

9 October 1967 11 TM=2621/003/00

TABLE OF CONTENTS

Page
SECTION 1 A DIALOGUE ON TRACE
INTRODUCTION 15
PART 1 The Problem Environment o« « ¢ o ¢ ¢ o ¢ ¢ o o o o ¢ o 17
PART 2 Initiating the TRACE Program .« o« ¢ o o ¢ o o o ¢ o o 23
PART 3 Inputting Our Dat8 o« o o o ¢ o ¢ ¢ o ¢ ¢ ¢ ¢ o ¢ o o 27
PART L The First Problem
(the derivation and edit programs) . « ¢ o « o o o 35
PART 5 The Second Problem
(derivation operators, one=dimensional tables) ., . Ls
PART 6 The Third Problem
(String variables) o« + ¢ o ¢ ¢ ¢ o ¢ ¢ o o ¢ 0 o 0 55
PART 7 The Fourth Problem
(more on string variables) .« o« ¢ ¢ o o ¢« ¢ o o o o 63
PART 8 The Fifth Problem
(two=dimensional tables) . « o o ¢ s ¢ ¢ o o ¢ o o 69
PART 9 Other Data Bases8 . 4 « ¢« ¢« ¢ o ¢ ¢ o s o ¢ 0 o o o o 75
SECTION 2 A REFERENCE WORK ON TRACE
INTRODUCTION 83
TABLE OF CONTENTS 87
PART 1 The Input SUDPIrOEI&I « « o o o o o o o o o o o ¢ o o 89
PART 2 The Derivation Subprogram « « « o ¢ o ¢ o o o ¢ o o & 101
PART 3 The Construct Table Subprogram .« + « s o ¢ ¢ o o o o 121
PART b The Display SubProgram .+ « . o o « o o o o o s o ¢ o 129
PART 5 The EQit SUDProgram « « o« o« o« ¢ o o o ¢ o s ¢ o s o o 139
PART 6 The Output SUDPrOgra&M o « « « o s o ¢ o o o o o o o o 155

PART 7 The Statistics Subprogr&m 6 0 o 0 e o & s 6 o 4 s @ 163

9 October 1967

APPENDICES

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX &4
APPENDIX 5
APPENDIX 6
APPENDIX 7
APPENDIX 8
APPENDIX 9

INDEX

18

TABLE OF CONTENTS (cont'd)

Rules for. Teletype Responses ., ,
Rules for Creating Names
Preparation of Data Cards . . .
The Q=32 Time Sharing System . .
Trouble in TRACE « ¢« ¢ ¢ ¢ o o o
Saving the Data Base . « ¢« ¢« ¢ o
Error Messages « « ¢ ¢« ¢ o ¢ ¢ o
Core and Component Restrictions

Statistical Operations of TRACE

TM=2621/003/00

Page
% 7 171
. . e 172
PR 173
e 179
N 184
i % & 186
5 o g 188
= o 7 205
e 206

207

et S

9 October 1967

13
(page 14 blank)

SECTION 1

A DIALOGUE ON TRACE

TM=2621/003/00

9 October 1967 15 TM=2621/003/00
(page 16 blank)

SECTION 1

INTRODUCTION

This first section is the retracing of the path taken by this writer in his
efforts to understand the TRACE system., It should show the reader exactly
how a prospective user with absolutely no previous knowledge of the system
arrived at a point where he could justifiably call himself a TRACE user.

The approach is through the medium of problems, starting with a relatively
simple problem and building towards more and more complicated problems, In
trying to recapture the actual path into understanding, the writer has nct,
however, pointed out every little stepping stone, Sometimes a step is omitted;
sometimes one is not discussed as fully as seems necessary. Whenever the
reader wishes a more detailed explanation of any operation, he may setcisfy
himself by jumping to tne appropriate discussion in the reference section or

in the appendices, The reader is actually referred at times to specific

points in these sections.

The rhythm of the dialogue is not mechanical. 1It3 purpose is not to call
attention to itself--only to be an accompaniment to the instruction. At times
it may involve the user and the teacher in an interchange of ideas, at other
times it may almost completely disappear leaving the teacher in a dialogue
with the system, still other times it may reveal the teacher in a virtual
monologue. Italics mark the voice of the user, elite type that of the teacher,

A word in defense of TRACE: The reader should not be led into the belief that
all interactions with the TRACE system will necessarily be as involved as

those found in this section, All the problems investigated in this section

come from a common arrangement of data, an arrangement that has not been
constructed to suit even a single one of the problems, let alone the TRACE
system itself. The approach to understsanding is here more than a mere approach;
it is an actual attack on TRACE==to demonstrate some of its versatility in
handling data analysis problems,

9 October 1967 17 TM=2621/003/00

PART 1

The Problem Environment

First of all there i8 the question of finding a suilable environwment for our
problems., Which of the many environments that TRACE can accommodate appears
most sutted to the task of introducing that system?

We should look to one whose terminology is as universally familiar as possible
and that has a resilience affording a succession of interesting and valuable
problems, each somewhat more probing than the previous, Several environments
suggest themselves: bookkeeping systems featuring payroll and inventory
problems, analyses of psychological and sociological surveys, schedule-making
for professional sports leagues, game theory situations., None of these, however,
seems able to support at once our needs for depth, flexibility, and nearly
universal understandability--even though all would make perfectly good subjects
for work on the TRACE system, One that does appear quite adaptable to our needs
is that of an educational system: its terms are completely familiar, it offers
complexities enough for a large diversity of problems; in all respects it seems
wholly acceptable for our purposes.

Would you describe the actual enviromment that we shall be using in our forth-
ooming exploration of the TRACE system?

It is a typical school system, perhaps one in a city of a half mil.ion people.
As a whole, the system is divided into districts; these districts each hcld

a certain number of schools; each school has its individual complemeat of
administrators, teachers and students, In fact, these components of thes
system that I have just mentioned belong to the information that will appenr
on the data cards we shall use in our problems,

Precigely what is the makeup of our input data?

The following elements of information are included in cur data base (the entire
collection of data): tae various districts in the system, the schools within

the districts, the principal of each school, the teachers in each school, the
students in each school, the grade level of each student, an attendance and
personal conduct record for each student, the subjects taken by each student
together with the grade received and the teacher giving that grade, and finally
the period of time that marks off each grade given. The districts are identified
by means of numerical codes, for example, 1, 2, 3, 4 ,,.. This coding device

1.1l

b i il . g ‘rfa
i oy A o Lol g el 1
Aol ke Loy o 3 s 4 -

9 October 1967 18 T™=2621/003/00

is also used for the schools, the teachers, the principals, the students,
and even the subjects, Each of these elements is assigned a distinct code
within its class: for a system having 20,000 students, there would be
20,000 unique codes, The grades are given in alphabetical form, that is,
A, B+, C=, and so forth. The attendance and conduct records are also of a
normal form,

How 18 all this information put together on data carde? Ie there a speécial
format that must be followed for use in the TRACE syetem or can thie system
handle any arrangement of data conceivable?

TRACE can handle virtually any arrangement of data as long as the individual
items are in some logical relationship with each other. A commonly followed
arrangement and perhaps the mcst reasonable .s that of letting each data card
stand for a single value of socme one variable, for example, students, Therefore,
if you have a thousand values for students, you will also have a thousand

cards in your input deck. The other information would then have to fit these
cards or else be stored on saother set of cards., For example, if you wished

to includc n value for distirict on each card, these values would have to
correspond to the values of students on those cards: student 23 and student 23's
district on one card, student 24 and his district on another, and so forth,

If a value vere omitted from some cards, the arrangement of the information

on all the cards should be such that any omission would .be readily discerned,
in other words, included logically if not physically. The answer again to your
question about the input formats that can be handled by TRACE is that it can
accommodate any system of inputting information that has a logical order.

How shall we arrange the information for our particular problem environment?
Furthermore, how many general ways are there of arranging it?

Our data cards will have been set up so that, for a given time period, each
card will reflect all the information available for a single student and only
for that student., This allows us to use fever actual cards than would be
alloved by any other arrangement without getting into any tangled or crowded
scheme for the data. Other arrangements would include setting up the cards
on the basis of any of the other variables, for example, school, grade level,
district, grade, However, basing our arrangement on values for school, for
example, would mean an exorbitant amount of information directed to one card
or the extensions of that card. (TRACE allows any number of cards to be
trested as one logical card.,) It would be far too cumbersome to allot to

one logical cari all the available information for all the students belonging
to the one schocl represented by that card, This same objection also holds
true for the var.ables of grade level and district. On the other hand, it

l.1

=

9 October 1967 19 TM=2621/003/00

would not be an unwelcome arrangement were our cards to be based on subjects,
In this case, the cards would have to be grouped together so that all the
cards for the same student would be contiguous in the card deck., In other
wnrds, we would have here a set of logical cards, each consisting of perhaps
six physical cards, for example, one card for each subject with a total of
six subjects per student., The number of logical cards would be the total
number of students in the school system, Thus, this method is quite similar
to our own, the only difference being that our cards contain all the subject
information for a particular student on the same card,

How does the element of time enter into the setting up of our data deck?

Each of the cards that I have described can contain only information about

a student for a single time period, for example, a marking period, a semester,
a school year, This is so mostly for reason of space: more than this informa-
tion could not be squeezed into a single card and for our problem environment
I thought it best that an economy both of cards and cpace within a card be
practised, if only to make my demonstrations more nearly like a real life
situation. In our data deck we will find that there exists a card for each
month of the school year--a total of ten altogether--for each student.

An interesting feature of TRACE is that these cards need not be in any order,
although a strictly kept arrangement may be helpful for some operations.,

Since I do plan to use the advantages of ordered data, all ten cards for

each student will be contiguous and in ascending order.

How will the information arranged in this way actually appear on the punched
cards?

Every card in our data base will be punched as follows: first will appear

the district in column 1, allowing the user up to ten districts (from O to 9);
next the school in columns 2 and 3, allowing a total of 100 schools (0 to 99);
then the principal in columns 4 and 5; the student's grade level in columns

6 and T; the student's identification number itself in columns 8 through 12,
allowing up to 100,00 students (0O to 99,999); next a series of academic
records based on the student's subj)ects and grades. Each series will consist
of the following: the first two columns to the subject; the second two to

the grade; the next four to the teacher of the subject, allowing up to 10,000
teachers (from 0 to 99,000), We can arbitrarily set a limit to the number of
records that can appear in a series: six, If for some reason a student

has actuaelly taken more than this number of sutjects for a certain month, the
recorcs beyond the sixth will be lost., If the case is that a student has
taken fewer than six subjects for any month, only records for the subjects
taken will appear--the columns not filled will remain blanks, After these

1.1

——————— e e e e

9 October 1967 20 TM=2621/003/00

columns will appear the student's attendance record in two columns, the
conduct record in two columns, and finally the identification number for the
month, requiring one column., (September = 0, October = 1, etc.)

Can you reproduce a fairly typioal example of one of these data cards?

Here is a card for student 123 from district U for the month of April,
40809070012303A=002T0TB+009913B=004510B+011114C+002219A 006T18B+7T

His card reveals that besides being from district 4, he goes to school 8, has
a principal with the identification number of 09, is in the seventh grade,
recelved a grade of A- in the subject identified by the code 03 and taught

by teacher 27, received grades of B+, B=-, B+, C+, and A in his rther subjects,
which are also described, attended classes for 18 days in the month, and won
a personal conduct rating of B+,

Since there i8 no fized scheme for entering information into data cards,
how does TRACE know what our variables are and where they are?

You simply tell TRACE what your variables are, where they are located, and

their format by means of another set of cards that precedes the data cards

in your input deck. This set of cards, called the "dictionary," contains

the names of the variables, their starting locations, the total number of

columns assigned, the number of skipped columns between different values for

the same variable on the same card if this occurs, and other similar information,
A full description of the format for the TRACE dictionary is given in Appendix 3.
Tn this dictionary, each variable commands one description card. So, if we

had a data deck of a thousand cards, each card containing six variables, we
would have to introduce it with a dictionary of six cards, If the data deck
consisted of four cards, each card holding 60 variables, we would need 60

cards for the dictionary.

Our data cards each have aeleven variables. What are they to be named?

A variable in TRACE can be referred to by a string of characters up to eight
in length., Other restrictions are detailed in Appendix 2. The variables in
our own problem environment can be named as follows:

l.1

9 October 1967 21 TM=2621/003/00
(page 22 blank)

variable variable name
district DISTRICT
school SCHOOL
principal PRINCIP
student's grade level LEVEL
student STUDENT
subject SUBJECT
grade (for the subject concerned) GRADE
teacher TEACHER
attendance in days ATTEND
personal conduct record CONDUCT
month of the school year MONTH

All these variables are in integer form, with the exception of the variables
GRADE and CONDUCT, which are alphanumeric,

Is our input deck now completed?

Except for the mandatory control cards, which occur at the beginning and end of

our deck and at the interface between the dictionary and the data cards, our
input deck has been established. These control cards are discussed in
Appendix 3., Appendix 3 also contains a diagram and chart of our input deck,
showing precisely how our input deck was set up,

We are nov ready to begin our interaction with the time-sharing system and
eventually vith the TRACE program itself. The forme:r interaction involves
logging ourselves iuto the time=-sharing system and the loading of the TRACE
program into that system. These steps, described fully in Appendix 4, bring
us eventually to our first communications with the TRACE system. Its keynote
message tells us that our interaction with the time-sharing system's executive
is finished and that we can begin to input our data and define our first
problen,

l.1

%

Asy

9 October 1967 23 TM=2621/003/00

PART 2

Initiating the TRACE Program

What i8 this keynote message?

The following lines are typed out by the system for the user at this point:

YOU ARE STARTING TRACE 0.1
NAME YOUR DATA BASE

()NAME
"

Notice that the first line declares a fact and the second makes a request.

A TRACE message may also at times contain a question which the system expects
the user to ansver, In none of these cases, however, does TRACE complete a
line by punctuation mark, for example, a question mark, It does, however,

use what might be called a punctuation mark in ending a message: the last

line of every message contains a single character==the asterisk, The user must
then type in his response--every message from TRACE demands a response of some
kind==on the same line as that asterisk, continuing it on further lines if
necessary., Except for certain types of responses that will be discussed
later, the user's response ends with a carriage return, This carriage return
actually carries the user's response to the TRACE program and is also a

signal to it to send its next message.

What 18 the meaning of this first meesage?

Begsides telling us that the TRACE program has been loaded and that we may

begin our inputting of data, the message asks us to name the data base with
wvhich we wish to work. Here the system wishes to know whether the data base

for the problem is one already on disc or whether it must be input. If the

name given is recognized by the system as one already on disc, it allows us

to begin any operation we wish; if not, the system leads us into the mechanism
for inputting a data base, The data base may already be on disc, for example,
if we had to leave our interaction briefly because of some error, and then tried
to recover by reloading the TRACE program,

How i8 the response to this message to be typed in? The fourth line in it
seems to indicate a format for this response.

l.2

9 October 1967 2L TM=2621/003/00

All messages that emanate from the system contain within themselves the form
vhich the user is expected to follow in typing his responses, In this case,

the form is very simple and is contained in one line: the user types the name
of the data base (a maximum of six characters) and presses the carriage return,
The characters to be entered duririg a particular response are alwvays indicated
by enclosing parentheses. In this case the parentheses exist but do not enclose
anything. This gives us the option of entering any legal string of characters
into our response, Notice that the word NAME appears just to the right of the
parentheses; this merely specifies the type of information that is to go into
the response, If the fourth line of this message were the following:

() (NAME)

we would be expected to enter not only the appropriate data base name but also
the word NAME immediately after that name--with at least one space separating
the two, If the message contained two lines exhibiting forms fcr possible
responses, as in:

(A)LPHA
(B)ETA (G)AMMA

we would then have a choice between the two forms: we could type either the
letter A or the two letters B and G, Remember that the letters appearing
outside the parentheses are merely fo:* elaboration., If the message presented
the two lines:

() ALPHA
() BETA () GAMMA

we would be expected to type either a value for ALPHA or two values: one

for BETA and one for GAMMA. These latter two values must be separated by at
least one space--and this is actually the general rule for all spacing in TRACE
responses: entities in responses must be sepaurated by one or more spaces, There
is no other means of separating entities, for example, by commas,

What i8 to be our actual response to this first message from TRACE?

Our response should consist of the data base name for our data. It can be
simply:

* EDUC

1.2

9 October 1967 25 TM=2621/003/00

Notice that I typed the name right after the asterisk, Now, if I press the
carriage return key, I shall obtain the next message from the system, Hiwever,
before I do that, we should investigate what would happen were our data base
name an already established name, that is, our data base already on disc. In
that case tte system would not need to input any data and would therefore

take a different course after our response to the current message, It would,
instead of helping us to input our data, jump to a point where it literally
introduces itself to the user, I shall assume a hypothetical case so that we
can see just how the system goes about introducing itself,

Why should the system choose ever to stand up and talk about iteelf? Isn't
TRACE simply a network of questions and requests?

In a wvay, TRACE is really that., But it is also structured quite rigidly into
several distinct units, each with a separate and important function, each
actually qualifying as a subprogram., It is the list of subprograms that is
typed out for the user at this point and that serves to outline for him what
can be expected from the TRACE program, Actually, “he message we have received
is a communication from the executive program of TRACE, From now on, all
interaction between us and the system will be carried on through its various
subprograms, The list of subprograms is presented in the followinz message:

BASIC OPTIONS 0.0
(I)NPUT 1
(DE)RIVE 2
(C)ONSTRUCT 3
(DI)SPLAY 4
(E)DIT 5
(O)UTPUT 6
(S)TATISTICS T

Notice that there are seven lines containing yarentheses; there are therefore
seven possible responses to this message: each response being a call to a
subprogram of TRACE., Each subprogram name has been chosen so that it helps
to explain by itself the function of that program., For example, the DERIVE
gubprogram derives results, the CONSTRUCT subprogram constructs tables of
results, the DISPLAY subprogram displays these tables, The subprogram
currently required is called INPUT and obviously serves to input our data

1.2

9 October 1967 26 TM=2621/003/00

base. These subprograms are called by typing in the letter enclosed in
parentheses, Incidentally, no harm will be done if we type in the remaining
letters of the program, for example, the whole word INPUT,

Note: the reference section of this document is set up so that each subprogram
of TRACE has devoted to it an entire subsection,

1.2

9 October 1967 27 TM=2621/003/00

PART 3

Inputting Our Data

If we now add a carriage return to our response, which is that of a data base
name, Jdo we automatically enter the input subprogram?

Yes, The system now sends us every message in the input subprogram in order.
The first two messages are quite perfunctory, referring to our input device,
and ve shall therefore not devote any time to a discussion of them now. A
full description of these two messages as well as the complete innut rouvtine
interaction is prcsented in Section 2.1, The first message from ihie routine
that deserves discussion at this stage is the third message:

MISSING DATA 1.11
SET ARITHMETIC VALUES TO OTHER THAN ZERO

(YVALUE
(N)O CHANGE

Here the system wishes to know what it should do about missing arithmetic
data, that is, the blank spaces on data cards where numeric data (data for
integer or floating point variables) might be expected to appear but which
doesn't because either no information exists for these spaces or because some
keypunching error occurred, Normally, the input routine treats missing
numeric data as zero data; this convention is assented to by typing in the
second response, the letter N, However, if we wish to have these blank card
spaces treated as a particular number, we may type in that number at this
point., (For missing numerical data, only numerals can be used as substitutes
for the normal zero.,) For our purposes, a blank can very well be treated as
tern information; I shall therefore type the letter N,

® N
The carriage return then produces the next message from the input routine:

SET ALPHANUMERIC TO VALUE OTHER THAN BLANK
()VALUE
(N)O CHANGE

1.3

9 October 1967 28 TM=2621/003/00

This message concerns a request similar to the previous; it asks the user

to consider the possibility of substituting some value for the missing alpha-
numeric values in his input--other than the system convention of using a
Hollerith blank (octel 60) for this purpose, This option is useful when we
wish to refer to theie blank values for computational purposes since it is
impossible to distinguish a meaningful blank on the teletype from one that is
merely a separator; that is, the computer does not recognize blanks in a
teletype message as anything other than separators., Therefore, a character
other than a blank must be used, for example, a colon, It seems quite unlikely
that a colon could ever legitimately appear in our input data. My response
to this message could then simply be:

A carriage return summons the next message from the input routine:

GIVE ESTIMATE OF NUMBER OF DATA BLOCKS

»

This message is a request for an estimate of the l2ngth of the data base that
we are inputting. A new term is unveiled here=-datn blocks. If you remember

I mentioned earlier that a logical data card could consist of more than one
physical card. For example, if our school system were that of certain European
countries, a studenv could very easily find himself taking as many as twelve
subjects concurrently. In this type of case, since one of our student records
occupies six columns, a total of T2 card columns would be needed to accommodate
Just these records, This is clearly too much for one card; it really demands
tvo cards per student. It is still one logical card per student even though
two physical cards are used. This logical card is called a "block." It is

the set of cards that contains one, and only one, value for each variable

in the dictionary (unless the variable is a so-called "string variable.' This
shall be discussed at further length later in this section). In our data base,
each block is one card long. The length of a block in terms of physical cards
is one of the items that is set into the dictionary preceding the data.

I must type in an estimate here, preferably a generous overestimate, since
an underestimate would result in blocks not being processed. My response
could look like the following:

100000
Note: commas cannot be used in typing in numbers, e.g.:

* 100,000

1.3

9 October 1967 29 TM=2621/003/00

A little more interplay nuw takes place between ourselves and the system, and
the data base has been input. The details of the messages and responses
responsible for this are given in Section 2.1. The input routine closes its

wvork with the following message:

(C)ONTINUE WITH INPUT ROUTINE
(B)ASIC OPTION

This messag. asks us to either select another subprogram (basic option) or
e.. e indicate that we wish to input another set of data. This latter course
would be necessary were our data in two or more separate sections, for example,
twvo tape files, a tape file plus a disc file, a disc file plus teletype input,
The input subprogram can handle only one of these sections of data==called a
data set-=-at a time, In other words, all the data that is entered during any
one interaction with the input routine is called a data set, This term will
be met at various times during our exploration of the TRACE system, If we
wish to call another program, we must type the letter B followed by a space
folloved by the appropriate code letter of the prog.ams For example, to call
the construct table program, we would type:

*BC

To continue inputting data, we would merely type the letier C after the
asterisk., Since, however, we are finished with our input, we shall leave
this program and try one more operation that is related to inputting data but
that is not actually part of the input subprogram's functions. This function
lies in the framework of the so-called edit routine, which I shall call by

typing:
* BE
The carriage return elicits the following initial message from that routine:

EDIT 5.0
(D)ELETE
(L)IST
(C)HANGE
(F)ORM
(R)ENAME
(A)SSIGN BY REPLACEMENT
(B)ASIC OPTIONS

1.3

9 October 1967 30 TM=2621/003/00

This message is a list of the various functions of the edit program, which can
accomplish some very useful things, like eliminating entire data sets, or
specific blocks of data; it can change the names of variables and even the
values of variables. The user finds the particular function in which he is
interested and types in the corresponding code to call it, These functions
are all described in Section 2.5, For our case the function labeled (A)SSIGN
BY REPLACEMENT has an immediate use, It is this function that is used to
change the actual values of a variable-=from the original form that is punched

into the data cards into any form that the us.r specifies, For example, he
could ask that all values of zero for the variable called MONTH be transformed
to one's., Our data base offers a good candidate for this type of value changing:
note that all the variables but two are expressed in numbers only=--the two
exceptions are the variables GRADE and CONDUCT., As alphanumeric variables,
these are both expressed in letters and symbols, for example, B+, This

form is obviously impervious to arithmetic calculatione=how does one obtain
the mean of alphabetical grades? Or how does the user add together a series
of letters? The solution lies in converting these values to numerical values,
This being the job of the ASSIGNK function, I call that function by typing the
letier A,

® A
The system returns the first message of that function:

ASSIGN VALUES 5,31

()JNAME OF VARIABLE
»

The user is now expected to supply the name of the variable whose values he
wishes changed. I then type in the appropriate name:

* GRADE
The next message from the function is:

()JOLD VALUE = ()NEW VALUE
END WITH //

1.3

9 October 1967 31 TM=2621/003/00

This message asks us to type in a series of values in the form shown, that
is, the original value followed by an equals sign followed by the new value.
A nev series can then follow, in this case, on a second line, Each series
needs a line for itself and the last line ends the response., And here wve
meet a new device,

So far we have been accustomed to ending a response with a carriage return,
but this carriage return also is what delivers the response to the syctem,
What happens when the entire response cannot be accommodated by one line?
TRACE acknowledges the cases where this can happen and allows the user to use
another way of ending his responses--a double slash, This is then followed
by the usual carriage return for entering the response into the system,

This device can only be used when TRACE permits it, Most often, the TRACE
message itself will carry a line indicating the need for such an ending; for
example, in our latest message it was:

END WITH //

The user must then end his response with a double clash, whether the response
contains a few characters or whether it extends over several teletype lines.
For the response to our current message, I shall type the following:

A=9

C=1T7 er
pad @
Fmg @
+ = 8 (:)
-=2//@)

(The symbol (:) stands for: carriage return,)

After each of these carriage returns not preceded by a //, TRACE issues the
message:

CONTINUE

vhich is nothing more than a reminder to the user that more information is
expected during this particular response. Following this message, TRACE
causes another carriage return,

1.3

9 October 1967 32 TM=-2621/003/00

This operation converts all the original alphanumeric values into new values;
for example, & value of A= becomes 92, C+ becomes 78, B (actually B: since
ve changed blanks to colons) becomes 85, and so forth, Notice that I could
not have referred directly to the input blank following the grades A, B, C,
D, and F in this operation--TRACE cannot recognize blanks as entities in a
response; it sees them only as separators,

After the final line in our response (ended with both a double slash and a
carriage return), TRACE issues the following message:

COMPLETED

EDIT 5.0
(D)ELETE
(5L)IST

(B)ASIC OPTIONS
[]

We are now given the opportunity of either continuing with another function
of the edit routine, or else going to another subprogrem. In either case,

I shall employ a new device iu framing our responses. This one concerns the
common modes of travel through the network of TRACE messages and subprograms,

What are these modes of travel through the TRACE system? Thus far we have
only moved from one routine to another by typing the code letter of the sub-
program desired.

You may nave noticed that our previous jumps from one subprogram to another

vere made by typing in a letter code suggested by the system itself. For
example, if we had started this interaction with the TRACE program with an old
data base, e would have left the TRACE executive by typing the letter I
immediately after the executive had presented us with a list ¢f codes that

could be used to call the various programs, We left the input routine after

we reached the last function in it and were again presented with the opportunity
to call another program, This time we were asked to either call another program
by means of a code (e.g., B E) or else return to the beginning of the input
program, Within the input program we traveled from one function to another

9 October 1967 33 TM=2f21/003/00
(page 34 blank)

automatically; within the edit program we were allowved to select a function

by typing in an appropriate code., There exists, nevertheless, still a more
general way of moving from sne subprogram to another or, within a subprogram,
of moving from one function to another, This is done by typing in the command
GOTO followed either by a letter code or by a reference number, If you would
look back to the various messages received from the system so far, you will
notice that every first line (sometimes second) of a message introducing a
subprogram has & number to the right=~the same is true for functions within
the subprograms, For example, the first message from the input routine carries
the number 1,0, the fourth (I skipped the second and third) the number 1,11,
and the edit function Jjust completed 5.31. Moreover, each of the subprograms
listed by the executive is followed by its basic reference numdber, e.g., input
is 1, display is L4, Each of these numbers can be used as a transfer point in
TRACE, depending on the circumstances, If the transfer is to be from one
subprogram to another, the user must type the subprograr's code (e.g., DE)
after the GOTO command; if the transfer will take place entirely witnin one
subprogram, he must use the reference number,

To illustrate: when I was about to leave the input subprograr for the edit
program, I could have typed:

GOTO E instead of: B E
Once inside the edit routine, I could have typed:
GOTO 5.31 instead of: A

in order to call that particular funciton. It ie not possible, however, to

go from a particular point within one subprogram to a specific point inside
another; travel between different subprograms can only be toward the beginning
message of the subprogram being entered,

At this moment in our exploration of TRACE, we are ready to compute the
solution to our first probvlem, We must therefore call upon the derivation
subprogram, I can type:

GOTO DE

1.3

9 October 1967 35 TM=-2621/003/00

PART 4

The First Problem

We have completed inputting our data base and are now ready for our first
problen,

The first problem is:

How many students are there in each school in the entire school system?

Our first move is to call the derivation subprogram, which will do the work
of solving this problem, We have just called it by typing GOTO DE, We then
receive the following initial message from the derivation routine:

DERIVATION 2.0
(S)TART

(L)IST AVAILABLE VARIABLES
»

This message asks the user whether he wishes to proceed immediately with the
next step in the routine or whether he wishes first to have all the variables
currently available to him listed by the system., He might choose this latter
course if he had earlier done a lot of editing of his data, for example,
deleting various blocks of data or changing variable names and values, Since
this type of editing hasn't taken place and since our store of variables

is only eleven, I am prepared to start the sequence of messages that constitutes

the computational work of the subprogram, I type the following:

* 5

The system returns the message that starts the chain of events leading to
the eventual derivation of the problem's solution:

CASE INDEX 2.1
()CHANGE TO

(N)O CHANGE
[]

1.4

9 October 1967 36 TM=2621/003/00

This message is asking us to tell the subprogram at this earliest point in
the derivation process the frame of reference, so to speak, for the results
of that derivation. It happens that TRACE in building a derivation alwvays
sorts the results on the values of some variable=-called the case index
variable, The response to this current message will actually be a command to
TRACE telling it how to sort the results of our derivation., As you will see
later, both responses to this message convey a variable name to the system;
that variable is then recognized as the sort variable for the derivation,

There are several ways of looking at this concept of case index! one we can
examine right now, TRACE does all its deriving by means of the following
operations: counting, summing, averaging, and finding a median; making
Boolean algebraic tests; plus the usual arithmetic operations of adding,
subtracting, multiplying, and dividing; plus such common operations as
computing square roots, logarithms, and trigonometric functions, However,
before it begins any derivation containing these operations, it must know
Just to which va*iable the results are to pertain., It may count the number
of appearances oi a certain variable in the data base, or sum the values of
this variable, but it still wishes to know a second order ol pertinence,

That is, telling it to compute the sum of the values for some variable or some
portion of that variable is not eno.gh; you must tell it to compute that sum
in terms of some other variable~-pe:; some other variable (of course, it could
in some cases be the same variable). TRACE would then compute a result
appropriate or pertinent to every value of the case index variable,

A pair of hypothetical problems to illustrate:
(1) What is the average grade per student in school 11 of district 27

(2) How many teachers have given out at least 20 A's to their students
in the final month of the school year?

The frame of reference in the first problem is "student" because the results

of average grades pertain to students; the case index is therefore the variable
STUDENT, When TRACE computes averages of the values for the variable GRADE,
these averages will be applied to the occurrences of unique values for

STUDENT (according to the conditions exvressed in the problem)., In other
words, every qualifying value for STUDENT will have associated with it the
appropriate average grade,

In setting up the derivation statement for the first working problem of ours
later, you will notice that that statement does not contain any reference to

the conditions (restrictions) attendant to the problem, for example, in the
first hypothetical problem, the restriction that the students must be associated
only with school 11 of district 2., These restrictions are relegated to a
separate statement, TRACE then requires three statements for a derivation:
first, a case index; second, a list of restrictions; finally, the computation
statement. So, in this hypothetical problem, the user would first tell the

1.k

- b

9 October 1967 37 TM=2621/003/00

system that the case index is the variable STUDENT, then the restrictions
about school 11 of district 2, and lastly that the computations consist of
finding averages for the values of GRADE,

The matter of determining the case index for the second hypothetical problem
is a somevhat different story. Here there is no obvious "per" variable., The
derivation statement will ask for a counting of teachers and, in this case,
will alsc hold the condition about the 20 A's given out, The restriction
statement will stress the matter of the final moath, However, vhere is there
a visible case index? The answer is that visible or no%¢, there must dbe a
cas? index specified, For this problem, that index could be the variable
DISTRICT, or SCHOOL, or even TEACHER, If the case index were given as
DISTRICT then, TRACE would compute the results so that every uniqie value

for DISTRICT would have associated with 1% the appropriate number of teachers
wvho have given out 20 A's in June., I SCHOOL, the number of teachers per
school., If TEACHER, the number of teachers per teacher, which is equivalent
to assoclating each qualifying teacher with herself, As you will see later,
there is also a way of obtaining a grand total of results, so tiat the
specifying of a case index becomes entirely academic.

So, in our current working problem, the case index ie clearly: SCHOOL.,

How many students per school in the system? Therefore, the restriction
statement must have something to do with the entire system, i.e., the entire
data base, and the derivation statement must concern itself with determining
a count of students,

Correct. Notice that the current message from the system allows us tw»o
possible ansvers: either we submit the name of the variable we have selected
as the case index, or else type N. This latter response would give us a3

our case index the variable whose name appears on the END CASE control card
(see Appendix 3)., This particular variable is chosen so that it will suit
the majority of problems run on the data set. Following my entering of a
cagse index variable, the subprogram will issue a message asking for a
restriction statement:

#SCHOOL
RESTRICT DATA 2.1l
()RESTRICTIONS END WITH //

(N)O
»

1.b4

9 October 1967 38 TM=2621/003/00

Ar, you van see, we are asked to specify the restrictions on the current case
index if there are restrictions, otherwise to indicate that there are none,
The admonition to the user to end his restrictions with a double slash implies
that the system is prepared to accept a lengthy series of restrictions. This
is true; we can type in any number of restrictions at this point, closing

the series with a //. The form of each series is as follows: variable name
followed by an equals sign followed by the value(s) defining the restrictions,
Yeries are separated from each other by a space and the first series is heralded
by the word FOR., To illustrate, in the first of the two hypothetical examp.es
I introduced a while ago to drmonstrate the use of the case index, we would
restrict the cese index (in sther words, the computation itself) to those
students who we t to school 11 in district 2., The correct message to the
computer to achieve this would be:

FOR SCHOOL = 11 DISTRICT = 2 //

Of course, if district 2 were the only district that held a school with the
value of 11, that second restriction need not have been entered, Similarly,
if ve had wanted to have the result computed for all schools in district 2,
we should have omitted the first restriction.

Since our first real problem culls for the number of students in each school
in the entire system, there is at first sight no apparent restriction on the
derivation., However, in our particular data base, each student is represented

by ten cards: itnerefore, each student could be counted ten times if there

were no restriction. We can avoid this duplication of counting by introducing
a restriction that limits the counting process to one card per student, This
is most conveniently done by simply directing the derivation to a single month,
for example, June., My restriction statement then becomes:

% MONTH = 9
The system next asks us for our computation statement:

GIVE DERIVATION STATEMENT 2.2
(YEND WITH //

»*

Again (because of the //) we are allowed to submit a series of lines; however,
these lines must all be combined into one composite derivation statement by
means of the connecting words AND and OR, which I shall discuss in detail
later, At any rate, whether short and singular, or long and composite, the
derivation statement ends with a double slash,

l.b

9 October 1967 39 TM=2621/003/00

The simples'. derivation statement will have a skeleton that looks like this:

(result type) = (computational expression)

where the result type is limited to one of three forms: AM, FM and ‘M; but
where the right hand side can run on for several lines, containing arithmetic
operators, relational tests, variables, all held together by the conjunctions
AND and OR, The th'-ee forms legal for the left side are the following:

AM alphaaumeric result
FM floating point result
IM integer result

The left side of the derivation statement therefore tells the system how to
store the derived results., The results collectively, from any one derivation
statement, form a variable--called either a derived variable or a measure,

Using again mg hypothetical case about the average number of students in
school 11 of district 2, I would necessarily want the results expressed in
floating point, since the computation involves addition and division. My
derivation statement for that problem would then begin with FM, On the other
hand, for the case about counting the number of teachers who had given out
more than 20 A's last month, the results could be presented in integer form,
since each result is merely a whole number. Of course, asking for floating
point instead would certainly do no harm., For our problem, either IM or

FM is suitable since we are merely counting a number of students,

Again looking to the first hypothetical problem: all that would remain a
mystery to the system at this point would be the nature of the calculation;
it already would know what the calculation will pertain to (the case index)
and already would have received the restrictions. The necessary calculation
would be merely the average ot all the qualifying grades. The TRACE term
for this operation is MEN, meaning the arithmetic average or mean, I would
thus have typed the following derivation statement for the problem involving
the average grade for students in school 11 of district 2:

FM = MEN GRADE //
This one statement would mean the ead of the work of deriving the result,
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>