
n <■ ̂s 

TM-262l/003/00  (DRAFT) 

TRACE— Model II User's Guide 

Timeshared Routines for Analysis, 

Classification and Evaluation 

9 October  1967 

Ttus J:>c\;v 
lor public 
distribution 

•rjvod 
.c.b; ita 

i.i unllnütod. 

r.. 
Reproduced by ,ho ., ^ ., , r 

CLEARINGHOUSE 
for Federal Saentific& Techmca 

Information Spr.nglield Va   22151 V 
(\^ 

■.•. iiau«iHHaj|KB ' 

MM ^■■B 

I 



,1 
PRATT  
TM-2621/OO3/OO 

mmmi 
(TM Series) 

TRACE — Model II User's Guide 

Timeshared Routines for Analysis, 

Classification and Evaluation 

by 

Richard P. Esada 

9 October 196? 

SYSTEM 

DEVELOPMENT 

CORPORATION 

2500 COLORADO AVE. 

SANTA MONICA 

CALIFORNIA 

90406 

The work reported herein was supported by SDC 
and contract DAHC15-6T-C-02TT, Bargaining and 
Negotiation Behavior, for the Advanced Research 
Projects Agency, 

© Copyright 196? by System Development Corporation. 



o 9 October 1967 
(page 2 blank) 

TM-262I/OO3/OO 

ABSTRACT 

> 

This document preeenti a user's description of the 
TRACE system, which provides an on-line technique 
for scanning dat^ and deriving variables. It is 
divided into two main sections! the first a tutorial 
guide introducing the user to the basic principles 
of the system, and the second a reference guide to 
the entire body of the TRACE program. The user Is 
shown how to initiate an interaction with the time- 
sharing system, how to employ every capability of 
TRACE, what errors may be expected in operation, 
and what statistical products may be derived through 
use of the program. A complete index allows the 
user to refer readily to any portion of the document. 

» 

■ 



9 October 196? 
(page k  blank) 

TM-262I/OO3/OO 

ACKNOWLEDGMENT 

The author wishes to thank the developers of the 
TRACE II system for their technical advice and 
cooperation in reviewing this document« 

Robrrt J. Meeker 
William H, Moore, Jr. 
Gerald H. Shure 

In working closely with this writer, they shared 
in creating and solving the sample problems that 
form the framework of the tutorial section, as 
well as contributing to the reference section. 

■ 

MttirijUk* 



~> 

9 October 196? 5 TM-2621/003/00 

FOREWORD 

TRACE II is a lyttem of computer programi deaigned as 
em instrument for prestatistical manipulations of 
large, complex collections of data. It is a system 
for those users who have a stockpile of data whose 
characteristics and perhaps even content is unknown. 
It is a tool for classifying» grouping and summarizing 
data, and for exploring relationships that may exist 
in the data from different points of view. TRACE, 
being a system that operates interactively with a 
user under time-sharing, permits an exciting inter- 
play between the user's conjectural and Judgmental 
skills and the computer's capacity for rapid and 
accurate data processing« 

Unlike the typical data management system which is 
concerned basically with data retrieval, TRACE 
directs itself primarily to the construction of 
new data bases from old, to the derivation of new 
variables from existing ones. It is further 
distinguished from rival systems in its adaptability 
to widely differing data base structures. There are 
no rigid formatting requirements on the TRACE user; 
he may manipulate hia data freely without having to 
write apecific programa for thia effect. It la 
TRACE'a responaibility to conatruct and maintain 
the data base« 

TRACE is written in the time-aharing ayatem veraion 
of the JOVIAL language (JTS) for the AN/FSQ-32 
computer at Syatem Development Corporation.  In a 
time-aharing syatem, a number of uaera ahare a large 
computer and divide the available time among themselves. 
Because of the computer's speed, all programa operate 
virtually simultaneously. The users interact with their 
programs from teletype or display console terminals 
that can be remotely located from the computer; for 
example, a user in Boston may participate in sharing 
SDC's computer in Santa Monica. The user is said to 
be "on-line" in the aenae that hia data and programa 

' 



• » 

9 Octobir 1967 6 TM-2621/003/00        — " 

art directly available to him from storage in the 
computer memory or anociated random access files. 
Unless the computer is overloaded9 the user receives 
an almost immedifte response to any request he initiates 
at his terminal« 

TRACE has a prodigious repertoire of service9 to offer 
the user* It can perform many statistical operations, 
such as Chi-square, Mann-Whi;neyt standard deviation; 
it con select variables, assign intervals, select 
subsets of data, configure complex indices, evaluate 
indices, and control iteration of these procedures. 
Many of these operations ordinarily present sizable 
practical problems to the user and are outside «rr, 
or only awkwardly or inefficiently satisfied by, 
standard programs. Besides these features, TRACE can 
perform desk calculations, list input and derived 
variable values, allow the user to query the di.ta 
base and retrieve data, include all types of conditions 
in any derivation, output information in punched card 
format, construct babies of correlations between 
derived variables, and perform many kinds of editing 
services. A list of the statistical operations 
possible is presented in Appendix 9. 

• 

The following publications may be useful as references 
to the present document: 

Shure, G. H«, Meeker, R. J», and Moore, W. H., Jr. 
TRACE — Timeshared Routines for Analysis. Classification 
and Evaluation« Paper presented at AFIPS Spring Joint 
Computer Conference, Atlantic City, N, J., April 18-20, 
1967. Published in AFIPS Conference Proceedings, 
Vol. 30, 196?, pp. 525-530. 

Meeker, R. J.  User Interaction with the TRACE 
System.  SDC document TM-2621/002/00. 18 pp. 
Paper presented at the American Psychological 
Association meetings. New York City, N. Y«, 
September 3, 1966. 



) 

9 October 196? 7 TM-2621/003/00 
(page 8 bleink) 

Shure, G. H«    TRACE — Tlmeshared Routlnea for 
Analysis. Claaslflcatlon and Evaluation.    SDC 
document TM-2621/001/00, 12 October 1966,    8 pp. 
Paper presented at the American Psychological 
Asrooiation meetings, New York City, N,  Y,t 
Septomber 3» 1966, 

Moore, W, H,, Jr,, Meeker, R, J,, Shure, G, H, 
TRACE — Model I; Tlmeshared Routines for Analysis. 
Classification emd Evaluation.    SDC document TM-2621, 
3 September 1965. 57 pp. 

• i 



,1 

^ r 

9  October 1967 9 TM-2621/003/00 

PREFACE 

This is a user's manual for the TRACE system written not only for the user but 
also literally by the user. It attempts to repeat for the reader the very 
same flight of knowledge that brought an understanding of the system to this 
writer. It is not intended as primarily a reference manual for the sophisticated 
systems user and It is not a primer for the absolutely innocent—there is no 
possibility that an instructional manual can be written to please both at once, 
not to mention the greater number of users who fall between these two extremes. 
Rough3,y put, it is a kind of compromise, trying to satisfy in oorne way every 
possible type of user but, in doing that, necessarily failing to satisfy 
fully every user. 

In front of all othctr cons id rations, however, is the inescapable fact that 
it munt teach the system to the most naive of users; if it thereby seems at 
times to linger on points obvious to the experienced user, it is only because 
of that one fact. 

The reader will find, as he continues into this manual, that it is of two 
separate moods, almost two personalities: one is particularly sympathetic to 
the user with only little background in the subject; the other, dominant in 
later portions of this document, assumes that the reader has become familiar 
with the system, hopefully through study of the earlier part of this document. 
The first section of this document tries to lead the beginning user cautiously 
toward the heari of TRACE, almost hand-in-hand. The later section exposes 
every facet of the system in as terse an approach as possible—it is actually 
the reference section. 

The first section is presented in the form of a dialogue between a hypothetical 
teacher of the system and a new user. Although not quite approaching an actual 
conversation, the dialogue does serve to voice two points of view: th. teacher 
carries the line of instruction; the user plays the role of the questioner, 
the voice that prevents the teacher from lapsing into an endless monologue, 
the conscience of the manual dividing the flow of instruction into easily 
assimilable waves.  It is this section that tangles with the most subtle 
intricacies of TRACE. 

The second section—the reference section, attacks every operation of the system, 
each message in the communication between 'ehe user and the system.  It is meant 
to be treated as a partner to the first section and to this effect there are 
reference pointers that link the two parts. You will notice that at the foot 
of every page in each section is a r^fcreac* number. In general, this number 
refers to the particular rcCwion and subsection of a page. The first digit 
in the number is the section number, the second the subsection; for example, 
every page in part 3 of the second section will be labeled 2,3. This number 
also serves to link a discourse in the first sec+^un to a discussion on the 
same topic in the second.  For example, the concept of "bracketing" is outlined 
in the second section within a haif page; in the first section virtually an 

..-...., 



9 October 1967 10 TM-2621/003/00 

PREFACE (cont'd) 

•ntlrt •ubsectlon rcvolvai around it. Therefore, the reader will find In 
the reference section a reminder that the subject it amplified in the dialogue 
■action, for examplet  (See l.U) 

The appendices to this document virtually form a third section themselves. In 
these pages the user vill discover exactly how to put himself in a position to 
use the TRACE programs how to make up his card deck, how to become a time- 
sharing user, how to bring the TRACE program into the time-sharing system, how 
to save his data for another run, and what troubles may be encountered during 
a run. The part on error messages describes some of the inner workings of the 
TRACE system that may not be evident from a reading of the two main sections. 

A brief note on metalanguages whenever a system message carries within it a 
name created by the user, for example, a name applied to a variable in the 
data baae, this document will present that name in lower case to differentiate 
it from the rest of the message, which consist* of system words printed all 
in upper case. Examples: 

FOR ID - value DS-VRB variable:name HAS 32 VALUES 

ROW IS row:variable:name CODED W 

Most teletype machines employ the symbol 0 as the symbol for zero in order to 
distinguish that number from the letter 0 (upper case). In this document, 
the symbol 0 will appear only in contexts where such a misunderstanding could 
readily take place, for example, in the statement: 

AM - M ♦ N + 0 OTR 0 

This symbol will also be used in an illustration of an actual teletype display. 

;; 



i 
9 October 196? 11 

TABLE OF CONTENTS 

TM-2621/003/00 

SECTION 1  A DIALOGUE ON TRACE 

INTRODUCTION 

PART 1 

PART 2 

PART 3 

PART U 

PART 5 

PART 6 

PART 7 

PART 8 

PART 9 

The Problem Environment « • • •  

Initiating the TRACE Program   .   

Inputting Our Data • • • • * 

The Firit Problem 

(the derivation and edit programs)  

The Second Problem 

(derivation operators, one-dimensional tables) , . 

The Third Problem 

(String variables) . . «  

The Fourth Problem 

(more on string variables)   

The Fifth Problem 

(two-dimensional tables)  • . • # •   

Other Data Bases • . • . 

Page 

15 

17 

23 

27 

35 

»45 

55 

63 

69 

75 

SECTION 2  A REFERENCE WORK ON TRACE 

INTRODUCTION 

TABLE OF CONTENTS 

PART 1 The Input Subprogram  

PART 2 The Derivation Subprogram . . , 

PART 3 The Construct Table Subprogram 

PART k The Display Subprogram . . . , 

PART 5 The Edit Subprogram  

PART 6 The Output Subprogram  

PART 7 The Statistics Subprogram . . , 

83 

87 

89 

101 

121 

129 

139 

155 

163 

■' j 



9 October 196? l4 TM-2621/OO3/OO J 
TABLE OF CONTENTS (cont'd) 

APPENDICES 

APPENDIX 1 

APPENDIX 2 

APPENDIX 3 

APPENDIX k 

APPENDIX 5 

APPENDIX 6 

APPENDIX 7 

APPENDIX 8 

APPENDIX 9 

Rules for Teletype Responses , . 

Rules for Creating Names . • . . 

Preparation of Data Cards . . , 

The Q-32 Time Sharing System . . 

Trouble in TRACE .«.•«... 

Saving the Data Base •••••< 

Error Messages ..••.*.«. 

Core and Component Restrictions 

Statistical Operations of TRACE 

Page 

171 

172 

173 

179 

18U 

186 

188 

205 

206 

INDSX 207 



9 October 196? 13 
(page lh blank) 

TM-2621/003/00 

SECTION 1 

A DIALOGUE ON TRACE 

i 



I 
9 October 196? 15 TM-2621/003/00 

(page 16 blankj 

SECTION 1 

INTRODUCTION 

This first section is the retracing of the path taken by this writer in his 
efforts to understand the TRACE system.  It should show the reader exactly 
how a prospective user with absolutely no previous knowledge of the system 
arrived at a point where he could Justifiably call himself a TRACE user. 

The approach is through the medium of problems, starting with a relatively 
simple problem and building towards more and more complicated problems.  In 
trying to recapture the actual path into understanding, the writer has net, 
however, pointed out every little stepping stone. Sometimes a step is omitted; 
sometimes one is not discussed as fully as seems necessary. Whenever the 
reader wishes a more detailed explanation of any operation, he may secisfy 
himself by Jumping to tne appropriate discussion in the reference section or 
in the appendices. The reader is actually referred at times to specific 
points in these sections. 

The rhythm of the dialogue is not mechanical. It J purpose is not to call 
attention to itself—only to be em accompaniment to the instruction. At times 
it may involve the user and the teacher in an interchange of ideas, at other 
times it may almost completely disappear leaving the teacher in a dialogue 
with the system, still other times it may reveal the teacher in a virtual 
monologue. Italics mark the voice of the user, elite type that of the teacher. 

A word in defense of TRACE: The reader should not be led into the belief that 
all interactions with the TRACE system will necessarily be as involved as 
those found in this section. All the problems investigated in this section 
come from a common arrangement of data, an arrangement that has not been 
constructed to suit even a single one of the problems, let alone the TRACE 
system itself. The approach to understanding is here more than a mere approach; 
it is an actual attack on TRACE—to demonstrate some of its versatility in 
handling data analysis problems. 

t 



9 October 1967 !? TM-2621/003/00 

PART 1 

The Problem Environment 

Firat of alt there ie the queetion of finding a euiiable environment for our 
probleme» Which of the many environmente that TRACE oan aooormodate appeare 
moat euited to the taek of introducing that eyetem? 

We should look to one whose terminology Is an universally familiar as possible 
and that has a resilience affording a succession of interesting and valuable 
problems, each somewhat more probing than the previous. Several environments 
suggest themselves: bookkeeping systems featuring payroll and inventory 
problems, analyses of psychological and sociological surveys, schedule-making 
for professional sports leagues, game theory situations. None of these, however, 
seems able to support at once our needs for depth, flexibility, and nearly 
universal understandability—even though all would make perfectly good subjects 
for work on the TRACE system. One that does appear quite adaptable to our needs 
is that of an educational system:  its terms are completely familiar, it offers 
complexities enough for a large diversity of problems; in all respects it seems 
wholly acceptable for our purposes. 

Mould you describe the actual environment that we ehall be using in our forth' 
coming exploration of the TRACE eyetem? 

It is a typical school system, perhaps one in a city of a half million people. 
As a whole, the system is divided into districts; these districts each held 
a certain number of schools; each school has its individual complement of 
administrators, teachers and students. In fact, these components of th« 
system that I have Just mentioned belong to the information that will appear 
on the data cards we shall use in our problems. 

Precisely what is the makeup of our input data? 

The following elements of information are included in our data base (the entire 
collection of data):  tne various districts in the system, the schools within 
the districts, the principal of each school, the teachers in each school, the 
students in each school, the grade level of each student, an attendance and 
personal conduct record for each student, the subjects taken by each student 
together with the grade received and the teacher giving that grade, and finally 
the period of time that marks off each grade given. The districts are identified 
by means of numerical codes, for example, 1, 2, 3, ^ .... This coding device 

1.1 

■ 



9 October 196? l8 TM-2621/003/00 

It also used for the ichoolt, tht teachers, the prlnclpale, the students, 
end even the subjects. Each of these elements is assigned & distinct code 
within its classt for a system having 20,000 students, there would be 
20,000 unique codes. The grades are given in alphabetical form, that is, 
A, B^, C-, and so forth« The attendance and conduct records are also of a 
normal form. 

How ia all this information put together on data oarde? le there a epeoial 
format that muet be followed for uee in the TRACE syetem or aan this eyetem 
handle any arrangement of data oonaeivable? 

TRACE can handle virtually any arrangement of data as long as the individual 
items are in some logical relationship with each other. A commonly followed 
arrangement and perhaps the most reasonable .« that of letting sach data card 
stand for a single value of some one variable, for example, students. Therefore, 
if you have a thousand values for students, you will also have a thousand 
cards in your input deck« The other information would then have to fit these 
cards or else be stored on another set of cards« For example, if you wished 
to include « value for district on each card, these values would have to 
correspond to the values of students on those cards: student 23 and student 23*3 
district on one card, student 2h  and his district on another, and so forth. 

If a value were omitted from some cards, the arrangement of the information 
on all the cards should be such that any omission would .be readily discerned, 
in other words, included logically if not physically. The answer again to your 
question about the input formats that can be handled by TRACE is that it can 
accommodate any system of inputting information that has a logical order. 

How shall we arrange the information for our partioular problem environment? 
Furthermore, how many general ways are there of arranging it? 

Our data cards will have been set up so that, for a given time period, each 
card will reflect all the information available for a single student and only 
for that student. This allows us to use fewer actual cards than would be 
allowed by any other arrangement without getting Into any tangled or crowded 
scheme for the data. Other arrangements would include setting up the cards 
on the basis of any of the other variables, for example, school, grade level, 
district, grade. However, basing our arrangement on values for school, for 
example, would mean em exorbitant amount of infonrvtlon directed to one card 
or the extensions of that card.  (TRACE allows any number of cards to be 
treated as one logical card.) It would be far too cumbersome to allot to 
one logical cari all the available Information for all the students belonging 
to the one schocl represented by that card. This same objection also holds 
true for the variables of grade level and district.  On the other hand, it 

1.1 



,1 

■<   V 

/ 

9 October 196? 19 TM-2621/003/00 

would not be an unwelcome arrangement were our cards to be baaed on subjects, 
In this case, the cards would have to be grouped together so that all the 
cards for the same atudent would be contiguous in the card deckt In other 
words, we would have here a set of logical cards, each consisting of perhaps 
six physical cards, for example, one card for each subject with a total of 
six subjects per student. The number of logical cards would be the total 
number of students in the school system. Thus, this method is quite similar 
to our own, the only difference being that our cards contain all the subject 
information for a particular student on the same card. 

How doee the element of time enter into the eetting up of our data deck? 

Each of the cards that I have described can contain only information about 
a student for a single time period, for example, a marking period, a semester, 
a school year. This is so mostly for reason of space: more than this informa- 
tion could not be squeezed Into a single card and for our problem environment 
I thought It best that an economy both of cards and cpace within a card be 
practised, If only to make my demonstrations more nearly like a real life 
situation. In our data deck we will find that there exists a card for each 
month of the school year—a total of ten altogether—for each student. 
An Interesting feature of TRACE is that these cards need not be in any order, 
although a strictly kept arrangement may be helpful for some operations. 
Since I do plan to use the advantages of ordered data, all ten cards for 
each student will be contiguous and in ascending order. 

How will the information arranged in thie way actually appear on the punched 
cards? 

Every card In our data base will be punched as follows:  first will appear 
the district in column 1, allowing the user up to ten districts (from 0 to 9); 
next the school in columns 2 and 3, allowing a total of 100 schools (0 to 99); 
then the principal in columns U and 5; the student's grade level in columns 
6 and 7i the student's identification number itself In columns 8 through 12, 
allowing up to 100,00 students (0 to 99|999)i next a series of academic 
records based on the student's subjects and grades.  Each series will consist 
of the following: the first two columns to the subject; the second two to 
the grade; the next four to the teacher of the subject, allowing up to 10,000 
teachers (from 0 to 99,000). We can arbitrarily set a limit to the number of 
records that can appear in a series:  six. If for some reason a student 
has actually taken more than this number of subjects for a certain month, the 
records beyond the sixth will be lost. If the case is that a student has 
taken fewer than six subjects for any month, only records for the subjects 
taken will appear—the columns not filled will remain blanks. After these 

1.1 



9 October 1967 20 TM-262I/OO3/OO 

\) 

columns vill appear the student's attendance record in two columns, the 
conduct record In two columns, end finally the identification number for the 
month, requiring one column. (September ■ 0, October ■ 1, etc.) 

Can you reproduce a fairly typioal example of one of these data oarde? 

Here is a card for student 123 from district U for the month of April. 

li0809O700123O3A-OO2707B4'009913B-00U51OB-K)llllUC-t'002219A 0067l8B^7 

His card reveals that besides being from district U, he goes to school 8, has 
a principal with the identification number of 09, is in the seventh grade, 
received a grade of A- in the subject identified by the code 03 and taught 
by teacher 27, received grades of B+, B-, B+, C+, and A in hin  other subjects, 
which are also described, attended classes for 18 days in the month, and von 
a personal conduct rating of B+. 

Sinoe there ie no fixed eaheme for entering information into data oarde, 
hou doee TRACE know what our variables are and where they are? 

You simply tell TRACE what your variables are, where they are located, and 
their format by means of another set of cards that precedes the data cards 
in your input deck. This set of cards, called the "dictionary," contains 
the names of the variables, their starting locations, the total number of 
columns assigned, the number of skipped columns between different values for 
the same variable on the same card if this occurs, and other similar information. 
A full description of the format for the TRACE dictionary is given in Appendix 3. 
In this dictionary, each variable commands one description card. So, if we 
had a data deck of a thousand cards, each card containing six variables, we 
would have to introduce it with a dictionary of six cards. If the data deck 
consisted of four cards, each card holding 60 variables, we would need 60 
cards for the dictionary. 

Our data oarde each have eleven variablee.    What are they to he named? 

A variable in TRACE can be referred to by a string of characters up to eight 
in length. Other restrictions are detailed in Appendix 2. The variables in 
our own problem environment can be named as follows: 

1.1 



) 

9 October 196? 21 
(page 22 blank) 

TM-2621/003/00 

variable variable name 

dlitrict DISTRICT 
school SCHOOL 
principal PRINCIP 
•tudent'i grade level LEVEL 
student STUDENT 
subject SUBJECT 
grade (for the i ubject concerned) GRADE 
teacher TEACHER 
attendance in days ATTEND 
personal conduct record CONDUCT 
month of the school year MONTH 

^ * 

All these variables are in integer form, vith the exception of the variables 
GRADE and CONDUCT, which are alphanumeric« 

Is our input deck now oompltted? 

Except for the mandatory control cards, which occur at the beginning and end of 
our deck and at the Interface between the dictionary and the data cards, our 
input deck has been established. These control c^rds are discussed in 
Appendix 3* Appendix 3 also contains a diagram and chart of our input deck, 
showing precisely how our input deck was set up. 

We are now ready to begin our interaction with the time-sharing system and 
eventually with the TRACE program itself. The former interaction involves 
logging ourselves iuto the time-sharing system and the loading of the TRACE 
program into that system. These steps, described fully in Appendix U, bring 
us eventually to our first communications with the TRACE system. Its keynote 
message tells us that our Interaction with the time-sharing system's executive 
Is finished and that we can begin to input our data and define our first 
problem. 

1.1 

i iiMJU, „lu^jJUMiMi 



) 

9 October 196? 23 TM.2621/003/00 

PART 2 

Initiating the TRACE Program 

What ie thie keynote meBeage? 

The following lines are typed out by the system for the user at this point: 

YOU ARE STARTING TRACE 0.1 

NAME YOUR DATA BASE 

( )NAME 

Notice that the first line declares a fact and the second makes a request. 
A TRACE message may also at times contain a question which the system expects 
the user to answer.  In none of these cases, however, does TRACE complete a 
line by punctuation mark, for example, a question mark.  It does, however, 
use what might be called a punctuation mark in ending a message: the last 
line of every message contains a single character—the asterisk. The user must 
then type in his response—every message from TRACE demands a response of some 
kind—on the same line as that asterisk, continuing it on further lines if 
necessary. Except for certain types of responses that will be discussed 
later, the user's response ends with a carriage return. This carriage return 
actually carries the user's response to the TRACE program and is also a 
signal to it to send its next message. 

What is the meaning of this first mesaage? 

Besides telling us that the TRACE program has been loaded and that we may 
begin our inputting of data, the message asks us to name the data base with 
which we wish to work. Here the system wishes to know whether the data base 
for the problem is one already on disc or whether it must be input. If the 
name given is recognized by the system as one already on disc, it allows us 
to begin any operation we wish; if not, the system leads us into the mechanism 
for inputting a data base. The data base may already be on disc, for example, 
if we had to leave our interaction briefly because of some error, and then tried 
to recover by reloading the TRACE program. 

How ie the reeponee to this mesnage to be typed in?    The fourth line in it 
seems to indicate a format for this response t 

1.2 



9 October 196? 2U TM-2621/003/00 

All messages that emanate from the system contain within themselves the form 
which the user is expected to follow in typing his responses. In this case, 
the form is very simple and is contained in one line: the user types the name 
of the data base (a maximum of six characters) and presses the carriage return. 
The characters to be entered during a particular response are always indicated 
by enclosing parentheses. In this case the parentheses exist but do not enclose 
anything. This gives us the option of entering any legal string of characters 
into our response. Notice that the word NAME appears Just to the right of the 
parentheses; this merely specifies the type of information that is to go into 
^he response. If the fourth line of this message were the following: 

( ) (NAME) 

we would be expected to enter not only the appropriate data base name but also 
the word NAME immediately after that name—with at least one space separating 
the two.    If the message contained two lines exhibiting forms  for possible 
responses, as in: 

<A)LPHA 

(B)ETA  (G)AMMA 

we would then have a choice between the two forms: we could type either the 
letter A or the two letters B and G. Remember that the letters appearing 
outside the parentheses are merely fo:' elaboration. If the message presented 
the two lines: 

( ) ALPHA 

( ) BETA  ( ) GAMMA 

we would be expected to type either a value for ALPHA or two values: one 
for BETA and one for GAMMA. These latter two values must be separated by at 
least one space—and this is actually the general rule for all spacing in TRACE 
responses: entities in responses must be separated by one or more spaces. There 
is no other means of separating entities, for example, by commas. 

What is to be our actual reeponee to thie first meesage from TRACE? 

Our response should consist of the data base name for our data. It can be 
simply: 

• EDUC 

1.2 



9 October 1967 25 TM-2621/003/00 

Notice that I typed the ruvne right after the aeterisk. Now, if I prets the 
carriage return key, I shall obtain the next message from the system. Kcvever, 
before I do that, ve should investigate vhat would happen were our data base 
name an already established name, that is, our data base already on disc. In 
that case tie system would not need to input any data and would therefore 
take a different course after our response to the current message.  It would, 
instead of helping us to input our data, Jump to a point where it literally 
introduces itself to the user. I shall assume a hypothetical case so that we 
can see Just how the system goes about introducing itself. 

Why ahould the eyatem ohooae ever to atand up and talk about itaelf?   len't 
TRACE aimpty a network of queationa and requeata? 

In a way, TRACE is really that. But it is also structured quite rigidly into 
several distinct units, each with a separate and important function, each 
actually qualifying as a subprogram.  It is the list of subprograms that is 
typed out for the user at this point and that serves to outline for him what 
can be expected from the TRACE program. Actually, '.he message we have received 
is a communication from the executive program of TRACE. From now on, all 
interaction between us and the system will be carried on through its various 
subprograms. The list of subprograms is presented in the following message: 

BASIC OPTIONS 0.0 

(I)NPUT 1 

(DE)RIVE 2 

(C)ONSTRUCT 3 

(DI)SPLAY h 

(E)DIT 5 

(O)UTPUT 6 

(STATISTICS 7 

Notice that there are seven lines containing parentheses; there are therefore 
seven possible responses to this message:  each response being a call to a 
subprogram of TRACE. Each subprogram name has been chosen so that it helps 
to explain by itself the function of that program. For example, the DERIVE 
subprogram derives results, the CONSTRUCT subprogram constructs tables of 
results, the DISPLAY subprogram displays these tables. The subprogram 
currently required is called INPUT and  obviously serves to input our data 

1.2 



9 Octobtr 1967 26 TM-2621/003/00 

base. Thete lubprogruu are called by typing in the letter enclosed in 
parentheees« Incidentally, no harm will be done if we type in the remaining 
letters of the program, for example, the whole vord INPUT. 

Notet  the reference section of this document is set up so that each subprogram 
of TRACE has devoted to it an entire subsection. 

1.2 



J 9 October 196? 21 TM-2621/003/00 

PART 3 

Inputting Our Data 

If we now add a carriage return to our reeponee, which ie that of a data base 
name, do we automatically enter the input eubprogram? 

Yes. The system nov sends us every message In the input subprogram in order. 
The first two messages are quite perfunctory, referring to our input device, 
and ve shall therefore not devote any time to a discussion of them nov. A 
full description of these two messages as veil as the complete input routine 
interaction is presented in Section 2.1. The first message from this routine 
that deserves discussion at this stage is the third message: 

MISSING DATA 1.11 

SET ARITHMETIC VALUES TO OTHER THAN ZERO 

( )VALUE 

(N)0 CHANGE 

« 

Here the system wishes to know what it should do about missing arithmetic 
data, that is, the blank spaces on data cards where numeric data (data for 
integer or floating point variables) might be expected to appear but which 
doesn't because either no information exists for these spaces or because some 
keypunching error occurred. Normally, the input routine treats missing 
numeric data as sero data; this convention is assented to by typing in the 
second response, the letter N. However, if we wish to have these blank card 
spaces treated as a particular number, we may type in that number at this 
point.  (For missing numerical data, only numerals can be used as substitutes 
for the normal sero.) For our purposes, a blank can very well be treated as 
zero information; I shall therefore type the letter N. 

• N 

The carriage return then produces the next message from the input routine: 

SET ALPHANUMERIC TO VALUE OTHER THAN BLANK 

( )VALUE 

(N)0 CHANGE 

1.3 

•■.ASCli* 



9 October 1967 20 TM-2621/003/00 

This menage concern! « request similar to the previous j It asks the user 
to consider the possibility of substituting some value for the missing alpha- 
numeric values in his input—other than the system convention of using a 
Hollerith blank (octri 60) for this purpose. This option is useful when we 
wish to refer to there blank values for computational purposes since it is 
impossible to distinguish a meaningful blank on the teletype from one that is 
merely a separator; that is, the computer does not recognize blanks in a 
teletype message as anything other than separators. Therefore, a character 
other than a blank must be used, for example, a colon. It seems quite unlikely 
that a colon could ever legitimately appear in our input data  My response 
to this message could then simply be; 

A carriage return summons the next message from the input routine: 

GIVE ESTIMATE OF NUMBER OF DATA BLOCKS 

« 

This message is a request for an estimate of the length of the data base that 
we are Inputting. A new term is unveiled here—data blocks.  If you remember 
I mentioned earlier that a logical data card could consist of more them one 
physical card. For example, If our school system were that of certain European 
countries, a student could very easily find himself taking as many as twelve 
subjects concurrently.  In this type of case, since one of our student records 
occupies six columns, a total of 72 card columns would be needed to accommodate 
Just these records. This is clearly too much for one card; it really demands 
two cards per student.  It is still one logical card per student even though 
two physical cards are used. This logical card is called a "block." It is 
the set of cards that contains one, and only one, value for each variable 
in the dictionary (unless the variable is a so-called "string variable." This 
shall be discussed at further length later in this section). In our data base, 
each block is one card long. The length of a block in terms of physical cards 
is one of the items that is set into the dictionary preceding the data. 

I must type in em estimate here, preferably a generous overestimate, since 
em underestimate would result in blocks not being processed. My response 
could look like the following: 

• 100000 

Note:  commas cannot be used in typing in numbers, e.g.: 

• 100,000 

1.3 



9 October 1967 29 TM-2621/003/00 

A little more Interplay now takes place between ourselvea and the lystem, and 
the data base has been input. The details of the messages and responses 
responsible for this are given in Section 2.1. The input routine closes its 
work with the following message: 

(C)ONTINUE WITH INPUT ROUTINE 

(B)ASIC OPTION 

This message asks us to either select another subprogram (basic option) or 
el. e indicate that we wish to input another set of data. This latter course 
would be necessary were our data in two or more separate sections, for example, 
two tape filesf a tape file plus a disc file, a disc file plus teletype input. 
The input subprogram can handle only one of these sections of data—called a 
data set—at a time. In other words, all the data that is entered during any 
one interaction with the input routine is called a data set. This term will 
be met at various times during our exploration of the TRACE system. If we 
wish to call another program, we must type the letter B followed by a space 
followed by the appropriate code letter of the program* For example, to call 
the construct table program, we would type: 

•EC 

To continue inputting data, we would merely type the letter C after the 
asterisk. Since, however, we are finished with our input, we shall leave 
this program and try one more operation that is related to inputting data but 
that is not actually part of the input subprogram's functions. This function 
lies in the framework of the so-called edit routine, which I shall call by 
typing: 

•BE 

The carriage return elicits the following initial message from that routine: 

EDIT 5.0 

(D)ELETE 

(L)IST 

(C)HANGE 

(F)ORM 

(R)ENAME 

(A)SSIGN BY REPLACEMENT 

(B)ASIC OPTIONS 

« 

1.3 

. 



9 October 1967 30 TM-2621/003/00 

This DMSiagt is a list of tht various functions of the edit program, which can 
accomplish some very useful things, like eliminating entire data sets, or 
specific blocks of data; it can change the names of variables and even the 
values of variables. The user finds the particular function in which he is 
interested and types in the corresponding code to call it. These functions 
are all described in Section 2.3* For our case the function labeled (A)SSIGN 
BY REPLACEMENT has an immediate use. It is this function that is used to 
change the actual values of a variable—from the original form that is punched 
into the data cards into any form that the usor specifies. For example, he 
could ask that all values of sero for the variable called MONTH be transformed 
to one's. Our data base offers a good candidate for this type of value changing: 
note that all the variables but two are expressed in numbers only—the two 
exceptions are the variables GRADE and CONDUCT. As alphanumeric variables, 
these are both expressed in letters and symbols, for example, B+. This 
form is obviously impervious to arithmetic calculation—how does one obtain 
the mean of alphabetical grades? Or how does the user add together a series 
of letters? The solution lies in converting these values to numerical values. 
This being the Job of the ASSIOR function, I call that function by typing the 
letter A« 

• A 

The system returns the first message of that function: 

ASSIGN VALUES 5.31 

( )NAME OF VARUBLE 

The user is now expected to supply the name of the variable whose values he 
wishes changed. I then type in the appropriate name: 

• GRADE 

The next message from the function is: 

( )0LD VALUE - ( )NEW VALUE 

END WITH // 

I 

1.3 



9 October 1967 31 TM-2621/003/00 

This message asks us to type In a series of values in the form shown, that 
is, the original value followed by an equals sign followed by the new value* 
A new series can then follow, in this case, on a second line. Each series 
needs a line for itself and the last line ends the response. And here we 
meet a new device. 

So far we have been accustomed to ending a response with a carriage return, 
but this carriage return also is what delivers the response to the uyetem. 
What happens when the entire response cannot be accommodated by one line? 
TRACE acknowledges the cases where this can happen and allows the user to use 
another way of ending his responses—a double slash. This is then followed 
by the usual carriage return for entering the response into the system« 
This device can only be used when TRACE permits it. Most often, the TRACE 
message itself will carry a line indicating the need for such an ending; for 
example, in our latest message it wast 

END WITH // 

The user must then end his response with a double slash, whether the response 
contains a few characters or whether it extends over several teletype lines« 
For the response to our current message, I shall type the following^ 

(The symbol (cr) stands for: carriage return.) 

After each of these carriage returns not preceded by a //, TRACE issues the 
message: 

CONTINUE 

which is nothing more than a reminder to the user that more information is 
expected during this particular response. Following this message, TRACE 
causes another carriage return. 

1.3 



9 October 196? 32 TM-2621/003/00       ~ 

This operation converts all the original alphanumeric values into new values; 
for example, a value of A- becomes 92, C+ becomes 78, B (actually B: since 
ve changed blanks to colons) becomes 85, and so forth. Notice that I could 
not have referred directly to the input blank following the grades A, B, C, 
D, and F in this operation—TRACE cannot recognise blanks as entities in a 
response; it sees them only as separators. 

After the final line in our response (ended with both a double slash and a 
carriage return), TRACE issues the following message: 

COMPLETED 

EDIT 5.0 

(D)ELETE 

(I.) 1ST 

(B)ASIC OPTIONS 

We are now given the opportunity of either continuing with another function 
of the edit routine, or else going to another subprogram. In either case, 
I shall employ a new device in framing our responses. This one concerns the 
common modes of travel through the network of TRACE messages and subprograms. 

What are these modes of travel through the TRACE eye tern?   Thue far we have 
only moved from one routine to another by typing the code letter of the sub' 
program deeired» 

You may nave noticed that our previous Jumps from one subprogram to another 
were made by typing in a letter code suggested by the system itself. For 
example, if ve had started this Interaction with the TRACE program with an old 
data base, ve would have left the TRACE executive by typing the letter I 
immediately after the executive had presented us with a list cf codes that 
could be used to call the various programs. We left the input routine after 
we reached the last function in it and were again presented with the opportunity 
to call another program. This time we were asked to either call another program 
by means of a code (e.g., B E) or else return to the beginning of the input 
program. Within the input program ve traveled from one function to another 



■) 

9 October 1967 33 
(page 3^ blank) 

TM-2^21/003/00 

automatically 1 within the edit program we were allowed to select a function 
by typing in an appropriate code. There exists, nevertheless, still a more 
general way of moving from one subprogram to another or, within a subprogram, 
of moving from one function to another. This is done by typing in the command 
GOTO followed either by a letter code or by a reference number. If you would 
look back to the various messages received fron the system so far, you will 
notice that every first line (sometimes second) of a message introducing a 
subprogram has a number to the right—the same is true for functions within 
the subprograms. For example, the first message from the input routine carries 
the number 1.0, the fourth (I skipped the second and third) the number 1.11, 
and the edit function Just completed 3.31. Moreover, each of the subprograms 
listed by the executive is followed by its basic reference number, e.g., input 
Is 1, display is U,    Each of these numbers can be used as a transfer point in 
TRACE, depending on the circumstances. If the transfer is to be from one 
subprogram to another, the user must type the subprogram's code (e.g., DE) 
after the GOTO command; if the transfer will take place entirely witnin one 
subprogram, he must use the reference number. 

To illustrate: when I was about to leave the input subprograr for the edit 
program, I could have typed: 

GOTO E instead of: B E 

Once inside the edit routine, I could have typed: 

GOTO 5.31 instead of: 

in order to call that particular funciton. It i* not possible, however, to 
go from a particular point within one subprogram to a specific point inside 
another; travel between different subprograms can only be toward the beginning 
message of the subprogram being entered. 

At this moment in our exploration of TRACE, we are ready to compute the 
solution to our first problem. We must therefore call upon the derivation 
subprogram. I can type: 

GOTO DE 

1.3 



r. 9 October 196? 35 TM-2621/003/00 

PART k 

The First Problem 

We have completed inputting our data base and are now ready for our first 
problem. 

The first problem ia: 

How many etudente are there in eaoh eohool in the entire eahool eyetem? 

Our first move is to call the derivation subprogram, which will do the work 
of solving this problem. We have Just called it by typing GOTO DE, We then 
receive the following initial message from the derivation routine: 

DERIVATION 2.0 

(S)TART 

(L)IST AVAILABLE VARIABLES 

This message asks the user whether he wishes to proceed immediately with the 
next step in the routine or whether he wishes first to have all the variables 
currently available to him listed by the system. He might choose this latter 
course if he had earlier done a lot of editing of his data, for example, 
deleting various blocks of data or changing variable names and values. Since 
this type of editing hasn't taken place and since our store of variables 
is only eleven, I am prepared to start the sequence of messages that constitutes 
tha computational work of the subprogram. I type the following: 

• S 

The system returns the message that starts the chain of events leading to 
the eventual derivation of the problem's solution: 

CASE INDEX 2.1 

( )CHANGE TO 

(N)0 CHANGE 

l.U 

■ . 



9 October 1967 36 TM-2621/003/00 

This message is asking us to tell the subprogram at this earliest point in 
the derivation process the frame of reference, so to speak, for the results 
of that derivation. It happens that TRACE in building a derivation always 
sorts the results on the values of some variable—called the case index 
variable. The response to this current message will actually be a command to 
TRACE telling It how to sort the results of our derivation. As you will see 
later, both responses to this message convey a variable name to the system^ 
that variable Is then recognised as the sort variable for the derivation. 

There are several ways of looking at this concept of case indext one ve can 
examine right now. TRACE does all its deriving by means of the. following 
operationss counting, summing, averaging, and finding a median} making 
Boolean algebraic tests; plus the usual arithmetic operations of adding, 
subtracting, multiplying, and dividing; plus such common operations as 
computing square roots, logarithms, and trigonometric functions. However, 
before it begins any derivation containing these operations, it must know 
Just to which variable the results are to pertain. It may count the number 
of appearances 01' a certain variable in the data base, or svjn the values of 
this variable, but it dtill wishes to know a second order of pertinence. 
That is, telling it to compute the sum of the values for some variable or some 
portion of that variable is not eno igh; you must tell it to compute that sum 
in terms of some other variable—per some other variable (of course, it could 
in some cases be the same variable). TRACE would then compute a result 
appropriate or pertinent to every value of the case index variable. 

A pair of hypothetical problems to Illustrate: 

(1) What is the average grade per student in school 11 of district 2? 

(2) How many teachers have given out at least 20 A's to their students 
in the final month of the school year? 

The frame of reference in the first problem is "student" because the results 
of average grades pertain to students; the case index is therefore the variable 
STUDENT.  When TRACE computes averages of the values for the variable GRADE, 
these averages will be applied to the occurrences of unique values for 
STUDENT (according to the conditions expressed in the problem).  In other 
words, every qualifying value for STUDENT will have associated with it the 
appropriate average grade. 

In setting up the derivation statement for the first working problem of ours 
later, you will notice that that statement does not contain any reference to 
the conditions (restrictions) attendant to the problem, for example» in the 
first hypothetical problem, the restriction that the students must be associated 
only with school 11 of district 2. These restrictions are relegated to a 
separate statement. TRACE then requires three statements for a derivation: 
first, a case index; second, a list of restrictions; finally, the computation 
statement. So, in this hypothetical problem, the user would first tell the 

l.U 



' 

) 

9  October 1967 37 TM-2621/003/00 

•/item that the case index is the variable STUDENT, then the restrictions 
about school 11 of district 2, and lastly that the computations consist of 
finding averages for the values of GRADE. 

The matter of determining the case index for the second hypothetical problem 
is a somewhat different story. Here there is no obvious "per" variable. The 
derivation statement will ask for a counting of teachers and, in this case, 
will also hold the condition about the 20 A*s given out. The restriction 
statement will stress the matter of the final month. However, where is there 
a visible case index? The answer is that visible or not,  there must be a 
case index specified. For this problem, that index could be the variable 
DISTRICT, or SCHOOL, or even TEACHER. If the case index were given as 
DISTRICT then, TRACE would compute the results so that every uniqie value 
for DISTRICT would have associated with it the appropriate number of teachers 
who have given out 20 A's in June. If SCHOOL, the number of teachers per 
school. If TEACHER, tha number of teachers per teacher, which is equivalent 
to associating each qualifying teacher with herself. As you will see later, 
there is also a way of obtaining a grand total of results, so that the 
specifying of a case index becomes entirely academic. 

So, in our ourrent working problem,  the oaae index ie oleorly:   SCHOOL» 
How many etudente per eahool in the eyetem?    Therefore,  the reetriation 
etatement must have something to do with the entire eyetem,  i.e., the entire 
data base, and the derivation statement must aonoem itself with determining 
a count of students. 

Correct. Notice that the current message from the system allows us two 
possible answers:  either we submit the name of the variable we have selected 
as the case index, or else type N. This latter response would give us as 
our case index the variable whose name appears on the END CASE control card 
(see Appendix 3)* This particular variable is chosen so that it will suit 
the majority of problems run on the data set.  Following my entering of a 
case index variable, the subprogram vill issue a message asking for a 
restriction statement: 

»SCHOOL 

RESTRICT DATA    2.11 

(   RESTRICTIONS END WITH  // 

(N)0 

1.1* 



9 October 196? 38 TM-2621/003/00 

Ar. you can see, ve are asked to specify the restrictions on the current case 
index if there are restrictions, otherwise to indicate that there are none. 
The admonition to the user to end his restrictions with a double slash implies 
that the system is prepared to accept a lengthy series of restrictions. This 
is truei ve can type in any number of restrictions at this point, closing 
the series with a //. The form of each series is as follows: variable name 
followed by an equals sign followed by the value(s) defining the restrictions. 
L'eries are separated from each other by a space and the first series is heralded 
by the word FOR. To illustrate, in the first of the two hypothetical exsmpxes 
I introduced a while ago to demonstrate the use of the case index, we would 
restrict the case index (in other words, the computation Itself) to those 
students who wc t to school 11 in district 2. The correct message to the 
computer to achieve this would be: 

FOR SCHOOL - 11 DISTRICT - 2 // 

Of course, if district 2 were the only district that held a school with the 
value of 11, that second restriction need not have been entered. Similarly, 
if we had wanted to have the result computed for all schools in district 2, 
we should have omitted the first restriction. 

Since our first real problem cnlls for the number of students in each school 
In the entire system, there is at first sight no apparent restriction on the 
derivation.  However, in our particular data base, each student is represented 
by ten cards; therefore, each student could be counted ten times if there 
were no restriction. We can avoid this duplication of counting by introducing 
a restriction that limits the counting process to one card per student. This 
is most conveniently done by simply directing the derivation to a single month, 
for example, June. My restriction statement then becomes: 

* MONTH «= 9 

The system next asks us for our computation statement: 

GIVE DERIVATION STATEMENT  2.2 

( )END WITH // 

Again (because of the //) we are allowed to submit a series of lines; however, 
these lines must all be combined into one composite derivation statement by 
means of the connecting words AND and OR, which I shall discuss in detail 
later.  At any rate, whether short and singular, or long and composite, the 
derivation statement ends with a double slash. 

l.U 



9 October 1967 39 TM-P621/003/00 

The simples'; derivation statement will have a skeleton that looks like this: 

(result type) ■ (computational expression) 

where the result type is limited to one of three forms: AM, FM and IMj but 
where the right hand side can run on for several lines, containing arithmetic 
operators, relational tests, variables, all held together by the conjunctions 
AND and OR, The ttvee forms legal for the left side are the following: 

AM    alphe.iumeric result 

FM    floating point result 

IM    integer result 

The left side of the derivation statement therefore tells the system how to 
store the derived results. The results collectively, from any one derivation 
statement, form a variable—called either a derived variable or a measure. 

Using again my hypothetical case about the average number of students in 
school 11 of district 2, I would necessarily want the results expressed in 
floating point, since the computation involves addition and division. My 
derivation statement for that problem would then begin with FM. On the other 
hand, for the case about counting the number of teachers who had given out 
more than 20 A's last month, the results could be presented in integer form, 
since each result is merely a whole number.  Of course, asking for floating 
point instead would certainly do no harm. For our problem, either IM or 
FM is suitable since we are merely counting a number of students, 

Again looking to the first hypothetical problem: all that would remain a 
mystery to the system at this point would be the nature of the calculation; 
it already would know what the calculation will pertain to (the case index) 
and already would have received the restrictions. The necessary calculation 
would be merely the average 01 all the qualifying grades. The TRACE term 
for this operation is MEN, meaning the arithmetic average or mean. I would 
thus have typed the following derivation statement for the problem involving 
the average grade for students in school 11 of district 2: 

FM = MEN GRADE // 

This one statement would mean the end of the work of deriving the result. 
The remaining interaction with TRACE would concern itself with displaying the 
results. 

But now hack to owe real working problem: 

How many students are there in each school in the system? 

l.U 

'IHi'iWll 



9 October 1967 k0 TM-2621/003/00 

Remember that I mentioned earlier the four statistical operations in TRACE: 
counting, summing, averaging and finding a median. You have already seen how 
one of these could be used in a derivation statement—the operator MEN for 
averaging. Our problem calls for a counting operation, the operator NBR. 
The remaining operators are SUM for summing, and MDN for obtaining a median. 
Our derivation statement then can easily resolve itself into the following: 

IM ■ NBR STUDENT // 

It, of course, could also have been presented as: 

FM ■ NBR STUDENT // 

What would happen if we had used the operator SUM instead of NBR?   Doesn't 
it look aa though this operator might give us the sum of the students? 

The difference between the work of the operators SUM, MEN, and MDN and the 
effect of the operator NBR is that the former act upon the values of the 
variables referred to, whereas the latter acts only upon the occurrences of 
variables; that is, it counts the occurrences of discrete values for a 
particular variable. If we had used the operator SUM in our derivation 
statement instead of NBR, we would have gaineü the sum of the values, that is, 
the identification numbers of the students. In other words, 1 •♦• 2 + 3 ,., +n. 

This statement ends the work of derivation. A carriage return causes TRACE 
to start computation, the completion of which is signaled by the following 
message: 

IM001 

IS PROGRAM NAME 2.21 

ASSIGN 

( )USER NAME 

(N)0 

« 

1.1* 



n A 

9 October 196? kl TM-2621/003/00 

This message tells the user what the system will name the derived variable 
(measure). It builds this name out of two components: the code for the 
result type that the user typed Into the left hand side of his derivation 
statement plus a number that reflects this variable's chronological position 
among all derived variables. For example, If a user had entered six derivation 
statements with result types In the following order:  FM, AM, FM, FM, AM, and 
IM; the system names would be the following: FM001, AM002, FM003, FMOOU, 
AM005, and IM006. 

The user Is, however, given the option of rejecting and replacing the system 
name.  If he chooses to accept the system name, he types the response N. 
If he chooses to assign a name of his own manufacture to the variable Just 
derived, he types in that name. This name mubt obey the general rules for 
TRACE names. For the results to our current problem, we can then either accept 
the system-assigned name of IM001 or else construct a new name. Suppose I 
type in the name STD# to replace IM001: 

• STD* 

The derivation subprogram now submits its final message: 

DERIVATION COMPLETE 2,22 

DERIVATION 2.0 

(S)TART 

(L)IST AVAILABLE VARIABLES 

* 

The program is showing us that it has concluded its work for the current 
derivation and is ready to accept another derivation problem.  It also makes 
itself available for the listing of the variables now outstanding, whether 
input or derived. We also have the right to exit from this routine by means 
of a GOTO command. Since we do not have another problem at the moment, nor 
is it necessary to have our variables listed, we should consider looking at 
the results Just derived. One of the simplest ways of doing this is by way 
of the edit subprogram, the same program that permitted us to change the 
values of our variable called GRADE,  One of its capabilities is that of 
listing the values of any variable, including derived variables,  I can 
summon this routine by typing: 

• GOTO E 

l.U 



9 October 196? U2 TM-2b21/003/00 

With the reappearance of the edit subprogram, the same list of functions that 
was presented us at its first appearance is again shown us. If you recall, 
the second function was represented then as: 

(L)IST 

This is the function that serves to list the values of any specified variable. 
I can call it by typing: 

• L 

That function now introduces itself with the following message: 

LIST VALUES    5.2 

(   )NAMES 

(D)ATA BASE INDICES 

(FOR)   (   )NAME  (-)     (   )VALUES  (FIND)     (   )NAMES 

END WITH  (//) 
« 

The second line requests us to enter the name of the variable whose values 
we wish listed; the third and fourth lines happen to be of no consequence at 
the moment so we shall ignore them (they are discussed at length in the 
reference section); the last line, tells us that our response must be ended 
with a double slash.  Since my request is simply that of having the values for 
the derived variable STD# listed, I shall type the following: 

» STD* // 

The next message from the edit routine makes a statement of fact and then 
asks us to make a Judgment on the basis of that fact: 

TOTAL NUMBER OF BLOCKS ■ 98 
GIVE BOTH 5.21 

( )STARTING BLOCK  ( )NUMBER OF BLOCKS 

l.U 



9 October 196? ^3 TM-P621/003/00 

Notice that this message first tells us how many blocks of data have been 
produced for our derived variable; it then asks us c • state how many of those 
blocks we wish listed at this point. 

The user must provide the system */ith both the number of the first block to be 
printed (assuming that he knows what that block number is) and the total 
number of blocks to be printed during this forthcoming listing. This type 
of freedom is especially valuable if, as an example, I did not need to have 
any blocks of results displayed but the last seven of a total of 200* I would 
then type: 

• 19^ T // 

For our current problem, I wish tc have every block printed: I therefore 
type: 

• 1 98 // 

where n is the same number appearing in the first line of the current message 
from the subprogram. 

A word about the meaning of the term "block" in this context. As you know, 
I have already used this term as a synonym for a logical card. In this context, 
however, it seems related not to a characteristic of our input but to our newly 
derived results. It is still, nevertheless, related to our input: there 
is one derived value for each block mentioned in this message, but there is 
also a case index value for every derived value since derivations occur only 
for occurrences of the case index variable outstanding and the case index must 
be an input variable. Therefore, "block" refers both to an occurrence of a 
case index value and a derived value. 

The next message from the system is the actual listing of the values desired, 
together with the block numbers and the associated case index values. The 
listing is presented in the form of three columns:  the first (leftmost) 
containing the block number and headed by the letters BLKN, the second the 
values of the variable in question and headed by the name of that variable, 
and the third displaying the values of the case index variable that correspond 
to both the block number and the derived variable value. The system orders 
ohe listing so that case index values appear consecutively, starting from 
the lowest value; the block numbers occur in succession, from 1 through n. 

l.U 



9 October 1967 M TM-2621/003/00 

A listing for our current derivation will resemble the following: 

BLKN STDd' SCHOOL 

1 U36 1 

2 306 2 

3 55U 3 

k 379 5 

5 826 11 

6 klk 12 

P3 390        1U5 

GIVE BOTH    5.21 

(   ) STARTINO BLOCK    (   ) NUMBER OF BLOCKS 

Notice that the subprogram allows us now to return to the point where we may 
specify another portion of the same derived variable values.    We cannot, 
however, there ask for a listing of the values for another variable.    In our 
case, we have received a listing of all the values for our derived variable 
STD# and therefore have no further use for this particular mechanism of the 
listing function; nor do we have any more use for the edit program at all 
since our derviation is now complete and the results fully exhibited.    We 
are actually now ready for another problem. 

l.U 



9 October 196? ^ TM-2621/003/00 

PART 5 

The Second Problem 

The eeoond problem ie: 

How many etudente are there in each eohool aooording to the following 
oategoriee:    grade levels 1 through 6$   7 through 8t and 9 through 22? 

We can aeeume tfiat there are several types of schools in the system:    some 
that have all grade levels from 1 through 12; some that are structured on 
grades 2 through 6t  some only on grades 7 and 8t and so forth. 

At first sight, this problem seems quite s.milar to the first.    The derivation 
statement will be the sane, the case inde:   will remain the variable SCHOOL—only 
the restrictions are apparently different«     In this case there must be three 
restrictions resulting in the equivalent of three restriction statements: 

FOR LEVEL ■ 1 - 6 // 

FOR LEVEL - 7 - 8 // 

FOR LEVEL » 9 - 12  // 

From what I've learned from solving the first problem^ this current problem 
seems to lead into three separate derivations:    each beginning with one of the 
three restriction statements that you have just described, but continuing 
with identical case index statements and derivation statements.    However, 
if that were true and the problem actually asked for the number of students 
per school for each possible grade level, we would have to present the system 
with twelve distinct derivations.    And if our problem were one wherein the 
number of restrictions ran into larger numbers,  it would mean our spending 
a great deal of time at the teletype typing in duplicate statements.    Is it 
possible to shorten this process by our typing as the one and only restriction 
statement a composite of the singly appearing restriction statements that we 
would otherwise have to enter?   In other words: 

•FOR LEVEL «1-6 LEVEL «7-8 LEVEL - 9 - 12  // 

No, The TRACE system tries to obey all the restrictions given it in a single 
statement simultaneously.    For example, suppose that ve had a data base wherein 
the school identification numbers were not unique within districts  and you 
wished certain results  ror all schools numbered 13 and all schools  in the 

1.5 

.. 

. 



9 Octobtr 1967 U6 TM-2621/OO3/OO 
) 

district numbered U.    You could not obtain these results by entering as your 
sole restriction statementt 

•FOR SCHOOL -13 DISTRICT ■ U // 

The system would derive results only for those schools in district U that were 
labeled with the identification number 13—both restrictions in that one 
statement are obeyed simultaneously if possible.    The system would under no 
circumstances first concern itself with all the schools labeled 131 deriving 
results for that group| and then consider the schools in district k.    The 
restriction statement that you have typed in then, in effect, restricts the 
derivation to the condition that all the individual restrictions be met at 
once—this is impossiblej a student can be in only one grade level at a time. 
Therefore, your composite statement actually leads to a null derivation. 

Isn't there some way the user oan avoid typing in series of statements when 
the only difference between any two aeries is perhaps only a single statement 
or even     single parameter? 

Since this is  a frequent situation met by the user in handling problems on 
a large data base, TRACE does have a shorthand method of dealing with it. 
This method is called "bracketing" and can be used either in restriction 
statements or in derivation statements.    It allows us to leave one or more 
e'  »nents in either or both of these statements in a derivation unspecified; 
TRACE then asks us to supply it with the missing parameters.     In fact,  it 
does this repeatedly until we tell it to stop.     In this way, a single series 
of statements   (one case index statement, one restriction statement, one 
derivation statement)  for a derivation serves to accomplish what otherwise 
might have required a multiple series of statements.    We can use our current 
problem as an example to illustrate this method.    First of all, I shall call 
the derivation routine: 

GO TO DE 

DERIVATION    2,0 

(S)TART 

(L)IST AVAILABLE VARIABLES 

• S 

1.5 



9 October 196? 14T TM-2621/003/00 

CASE INDEX    2.1 

(   ) CHANGE TO 

(N)0 CHANGE 

» SCHOOL 

RESTRICT DATA    1.11 

(   RESTRICTIONS END WITH // 

(N)0 

And here is the beginning of our shorthand way of dealing with multiple 
restrictions: 

•FOR LEVEL - [l] - [f]    MONTH ■ 9 // 

GIVE DERIVATION STATEMENT 2.2 

END WITH // 

*IM ^ NBR STUDENT IP ATTEND NQ 0 // 

GIVE 2 PARAMETERS 

( )VALUES 

(S)TART 

Notice that the bracketing occurs twice in the same statement: the restriction 
statement. As I have said, this tells TRACE that a series of values will be 
provided for the parameters in question. I have typed in the initial values 
for the two parameters, but actually any string of six or fewer characters 
would doi for example, I could have typed: 

FOR LEVEL = QFIRST] - [SECOND] 

or even: 

FOR LEVEL » [k]    - [B] 

1.5 

«Mibi 



9 October 1967 ^8 TM-2621/003/00 

since any element in the statement may be parameterized. In this latter case, 
the system would ask me for three parameters. 

Notice next that the system begins to ask for missing parameters immediately 
after the entry of the derivation statement. This is the line: 

GIVE 2 PARAMETERS 

followed by an asterisk that permits the user to type in the appropriate 
values or else return to the beginning of the routine. He may also, of course, 
type in a GOTO command in order to move to the end of the derivation program. 
The request for parameters concerns all bracketed parameters in the derivation 
thus fari since we have bracketed two, it is a request for two parameters. 
A cycle is thus instituted! the system requests parameters; the user supplies 
them; the system rums a derivation on the basis of these values; it again 
asks for a set of parametersj and so forth until the user stops the cycle 
by typing in either a GOTO command or the response S, 

What is the meaning of the alause that you have added to the original 
derivation statement?   Namely: 

IF ATTEND NQ 0 

This is what might be called an IF clause, or a conditional clause.  It tells 
the system to derive the result in question only if the condition expressed 
by the clause is met. In this case, I've asked the system to discount any 
students who haven't attended at least one day during the term.  It is only 
a perfunctory caution in our example, but it does serve a logical purpose. 
It could very well be that the student roll was made up before the first day 
of classes and has not been updated to reflect the movement of students out 
of the system before that first day. 

The term NQ apparently means:    not equal to.    What other terms are accepted 
by TRACE in conditional clauses? 

TRACE recognises ^e following:  EQ as equal to, LS us less than, LQ as less 
than or equal to, OR as greater than, and GQ as greater than or equal to. 

I would like to deviate a little now and present another derivation statement 
for analysis: 

«IM - ATTEND IF DISTRICT EQ 1 OTR 0 // 

1.5 



9 October 1967 k9 TM-2621/003/00 

Her« you see a new element in derivation statementst the clause OTF 0. This 
asks the system to set the result to sero if the condition set by the IF clause 
is not met* It means literally: otherwise the result is zero. I could also 
have set this alternative clause to some computational expression« This 
alternative is useful since TRACE does not provide any value at all for the 
derivation whenever the conditional clause (IF clause) for a particular case 
index value fails. With an OTh, the user can control values in case of this 
type of failure. 

Why didn't you attach thie alternative olauee to our current derivation 
statement?   It would then he: 

•IM ■ NBR STUDENT IF ATTEND NQ 0 OTR 0 // 

TRACE does not allow this freedom with statements beginning with tu» so-called 
statistical operators: NBR, SUM, MEN, and MDN. All other derivation state- 
ments, however, may carry this clause. 

IB there any way in whioh a derivation etatemeut can he cmplified to include 
more than a eingle condition, in other worde, comprising two or more IF 
claueee bound together by logical "anda" and "ore"? 

The conjunctions AND and OR can be used to connect what are theoretically 
separate IF clauses in themselves into one IF clause, which may be drawn out 
to indefinite length. They cannot be used to Join different variables 
within a clause, only the different conditions. For example, the following 
derivation statement is a legal one: 

FM ■ SQR A ♦ TAN B IF C GR D AND^t^l^ F OTR SIN G // 

This tells the system to compute the sum of the square root of A and the 
tangent of B if C is greater than D and £ is less than F; if either of these 
conditions is not met, the result is, instead, the sin of G. The AND in 
this statement connects the phrases C GR D and E LS F to make one composite 
IF clause; it does not connect D and E. 

The following is also legal: 

FM - SQR A ♦ TAN B IF C GR D OR E LS F OTR SIN G // 

1.5 



9 October 196? 50 TM-2621/003/00 

This tells the lyetem to compute the result if either C Is greater than D 
or E is less than Fj if neither is met, then compute the alternative result. 
The following is legal; 

FM - SUM A IF B OR C OR D GR E AND F OR G // 

This states that B must be greater than C or else both must be greater than 
E and F greater than G. It does not mean that either B must be greater than 
C or D greater than E, and that furthermore F must be greater than G. When 
both AND*s and OR'a appear in the same statement, the OR acts to create new 
phrases within the IF clause, not the AND—-th« AND then only belongs to the 
OR phrase. For example, the current example is trc-ated as though the following 
parenthesised phrase existed: 

FM - SUM A IF B GR C OR  (D GR E AND F GR G) // 

The following pair of statements can also illustrate this relationship: 

FM ■ SUM A I? B GR C OR D GR E AND F GR G OR H LS I OR J GR K AND L GR M // 

FM ■ SUM A IF B GR C OR (D GR E AND F GR G) OR (H LS I) OR (J GR K AND L GR M) /, 

The following statement is not legal: 

FM ■ SUM A IF B GR C OR G AND E GR F // 

A conjunction cannot connect two variables after the same operator. In this 
case, the clause does not mean that B must be greater than either C or G in 
one half of the clause. The correct clause for this intention would be: 

IF E GR F AND E GR C OR B GR G 

It also would not be: 

IF B GR C OR B GR G AND E GR F 

since the condition beginning with the AND belongs to the OR phrase, and this 
is not the apparent intent of the first incorrect clause. 

What other arithmetic operators beeidee + does TRACE recognize, and in what 
order if several occur in the eame statement? 

1.5 



9 October 196? 51 TM-2621/003/00 

TRACE recognises the arithmetic operators *% -% I  and » for addition, sub- 
traction, division, and multiplication, respectively. When they occur 
together in a formula, TRACE recognises and executes them from left to right 
in two passes:  first recognising divisions and multiplications, then the 
additions and the subtractions.  For example, 

A + B«C»D-E/F 

means:    multiply B and C, then multiply this product by D and save the new 
product; then divide E by F; then add A to the saved product;  finally subtract 
E / F from this sum. 

You said earlier that we oould have included a bracketed parameter in the 
derivation statement.    Isn't it the» possible that we might have inserted 
our restrictions into the derivation statement as a conditional clause? 
That is, our restriction statement would be: 

•N 

meaning no restriction at all, and the derivation statement would become: 

IM ■ NBR STUDENT IF LEVEL GQ [l] AND LEVEL LQ [6] AND ATTEND NQ 0 // 

Yes, that works in this case. In fact, trying to place the restricting 
factors into the derivation statement instead of the restriction statement 
generally succeeds whenever you are working with a statistical operator, such 
as MDN, MEN, WBH  or SUM. But this can lead to dangerous conditions vnder 
other circumstances.  You really have to understand Just what takes place 
in the system wnen you enter a r.-striction statement and when you ask for 
a particular derivation. 

I would guess that a restriction statement immediately sets aside part of 
our data base so that no matter what the derivation statement asks for,  the 
system will never bother with that part of the data that has been excluded 
by the restriction statement»    In other words, a restriction statement divides 
a data base into two sections, one to be used by the system in deriving the 
insults demanded by the ensuing derivation statements,  the other not to be 
used at all»    At least, not until a new restriction statement or new restriction 
parameter comes along to disturb this division of the data base» 

That is precisely correct. A conditional clause in the derivation statement, 
on the other hand, doesn't separate one part of a data bape from ancther. 
It merely asks the system to go from one block of data to another and inspect 

1.5 

•>■.** 



9 October 196? 52 TM-2621/O03/OO, 

it to see whether the stated conditions are met. In this case, there is 
usually a value resulting from the Inspection: the proper value if the 
conditions are met, no value at all if not. 

Now that you have ehom me the rules for forming derivatiom, we might return 
to our ourrent problem.    We are at the point where TRACE begine the oyole of 
derivatione: 

• 1 6 

IM002 

IS PROGRAM NAME 2.21 

ASSIGN 

( )USER NAME 

(N)0 

•N 

GIVE 2 PARAMETERS 

( )VALUES 

(S)TART 

• 7 8 

IM003 

IS PROGRAM NAME 2.21 

ASSIGN 

( )USER NAME 

(N)0 

•N 

GIVE 2 PARAMETERS 

( )VALUES 

(S)TART 

• 9 12 

IMOOU 

IS PROGRAM NAME 2.21 

ASSIGN 

( )USER NAME 

(N)0 

•N 

1.5 



9 October 1967 53 TM-2621/003/00 

GIVE 2 PARAMETERS 

( )VALUES 

(S)TART 

Our derivation cycle completed, we are now ready to look at the results. We 
can again consult the edit program for this, as we did for examining the 
results to the first problem. 

•GOTO E 

After the edit routine presents its line-uo of functions, we select the listing 
function: 

•L 

LIST VALUES 5.2 

( ) NAMES 

(D)ATA BASE INDICES 

(FOR)  ( )NAME (■)  ( )VALUES (FIND) ( ) NAMES 

END WITH (//) 

•IM002 // 

TOTAL NUMBER OF BLOCKS ■ 18 

GIVE BOTH 5.21 

( )STARTING BLOCK ( )NUMBER OF BLOCKS 

• 1 13 

BLKN    IM002    SCHOOL 

1      U36     1 

2      622     1* 

3      537     7 

18      701     32 

GIVE BOTH 5.21 

( )STARTING BLOCK  ( )NUMBER OF BLOCKS 

•GOTO 5.2 

1.5 

-:.■-> 



9 October 1967 51* TM-2621/003/00 

LIST VALUES 5.2 

( )NAMES 

(D)ATi. BASE INDICES 

(FOR) ( )NAME (-)  ( )VALUES (FIND)  ( )NAMES 

END WITH (//) 

»IM003 // 

We continue the lifting process vith each of the remaining two derived variables: 
IM003 for the variable shoving us the information for grade levels T - 8, and 
IMOOU for levels 9-12. 

This listing function is not the only way of obtaining an exhibit of our 
derivation results* The display program may also be used to this purpose. 
To use this program, which displays only derived variable values in table 
form, we enter the construct table routine, devise a one-dimensional table 
consis .ing only of the values for our derived variable, and then request a 
display from that program. I shall very briefly describe the procedure—the 
meseagei. and responses are discussed fully in the reference section. 

GOTO C 

(S)TEP BY STEP 

( ) SHORTHAND 

(L)IST SET UP TABLES 

• TAB R IM002 UO A 

ROW IS IM002 CODED A 

CASE INDEX IS SCHOOL 

TABLE TAB SPECIFIED 3.6 

(D)ISPLAy THIS TABLE 

(C)ONSTRUCT OTHER TABLE 

(B)ASIC OPTIONS 

I hftve used the so-called "shorthand" method of constructing the table for the 
fiist variable. We can now either have the results for ..hat variable displayed 
or go on to construct the tables for the other variables and have them displayed 
consecutively later. This particular table has been constructed so that all 
the values for IM002 will be presented in a single column, leaving room for a 
maximum of Uo  values—the table was named TAB. All this information was given 
in the response: R, standing for "row variable," actually tells TRACE to 
put the values in a column; A signifies that all values are to be recognised. 

1.5 

I 



9 October 196? 55 TM-2621/003/00 

PART 6 

The Third Problem 

The third problem ie: 

What is the average grade over all ßubjeots for eaah student in the 
eahool or eohoole eupervieed by principal 23 for the three month 
period—September through November? 

This problem brings us into the area of the so-called "string variables,'' 
You may recall that on our data cards are three variables—-GRADE, SUBJECT and 
TEACHER—whose values are separated into six subidvisions each, each sub- 
division consisting of two characters and each considered to be a value in 
itself. Each subdivision is separated from another in the same variable by 
four columns or skips. It is these subdivisions and skips that distinguish 
a string variable from a non-string variable. Whereas a non-string variable, 
like SCHOOL, is always treated in its entirety, a string variable can be 
recognited as any one of its subdivisions at a time; it can be recognized 
as two or more of its subdivisions; it can even be recognized in its entirety, 
that is, as a non-string variable. For example, there are six values or 
s ibdivisions to GRADE. You are actually allowed to refer to only a single 
one of these in the derivation statement, or to several that appear con- 
secutively in a block—if you refer to several, you are referring to them 
as separate values. 

How does TRACE handle these string variables internally? 

TRACE does this: for each block (logical card) containing perhaps several 
string variables, it forms individual strings containing only values of the 
same variable, that is, without any skips. Of course, it is possible to 
declare string variables initially without any skips, running the separate 
values one after the other. So, for our input of three string variables, 
TRACE forms three homogeneous strings for every block: one for GRADE, one 
for SUBJECT, and one for TEACHER, There is no relationship from one block 
to another, however. Within each of these strings, the values or sub- 
divisions are placed according to their original input order. Therefore, 
there is a one-to-one relationship between members of the strings that matches 
the original. For example, the fifth history grade for a given student will 
be matched to the teacher for that subject—the fifth value in the string 
for TEACHER for that particular student for the sane month. 

Let us start this derivation. We need consider only the restriction, case 

1,6 



9 October 196? 56 TM-?621/003/00 

index and derivation statements for the derivation since other interactions 
wit^ TRACE will be similar to those we employed for the previous problems. 
First of all, the case index statement: 

r 

CASE INDEX - STUDENT // 

The next step is the restriction statement: 

FOR PRINCIP - 23 MONTH ■ 0 - 2 // 

This statement tells TRACE to bring into core only those blocks of information 
that have the value of 23 for PRINCIP and one of the three values: 0, 1 or 2 
for MONTH, Therefore, three blocks (logical cards) per student will be trans- 
ferred from disc to core. 

Now if GRADE were not a string variable, the proper derivation statement would 
be: 

FM » MEN GRADE EACH // 

However, since it is a string variable, the statement becomes: 

FM - MEN SCAN ACROSS GRADE 1-6 EACH // 

What is the meaning of the terms SCAN ACROSS ana the range 1-6? 

The terms SCAN ACROSS are always used together and refer only to string 
variables. These tell the system to regard the variable in terms of individual 
subdivisions. Our variable GRADE is a string variable consisting of six 
stated subdivisions, although it is possible that some of these may not hold 
any information. Prefacing that variable name in a derivation statement by 
SCAN ACROSS means that the system will treat each subdivision separately as 
an independent value, as though each were a separate non-string variable. The 
suffix of a range, such as 1-6, tells the system Just which values are to be 
looked at. No range appended to the variable name will result in having each 
subdivision recognized. Note that the suffix can only be a range of consecu- 
tively appearing subdivisions and that the dash is not separated from the 
digits by spaces. 

What would happen if a string variable name appeared in a derivation statament 
without the SCAN ACROSS preface? 

1.6 



9 October 1967 57 TM-2621/003/00 

TRACE would treat the whole string variable as a single entity. For example, 
GRADE with its six subdivisions of two characters each would be recognized 
as a non-string variable twelve characters long. This effect has its uses, 
but not for our purposes. 

What TRACE really does then, on orders from this derivation statement, is 
literally to scan across the working string of values for GRADE and compute 
a mean of all the values specified in the statement—for this particular 
statement, all six of them. 

What ie the meaning of the term EACH that ende the derivation etatement? 

The answer leads us back into a discussion of case Index and the inner mech- 
anisms of the system. I mentioned earlier that TRACE makes a working subset 
of the data base according to the case index chosen and the restrictions 
specified. This subset takes the form of a table, 2600 entries in length at 
maximum capacity. Each occurrence of a case index value is then made an entry, 
later to be matched In the same table with the corresponding derived value« 
These car.e index values are arranged in ascending order. For example, in the 
first two derivations the Index was the variable SCHOOL, This meant that 
each tint  the system met an occurrence for SCHOOL in the data bas» that 
satisfied the restrictions for the derivation, it placed the value it found 
there .;.n this table. The final form of this table before derivation processes 
began then would have shown all the occurrences of the lowest value for SCHOOL 
at the beginning of the table, followed by all the occurrences of the next 
lowest value, and so on until the highest value was taken care of. Since 
each occurrence represented one student (the restriction statement confined 
the derivation to one block per student), we actually had in that table even 
before the derivation began the correspondence we wanted between those two 
variables: SCHOOL and STUDENT. The derivation process consisted merely of 
counting the correspondences. 

Let us examine the case Index table as it is used by TRACE in the current 
problem. First of all, the restriction statement has eliminated all students 
from consideration but those having em associated value of 23 for the variable 
PRINCIP. It has furthermore eliminated every block for these qualifying 
students but the ones having values of 0, 1 or 2 for MONTH. Let us say that 
principal 23 has one school under his Jurisdiction with a total of ^00 students. 
There are then 1200 occurrences of STUDENT in this case index table, three per 
student. 

The term EACH is directly related to this table, as are the other terms in the 
same category. These terms, called "selective operators," are used at the 
end of most derivation statements and serve to instruct TRACE in building sets 
of derived values, I did not include any of these operators in constructing 
the derivation statements for the first two problems because, in the absence 

1.6 



9 Octobtr 1967 58 TM-2621/OO3/OO 
) 

of any seltctiv« operator, a derivation ■tatemant that beglna with a statistical 
operator (for example, NBR) is treated by the system as though it had an 
implicit EACH* This particular operator means: recognize each occurrence of 
the case index variable. It turned out that was our intent in both derivations. 

Now suppose the derivation process for this case index table is beginning. 
Since the term EACH has been specified, TRACE will recognize and produce a 
value for each member of the table. Therefore, immediately after this stage 
of the derivation, the table will look like this: 

case index value(STUDENT) derived value(mean grade) 

1 85 

1 88 

1 79 

2 65 

2 72 

2 71 

1*00 

uoo 
koo 

79 

86 

89 

However, the operator EACH causes a second stage in the derivation process. 
This time the system repeats the derivation on the individual derived values 
so that a new table is created consisting of only unique case index values 
and associated derived values that replace all the individual values that 
earlier belonged to the various occurrences of the case index values. 

In other words, our table is recast into the following form: 

case index value 

1 

2 

derived value 

8U     (mean of 85, 88, 79) 

69     (mean of 65, 72, 71) 

koo 85 (mean of 79, 86, 89) 

1.6 



I 
1 

9 Octobtr 1967 59 TM-£t21/003/00 

And this !• praciitly what wt viih«d from the derivations A derived value 
for each unique value for STUDENT, equal to the mean of all the values for 
GRADE that qualified for the derivation* Similarly, in the firtt two deriva- 
tion!, the second stage of the derivation counted all the occurrences of each 
unique case index value* 

What are the other eeleotive operators? 

They are the following< FIRST, LAST, ALL, and ONE. The first two refer 
directly to the occurrences of case index values in this table. They say 
respectivelyt recognize only the first occurrence of each unique case index 
value in the table and derive the designated value for it; recognize only the 
last occurrence of each unique case index value and make the requested 
derivation* These two operators would have been useful in either of our first 
two derivations since they would have confined those derivations to one derived 
value (count) per student. Instead, I had made the stipulation a part of the 
restriction statement when I t/ped: 

FOR MONTH • 9 

This is actually the main use of FIRST and LASTt to confine a derivation to 
one value per unique case index value. 

Do these two operators have any uee in referring to epeoifia oaee index values? 
Suppose that we not only wanted the mean grades for the three month period, but 
also the mean grades for September alone.    Could we have parameterized the 
last term in the derivation statement and run it twioe-~onoe with EACH and 
the next with FIRST? 

No, FIRST and LAST can only refer to the case Index table order. This table 
is not set up on the basis of the order in which the case index variable 
occurrences occur in the input data set; so you have no assurance that the 
first occurrence in every set of unique case index values represents September, 
even though it did in the input. 

How do the terms ALL and ONE work? 

The operator ALL asks the system to conduct still a third stage in its 
derivation, this time reducing the table to one case index value (a fictional 
one) and one derived value. This derivation stage then yields a grand derivation 
for the case index variable taken as a whole.  For example, for the first two 

1.6 

. 



■ t 

9 October 1967 60 TM-2621/003/00 
) 

dtrlvatlont, an ALL operator would have given us the grand total of all th« 
•tudenti In the ■yitem. The current derivation would have produced a grand 
average of all grades for all the qualifying students« 

This operator, incidentally, cannot produce a derived variable. The value 
derived is not stored as a variable—TRACE presents it immediately to the user 
via teletype and then returns to the beginning of the derivation subprogram. 

The operator ONE pertains solely to derivation statements that contain condi- 
tional (IF) clauses. This operator asks the system to recognize only the 
first occurrence of each unique case indox value that meets the condition 
spelled out in the derivation statement* Suppose in this current derivation 
we were only Interested In getting a sample mean grade for those students 
whose attendance fell below a certain level for any one month. We ^ould not 
be Interested In knowing about more than one month. I could then use as my 
derivation statement: 

FM ■ MEN SCAN ACROSS GRADE 1-6 IF ATTEND LS 15 ONE // 

Now, the very first time TRACE finds satisfaction ff the condition within 
any of the three occurrences per unique case index value in the table, it 
will derive a result and then go on to the next unique value. 

What would happen if you had endod thia etatement with  ^he operator FIRST? 

The system would have recognized only the first occurrence of each unique value, 
whether or not It satisfied the condition. Incidentally, before ve consider 
any other aspect of »elective operators or cur current derivation, I would 
like to stress a very important point that concerns conditional clauses in 
derivation statements that tend to behave as restrictions. 

As I have already mentioned, a restriction statement acts to form a working 
subset of the data base that is carried into core. This subset is then used 
to fill the case index table that we have been discussing. Obviously, the 
smaller this subset the better chance the user has of fulfilling his derivation 
goal) a subset that cannot be accommodated by this table would have to be 
divided further artificially. A conditional clause in a derivation statement, 
now, does not divide the data base at all. The derivation statement appears 
too late on the scene for such an effect. Therefore, setting into the 
derivation statement as a conditional clause what could easily have been a 
restriction in the restriction statement has a wasteful effect—more data than 
is actually needed is moved into core and more case index occurrences than are 
necessary for the derivation will be placed in the table. And there may not 
be room for this excess. 

1.6 



»Vämmummmmsii . r-r T^giimnnnm 

9 October 196? 
61 

(page 62 blank) 
TM-2621/003/OO 

What ie the outcome when the ueer fails to end a derivation atatement with 
a eeteotive operator? 

This depend! on the type of derivation statement. If the statement begins 
with a statistical operator, TRACE treats it as though an EACH terminated <t. 
If the statement is not a statistical one, for example: 

IM ■ SQR ALPHA ♦ SQR BETA // 

it still recognizes an implicit EACH, but this operator has a different effect 
upon non-statistical derivations» Here the operator EACH effects a one-stage 
derivation, not two; that is, each occurrence in the case index table ia 
associated with a derived value at the end of the derivation, rather than 
each unique value« The other operators: ALL, FIRST, LAST, and ONE behave 
in this type of derivation Just as they did in the statistical. 

I have one last question oonoeming our derivation,   Suppooe a partioular 
etudent hae not .aken the full complement of six eubjeate but only five, or 
even leas*    Our derivation atatement nevertheleaa requeata the ayatem to 
recognize all the aubdivieiona for GRADEt regardleaa of content-.    What happens 
when no information exieta for one or more oubdiviaiona—doea TRACE include 
thia entity data in the derivation, perhaps treating it as zero information? 

TRACE does not work with blank values or with values that have been changed 
from blanks to some other set of characters by means of the appropriate 
function in the input routine. These subdivisions are simply omitted from 
consideration in the derivation and if that derivation is the determination 
of a mean, for example, the mean is taken of only the valid subdivision values. 

1.6 

' 'finiiiAffi 



v -Uf\   ttrnxm 

9  October 1967 ^ TM-2621/OO3/OO 

PART 7 

The Fourth Problem 

The fourth problem ia: 

What is the average grade in Englieh for every etudent in the eyetem 
taking that eubjeot? 

By asking that the result be pertinent to conceivably every student In the 
system, you have Introduced a problem beyond your stated problem. This Is 
the matter of having an enormous case Index length. The case index in this 
problem is evidently the variable STUDENT, as it was in the previous problem. 
However, in that problem you had stressed that the derivation be run only for 
those students having the same principal. Here, possibly every student in 
the system is to be considered.  Remeraoer:  the variable STUDENT was set up 
to contain a maximum—and therefore a potential—length of 100,000 values. 
TRACE makes its derivations on the basis of the values in the case index, one 
result for each value, and it uses an inner table for this purpose.  (This 
inner table was discussed extensively during our last derivation.) Its length 
defines the maximum number of values that can be handled as case index values* 
The actual length of this table la 2,600 valuesj therefore only that number 
of values for STUDENT can serve as the case index at one time. This means 
then that ve cannot rely upon one derivation to deliver all the results 
required—ve shall have to employ bracketing measures in our derivation and 
restriction statements so that a series of derivations can be run encompassing 
all the values for students. The total number of values for STUDENT, which 
is necessary before we can begin our derivations, may be obtained by a 
derive vion that uses n. variable like DISTRICT or SCHOOL as the case ind^x, has 
no restrictions, and works with the following derivation statement: 

IM - NBR STUDENT ALL // 

We now know the number of case index values we have to work with. Let us say 
that the number is 10,000. This then means that four derivation runs shall 
be required for each derivation that hopes to encompass all the values for 
STUDENT as case index, each one deriving results for, say, 2500 students. 
Our parameter!ted restriction statement becomes: 

FOR STUDENT - (Vj - [N] // 

I would then type in my derivation statement, which would be good for all four 
derivation runs. The values that I would type in as the missing parameters 

1.7 

" ifr-'-"iniiiUüj|m 



■"-nT"' ammmmmmmmafBrnmcPz-zz ""., i-- 

9 October 1967 61* TM-2621/OO3/OO 
) 

m  th« followingi 

1 2500 

2901 5000 

5001 7500 

7501 10000 

What it tht derivation etatsmnt for thie problem? 

First of all1 lot ui aiiume that tht identification coda for English it 12. 
Th« dorifation itat^mont then may look like the following t 

FM - MEN COR 0 GRADE 1-6 IF COR 0 SUBJECT 1-6 EQ 12 ALL // 

I have terminated the statement with the system word ALL because, taking 
your statement of the problem literally, you wish one general average—applicable 
to all the students for all the months of the school year. If you had wanted 
these average grades for each student, I would have typed EACH instead of ALL. 
And if you had wanted the results in terms of a particular kind of student, 
I could have included that fact as well in setting up my restriction statement. 

What ie tht maning of the word COR? 

This term stands for "corresponding to" and refers to the working set of 
stringed values that I mentioned during our discussion of the last problem. 
Remember that all values for SUBJECT are set into one long string and all 
values for GRADE are similarly set into a string. These strings can now be 
compared, as they must in solving our current problem. The arrangement in 
each string is the original input arrangements that is, the first value that 
occurs in a particular card or block for SUBJECT is also the first value that 
occurs in the working string for that variable. The term COP 0 means a 
one-to-one correspondence between the strings in question or, in other words, 
the correspondence is incremented or changed by a value of zero. If I had 
typed a digit other than 0 in this place, it would have meant comparing elements 
in the two strings that were in a displaced relationship. 

Suppose we wanted to compare the second value for SUBJECT in each block with 
the first value for GRADE, the third value of the former with the second of 
the latter, and so forth? This comparison of the nth valu'i of SUBJECT with 

1.7 

j 



9 October 1967 65 TM-2b21/003/00 

the n-lth value of GRADE would require a derivation itatement of the form: 

FM - MEN COR -1 GRADE 1-6 IF COR 0 SUBJECT 1-6 EQ 12 ALL 

What happens at the first matohing? It looks as though the first value of 
SUBJECT in eaoh string is being matohed with a nonexistent valuei there is 
no n~l value for GRADE» 

Correct. TRACE does only what you instruct it to do. There will be no match 
for the first value of SUBJECT. There win be only five matches per string, 
not six. 

Suppose lou had typed in the statement: 

FM - MEN COR 0 GRADE 1-6 IF COR ♦l SUBJECT 1-6 EQ 12 ALL 

It seems as though this statement should aaaomplish the same results as the 
previous statementt except that the missing match will occur at the final 
value of each SUBJEC2' string rather than at the first» 

That is also tru«. 

It seems, however-,  that we cannot really obtain a final answer to the problem 
by these means—what we have are four partial answers that only as a whole 
yield a result.    How can we obtain a comprehensive result by this method? 

Whenever a derivation is done in sections like this, the comprehensive result 
can usually be obtained by writing one or more further derivation statements 
using the variables derived from the sectional derivations. Depending on the 
nature of the derivation, this can be a trivial matter, for example, merely 
adding togethe a aeries of sums to obtain a grand sum, or quite involved, 
as happens to be the case with our derivation. Suppose we look at our problem 
again. We are interested only in those students who are taking English. 
This number might be 95 per cent of the total or it might be 50 per cent; 
whatever it is, it certainly cannot be presumed to be the same for each of the 
four segments into which we have arbitrarily divided our data base. One way 
of solving this is by way of recalculating this grand average using the partial 
grand averages and the number of students each partial average represents.  In 
other words, rfe multiply each partial average by the appropriate number of 
students and then divide the sum of those products by the sum of all the 

l.T 

'*/.*.. ^-.»wasyfaa 



- tiC i¥i       'MM*' 

9 October 196? 66 TM-2621/OO3/OO 
' 

student!. We can determine how many euch student! there are In each segment 
easily enough, for example, by adding another derivation statement to our 
parsmeterlsed derivation! 

PM ■ NBR STUDENT IF SUBJECT EQ 12 ONE // 

The system word ONE Is used because ve vent a student counted only once: 
remember that each student has Information for ten months, so that thif> 
condition could be fulfilled a total of ten times for a particular student. 

It then becomes a relatively simple matter of calculating a true grand average. 
This is done through a feature of TRACE that functions as a virtual "desk 
calculstor." This feature is built into the derivation routine and takes the 
place of an ordinary derivation statement. We can reach it, however, without 
recourse to case index or restriction statements, which are meaningless in 
this context. First, I call the derivation program, then immediately Jump 
to the derivation statement message. Instead of typing in a normal derivation 
statement, I enter the following: 

•COMP - 

followed by the computation expression that I need.    Suppose that the four 
derivation runs returned the following partial averages: 

77 82 81 77 

and we discovered that these averages represented the following numbers of 
students respectively: 

2h01 2378    2338   2117 

Our desk calculator statement might then look like this: 

•COMP - ( ( 77 • 2^1 ) ♦ ( 82 • 2378 ) ♦ ( 81 • 2338 ) ♦ ( 77 • 2117 ) ) / 

( 2U01 *  2378 + 2338 *  2117 ) // 

Miat is another way of solving thie problem?   I imagine that further derivations 
oould be ueed to obtain a grand result. 

1.7 



' Jhim J   i ■ 

9 October 19ö7 67 
(page 68 blank) 

TM-2621/003/00 

We c«ui approach this another way, First, the initial derivation ttatement 
could end with the word EACH instead of ALL. 

FM ■ MEN COR 0 GRADE 1-6 IF COR 0 SUBJECT 1-6 EQ 12 EACH // 

Each of the four derivation runs would then yield all the individual grade 
averages for the students included within the corresponding ranges of values 
for STUDENT. For example, the first derivation run would produce 2*401 
values—average grades in Engll«n for 2^01 students. If we could combine the 
four sets of values, we t/ould then find ourselves with a variable that 
represented all the individual average grade values. TRACE does provide a 
method fur this type of value-combining: the CMB statement in the derivation 
routine (another variation of the standard derivation statement) which, for 
this example, might look like the following: 

FM ■ CMB Rl R2 R3 RU // 

where Rl, R2, R3| and RU are the four partial derived variables. The new 
derived variable (which we can call R5), containing now all the values of 
the four variables, can be used to determine a grand average of all the 
individual averages. 

The simplest way of doing this is by constructing a one-dimensional table for 
display. TRACE will then provide us with a mean of all the values of the 
variable specified for the table. This is done automatically: after any 
display of a table having at least one numeric variable, TRACE prints the 
mean 1 median and standard deviation for each of the numeric variables.  So, 
for this table, I can enter the construct table routine and type the following 
shorthand description: 

ENGLISH R R5 1 S 

This tells the system that the table name is ENGLISH, that the table will 
display values of R5 in a column, that there is to be only one interval and 
that is to be a specified one.  I can then specify for that Interval the 
whole range of possible values for R5, namely:  1 100. 

The resulting table will then show us only one cell, containing the total 
number of values of R5. However, below the table will appear, as one of the 
statistical characteristics of the table, the mean of the values. 

l.T 

. 



  

9 October 1967 69 TM-2621/003/OO 

PART 8 

The Fifth Problem 

Can you oonetruot a table that will display the oorrelation between the 
average grade of a etudent and hie attendance record? 

This is a legitimate request, because a two-dimensional table must consist 
of values whose variables have the seme case index«  In our problem, both 
derived variables would have the same index. Let us assume that we have 
already derived both variables; the average grade for each student in the 
system for all his subjects for the entire school year we shall call MENGRADEj 
the year-long attendance record we shall call DAYS. What we are actually 
looking for in the table is the frequency with which certain grade intervals 
match particular ranges of total days of class attendance. For example, at 
one extreme is a table that compares all possible values of MENGRADE with 
all possible values of DAYS. This resultant table would roughly look like 
the following: 

(values of MENGRADE) 

97  98  99  100 

(values 

of 

DAYS) 

0 

1 

2 

3 

1* 

159 

160 

2 

1 

As you can see, most of the intervals would be empty; very few students 
would have average grades lower than 60 or higher than 95—very few would have 
perfect attendance records or would have missed more than 20 percent of the 
school year. On this table, I have indicated that two students had achieved 
a grade average of 97 together with one absence, one student had the same 

1.8 



9 October 196? 70 TM-2621/003/00 

average and a perfect record. All the other cells listed here are empty; 
most of the matche would fall at lees extreme levels. 

A more reasonable outlook might result in a table that., for example, compared 
MENGRADE values between 50 and 100 with DAYS values between 100 and l60« 
There are now several ways in which this type of table could be set up. You 
could still ask for a matching of absolute values as we theoretically had 
for the previous table. You could, on the other hand, ask for a matching of 
certain meaningful intervals, for example, MENGRADE values between 30  and 60, 
6l -70, 75 - 80, 81 - 90, 91 - 100; and DAYS values having the ranges: 
100 - 110, 111 - 120, 121 - 130, 131 - lUo, lUl - 150, 151 - l60. In this 
case, you would be specifying to the system exactly how you wanted your 
intervals set up« 

On the other hand, you could ask TRACE to determine your intervals for you. 
You might not know Just how your values were distributed and tnerefore would 
hesitate to designate intervals that would be relatively meuiingless. For 
example, in our problem, suppose there wa&t such a distribution of values for 
DAYS that 90 percent fell between 135 and 143 days. This distribution would 
probably have be. n unforeseen by the user. It might have been wise then in 
setting up the table to let TRACE draw up its own intervals and perhaps 
discover this important ran^e of values. This TRACE can do in two ways. 
It can create intervals so tuat each interval contains as nearly as possible 
the same number of cases, that is, frequencies. Or, it can create intervals 
so that they are all of equal width, that is, the ranges of values in all 
intervals would be as nearly equal as possible. It is the first of these two 
options that would probably best solve this distribution. Suppose we asked 
TRACE to draw up ten intervals. It would probably then set one interval for 
all values below 135 or perhaps 136, and another for values above 1U3, or 
again, perhaps lU2. It would then save eight intervals for the densest 
distribution, that is, 135 to 11*3. 

To illustrate the first of these two TRACE-determined interval settings, let 
us assume that the intervals for MENGRADE are as specified above, i.e., 
50 - 60, 6l - 70, etc., ard that we have asked the system to draw up ten 
intervals so that each contains an equal number of matches. The table then 
might look like this: 

1.8 



9 October 196? 71 TM-2621/OO3/OO 

(intervals of MENGRADE) 

50-60  61-TO   

0-128 23 18 

129-132 29 21 

133-135 
(intervals 

• 

20 16 

of 
• 

DAYS) 

153-160 18 

. 91-100 

2 

2 

2 

17 19 

In this table, the row totals would be fairly equal. The intervals for DAYS 
are the row variables, the intervals for MENGRADE the column -variables. 

We could also have asked for a table whose intervals for DAYS were of equal 
width. TRACE would take our specified number of intervals, for example, 10, 
and draw up intervals so that the lowest interval began at the lowest value 
found, and the tenth ended at the highest. 

Of the several variations possible, it r>ems most appropriate for us to use 
the combination of user-specified int'rvals for MENGRADE, and the system- 
determined equal numbered intervals for DAYS.  Let us assume that we have 
entered the subprogrsun. that constructs tables.  Since the construct table 
subprogram is discussed fully in its reference section, I shall not explain 
in any detail what each message in that program means. The message flow is 
as follows: 

CONSTRUCT TABLE  3.0 

(S)TEP BY STEP 

( ) SHORTHAND 

(L)IST SET UP TABLES 

• S 

Here I have asked for a train of mes ages that I snail use in setting up ray 
table. In the so-called "shorthand" method, I would have set into one line 
all the information required by TRACE in manufacturing this table. 

1,8 



m*m ■« ■(■■WM -^r 

9 October 1967 72 TM-2621/003/00 
) 

SPECIFY ROW VARIABLE    3*1 

(   )NAME 

(N)ONE 

• DAYS 

NUMBER OF INTERVALS 3.31 

( ) 1 TO 10 FOR COL  1 TO UO FOR ROW IF DISPLAYED ON TTY 

• 10 

RESPOND WITH»  3.311 

(N) FOR EQUAL NUMBER 

(W) FOR EQUAL WIDTH 

(S) FOR SPECIFIED WIDTH 

(A) FOR ALL VALUES 

• N 

SPECIFY COL VARIABLE    3.2 

(   )NAME 

(N)ONE 

• MENGRADS 

NUMBER OF INTERVALS 3.31 

( ) 1 TO 10 FOR COL 1 TO UO FOR ROW IF DISPLAYED ON TTY 

• 5 

RESPOND WITH: 3.311 

(M) FOR EQUAL NUMBER 

(W) FOR EQUAL WIDTH 

(S) FOR SPECIFIED WIDTH 

(A) FOR ALL VALUES 

• S 

( )GIVE LOWER AND UPPER LIMITS FOR EACH INTERVAL 

• 50 60 61 70 71 80 81 90 91 100 

MODIFY OR NAME TABLE 3.^ 

(R)OW 

(C)OLUMN 

( )TABLE NAME 

» GR-i-ATTEN 

1.8 

1 A 



9 October 1967 ,    U^    v, TM.2621/003/00 
(page Ik  blank) 

ROW IS DAYS CODED I 

COL IS MENGRADE CODED F 

CASE INDEX IS STUDENT 

TABLE GR+ATTEN SPECIFIED  3.6 

(D)ISPLAY THIS TABLE 

(C)ONSTRUCT OTHER TABLE 

(B)AGIC OPTIONS 

• D 

DISPLAY ON  »4.1 

(S)COPE 

(T)TY 

« T 

TABLE GR+ATTEN 

ROW  DAYS 

COL  MENGRADE 

Nov vill follow the same type of table that I outlined earlier, having the 
same intervals for MENGRADE and DAYS.  There is one coavention in TRACE'S 
display of tables that must be brought up, however. When either a row or 
column variable is arithmetic (integer or floating point), the displayed 
table does not exhibit both tae lower and upper limits of every interval. 
This it does only for the lowest interval; the others are identified only by 
the upper limit. Our column variable headings then would read: 50, 60, 
70, 80, 90, and 100. 

The display program does add a few features to the table, however, At the 
end of each row and below each column will be found three new values; they 
are in order of appearance: rejected values, total values, and percent 
of this total compared to the grsind total. The  rejected values are those 
matches which cannot be placed in any interval, for example, for the first 
row a student who attended class for 123 days and achieved an average grade 
of U5 would not qualify for inclusion in any of the intervals—his case index 
value would be a rejected value. Similarly, a student who achieved a grade 
average of 83 and whose attendance record gave a value of 260 because of 
^ keypunching «»rror would also be a reject, this time a reject in a column, 
not a row.  K .ssing data also qualify as rejects. 

Below the table proper will appear a grand total of case index values. A list 
of various statistical factors will also be typed. These are listed and 
defined in Section 2,k, 

1.8 



9 October 196? 75 TM-2621/003/00 

PART 9 

Other Data Bases 

What other enviromente epeoifiaally can you deeoribe ae suitable for TRACE? 

Besides this educational system that ve have been working with, there are 
many others that we could have considered:    personnel records, census taking, 
surveys,  experiments, for example,     I can briefly give you some sample data 
bases for these environments: 

census-taking 

district 

address 

family  (total membership) 

member 

income  education  distance from work  marital status  age 

In this data base, the information for member would be repeated for each 
member in the family. The data cards could be set up to accommodate any 
number of members. 

personnel 

name 

birthdate 

social security no. 

marital status 

department 

current salary 

current Job title 

previous Job title  date received 

salary  date of Increase 

education 

aptitude test score 

1.9 



—n 

I 

9 Octobtr 1967 76 TM-262I/OO3/OO 

Two groups of information can be repeated, one within the other. For each 
employee, there may be several previous Job titles; within each Job title, 
there may be several different salaries. For example, we could set up our 
card input so that following the current Job title was allotted space for 
six previous Job titles, within each of these six areas room for six salaries. 

On the other hand, this data structure might be changed so that the variable 
for "previous Job title," for example, is placed on the same level as "current 
Job title." This would mean a repetition of Information for that variable 
as often as that occurring for the current Job title variable. This might 
then result in a flexibility in setting up the card deck. For example, 
previously one block (one logical card) might have been set to contain all 
the information for a single employee. Now a separate block would be necessary 
for each previous Job title. Again, six blocks might be allotted for this 
purposer 

survey 

respondent 

date 

answer to question 1 

answer to question 2 

J 

answer to question n 

Here is probably the simplest of data structures:  none of the information 
is repeated. 

experiment 

condition 

subcondition 

pair 

member 

trial 

outcome  turn  behavior  questionnaire response 

1 



9 October 19^7 T7 TM-2621/003/00 

In this sample psychological experiment data base, the trial information 
would be repeated for each trial. There may be several trials for each 
member. 

Notice what the variables corresponding to STUDENT in our working data base 
would be for each of these data bases: member in the first, either name 
or social security no. in the second, respondent in the third, and member 
in the last. The values for these variables would be unique in their respective 
data sets; that is, none of the values could be repeated wituin the same 
data set. 

Would you briefly define a problem in one 0}  these environmente and demonstrate 
how TRACE would go about solving it? 

Let us look at the final example of our new data bases. Suppose this were 
an experiment wherein several pairs of subjects, under certain conditions, 
were to be tested in order that some correlation might be found between each 
pair's behavior during the test end a questionnaire response on the one hand, 
and the outcome of the test itself. There would be a possible correlation 
for each trial of the test.  Suppose the data looked like the following for 
the variables in question (one trial): 

PAIR MEMBER RESPONSE BEHAVIOR OUTCOME 

1 1 C N L 

1 2 E C M 

2 1 C C L 

2 2 A E H 

3 1 A N M 

3 2 A C M 

n 

Each pair has two members;  a response can be A for good,  B for fair,  and 
C for bad; behavior can be cooperative(C), non-cooperative(N), or 
extemporsneousfE); the outcome can le low(L), high(H), or medium(M). 

1.9 



9 October 1967 78 TM-2621/003/00 

Since the results are to be in terms of PAIR, that variable is the case index. 
What restrictions ve apply will depend upon the number of trials we want to 
consider: all tzlals would mean no restrictions} otherwise, we must mention 
in the restriction statement the specific trials we are Interested in. 

The next step is to find a derived variable that will express both a value 
for RESPONSE and for BEHAVIOR, and not for each member of each pair (as in 
the data base) but for the pair as an entity itself. This requires the 
variable to express four "ideas" or values: the response of the first member 
plus his behavior, the response and behavior of the second. 

Probably the simplest and most general way of producing this variable is by 
first deriving a variable for each of these four components, and then coalescing 
the results into one variable. We can obtain derived variables for the components 
(which are simply input variables to begin with) by parameterizing one restric- 
tion statement and one derivation statement. Having specified PAIR as the case 
index, we type the following restriction statement: 

FOR MEMBER EQ [l] // 

and, as the derivation statement: 

AM - [R] // 

We must then run through the derivation four times.    Perhaps the  first two 
times with RESPONSE as the derivation statement parameter and 1 and 2 as the 
restriction statement parameters.    The third and fourth runs would have BEHAVIOR 
as the derivation statement parameter, with corresponding alternation in the 
restriction statement. 

By use of the MRG statement  (a variation of the standard derivation statement) 
in the derivation subprogram, we can now merge two variables at a time into 
one.    This MRG statement would be repeated until all four variables were merged 
together.    For example  (suppose the four variables were named Tl, T2, T3, and 
TM: 

AM » T]   MRG T2  // 

(name this variable T5) 

) 

1.9 

1 



9 October 196? ?9 TM-2621/003/00 

Ah: - T3 MRO TU // 

(name this variable T6) 

AM - T5 MRG T6 // 

The resulting values for the first three pairs would look like the following: 

PAIR 1 CBNC 

PAIP 2 CAGE 

PAIR 3     AANC 

We could have merged the separate value;- in a different order, of course. 
At any rate, there are 81 possible vblues for our new variable. 

The next step is to find a derived variable describing the cumulative outcome 
for each pair. This Is done in a like manner» The results might be: 

PAIR 1 LM 

PAIR 2 LH 

PAIR 3     MM 

The final step would be to set up a table that displayed the correlations. 
Since there are 81 possible values for the response and behavior variable, 
there cannot be an Interval for each possibility in one table (a table can hold 
a maximum of ho  rows and ten columns). The solution then is either to construct 
two or more tables or else to construct a table such that each interval represents 
two or more possible values of the response and behavior variable.  This problem 
will not exist for the display of the outcome.  Here we can have only nine 
possible values—within the maximum of ten co^unns. 

t! 

1.9 

' 



9 October 1967 80 TM-2621/003/00 

SUMMARY TO SECTION 1 

We have now looked at the essence of TRACE and also 
examined a large body of its particulars. We have 
seen it handle a rather typical data base In a 
variety of problems and have described a group of 
other data environments. In helping the reader 
approach the role of a TRACE user, this first 
section has shown him nearly all he needs to know 
before actually constructing a data base of his own 
and presenting a problem to the system. The following 
section and the appendices are designed to instruct 
the user who has reached Just that point. This 
document does not attempt to show him whether his 
particular data base can fit TRACE or how his 
individual problems can be solved} it simply provides 
him with a framework upon which he can play his 
imagination and knowledge. 



9 October 196? 81 
(page 82 blank) 

TM-262I/OO3/OO 

SECTION 2 

A REFERENCE WOR'C ON TRACE 



i 

9  October 196? 83 TM-2621/003/00 

> 

SECTION 2 

INTRODUCTION 

This reference section is meant to be used in two ways. First, it may help 
to clarify some portions of the first section of this document. The user 
may at times find himself turning from a discussion of a particular problem 
in that section to its counterpart in this section in order to view it from 
a more detached perspective. Second, it should serve as a reference to all 
actual work done with TRACE. Every message is described—both the requests 
from the system and the expected responses from the user. 

Each subprogram commands a separate subsection; each subsection is built upon 
the messages that compose it. These messages are discussed in the order they 
are met with during an actual interaction with the system. Each message with 
its discussion is enclosed within black borders. 

Messages from the system always make a request, sometimes preceded by a state- 
ment of fact. The request line is always followed by one or more lines Jhat 
contain and explain the form to be used by the user in responding to the 
request.  These lines are always identifiable by the presence of parentheses. 
A pair of parentheses that encloses an entity, for example, (B), declares that 
that entity must be typed by the user in his response, A pair of parentheses 
that encloses nothing is always followed by an explanatory word or words that 
are not to be typed themselves but do suggest what is to be typed; for example, 
( ) NAMES declares that the user must type in a name or a set of names. These 
response fonns may be intermingled on one line or may appear on different 
lines.  If on different lines, a choice is offered.  Example: 

GIVE DISC INFORMATION 

( )NAMES 

(B) ( )VALUES 

(O 

In this hypothetical message, the user has three options:  he may type in a 
name or a set of names; he may type in the letter B followed by a set of values; 
or he may type merely the letter C, 

All messages from the system end with an asterisk, generally on a line all by 
itself.  The response from the user is to be entered on this line after the 
asterisk, separated from the asterisk by one or more spaces if he wishes. The 
response is then conveyed to the system by means of a carriage return. 



9 October 1967 8U TM-2621/003/00 

The user need not obey the stated options L responding to a message.  He may 
alternatively type in a ccmmand that begins with the following: 

GOTO 

and is completed by either the reference number of a message (many messages 
contain at the end uf their first lines a number code, e.g., 3.11) or by tne 
code letter or letters of one of the subprograms. The system then brings the 
user to the point requested.  If the passage is to be from one subprogram to 
another, the user must follow the command GOTO by the code letter of the 
program visited.  If the passage is within a single program, for example, from 
one function to another, the use" must type the reference number of the message 
desired. The user may not travel from one subprogram to another by typing 
the reference number of the first message of the program visited, for example: 

GOTO 3.0 

It is recommended that you do not try lo travel from a point within one sub- 
program to smother point within another subprogram. Travel from one program 
to another should be to the beginning message of the new program. 

A response that is constructed of information that can cross into a second 
teletype line is ended not by a carriage return alone, but by this preceded 
by a double slash. The system understands then that a carriage return alone 
does not end a line.  This convention is shown within any message that elicits 
this type of response; it appears as the following line: 

END WITH // 

Note:  there must be at least one space between the double slash and the last 
character of the statement. Usually, when a response is to be terminated by 
a double slash, the system issues a perfunctory message after each line 
reminding the user that more information is expected.  This is the brief 
message: 

CONTINUE 

followed by a carriage return.  The sy.ntem does not send this message after 
the terminating double slash. 

Whenever a series of values occurring consecutively in the data base is to 
appear in a response, it may be represented by the beginning and ending value 

• 



9 October 1967 85 TM-2621/003/OO 
(page 86 blank) 

separated by a dash mark.  For example! the values for a particular variable 
may be:  3^, 35. 36, 37, 38, and 39. These may be typed as:  3^-39 or 3^ - 39. 
The matter of an intervening space between the dash and a value depends on 
the individual message. 

Since this reference section will most likely be visited quite often by the 
user and usually for relatively brief periods, he may find it convenient to 
place plastic index tabs on the beginning pages of each section part, that is, 
the beginning of the subprogram descriptions. This device could also be used 
advantageously for various other frequently visited paget:, for example, the 
description of the input dictionary in the appendices. 

The following is a list of the TRACE II subprograms together with their 
corresponding code letters. These codes are used to obtain entry to the 
various subprograms. 

Input I 

Derivation DE 

Construct table C 

_ Display DI 

Edit E 

Output 0 

Statistics n 



9 October 196? 8? TM-2621/003/00 

SECTION 2—TABLE OF CONTENTS 

Page 

PART 1    The Input Subprogram 89 

Tape Input  91 

Disc input • •  96 

Teletype Input  97 

PART 2    The Derivation Subprogram 101 

Sequence of messages   102 

Case index statement  103 
Restriction statement  IOI4 

Components of the derivation statement  107 

Variables  108 
Constants  108 
Arithmetic formulas  . 208 

operators •  108 
parentheses  108 

Functional operators   209 
Relational Operators  HO 
Conditional connectives  HO 
Conjunctions  HI 
Statistical operators   112 
Selective operators  113 
Manipulative operators  nk 
Bracketing  116 
String variable operators  H7 

The derivation statement as a desk calculator  120 

PART 3    The Construct Table Subprogram 121 

Step-by-step method of table construction   122 

Shorthand method of table construction   128 

PART k          The Display Subprogram 129 

Display of two-dimensional table (example)  13)4 



•9 October 196T 88 TM-2621/OO3/OO 

SECTION 2—TABLE OF CONTENTS (cont'd) 

P»ge 
PART 5    The Edit Subprogram 139 

Delete  lUO 

Lilt  Ik3 

Change  IU9 

Form •  131 

Rename *««•••« t • * * . . * • 152 

Aealgn by replacement •••■•.  153 

PART 6    The Output Subprogram 155 

Teletype output  15r 

Tape output  159 

Teletype and tape output .  l6o 

PART 7    The Statistics Subprogram 163 

Two group sample test  l6U 



wm^ 

9  October 196? 89 TM-2621/003/00 

PART 1 

The Input Subprogram 

The usci's entire collection of data, called the data base, may consist of up 
to ten data sets. A data set Is defined as the amount of data brought into 
the system during any one run of the Input routine.  It may be a file from 
disc, a file from tape, or consist of teletype Input. The data base Itself 
may hold sets coming from any of these sources or all of them. Each data set 
Is described by one dictionary; therefore, each data set has only one logical 
card form. 

The purpose of the input routine is to transfer a data set from the input 
device to disc, where it remains throughout the entire interaction with the 
TRACE program. Various sections of the data base are then brought into core 
whenever necessary. Once having input a data set, the user cannot reenter the 
input routine for the purpose of working with that set; he must use the edit 
program for making any alterations, or else he may delete the entire set. 
The form of the data sat is outlined in Appendix 3 this subsection treats 
the disposition of a data set after it has already been assembled and after 
the user has already entered the time-sharing system.  This latter step is 
outlined in Appendix U, 

The user will note that the input device selected will determine the type 
of messages received. Some are common to all devices, others are peculiar 
to a particular device. This subsection will therefore be divided into three 
parts, each describing the series of messages sent for a particular device. 
The messages that are common to all three will be described fully in the 
first of these parts, and repeated without explanation in the others. These 

divisions deal with tape input, disc Input, and teletype inpnt. in that order. 

2.1 



9 October 196? 90 TM-2621/003/00 

-     SELECT INPUT DEVICE 1.10 i 
i 

(T)APE Jj 

(TT)Y g 

( )DISC NAME - 51 CARDS/SECTOR - g 

i   • 1 •ft w 
w This is the first message of the input routine; it is received automatically | 
w by the user as soon as he has entered the TRACE system and named his data base,"* 
m assuming this data base is a new one. If it is one that is already known '* 
| to the system by having been previously stored on disc, the input routine is * 
w not entered and the user is expected to begin working with his data base.     | 

NH 

HI 

w 

»The first response states that the current data set resides on tape, having   P 
been prestored from cards, and is to be entered via tape drive. The second   H* 

m  response signals that the data will be entered via the teletype. The third   m 
m response is used whenever the data base is on disc: the user is asked to £ 
w provide the disc file name and is also reminded that a disc sector must hold f* 
Hj 51 cards per sector. w 

2.1 



9 October 196? 91 TM-262I/OO3/OO 

—Tape Input Messages— 

WWtmwHWWHtHWWIWMHWMmtlHWlfflW^ 

Hfl ENTER REEL NO FILE TAPE 

UH 

un The first message received by the user aftr.r he has Indicated that his data 
Hjj base is on prestored tape, it asks him to supply the reel number for the 
m tape containing his data base or, if the data is on more than one tape, the 

m 
reel number of the tape cbout to be used, 
number, the system delivers the message: 

$WAIT 

After he has typed in the reel 

I*« This reminds the user that a computer operator is retrieving the tape rtquested jf 
from the tape library and will then mount it on a tape drive. TRACE does not m 

"i comnunicate another message until these physical operations have been completed,^ 
HH 
i* The system then notifies the user by the following message that the tape has 
been mountedi 

$FILE TAPE = » DRIVE m REEL n 

m 
m m 
m 

m 
m 

•,H " -   - '.if. 
m  where m is the tape drive number and n is the reel number. 

ItWilli-HWiflitÄKWjWii^iH^WinHIIhfWMNH« 
irfi 

HH 
IjH 

!,R 

HK 
!,« 
!ifl 

ffl 
i:H 
1:1! 

m 
Hü 

MISSING DATA 1.11 

SET ARITHMETIC VALUES TO OTHER THAN ZERO 

(   ) VALUE 

(N)O CHANGE 

Hfl 

m 
SfR 
SjK 

m 
if* 
iiM 
hV 

I This is the first 01 two messages concerning the user's disposition of missing ;* 
« data, that is, blank columns on the data cards.  Both allow him tc set the 
;£ missing values to any desired values, thus circumventing the system's way of 
|i« dealing with such data. The user must, however, remain consistent in his choice* 

from one data set to another; that is, missing values should be treated equally f 
throughout the entire data base. 

iiM 
iril 
•it! 

:;ri 

|| This first message, ' , ling with missing arithmetic values, asks the user to 
;;* either accept the system's convention of treating each missing value ej an 
||* arithmetic tero—the second response—or else specify the value to be used 
ll« by the system in replacing the blanks.  You are restricted to specifying only 
;;!| digits as the replacement values. 

■■>■■ 

ur. 

fMV.mmM-im-wmqmirw.:'- 

2.1 



9 October 196? 92 TM-2621/OO3/OO 

SET ALPHANUMERIC TO VALUE OTHER THAN BLANK ffl 

( )VALUE 

(N)O CHANGE 

I This second message deeding with missing data values asks the user to either 
|jjj accept the system's convention of treating each missing value for an alpha- 

@,m  numeric variable as a Hollerith blank (octal 60) or else specify the value 
to be used by the system in replacing the blanks. Any teletype character can 

^ be selected by the user for this purpose except for the following! 

IHIWIWISWIIWWSIIWWWWMWIIIIII^^ 
] [ 

i! 
11" 
m 
I* 

m 
m 
I 
m m 
m 

I 
m 
m 

lUPWH'lH'WH'^'tPHf 

m 
m GIVE ESTIMATE OF NUMBER OF DATA BLOCKS 

I 
Iff 

The user is expected to reply with an estimate (preferably a slight overestimate)» 
of the total number of blocks (logical cards) in the current data base. The    v. 
syftem then uses this estimate in setting up tables that can hold as large us 
possible a portion of the data in core before transfer to disc storage. This 
estimate plays a part in allowing the system to process more than one variable 
at a time. 

i i 
M 
ffl i i 
m 
ffl 
ffl 
ffl 
M 
ffl 

This message is issued only if the user has not already indicated on one of 
his input control cards (See Appendix 3) what the total length of the data 
base is expected to be. 

Caution: if the estimate is lower than the actual size of the data base, 
data blocks beyond the specified size will net be recognized. 

[j ''Wtriif'iHiiriiiltiiiii>iftiMiiifttfTTtni'rHTtPfrtnM'iiwii,m*iiPIitT*}tiTiTTiiwimiiiTtftffHi ittiiMtiwi'iirinf itttiTfiTTfflnti'niiiiiitirniititinTiTiTiiTT TtirituniitftiHtiPfrnitMfttiiri »'nriT' 111 T'-rt ni it ft 

2.1 



9 October 196? 93 TM-2621/003/00 

w     VARIABLES STATUS» w 
NU 

list of variable names and statuses m 

INDICATE VARIABLES TO BE READ 1.12 

( )NAMES 

(A)LL 

The message begins by presenting to the user a list of the variables of the 
current data set (all the variables found on the current tape) together with 
their residences, that is, whether they are still on tape or whether they 
are already on disc. Thid message is delivered whenever the systen. has 
looked at the user's dictionary and is about to read in the data. Therefore, 
the first time that this message is sent to the user, a.M the residences 
(statuses) are TAPEj that is, no data has yet been stored on disc.  However, 
if only a portion of the available variables have had their values read in 
during a previous input run (TRACE either reads in every value of a particular 
variable or it reads no values), the list can resemble the following: 

SCHOOL TAPE 

STUDENT DISC 

DISTRICT  DISC 

This listing tells the user th^.c TRACE, during the previous run through the 
input routine, read in only the values for the variables SCHOOL and DISTRICT. 
The values for DISTRICT remain unread on tape.  He has now on this subsequent 
run through the routine, the opportunity of asking the system to try again 
to read these values. After every listing of the read-in variables, TRACE 
appends a request for the reading of more variables. 

The reason all the variables may not be accommodated during any one run is that 
TRACE works with a limited core space f:r transferring values from tape to 
disc. 

It may actually be true that this situation is repeated many times:  the user 
has a very large data set; he asks the system to re«;d ail his variables; he is 
informed that only a portion of them has been read; he again asks for a reading 
of all the variables; the system again informs him that more of his variables 
have been processed but not all; the user repeats his demands until the system 
indicates that all variables are residing on disc. 

2.1 

-L-^4 



9 October 196? 9^ TM-2621/003/00 

A similar procedure is followed when the data base conuists of more than one 
data set (more than one tape): the system looks at the new dictionary and puts 
out an appropriate listing of variable names and statuses. 

As is evident, the user in responding need not automatically ask for a reading 
of all his variables—his problem may not require every variable.  He may type 
in only those variables that are necessary and that aeem capable of being 
handled by the system in one pass. 

Following the user's response to thir, message, the system begins to accept 
Jjjj the variables specified. There is therefore a pause at this point in the     m 
*  system/user communication—until the data has been processed. m H: m 

VARIABLES READ IN: ? 

list of variables read in 
p 

8(D)EFILE AND RETURN m 
v 

(R)EWIND FOR MORE VARIABLES | 

f!     » m 

m m 
i This raesse^e, issued after each reading of a specified set of variables (see  g 
w last message), allows the user to see what variables have actually been placed *j 
* in disc storage. He then has two response possibilities. ^ 
i v 
LB lOl 

I The first response declares that the user is finished with the present tape w 
m and wishes either to work with the data on disc or else nas another tape. 
Hg disc or teletype input that he wishes processed, This response takes him to w 
jjÜ the end of the input routine and its final message (message 1.20), where he :| 
w may take appropriate measures. H* 

| |f 
| The second response is to be used if the user wishes to Input more data from f 
jjjj the same tape. The system then returns him to message 1.12, giving him a « 
HH listing of variables and statuses and asking him to name a new set of variables^ 
I to be read. H« w Ü 
MTi iiiJiiii»fcittMttatt»iiUMiiMianMuaiiwuBUPii>iiiiu>liJiMiiMMBMiiuMUBuiiiMiMtiMMWUMtMMMMii M iiiiiiiiisiigtiiiHii •winiiinuttii»TniT[irii»iiiii;BIriii;irTiattiiiiiiirti|'»Knii«iiitt^iitiniintty'<'Mtj«it;»ti»it;ti««.i-wtT«iti»tiwt:«-t!tit;.iti«t>t»'t». 

2.1 



9 October 196? 95 TM-2621/003/00 

m INPUT COMPLETE  1.20 J 

I      (C)ONTINUE WITH IhPUT ROUTINE j« 

ä(B)ASIC OPTION 5 
I 

i I 
w This is the final message of the interaction between the user and the input fl 
| routine} however, if he has another tape, he has the option of returning to H* 
M the very beginning of this tape read cycle, that is, the message that asks for i 
w the reel number of the tape.    The tape read cycle of messages is then repeated w m v 
J« in its entirety for the new tape. For this, you type the first response.     JJ 

m 
^  Otherwise, having no other tapes to be read, the user types the letter B     wj 
I* followed by the appropriate code of a subprogram. w 

■ HlIBlJrtiMtiMlWMMlBtlMlJtlBlLllltttllllltnillHlHIIWIIMIWIIMIIWMIlMltWIIIirillfcllM^ JMUUumUMliMUMUMUMtoMUMuaHMimuMUMtiMiimuMtiuuiiitUtatuukimiiMLiMtiMiLM ■■nunffnnnmiinniniFTTTn^nHnnrTmTmPiTninf^^ 

2.1 



9 October 196? 96 TM-2621/003/00 

—Disc Input Messages-- 

This cycle is precisely the same as that for reading variables from tape, but 
for one exception. The message that asks for the reel number of the tape 
is omitted; in other words, the system, having received from the user the 
name of the disc file, proceeds immediately to message 1.11 (about missing 
data). 

Note] when the listing of variables and their statuses appears, the correspon- 
dence is still TAPE for the variables not yet read in, and DISC for those 
already placed in disc storage.  (Disc storage here means the disc that TRACE 
uses to store all input, whether this input emanated from another disc, or 
from tape, or via teletype.) 

2.1 



9 October 196? 97 TM-262i/003/00 

—Teletype Input Messages-- 

The following two messages are the first in the teletype input cycle: 

m MISSING DATA 1.11                                                   S 
In nn 

KJ SET ARITHMETIC VALUES TO OTHER THAN ZERO § 
W ml 

| ( )VALUE                           | 

ä (N)0 CHANGE                        m 

8 '                       I 

MMW 

«    SET ALPHANUMERIC TO VALUE OTHER THAN BLANK 3 

I     ( )VALUE S 
w      (N)0 CHANGE HJJ 

The first message peculiar to the teletype cycle is: 
i; tt li m^ UBU niSttBU M UB UMUll UIH1K llBMUM ttfltaUMUM 1MUMIMUIMIBUMIW till UUtll UMIM IM IM UM M 
n?t!mlffmfn'T!w!m!TnW m w 
m GIVE DATA DESCRIPTIONS - ONE PER TTY LINE 1.30 * 
m W: 

m FOR ARITHMETIC VARIABLES:                                           w 
•ff! W 

w ( )NAME  ( ) I OR F                                               m 
Hfl H" 

H« FOR ALPHANUMERIC VARIABLES:                                         w 

H ( )NAME  (A)  ( )T0TAL # CHRS ( )# CHRS PER SUBDIVISION                * 

w TERMINATE BY:  (END) (CASE)  ( )NAME                                 I 
it" »r. 
P „                                                                                                                               !«! 

§ ; 
m ttf 

w The user is now asked to type a list of variables, one to a line and each w 
i variable named identified with respect to type. What the user is communicating '* 
HJ to the system at this point is the dictionary for his data set. m 
W m m m 

jffl For arithmetic variables, you type the variable name followed by either the '«'; 
w letter I for integer or the letter F for floating point  (space between name w 
m and code, of course), m 
w mi 

2,1 



9 October 196? 98 TM-2621/003/00 

J, (cont'd) 
i For alphajiumerlc variables, the name is followed by the letter A, then the 
I total number of characters per block, finally the number of characters per 
I subdivision—the two figures are equal (or the second can be zero) for ordinary 
S variables, unequal for string variables. 

The dictionary is terminated by a line that begins with the words END CASE 
ffl followed by the name of the variable that is most likely to be chosen as the 

m 
it* m m i 
m 

I 
m m 
m m 
m 

case index variable.    This variable name is mostly a convenience for the system;"; 
it can be changed during use. |* 

M 

m 
1 UlllUUM USHMMUM MBIMI IM Ml MHMi !!■ lUIIMUia UM UM ÜB IM UM UMUA U M Ü M UM I IM Ulli IK UH 

fflWWIilllWiilliWWiiliWII^^ 

5     GIVE CHARACTER TO DENOTE A BLANK 1.32 J 

2     ( )CHR 2 
n 

» K 
m 
m 
m 
m 

This message is forthcoming only if at least one of the variables named in   jn 
the dictionary is alphanvmeric. This message asks the user to provide the 

1 system with a symbol to use and to recognize if real blanks are to be w 
jjjj contained within the alphanumeric data. This is necessary because the system g 
2 recognizes blanks only as separators between entities on a line of type; it Z 
w cannot perceive the difference between an intended blank, for example, a jj« 
| blank between two words that form a single entity as in: MR SMITH, and a 1 
UJ separating blank. Any character but the following may be chosen: £ 
ii m 
M H" 

1 $ | "/»-♦)( 1 f I 
T i ■li^^tnl>lT^^^*^M'^,■^'■*"•-**'^^'^*'^^^**'^*i^,'*"'"''*t'M,""'*'',*w'*M'M''*****''*'IItTlll*li'MltHlllfliMnWlliilrlltlMIMIIiil IIItlBtlWl IB! iMIIITtlli''» gMiMHJMIiMtBätUWMUUlJBBtMUMUMtiMiiMUtUiMItMUMUMUMlUU^UMttMlMtUMlMUUtXttUtäliMUM 

|     GIVE NUMBER OF BLOCKS FOR THIS DATA SET 1.31 g 

§      ( )NUMBER Z 
HI! 

m 
m 

Wl Iff 

w The user types in the expected number of blocks for the current data set, If 
| preferably a slight overestimate. i 

WHIM niMMiwitiiiHmiiMiPMPiiwiauBhrni'iwirtititimiwiiiiiTimi niiwinirtiiiaiMTirir'**"^''"'^'^'""-"~' ■iiait^i ""•.■■*-'-"HMU»UBI.M'J»' —"»'■■'■"'■■■•■■, *• -■—■ -■■■»■■■■.■.^■■■i IH.-I.« 

2.1 



9 October 196? 99 TM-2621/003/00 
(page 100 blank) 

m The system now begins a train of messages, one for each variable named in the [jjj 
NH dictionary. Each of these messages is a request for all the values that belong jjjj 
HI to the associated variable. The message names the variable and also tells m a Wt 
m  the user how many values it expects, for example; HJ 
MI H* 

l9 m 
i FOR DISTRICT GIVE 2k  VALUES                                            ? 
ilü lie 
lid ..                                                                                                                                                                                                                                                                                                              HH 
«" #                                                                                                                                                                                                                                                                                                               S Iff N»l 

HH HB 
llfl If 
wi The user then proceeds to type in all the values belonging to the variable i 
i DISTRICT.  If the end of the teletype line occurs before all the values have j 
«n been typed, the user ends the line with the usual carriage return which the JJ 
g« system answers as fclxows: m 
m w 
NU w 
it«     CONTINUE m 
m w 
i« * 
Hi     * | w w 
»« i! 

HJ He then tries to complete his input for the variable. If the same situation f 
$  is again encountered, TRACE recognizes it and sends another CONTINUE message. w Iff !(« 
HH m 
If« w- 
| Warning:    if a value is so long that it extends beyond the limit of a teletype H* m v 
[ffl line, this is signaled to the system by pr-ssing a line feed before the       f- m P 
w carriage return. m :,<> m 
'WflfnWfflfflflfllnlmllffllffflf^ 

'*     INPUT COMPLETE 1.20 m 
v m 
Ij', UM 

i,«      (C)ONTINUE WITH INPUT ROUTINE m 

W      (B)ASIC OPTION t 
Id       „ If m * v 
it« m 
tpi w 
HI if 

w As in the other cycles, this final message asks the user to either select * 
j«| another subprogram or else return to the beginning of this subprogram, where * 
I he may enter another data set. wi 
HKliRHifHWHWWHffiffllWNffMllfllHfWim 

2.1 



9 October 196? 101 TM-2621/003/00 

PART 2 

The Derivation du. rogram 

This is the routine that does the actual work of deriving the solutions to the 
various problems proposed by the user« The routine is entered specifically 
to create so-called "derived variables," that is, variables that owe their 
existence either to other derived variables or to input variables. Each 
derived variable consists of a collection of individual values that are the 
results of a particular derivation—the solution to a problem. 

Since the mechanism of this subprogram has been thoroughly described and 
analysed within the dialogue section of this document, no attempt will be 
made to undertake a similar type of examination of every topic here. Instead, 
the reader will be referred to appropriate parts of that first section. 

This current subsection is divided into three parts? the first treats the 
sequence of messages and responses that form the program; the second explores 
the various components of the statement that controls the derivation process—the 
derivation statement; the third Is a demonstration of how the derivation routine 
can be used to simulate a desk calculator. 

2.2 



0 October 196? 102 TM-2621/003/00 

I The 

—Sequence of Messages— 

The first message in the derivation routine: w 
m 

DERIVATION    2.0 

(S)TART 

(L)IST AVAILABLE VARIABLES 

« 

Use the first response if you are starting a derivation. This will bring 
you to the first working message of the routine (message 2.1). The second 
response is used if you wish to receive a listing of all the variables cur- 
rently available.  It is usually typed when so much editing and deriving have 
been done that the current list of variables is far different from the original 
set of input variables. 

There aro three ways of ua'.ng (typing) the second response: 

(1) "L D       this asks the system to list all the derived variables 
together with such information as the case Index 
variable, the number of values in the variable, and 
its type 

(2) *L n       where n is the number of a data set, Thiu asks the 
system to list variable names and sisociated information 
for every variable in the designated data set 

(3) *L ALL      this asks the system to list both derived variables 
m and all the input variables, according to data set. m 
i giving the associated information w 

UMtMtUMUtmtt 
M 

2.2 



9 October 1967 103 TM-2621/003/00 

CASE INDEX 2.1 m m m 

.,. .,. ., 

ilS 
( ) 

(N)0 CHANGE 

The first response Is the name of a variable to be used as the case index for 
the forthcoming derivation. The second response tells the system to use as 
the case index the variable whose name appears on the END CASE control card 
in the data deck, if there is one.  (See Appendix 3.) This variable is 
usually the one around which the data has been constructed and therefore 
would be expected to serve as the case index for most of the problems run 
on the data. Otherwise, the user must type in the name of another variable 
(the first response). No harm will be done by typing in the name of the 
variable (first response) even if it already appears on the END CASE card. 

The concept of case index is explored in great detail in the dialogue section, 
especially Parts U  and 6. In essence, it means asking the system to form a 
subset from your data base consisting of all the values of a designated 
variable and running a derivation so that a result will be associated with 
each of these values. This case index variable is then a variable to which 
the results of a derivation pertain« For example: 

average salary (results) per employee (case index) 

Only input variables can serve as case index variables; a derived variable 
can, however, be converted to an input variable by means of the data set 
forming function (message 5.^) in the edit subprogram. 

Alphanumeric variables may qualify for service as case Index variables only 
if they do not consist of more than eight characters each. Such a variable 
raust furthermore have as its first character one of the digits, 0-9. There 
are no restrictions on integer and floating point variables. 

Note:  if a derjved variable is to appear in a derivation statement, the case 
index of the derivation must be the same as that variable's case index. If 
two or more derived variables appear in the same statement, both must have     * 
the same case index. w 

m w m 

2.2 



9 October 196? lOU TM-2621/003/00 

S RiSSTRICT DATA    2,11 jj 

(   ) RESTRICTIONS END WITH // * 

(N)O 

The restriction »tatement acts to partition from the data bate a working sub- 
set that is carried Into core.    This subset is then further partitioned or 
sorted by means of the case index statement.    For example, if a data base 
contained a variable representing employees and also a variable for their 
age brackets, a problem could be stated restricting the results to chose 
employees associated with a particular age bracket, or with any one of several 
specified age brackets.    The restriction is always in terms of actual values 
of the restricting variable, for exanple: 

FOR AGE - 21 - 35 // 

or 

FOR AGE - A B C  // 

E>.ch restriction statement begins with the word FOR and ends with a double 
slash.    The word FOR is not be repeated even if several variables are nar';i 
in the statement. 

Examples of restriction statements: 

FOR EMPLOYEE » XYZ // 

FOR AM003 ■ w 3 U 5 6 8 11 15 // 

FOR AGE - 21 - 35  // 

FOR X -  21 Y - 25 Z - 1009 1010  1012  // 

Note:    when a series of consecutively appearing values is denoted by the 
beginning and ending value separated by a dash, there must be at least one 
space separating the values from the dash,  for example: 

FOR AGE - 21 - 35  // 

Any variable may serve as a restriction variable. However, if alphanumeric, 
it must not exceed eight characters In length. If the variable is an Input 
variable, it must be in the same data seta as the case index variable for the 
same derivation. A derives variable must have as its case index the variable 

2.2 



, 
9 October 196? 105 TM-2621/003/00 

named as the case index for the derivation.     If a string variable is named, 
all characters in that variable are to be considered together in the restric- 
tion;  for example,  if GRADE is a string variable eight characters long, made 
up of four two-character subdivisions, the restriction statement containing 
it must uce as restricting values eight-character values.    (If GRADE is longer 
than eigH characters,  it cannot be used at all.)    The user who wishes to 
employ specific characters of a string variable to restrict a derivation may 
include this type of restriction in a conditional clause derivation statement). 

Whenever variables occur in series in a single restriction statement, TRACE 
recognizes them as connected by an implicit  "and" and therefore proceeds to 
devise the subset on the basis that each individual restriction must be 
satisfied.    For example, in the statement: 

FOR ALPHA ■  X BETA - Y ..ETA ■ Z // 

TRACE considers as  qualifying for the working s ibset only those valves which 
meet all three criteria. 

On the other hand, when values of a variable occur in series in a restriction 
statement, TRACE recognizes them as connected by an "or" and therefore 
proceeds to device the subset to include satisfaction of uiy one of the 
restricting values.    For example, in the statement: 

FOR ALPHA ■ X Y Z // 

TRACE considers as  qualifying for the working subset all those  values that 
can meet at least one of these criteria. 

I|l! 

m 

2.2 

;'f| The restriction statement is explored at great length in the dialogue section    2" 
I* of this document, especially Parts *♦ and 5. JJJ 

m 

w 
i,l: 
m 
m 
HI1 

Wl 

m 
w. 
m 
Wl 
•:iii 
HI! 
W! 
Ill1 

III 

i;li 

m 
•iH 

m 
HI! 
i,l! 
!«• 
m 

GIVE DERIVATION STATEMENT 

( )END WITH // 

U* The process of solving problems and deriving results can only be fully under- 
stood by reading the entire dialogue section. This statement, which handles 

w all the work of the derivation, is in essence the equation for the problem at 
hand, ^he various components of this statement and the tools available to 

HI! 

w the user in constructing it are presented in the second part of this  subsection. m' 
!lHHWlH!|«itfl|f!HW!|MIII|lil|l!W"«l|«^ 

c ... 

■ 



■—~ 

9 October 1967 106 TM-2621/003/00 

wiiiiiwiiiiiiiiiiiiii^^ 
system variable name |J 

IS PROGRAM NAME 2.21                                             g 

ASSIGN g 

{ )USER NAME § 

(N)O jg 

m 
m i 
Ml 

Immediately following the derivation operation, the system sends this message  Jj 
to the user informing him of the name given by the system to the variable     JJ 
Just derived* This name consists of the left hand side of the responsible 
derivation statement (that is, AM, FM or IM) plus a number that reflects that 

| variable's chronological position among all derived variables. For example, * 
the first derived variable is labeled AM001 if it is alphanumeric or IM001 if jjjj 
integer; the 39th derived variable is labeled AM039 if it is alphanumeric,    * 
IM039 if integer, FM039 if floating point. 

Ml 

: 

The user, however, is given the opportunity to label the variable as he wishes, | 
thus cancelling the system name. He therefore either responds to this message i 
by typing in the appropriate name or else types N, signaling approval of the * 

,. system name« The user's name must be limited to eight characters. £ 
i m 
M If during the derivation TRACE has discovered missing values in the data w 
m  necessary for this particular derivation, an  additional line is printed. This * 
i line will precede the current message and will have the following form: m 

ffl     n MISSING VALUES FOUND FN.01 m 

tm \m 

m  where n is the actual number of missing values found during the derivation. 12 
i Missing values affect a derivation only in producing invalid or zero values S 
i for the variable being derived. Some of these may show up as rejected values J 
ffi in a displayed table later. v- 
IIMIll IIIIIIIIMMIIIIII.IIIIIIIIIIIIWIIMMBiailMIIMIIIIIIIMI^Mf MIIMIiWMIMUMilMIIMIWII.IIMIIMII.IIWIIMIIIIIMMIMIMIIIIIlMllliKIII .II.IIIIII.IIMIBilMIMIMMIBIMIMII.IIIIIlWIMilllill.llMIIMIIMIMIlMllBllliMMf llBI lllllilllill.llMIIIIIIW I I HUB 

WWiillWIililWiMillliii^^ 

w The last message from the subprogram is: m 

S DERIVATION COMPLETE    2.22 m 

S(D)ERIVE OTHER MEASURES * w 
m (B)ASIC OPTIONS m 
¥ S 

S m 
I The derivation is complete. You are given the option of either returning to the 1 
J beginning of the routine in order to ask for further derivations or else selecting1« 
jjjj another subprogram. m 

mmmmmmmmmmmmmmmmmmmmmmmm^ 

2.2 



9 October 196? 107 TM-2621/003/00 

—The Components of the Derivation Statement— 

The basic form of the derivation statement is: 

(result type) ■ (derivation expression) // 

(This statement always ends with a double slash, ) 

The result type consists of one of the following: 

AM   alphanumeric 

IK   integer 

FK   floating point 

The particular result type used governs the entire derivation: the variable 
derived from it will be of that type no matter what variable types are contained 
in the derivation statement. 

Following the appropriate result type is an equals sign, both preceded and 
succeeded by at least one space. Then follows the body of the derivation 
statement. This may consist of the following components: 

1, variables 

2, constants 

3, arithmetic formulas 

operators 

parentheses 

h,        functional operators 

5, relational operators 

6, conditional connectives 

7, conjunctions 

8, statistical operators 

9, selective operators 

10, manipulative operators 

11, bracketing 

12, string variable operators 

P.2 



9  October 196? 108 TK-2621/003/00 

(1) variables 

These may be either input or derived variables, 

(2) constants 

These may be either numerical or alphanumeric, for example: 122 3.9 B 

(3) arithmetic formulas 

Arithmetic formulas make use of arithmetic operators and parentheses. The 
operators are the followjmg; 

+   addition *   multiplication 

subtraction /   division 

Parentheses are used to enclose certain portions of an arithmetic formula 
when the user wishes a particular order of operations, even if the system 
would follow that order were the parentheses omitted. Finding no parentheses, 
TRACE attacks an arithmetic formula from left to right, recognizing division 
and multiplication before addition and subtraction.  In other words, it 
starts looking at the various operations from the laft; when it meets either 
a division or a multiplicatlcn, it performs that operation and saves the result; 
it continues this course to the end of the string of operations (the formula); 
then it returns to the beginning of the formula and recognizes the addition 
and subtraction operators. For example, in the formula: 

2 - X / 3 # Z 

the first operation is that of dividing the value of the variable X by 3; 
then this result is multiplied by the value for Z; finally this result is 
subtracted from 2. To request this procedure by using parentheses, the user 
should type: 

2 - ( ( X / 3 ) * Z ) 

In this case, the parentheses would be superfluous; however, they are important 
if the user wanted another disposition of the formula. For example, here are 
a few examples of what parentheses can do to this formulas 

( ( 2 - X ) / 3 ) * Z    ( 2 - ( X / 3 ) ) * Z    ( 2 - X ) / ( 3 * Z ) 

2.2 



9 October 196? 109 TM-2621/003/00 

Note that every arithmetic operator and parenthesis in a formula is an entity 
in itself within the derivation statement. Therefore, each such element must 
be separated from a neighboring element by at least one space.  In other words, 
a construction such as: 

(X/3) 

will be treated as a variable name consisting of five characters. 

{U)    functional operators 

These consist of the following: 

SIN sine 

COS cosine 

TAN tangent 

ARS arcsine 

ARC arccosine 

ART arctangent 

SOR square root 

ABS absolute value 

LOG m BSE n logarithm of m 

EXP 

logarithm of m to the base of n (n, as well as m, 
may be either a constant or a variable name) 

exponentiation 

The user may employ either a variable or a constant following any of these 
operators; he may actually use any legal computational expression, for example: 

TAN ALPHA 

SQR ( 1 - ALPHA / 2 ) 

LOG 39 BSE 7 

ALPHA EXP k 

ABS ( ARC ALPHA + LOG BETA BSE 2 ) 

Note: the value following any of the trigonometric function operators, e,g,, 
SIN, will be treated as a radian value. 



9 October 1967 HO TM-2621/003/00 

(3) relational operators 

There are six of these operators: 

EQ equal to 

NQ not equal to 

LS less them 

LQ less than or equal to 

GR greater than 

GQ greater than or equal to 

These are used to compare one computational expression with another, for 
example: 

DISTRICT EQ 3^ 

DISTRICT + ALPHA NQ FM003 - 88 

1 LH ALPHA • ( BETA / GAMMA ) •♦• DISTRICT - SQR PHI 

(6) conditional connectives 

There are two of these connectives: IF and OTR. Each connects two sections 
(clauses) of a derivation statement. The IF Is used if the section following 
it is a condition that must be met before the section preceding the IF is to 
be carried out. The IF therefore literally means "if": do section 1 if 
the conditions in section 2 are met. The primitive OTR, on the other hand, 
gives the system an alternative tasK to carry out if the conditions in an 
IF section are not met; it necessarily either succeeds an IF section or does 
not exist at all. For example: 

FM - ALPHA ♦ 1 IF SCHOOL EQ 22 OTR ALPHA * 2 // 

The result is the value of ALPHA plus one if the value of SCHOOL Is equal to 
22; if not, the result is the value of ALPHA plus two.  It is naturally not 
mandatory to place an OTR section following every IF section.  In case the 
conditions of such an IF section (that is, one without a following OTR clause) 
are not met for a particular case index value, no value at all is derived. 

Note: an OTR clause cannot contain any entity other them a computational 
expression, such as ALPHA +2, SIN ALPHA, or X,  You may not Include a 

2.2 



9 October 196? I11 TM-2621/003/00 

conjunction, or a statistical operator, and further conditional clauses are 
forbidden. An OTR clause may, moreover, not be appended to any derivation 
statement that contains a statistical operator. 

A derivation statement may contain only one IF connective and therefore only 
one OTR connective. 

The subject of conditional connectives is expanded in Part 5 of the dialogue 
section. 

(7) conjunctions 

There are two conjunctions: AND and OR. These mean literally what they say: 
the AND connects two sections of a derivation statement that are to be treated 
as a pair; the OR connects two sections that are to be treated as alternatives 
to each other. For example, the following IF clause (section): 

IF DISTRICT EQ 3^ AND SCHOOL EQ 33 

means that both conditions must be met if the section preceding this clause 
is to be carried out.  Contrarily, the clause: 

IF DISTRICT EQ 31* OR SCHOOL EQ 33 

means that either the first or the second condition may be met to insure the 
carrying out of the preceding section. 

The conjunctions AND and OR can only be used to connect separate phrases 
(conditions) of an IF clause; they cannot be used to connect different variables 
in the same phrase.  For example, in the statement: 

FM ■ SOR A + TAN B IF C GR D AND E LS F OTR SIN G // 

the AND connects the two conditions:  C GR D and E LS F.  It does not act 
to connect D with E; that is, the following statement is invalid: 

FM = SQR A IF C GR D AND E // 

AND must be followed by a condition, for example; C GR E. 

2.2 



9 October 196? 112 TM-2621/003/00 

Whenever both an AND and an OR are to be used in the same statement, the 
AND phrase becomes subservient to the OR; that is, an AND phrase alvays belongs 
to any OR preceding It« For example, in the statement: 

FM ■ SUM A IF B GR C OR D OR E AND F GR G // 

the AND phrase (F GR G) Is part of the condition started by the OR. The 
statement reads as follows! 

calculate the sum of A if B is greater than C 
if not, calculate this sum if both D is greater than E and F greater 
than G 

if neither condition is satisfied, do not compute any result for the 
current case index value 

This subject is examined in greater detail in Part 5 of the dialogue section. 

(8) statistical operators 

There are four of these operators: NBR, SUM, MEN, and MDN. Only one statistical 
operator may be used per derivation statement and, when used, it must be the 
first component. 

1«   NBR    counts the number of occurrences of a variable under 
specified restrictions and conditions 

For example, the statement: 

FM ■ NBR SCHOOL IF DISTRICT EQ 3^ // 

asks the system to compute the number of schools in district 3^. 

2.   SUM    computes the sum of the values of a variable 

For example, the statement: 

FM - SUM SCHOOL IF DISTRICT EQ 3^ // 

asks the system to compute the sum of all the values for SCHOOL that correspond 
to the condition of DISTRICT being 31*. If the values for SCHOOL happen to be 
merely identification numbers, this statement is fairly worthless; however, if 
the values represent something about the variable SCHOOL—-like the number of 
students—then this statement becomes meaningful. 

2.2 



<)  October 1967 113 TM-2621/003/00 

3,   MEN    computes the mean (arithmetic average) of the values of a 
variable 

For example, the statement: 

FM ■ MEN ALPHA // 

asks the system to compute the mean of all the values for ALPHA, considering 
the case index and restrictions that are outstanding• 

U,   MDN    computes the median of the values of a variable 

For example, the statement: 

FM = MDN ALPHA IF ALPHA GP. k2 // 

asks the system to compute the median of all those values for ALPHA that are 
greater than ^2, 

A statistical operator may act upon either an input variable or a derived 
variable. 

(9) selective operators 

There are five selective operators: EACH, FIRS", LAST, ALL, and ONE. Only 
one may appear in a statement and that appearance must be as the final 
component (before the double slash). These operators instruct TRACE how to 
work with the case index table (Section 1,6) during a derivation, 

EACH        This operator tells TRACE to work with each occurrence of 
a case index value in the case index table, that is, to 
make i computation for every block of data that passes 
rest-lctions and conditions. When this operator appears 
in a statement headed by a statistical operator, the 
computation is repeated so that the final results are in 
terms of unique values of the case index variable. 

FIRHT       This operator tells TRACE to work only vith the first 
occurrences of a case index value in the table. 

2,2 

A 



9 October 1967 111» TM-2621/003/00 

LAST        This operator tells TRACE to work only with the last 
occurrence of a case index value In the table. 

ALL        This operator tells TRACE to conduct the specified derivation 
as though there were only one occurrence of the case index 
value in the entire data base; that is, all the results are 
boiled down to one result—sums are turned into a grand 
sum, means are converted into one grand mean, and so on. 

These grand derivations, however, cannot be used as derived 
variables. They are not even stored by TRACE but are 
immediately released via teletype to the user. After the 
result has been tyoed, the system types out the first 
message of the derivation program. Note; ALL may be used 
only after statistical operators, for example: 

FM - MEN GRADE ALL // 

ONE        This operator, used only when the derivation statement 
contains a conditional clause, tells TRACE to work ' rly 
with -»-he first occurrence of a case index value that 
satisfies the condition in the statement, 

A derivation statement that does not end with a selective operator is treated 
as though it held the EACH operator. 

The use of these operators and the case index taoles referred to are examined 
exhaustively in the dialogue section. Part 6, 

(10) manipulative operators 

There are two operators that serve to manipulate the values of derived variables: 
CMB and MRG, These do not operate on input variables. When used in a state- 
ment, the components in that statement are limited to a series of derived 
variable names and the operators themselves; that is, there is no opportunity 
to use conjunctions, selective operators, arithmetic formulas, etc.  Like 
other derivation statements, however, they must be preceded by case index 
and restriction statements, 

CMB This operator tells the system to tack onto the values of 
one variable all the values of one or more variables so 
that a new variable arises whose storehouse of values is 
the total of all the values of the variables mentioned in 
the statement. 

2,2 

■ 



9 October 196? 115 TM-2621/003/00 

The form of the statement using CMB is: 

(result type) - CMB (variable list) // 

where (variable list) is two or more variable names. For example, the following 
is a valid CMB statement: 

AM = Cm  ALPHA BETA GAMMA // 

The system now gives over to the new alphanumeric variable all the values of 
the th.ee specified variables. These values appear in the new variable in the 
same order as their original variable names appeared in the statement.  For 
example, suppose ALPHA held three values: A, B and C; BETA four values:  MNt 
OP, QR and ST; GAMMA two values:  Gl, G2, The new variable would consist of: 
A, B, D, MN, OP, QR, ST, Gl and G2. 

Note: all the variables named in a CMB statement must have the same case 
index (as in any derivation statement). The restriction statement preceding 
this statement is not recognized by the program, so that the CMB statement 
cannot be bound by any restrictions or conditions. The restriction statement 
therefore may consist simply of the response:  N,« 

MRG        This operator, functioning only with alphanumeric derived 
variables, takes each value of one, tacks onto it the 
corresponding vdue of another (according to ascending 
order), and thereby creates a new value consisting of the 
two original values. It repeats this process for each 
pair of values in the two variables. These two variables 
therefore must have the same case index. 

The form of the statement using MRG is: 

(result type) ■ (variable) MRG (variable) // 

For example, the following is a valid MRG statement: 

AM = ALPHA MRG BETA // 

Suppose the values for ALPHA were A, B, C, D, E, F ... and the values for BETA 
were Rl, B2, B3, B^, B5, B6, ....  The new variable would consist of the values: 
AB1, BB2, CB3, DBU, EB5, FB6  

2.2 

■ 



: 

9 October 196Y 116 TM-2621/003/OO 

Unlike the CfTB derivation, a MRG derivation recognizes the restrictions in 
the associated restriction statement* 

Bracketing is allowed for all components of either type of statement. 

The use of a CMB statement is illustrated in Section 1.7; the MRG statement 
appears in Section 1.9» 

(11) bracketing 

Any component in either a restriction statement or a derivation statement may 
be parameterized by means of substituting for that component a bracketed 
element. Bracketing allows the user to specify one at a time the values for 
a particular component and thereby lun several derivations on the same 
derivation or restriction statement framework. For example, the user may 
bracket a variable in the derivation statement and then repeat the derivation 
for several different variables. This device then saves the user the need to 
compose many derivation statemrvts, together with the associated case index 
and restrictic , statements, fo-. runs that differ only in the identity of a few 
components. 

The user is t  ^owed to bracket as many components in a single derivation 
statement as he wishes. There are no exceptions to parameterization: 
conjunctions, statistical operators, even parentheses may be bracketed. There 
are two basic forms of bracketing:  single left bracket or double brackets 
enclosing an alphanumeric string of six or fewer characters. These two types 
may be mixed in a single statement.  Examples: 

FM » MEN [A] IF [B] GR [C] // 

FM - SUM ALPHA IF ( [A] / [B] ) / ( [D] *   [E] ) // 

FM »[[[[[   // 

IM »   [XYZ]   // 

Note:    there must not be a space between a bracket and an enclosed string. 

Whenever TRACE encounters bracketing within restriction or derivation state- 
ments,  it requests values for these components   immediately after the user has 
entered the derivation statement.    The request is for the total number of 
parameterized components in the two statements; the user must then type in 
a response that contains the missing values, in the order of their sub- 
stitution.     For example,  if one component in the restriction statement were 

2.2 



9 October 19^7 n? TM-2621/003/00 

bracketed and two in the derivation statenwnt, a rusisage flow would reiemblet 

GIVE 3 PARAMETERS 

( )VALUES 

(S)TART 

• 3H ALPHA EACH 

If the user types ivt the missing values at this point, TRACE assigns a system 
name to the variable (message 2.21), giving him the option of assigning his 
own name. The system then returns the same request to the user, allowing 
him to designate another run. 

If the user types in the missing parameters at this point, TRACE issues 
message 2.21, which assigns a name to the newly derived variable with a 
provision for accepting a user-assigned name.  It then repeats the request 
for parameters, allowing the user to designate another run on the same 
derivation framework. To stop this cycle, the user must either type S to 
send the program back to the first message of the derivation routine, or 
else a GOTO to another subprogram. 

This device of parameterizing is illustrated extensively in Section 1,5« 
Ar^utner use is shown in Section 1.7. 

(12) string variable operators 

With one exception, whenever a string variable may be referred to in any 
TRACE statement, so may any subdivision of it be referred to separately. 
This interior reference is done by following the name of the string variable 
with digits that denote the subdivisions. For example, the third subdivision 
of ALPHA would be denoted by: 

ALPHA 3 

The user may refer to series of consecutively appearing subdivisions by 
typing in the beginning and ending members separated by a dash: 

ALPHA 3-7 

Note that there is no space between either digit and the dash, 

2.2 

.-. 



9 October 196? 118 TM-2621/003/00 

The one exception to this rule is in the matter of restriction statements. 
Here the string variable may be used only as an entire value; subdivisions are 
not recognized. 

Warning: when working with string variables, remember that subdivisions can 
be referred to only singly, for example: 

ALPHA 3 

or in a series: 

ALPHA 3-7 

It is not possible to refer to separated subdivisions in a variable, for 
example: 

ALPHA 3 5 7 

There are two operators to be used in conjunction with string variables in a 
derivation statement:  SCAN ACROSS and COR, 

SCAN ACROSS       Appearing Just before a string variable in a derivation 
statement, it tells the system to treat each of the 
subdivisions of that variable as a separate vilue. 
When this operator is absent, the system treats the 
whole string of subdivisions as one value. 

For example, in the following statement: 

IM " SUM SCAN ACROSS ALPHA 1-9 EACH // 

each of the nine subdivisions specified will be summed for each occurrence of 
the variable ALPHA in the data base.  If the statement read: 

IM - SUM ALPHA 1-9 EACH // 

the nine subdivisions in each occurrence of the variable would be treated as 
one value and the summing done accordingly. 

2,2 



9 October 196? 119 TM-2621/003/00 

COH This operator serves to set up a correspondsnce 
between the subdivisions of two or more string 
variables that appear together in a derivation 
statement. It appears before the variable name, 
followed by zero, an increment such as ♦I, or a 
decrement such as -3. 

For example, if a derivation statement held two string variables: ALPHA and 
BETA, these variable names preceded respectively by COR 0  and COR +7 would 
tell the system to compare the first subdivision of ALPHA with the seventh 
of BETA, the second of ALPHA with the eighth of BETA, and so forth. 

The concept of string variables is first touched upon in the dialogue section 
during Part 6, when the term SCAN ACROSS is introduced. The term COR is 
introduced in Part 7. 

2.2 

■ 



T 

9 October 1967 120 TM-262I/OO3/OO 

»The Derivation Statement as a Desk Calculator-*- 

The user has In this subprogram a feature that simulates a desk calculator. 
With this device, the user can devise a string of computations that has no 
relation to any part of his data base, nor to any derivation.  He simply 
enters the derivation subprogram, Jumps to the derivation statement message 
(via a GOTO) and types in the calculation. This statement has the form: 

COMP (calculation expression) // 

The calculation expression may contain any constant, arithmetic operator, 
parentheses, functional operator—and it permits bracketing.  None of the other 
derivation components may be used, for example, variables and statistical 
operators.  The result of the calculation is immediately presented to the user 
via teletype from the system, The system then returns message 2.22 indicating 
that the derivation is complete and requesting that he either start another 
derivation or else exit to a different subprogram. 

Examples: 

COMP - SQR ( SIN 3.335 - COS 14.595 ) // 

COM? - LOG [ BSE [ ■•• [G] // 

There is an example of the use of this statement in Part T of the dialogue 
section. 

2.2 



9 October 196? 121 TK-2621/003/00 

PART 3 

The Construct Table Subprogram 

This routine is used to construct tables that are to be displayed by the 
display subprogram.  When two-dimensional, these tables act as frequency 
tables for a pair of variables derived on the same case index. This use of 
the subprogram is thoroughly illustrated in Problem 5 of the dialogue section 
(Section 1.8).  As one-dimensional tables, they serve to yield individual or 
grouped values of a derived variable. This use is described in Parts 5 and 7 
of the dialogue section. 

Ml "  If 

w The first message in the construct table program is: JJji m -  • ^ 

CONSTRUCT TABLE  3.0 

(S)TEP BY STEP 

( ) SHORTHAND 

(L)IST SET UP TABLES 

The user is here given the choice of either going through the steps of con- 
structing a table one by one, that is, of accepting a train of messages from 
the routine with concomitant responses, or of typing in one line of information 
that in itself is all that the system needs in preparing a table.  (He may 
also choose instead to have previously constructed tables listed.) Choosing 
and following the shorthand method immediately closes the work of the routine 
and the user proceeds to the display program after this response.  The structure 

m of the shorthand line of information is described at the end of this sub-      Z 
m  section. | 
UIMiUU iUMii WWW   WW wnrnwi ill ill» 

2.3 



9 October 196? 122 TM-2621/003/00 

—Step-By-Step Method of Table Construction— 

V.'ithin this step-by-step method, there are two routes: one for variables that 
are alphanumeric, the other for those that are either integer or floating 
point.  For tvo-dimensional tables, either of these routes may be traversed 
tvice during the same table construction or both may be crossed since the 
same sequences of messages are used for both the description of the rov 
variable and the column variable. 

The first sequence of messages describes the row variable: 

«5     SPECIFY ROW VARIABLE 3.1 * 
hi! W! 
W .       . I»! 

(   )NAME 

(N)ONE 

Two variables are required for a two-dimensional table.     One, called a row 
variable,  comprises the values that describe the rows of the table, that is, 
one value or an interval (or group) of values to a row.    The headings for 
row variables then are to be  found to the left of the displayed table—in the 
first column.    Contrarily, a column variable describes the columns of a table 
and its headings form a row that runs along the top of the table.     If the table 
is one-dimensional, consisting of a single column,  it has a row vr.riable and 
no column variable.    The reverse is true for a single row table.    For this 
message then, you respond with the name of the variable you wish to describe 
the rows of your table.    This variable is usually the one  (if the table is 
two-dimensional) that has the greater number of values or intervals. 

Hjj If the current table has no row variable  (response here of 11), the system ,t,! 

J2 Jumps to message 3.2. f- 

'.3 



9 October 196? 123 TM-2621/003/00 

(l) Route for alphanumeric variables 

This route consists of two messages, one asking for the number of cells to 
be set up for the particular variable, the other requesting a heading name 
(tag) for each cell according to row or column. 

m            NUMBER OF ROW (or COL) CLASSES  3.32 J 
iff "" 

m               ( ) 1 TO 10 FOR COL 1 :'0 1+0 FOR ROW IF DISPLAYED ON TTY 2 
m            u m 
H«     * m 
w. m 

Wi w 
liH V 
m  This message asks the user to specify the number of row cells or column cells *} 
wi to be constructed for the variable in question. The first line of the message 2 
HI " 
w contains the word ROW for a row variable run, COL for a column variable rw,-. 2 
Hit                                             * m 
w The second line reminds the user that the limit for columns on teletype display* 
2 is ten, for rowi, Uot    (CRT displays can accommodate only 25 rows.) 2 
PI                                                 _______                    _           _           _  _ _            " 

■■■4WiPMPWBUI,W4rMII(BMPlHiHI(Mr!^Hffn^'mM,WfftWf!WH"H'W^ 

HH Hf! 
S     CLASS TAGS AND INCLUDED VALUES  3.321 jj 

( )TAG • ( ) VALUES EN^ WITH // 2 p 
■t« w 
IW w 
Hü m 
m m 
m m 
m  This message, issued in the same form for both types of runs, asks for the 

UK 
m m 

2 headings of the specified cells together with a list of the variable values 
jjjj to be included under each heading.     For example, suppose your row variable 
jjH were ALPHA,  consisting of values A t .rough Z.    If you wished the first row of Jj 
m cells to represent the values:    A»   R, C,  and D; the second:     E,  F, G,  and H, jjj 
2 and so forth—the first row to be called FIRST, the second SECOND, and so forth,2 
w you would type the following: Jj 

HH HO 
'-"     » FIRST ■ A B C D SECOND - E F G H   // m 

2.3 



October 1067 12U TM-2621/003/00 

(2) Route for Integer and floating point variables 

This route consists of three messages. They are identical in both types of 
runs. 

ItH 111! 

H«     NUMBER OF INTERVALS  3.31 «J 

jj«      ( ) 1 TO 10 FOR COL 1 TO U0 FOR ROW IF DISPLAYED ON TTt w 

«" This message asks for ohe number of intervals to be constructed for the Z 
W              0 Hfl 
! variable in question. These will appear as cells in the displayed table, a w 
J* limit of ten for columns, kO  for rows on teletype or 25 for rows on CRT «J 
J*fl (cathode ray tube). Each interval represents a particular value of the Z 
Jjfl variable or a range of values. «JJ 
HmimmmfflNmimmitHHifflKRURhHHMwmMHmtiw 

i.Wil!W'!i»HFWKI'Hll!«H«H»IH»IH«HIWfl««HR»flWWKH!W«HIIH«HflWWHHlil!HWI|IH)l|Wlff 
!.!■ Ml' 
HA     RESPOND '..'ITH:  3.311 Z 
:,n w 
•*      (N) FOR EQUAL NUMBER Z 

w                (W) FOR E^UAL WIDTH Z 
1,1 ■•I' 

'.fl                 (S)  FOR  SPECIFIED WIDTH « 

w                 (A)   FOR ALL VALUES | 
«fl        „ '''' 

hfl in 

ur !i>- 

|'1 You type 11 If you wish the intervals to represent as nearly equal numbers of ;* 
i* case index values (frequencies) as possible, W if you want them to be divided '* 
i>fl into equal widths (ranpes); both responses indicate that you desire the system ^ 
■•« to set up the intervals. The third response declares that you wish to specify ;|« 
;* the precise boundaries of each interval. The fourth response is used when ;* 
MA you desire every available value of the variable to be shown as a heading value,'*'' 
^ that is, each value is a whole interval by itself. '■** 
■:>•. 

HP. 

w Note:     this nessare  is  net  received when the variable is  an  alphanumeric  one w 
•* - m 
w  since  it  is  not possible to heve  intervals of alphanumeric values. '*•' 
llll ^ * hP 
iilM!PHflhl!!WHflhPltflHIIlifll«l(P!jHliRhKHHURWHHhflliPI^!!(flW!(m«PiiPlifHPHflW««»flhflWIH«WWHfl!ifHP!HPhllH*HflNI''WHflM»lhR'WNfl^ 

2.3 



9 October 196? 125 TM-2621/003/00 

(   )GIVE LOWER AND UPPER  LIMITS FOR EACH INTERVAL jjjj 

■ .■■.MIIIIUM;   ■~-"  ^11  m llliilliMI 

Wl /     x r„ .„^   ..„ .,..,-.„   «^^ .M..... HH 

m 
m 

m * 

: 
NU 
w This messape is issued only when the user has indicated in his response to the JJJJ 
m  previous message that the intervals arc to be specified by him ,nd if the row 5 
Nj variable has either integer or floating point values.  The user then types in JJ 
N* the lowest limit followed by the first upper limit followed by the next 3ower Jj 
12 limit—and so on until the highest limit is reached.  For example: g 
l|R V 
m m 
m * 1 25 30 J45 50 75 80 100 // m 
w\              _ i _,,..-,.,,     w 

2.3 



f)  October 196? 126 TM-2621/003/00 

The second sequence of messages describes the column variable: 

m            SPECIFY COL VARIABLE 3.2 Z 

i      ( )NAME I 
12    (N)0NE Z 
w    « iff 

w 
«R 1)1! 
Hfl W 

»g This message is similar to message 3.1 (SPECIFY ROW VARIABLE).  If there id   if 
w to be a column variable, the same sequence of messages that succeeds         '!«• 
m  message 3.1 will be sent. The user should respond to them in like manner,    [J 
wi If there is no column variable, the system Jumps to message 3.^.            m 

Upon ending this second cycle, the system delivers the following message: 

m MODIFY OR NAME TABLE 3.1*                                           * 
iil! HR 

I (R)0W                                                                                                                                                         m 

i-'i (C)OLUMN                                                                                                                                                         m 
irti 

w (   ) TABLE NAME                                                                                                                                       ;* 
iiR iiH 
W if« 
itH *                                                                                                                                                                                                           fm 

H« ill! 
H« ii« 
Mi 

I'« This is the last message to be sent in the step-by-step method of constructing 

I 

iiH 
111! "" " ' *"   "    ~      ^ " D   !,(! 

'* a table. It allows the user to chance either some row variable specification  i;,! 

or some column variable; if no changes are necessary, you are obliged to name 
ii« the table. The first response returns you to message 3.1—SPECIFY ROW VARIABLE,;*;; 
«" the second to message 3.2—SPECIFY COLUMN VARIABLE, '* 

2,3 



9 October 196? 127 TM-2621/003/OO 

m The final message of the subprogram, the following is issued after either 
§ method of constructing a table has been completed» 

ROW IG    row variable name      CODED   type of interval 

COL IS    column variable name      CODED    type of interval 

CASE INDEX IS    case index 

TABLE      table name      SPECIFIED    3.6 

(D)ISPLAY THIS TABLE 

(C)ONSTRUCT OTHER TABLE 

(B)ASIC OPIIONS 

i The first four lines act as a resume of the table construction. They might 
ü appear as follows: 

i 
ROW IS SCHOOL    CODED I m 

§ COL IS STUDENT    CODED A 
1 

CASE INDEX IS DISTRICT 

TABLE GEOGR SPECIFIED 

m 
m 

3.6 

m 
m 
i The last three lines of the message eure response forms: the first leads 
jjfj to the display program, the second back to the beginning of the table construct 
w program, the third to another subprogram. 

m 
i 
m w 
Iff 
Ml z i 
i 
iff i 

iff i i 
iff 

m 
iff 
iff 
iff i :ff 
m 
* 
iff 
•ff 
iff 
w 
iff 
iff i 
H* 
m 
iff 
ii 

2.3 



9 October 196? 128 TM-2621/003/00 

—Shorthand Method of Table Construction-- 

The user can circumvent all of the connnunication between himself and the 
system involved in the step-by-step method by entering one line of information 
that specifies all the necessary directions in constructing his table. This 
line is to be typed in response to the first message of the subprogram—message 
3.0, This shorthand line has the following components, typed from left to 
right (spaces between elements): 

(1) the name of the table 

(2) the letter R, if there is a row variable—otherwise, skip to 
component (6) 

(3) the name of the row variable 

{h)      the number of intervals for the row variable 

(5) the type of interval—use the same codes as described in message 3.311» 
that is, N, W, A, or S, 

(6) the letter C, if there is a column variable—otherwise, the line 
is ended 

(7) the name of the column variable 

(8) the number of intervals for the column variable 

(9) the type of interval—same codes as stated in (5) 

If the code typed in at either point (5) or (9) ii S—for specified intervals—the 
subprogram sends the appropriate messages for more information about ihese 
intervals, similar to the treatment of specified intervals in the step-by-step 
method. The shorthand method is then concluded by message 3,6, which is a 
resume of the table Just constructed and which also gives the user several 
options about continuing table construction or going to another subprograir.. 

2,3 



9 October 196? 129 TM-2621/003/00 

PART h 

The Display Subprogram 

This subprcgram is a natural partner to the table construct program;  its 
function is that of displaying tables or working with previously displayed 
tables.    In the dialogue section, this subprogram is discussed in Part 8. 

This discussion closes with a sample display of a two-dimensional table 
followed by an explanation of the various  features of that display.     If the 
user wishes, he may refer to that sample table and discussion now. 

m The first message of the display program: Jj 
m g m g 
H*             DISPLAY    U.O Z 

|                (   )NAME TABLE Jj 

m               (L)IST CONSTBUCTED TABLES * 
m 2 m m 
H!                        « W 

M P 
w m 
•w The user can respond by typing either the name of the table that he wishes        jjj 
| displayed or the letter L, which gains him a listing of all the tables thus      g 
i far constructed.    This listing consists of the table name, the row and column jjjj 
w variable names, the number of intervals for these variables, and the types        g 
i of intervals. g 
!tH Iff 

$            DISPLAY ON U.l                                                                                                                          I nr m 
I               (S)COPE m 

*               (T)TY Hfl 
HR                  „ Hfl 
HI!                        » ijH 
ill! 

••H 

m m 
jjj| The user types S if the display is to take place on the cathode ray tube, T HA 
i if on the teletype. m 
NwpfflJWflt qwii^^ 

2.U 



9 October 196? 130 TM-2621/003/00 

The progrein now displays th« desired table.  Fallowing this display, it prints 
the message: 

llWIWtttltllllH illlWItlWW 

3 COMPLETE    k,2 Z 

(W)ORK WITH DISPLAY m 

(   )NAME DISPLAY 

(R)     (   )NAME NEW ROW 

(C)  ( )NAME NEW COL 

(3)ASIC OPTIONS 

You type the first response if you wish to work with the display, for example, 
identifying the case index values responsible for a particular frequency number 
in the table. This response brings you to message U,3. 

The second response involves a partial modification of the table Just displayed 
or of any other table alreadv constructed• Here you may change either or both 
the identities of the row and.  column variables, thus producing a new table. 
However, all other features of the table will remain the same, such as the 
number of intervals, interval limits and types. To request this new table, 
first type the name of the original table (the table whose framework is to be 
used for the new table), then the letter R if a row variable is to be changed, 
then the name of that row variable, then the letter C if a column variable is 
to be changed, followed by the r.ew column variable name. For example; 

» QUAD R ABSCISSA C MANTISSA 

The system will then return you to message U,l where you may choose the scope 
or the teletype for display of the new table. After this is done, the system 
displays the table and reissues message kt2, 

w  If you have no more work for the display program at this point, select another m 
«Jj subprogram by typing the letter B followed by the appropriate code, j» 

2.k 



9 October 19C7 131 TM-Z621/003/00 

HWfWWW 

WORK OPTIONS END WITH //  U.3 I 

(L)IST INTERVAL LIMITS W 

(R)0W OR (C)OL 

(E)XPECTED VALUES 

(A)SSIGN VALUES TO CELLS 

ROW* - COLU  - VALUE 

(D)DENTIFY CELLS 

ROW/f - COL/I' 

The user is given four options in working with the current display. If he 
has selected option 1, 2 or k,  the program returns him to message k,2  after 
the option selected has been completed. The third option is completed by a 
return to the beginning of the subprogram* 

(1) He can have the interval limits listed for review purposes—both 
upper and lower limits for each interval will be listed. A request 
consists of the letter L followed by the letter R (for row variable) 
or by the letter C (for column variable). 

(2) There is a normal expectancy of frequency values (distribution) 
that TRACE computes for each display in determining Chi-square 
(one of the products of a display). If the user wishes to see the 
table displayed with the expected frequencies shown rather than 
the observed frequencies, he types the letter E. The new display 
will then immediately be produced. 

Note: since Chi-square is a product of two-dimensional tables, 
this option has no meaning with respect to one-dimensional tables. 

(3) The user can create a new variable (derived) by assigning values 
to the members of various cells of his display. The number of 
occurrences then of this new variable having any particular value 
will depend upon the frequencies in the cells, that is, the number 
of case index occurrences shown by the cells« To do this, the user 
designates one or more cells, and then assigns a value to the com- 
ponents. The system will then ask him to name that variable. To 
illustrate this, look at a display consisting of nine cells—three 
rows and three columns. 

2.i4 

■ 

. 



9 October 196? 132 TM-2621/C03/00 

The frequencies are as followst 

k 15 9 

6 18 6 

Q     2k     k 

To create a variable using these frequencies, the user's statement 
may resemble th^ following: 

•A 1-2 «12-2-2 3-2 « : E-2 ■ U OTR 0 // 

This statement says the following! 

assign the value 1 to all cases in Row 1 - Col 2; assign the 
value 2 to an cases in Row 2 - Col 2; assign the value 3 
to all cases in Rov 3 - Col 2; assign the value U  to all the 
rejected cases for the second column; assign the value 0 for 
all other cases. 

Note that each element in the assignment process has the following 
form: 

(row number)-(col number) ■ (value) 

There is no space between either number and the dash. For rejects, 
the lett :r E is used:  E-n for column rejects, n-E for row rejects, 
E-E for rejects that fit none of the columns or rows. The con- 
ditional connective OTR followed by a value tells the system to 
assign that value to all the cases not covered by the other elements 
in the statement—it does not include rejects, however. 

The resulting variable would now consist of the following (assume 
one reject): 

15 occurrences of the value 1   18 occurrences of the value 2 

2k  occurrences of the value 3 

The new variable is 95 occurrences in length. 

2.1* 



9 October 1967 133 m.2621/003/00 

m 
i 
m 
I tM timiiimiimttm in'mH'T'in'in 

The system then askr the user to name his variable t 

variable name IS THE CASE INDEX k.U 

GIVE 1 

( )NAME ( )CODE 

The system tells the user what the case index variable for the 
display was. You are now to type in an appropriate name and the 
type: A, I or F (alphanumeric, integer, floating point). 

The system then completes the communication by returning 

DERIVATION COMPLETED 

DISPLAY U.O 

( )NAME TABLE 

(L)IST CONSTRUCTED TABLES 

(M  The actual case index values tabulated in any one cell in the 
current display can be identified. TRACE supplies a listing of 
these values after the user types the r-v and column identification 
numbers. For example: 

• I 1-3 // 

This tells TRACE to list all the case index values for the cell 
of row 1 by column 3* Note that there is no space between the 
dash and the numbers. 

Rejected cases can also be displayed, for example: 

• I E-2 3-E E-E // 

This asks for a display of rejected cases for the second column, 
the third row, and the cases that pertain to no displayed column 
or row. 

5 
m 

2.l4 



9 October 196? 131* TM-2621/003/00 

The following Is a display of a typical two-dimensional table: 

1. 5. 
2.000 

0.000 
7.000    TOTAL % 

REJECT 

0.100 T 13 1  21* 16 

1.000 1 3 1* 0   8  5 

2.000 U8 8 15 0  71 1*7 

3.000 8 16 25 0  1*9 32 

REJECT 0 0 0 2 

TOTAL 61 31* 57 152 

% 1*0  ; 22 38 155 

ROW STAT 

MEAN ■ 1.951* 

MEDIAN- 2.000 

STNDVN» 1.002 

COL STAT 

MEAN • 3.888 

MEDIAN- 1*.000 

STNDVN« 2.1*13 

CHISQR« 1*2.206? R CORL 0.05110 

DEG-FRM 6 R LO-5 -0.15936 

EX LS 1 0 R HI-5 0.15901* 

EX LS 5 3 R SQR 0.00261 

C CNTG 0.1*66 T STAT -9.2651*9 

SIG .001 F STAT 5.79717 

Above the table proper (i.e., above the dotted line) are shown the column 
variable limits: the lowest limit: 1.000, and the upper limits: 2.000, 
5.000, and 7.000. The row variable limits are shown to the left of the table 

2.1* 



I 

9 October 196? 135 TM-2621/003/OO 

(in  this example, the intervals are absolute values)} ^000, 1.000, 2.k/„„, 
3.000, and 14.000. Not« that the first row variable heading is repeated above 
the dotted line. 

Whenever a case index value meets both a row interval and a column interval, 
it is counted in the cell formed by the intersection of those two intervals 
in the table. If a case index value meets only a row interval and none of the 
available column intervals, it is placed in the cell at the end of that row 
as a rejected value—each row is terminated by a cell for rejected values. 
Similarly, a value meeting a column interval only is placed in the reject 
cell at the end of that column. A case that meets none cf the available 
intervals at all is placed in the cell formed by the intersection of the 
column reject cells and the row reject cells. In our example, this cell shows 
the value 2—-two cases met none of the intervals. To refer to these reject 
cells in responses, the user types E-n for row rejects (e.g., E-5), n-E for 
column rejects, and E-E for complete rejects. 

-* 

Following the reject cells in the table are the subtotal cells: these exhibit 
the total cases for their respective rows and columns. Notice that these cells 
have no intersection. 

The last sets of cells are the percentage cells. These show the percent of 
the associated subtotal to the grand total of cases, excluding rejects«  In 
the sample table display, row 1 shows one reject, a subtotal of 2k  valid 
cases, and a subtotal percent of 16%,    Comparative figures for the first 
column are: 0 rejects, 6l cases, and h0%. 

At the lower right hand corner of the table appear two grand totals: the 
value 152 represents the total of all valid cases displayed by the cells; 
the value 155 represents the total of all cases encountered in constructing 
the cell, including the rejects. 

Below the table are printed various statistical products of the displayed 
table. These products can be examined in the following groupings: 

(1) ROW STAT 

MEAN ■ 

MEDIAN ■ 

STNDVN « 

These are statistics for the ?ow variable, drawn from the values that make up 
that derived variable. Shown are the mean of all the values (except rejects) 
of the row variable, the median for these values, and the standard deviation. 

2.U 

: 

■#&* 



9 October 196? 136 TM-2621/OO3/OO 

These statistics are produced only Tor numeric (i.e., integer or floating 
point) variables, whether the table is one-dimensional or two-dimensional. 

(2) COL STAT 

MEAN - 

MEDIAN ■ 

STNDVN ■ 

This group of statistics is produced t r a numeric column variable. The 
table may be either one- or two-dimensional. 

(3) CHISQR ■ 

DEG-FRM 

EX LS 1 

EX L8 5 

C CNTG 

SIG .001 

This group is yielded with all two-dimensional tables, regardless of the 
nature of the row and column variables. It is not produced for one-dimensional 
tables« These statistics are, in order: 

CHI SQR 

DEG-FRM 

EX LS 1 

EX LS 5 

C CNTG 

the chi-square value. Fisher's exact probability 
is computed if the table reduced to a 2 x 2 matrix 
has any cells with expected values less than 3. 

the degrees of freedom 

the number of cells with expected values less than 1 

the number of cells with expected values less than 5 

the contingency coefficient 

2.l4 



9 October 196? 137 
(page 138 blank) 

TM-2621/003/Oü 

(M R CORL 

R LO-5 

R HI-5 

R SQR 

T STAT 

F STAT 

These statistics are presented only for those two-dimensional tables wherein 
both row and column variables are numeric. They are described as followst 

R CORL 

R LO-5 

R HI-5 

Pierson's R correlation coefficient with 

3%  confidence non-symmetric interval 

limits given 

R SQR 

T STAT 

F STAT 

Pierson's coefficient squared 

t statistic 

F statistic 

2.14 



9 October 196? 139 W-; 621/003/00 

PART 5 

The Edit Subprogram 

The edit subprogram 1« a complex of six individual functions, each called 
separately by the user and each being independent of the other function! • 
Therefore, once a function is finished with by the user, he must use a GOTO 
command to call another function, there being no sequence of functions, or 
to exit from the subprogram altogether* The six functions, together with 
their calling codes are given the user when he first enters the edit program: 

EDIT 5.0 

(D)ELETE 

(L)IST 

(C)HANGE 

(F)ORM 

(R)ENAME 

(A)SSIGN BY REPLACEMENT 

(B)ASIC OPTIONS 

» 

Every respome to an edit routine message must end with a double slash! This 
device in other subroutines is generally confined to those responses whose 
corresponding system messages carried within themselves a command about the 
double slash, namely: 

I I 
END WITH // 

In edit, a message will not normally advertise this need for a //. This 
device 1B to be used even though a response could not possibly travel into 
another line« 

m 
2.5 

• 



9 October 196? IkO TM-2621/OO3/OO 

—The Delete Function— 

■p 
US 
a DELETE    5.1 

(M)    (   )MEASURE NAMES 

(   )DATA SET NUMBER 

(D)    (   )DISPLAY NAMES 

(   )NAME BLK-BLK 

DATA SET NUMBER BLK-BLK 

« 

m 
m 
m 

This function undertakes to delete for the user various portions of data, 
either input or derived. You have only one choice of response during each 
entry into this function, however—to request another type of deletion means 
returning back to this message via a GOTO command. 

(M)  ( )MEASUPE NAMES 

The first choice of responses allows you to delete any number of derived 
variables (measures) from your set of derived data. All the values of the 
variables listed by you vill be eliminated.  You simply type the letter M 
followed by the variable names, for  example: 

* M IM005 AM03U STD# // 

( )DATA SET NUMBER 

The second response asks the system to delete an entire data set (all the 
data entered via one tape, or input run if disc or teletype). The response 
consists of the appropriate data set number. Only one data set number may 
be entered at a time. These numbers are assigned to the data sets in 
chronological order and can be viewed, if desired, by requesting a listing 
of variables at the very first message of the derivation subprogram (message 
2,0), Since only one data set can be eliminated at a single time, you must 
call this function a second time in order to request another data set deletion. 

2.5 



9 October 1967 ikl TM-2621/003/00 

(D)     (   )DISPLAY NAMES 

You may delete one or more tables that have already been constructed for 
display by typing in the letter D folloved Dy the appropriate table names. 
Example: 

»  D TABLE1 TABLE2 TABLE3  // 

( )NAME BLK-BLK 

You can delete specific blocks of derived variable data by typing the name 
of the variable concerned, folloved by the beginning and ending block numbers 
of the values in that variable you wish deleted. These values, of course, 
mupt occur consecutively in the data. More than one series of blocks may be 
entered for a variable, and more than one variable may be handled in one 
response. There can be only one series of blocks per line—if two or more 
lines refer to the same variable, the variable name must be repeated. 
Example: 

»STD# 3-5 

STD# T - 7 

STD# 9-23 

IM001  k - k // 

Note:    there must be a space between the dash and the block numbers*    If the 
block numbers are not  known, they can be learned by means of the listing 
function in this subprogram.    (See message 5*2) 

DATA SET NUMBEP BLK-BLK 

A more sweeping deletion of data blocks can be achieved by your listing them 
in terms of their appropriate data set numbers, rather than variable names. 
This type of deletion results in the elimination of all the variable values 
falling in the specified range*    When you choose to do this, however, you can 
only refer to one string of blocks in any one response.    For example: 

» 2 83 - 99 // 

This tells the system to delete blocks 83 through 99 of all the variable values 
in the second data set. 

Note:  no space may separate the dash from the numbers when specifying a string 
of consecutively appearing block numbers. 

2.5 

■ 



9 October 196? ll*2 TM-2621/003/00 

The first and third responses have alternatives: the user may ask that all 
the derived variables be deleted or that all the display tables be deleted. 
The following statements accomplish this: 

SS m 
m »M ALL // »D ALL // m 
Hfl ffl 
iiiiiiMiMiiiB iirnriimmiin 

2.5 



9 October 19bT 1^3 TM-2621/003/00 

—Th« Listing Function— 

iinhniffRffwn 
Ml 

LIST VALUES 5.2 * 

K   ) NAMES 

(D)ATA BASE INDICES 

(FOR)  ( )NAME (■) ( )VALUE  (FIND) ( )NAMES 

END WITH (//) 

This function undertakes to furnish the user with listings of variable values 
and certain properties of those variables« It is this function that permits 
you to look at the original input values of your data set, or to discover 
the block numbers of those values. It is also the function that lists 
derived variable values. In some cases, then, it can be said to complement 
the work of the construct table-display subprogram partnership and even to 
duplicate it in a sense. 

( ) NAMES 

The first response to this message is used to obtain a listing of values of 
a variable, either input or derived. The request for the listing will be 
in terms of block numbers. First of all, you are to type in the names of the 
variables whose values are to be listed. The system then responds with a 
second message: 

TOTAL NUMBER OF BLOCKS ■ n 

GIVE BOTH 5.21 

( )STARTING BLOCK 

( )NUMBER OF BLOCKS 

2.5 



9 October 196? ikU TM-2621/003/00 

The first line of this message informs the user of the total number of blocks 
involved« The message then asks you to typrs in both the starting block 
number and the total number of blocks desired for listing  For example: 

TOTAL NUMBER OF BLOCKS ■ 56 
GIVE BOTH 5.21 

( )STARTING BLOCK 

( )NUMBER OF BLOCKS 

»3 U7 // 

The user has here been informed that his variable is contained in 56 blocks 
of data.  He then asked the system to list U7 blocks starting with the third 
block. 

If the user is interested in seeing the values of two or more input variables, 
he may name all of these variables in the initial response.  The tubsequent 
response, which concerns the beginning and ending block numbers, would then 
apply to all of these variables. On the other hand, if he wishes to see 
more than one derived variable listed, he shall have to -wjrk with them one 
at a time—the function treats only one derived variable at a time. The 
user may not request a listing of both a derived variable and an i^.put variable 
concurrently.  If the user specifies more than one input variable at a time, 
they should be in the same data set.  If they also occur in other data sets, 
TRACE asks the user to select Just o&e of those sets—only one set c&u  be 
dealt with at a time. The user receives this message: 

SELECT ONE OF THESE DATA SETS 

n 

n 

o 

P 

q 

where m, n, o, p, and q are set nunters. The user then types in an appropriate 
number. 

2.5 



9 October 196? Il4 5 TM-2621/OO3/OO 

The listing of variable values takes the following forms: 

for input variables! 

column 1 

column 2 

block number 

variable value 

column n " variable value 

for derived variables: 

column 1 ■ block namber 

column 2  ■ case index value 

column 3 " variable value 

After the listing, the system returns to the beginning of this same message, 
asking for the starting and total number of blocks. This is to help you in 
listing scattered sections of your data. If no more listing is required, you 
must type a GOTO command to another function or routine. 

(D)ATA BASE INDICES 

The second response to this function if a request to look at various properties 
of the current TRACE run. These are called data jase indices. Having typed 
the letter D, the user receives the following type of listing: 

DATA BASE INDICES  5.22 

TYPE NUMBER USED MAXIMUM 

DCT-VARB 52 353 

DER-MEAS 3 181 

TOTL-VRB 55 385 

DATASETS U 10 

DISPLAYS k 60 

CLS/INTR 57 960 

INCL-VAL 723 960 

DTA-TRKS 20 23 

2.5 



9 October 196? M TW-2621/003/00 

Note:  since the response in this case is only a letter code, not one containing 
names or variables, the user doesn't have to end it with a double slash. He 
simply types: 

•D 

The second column in this listing refers to the total number of items already 
used by the system; the third refers to the maximum set by the system—a value 
that cannot be controlled by the user (except for bhe last item—here "maximum" 
means a number currently allocated by the system. An option in the changing 
function can alter it). The items are as follows: 

DCT-VARB the total number of variables input by the user 

DER-^'EAS the total number of variables (measures derived thus far) 

TOTL-VRB the total number of variables—both input and derived 

DATASETS the number of data sets input and still outstanding 

DISPLAYS the number of displays thus far 

CLS/INTR the number of classes or intervals 

INCL-VAL    the total number of values included within these classes 
and intervals 

DTA-TRKS    the total number of data tracks on disc 

Note: the values presented in this listing are only the current ones. 
Deletions of data sets, tables, etc. will be reflected in this listing. 

(FOR)  ( )NAME (-) ( )VALUE (FIND) ( )NAMES 

The third response to this function allows the user to look at variable values 
without knowing their block numbers. He does this by creating a subset of 
his data base with a request that resembles a restriction statement: 

FOR variable ■ value FIND variable name // 

for example: 

FOR DIPTRICT = 7 FIND STUDENT // 

This response asks the system to list all the values for the variable STUDENT 
when the value of the corresponding occurrence of DISTRICT is T. Just as in 
the restriction statement, the system makes a subset of the data wherein the 

2.5 



9 October 196? lU? TM-2621/003/00 

values for DISTRICT are each 7j this automatically makes a subset of the 
occurrences for STUDENT. The values for these occurrences are those that 
are listed. However, In edit, subsets are formed one data set at a time. 
The system therefore follows the user's response with another request, this 
one- for the data set number: 

INDICATE WHICH DATA SET 5.22 

( ) 1 TO 10 

(N)ONE 

The user then types In either a data set number If the variable whose values 
are to be listed Is an Input variable, the letter N If the variable is a 
derived one. After the desired listing has been presented, the system asks 
for another data set number: 

COMPLETED 

INDICATE WHICH DATA SET 5.22 

( ) 1 TO 10 

(N)ONE 

If you have no further work to do with this operation, you must exit by means 
of a GOTO command. 

There are several rules that pertain to the use of this operation: 

(1) The variable whose name appears to the left of the equals sign 
may only be an input variable, not a derived variable. 

(2) The variables whose names appear to the right of the system word 
FIND may be input, derived, or a combination of both. The values 
for all these variables will appear in the same listing. 

(3) The user may introduce more than one value to the right of the 
equals sign. In this case, the system works only with the values 
that actually exist in the data base. 

For example, suppose we construct the following statement: 

FOP DISTRICT ■ 5 7 9 - 11 FIND STUDENT ATTEND 

2.5 

■ 



9 October 196? l^ö TK-2621/003/00 

If no data exist  for DISTRICT equal to 5 or 7f only values for 
STUDENT and ATTEND corresponding to DISTRICT values of 9, 10 and 
11 are listed,     (There must be a space between the dash and either 

Jjjj value when a string of consecutive values  is indicated in the JJj 
wi statement.) HJJ 
HH I . miiHiHiin *■■■»»—■»» umm 

2.5 



il 

9 October 1967 lU9 TM-2621/003/00 

—The Changing Function—- 

CHANGE  5.3 g 

( )NAME - ( )VALUE ( )BLSM    (-)  ( )BLK# EOM - // 

( )NAME  (C/D) SET TO ( )NUMBEF 

( ) NUMBER OF DATA BASE TRKS 

This function undertakes to change actual values of variables for the user. 
It also can be used to change the number of characters In a string variable, 
thus cciiverting a string variable to a non-string variable or vice versa, If 
desired. 

( )NAME - ( )VALUE ( )BLK#  (-)  ( )BLM    EOM - // 

The first response Is used to change variable values. You must, however, 
first know the block numbers of the values designated for change—these, of 
course, can be gained from the listing function. In this response, you first 
type in the name of the variable, then the value that is to replace the original 
values, then the starting and ending block numbers for the values that are to 
be changed (these values must occur consecutively). If more values of the 
same variable or values of a different variable are to be changed, you may 
type them in the same format on following lines, ending only the last 
line with a double slash.  (The word EOM means the same as END WITH.) For 
example: 

STUDENT - 121 l6 - IT 

STUDENT - 121 19 - 19 

MONTH - 0 1 - U55 // 

Here the user has aiked that the l6th, 17th, and 19th blocks of the values 
for the variable called STUDENT be changed to a single value—121; he has 
also asked for the first ^55 values of MONTH to be changed to 0. Note: there 
must be at least one space between the dash and either block number in the 
response. 

2.5 



!jfl 

m 

9 October 1967 150 TM-2621/003/00 

V/arning: the new value must be of the same type as the old values; for 
example, an alphanumeric variable cannot have any of its values changed to 
integer values by means of this function.  If the user wishes to change all 
values of a variable into another type, he should use the assign function 
(message 5.31).  If he wishes to change Just some of those values into another 
type, he must form a new derived variable from those values. 

( )NAME (C/D) SET TO ( )NUMBER 

The second response allows you to change the number of characters per sub- 
division in a string variable, that is, the number of characters for each 

distinct value, assuming that a string variable is defined as a variable 
that can consist of more than one value per occurrence. For example, the 
following statement: 

GRADE C/D 2 // 

asks the system to make each occurrence of the string variable GRADE contain 
two characters per subdivision; that is, each value now will be two characters 
long. Setting this variable to a non-string vavlable could be accoraplisned 
by typing as the new C/D value, the total length of the variable per occurrence. 
It could also be done by setting it to zeroo 

( ) NUMBER OF DATA BASE TRKS 
lit! 
MM 

The third response is used to change the number of data tracks on disc. 
mmfmm wmwffliHW« 

2,5 



9 October 196? 151 TM-2621/003/00 

—The Data Set Forming Function— 

FORM DATA SET 5.1* 

( )NAMES OF MEASURES 

III! 
<«■ 

m 

This..function hai only one purposet    It builds data seta from a designated 
group of derived variables, thus giving to the derived variables the status 
of Input variables«    The new data set formed has all the properties of an 
original input data ret; for example, a variable previously treated as a 
derived variable and therefore unable to serve as a case index variable can 
now carry out that role.    This type of conversion also serves to prevent the 
user's surpassing the system-determined limit for derived variables; that 
is, upon reaching this limit he may, instead of deleting some of his variables, 
convert them to data set variables, in other words, virtual input variables. 

Note:    all the variables designated must have the same case index variable. 

Warning:    if more than one variable is used for the forming of a nev data 
set, they must all have exactly the same number of values.    If not, you are 

w expected to delete the overflow values, or else convert them into a different 
2 variable. 

m m 
m 
m 

2.5 



(.' October 196? 152 TK-2621/OO3/OO 

—The Variable Renaming Function-- 

m 
RENAME 5.5 

( )NAME (TO) ( )NAME 

m 
m 
m 

This function simply allows the user to rename any variable, either input or 
derived. You type the original name of the variable followed by the word 
TO followed by the desired new name, for example: 

» STUDENT TO PUPIL // 

All the values previously belonging to STUDENT will now be known under the 
name PUPIL. 

You are allowed to specify more than one renaming in the same response. 
Simply type in a new renaming statement on a second line. The final line 
will end with a double slash. 

If the variable name being used is found to be in more than data set, the 
system asks for a clarification, sending the following message: 

FOR OLD (variable name) SELECT VJHICH OR (A)LL OF THE FOLLOWING DATA RETF: 

m 

n 

o 

P 

a 
* 

where m, n, o, p, and q are data set numbers.  The user selects the desired 
data set ana the system fulfills the request.  It then returns the user to 
the beginning of the routine.  If he wishes to rename every occurrence of 
the variable, he typed A,  (The variable name typed by the system in the first 
line of this message is the original name of the variable.) 

Notice how this function serves to complement the restriction statement in a 
derivation. By renaming a variable for one or more particular data sets, the 

;;J; user in effect restricts any derivation to Just those data sets.  After a      '■'■ 
;'■; derivation, the user may restore the original variable name, if he wishes,     'f\ 

2,5 



9 October 196? 153 TM-2621/003/00 

—The Value Assigning Function-- 

lfl!l(fli)»W!W 
N" 

vi This function is somewhat similar in effect to one of the options of the      I 
changing function: it allows the user to change actual values of a variable.  * 
However, there is one major difference. The changing function operated only 
to change designated Individual blocks, or strings of blocks; this function 
permits the user to specify a value change that will affect every block or 
value of a particular variable. Like that function, however, the value change 
may not be from one type to another, for example, integer to alphanumeric. 

The messages and responses for this operation have the following sequence: 

ASSIGN VALUES 5.31 

( ) NAME OF VARIABLE 

* 

Here you type in the name of the appropriate variable, 

GIVE ASSIGNMENTS END WITH // 

( )OLD VALUE (-)  ( )NEW VALUE 

You now proceed to type in the value that you wish changed followed by the value 
that will replace it« If you wish to make several value changes, each assign- 
ment must occupy a line by itseir.  For example, suppose the variable is 
SCHOOL, a non-string variable. By typing: 

» h5h  - 1*5 

U57 - ^5 // 

you will have changed all values for SCHOOL that previously were either U5U 
or 1*57 into values of 1*5.  On the other hand, if your variable were GRADE, 
a string variable, you would be permitted to change only one character per 
line in the response, TRACS allows only one character of a string variable 
to be changed at a time.  To illustrate:  suppose GRADE, a string variable 

2.5 



9 October I96T ^ TM-2621/003/00 

with two characters per aubdivigion, consisted of values such as A+, A-, 
B:, D-ft and so on. To change these into numeric values such as 98f 92, 05, 
68, etc., you would have to type lines such as: 

»A ■ 9 
♦ - 8 
B ■ 8 
- « 2 

D - 6 

and so on. 

Another route lies open for the user who wishes to convert values in a string 
variable. Suppose that this user wishes to work with a string variable 
having three characters per subdivision, the possible characters being A, B, 
and C. Suppose next that he wanted to convert two possible occurrences to 
a different set of characters: the occurrences of ABB and CBA to XYZ and 
PQR. This conversion is impossible with the character by character method. 
First of all, that method involves all values In a variable, not Just specific 
ones. Second, this conversion requires identical characters to be changed 
to different ones depending upon their original context. The user may solve 
this dilemma by converting the variable to a non-string variable by means 
of the option in the changing function of the edit program that does this 
conversion, changing the two occurrences in question three characters at a 
time, and then returning the status of the variable to that of a string 
variable. 

«j Note: when the variable is alphanumeric, whether string or not, only eight    [«■ 
m  characters are permitted to be changed at a time. m 
m w 
iffiHHWRfflW! WIHmtfl« 

2.5 



9 October 1967 155 TM-2621/003/00 

PART 6 

The Output Subprogram 

The output subprogram has one function: to allow the user to output a group 
of input and derived variable values in punched card format. It therefore 
is the program to call when variable values are to be output. There is one 
major set of restrictions on the variables that may be combined to produce one 
card image: derived variables must have the same case index variable; input 
variables must be of the same data set. If mixed, the input variables must 
have appeared in the same data set as the case index variable of the derived 
variables, 

w The first message in the output subprogram: * 
m * 

OUTPUT 6,0 

GIVE CARD FORMAT 

USE 0-9 AND A-Z 

SEPARATE BY BLANKS 

USE , FOR FLOATING POINT 

LINE MUST END WITH A BLANK 

« 

This message asks the user to specify the number of columns to be devoted to 
each variable valuo in the card image by typing in a series of characters to 
represent the length of each variable. Each unique character will stand for 
a distinct variable and the number of those characters entered in a series 
denotes the length of the variable. Example: 

* 55555555 TTT7 AAAAAA MM 

(There must be a blank between the last character and the carriage return.)  The 
character 5 stands for some one variable, as does T» A, and M. There are eight 
5,s, so there will be eight columns allotted for that variable. Similarly, 
there will be four columns allotted for the variable represented by 7, six fcr 
A, and two for M. In case the user wishes to introduce spacing between variables 
in the card image, he need only specify more characters per variable than the 
actual length of the values in that variable. All values are right Justified 
in the card image.  So, if the user wished two spaces between the first two 

w variables, he would represent the second variable by two more characters than   w 
,., would actually be necessary, w 
nfiitmimfflw. imifWiflHRW 

2,6 



9 October 196? 156 TM-2621/003/00 

m GIVE NAME FOR FORMAT SYMBOL 6.1 | 

"      ( )NAME (S-E) 

END WITH (//) 

CHR IS n 

Having received the card image from the user, the system now endeavors to learn 
the meaning of each symbol used. It types out the symbols used (the n) one 
at a time and asks the user to provide it with the appropriate variable name 
and,  if the variable is a string variable, to add both the number of the 
beginning subdivision and the ending subdivision. For example, a response 
could look like this: 

* SCHOOL // 

where SCHOOL is a non-string variable, or 2ike this: 

* GRADE 3~k  II 

so that only the third and fourth subdivisions in each occurrence of GRADE will 
be output.  (Note that there is no space between dash and subdivision number.) 

For our card image example, the communication for this one message could pro- 
ceed as follows: 

GIVE NAME FOR FORMAT SYMBOL 6.1 

( )NAME (S-E) 

END WITH (//) 

CHR IS 5 

* ALPHA // 

CHR IS T 

* MENGRADE // 

CHR IS A 

* TEACHER 

CHR IS M 

* GRADE 3-^ H" 1 w 

2.6 



9 October 1967 157 TM-2621/003/00 

m  After the system has asked the user for identification of the final character, * 
'ill m 
1« it sends this message: £ 
I 
Hii 

I«     GIVE NEXT CARD FORMAT OR INDICATE CARDS 
m 
I      ( )FORMAT 

m (N)0 a 
it«     • 

HI! 

m 

I Here you either respond with another card image or else type N to indicate I 
ijll that no more images are forthcoming. This message is Issued to allow you to jj* 
wi output more variables than could oe set into one card image. * 
Hfl ■■...■■■.,—,.,.———,———,—i^.. mmiimummim^mtm MIHIHIHIIIIIHIMI mimiimmtmtmumimmi^mimim mi mimimi           »mimimimi       . jffj 

I             GIVE NAME OF ID-VARIABLE    6.2 | 

I               (   )NAME I 
HH           M m 

iffl m 
m m 
I The user types in the name of the case index variable or, if none is necessary w 
M as in the case of an output of data set variables, a variable that can serve  w* 
fiH                       ^ HE m  as a case index variable. w 

fin V, 
w The subprogram now sends out to the user a list of facts concern4 ng his output »w 
m  for example; m 
Hn m m m 
I #DATA SETS «1                                                     m 

I /I'lD-VALUES » 6U0                                                 m 

I #CARDS/ID-VALUE ■ 1                                                ! 
I FIRST VALUE - 11211                                                w 

I LAST = 933^5                                                       v 
■'•" Ml 

ffl TOTAL # OF CARDS ■ 6U0                                                                                                                 w 
I w 

I« INDICATE:                                                                                                                                    £ 

«2 (   )  STARTING BLOCK m 

I (   ) NUMBER OF BLOCKS I 

w END WITH  (//) $ 
22 'f 

2.6 



9 October 196? 158 TM-2621/003/00 

(cont'd) 
m w This information, in order of appearance, means: 

m I m w 

I the number of data sets involved                                ||jj 
m ,                                                                                                          m 

m the number of case index values                                   12 
i 1 
m the nvunber of cards per case index value                           i£ 

H»! the first value of the case index                                  «J 
i m 
i the last value of the case index                                jjjj 

iw the total number of cards that will be produced                     * 
w „. m * I H« 
i The user is now permitted to choose either a production of all the possible 

cards or that of a segment—the segment must consist of a series of contiguous 
tin m 

i blocks. Although the response ends with a double slash, he can only enter one * 
| set of blocks here. For example: * 
ffi 'ff 

f! . , * 
If« «    1|55     I4 HI! 
W! ^^ MK 
m w 
ifi| w 

i Here he has asked the system to prepare output for blocks 455, ^56, h^l,  and  jjjj 
M U58, «H 
«! N" 

HUfi««»««« W!H. riwnw 
ipi HH 
1 The next message in the cycle of preparing output is: •* 
m HH 

OUTPUT ON: 

(TT)Y 

(TA)PE 

(B)OTH 

The user specifies the mode or modes of output that he wants. The teletype 
output of response B is used for monitoring the output on tape. The system's 
communication with the user is now dependent upon the response to the previous 
message. There are three paths which the system can take: 

(l)  the response is TT 

No further messages are sent to the user; the next communication to the user 
is that of the output listing. 

2.6 



9 October 196? 159 TM-2621/003/00 

(2)  the response Is TA 

The train of messages after this response is as follows: 

ENTER REEL NO FILE TAPE - * 

Here you supply the reel number of the tape you vish to use for holding the out- 
put. Notice that the asterisk is on the sane line as the message—therefore, 
your response will also fall on the same line. After you have entered a number, 
the system delivers the message: 

WAIT 

This tells you that th* computer operator is retrieving the tape requested and 
is mountins it on a tape drive. The system then produces the output, followed 
by the message: 

END OF FILE WRITTEN 

(M)ORE OUTPUT ON THIS TAPE 

(N)0 

« 

If you wish to develop more output for the same tape, you enter the first 
response. Having done this, you would then return to the beginning of the 
routine and form another set of output data. This time, however, since the 
reel number is the same, the system will not ask you for a reel number.  If, 
this second time, your response to the message: 

OUTPUT ON: 

is TA, you will immediately receive your output on tape, followed by the message 
stating that an end of file has been written. 

If, on the other hand, you respond with N to the message: 

END OF FILE WRITTEN 

you are in effect telling the system that you are either finished with the 
routine or that you will prepare more output—but for another tape reel.  If 
the case is the latter, you will again be asked to provide a reel number on the 
next time through the routine. If you are finished with the routine, you will 
exit at the next message. 

2.6 



9 October 196? l60 TM-2621/003/00 

(3)  the response is B 

The train of messages after this response begins with the initial message of 
that following the response of TA, that is: 

ENTER REEL NO FILE TAPE - • 

and 

WAIT 

The first message peculiar to this response is: 

FOR TTY OUTPUT: 

( )START BLOCK 

( )NUMB OF BLOCKS 

When comparing tape output with teletype output, the user is permitted to 
specify distinct groups of blocks for the teletype.  (Remember that when the 
output is on teletype alone, the user has no opportunity to look at separate 
groups of blocks; he is limited to one set of consecutively appearing blocks.) 
The response to -chis message is then the first set of blocks to be looked at, 
for example: 

»126 U5 

The user has asked to have printed on the teletype the output for the k3  blocks 
starting at block 126 and ending at block 170, The system then proceeds to 
prepare the specified output. The next message is: 

LAST CARD REQUESTED 

( )START ( )END FOR MORE TTY 

(S)TOP TTY 

(T)ERMINATE OUTPUT 

2.6 



9 October 196? l6i TM-2621/003/00 

Here the user may specify another set of blocks to be put on the teletype. 
(Remember that the total number of blocks for tape output has already been 
fixed—by the response to the message that asked for the starting block number 
and the total number of blocks immediately following the statement of the 
number of blocks available. This message only concerns teletype output.) 

A response of S tells the system that outputting is to continue on tape but not 
on teletype. A response of T means that the outputting is finished for both 
tape and teletype« A response of a starting block number and a number of 
blocks means that the system is to continue outputting with this new Interval 

Jjjj for teletype output. This information does not affect tape output. This    *} 
HJ message is sent to the user after every interval of teletype output. jj 

I After the outputting is completed, the system sends its final message:       ^ 

m 
I     OUTPUT COMPLETE 2 
m m 

I and then repeats the first message of the routine, allowing the user to specify« 
I another card image. He exits from the routine by typing a GOTO command.     Jj 

Warning:  even though there may be more than one value of a variable being out« 
put per distinct case index value, you are allowed to output only one of them. 
TRACE warns you of this situation during the actual outputting Itself, sending 
the following message at each encounter of two or more values of an output 
variable for a particular case index value: 

FOR ID " value DS-VRB variable name HAS n VALUES 

(L)IST VALUES (A)LL OR (#-#) 

( )# TO USE 

or, as an example: 

FOR ID ■ 2k  DS-VRB DISTRICT HAS 3 VALUES 
(L)IST VALUES  (A)LL OR (#-#) 

( )# TO USE 

* 2-3 

2.6 



9 October 196? 162 TM-2621/OO3/OO 

This sample message has told the user that for the case index value (ID-variable 
value) of 2kt  the variable DISTRICT has three values. It then asks you to 
choose from three possible courses of action: 

(1) to have all the values listed 

(2) to have a particular segment of those values listed. Note that 
the segment must consist of consecutively occurring values and that 
no space should separate the numbers from the dash in your response. 

(3) to select one of the values as the value to be output 

In the sample response, the user has asked to have the second and third values 
listed. Following the requested listing, TRACE again issues this very same 
message, allowing you to select one of the values listed (or not listed) as 
the value to be output. 

Note: since this message is Issued every time a multi-value case is met, the 
user is in danger of having his output operation prolonged a considerable 
amount of time. If the situation is that many such cases are to be found in 
any one operation, the user should use the edit subprogram to view the values 
of concern and then probably derive a new variable consisting of the desired 
values. 

2.6 



9 October 1967 163 TM-2621/003/00 

PART 7 

The Statistics Subprogram 

For the TRACE user, this routine performs one specialized service: it evaluates 
differences between tvo groups or classes within a derived variable by running 
either a Mann-Whitney U Test or a Chi-square Test on that variable against one 
or more variables in the data base« 

Suppose, for example, that we want to explain the phenomenon of underachievexnent 
in school. We want to know how underachievers differ from others in the student 
population.  In our data base then, we would have entered a variable for students 
(STUDENT) and several other variables representing characteristics associated 
with this variable, like acuity of hearing (HEARING), family stability (FAMILY), 
and relative age of the student within his class level (RELAGE). Next we must 
have a variable that separates these students into levels of achievement in school 
studies, for example, three levels:  a value of U for underachievers, 0 for 
overachievers, and N for normal achievers. This variable, which we can call 
ACHIEVE, could have been derived by comparing average grades with intelligence 
quotient; or, it could originally have been an input variable. One convenient 
method of producing this variable is by means of the ASSIGN VALUES TO CELLS 
work option in the display subprogram. For example, a display could have been 
prepared showing the correlation between actual student performance and predicted 
performance (perhaps on the basis of intelligtnce).  The user could have then 
assigned values of U to those cells that showed a lower than expected correlation, 
values of 0 to those cells that showed overachievement, N to the rest. This 
new variable (ACHIEVE) would have as case index values the values of STUDENT. 

So now suppose that we wanted to know whether any of the variables among HEARING, 
FAMILY, and RELAGE might have had any effect in separating the students into 
their achievement levels.  In other words, we wish to understand how under- 
achievers differ from other students in terms of family stability, hearing 
ability, and relative age if they actually do. 

This then is the function of the statistics subprogram: to perform tests showing 
the relationship of one group to another by investigating their differences 
with respect to variables selected for their potential explanatory character. 
These variables are called "target variables." The variable containing the 
two groups is called the "criterion variable" or "criterion measure." In our 
example, ACHIEVE is the criterion variable, HEARING, FAMILY, and RELAGE the 
target variables. 

2.T 



9 October 196? l61» TM-2621/003/00 

H! Having entered the statistics routine, the user receives the following intro- Z 
*j ductory message from the systtm: * 

S 5 
HH     STATISTICS 7.0 $ 

|      (T)W0 GROUP SAMPLE TEST * 

g      (P)RESS DATA BASE GENERATOR 1* 

» S 
Hfl " 
it« W 
!« W 

*} The user here responds with the letter T. The second response is related to an ^ 
| operation beyond the scope of thit document.  (It creates an interface between JjJ 
*} TRACE and IDEA: A Conversational, Heuristic Program for Inductive Data jjl 
g Exploration end Analysis—seeSP-2638/000/01.) ; 

m             2-GROUr SAMPLE TEST m 
m w 
S     GIVE CRITERION MEASURE FOLLOWED BY TARGET VARIABLES w m w 
'fl      ( )NAMES Iff 
Hfl            *  ' W 

m              END WITH (//) W 
H« Hfl 
Hfl -tu 
ijR                   * Hfl 
Hfl Hfl 
!iR H« 
!,H Hfl 
Hfl HK 
m  This message asks for the neune of the criterion measure and the target variables. »" 
m  Only one criterion measure can be named—it uust be a derived variable.  Any    'ff 
m  number of target variables may be named, either derived or input or both. w 
m  However, all the variables named must have the same case index or. in the case   ^ 
Hfl          ' •                     H" 
Nf of input variables, must be in the same data set as the common case index       !"' Hfl !|fl 
«« variable. Alphanumeric variables used as either the criterion measure or a     P 
iff! Iff 

H« target variable must be no more than one word in length.                     w 
Hfl Hfl 
W Hfl 
Hfl m 
m Example: HA 
Hfl            r W 
Hfl Hfl 
Hfl Hfl 

I     »ACHIEVE HEARING FAMILY RELAGE // m 
Hfl Hfl 
W!iflimi:H!,m,H!!mmiiflliHiinHflHflHRHfl!miflHRHHH«HflHflHflHflHflHKWHHHflWHIlNflHflHflHfl 

2.7 



IHI Here the user is being asked to select the value or values to form the first |jjj 
m 

9 October i96T 165                                            TM-2621/003/00 

8             GIVE VALUES  FOR GROUP-1 ! 
NU 1 m            • * 

83 
Ml m 
ii 
i group within the criterion measure. For example: 
m * 
Nfl ** m            *u // E 

Hfl S 
^H (Note that this response must end with a double slash.)    This response tells    S 
I us that the user Is planning to relate underachievers to either overachievers | 
^ or the rest of the students all together.     In case the values are not alpha-    £ 
w numeric but integer or floating point, the user may indicate a series,  for        JJ 
IJH example: JJ 
HU W 
m w m                                                              , H 
w            «2  U 5 6 8 11 13 15 16  // ^ 

iffl w 
I There is no provision for entering a series of consecutively appearing values $ 
* as a reuige,   for example:    IU-16. JjJ 
wmmmmimimmmmmmmmmmmmmmmmmm 

* GIVE VALUES FOR GROUP-2 Jj 

HK       » JJ 
W! Nfl 

HP. 
UM 

w The user here responds with the values for the second group, for example: ffl 
Iff H*! 

* * 0 N // * 

M! i 
* In our example, the user has asked to relate underachievers to both over- UJJ 
* achievers and normal achievers. ^ 
IjMti—^J^M^|||jM|j|[|j|.y*|^||yM[||i|||.i||»j|||y|t[|Myj||^ 

2.7 



9 October 1967 166 TM-262I/OO3/OO 

TRACE now proceeds to issue a statistical analysis comparing the two groups 
within the criterion variable:    one analysis  for each target variable.    Each 
of these analyses are dependent upon the nature of the target variable:    an 
alphanumeric variable yields one type;  a floating point or integer variable 
another.    Tne  following analysis is generated by a target variable that is 
alphanumeric. 

FOR FAMILY 

CHISQR: 

0.000 NSIG 

3.908 

9.236    ,10 

C ■      0,131k 

DF ■        5 

Nl ■      89 

N2 - 211U 

CELL EXP LS5       0 

COMPLETED 

(C)ONTINUE 

(B)ASIC  OPTIONS 

the Chi-squarc values are to follow: 

confidence level 

obtained Chi-square 

confidence level 

contingency coefficient 

degrees  of freedom 

number of values in the first group 

number of values in the second group 

cell expectancy less than five 

2.7 



9 October 196? 167 
(page l68 blank) 

TM-262I/OO3/OO 

The following is a typical analysis for a target variable which is either 
integer or floating point: 

FOR HEARING 

MANN-WHITNEY TEST: 

2.33 .02 

3.000 

3.06  .002 

Nl •» 89 

N2 - 211k 

COMPLETED 

(C)ONTINUE 

(B)ASIC OPTIONS 

confidence level 

obtained result (u) 

confidence level 

number of values in first group 

number of values in second group 

A response of C for CONTINUE will cause the system to return to the first 
message of the routine. 

2,1 



I 9  October 196? 1^9 TM-2621/003/OO 
(page 170 blank) 

i APPENDICES 

• 



9 October 196? 171 TM-2621/003/OO 

APPENDIX 1 

RULES FOR TELETYPE RESPONSES 

(1) An asterisk typed by the system is the signal for a user response. 
The response must begin on the same line as the asterisk. There need 
not be a space between the asterisk and the response; however, one or 
more intervening spaces are permissible. 

(2) The forms that a response may take are always included in the message; 
these command one or more whole lines of type, each line representing 
a possible response. Each of these lines contains one or more sets of 
parentheses—sometimes enclosing an alphanumeric string, sometimes 
empty.  If empty, the up*r is expected to type in a value (described 
by the words immediately following the empty set of parentheses). 
If the parentheses contain some entity, e.g., a string of characters, 
this must be typed by the user.  Often, a response includes both empty 
and full parentheses. 

(3) Whenever spaces are to be used in a response, they may occur either 
singly or in strings; the system treats single and multiple spaces 
alike. 

{h) A space is the only means of separating entities on a teletype line. 

(5) A system message that contains the request: END WITH // makes the 
user responsible for ending his response with a double slash. This 
convention is required by the system whenever there is u possibility 
that the response will extend beyond a single line; it must be used 
even though the response does not reach beyond the initial line. 

(6) All responses are sent to the system by means of a carriage return. 

(7) In case of a typing or other error, a response can be deleted (providing 
that it hasn't already been sent to the system via a carriage return) 
by typing in a quotation mark. This causes a carriage return allowing 
the user to begin his response anew. The system will not print another 
asterisk, however. 



9 October 196? 172 TM-2621/003/00 

APPENDIX 2 

RULES FOR CREATING NAMES 

(1) A name must not exceed eight characters in length,  (A data base name 
may be only six characters long.) 

(2) It must include at least one character that is not a digit. 

(3) The character string must not spell one of the system words or com- 
ponents, e.g.: EQ    AM    •♦■    AND    EACH    COR 

(U)    It must not include the following characters: 

(A slash occurring singly is permitted, for example: ALPHA/X ) 

(5)    It may not hold an imbedded blank. 

These rules apply to all names provided by the user, including input variable 
names, derived variable names and table names. 



9 October 19bT 173 TM-2621/003/00 

APPENDIX 3 

PREPARATION OF DATA CARDS 

The data deck consist8 primarily of a data dictionary and a set of data cards. 
There must also be at least five control cards. These members of the entire 
data deck appear in the following order (see Figure 1 at the end of this appendix): 

(1) START DICT (control card—these two words may start in any column.) 

(2) The dictionary—each variable is represented by a card—each card has 
the following information (the elements in this information do not 
appear in specific fields, e.g.» the variable name might begin at 
column 18; however, the elements must appear in the correct order, 
separated from each other by one or more blanks): 

-1-  variable name 

-2-  type of variable: A for alphanumeric, F for floating point, 
I for integer 

-3-  starting column for the variable for its particular card in 
each block 

-U-  total number of columns (e.g., if a string variable has a 
total of five two-column values per occurrence, the answer 
is 10). 

-3-  number per subdivision: this is zero for non-string variables. 
It means the number of columns for each value in the string. 

-6-  skips between subdivisions: the number of columns intervening 
between appearances of separate values in a string variable. 

-T-  beginning card: the card in the block on which the value for 
the variable starts; for example, if vulues for a particular 
variable start in column 68 of the firex  card of a two-card 
block and end in column 23 of the second card, the answer here 
would be 1. 

-8-  ending card: the answer for the previous example would be 2, 

Note: nothing may appear in column 80 of any dictionary card. 

Note: there should be not more than 150 cards in the dictionary. 



Mi 

9 October 19^7 IT1* TM-2621/OO3/OO 

(3)    END CASE variable  na/ne—«this is a control card starting with the words 
END CASE followed by the name of a variable selected as a general case 
index for the data. If there is one variable that has a unique value 
in every block, e.g., STUDENT in our data set of Section 1, this should 
be named. Otherwise, any variable can legitimately serve—this is the 
variable that will be recognized as the case index in any derivation if 
the user chooses not to name one in the derivation subprogram. 

(M START DATA (control card—start in any column). 

(5)    the data cards—these must follow the specifications laid down by the 
dictionary. Note:  no data may appear in column 80 of any data card. 
The cards in the data section do not have to follow any order from 
block to block. That is, within each block of multiple cards, the 
individual cards must be in the correct order; however, the blocks 
themselves can be arranged in any order. 

(6) END DATA (control card—start in any column). 

(7) END INPUT (control card—start in any column). This is a special 
control card (also called the TSS EOE card) prepared as follows: 

col.   1 punch 7 8 9 

col.  2 punch 7 8 

col.   3 punch 0 3 

Punch the letters ENDINPUT starting in column 15. 

There is also one partially optional type of information that can be entered 
onto one of the control cards. An estimate of data set size can be appended 
to information already on the END CASE card. This size is in terms of blocks 
of data for the entire set; it need not be the exact number of blocks but it 
should not be an underestimate. This figure appears en the control card as 
follows: 

END CASE STUDENT 1999 

If no such estimate is entered into the data deck, the system will ask you 
for it during the inputting stage, (See references to the input subprogram,) 
Note, however, that ordinarily this estimate should appear whenever the data 
set is on disc. 



9 October 196? i?5 TM-2621/003/00 
(page 176 blank) 

There must be a new dictionary for every data set.  Each data set may be 
completely independent of any other data set; that is, it may contain variables 
not part of the other sets. However, if the seune variable appears in two or 
more sets, it must be of the same type (alphanumeric, integer, floating point), 
have the same character length and subdivisions.  It need not occupy the 
same card columns in the different sets, nor the same starting and ending 
cards within a block. 

Note:  although units of alphanumeric data may be as long as 120 characters 
long, TRACE, in many cases, can only work with eight characters at most, 
at one time.  If you wish to escape this restriction, you must convert your 
data so that it can be worked with.  This can be done during the punching of 
the data or it may be left for the edit subprogram to handle. 



9 October 196? 177 
(page 178 blank) 

TM-262I/OO3/OO 

Data   ( arJs 

\*ruotMr   x   »   f 00 
lugvtL      1   »   a   o   0   ~ 

IMIWC»»     t     *     4    O    Q    "T" 
|«CH»ftt.        t     4    i    O     O       t 

loi»r«»eT   r   1    *   o ^»     1 

....   TSS  EOF  l^r'l 

Convent i onji 1 
End   Data 
Card 

| tTTmrto  K 4^ <   »   o     , "7" 
|T«U.M*^  x n  IX  l   4""     "~ 

Conventional   Start   [)ata 

Convent lona 1   Knd   DU t 

VARIABLE    TYPE OF       STARTINC     NUMBER OF       NUMBER   PER      SKIPS   BETWEEN     HKf.INNINC     ENDING 

NAME VARIABLE     COLUMNS COLUMNS        SUBDIVISIONS     SUBDIVISIONS CARIJ CARD 

DISTRICT 1 1 (i n 
SCHOOL 2 2 '1 n 
PRINCIP 4 2 () 0 

LEVEL 6 2 n 11 

STUDENT 8 5 n 0 

SUBJECT n 12 2 (. 
GRADE r. 12 2 it 

TEACHER 17 12 2 u 
ATTEND 6'* 2 0 0 

CONDUCT ')! 2 (1 0 

MONTH 
r)! 1 0 0 

Figure 1 



9 October 196? 179 TM-2621/003/00 

APPENDIX k 

THE Q-32 TIME-SHARING SYSTEM 

TRACE II can function only within the 0,-32 time-sharing system. Thus, before 
the user can begin his work on the TRACE program, he must first bring that 
program into the system.  This means, naturally, that he must himself become 
one of the time-sharing users. Once the user and the TRACE progrsm have been 
accepted in the system, interaction between them proceeds without visible 
recourse to the system. 

All interaction between the ueer and the TRACE program or between the user 
and the time-sharing system is by means of the te"1 etype—essentially an 
electric typewriter.  The first action by the user on this teletype is the 
typing of: 

{STATUS (followed by e  carriage return—all responses are 
communicated to the system by a carriage return) 

You then wait for a response from the system that says the following: 

$N0 LOGIN 

This system response tells you that it is alright for you to enter the system. 
If a response other than this is forthcoming, it means that the teletype is 
already in use by someone else. 

You "log in" with the following type of message: 

JLOGIN 7688 9^000 

where the number 7688 is the man number of the user and the 9^000 the work 
order nunber,    Both of these numbers must be known and acceptable to the system. 

Note:    messages from the user directly to the time-sharing system must begin 
with a !.    Responses from the system begin with a $, 

If this logging-in message is honored by the system,  it responds with a message 
of the type: 

$0K LOG ON 13      12:36.1    10/13/67 

where the number 13 is the channel  (teletype) to the system that is to be used. 



9 October 1967 180 TM-2621/003/00 

12:36,1 is the time of day, and 3 0/13/67 is the day of the year.  If the 
request to log in is not honored, the system will issue the reason for the 
denial. 

You are now expected to work with one of the system's library programs.  Our 
first project is that of getting the TRACE program into the system.  Becauee 
of its size, TRACE is not a permanent member of the disc library—it exists 
only on magnetic tape.  The project specifically involves bringing the TRACE 
program from tape onto so-called drum storage, where all operating programs 
must reside, although this residence can only be temporary. However, no 
direct transfer can be made from tape to drum—transfers are possible from 
tape to disc and from disc to drum. Our project Is therefore expanded: we 
must first transfer TRACE from tape to disc, and then from disc to drum. 
The first step can be accomplished by means of the library program LIBRY, 
which serves to move files from tape to disc or from disc to tape. The 
document describing the operation of this program is TM-2708/203/01. The 
process of using LIBRY to bring TRACE onto disc is as follows (user input in 
blocks): 

[{LOAD LIBRY 

$L0AD 13 

[SO] (now that you are no longer communicating 
directly with the system but with one 
of its library programs, the response 
signals ! and $ are not applicable) 

$MSG IN 

ENTER OPTION DESIRED 

TAPE TO DISC 

INNAME FORM  (B,H,C,A,P,T)  LIBRARY REEL 

TRACE P IU78I (the name of the program, the letter 
P for program, and the reel number of 
the tape holding the program—currently 
the TRACE program resides on reel 
#11478) 

$ WAIT 



9 October 196?                                               l81 ^-2621/003/00 

$FILE FL0001    DRIVE lk    REEL 2*403 

ANOTHER FILE?    Y/N 

m (The first file brought in the TRACE 
executive program—now you must enter 
the TRACE subprograms.) 

INNAME FORM  (B.H.C.A.P.T)     LIBRARY REEL 

TRACES B 

ANOTHER FILE? Y/N 

E 
STANDBY 

THE FOLLOWING TAPE REELS ARE FILED 

2U03 

ENTER OPTION DESIRED 

At this point, TRACE (the executive program plus all its subprograms) has been 
placed on disc and you are now ready to begin the transfer from disc to drum, 
LIBRY does not affect this type of transfer—it is one of the functions of 
the time-sharing system's executive.    Therefore, you call on the system again. 
(Remember to use the signal  !  again.) 

ILOAD TRACE 

The system can honor this request only if there is enough space on the drums 
to accommodate the TRACE executive program, which consists of k6tk^6  words, 
(The subprograms remain on disc—to be called by the executive whenever 
necessary.) If the drum space is not sufficient, the system will issue the 
message: 

$ NO LOAD DRUMS FULL 

This instructs the user to wait until another user or two leave the system, 
thereby freeing enough drum space for TRACE. If drum space is immediately 
available, the system returns the favorable message: 

$LOAD 13 (channel 13, of course, appears here 
only as an example) 



'"•■"■" ""H 

I82 TM.2621/003/00 9 October I96T ^x/uu^ 

The user replies with: 

GO 

which elicits the first mesflftSe of the TRACE program: 

$MSG IN, 

YOU ARE STARTING TRACE 0.1 

NAME YOUR DATA BASE 

( )NAME 

How 
are Suppose that the system tell9 the user that no drum space is available, 

will you know when enough drum 8pace for TRACE becomes available. There 
two ways of learning this: 

(1) Continue trying to 1°^ TRACE—when enough space becomes availabl6» 
the request will be ^filled. 

(2) Ask the system immediately and from time to time for the amount 0 

drum space available« This communication may run as follows: 

IDRUMb c 

$1208 

This signifies a long wait. W would have to wait for nore than ^5,00° V0 

to open up. 

On the other hand, a system reSp0n3e of: 

$ 1)2236 

would tell you that sufficient 8pace should certainly be available Up0n ^ 
withdrawal of the very next ^aer from the sytem. 

The user enters the time-sfcari,^ system briefly upon the clo^e °f his ^1^ 
action with the TRACE prograni. To indicate to the system and ^nereby t° 
other prospective users of the system (with your more than ^5,000 words 
drum space, you may be preventing several potential users from entering 
system) that you are finished anci can relinquish your drum space, you tyv 
the message: 

I QUIT 



9 October 196? lö3 TM-2621/003/00 

This .-nessage typed in at any point in any program such as TRACE, immediately 
terminates your interaction with that program—and also with the time-sharing 
system. 

A Summary of TRACE Residences 

In operation, the TRACE executive always resides on drums. 

In operation, the TRACE subprograms stay on disc, but are copied onto 
drums whenever needed—one at a time as they are called. 

The data base resides on disc; portions that are needed are brought into 
core (drums). The first track on disc is a bookkeeping track, outlining 
the structure of the data base. 

All additions to the original data base are placed on disc and treated 
subsequently like any other portion of the data base. 

- ■  ..„^^^^^„^^^^^^^^^M^MMiMMM.M^M^MBMMMi^iaaaB 



9 October 196? l8U TM-2621/003/00 

APPENDIX 3 

TROUBLE IN TRACE ~ 

and hov to get out of it 

Like any partnership between mind and matter, the latter sometimes seems to 
have a mind of Its own and the partnership comes to a breaking point. So It 
can be with the user's Interaction with TRACE—sometimes things can go awry. 
For example: 

.    the time-sharing system Itself may fall 

.    the TRACE program may fail 

.    the user may be at fault, doing something illegal (e.g., trying 
to divide by zero) 

Whenever there is a TRACE failure, or a user-instigated malfunction occcurs, 
TSf 'the time-sharing system) assumes control, sends a message to the user 
informing him of the situation, and waits for a remedy. A typical message 
asking for rescue is: 

$ PRGM STOPPED    DISX    DISPATCHER CALL ERROR 

The best cure for this is a reloading of the TRACE program.  Simply type: 

I LOAD TRACE 

and retrace the loading procedure. Remember that TRACE is still safely 
secured in disc storage—you need not worry about calling LIBRY to bring in 
TRACE from tape.  And your data base is also safely on disc—you do not have 
to input your data again. 

A failure of TSS itself may require the user to begin all his operations over 
again, starting from the business of logging in. The system may inform the 
user of a regaining of control if he remains at the telet/pe; on the other 
hand, he can initiate a call to the control center if that is convenient 
(extension 221). 

There may be occasions when the user has doubts about the program's operation 
(unusually long delays, unexpected responses, for example). In this case, he 
may ask TSS about his program's status.  He simply types: 

J STATUS 



9 October 196? l85 TM-2621/003/00 

The system then answers with an appropriate message, for example: 

$ WAITING FOR TTY 

which means that the system is waiting for a response from the user (perhaps 
he thought he responded but, for some reason, the response never reached i<he 
program). Notice that he was able to talk directly with the system merely by 
prefacing his message with an !.  If he now wishes to continue interaction 
with his program, he must signal this intention with a ", For example: 

"GOTO DE 

which will take him out of the system and back into his program at the specified 
point. 

Generally, you will do better to stay with the TRACE program unless you have 
strong evidence that something has gone wrong. 



9 October 19bT 186 TK-2621/003/00 

APPENDIX 6 

SAVING THE DATA BASE FOR FUTURE USE 

As the user interacts with the TRACE program, he is actually building up hia 
original data base, adding to it various derived variables and tables con- 
structed for display. All this is stored on disc. However, this storage is 
really only temporary; it is reserved solely for current time-sharing users. 
It may be that because of certain coincidences in the way succeeding data bases 
from other users are stored, a particular user will find that his own data 
base has remained intact over a period of several hours. This chance should 
not be counted upon—there is no way of automatically guaranteeing the retention 
of any information on disc. 

If you do wish to preserve your data base for future use, there is only one 
convenient means of doing it—by transferring it from that temporary disc 
storage to magnetic tape. This can be accomplirned by the system utility 
program LIBRY, 

LIBRY may be called whenever you feel ready to store your data base. This 
could oe at the end of a problem run when you have Just displayed your results, 
or it could even be in the middle of some operation, like setting up the 
derivation or constructing a table, TRACE, however, does not transfer the 
results of any operation from core to disc until the user exits from the sub- 
program containing that operation or at least reaches a message that states 
that the operation is complete. Stopping in the middle of an operation means 
then losing whatever has been gained during that particular operation. To 
avoid this loss, the user should type in a GOTO command to the beginning of a 
subprogram, either the current one or a different one. This step will preserve 
the results of the responses entered during the aborted operation. 

The call to LIBRY is simply: 

ILOAD LIBRY 

followed by the usual carriage return. The I is used to leave the TRACE 
program and enter the time-sharing executive system; the command asks the 
system to load the LIBRY program. 

For a description of the LIBRY program, see the document:  TM-2708/203/01, 



9 October 196? l87 TM-2621/003/00 

The dialogue between you and the LIBRY program might proceed as follows 
(user input in blocks): 

I LOAD LIBRY 

$ LOAD IT 

GCQ 

$ MSG IN 

ENTER OPTION DESIRED 

i DISC TO TAPE I 

INNAME FORM (B,H,C,A,P,T) MAN NO. LIBRARY REEL INDEX ON TAPE?  Y/S 

EDUC B 15U5 1263 N 

ANOTHER FILE? 

I"NO1 

STANDBY 

THE FOLLOWING TAPE REELS ARE FILED 

12631 

ENTER OPTION DESIRED 

! QUIT 

$ MSG IN 

This process can be reversed—LIBRY can be used to read onto disc a file from 
a tape. You simply call LIBRY and, at the message requesting an option, enter 
the option: 

TAPE TO DISC 

TM-2708/203/ül describes both processes in detail. 



9 October 1967 188 TM-2621/003/00 

APPENDIX T 

ERROR MESSAGES 

Each subprogram has an individual complement of error messages—messages that 
are sent by the system to the user whenever he has entered some invalid infor- 
mation or when the system for some reason cannot fulfill his request.  Each 
message ends, like any message within a subprogram, with a line containing em 
asterisk which theuser is expected to follow with a response, The error 
messages of TRACE are grouped according to their corresponding subprograms. 

PART 1 

The Input Subprogram 

mmmm 

m ERROR IN SELECTING VARIABLES m 
m HI; 
Hf ij»! 

INDICATE THE VARIABLES TO BE READ    1,12 

(   )NAMES 

ALL 

This message is issued if the user has inadvertantly asked for one or more 
variables that either do not exist in the input data or else have already been 
read by the system.  A simple typographical error, of course, would also 
trigger this error message.  It is issued immediately after the user has entered 

;•« his response to message 1.12 j the system then repeats this message 1.12, giving m 
•1 ft Hfl 
w the user the opportunity to revise his response. |"' 
MRHiii.iHiiHii! wnpimim 



9 October 196? 189 TM-2621/003/00 
(page 190 blank) 

■ 
RAN OUT OF DISC S 

Iff! 
Ml 

m (K)EEP TRYING                                               H 
''" w 
W (A)BORT PROCESS                                                   J 
$ *                                                                                                                                           z 

UM 

g The system here is telling the user that all available space on disc has been  Jj 
Hfl used up and that all the variables listed by him in his response to message 1.12JJ 
m  cannot be read in. You then have the option of either waiting for enough *j 

space to open up on disc so that your data can be read in (the first response) Jj 
or telling the system to halt the process of trying to input your specified JJ 

I variables (the second response). This message is issued after your response g 
Jj to message 1,12 and after the system has discovered that the entire set of Jj 
w variables cannot be accommodated. At this point, the tape or disc for input 2 
I has been positioned for reading but no data at all has been read, even if there Jj 
'«is room enough on disc for all but one word of the input, 2 
m *' 
W                           ii             it * m  Asking the system to "keep trying means waiting indefinitely with the Jj 
Jj input file positioned for reading until the required space becomes available. Jj 
Jj Asking for em "abort"cause8 the system to return to the first message of the Jj 
Jj input subprogram, thereby allowing you to repeat the attempt, this time Jj 
w  perhaps requesting in your response to message 1.12 only those variables that * 
w are necessary for the first derivation. g 

|     CASE INDEX NAME IN ERROR 5> 

|      ( )NAME m 
m m m            * m 
w m 
w NR 
Hf! iff 
it« w 
jj This error message stems only from a user error in specifying the case index Jj 
{jj variable in response to message 1.30 in the teletype input cycle. The variable*' 
Jj name typed in may have no counterpart in the data or it may simply contain a Jj 
| typographical error. At any rate, the system asks you to retype the name of Jj 
üj the case index variable. g 
m                                                                        Iff 
iffHWWIBfBWWWWWWI»^^ 

■ 



9 October 196? 191 TM-2621/003/00 

PART 2 

The Derivation Subprogram 

m 
m 
m 
m 
m 
m 

nmmsmminmmmti*mmmmnmmmm\mmmmmwm»mmmmmm\k 
NO DICT FOR THE CASE INDEX 

DERIVATION 2.0 

(S)TART 

(L)IST AVAILABLE VARIABLES 

mmmmmmmmm I 

m 
r, 
m 
=;« 
•jli 
m 
m 
m 
m 
m 

i|H 

Iffi 
ijt! 

Iffl 

This error message, issued if necessary after his response to message 2.1, 
tells the user that the variable he has designated as the case index is not 
in the dictionary. This may be, for example, because he has chosen a derived 
variable as a case index variable (only input variables can be used) or has 
typed in an invalid name. The system returns him to the beginning message of 
the derivation routine. 

IHMWIWIWIiWI 

P m m 
m i i i 

W!!ffjp|l|WWWWWlWH»W1WW^^ wmm 
mmmmmmm*m"\mmmmmmmmmmmmmmMmmmwmmmm 
m NULL SET 

mmmm mmmmmm mmmmmm 

a 
m 
m 
a 
m 
m 
m 
m 
a 
m 
m 
m 

m  This message, issued after you have entered your restriction statement (response 2 

fffl 
m 
m 
m 
m 

m 
m 
m 
m 

DERIVATION 2.0 

(S)TART 

(L)IST AVAILABLE VARIABLES 

HH 
w to message 2.11), states that the subset that you have requested for your m 
m  derivation is emptyj that is, you have restricted your original data base so m 
m  much that no case index values remain for use in deriving. The system sends m 
m  you back to the beginning of the subprogram. 

m 
m 
m 
m 
m 
i 
m 
m 
w 
m 
m 
m 
m 
m 

im mm*mmmmmmmmimm\mmmmmmmmmmm*r^ < 
RAN OUT OF DISC 

(K)EEP TRYING 

(A)BORT PROCESS 

m 
m 
m 
m 
I 
m 
m 
m 

Similar to one of the error messages in the input subprogram, this tells you thatw 
| there will not be enough room to place all the derived values on disc and that  | 

m 
m 
m 
a 
M 

»j you may either wait for space to become available, or else stop the process of 
w deriving altogether. If you choose the latter response, the subprogram will 
jtjj return you to its first message and you have the opportunity to set up a 
?! different derivation. 
« m iiMUMtUUlMUM Li mttmtut »tm HIIIIMIMIMIIIB ti. wmmmmmmmmm 



9 October 196? 192 TM-2621/003/00 

urn W- 

m            ERROR IN REQUEST JJ 
H« NU 
Wi             DERIVATION     2.0 2 s 
2              (S)TART 2 

(L)IST AVAILABLE VARIABLES 2 
ffl 2 
"               » w 
m m 
UK H" 
•W In 
un w 
wj This error message is produced after the derivation statement—it states that   Jj 
m some mistake has been made in setcing up that statement, for example, following 2 
Hfl ™ 
jjj the connective DTR with a conditional clause or typing two consecutive IF clausesj 1 m  without an intervening conjunction. The user is asked to return to the very    * 
2 beginning of the subprogram. w 
U^li«*MMiUlMliMliaL^MlllillMUaUMliIIUMIlllUHIlBUMUaUltllMlMIUaUIUflUillUlluaUMlMUlSUMUMUiMiiUaUBlMiI^ 

'tHlif hRH^'Wl'W'H'lMt WffHffnWlHMHRmlHRHA^V^HIlWnnWWiMHnnnHIHtfl lÄ'WWHWWHntllilfHHWWHrilnltfWliWir^H^'il! fHHr'mwW♦llWlW^•IH^t^P,^♦•l(^, 

MR m 
m NO COMMON DICT FOUND FOR VARB AND CASE INDEX tu 
Hi! m 

m DERIVATION    2.0 m m m 
HH (S)TART I 
HI (L)IST AVAILABLE VARIABLES * 
m v. 

m m 
m Also issued after the derivation statement has been entered, this message jj* 
«J declares that the hoped-for derived variavle iocs not have any correspondence 2 
w witn the current case index—that the case index variable and the variables '*" 
i« used in the derivation statement probably belong to different data sets.    The jjj 
w ' user is requested to  begin the subprogram anew. w 



9 October 196? 193 
(page 19^ blank) 

TM-262I/OO3/OO 

m 
m 
m 
m 

INTERNAL TABLES EXCEEDED 

DERIVATION    2.0 

(S)TART 

(L)IST AVAILABLE VARIABLES 

UM MUM ÜB UM 

«1 
ii m m 

The user is told here that  his derivation statement  demands more data than the 
system's internal tables can handle.    There are two of these tables that can 
be affected by too much data: 

(1) the table that collects the case index values appropriate to the 
derivation and that associates these with the derived values—this 
table can accommodate a maximum of 2800 case index values 

(2) the table that collects the appropriate case index values and annexes 
to them the corresponding values of the other variables used in the 
derivation—this table can hold 10,000 values all together 

An overflow of either of these tables results  in the issuing of the above error 
message.    The user then hao only one alternative if he wishes to complete his 
original derivation:     he must institute artificial restrictions on his  case 
index values so that not all values would be recognized at once.    For example, 
he may set up a restriction statement that effectively divides his case index 
values in half«    He then runs two derivations, one with each half.    This message, 

jjjj which in effect is telling you that thore is not enough restriction on your m 
^ derivation, also sends you back to the beginning of the subprogram. w 



9 October 196? 195 TM-2621/003/00 
(page 196 blank) 

PART 3 

The Construct Table Subprogram 

NO SUCH NAME | s 
JJ     CONSTRUCT TABLE 3.0 
m 

s (S)TEP BY STEP 
uM 

ä (   ) SHORTHAND U; 

jjj (L)IST SET UP TABLES w 

m m 
m 

W! It" 
m M 
hü hti 

jjjj This error message is sent whenever in the construct table routine the user § 
E has made a mistake in typing in a variable or table name, for example, '* 
I misspelling a name. He is returned to the beginning of the routine.      Jjjj 

S     CONSTRUCT TABLE 3.0 

itr Hf! 
M     ERROR IN CASE INDEX Hj| 

m 

w      (S)TEP BY STEP w 
urn nf, 

m ( ) SHORTHAND * 
HH ttt! 

*      (L)IST SET UP TABLES * 

HH    * m 

w This message is sent after the user's response to message 3.4.  It -.sites that ^ 

W! "" " ' ~ ""  "' ' ' w  *" ^ '  ""   "" "   '  ' " ' ' nr 

m 
m 

w the two variables named in setting up a two-dimensional table do not 1  e the 
m  same case index—a mandatory condition for that type of table.  He is recurnea H« 
w to the beginning of the routine. 
HH m 
mi m 
'*« If you have used the shorthand method, these two messages would he sent after |jj] 
i'« you have entered that response. Jjj 



9 October 196? 197 TM-2621/003/00 

PART 1* 

The Display Subprogram 

1     NO SUCH NAME IB 
M 

g DISPLAY U.O                                                        J 

m ( )NAME TABLE                                                    * 
uii fn 

m (L)IST CONSTRUCTED TABIES                                                                                                      j 
HU w 

m 
m B 
'*« This message tells the user that a name used in the previous response does not JJ 
HH ml Nil m I« exist. He is then returned to the beginning of the routine. The message may 
fi be issued after a response to message U.O, when, the invalid name was to have 2 
I* been the name of the table, or after a response to message U.2, when the error * 
w message refers to an improper name for the display, the row variable, or the JJJj 
jtjj column variable. [jjj 

iffi w 
H" NO DISC m 

w (K)EEP TRYING P 
«n «I 

I      (NO HÜ 
w     . w 
W!       * H* 
I« m 
m m 
W! w 
w VI 
wj This message, sent in place of the desired table display after your response * 
m to message U,lt informs you that not enough disc space is available for the g 
wj production of the display. The display routine at this point uses some tracks« 
jjjj on disc for building intermediate tables. A response of K tells the system to* 
jtjj wait until enough disc space has been released by current time-sharing users; g 
m  a response of N tells the system to return to the beginning of the sulprogram."!« 
■t"         H" 



9 October 196? 198 TM-2621/003/00 

HMIIIMMIIIIIIIMI^IIMIIMIIMIt»llMlini-Ml'«1lMIM''"''^*'MliltliM|iMMIIMIIBIIMIMIIMIIlniMI Ml 

TABLE REDUCED TO LESS THAN A 2 X 2 

2     DISPLAY U.O 2 
Hfl fW 

HU     ( )NAME TABLE 

jj      (L)IST CONSTRUCTED TABLES g 

i 
9 
uu ua 

Jj The system Is telling you that, even though you have constructed a table of JJ 
jjjj two-dimensional proportions, the resulting table ready for display contains Jj 
JJ only one dimension (that is, either a single row or a single column) because Jj 
Jj so many prospective intervals and therefore potential cells in the display do jjjj 
Jj not hold any values, TRACE does not display such tables unless they have Jj 
Jj been designated as one-dimensional tables during the construct table sub- Jj 
Jj program, jj 
W! m 
urn urn 

m  Notice that the system has presented you with the first message of the display*; 
I program.  If you, however, wish to have that invalid table legitimized, Jj 
Jj you should type in a GOTO command to the construct table subprogram instead JJ 
jj of accepting either of the preferred options. There you may begin to recon- JJ 
jj struct the table, probably using the shorthand method, in a one-dimensional Jj 
jjjj form. First attempt to reconstruct the table on the basis of two variables jjjj 
jj alone; if the same error message appears later in the display program, then Jj 
HJ construct the table as a single row or column. m 
m m 
NO W 

Njj This error Dressage is issued after the user's response to message U.l of the * 
W display program, m 

IPiiWiliHIwyipp^^ 

81             ONLY ONE VARIABLE IN THIS DISPLAY m 
N« iff 

m            DISPLAY    U.O Z 

v               (   )NAME TABLE Z z * 
(L)IST  CONSTRUCTED TABLES * 

m £ 
W               w m 

m m JJ J 
m  This message is produced after the user's response to message U,3  where he w 
vj has asked to have a display of a table using the expected frequencies rather m 
m  than the observed frequencies—and the table is only a one-dimensional table. * 
m  The system is therefore reminding him thar, he has only one variable to work "* 
j; with and that there can therefore be no expected frequencies, in fact, no f 
;!« frequencies at all. He is brought back to the beginning of the display routine." 



9 October 196? 199 TM-2621/003/00 

PAPT 5 

The Edit Subprogram 

m NO SUCH  NAME w m 
ii 

w EDIT    5.0 B 
HU S 
NH ,     > ■ 
w D ELETE 5 

m (L)IST 2 
Hfl ü 

s 
HR 
P 
Hfl 

Hfl H 
P 

s 
Hfl 

m Jj 
w (B)ASIC OPTIONS 2 
HH P 

p *                                                                                                                                    a 
Hfl " | J 
Hfl " 
Hfl j                          ^ w This message appears whenever in the edit subprogram a response contains an     1 
>f« invalid variable name,  for example, because of a typographical error.    The        •} 
iff user is returned to the beginning of the routine.                                                          2 
HH -.-.-....i-. . ,«___,_,—^  E 
'■,,l'Ph'I'',,lii,HBHIlliWiP n,Hfl't"MflttflHflHflW'HlHflHflHflHflHflWHflHflHflHflHflHflHflNfl1ffHflHfl'P'WHflWHflWWWWl|fl tfll|IHWl^fl^ipWHfli(Bi^HflflWif r ^W^fflwUPW^flWi^WflnHflH^W! 

Hfl                         "          '           ""     '          '            '                                 ....                            .                              . r— ( • ,     ,     ,     . •      ,.,-„.        .... .        .,,...,         ^ 

Z ALL VARIABLES ARE NOT IN ONE DATA SET 2 

| EDIT 5.0 j 
UP *r- 

t (D)ELETE * 

t (L)IST                                                                                                                                                     j 
'♦H HH 
ill! .                                                                                                                                                                                                                                                                     Hfl 
Hfl Hfl 
Hfl if 

Hfl P 
H" Hfl 
Hfl ,                                                                                                                                                                                                                                       H« 
Hfl HH 

w (B)ASIC OPTIONS                                                                                                                                 m 
Hfl P 
Hfl P 
ill! *                                                                                                                                                                                                                                                                        Hfl 
Hfl m 
HA 
■in 

Hfl 
Hfl 

Hfl Hfl. 
p This error message is triggered only by an improper response to message 5.2 jjjj 
P in the edit program where the user has asked for a listing of the values of B 
Hfl certain variables. If these variables do not all belong to the same data set,* 
P it is an error condition. The user is returned to the beginning of the edit 2 
P routine, J 



9 October 1967 200 TM-2621/003/OO 

J     TOO MANY PRINT POSITIONS REQUIRED FOR VALUES J 

m EDIT    5.0 m 
B 1 
I (D)ELETE 2 

E (L)IST Sj 

m m 
w i i 

PI HW 

| (B)ASIC OPTIONS m 
m * m 
RNfl 

W m mi 
M n « This message is Incurred when the user, in asking for a listing of the values« 
M of designated variables in response to message 5*2,  has nominated too many  «* 
{jj variables—so that the values if printed would overflow a print line. He is m 
jgj brought back to the beginning of the edit program where he can again call   H* 
jjjj for the listing function and this time request fewer variables, jg 

| NO OTHER NAMES FOUND                                               m 

| INDICATE WHICH DATA SET  5.22                                       * 
Z g 
w ( ) 1 TO 10                                                       m 
g (N)ONE                                                      m 

i g 
w m 
iii' ,{, 

w This message is issued after a response to message 5.22 in the list function i" 
jjj doesn't give the proper set number for the variables designated. The user m 
[£ then must either type in the correct set number or else enter a GOTO command w 
S to cuiother routine, m f.— v 



9 October 196? 201 TM-26?l/003/00 

PART 6 

The Output Subprogram 
. ..■■....-....■..■.—...... ,...,»■ m —■■»■■—■■—■■^' "'■»'■—'■—'■»■•—■ — ■ "«^ ■"■■—■'■ i^ii^iMiaMIBI Ml MM MIBMMIMWiaiMliMIMIIMIlMIWIMIIMIIBIIMIMI^IMWWIIMIIMIWIIWMWMIIII'llil Ml 11 Ml llllllf lllllMIJlllllTlimHUimiMliniMlllilTIIIIIIIIBMillllllli 

Hj     NO ID-NAME FOUND 3 

w     GIVE NAME OF ID-VARIABLE * 
Hfl ™ 

Ü5 (   )NAME 
MI               '   ' m 
w            « « 
w w 
N« x       IB 
w This error message, issued after the user has entered his response to message 6.2ji 
w tells him that he has made a mistake  in namirv Ms ID-variable.    Either there        2 
Hn iff! 

w is a typographical error or else the variable no longer exists.    He is asked          JJJ 
2 to give the name of a legitimate variable, 2 
Ifll UM 
iittiiHuautiuaur  imtiMuiminiBiittnairMianIM"*"'*"""i—t'M"*"M*—"™"M s 

H"     THIS VARIABLE FAILED PRE-CHECK variable name S m w 
Nil IM 2 (C)ONTINUE w 

2 (N)0 

2 w 
iff 

i 

2 The first line of this message names a variable which the user has typed as one S 
w  of the output variables. The system infüniis the user that this variable has w 
I« no values for the case index (ID-variable) values being used for output. He '; 
JU is then allowed to either continue with the output, which means turning out ;'•• 
ijj! blanks for the values of the variable in question, or else abort the process * 
w and return to the beginning of the subprogram where he may again try to form w 

a card image, this time avoiding the variable that has no values. This error w 
19! 

w message  is  issued after output message 6.2. 
hHHIH|IBtl|IWffl|l^^ 



9 October 196? 202 TM-2621/003/OO 

t if 1 (r »1« 111111" H !• itH! rfH( Wl tf W WWW" W 

m 

HUHIMMMIillillWUtllil 

I« 

m 

SET - NULL 

OUTPUT 6.0 

GIVE CARD FORMAT 

m 

m 

m 
m 

m 

il 
m 
m i 

m 
I 

LINE MUST END WITH A BLANK 

This message signals that there are no values for the case index variable 
(ID-variable) selected; therefore, there is no possibility of getting any 
data at all for output.  This message, sent after message 6.2 in the output 
routine, then carries the user back to the beginning of the routine. 

m 

i 
m 
m 

m 
w 
m 
iff 
1" 
iff 
iff 
m 
m 
m 

UUltuaUttlJMtlBUMUUllMUMtMtUUIHUmMUMliailiniKliaUMUBIUIlHUMllMliaUBtlBUIUMlilttUUMU 

^H^HhWH(r^MHH^HritPlhHHHH^^^'tfliP',^,^l,^lt^''^H^':,1HWH^WH^^(llffTfflH^H^''flH''rtlHN^'iflh"W^W^ 
m 
m 

Iff 
m 
m 
m 
iff 
m 
m 
•ff 

I 
M 
m 
iff 

Iff 
nr 
iff 
iff 

SET » ONE 

OUTPUT 6.0 

GIVE CARD FORMAT 

LINE MUST END WITH A BLANK 

w This message states that only one value exists for the ID-variable selected. 
«n Issued after message 6.2, this error message then repeats the first message 
•ff of the output routine. 
WlfflWlwm«WMm|HHWtff'3HWffW''RW'«hfltHIH»|lffWl«^ 

m 
iff 
iff 
iff 
iff 
iff 
Hfl 
iff 
1« 
iff 
iff 
m 
w 
iff 
iff 

^5 
mi 
iff 
im 
w. 
iff 
Iff 
Iff 
iff 
Iff 
I« 
Iff 
Iff 
Iff 



9 October 196? 203 TM-2621/003/00 

PART 7 

The Statistics Subprogram 

mmmmmmmmmmmmmimmmmmmmmm^ 
m              target variable name HAS NO CASE INDEX OR DATA SET IN COMMON WITH j 
w     criterion variable name *{ 

m            2 - GROUP SAMPLE TEST jj 

w     GIVE CRITERION MEASURE FOLLOWED BY TARGET VARIABLES 
M 
m ( )NAMES 

W     END WITH (//) ^ 

Hi! w 
IM HU 

w This error message is issued whenever the user has designated as a target 2 
Hfl W 
w variable an input variable that is in a data set not containing the case [jjj 
m  index variable of the criterion measure. The user is then returned to the w 
| first message of the 2-group sample test cycle where he may enter new targets 
w and criterion variables. * 
%mmmmmmiimmmmmimmmmmmmim 

I     Nl OR N2 IS LESS THAN 2 * S 
2 - GROUP SAMPLE TEST m 

GIVE CRITERION MEASURE FOLLOWED BY TARGET VARIABLES 5 
H»l 

( )NAMES | 

END WITH (//) J 

• m 
m m I 

This message tells the user that there are fewer than two values for one of Jj 
the two groups of values that make up the criterion measure. He is asked  Jj 
to repeat the request using a different grouping. 1 



9 October 196? 20l4 TM-2621/OO3/OO 

target variable name HAS DIFFERENT CASK INDEX THAN criterion variable name| 

* 2 - GROUP SAMPLE TEST 

GIVE CRITERION MEASURE FOLLOWED BY TARGET VARIABLES 

( )NAMES 

END WITH (//) 

« 

This message is issued whenever the user has named as a target variable a 
dsrived variable that has a case index different from that of the criterion 
measure. The user is returned to the first message of the routine. 

variable name HAS MORE THAN 1 WORD/VALUE 

2 - GROUP SAMPLE TEST 

GIVE CRITERION MEASUKS FOLLOWED BY TARGET VARIABLES 

( )NAIVES 

END WITH (//) 
« 

This message tells the user that the variable value surpasses a word in 
HI length. Remember that an alphanumeric variable as either the criterion measure ^ 
w or a target variable must be no ."Vonger than one word. '£ 
HR-OTjHiil'Wl ■«■■(I'HI'lHuil! 



9 October 196? £05 TM-262I/OO3/OO 

APPENDIX 8 

CORE AND COMPONENT RESTRICTIONS 

The following is a list of restrictions imposed upon the user by the limitations 
of core space and the  structure of the TRACE program. 

A maximum of 10,000 words* (Q-32 computer) may be transferred at any 
one time from the data base on disc  into the working area in core. 

The case index table can accommodate 2800 occurrences of a case 
index variable. 

A maximum of 353 variables may be input by the user for the entire 
data base. 

There is a limit of 150 variables per data set; a dictionary may 
therefore hold up to 150 cards. 

A total of l8l variables may be derived and saved. 

The total of input and derived variables outstanding at any one 
time must not exceed 385 variables. 

A maximum of 10 data sett may be input by the user. 

A total of 60 tables for display may be carried by the program. 

The number of intervals in these tables and the total number of 
values within these intervals must not exceed 960. 

A maximum of 120 characters may be declared in any one alphanumeric 
variable. 

^ restriction statement may contain no more than 10 variable names 
nor more than 50 restricting values. 

A derivation statement is restricted to a total of 50 components. 
Within this restriction is a limit of 20 unique variable names and 
20 occurrences of the conjunctions AND and OR. 

*A computer word can accommodate one integer value,  eight characters of an 
alphanumeric value, or one floating point value.     No packing is done,  so 
that a one-character value still occupies a whole word. 

- 



9 October 196? 206 TM-262I/OO3/OO 

APPENDIX 9 

STATISTICAL OPERATIONS OF TRACE 

Mean 

Median 

Standard deviation 

Chi-square or Fisher's exact probability 

Pearson's R ccrrelation coefficient 

with 5% confidence  and symmetric interval limits 

t statistic 

F statistic 

Tabular frequency distribution 

with equal number, width, all or specified interval limits 

Expected value matrix 

Number of cells with expected value less than 1 

Number of cells with expected value less than 3 

Digress of freedom 

Significance 

Contingency coefficient 

Mann-Whitney U test 

All of these operations are conducted within the display subprogram with the 
exception of the Mann-Whitney Utest, which is found in the statistics sub- 
program.  The statistics program also.runs the Chi-square test with its associated 
products. 

Besides these specialized statistical services, TRACE provides the following 
operations: 

addition 
subtraction 
multiplication 
division 

sine 
cosine 
tangent 
arcsine 
arccosine 
arctangent 

square root 
absolute vrlue 
exponentiation 
logarithms (to any base) 



9 October 19Cl 207 TM-2621/OO3/OO 

INDEX 

This la an Index primarily of topics whose complexity has earrffd them mention 
and explanation beyond the reference section. Except for th« / rious components 
of thn  derivation process, there is little duplication of xht  references shovn 
in the table of contents for Section 2. 

ALL, 59-60, Ilk 

AND, 1*9-50, 111-112 

arithmetic operators, 51 

assign by replacement,  30-32, 153-15^ 

B 

block, 38, U3 

bracketing, I46-U8, 52, 63-61*, llt-in 

E 

EACH, 57-58, 6l, 113 

FIRST, 59, 113-llU 

functional operators, 109 

GOTO, 32-33, 8U 

I 

case index, 36-37» 57-58, 103 

CMB statement, 67, lll*-115 

conditional clause, kQ~31t  110-111 

conjunctions, U9-50, 111-112 

COR, 6U65, 119 

data base, 89 

data set, 29, 89 

desk calculator, 66, 120 

dictionary, 20 

double slash, 31, 8U 

IF clause, U8-51, 110-111 

LA3T, 59, 113-111* 

listing, 1*2-1*14, 53, 11*3-11*5 

logging in, 179 

logical card, 18-19, 28 

M 

manipulative operators, 67, 78-79, 
lll*-115 

missing data, 27-28, 91 

MRG, 78-79, 115 



9 October 196? 208 
(last page) 

INDEX (cont'd) 

TM-P621/003/O0 
* 

ONE, 59-60, UU 

one-dimeneiondl tables,  51*, t? 

OR, U9-50, 111-112 

OTR,  U9, 110-111 

parentheses, 108 

R 

relational operators, 110 

response forms, 2^4, 72 

restriction statement, U5-1*6, 51-52 
1014-105 

n 

HCAN ACROSS,  56-57,  118 

selective operators, 57-60, 113-llU 

shorthand method, 5^, l^T 

statistical operators, 112-113 

string variables, 55-56, 61*, 117-119 

two-dimensional tables, 69-73 



,") 

UnclMfiflrt 
Src uniy ClMBiflcilija 

DOCUMENT CONTROL DATA   R&D 
(Sfcuniy rlmtHllcmllon ol till», bogy of abtltmrl and tmUnlnf mnno'a Ion nwl bt »nf r>rf wh»n lha a¥»iall^r»fotl_l^t\ai»lllaä)_ 

System Development Corporation 
8>r a Monica, California 

i». ««POUT   IKCUMITV   CLAtllFIC ATION 

Unc Unified 
lb.   QHOUP 

J    Kf^On V    T   TLf 

TRACE — Model II User's Guide, Tlm<asbared Routines for Analysis, 
Classification and Evaluation 

4   DEicwiPTi vt NOTKt (Typ* ol taper I and InaSual*» data») 

»   AuTHOniti (PltH nmma, mlddla Inlllel, laal nama) 

Richard P. Esada 

•    REPOMT   D*TI 

9 October 1967 
Ta.   TOTAL NO.  OP »AOtt 

208 
76. NO. or mtft 

) 

»a.   CONTRACT  OR  bRANT NO. 

DAHC15-67-C-02T7 
6.   PRCJEC T NO. 

Bargaining and Negotiation Behavior 
c    for ARPA 

•«.  ONIdlNATOR'l REPORT NUMBKRI'I 

TM-2621/003/00 (DRAFT) 

•6. OTHKR REPORT NO'S) (Any olhar nttmbara that may ba aaalftad 
Ihla raporl) 

10    DISTRIBUTION STATEMENT 

Distribution of this document is unlimited 

II     SUPPlEMENTARV   NOTES la.  SPONSORING MILITARY   ACTIVITY 

.) 

13  ABSTRACT 

This document presents a user's description of the TRACE system, vhich 
provides an on-line technique for scanning data and deriving variables. It 
is divided into two main sections: the first a tutorial guide introducing the 
user to the basic principles of the system, and the second a reference guide to 
the entire body of the TRACE program. The user is shown hov to initiate an 
interaction with the time-sharing system, how to employ every capability of 
TRACE, what errors may be expected in operation, and what statistical products 
may be derived through use of the program. A complete index allows the user 
to refer readily to any portion of the document. 

DD .Fr..i473 
"Hmm^u cation 



I« 

■y 

UnclMilfled 
■•curlty ClaMiricatlon 

KtV   WOflOt 
LINK    A 

HOL» WT 

TRACE •ystem 
Tlme-ih»red Routine for Analysis Clasil float loh 

and Evaluation 
On-line technique 
JOVIAL 
AM/F8Q-32 

LINK LINK   C 

NOLI WT HOLK WT 

■) 

» 

Unclassified 
Security CUaaiflcation 


