
Sftr

in; jy '■ .. S3

-rtv': '-^

AFCRL-67-0565

AN INTRODUCTION TO CDU,
A COMPUTER DESCRIPTION LANGUAGE

CHITOOR V. SRINIVÀSAN

RADIO CORPORATION OF AMERICA
RCA LABORATORIES

PRINCETON, NEW JERSEY

CONTRACT NO. AF19(628)4789

PROJECT NO. 5632 TASK NO. 563202

WORK UNIT NO. 56320201

SCIENTIFIC REPORT NO. 1

SEPTEMBER 1967

Distribution of this document is unlimited. It moy
be released to the Clearinghouse, Department of
Commerce, for sale to the general public.

CONTRACT MONITOR: ROCCO H. URBANO

DATA SCIENCES LABORATORY

PREPARED FOR

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

ABSTRACT

The objective of this report is to develop a formal language to describe

hardware and software computing systems. The language is to provide a

linguistic basis to consider machine-aided solutions of a variety of design

problems; i.e., problems concerning design documentation, data retrieval

systems, system simulation, diagnosis, analysis and synthesis.

This report discusses in some detail the considerations that went into

the design of the computer description language, called CDL1; it points out

the need for developing such a language and briefly discusses the kinds of

applications such a language may have.

The report points out the various kinds of system descriptions one may

encounter in a design process and relates them to the language features

necessary to express them; the language itself is described informally.

Examples are presented to illustrate the use of the language, the concepts

associated with descriptions of systems at various stages of design, and

the consequent hierarchical structure such descriptions acquire.

iii

'Im!ü!¡'!h''áM\''1 M:';!ü 11

r*

TABLE OF CONTENTS

Section

I. INTRODUCTION.

II. WHAT WE WISH TO DESCRIBE. ^

A. The Three Kinds of Descriptions . ^

B. The Four Levels of Design: An Example. j
C. Discussioi of the Example.. ^

D. Description of Software Systems ^

E. A Summary • .. ^

III. THE NEED FOR A NEW LANGUAGE. 16

A. Objects Spoken About^ Statements and Operations . yj
B. Program Structure. ^
C. Uses. 20

IV. FEATURES OF CDL1. 22

A. Operands. 22
1. Software Operands.. . 2^
2. Hardware Operands . 25

B. Definitions. 26

1. Data Definition. 27

2. Hardware Definition. 33
3. Table and Tabular Function Definition 34
4. Functions and Macro-Definitions • . 34
5. Command Definition.. • • .. 35

C. Operators and Expressions. 35
D. Functions 39
E. Statements. 41

1. Declarative Statements 41
2. Executable Statements .. • . . 49

F. Indexing Conventions 64
1. Vectors. 64

2. Arrays. 65

3. Special Multiple Indexing Schemes . 66
G. The Modular Structure of Descriptions and the

Generalized Labelling Schema . , . 66
H. Block and Group Structure of Programs . 69
I. The Character Set . 71

V. 70/15 CORE MEMORY SYSTEM. 72

VI. A PARALLEL PROCESSOR. 102

VII. CONCLUDING REMARKS. 115

VIII. ACKNOWLEDGMENTS. 119

IX. REFERENCES. 120

Íj<ikwÍBSB3Í)ií&íâiâál&i*ò#â'Ü>üÍâlftMÍâôiWtÂÍSÍkw<tàÍÍà*ÜSi81SâiKiiCi<iUr

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
12.

13.

14.

ILLUSTRATIONS

Page

Block Diagram of a Hypothetical Machine.. 9

Schematic of List Structure Described in D6. 32

A Tree of Inclusion Relationships... 69

Stack Configuration in 70/15... gQ

Schematic of the XFORMERS Network Array • 33

Schematic of VOLSWITCHES, a Network Array of 32 Switches . . 33

Schematic of Current Switches^ an Array of 64 Switches ... 34

Schematic of the Pulse Generator, an Array of
Four Networks .. 35

Schematic of Memory Timing Network . 85

Schematic of Decoder Network, with 13 Inputs and
64 Outputs. 3g

schematic of the Inhibit Driver Network Array. 87

Schematic of Sense Amplifier Array .. 88

Time Pulses...* . 91

Block Diagram of Memory System. 97

iwE!B ' •1 ' " ¡ i"

4—.

....

INTRODUCTION

CDLl (Computer Description Language No. 1) is a formai language

for describing computing systems in various stages of design. Such com¬

puting systems could be hardware or software systems, or combinations

thereof. At the beginning of a system design one may describe in CDLl Its

functional specifications; when design is complete one may describe its

structural and operational characteristics in terms of its logical nets,

controls, and sequencing. Between these two extremes, during the course of

design, there may exist a variety of descriptions of parts of a system in

CDLl, specifying to various degrees of detail their functional, structural,

and operational characteristics.

As a formal language to describe and talk about systems of this

kind at various levels of design, CDLl provides a linguistic basis to consider

machine-aided solutions of a variety of system design problems: problems

concerning design documentation and their attendant data retrieval schemes, and

system simulation at different stages of design, system analysis and synthesis.

In fact, we plan to use CDLi as a basic description language in a class of

interactive Design Aid Systems (DAS). At present we visualize DAS's with

the following capabilities: They should have facilities to check descriptions

in CDLl for validity and file them appropriately; retrieve stored data

as necessary; provide editing and updating facilities for documenting

design changes and system modifications; interpret a body of description for

simulation, design analysis or synthesis; accept commands from users to

perform desired design tasks; gather abstracts of a body of description in

111®

;

! (VJ! H> »Ott»*W#M«^*n¿t»«jwWl»..Wrt'
«MtMtrWH»« wi'l ! !«*' !|iwttHM>..n

manners specified a priori- build a design library of systems used earlier;

allow several designers to access and use its files simultaneously; and

finally even tutor users on the proper means of using the design systems.

In this environment we wish to automate as many of the design tasks as

possible.

To create such DAS's a formal, system description language is

essential. The language should not only he capable of describing a system

at various stages of design, but also provide implicitly a filing scheme

for the descriptive data. We believe CDL1 has the necessary expressive

power and logical structure to build design aid superstructures of the

above kinds.

Presently we do not know how one may go about specifying in detail

DAS^ of the size and complexity suggested above and estimating the computa¬

tional facilities they should have. Systems like these should grow with

usagej they cannot be specified a priori. Our first task in this endeavor

has been the specification of rn udeauate description language. In its

present form CDL1 may already be used as the basis for developing a first

DAS for design documentation and product specification. Later, in Section VII,

we shall discuss our plans and the tasks we have set for ourselves in the

Immediate future*

Several investigators have attempted to develop description

languages for hardware and software systems description [2-6, 8, 10-13],

In my opinion, none of these have adequately considered all the design

requirements. We hope the reason for this conclusion will become clear in

this report.

The general structure of CDLl is described in chis report, with

examples illustrating its use. We begin in Section II with a discussion of

what we wish to describe, introducing the principal concepts in the organ¬

ization of the language. In Section III we have attempted to justify the

need for a new language like CDLl, by contrasting it with existing programming

and description language. Sections II and III together also present in¬

directly the considerations that have led us to create in CDLl the features

it has. The features themselves are discussed in Section IV. Sections V

and VI present a rather detailed discussion of two examples, *The 70/15 Core

Memory System', and 'A Parallel Processing Procedure', respectively. Though

the examples get burdened with details at times, they are illustrative of

the mass of data that may be systematically described, filed, and later

referred to in other parts of the description. The report concludes with a

discussion of our future plans.

In the forthcoming report (A Formal Definition of CDLl) under

this contract, the language will be described formally.

' •

II- WHAT WE WISH TO DESCRIBE

Computing machines are command-obeying machines . The basic

dichotomy of a computing system into hardware and software arises directly

because of this. It is, therefore, appropriate to describe computing

machines in terms of their commands, what the commands mean,and how they

are implemented. Indeed, this is just the way they are described in existing

machine manuals.

In CDU we address ourselves to the problem of describing them
•ft

formally in this manner, from three points of view; functional, structural ,

an^ I - In doing so we shall find it convenient to recognize

the following four levels of design:

(1) specifications,

(2) data-flow sequences,

(3) data & control flow sequences, and

and (4) logical nets.

Let me discuss these concepts in greater detail and illustrate

them through a simple example.

A- The Three Kinds of lescr intions

The workings of a computer involve movements of data from one

place to another within the machine, and data modifications performed by

logical nets. Such movements and modifications are always under the control

of the commands to the machine. Within a machine, data are represented in

terms of signal level configurations (states) that parts of the machine may

assume. So also, the controls initiating data movements and modifications

By a formal descriptionf we mean one that is machine-interpretable

are represented in terms of signal levels and pulses that its control lines

may carry, A description of a machine in terras of its parts, the signals

they carry and the actions they initiate is referred to in CDL1 as the

operational description of the machine, A designer may view such a

description as a detailed specification of the implementation of a set of

commands to a machine, in a given hardware complement.

An operational description is usually the result of a design

process which had its beginnings in an understanding of what a command is

to do, and what the available hardware facilities are. The function of a

command may be described as an algorithm in an algorithmic language, and

the hardware facilities may be described in terras of the component items,

their input, output and control lines, their interconnections, and finally,

their own functional and/or operational characteristics.

We shall call the description of the function of a command or a

hardware item as an algorithm, its functional description, A functional

description could be in the form of a table of input/output relationships,

or it could be a function already defined in the algorithmic language used,

or it could be a program in the language. It could be completely

independent of the details of implementation of the hardware item or the

command.

The description of a hardware item in terms of its input, output

and control lines, and a hardware system in terms of the interconnection

structure of its components, we shall call a structural description.

The examples in Section II-B and Section IV will illustrate the

differences of the above three kinds of descriptions. Before considering

the example, let me point out the essential qualitative differences existing

among the three kinds of descriptions; these differences will in turn

manifest themselves in the syntax of statements used to describe them.

The distinction between a structure specification and the other

two kinds of descriptions should be obvious. Let us direct our attention

to the differences between an operational and a functional description,

which are more subtle.

The execution of a program (an algorithm) will usually imply the

existence of a control mechanism, a scheduler, to read the statements in

the program in the proper order and to activate them at the right times. One

may imagine a pointer (or pointers) tr versing a program, selecting the

commands to be executed at different times; a command (statement) will

become alive only when it is pointed to, otherwise it will remain dormant.

We shall call such statements in a language, the dormant statements.

The rules regulating the operation of the scheduler may either be implicit

in the 'sequential' or 'data-availability' structure of a program, or else

may be given explicitly through 'transfer control' statements in the program

itself. We shall use the phrase 'functional description1 to denote

exclusively a description containing dormant statements. A program so

described obtains its full meaning only in the context of its scheduler.

On the other hand,an operational description should be. totally

self-contained. It should be in terms of the signals, signal lines, gates,

etc., within a raachine^all of which should have been explicitly defined. No

part of a machine sequencing of its actions may be left unspecified; they

should all be explicitly indicated in terms of the controls that initiate

them. Every statement in an operational description should be self-activating

on the basis of its event-control signals, which themselves should be part

of the description. We shall call such self-activating statements, (like

the 'ON'-statement in PL1 [15]) autonomous statements.

The autonomous statements are always alive, just as a hardware

item within a system might be. An operational description of a system will

consist of only autonomous statements; it may actually resemble the internal

operation of the system itself. The meaning of such a description will

depend only on the structure of the system being described; whereas data

in a functional description might assume a structure as a result of con¬

ventions in the language, in an operational description data might assume

only the structure imposed on it by the hardware. Thus, an operational

description cannot ever be independent of the details of implementation of

a hardware or a comnand.

B‘ The Four Levels of Design: An ExamM*

Suppose ADD(A,B,C) is a command to a machine yet to be designed.

One might describe functionally what one wants of ADD(A,B,C) in some

language, which might look as follows:

Dl: "THERE EXISTS A SCALAR ARRAY OF SIZE N, CALLED MEM. FOR

0 < (A,B,C) =< N, ADD(A,B,C) MEANS; PUT IN LOCATION C OF MEM THE SUM OF

CONTENTS OF LOCATIONS A AND B OF MEM."

If the description language had conventions for array declarations,

for accessing elements of an array through indexing and for interpreting

'+', then the description might look like:

D2: "DECLARE MEM, SCALAR ARRAY, SIZE N. IF 0 < (A,B,C) =< N THEN

ADD(A,B,C) MEANS MEM[C] - MEM[A] + MEM[B]."

7

fi, ' . .

ll^HUif #11 H' Hmi'.i"i!’--'i :N:ii" iii- íw«h ■• ■H-ir l‘|i|iHh- 11811 •II'III I Ii'i!'ifi-rn il : ' . ! II.Il mil i |'I|I|.

Both D1 and D2 are meaningful only if there are conventions in the language

to interpret 'scalars', 'sum1, etc.; the semantics of the language

should be well defined in some sense. D1 and D2 may not yet describe ADD(A,B,C)

truly, since they do not specify scalar representation and the add

algorithm used in the object machine. As given above 'scalar', 'sum',

etc., have their meanings given to them in the language, and not

the meanings they are to have in the object system being designed. One

may now declare the desired scalar representation in some form, define

the add algorithm to be used, and invoke these while interpreting D1 or D2.

Thus, one may obtain a more precise functional description of ADD(A,B,C)•

A collection of such functional descriptions, one for each command

of a machine, might form part of a specification for a new machine. To

complete the specification one may have to say how the instructions are

cycled within the machine, what hardware structure (block-diagram) the

machine may have, and speed, cost and myriads of other restrictions it

may have to satisfy.

Suppose that the command, ADD(A,B,C), is to be implemented in

the system whose block diagram is shown in Fig. 1. We may not yet know

the details of I/O gating of the registers and memory in the block diagram.

Still, the very presentation of the structure in Fig. 1 enables one to go to

the next level of specification of ADD(A,B,C), the data-flow sequence level.

Let us assume that the block diagram was declared in some form

to the description files, as part of a structural description of the machine,

and also it was indicated that 'SUM' or is to be done using the adder

network shown. Further, suppose that the operation of the adder network

was specified in terms of the I/O relationship it maintains; this description

i

{

FIG, 1 Block Diagram of a Hypothetical Machine

could itself be functional, or operational in terms of component parto of

the network. Assune also that the scalar representation was specified

in terms of the bit patterns within MEM.

One may now obtain the data-flow description D3 below, by following

the only paths available from memory to adder network and back. In fact,

one can visualize an automatic synthesis algorithm which could produce D3

from D2 and all the auxiliary declarations made on the side.

D3: Data-flow sequence for ADD(A,B,C)

(1) MR «- MEM[A],

(2) ADR1-MR,

(3) MR-MEM[B],

(4) ADR2 - MR,

(5) TRIGGER adder control

(6) MR - ACC, and

(7) MEM[C] - MR.

9

"I'll' '1! ■I'llnliMMItf ||f 111 lÜ Ü 'll 'J jill!1 I : !-i* I!! I |1i|| ;!■!!]• >tl‘¢-1^11 v- ! f li H-^1H I !»¡wr-i -111 m-¡ I

To interpret D3 formally one should have some conventions concerning data

movement^ adder over-flow,and interpretation of registers and MEM as data

items* These conventions could be as follows:

1* Data transfer between registers is indicated by and is admis¬

sible only if the registers are of the same dimension. We may assume that

the dimensions of the registers have been declared elsewhere.

2. The over-flow bit might have been stored in a flip-flop within

the adder/network and this could have been described in the adder network

operation.

3. TRIGGER is to be interpreted as a call to the description of the

operation triggered by the control signal.

4. Registers are interpreted as vectors and memory as an array of

vectors. The vectors, in this case, consist of O’s and l*s only.

Description D3 is still functional, but it speaks more about how

the ADD comnand is to be implemented in the given structure. In D3 we

do not talk about data movements in terras of I/O gatings of the registers

themselves, but in terms of what the data names mean within the language.

Also, we have not specified timing, and how MEM as a hardware array accesses

its elements. The only place where we could introduce an operational

description in D3 is in the adder network call. If the adder had been

described operationally then one could invoke it in response to 'TRIGGER

adder control'. Thus D3 could be partly functional and partly operational

in nature. Let me now take this one step further to illustrate how memory

operation could be introduced in the description. We need some more decla¬

rations.

10

»»»nrtmrsnsEW tipis* OTaWñiatffatliaW&mttBB.! ¡SUsWamfeS**«*» «WH*# WWW«-«'

Assume that the number of input and output lines of MEM have been

fixed, and MEM has two control lines, as shown in Pig. 1. tfe shall first

describe what happens in response to signals on these control lines. We

shall assume that control lines assume values 1 or 0 (TRUE or FALSE). The

description of memory operation might look as follows:

D4. Functional Description of Memory

1. WHEN READ = 1 DO

MR *- MEM [The binary number corresponding to the contents
of MAR],

READ - 0.

2. WHEN WRITE = 1 DO

MEM [Tlie binary number corresponding to the contents of
MAR] ♦- MR,

WRITE - 0.

3* and WRITE shall never be simultaneously equal to 1.

Now assume that the instruction format (the way instruction appears within

a machine) of ADD(A,B,C) was specified elsewhere as the contents of the

instruction register, IR, as shown in Fig. 1, „here the binary representations

of numbers A,B, and C are stored in registers AR, BR and OR, respectively.

One may now rewrite D3 as follows:

D5 • Data £t Control Flow Sequence

1. MAR - AR,

2. TRIGGER read,

3 . ADR1 «-MR, MAR - BR,

4. TRIGGER read,

5. ADR2 *- MR,

11

W

'■ r rirrn-iriínuirfrjariaiL^ni.u:

pilü'i' i Niv ■ ïMitr* r-ü t IWIii^I -Hl. 1' H H III 111-1NWIU-I, i «IK W* l«ltW'fl I' ilH1 .-11(1111.1^1(:1 I »I- '1: > Hl

6. TRIGGER adder control,

7. MAR - CR, HR - ACC, and

8. TRIGGER write.

The trigger conmands in D5 constitute a partial control flow sequence,

which may be interpreted as calls to appropriate descriptions declared

elsewhere. Depending upon the nature of descriptions so-called D5 may be

partly functional and partly operational.

To obtain a completely operational description of ADD(A,B,C)

one should declare I/O gatings of the registers (by associating controls

with them), and specify timing and control signals (pulses and levels)f

Also, the actions initiated by the hardware items in response to control

commands (like in D4) should be described. One may then give a sequence

of control lines to be triggered, with the necessary timing pulses. Such

a control sequence may then be interpreted in a variety of ways. One may

either invoke a totally operational description of actions initiated by

the controls or a totally functional description, or any combination thereof,

For the sake of simplicity and brevity of this discussion we shall not

presently enter into the details of logical net designs appropriate for

the current example. The reader may imagine how it might be done.

A design process may thus be captured: At each level of design

one may obtain a formal description, which is not only a true documentation

of items designed, but also is capable of being interpreted by a machine

for simulation, design analysis, or automatic synthesis. Also, one may

design a complex system in terras of its parts and plug in descriptions of

parts so designed appropriately in a procedure describing the operation of

the total system. A hierarchical structure of descriptions is so obtained.

<.

12

Design changes may now be viewed as moving up and down this hierarchy.

Also, at the end of a design one may compare the operation of a system

with its functional specification through simulation, and thus develop

product assurance and system diagnosis techniques. Also, the functional

specification of a system may be used to debug software written for the

system. The variety of design tasks for which automatic design aids could

be developed in this environment is quite numerous. Let us now take a

brief look at what was involved in the creation of the above sequence of

descriptions, to understand the kinds of facilities a description language

should have.

c* Discussion of the Example

In the above example we were able to capture the design process

by having a main scheme of what was to be designed [D2 of ADD(A,B,C)],

and progressively modifying this scheme in response to declarations of

other items created in the design process. Each level of transition in

design required new objects to be declared. Since the items so declared

could themselves be cast into a similar description methodology we get a

hierarchical structure. During the transition from D2 to D5 we had

occasion to assume declarations of following kinds of items:

!. -Data-structures: Like registers, memory array, and scalars.

2. Definition of operators: Like ' + '.

3* Formats: Like number representation format and the instruction

format.

4‘ Hardware items & structure: Like registers, memory and the block

diagram.

13

1 : ,

; TÍl-ilfi lîf.|lH4-l*Hlt<tlHW;lP' l-l- MN-HH I

5» Procedures: Like the functional and/or operational descriptions

of the hardware items.

6. Signals: We did not discuss these in detail in the example.

One may also need declarations of

7. Codes of symbols and strings.

8* Functions on software or hardware items.

9. Tables and tabular functions: To define these one may have to

specify how tables are organized,

accessed and kept updated, and, also,

what functions are defined on them.

10. Complex data structures like lists, trees, etc.

The last three will be particularly useful in software descriptions,

as we shall later see. In a system design process the number of declarations

of the above kind are likely to be very large. Also, they are likely to

be made by different people, at different stages of a design process. There

should be a scheme to make these declarations in some standard format and

file them appropriately, so that they may be accessed and used by all the

designers. To do so it is very desirable to have a uniform set of conventions

D« Description of Software Systems

The principal constituents of software systems are aggregates

of data and algorithms operating on the data. Every data aggregate is

associated with a storage format and an addressing structure, which determine

the way it is accessed, treated and kept updated. In the description of a

software system we shall choose to separate the data definitions from the

specification of the algorithms [1]. Such a separation might not only

14

,ii I íJÍ.íÜIMl-JI i, . uV.I ¡.UUli-i.l!.liiisii í r/¡¡ UÜíi, ;¡ iiiil íi ¡líi. ¡i, //,1.-1 :,,/:/1111:::,11/1:/:/:.: .:i.uLí;lii;í JÜiii;!¡ I,:.i.[Lai;¡U,í¡,LU.ai¡y.k¡a;,,.il;:.¡l¡Uyi¡ ./¡íi.duüiiJi././/11,,,1:.1 Ú

make the relevant algorithms easy to understand, but also provide a facility

to experiment with alternate data organization schemes suitable for a

given algorithmic task. Data accessing, updating and creation procedures

may be declared separately as subroutines, or functions, or macros and

called into a procedure as and when necessary, through appropriate naming

schemes. The facilities to invoke the macros, functicns and subroutines

and link them in various ways will then give such a body of description, a

hierarchical structure. With this in mind in CDL1 we have provided some

primitive facilities for data-structure definitions. We shall have more to

say about this in another report.

E. A Sunmary

This then is what we wish to describe: We wish to describe the

design process in terms of descriptions of the items designed at various

stages of design (the items could be software or hardware systems); at each

-l.ey.el of description we wish the documentation to be complete, in the senso

that, the descriptions themselves could be directly simulated bv a machijie

M, necessary. We wish to talk about a large system in terms of its parts,

design the parts separately and link them together as necessary, taking

care of the boundary conditions. We want to describe procedures as well as

hardware structures. We wish to describe the parallelism within an algorithm

or a hardware item as it may actually appear; and to talk about data as

symbolic items or as machine states, and to describe the relation between

the two. We wish to be able to specify design alternatives and design

changes and to assign hardware facilities to various tasks in a procedure,

either dynamically or statically. Finally, we wish to organize all such

descriptions in a manner which would be easily accessible and modifiable.

15

i

view:

III. THE NEED FOR A NEW LANGUAGE

I shall present the case for a new language from three points of

1. Objects spoken about, statements and operations.

2. Program or description structure.

3. Uses.

Many of the language features discussed below are available individually

or in groups in one or the other of the existing languages. But no existing

language has them all together. The need for three kinds of descriptions,

the implied documentation facility and the hierarchical structure of descrip¬

tions make it desirable to develop a standard set of uniform conventions

for the entire spectrum of design applications that the language may have.

Many design problems may then be studied with reference to a single common

base. This is the principal reason for developing a new language.

Even if one chose to modify an existing language to suit the new

requirements the extent of modification and addition will be so great that

one would essentially arrive at a new language; the existing processors for

the parent language could not be profitably used. Also, the kinds of uses

a body of design description might be put to are far different from the

uses one gets from a program written in a conventional language. Processors

for design documentation, data retrieval, design analysis and synthesis

will have to be created from the start; so also, processors for simulation

will have to be created anew. The existing simulation languages do not have

a hierarchical structure, and facilities for different kinds of descriptions

that may arise in a design environment. Thus, they are not suitable to

16

describe systems in the process of design. The description languages

proposed so far [2-5, 8, 13] also suffer from the same kind of inadequacy

The discussion below will make clear the essential differences.

A. Objects. Spoken About. Statements and Operations

In a conventional language the objects spoken about are variables

and constants, which are usually of fixed types, a characteristic of the

language itself. Also, one speaks of operations on these objects. Again,

the kinds of operations and their interpretation are fixed characteristics

of the language. One may have facilities to create complex data structures

and specify schemes for addressing them.

An algorithm in a conventional language is always a finished

product, not one in the process of design. All details of data and sequencing

are specified either explicitly or implicitly through the language conven¬

tions. Usually one has only limited facilities or none at all for specifying

paralie1 or autonomous processes.

In a description language the variety of objects spoken about

could be much larger. An object could be a constant, a variable, or a data

structure, or it could be a format, a hardware item, its structure, an

algorithm, or a definition of an operation. Standard formats for declaring

these various kinds of objects are necessary.

A given operand like scalar may be used at times as a string.

at times as a vector or at other times in terms of its bit string repre¬

sentation inside a machine. To do so one needs a dynamic declarative facility

indicating how an operand is to be used in a given instance. A large

variety of operand types is desirable.

17

1,1(4.,..

Also, operands and operators may not always have the same standard

set of possible interpretations; at times one may have to invoke the inter¬

pretation they ought to have in the object system being designed (like 'd-'

and scalar1 in description D2 in Section II). Operand representations may

change from one system to another? accordingly, the operator interpretation

also should be changed. There should be facility to define operands and

operators. In a software description it is desirable to have a facility

to declare data structures associated with data types.

A description in a description language may not be that of a

finished product« A hierarchical descriptive structure is necessary to

describe systems only partially designed. In many cases in the initial

stages of design of a system the precise nature of hardware items, or data

structures may not be known. A user should have facilities to declare

partially defined items and later specify them in greater detail.

A description language should also contain a greater variety of

of expressions than what the conventional languages usually have. Besides

arithmetic, boolean, and string expressions, one would also like to have

reduction, selection,and permutation expressions; these were first pointed

out by Iverson [6]• Also, the need for three kinds of descriptions (func¬

tional, operational and structural) point out the need for three kinds of

statements: dormant, autonomous, and connection statements, the last one

being used to indicate hardware connections. Since machine operations

take place almost always in parallel there should be facilities to describe

parallel processes.

In the description of a task to be executed by a system one might

need a facility to assign hardware items or algorithms to perform the

if!

different subtasks that might arise in the course of executing a task.

Such assignments could be conditional; the very execution of a subtask could

be conditional on the satisfaction of some error criteria or hardware avail¬

ability criteria. These criteria might not have been known at the time

the descriptions were written. It will be convenient if one could attach

such conditions to subtaèks, or to variables and hardware items entering

a task, as and when they become evident, without having to modify the

already existing descriptions. A designer may profitably use such a facility

to keep a running commentary on error checks tha:t he might introduce

within a process.

None of the existing languages can provide all these facilities

without undergoing sane modifications, and additions. The description

language proposed by Iverson [6] is very skeletal and elementary: It is

more a notational schema than a language; it does not have declarations, or

facilities for naming objects, or facilities for function, macro and subroutine

calls. The design languages proposed by Gorman, Chu, Dennis and others

[5, 3, 2, 8] are in the nature of experimental systems, which did not

consider all aspects of design requirements. They have made a valuable

contribution to our understanding of description languages.

B. Program Structure

Programs in languages like ALGOL and PL1 may have a block and/or

group structure, which is used to control dynamically the creation and elimin¬

ation of variables, locally within a program. Also, a block introduces an

additional level of labelling of statements; two statements in different

blocks may have the same label, and may also use the same variable name to

denote different local variables. This facility is useful for dynamic

19

L

storage allocation and efficient use of memory space. Block and group

structures of a program are part of a programming language, in the sense

that they affect the way the variables are to be interpreted within a program,

In addition to these, in a time-sharing system programs may

also have a file structure in terms of segments and pages. These are used

to address programs within a file in convenient unit sizes, for execution

or editing. Otherwise, they do not have any relevance within a program.

A description file should be easily accessible and modifiable.

Some form of classification of a large body of description in terms of

smaller parts of it is very desirable. Such classification should not only

provide a filing scheme, just as segments and pages do, but if it is to be

useful, it should also reflect naturally the subdivisions of a system into

its parts. Thus, file classification schemes should be part of a description

language; the interpretation given to a statement in the language might

even depend on the classification of the body of data in which it appears.

In CDL1 such a classification is obtained by the use of what are

called module-types. A module is a body of data with a title. The title

consists of two parts: a module-name'and a module-type. Each module is,

in a sense, a self-contained entity, and usually pertains to a description

of a particular object or kind of object within a system. In addition to

this modular structure a procedure (or a description) may also have a block

and a group structure.

G. Uses

A program written in a programming language has only one purpose

It is to be executed by a machine. A body of description might serve

This could be vacuous.

20

iiiii I.Í ;li ii.:, iiiiiiL _< « ÍíÍ:!Li i¡!.! ’ ! iliii !! ¡I: ill j i ' ii LÍi i il.li i n.ilíiáí'iikiiiiLiiilLiiijIÍÜLi,! . :,1 iliiliiiiiiiii U,í:;,¡ i, jJj'iijj i. i ., .i i ;¡¡i,’!! iii k! '1 ::. UU il íliiiiiiiíj.¡ü!!í:l¡li:i¡ , hi,¡nil:. .,1 I t .',Í»Í,iiÍi>iÜ iiLLirfilii l ¡LiiU.Í II ü.iihLiÜi „¡lui.hi.

several purposes in a design environment. It may be just a documentation

device for which simple retrieval facilities may be built; or one may perform

some analysis of a body of description and answer some involved questions

that a designer may ask; or it may be executed in the usual sense of a pro¬

gram to cause a simulation; or finally, it may be used as a specification

to go to the next level of design which may itself be performed automatically.

The kinds of processors that one needs for a design implementation of a

description language are quite different from a compiler.

We leave it to the reader to judge for himself whether the dif¬

ferences pointed out above justify the development of a new language. This

author is of the opinion that only through the creation of a new language

and associated operating facilities may one introduce a uniform and consistent

set of conventions adequate for the entire range of discourse.

21

.--«-.»i—w ,+w *n

IV. FEATURES OF CDL1

A. Operands

CDL1 has a variety of operands. They fall into two basic categories:

software and hardware operands . Within each category the operands are

classified according to their data types and attributes. The type of an

operand governs the way it is stored, accessed and used in expressions; within

a given data type, the attributes of an operand may introduce variations

on these.

The software data types are:

1. Scalar (S)

2« Vector (V)

3- Matrix (M)

4. Array (A)

5. STring (ST)

6. Bit STring (BST)

7. STring Vector (STV)

8. STring Array (STA)

9. Bit STring Vector (BSTV)

10. Bit STring Array (BSTA)

11. Index Vector (IV)

12. Index Vector Array (IVA)

13. Pulse (P)

A string vector is a vector whose elements are all strings. So

also a BSTV will have bit strings as its elements. A BST is always reckoned

in terms of its bits, where as a ST is reckoned in terms of its characters

(which may appear in their encoded form)•

The hardware types are basically of two kinds: (1) One-of-a-kind

type or (2) an array-of-a-kind type. In the latter case the addressing

mechanism for accessing one or more items of an array should be part of the

hardware. All items in a hardware array should be identical to each other,

with some minor exceptions. The hardware data types recognized in CDL1 are:

22

1. Flip-Flop (FF)

2. Register (R)

3. Gate (G)

4« Switch (SW)

5. Network (NW)

6* Bus (B)

7. System (SYS)

8. Delay Line (DL)

and 9. I/O Unit (I/OU)

These may occur either as one-of-a-kind items, or else as part of an array

of identical units. In the case of arrays the suffix 'A' is attached to

the abbreviations given above, denoting unit types. Elements of an array

may be addressed through suitable indexing conventions which themselves may

be declared.

Each operand when first declared should contain a flag denoting

its data type. The abbreviations indicated above are used as flags, which

are affixed as suffixes to the respective operand names, with a blank in

between, like ADDEND S (a Scalar), ACC R (Register), MEMORY RA (Register

Array), etc. These flags may be omitted in later use, unless one wishes to

indicate explicitly a change in the operand type, in a specific instance

of reference to it. If so a new flag may be inserted. The operand will

then be given the interpretation corresponding to its new type, if possible,

for that particular occurrence only. Thus, one obtains a dynamic declarative

facility.

Each hardware operand is given a software equivalent, which will

govern its interpretation in expressions. Thus, a Register will be inter¬

preted as a Vector in expressions, a Flip-flop as a Scalar, the inputs of

a network as a Vector or an Array, as the case may be, etc. The data-type

of a hardware operand may not be changed ever. However, its software

equivalent may undergo type changes. Thus, one may treat the contents of

23

a register as a vector, or a bit string, or a string, or even a scalar.

The admissible software type changes are restricted to changes between

any two among the following data-types: Scalar, Vector, String and Bit

String.

DATATYPE has the status of a retrieval function in CDL1. One

may ask for the DATATYPE of an operand, through the functional notation:

DATATYPE (Operand name) f • Every data type may have attribute "types associated

with it. Thus, a Scalar may have four attribute-types: BASE, TYPE, MODE,

PRECISION, where BASE could be any integer, TYPE could be FIXED or FLOAT,

MODE could be REAL or IMAG, and PRECISION, a pair of integers. One may ask

for 'ATTRIBUTES (data type)' to get the attribute-types associated with a

given data type. One may also ask for 'ATTRIBUTES (operand name)' to get

the attributes associated with a given operand. Thus, for JIM S_, ATTRIBUTES

(JIM) could be '10, FIXED, REAL, (8,2)', by a previous declaration.

Every attribute-type is also the name of a retrieval function in

CDL1. Thus, for JIM above, MODE (JIM) is REAL. A user may define new

attribute-types for a data type and declare them while declaring the data.

Operations on data, and their storage and accessing mechanisms may be depen¬

dent on their attributes. Thus, the operation has different interpreta¬

tions for a scalar, depending upon, whether the scalar is of type FIXED or

FLOAT.

In CDL1 the standard data types have standard attribute-types

associated with them. Those of a scalar were discussed above. Within the

language system there are conventions, default conditions (like in PL1),

which take care of undeclared data attributes. Some of the standard

attribute-types associated with the CDL1 data types are listed below.

!• Software Operands

1. Data types: V, STV, BSTV, IV*

Attribute-type: DIMN. This stands for the 'dimension1 of the vectors.

2. Data types: A, STA, ESTA, IVA, IV

Attribute-type: SIZE* The size of an array is a vector whose 1

element is the size of the ith dimension of the array. The size of

an IV is also a vector, whose ith element is the DIM of the i***1

element of the IV* (An index vector is a vector of vectors.)

3. Data types: ST, BST

At tribute-typei LENGTH.

4. Data type: P (Puls»).

Attribute-types: WIDTH, AMP, RISE, FALL, DIRECTION.

'AMP1 stands for amplitude. The direction of a pulse is positive (if

it goes from 0 to 1) or negative (1 to 0). All pulses are treated as

logical pulses. One may invoke the amplitude of a pulse in an expression

only by calling for AMP(pulse name).

2. Hardware Operands

The standard attribute-types are:

1. ISIZE : Input size

2. OSIZE : Output size

3. SSIZE : Storage size

4. CSIZE ; Control size

Inputs, outputs, controls, and storage may be structured as arrays of arbi¬

trary dimensions for indexing purposes. Thus, a hardware item with 25

inputs may have them indexed linearly from 1 to 25 or as a 5x5 array.

25

5. SIZE

6. STATES

7. ISTATES

OSTATES

CSTATES

8. DEIAY

This applies only to hardware arrays. An

array could have an arbitrary number of

dimensions .

This refers to the number of states a storage
item can remain in. If unspecified it is

assumed to be 2.

These refer to the number of states the 1,0

and C lines may assume. If unspecified they
are assumed to be 2.

This applies to buses, delay lines, gates,

switches, etc.

A user may define new attribute-types for any of the above data

types, and declare modes of interpretation on the basis of such attributes.

In the next section we shall see the kinds of facilities available in CDL1

for defining data types and other objects. A user should use these facilities

only if he wishes to create new data types or other objects which have not

been already defined in the language. One may skip the next section in the

first reading, and go directly to Section IV-C to get a quick look at the

language.

B. Definitions

Six kinds of definitions may be made in CDL1:

(1) Data definition .

(2) Hardware definition.

(3) Table and tabular function definition.

(4) Function definition .

(5) Macro definition.

(6) Command definition.

26

*il¿ &i!IIÍÍaSUÍ¡tt¿fiWi.)&í.i<^

; |l 1
? i, : t 'i i ■! ! i i ; í; ! ! :¡i ' ¡’!|:i:¡!!!|iü

I » . • • ' : ; I ! i i I i ' 111 ! Ih '1 1 ! ■ i ; . i ¡i' • ■ i !¡ ! i
!j . t : ; ‘j!' ' !

;¡í H'
i ü . 1 '' ¡1; • H I i

■ i 'i •• 'i ! !

In each of these one may either define an individual item with a given

name, or a class of items characterized by a type, and possibly, also

attributes* Individual members of such a class may later be named and

declared to a description file. For example, one may define a class of

data characterized by the type name, TREE, specify its data structure and

also define operations on it. Later in a description one may declare

trees with given names,’and use them in manners specified in the TREE

definition. Similarly, one may define a new hardware-type called, say CPU

(Central Processing Unit), and specify its function, structure, and operation.

In a system description, one may declare as many of these as necessary.

naming them each separately, or naming them as members of an array of CPU's.

Let me discuss.in some detail the convention for data definition through

examples, since it is of some interest.

1. Data Definition

In order to define a software data-type or a datun one should

declare one or more of the following items:

(i) Attribute definition, (v) Patterns,

(ii) Declaration format, (vi) Print format.

(iii) Declarations, (vii) Interpretation, and

(iv) Data structure, (viii) T^rpe changes.

Let me explain what these items are.

(O Attribute Definition This may be necessary in case one
*

wishes to define new attributes to a standard data type or new data types

with attributes. The attribute-types one wishes to use are enumerated

and defined in this section. Thus, for a scalar its attribute definition

might look as follows:

27

1 : ;

*> ;

i .

• 1'

- ! I

•: I

•I.

<w. IU» wt M-r t r- « ijffU ¡UJ nj.f ^ yp
'• i

> ! • ! I i » ■1> I 4i. . • " . t . I • I - . III». f 'lit •• I li»-ll
■I» I • • I— " * " i 'ii •* i • *• I »i ni. i , tu ;i , ,.p

, I'--»,*« «fl „•»- I I • I , i I I» i I I *1. I I I I I ! . , , ,n I I , III .

ill llULiiiliikli

■ III ! .. .1

- .. .- :. .—.--—::.. .:.. :: .: -:

jirlllilFi-i’i'! llr-l’Nl' 1:-1 ¡If IIMi! |<¡-(!¡^#lf/.||r-l!lWi'il i U li'iil-«Uiiit»-iw*-^^ii'-'rMM®4«rtl+-'MW1Hl4lJllWwiH'm":■■ ... 1

'1. BASE ::= INTEGER:

2. TYPE ::= 'FIXED' | 'FLOAT'j

3. MODE ::= 'REAL' | 'IMAG'j

4. PRECISION ::= (INTEGER. INTEGER).1.

where the items on the left of 'j:®1 are the attribute-types, and those on

the right, their possible values. The value of an attribute-type in CDL1

could be a string constant (like 'FLOAT', 'REAL', etc.) or a pattern (like

INTEGER), which is already defined in the language, or could be any data

of a specified data-type.

(ii) Declaration Format This format is to be used to declare

token members of a given data type to a description file. A declaration

format should be specified only when one is defining a new data type or a

standard data type with new attributes. For a scalar, the declaration

format might look like:

NAME S[BASE,TYPE, MODE,PRECISION]1

indicating the order in which the attributes are to be declared. 'NAME1

here refers to a pattern, already defined in CDL1, as a 1 letter' followed

by an arbitrary number of letters and/or digits.

(iii) Declaration This may be used to declare directly to a

description file a datun that is being defined. The datum should have a

distinguished name (different from other names already declared to the

files). It may or may not have a data type associated with it. Depending

upon the data type and attribut i associated with it the following cases

arise.

Case a A standard data type with no distinguishing attributes:

In this case the datim will obtain the standard interpretation

in all contexts of its use in CDL1.

Case b A standard data type with a distinguishing attribute:

In this case, on the basis of the distinguishing attribute, one

may define a new data structure to be used exclusively for the datum, only.

If no new data structure is defined then the datum will have the structure

associated with its standard data type.

So also one may define new interpretations for some or all of

the operators operating on the datum, or functions using the datum.' For

operators and functions not so defined the interpretation will depend only

on the data type of the datum.

A typical use of this kind of definition could be the following.

It is desired to create a scalar array, with the usual indexing facility,

and the usual operations within expressions. However, since most of the

array elements are going to be zeros, the data structure for the array is

to be different; only the non-zero elements of the array are to be stored.

A new data structure for such an array may be defined on the basis of a

distinguished attribute associated with it. This data structure will deter¬

mine the manner in which elements of the array are to be accessed, modified,

or created.

C-ase c No data type or a nonstandard data type:

In this case it is mandatory that a new data structure be defined,

and also that every possible interpretation of the datum in expressions be

specified. The datum may be used only in contexts so defined.

Whenever a datum is defined under Case b , or Case c with a

nonstandard data type then the data types, and the attributes will them-

29

. *

i;

selves assume the status of having been defined. That is, one may later

declare other data having the said data types and attributesj these will

be given exactly the same interpretation as the originally defined

Considerations of Cases b and c thus apply also for data type definition

(lv) Data Structure There are several ways of specifying a

data structure. In the case of elementary items^ like scalars, it may

be specified in terras of the storage format of the scalar: The storage

format of a base 10, FIXED, REAL, PRECISION (ra,n) scalar could be:

1 {DIGIT -/nH-n,!»^/. DIGITV

wllere DIGIT is a pattern defined in CDL1, ‘digit */m+n,m+n/- digit* is

a string expression denoting exactly m+n occurrences of digit, and the

angular brackets, *(•••)*, called the value brackets, denote the value of

the string expression as being the desired format, in contrast to the

expression itself. Each digit is to be stored in terms of its machine

representation, its code, which itself may have to be declared.

One may also describe a data structure in terras of algorithms

for address calculation. For example, the address of the (i,j)th element

of an array may depend on the address of its (l,l)th element as follows:

ADDRESS (AREAYtl,J]) = ADDRESS(ARRAY[1,1]) + 100 * (1-1) +

5 * (J-l).

where 100 and 5 are the characteristics of a particular array organization.

To describe more complex data structures consisting of aggregates

of other data structures, it is desirable to have the following additional

facilities [14]: Facilities to

30

a) declare the addressing structure in terms of linkages among

the elements of the data, and

b) declare functional relations among the various elements in a

data aggregate: Like NEIGHBORS of a node in a graph, or DESCENDENTS of

a node in a tree, or the TAIL of a list, etc.

We shall illustrate these facilities through an example.

EXAMPLE: Definition of a generalized list: By a generalized list, we mean

one whose elements could be of arbitrary data types. One of the elements

of the list could be, say, a scalar, another an array and the third, even

another list. We shall define first the HEAD of a list and then define

the notion of the NEXT element in a list. We shall then define an indexing

convention to refer to elements in a list by their position within the

list. Also, we shall define the TAIL of a list as another LIST consisting

of all the NEXT elements in the list. Such a description might appear in

English as follows:

D6• 1. The POINTER to a IIST points to either NULL, or the HEAD of a

KLST which could be of any data type, and either the NEXT of the

LIST which could also be of any data type, or NULL.

2. The HEAD of a LIST points to ITSELF.

3. The NEXT of a ILST points to ITSELF, and to either NULL, or NEXT

of NEXT, which again could be of any data type,

4. NEXT of LIST is the same as NEXT of HEAD of LIST.

Schematically Do implies the pointer structure shown in Fig. 2.

31

LIST NULL or

Fig. 2 Schematic of List Structure Described in D6

One may write this formally as follows:

D7. UST ~ {HEAD¡ANY | {NEXT;ANY.NULL}.NULL};

HEAD - ITSELF;

NEXT - ITSELF | {NEXT:ANY.NULL};.

Here the chain brackets denote the selection of one of the items enclosed^

separated by commas. The words ITSELF and ANY have been used as reserved

words; >ANYf denotes 'any data type*. One may now describe the indexing

scheme and functions on a 1ZST as follows:

D8. Indexing Scheme for a LIST:

USTtl] » HEAD(UST);

NEXT (HEAD) = NEXT(LIST);

FOR 2 =< I «< SIZECLEST)

UST[I] = NEXT(UST[I-1]);.

The SIZE(UST) could be the total number of elements in the list.

D9. Functions on UST

1. DECLARE

TAIL(LIST), Data-type LEST;

TAIL(LEST) = LEST[2 TO SIZE(LIST)].

32

(v) Patterns For a string operand, with or without attributes,

one may define a pattern for the values which the operand may have. When

the operand is later used in a description or a procedure its value should

always satisfy the pattern defined for it. An example of pattern definition

occurs in the •Parallel Processing Procedure* in Section V. So we shall

not discuss it any further here.

(vi) Print format This is used to declare the way a datum is to

appear at the input and output. Specifications may have the usual

kinds of format statements.

(vii) Interpretation In this section one may define algorithms

describing the operations performed by operators (standard operator symbols

used in the language) on the various data types.

(viii) Type changes In this section one may specify the conventions

for changing the type of a data type from one to another.

2. Hardware Definition

A hardware definition may consist of one or more of the following

items:

(i) Attribute definition, (v) Signal characteristics,

(ii) Declaration format, (vi) Operations,

(iii) Declarations, (vii) Compatibility,

(iv) Structure, (viii) Properties.

Under 'compatibility1 one may declare the hardware types, with or without

attributes, which should be mutually input/output compatible. All signal

lines are assumed to have logical values, which could be multi-valued.

Under 'signal characteristics' one may associate voltages, currents or

other physical quantities with the logical values of a line. The notion of

33

¢.

compatibility will depend on the signal characteristics so defined. Under

'properties' one may list any property of interest to be associated with an

item. Each such property must be titled. The value of a property could

be any string.

All hardware items will have the standard set of attributes, which

were enumerated in Section IV-A. One may define additional attributes and

describe items on the basis of such attributes. Examples of hardware defini¬

tions appear in Section IV.

3. Table and Tabular Function Definition

One may declare names to the rows and columns of a table and

specify table accessing and updating algorithms. Also one may specify

table updating rules, which may depend on the input strings to the document

files. Every 'row name (col.name)', or 'col.name(row name)' have the status

of a table look-up function.

In a procedure one may assign values to the functions, col. name

(row name) or row name (col. name). If a table look-up function is called

before it is defined then a 'SKIP' condition will be set on the statement

in the procedure issuing such a call. One may name such SKIP conditions,

as part of the restrictions on a statement, as we shall see, and

later use them in a procedure in various ways. Once it is used its value

will be reset to zero.

4• Functions and Macro-Definitions

The definition of these is rather straightforward, and we shall

not discuss them any further.

34

I I

i 1

tdlíluá

5. Command Definition

In a command definition module one may declare one or more of

the following items:

(i) Command format,

(ii) Functional descriptions at various levels of design. The

levels are distinguished by labelling: Functional Description 1,

Functional Description 2, etc. Some of these could be data-

flow sequences.

(iii) Operational descriptions at various levels of design.

In the conmand format one may specify the command name, and its

pattern within a machine.

The syntax and format for all these definitions appear in the

'formal definition of CDL1'.

C' Operators and Expressions

Operators are classified as unary, binary and string operators.

The unary operators are

MOD, CLG; FLR, +, -,

where W is logical NOT, -MOD' is modulus, 'GIß' is the ceiling function,

X =< CLG(x) < x+1, 'FLR' is the floor function x-1 < FLR(x) «< x, and '+'

and are arithmetic signs. The binary operators are:

+> ~ **, MOD, A, V,

(+) ; -i -, =, -i =, =, =<, <;

where is the divide symbol, is proper subtraction, (+) exclusive-or,

x MOD y is x modulo y, and is the symbolic identity operator. The

rest of the symbols have their usual significance. (V = V) has value

35

A

1

1 (TRUE), whereas (V s V) has value 0 (FALSE), (x e y), without

quotes stand for (value of x = value of y) where x and y may themselves

be string expressions or string names. We may also have the combination

('x' = y) or (x e ’yf) with the corresponding meanings. '=1 is numerical

or logical value equality operator, (x a y) always implies value of x œ

value of y. 'x' «= 'y' has no meaning.

All binary and unary operators are initially defined on scalars,

and then extended to vectors, matrices and arrays component-wise. A binary

operator on nonscalar operands is well defined if and only if the operands

have the same dimensionality. Thus,

x[l], x[2], x[3] + y[l], y[2], y[3] =

x[l] +y[l], x[2] + y[2], x[3] +y[3], and

x[l], x[2], x[3] + y[l], y[2] is undefined.

A special case arises when one of the operands is a scalar. Then the scalar

is distributed throughout the second operand for each element of the non¬

scalar. Thus,

x[l], x[2], x[3] + y[l] = x[l] + y[l], x[2] + y[l], x[3] + y[l].

The above conventions apply also to all relational operators, namely =,

fa, “<, <, >=, >, -n ® and —i=. 's' and f-n =1 will operate component-wise

in the case of string vectors and string arrays.

The string operators are

\\j II*; •••; */m*n/*,

where || is the string concatenation operator, ||. is the row concatenation

operator and ||:, the column concatenation operator. 1 ...1 is a string

generator symbol. (x...x) stands for an arbitrary number of occurrences

of x, including zero occurrences (the NULL sfring). In general,in

36

(string 1...string 2) string 2 should always be a prefix of string 1,

String 2 identifies the beginning of the string which is to be repeated^

the termination of the string to be repeated being determined by the first

in If string 2 is not a prefix of string 1, then the ex¬

pression has NULL value.

(x */n»m/* x) denotes at least n and at most m occurrences of x.

If m < n then It has NULL value. If m or n is vacuous then the corres¬

ponding limit is undefined.

In CDL1 expressions are classified according to the data type

of the result they would produce. Thus we have

Sexp, Vexp, Mexp, Aexp, IVexp, STexp, STAexp, STVexp, IVAexp,

BSTexp, BSTVexp, and BSTAexp.

Arithmetic, boolean and string operators may occur intermixed. String

operators have precedence over others. The syntax of the various expressions

are given in the Formal Definition of CDLl'. Also^ expression interpreta¬

tion under data-type changes of operands are explained. Let me briefly

explain here the reduction and selection expressions:

For any binary operator B, (B/Vector) is a reduction expression.

For example +/(3,8,7,2) = (((3+0)+7)+2) - 20. In the case of arrays

(B/[i1,i2,.. .^i^] Array) stands for a reduction of the array first along

dimension i^, then ig, and so on. The dimension of the resultant array

will be n less than its original dimension. Reduction operations have been

extended to strings with appropriate conventions.

1 ..r is a selection expression, which stands for

fany one of’ the items enclosed, separated by commas. In the case of string

vectors ' if is used as the separator of string elements, instead of coranas.

In CDLl, 'If is not a character; it is used exclusively as a delimiter.

37

ï (

'(BitString/String or Vector)' is also a selection expression,

when the lengths of the items on either side of the slash match. The

elements in string or vector corresponding to the I's in the bit string

are selected.

One may also have a binary selection expression: (/Vector; bit

string; Vector/) denotes the selection of the elements of the first vector

corresponding to 1 s in the bit string, and those of the second vector

corresponding to 0’s. Similar expressions are available also for strings,

bit strings, string vectors and BSTV.

One may also have cyclic and noncyclic shift operators on vectors,

strings and BST. In all these we have essentially adopted the operations

first proposed by Iverson [6]• ,

There are also expressions denoting number representations and

number valuations.

(k)N/(vector or string) denotes base k value of the vector or

string (if such an interpretation is possible for the string). Similarly,

(1(J)R/Scalar) denotes base I, J digit representation of the

scalar.

Let me conclude this section with a note about notations. We

have freely used symbols as we saw fit. In the internal representation of

a description each one of these symbols may have a code. In any implementation

of CDL1 it is possible to introduce a 'notation converter' at the I/O

interface to which a user may declare the notations he wishes to use. The

user's character set may be less than that proposed in CDL1. In such a

case the user may have to define character strings in his alphabet to

correspond uniquely in a one-one fashion, with the character set of the

language. Thereafter, one may use one's own notational contentions for the

descriptions; the 'notation converter' will translate such inputs to the

standard internal storage codes. In the output process the internal codes

may be retranslated to the notations of the user concerned. In this manner

different users utilizing a design aid system may each obtain symbol and

notational conventions suited to his own I/O equipment characteristics and

personal preferences.

The notational schema used should not be considered as the essential

part of a language. One may if one chooses redefine a language with dif¬

ferent notations, maintaining in some well-defined fashion a one-one

correspondence with its original version. The features of a language lies

in the kinds of operands, expressions, statements, naming schemes and

declarations it provides, and the kinds of facilities it may have for pro¬

gram control within an algorithm.

The variety of expressions in CDL1 is quite large. Most of these,

if not all, will find application in the description of a machine.

D. Functions

CDL1 has in all about 24 system functions. A list of these is

given below without much explanation. The list includes the functions

first proposed by Iverson [6].

1. MAX (1,...1)

2. MLN (1,...1)

3. LENGTH (string)

4. SIZE (ARRAY) : Also ISIZE, OSIZE, CSIZE, and other attribute functions

5. DIMN (Vector)

39

J tf
it llMlW'H « 1' M-IHH ¡I.. Ml.

6« STATES (signal line or a memory unit)

?• COÜNTN (stringl*,.string! string!).

Nonoverlapping counts of occurrences of strings 1,2,...etc. in

the last string. The result is a vector.

8. COUNTO (string!...string! string!)

Overlapping count.

9. COUNt{o,N} ({string!...string} string!)

Overlapping or nonoverlapping count of occurrences of any one

of the strings within {...} in the last string.

10. FULL(I) a vector of I "I's".

11. ZERO(I) a vector of I "O's".

12. CH(I,J) characteristic vector of dimension I with a 1 in position J.

13. PX(I,J) Prefix vector of dimension I. The k element is 1 if k < J.

14. SX(I,J) Suffix vectc of dimension I. The k*”*1 element is 1 if

k >= (I-J).

15. BITS(I) denotes an arbitrary vector of 0*3 and lrs of dimension I.

16. BITS(I,J) Vectors of 0*8 and I's with exactly J I's, and of

dimension I.
17. DITS(I) An arbitrary vector of decimal digits of dimension I.
18. DITS(I,J) The sum of elements is J*

19. INTRL(I, J) Equals (I, 1+1,.. .,1-KT-l) or (1,1-1, .. .,I-J+1).

20. BIANK(K) K blanks.

th 21. INSERT (string; I; string) Insert string 1 at the I position

of string 2.

22. REPLACE ((string! string!)] string) Replace every occurrence of

string 1 by string 2 in string 3. Only nonoverlapping occurrences

of string 1 are to be reckoned, in a left-to-right scan.

40

23. FIRST (Vector) The result is a vector with a 1 in the first non'

zero element of the argument

24. UST (Vector) The result has a 1 in the last non-zero element

of the argunent. The result could be all 0's in both 23 and

24.

E. Statements

1» Declarative Statements

There are six kinds of declarations possible in CDL1.

a. Declaration through a 'DEFINITION' or a 1 DECLARATION'

module.

b. Through a LET-statement within a module.

c. Implicitly through usage on the left side of an assignment

statement.

d. Through a dynamic declaration of the data type of an item,

o. RELEASE statement.

f« Coninents.

Let me now briefly explain the nature of these declarations.

a. The kinds of items that may be declared through definition modules

were discussed in Section IV-B. The scope of such declarations is limited

to the system in whose description they appear.

b. Through a LET-statement one may make the following kinds of declarations:

Conditional or unconditional

(i) symbolic equality,

(ii) replacement rule, or

41

liL

(iii) value equality declarations^ and/or

(iv) a data type which has been already defined,

(v) event names and their initial values,

(vi) USE-coramandu,

(vii) DELAY and WAIT declarations,

(viii) SAVE-declarations,

(ix) SCOPE-declarations•

A LET-statement may appear anywhere within a procedure (or a

description), in any type of module. The statement begins with the reserved

word 'LET'; this word may then be followed by as many of the above nine

kinds of declarations as necessary; it is finally terminated by the 'l1

symbol. The word 'LET1 introduces a new level of labelling. The declara¬

tions within a LET-statement may be labelled arbitrarily with mutually

distinct labels. In CDL1 a group of statements with a new level of labelling,

but with no block structure is called a group.

Let me briefly explain the nature of the above nine kinds of

declarations.

(i) Symbolic Equality Declaration

1. JIM =. JOE;

2. JIM =. JOE IN label IN label IN PARALLEL PROCESSING PROCEDURE, GLOBAL

3. JOE =. JOHN /// SAVE;

4. '(+)' =.

are examples of symbolic equality statements. Their general forms and inter¬

pretation are as follows:

1, ,,Label.,, Namettbtypen =. Name>tbtypenttIN generalized label" "/// SAVE";

2, "Label"'string' =. 'string';

The above forms are to be interpreted as follows: The label is optional;

this is indicated by the double quotes enclosing it. The label is to be

followed by a period 1.. "btype", where b stands for a blank, the

generalized label11 and ”/// SAVE" are also optional. A generalized label

has the following form:

(label IN..,label)(IN module title...IN module title)

"({global,

The generalized label in example 2 above is an instance of this form. It

points to the block or module, in which the named item had been declared.

There are two kinds of generalized labels: one is with the tag GLOBAL,

and the other without the tag, but possibly with an arbitrary number of up-

arrows of the form (t...t). The latter is called a LOCAL label. The global

label points to an item with reference to the root of a search tree, and the

local label points to an item with reference to its own position in the

tree. Every 1t1 denotes a jump from a node in the tree to its parent node.

The label decoding schemes are described in Section IV-G.

The symbolic equality statements have the following meaning: In its

first form it identifies two names as being synonymous; both names denote

the same data. In its second form it identifies two strings as being

symbolically equivalent. Thus, in example 4 the string ' (+)1 is being

identified with the exclusive-or symbol ©. Both identifications are valid

only within the scope of the declarations.

The name on the left of form 1 always refers to an operand within the

scope of the declaration: The operand may or may not have been declared

earlier; in the latter case its appearance in the statement will be construed

as a declaration of the operand. The type of a name may be omitted only

43

“
’
‘
»
w
K
t
t
á
'
:

if it had been declared earlier. If the types of the two operands are

different, then the statement is valid only if a change of type convention

for the two types exist* The '/// SAVE' is a restriction on the statement

having the following significance:

Without the restriction the data denoted by the names will have two

copies of it stored under the two names. Both copies will be kept simultaneously

updated. With the 'SAVE* restriction, only the name on the left side will

be kept updated, and the one on the right will maintain the old value it had*

In the case of form 2 the two strings will be treated as being symboli¬

cally equivalent to each other in all contexts of their appearance within the

scope of the statement, with the following restriction:

The strings should be bounded on either side by a string constant, in

every instance of their appearance within the scope of the statement, unless

the strings are so bounded in the statement itself. A string constant is

any one of the following set of symbols:

blank, any operator symbol, (,), [,], {, }, (,), =.,

. • S3 / + f W J VS ^

This form of the statement may be used for taking note of a notation

conversion locally within a description.

Both symbolic equality statements may appear as conditional state¬

ments, with IF - THEN - ELSE clauses. The condition should always be a

boolean condition, which may include relational operators. In that case

the statements will assume significance only on the satisfaction of the con¬

ditions. The variables used in the boolean conditions should themselves

have been declared within the scope of the statement.

l
..

..

J.
 !

,!
U

 J
 .
..

I.
..

I.
J
—

..

.1
IJ

lI
B

lJ
lll

M
g

p
M

W
W

I
p

g
M

M
M

—
 I

 .
.
.

I
I

I,H
ID

;

The symbolic equality statement will be very useful in a design

environment where different designers might have used different names for

the same object, which might have to be later identified as being synonymous

Also, it is useful to invoke in a procedure or a description a variable

declared elsewhere.

(ii) Replacement Rule

A replacement rule has the following form: Let fstid' denote a

string identifier, which could be a string constant, or a string under

quotes, as fe..f, or a string name. A replacement rule is,

"Labelstid ;:= <fstid, string expression}) "/// restrictions";

The restrictions can be any relational or boolean expression on the two stid's

and/or the string expression. The rule will be executed within its scope

only if the restrictions are satisfied, at every instance of its application.

The rule has the following meaning.

It is a mandatory replacement rule. Every instance of appearance

of the stid on the left side of the rule is to be replaced by the right side

within the scope of application of the rule, provided that the following

restrictions are satisfied:

1. The restrictions on the rule itself.

2. Every appearance of the left side stid is bounded by string con¬

stants, or the stid itself is so bounded in the rule.

If 'SAVE* is one of the restrictions then the execution of the rule

will be stayed; in this case the rule will be executed dynamically during

interpretation of the module or block In which the declaration appears. The

old form of every statement within the scope of the rule will be maintained.

45

'
If the boolean and/or relational conditions in the restrictions

are not satisfied then a flag will be set, and the name of the flag will be

the label of the statement.

This rule may be used to edit a text within the scope of a declara¬

tion. The rule may appear also in a conditional form with IF - THEN - ELSE

clauses. In such a case the rule will assume significance only on the

satisfaction of the IF-condition. No flags will be set if the IF-condition

is not satisfied.

(iii) Valoe Equality Statements

"Label." (data declaration format) =. value.

This may be used to assign initial values to data names being

declared. The statement is especially useful to assign initial values to

various event names while declaring them. The value could be expressed in

terms of other values already declared, or soon to be declared within the

block or module in which the statement appears. Thus, at the time of

declaration the value may not be well defined. The value equality statement

algo has a conditional form with IF •• THEN - EÜ5E clauses.

(iv) Data Declaration

Any data of a specified recognizable type may be declared according

to its declaration format, with or without label, thus:

"Label." Declaration format.

(v) Event Declarations

These are prefixed with the reserved word EVENT. The declaration

will appear as follows:

46

"Label." EVENT(event name =. value,...

event name =. value).

The events have significance only within the scope of the declaration.

(vi) USE Commands

These have the form:

"Label." USE (name FOR ([name or operator]),

... name FOR ({name or operator}));

The first 'name' in each 'name FOR etc...'phrast jhould be the name of a

procedure, or a body of description. The second name could be that of a

function or a macro. The operation could be any one of the standard operators

in the language. This declaration causes the object denoted by the first

name to be used in the computation of the process denoted by the second

name or operator, for each 'name FOR etc.' phrase, within the scope of the

declaration.

(vii) DELAY & WAIT Declaration

This has the form:

"Label." DELAY time unit.

The tine unit can be in seconds, MICROS, KANOS, MINUTES, etc. It is inter¬

preted as specifying the time to be taken to execute the body of procedure

within the scope of the statement. One may also specify

"Label." WAIT UNTIL event expression.

This indicates that the body of the procedure within the scope of the state¬

ment should be executed only on the satisfaction of the given event ex¬

pression condition.

11! ..,fn!w M'1 M!Mn rn1 frw

(viii) SAVE Declaration

This has the form:

"Label.11 SAVE({{data-narae, declaration format]),...

({data-name, declaration format]));

The values of the named data are to be saved after each execution

of the procedure within the scope of the declaration.

(ix) Scope Delcaration

The scope of a LET-stateraent, if not declared explicitly, is the

smallest program unit, a block or a module as the case may be, in which it

appears. The declaration may appear anywhere within its scope.

If necessary one may declare the scope explicitly as follows:

SCOPE (generalized labe],...generalized label); or SCOPE WITHIN generalized label

Phe SCOPE WITHIN declaration invokes all the variables declared in another

block or module into the block or module of current interest. One may also

declare SCOPE GLOBAL to declare globally within a given system.

A given scope declaration in a LET-statement applies to all the

declarations made piior to it within the LET-statement itself, up to the

previous SCOPE declaration in the statement. The lET-statement may thus

have the following form:

'LET

declarations of items described above, as many as necessary!1

It is terminated by 1 ! 1.

The SAVE declaration may appear by itself outside of a LET-statement,

anywhere within a procedure or description. The symbolic equality, replacement

rule, and value equality statements may appear only within a LET-statement.

So also, the EVENT names and their initial values. USE and DEIAY commands

may appear as restrictions on an assignment statement, as we shall later see.

48

c. Implicit declarations of data may appear through usage of the data

name on the left side of an assignment statement, within a program or a

description. The declaration will have the scope of the smallest program

unit, a block or a module, in which it appears.

In both b. and c. the scopes of declarations will permeate all

the submodules, blocks, and sub-blocks of the module or block to which they

apply.

d. We have earlier, in Section IV-A, discussed the significance, use, and

form of a dynamic type change declaration.

e. Save & Release Declaration

This has the form

"Labei." RELEASE <<{narae, label]),...

({name, label])) H/// restrictions11 j

This releases the scope of a variable or a labelled declarative statement

before the termination of its natural scope. The SAVE declaration was

discussed in b. (viii).

f. Comments

Comments may appear anywhere and may contain any string. These

are not formally interpretable. 1 : - * is the ' conment begin' symbol and 'j'

is its termination; a comment termination is indicated by the first free

1;' that appears in it. A under quotes, is not free.

2. Executable Statements

There are four broad classes of these;

49

*

a. Dormant Statements,

b. Autonomous Statements,

c. Connection Statements,

and d. Program Control Statements.

Within each one may have

(a) either conditional or unconditional statements,,

and (b) serial or parallel iteration statements.

Every statement may also be either

(i) deterministic or

(ii) nondeterrainistic.

a. Dormant Statements

(1) Assignment Statement

"Label." Operand <Uxp, IFexp}) "/// restrictions";

The type of operand should be the same as that of the expression, or there

should be a conversion rule between the two types. An IFexp has the form:

'IF ([Sexp, Rexp}> THEN (<{exPj IFexp}) "ELSE <{exPj IFexp})")1

where Bexp stands for a boolean expression, and Rexp for a relational ex¬

pression using the operators <, =<, =, >= , >, -i=, =, —| =.

The SIZE and DIMN of the two sides of the statement should match,

otherwise, during execution, an interrupt will be caused. is the

assignment symbol. Let me explain, at this point, the kinds of restrictions

that a statement may have:

(i) Rexp,

(ii) Bexp,

(iii) An IF-Rexp of the following form:

50

lt„. .. ¡.fptrtiM- ,

'IF (fRexp, Bexp}) THEN ((restrictions,...restrictions> MELSE

(restrictions,...restrictions)");*

Notice that the bracketing of the THEN-clause to include the corresponding,

optional EISE-clause will make the expression unambiguous.

(iv) A series of indexed restrictions of the form:

'FOR I = lower bound TO upper bound CHECK

(restrictions,.. .restrictions)i1

(v) USE-commands of the forra discussed earlier. In each 'name FOR

({name, operator]>' phrase of the USE-conmand the name or operator occurring

on the right side should be the ones appearing in the statement to which the

restriction applies. The connection symbols, and '*•-*' may be used as

operators ii* a USE-ccmmand. So also, the assignment symbol

(vi) SAVE restriction of the form:

1 SAVE (name,...name); '

The names should be the ones appearing on the left side of the assignment

statement(s)•

This will cause the old values of the names to be saved in a

pushdown stack.

(vii) DELAY and WAIT restriction of the form:

'DEIAY time unit' or 'WAIT UNTIL event expression1.

The time unit specifies the time to be taken for the execution of the state¬

ment. The WAIT UNTIL-clause will stay the execution of the statement until

the given condition is satisfied.

51

..... •—:,ii

viii) SKLP-restrictions:

In case the restrictions are not satisfied, instead of causing an

interrupt, one may cause a flag to be set» This flag is called the

skip condition. The flag is labelled in the restriction as follows:

'SKIP II INTEGER1

where * INTEGER* refers to *positive integer*. Thus SKIP1, SKLP10, or

SKLF483 could be the labels of the flags. A statement may have more than

one restriction. Individual restrictions are separated by commas. The

restriction field itself is terminated by the first free semicolon.

(2) Conditional Assignment Statement

Henceforth, we shall denote by * statement* any statement in

CDL1, including also a block of statements of the form:

BEGINNStatement...statement) END.

Let IFCOND be (tßexp, Rexp}),

THEN-clause be (statement..,statement)

and EliSE-clause be the same as the then-clause. The form of the statement is:

'IF IFCOND THEN (THEN-clause "EISE ELSE-clause")"/// restrictions";*

The bracketting of the THENrclause and the ELSE-clause makes the statement

unambiguous•

(3) Nondeterministic Forms

The above forms of the assignment statements are deterministic,

and are thus executable. Their nondeterministic forms have the status

of a declarative, indicating the possible alternatives, but not specifying

which one to choose. Nondeterminism may appear either on the left or on the

right, or on both sides, of an assignment statement, as follows:

Form i) {operará, ...operand} - <{exp, IFexp}) "/// restrictions";

Form ii) operand - {({exp, IFexp]),... <{exp, IFexp] >} "/// restrictions";

or Form iii) a combination of forms i) and ii).

A procedure containing nondeterministic statements is not execut¬

able. One may set up a system to request a rule of decision everytime such

a statement is encountered during an execution. Such rules of decision

may be named and later appended to a nondeterministic statement in the form

of a USE-restriction of the following form: USE(decision rule name). These

decision rules are called 'scheduling algorithms'.

A nondeterministic statement may be made deterministic also by

appending to each selection expression, an index in the

following manner:

where 1 =< I =< the # of alternatives.

Form iv) A statement may be nondeterministic also as a result of a

nondeterministic USE-restriction on it. Such a USE-restriction may have

one or more phrases of the following forms:

i) { (name,.. .name)} FOR ({name, operator}),

ii) name FOR { (([name, operatorj),... ({name, operator}))}

iii) a combination of forms (i) and (ii).

These forms may be useful to specify dynamic resource allocation,

through scheduling algorithms, which may be specified separately, at any

stage of a design process.

There is a special form of a conditional statement which is used

as a short form for a series of conditional statements. This uses the non-

deterministic statements of the forms i), ii) and iii) in a special sense,

as follows:

53

or

or

i+VI «iith kitsiivtifaiwii

Let 'ND-statement1 denote a nondeterrainistic statement of forms

i)* ii) or iii)j and let ^-statement1 denote a deterministic statement.

Also, let NDTHEN-clause be:

,^BEGïN,l(<{ND-statement, D-stateraent}) ..,

({ND-statement, D-statement} >) "END*11.

The short form for a series of conditional statements may then look like:

'"Label.” IF {iFCOND,...IFCOND] THEN

(NDTHEN-clause) "/// restrictions";

The alternate IFC0NDrs should be mutually exclusive, and every ND statement

in the NDTHEN-clause should have exactly the same number of alternatives as

r{iFCOND,*..IFCOND}'^ The statement has the following meaning:

th
£he i IFCOND is satisfied then in each nonde termini Stic

statement in the NDTHEN-clause choose the 1th alternative for execution.

For every IFCOND satisfied execute all D-statements in the NDTHEN-clause.

If no IFCOND is satisfied then skip to the next statement in order.

Notice that this special form is not a ND-stateraent by itself,

even though it uses ND-statements within. The entire statement might, however,

become nondeterrainistic as a result of a nondeterrainistic USE-restriction

on it.

(4) Iteration Statements

(a) Simple Iteration

"Label." FOR I = lower bound TO upper bound "BY Nunber"

DO (statement...statement)

"CONTINUE ("I," label)" "/// restrictions";'.

In the above form one may use any index variable instead of I. The index

variables in CDU are £l,J,K,l,M,N,Index variable || #}. The lower and upper

54

bounds could be any scalar expressions. If "BY number" is absent then incre¬

ment (or decrement) by 1 is assuned. If "CONTINUE(...)" is absent then the

iteration will be performed beginning with the first statement following

'DO' everytime. Otherwise, through a CONTINUE statement one may declare

iterations to be performed from the statement specified by the label.

For example, one could have a FOR-loop of the form: ■

"Label." FOR J ^ 1 TO 28 + xy DO

JIM - 128;

JOE <- MARY + 3;

1. statement

{statement...statement)

CONTINUE (1)¡

In this case the iterations will be performed from statement 1 everytime.

In each FOR-loop one may begin an additional level of labelling. A statement

inside a FOR-loop may be referred to from outside by using the generalized

labelling schema. In the above loop, JIM and JOE will be set to their initial

values in the first pass.

(b) Multiple Iteration

One may iterate simultaneously on several index variables. An

example of such a statement is given below:

2A1. FOR II = 1 TO 100,

12 = 22 TO -10 BY -2,

IA » X + 3 TO 81 DO

statement

1. statement

2. statement

55

CONTINUE (11,12,1)::

(statement.•.statement)

CONTINUE (13,2)1

The above statement has the following meaning: Iteration is to be performed

on indices II and 12 simultaneously; they are both to be incremented or

decremented, as the case may be, simultaneously and the Iteration is to be

repeated beginning from statement 1 until both of them reach their 1 upper

bound1. If one of them reaches the rupper bound* before the other then it

will maintain its index value in all subsequent iterations until the other

one also reaches its upper bound.

Thereafter, the execution is to continue past the 1CONTINUE (11,12,1)'

statement, and the iterations on 13 are to begin, beginning from statement 2

every time. During these iterations II and 12 are to maintain their previous

values. When 13 also reaches its upper bound the execution of the FOR-

loop is complete.

The FOR-loop should contain as many free 'Î1 marks as there are

index variables in the FOR-loop. The general form of such a statement is

given below.

Let 'Inva' denote 'Index variable', 'Lb', lower bound and 'Up',

upper bound.

"Label." FOR (Inva = lb TO Ub BY Number,...

Inva = li TO Ub BY Number) DO

«statement...statement) CONTINUE ((Inva,...Inva), label)

"III restrictions"; (1...Î)

(statement... statement) CONTINUE ((inva,.. .Inva), label)

"III restrictions"; (1...1))

56

The reader may supply the following restrictions on the above form: All

Inva's are to be distinct and the count of free should equal the count

of Inva's in the loop.

One may also have nested FOR-loops. In the case of multiple

iterations the CONTINUE-statements are mandatory. A nondeterministic FOR-

loop will contain nondeterministic statements. Each loop within a multiple

FOR-loop may have associated with it its own set of restrictions.

(c) Parallel Iteration

A simple example of parallel iteration is the following:

"Label." FOR I = 1 TO 25 DO PARALLEL (statement...statement)!

This has the following meaning:

All the 25 versions of the body of the loop consisting of the

statements, one for each index value within the range, are to be executed

in parallel, simultaneously. A parallel iteration may contain multiple

indices, with the following form:

"Label.11 JtoR <Inva « Lb TO Ub "BY Number,..,

Inva = Lb TO Ub BY Number) DO PARAT.T/ET.

(statement...statement) "/// restrictions";I

In this case all the sets of statements, one for each possible combination

of the index values, are to be executed in parallel.

b• .Autonomous Statements

(1) Serial Autonomous statement!

This has the form:

"Label." WHEN Bexp DO

(statement...statement) "/// restrictions";:

On the satisfaction of the event-control boolean expression the series of

statements following 'DO' are to be executed serially (or according to the

program control specified within). The WHEN-statement is subject to the

restrictions specified for it. The statement is considered to be 'ON1 only

as long as the boolean expression itself is true (its truth value could be

a pulse), unless the following happens:

The Bexp is turned off within the body of the statement, by turning

off (setting to 0) one or more of its variables. In that case, a local

'lock' will be set up for the statement indicating that it has been

turned on, and it cannot be reinitiated until the task has been completed.

When the task is done the lock will be released.

If the Bexp is not a pulse, then it should be always turned off

explicitly by setting the appropriate variables to 0 or 1, as the case

may be, at the very beginning of the body of the statement; that is, a lock

should be always created. The Bexp should contain only event variables

which have been declared earlier, or will soon be declared.

None of the statements contained within can be a GO TO statement,

to a label outside of the WHEN-statement."' Within the WHEN statement one

may begin a new level of labelling, but its body does not become a block,

unless otherwise made so explicitly.

In CDL1 a collection of statements with a new level of labelling,

but without a block structure, is called a group. (The statements in a

FOR-loop also form a group.)

This restriction was pointed out by Gorman.

i¡:iíí¡||:

A branch to another part of a procedure can be made through a

BRANCH TO-statement. One can branch to only another event, not a label. When

a branch is encountered in a WHEN-group its lock will be released.

(2) Parallel Autonomous statements

This has the form:

,,Label.,,,,Bexp,,: : (statement.. .statement) ::

({ANY, ALL, Bexp]) "//^ restrictions"j
y.

The first Bexp turns the statement on; all the statements contained within

are then to be executed in parallel. None of the statements may be a 'block1,

or a GO-TO-statement. One can have BRANCH-TO statements within. A new level

of labelling is effective for the statements within. Thus, these statements

form a group.

The second Bexp gives a termination condition in terras of the

labels of the statements in the group. The labels here are used as pseudo¬

event variables. The entire statement is to be considered terminated when

the Bexp of the labels becomes true; a label is considered true if the

statement denoted by it had been executed. 'ANY' or 'ALL', instead of Bexp,

indicates that the termination occurs when any or all of the statements in

the group have been executed. When no termination condition is given, 'ALL1

is implied.

An autonomous statement is nondeterrainistic if it contains non-

deterministic statements.

c. Connection Statement

(1) Unconditional Form

Within a procedure a connection statement has the status of an

executable statement. It should then contain only hardware items which have

'When it is vacuous the statement is to be turned on unconditionally.

59

been already declared, and it denotes a direct connection between two items.

Inside a structure definition, they have the status of declaratives, which

specify the available (or admissible) connections in a structure. In its

simplest form it may look like,

"Label,11 name * name;

where the names refer to hardware items. The statement specifies a connection

between the outputs of the item on the right to the inputs of the one on the

left. In a procedure such a connection is to be made only if the lines are

compatible, in their signal characteristics, or otherwise, have been declared

as being compatible in their definition. One may impose restrictions on

a connection statement as follows:

"Label." name name /// restrictions;

The restrictions can be WAIT UNTIL event exp., or bounds that may appear

on the indices of input/output lines. An example, of such a statement is

the one appearing in the 70/15 memory description:

STACK--XDRIVES [I, 8*(J-1) + K,L] «■*

TRANSFORMER- -0UTPUT[1,1, J, K, L] ///

1 «< (I,L) =»< 2, 1 *< (J,K) »< 8;

This specifies the lines with the corresponding indices, given as functions

of I,J,K and L, to be connected. Thus, for I«!, J * 1, K ® 2 and L « 1

STACK--XDRIVES[1,2,1] will be connected to TRANSFORMER--OUTPUT[1,1,1,2,1]•

The indexing structure for these lines should have been declared earlier.

In the case of WAIT UNTIL restriction the connection is to be delayed until

the given boolean event expression is not true.

Explicit references to input (I), output (0) or control (C)

lines of an item are made by the use of compound names:

60

: 'l

.

• . -

i liiiiilffiffii

lil

name--INPUT, name--OUTPUT, name--CONTROL.

While declaring a hardware item one may assign names to subsets of its 1,0

or C lines. Thus, STACK--XDRIVES may refer to a subset of input lines of

the stack, called XDRIVES, with a well specified index structure. We shall

see examples of these in the 70/15 description.

In the case of hardware array the suffixes INPUT, OUTPUT and

CONTROL will always refer to the inputs, outputs and control lines of the

array itself. Thus, STACK-INPUT[1,2,3,5] will refer to the input line

[1,2,3,5] of the stack, and not to the element [1,2,3,5] of the stack, even

though STACK had been declared as a hardware array. The inputs, outputs and

control lines of an element of a hardware array are referred to by the com¬

pound names:

name—ELEINPUT, name--ELEOUTPUT, name—ELEC0NTR0L.

Individual lines may bereferred to again through indexing on these com-

pound names.

Nondeterministic forms of a connection statement always have the

status of a declarative. The meaning of such a statement may be obtained

by reading them thus:

name ^ {name,...name} is to be read as:

The output of any of {name,♦..name} may be connected to the inputs of

’name’ (on the left). The chain bracketed expression is read as 'any of.

Other forms of nondeterministic connection statements are:

{name,...name] name; and {name,...name] {name,...name].

Every such nondeterministic statement implies the existence of a switching

network at the connection interface to execute instances of the admissible

connections.

61

' ;

,< «*i¡ i>u¿viJm’ui>L.v

JUII u» * ->urMa-w 1»

Of course, the nondeterrainistic statements may also appear with

restrictions.

No connection declaration may contradict a hardware compatibility

declaration. A connection statement is not valid if the hardware items

involved have been declared as being not compatible. If no hardware

compatlblity had been declared then a connection statement will impose

compatibility on the items.

(2) Conditional Form

A connection statement may appear with IF-THEN-EI5E clauses.

The IF-condition should be a boolean or relational expression, on variables

already declared. As before, the THEN-clause is bracketed thus, (...), to

include the EISE-clause. Connection statements may also appear as part of

autonomous statements •

d. Program Control Statements:

There are in all 10 program control s .atements in CDLli

1. "Label." GO TO LOCAL label "/// restrictions";

One may GO TO only labelled statements within the same flojulê; one may jump

between blocks within a module.

2. "Label." INITAIATE generalized label "/// restrictions";

3. "Label." INITIATE (event name,...event name) "/// restrictions";

The initiate command initiates the labelled statements or the said events in

parallel with the currently running process.

4. "Label." WAIT time unit.

The time unit can be in seconds, minutes, MACROS, NANOS, etc. The time unit

may be specified by a scalar expression.

62

5. "Label," TEIHENATE <event name,...event name) "/// restrictions";

This causes the said events to be turned off instantaneously.

6. "Label." RETURN.

Within a block or a module it causes the system to return to the point in a

program next to the one from which it entered the block òr module. The

entry itself might tur-e occurred ar, a result of a GO TO statement, a function

or a subroutine call. If there is no place to return to then the system Is

to return to the console.

7. "Label." CONTINUE

Outside a FOR-loop this has the status of a blank statement.

8. "Label." CALL({procedure name, generalized label]);

9. "Label." BRANCH TO event name "/// restrictions";

This statement may occur only within autonomous statements. One may branch

to only the statements within the same module.

10. TRIGGER control line name ", pulse name";

This causes the control line to be triggered with the given pulse, or else

set to 1.

A program control statement with parameters is nondeterministic

if there is nondeterminisra in the parameter values. Thus,

GO TO {label 1, label 2,...}

is nondeterministic. These have the status of a declarative.

A program containing nondeterministic statements, itself becomes

nondeterministic, and thus has the status of a declaration.

A generalized label has the forms

(label IN ... label) (IN module title ... IN module title/1 ({GLOBAL, (t.. t)})"

63

,;¡ :;. 1Î \ 'f ¡i ¡i | ; ! i
•im1 ï ill;

and it is decoded from right to left# The rightmost module title must be uni¬

quely identifiable^ and every other reference in the generalized label should

denote a unique item in the context of the items selected to its right.

This completes our discussion of statements in CDL1. Let me now

briefly discuss the indexing conventions in the language^ and then describe

the modular structure of descriptions in the language.

F. Indexing Conventions

1. Vectors

The elements of a vector are numbered 1 through DIMN of the vector.

One may visualize the elements arranged in the left to right order.

(i) Name V [1] denotes the Ith element of the named vector for

1 «< i «< DIMN (Name). (The suffix 1 V1 is not necessary.)

(ii) Name V [.(ip ^ • *ir)] denotes a new vector of dimension 'r1 consisting

of the elements of the named vector.

(iii) Name V ti-^!^] denotes

Name V [i^ if i^ » ±2)

Name V [(ipi-j+1, *. j^)] if 1 «< < i2 “< DIMN (Name).

Name V [(ipi^l,.. .,i2)] if 1 «< i2 < ^ »< DIMN (Name).

The elements of a string vector are strings and those of a bit string vector

are bit strings. The name of a vector without indexing refers to the entire

vector.

(iv) The individual characters (bits) of a string (bit string) in a string

(bit string) vector may be denoted through double indexing as

follows:

Name [i][j],

which refers to the jth character (bit) in the ith element of the

vector.

Name STV[(ip . ir)] [j]

refers to a new string vector consisting of the jth characters of the

elements (i^, of the old string vector.

Name STV[i][< ...,y],

SIV[(i1,...,ir)][(jkJ..f,jk)]

Name STVli^Jtj,,]

have all the corresponding obvious interpretations.

2. Arrays

Arrays are multi-dimensional entities, whereas a vector is always

of dimension 1.

l) Name A denotes an entire array

li) Naffig. denotes the [l1,i2, ...,ik]th element of an array

if 1 «< [i1,i2,...,ik] *< SIZE (name).

iii) Nanie< [(1^,,^] denotes a subarray consisting

of elements of the array denoted by the set cross*product of all the

following indices:

^1^ ^2* * * * "^r1* ^ 1~^J, * * * y f • • • • .Xi,

Trl
where m is the size of the 3 dimension of the array. A as an

index denotes all the indices in a particular dimension of an array.

Thus,

JIM[1:2,(8,6,6), 8:7]

denotes an array of elements of JIM with the following indices:

(1,8,8), (1,8,7), (1,6,8), (1,6,7), (1,6,8), (1,6,7)

i

Notice that in the new array some elements may repeat.

If the elements of an array are themselves strings, bit strings

or vectors then one may use double indexing, as in the case of STV and BSTV,

to denote individual components of the strings, bit strings or vectors.

3. Special Multiple Indexine Schemes

It may be sometimes convenient to consider an array as beii^ made

of two or more parts from each of which, everytime one or more elements

may be selected, in anyone reference to the array. Thus, the drive lines

of a memory may be structured as:

MEM--DRIVES[128j128]

indicating two sets of lines, 128 each (the X and Y lines) from which every¬

time one may select two lines, one belonging to each set. Notice that

in this case the total number oi line elements in the array is only

128+128 *= 256, and not 128X128. Thun, if the size of an array is

then the total number of elements in the array is (ijX^ + j1xj2xJ3 +

Such multiple indexing schemes may be useful to structure input/output/control

lines of a hardware item, as we shall see in the 70/15 memory description.

G. The Modular Structure of Descriptions and the Generalized Labelling
Schema_

Descriptions in CDL1 are organized in titled units called modules.
if

Each module title consists of two parts: a name and a module-type. The

module-types recognized in CDL1 are:

name is optional.

- __i..

66

1. SYNTAX,

2. FORMAT,

3. Various kinds of DECLARATIONS,

4. Various kinds of DEFINITIONS,

5. PROCEDURE,

6. DESCRIPTION.

'MEMORY SYSTEM, DESCRIPTION1 1» . typical „odul. title, „he, „odule-typ,

1. DESCRIPTION. '70/15, HARDUARE DECLARATION' 1« another »odd, title,

whose type is 'Hardware declaration'.

Every module-type has an associated format: The format specifies

the subtitles of items which a type of module may contain. Each such sub¬

title defines a submodule of the parent module-type. Thus a 'Data Definition-

module will have the eight subtitles discussed in Section IV-B-1. The

syntax and format of data that a subtitle may have are also specified. In

an Interactive system one may use the module formats to indicate to a user

the kinds of objects to be described in a given module-type, and the forms

they should have.

A module may thus have submodules, which are contained within.

Also, a module of a given type may contain other modules of different types

within its scope. Thus, a system description module may contain every other

type of modile within its scope; a type 'Procedure' module may contain a

Data Definition module as a submodule. The module containment relationship

in a description will have, in general, a tree structure. It is this tree

structure that makes a generalized labelling scheme possible.

Every part of a system description should belong to some module.

Ihus, module titles provide a naming scheme for various parts of a body of

67

ft \

description. A designer may create arbitrarily any tree structure of inclu¬

sion relationships, that is best suited for his purposes, using the various

module-types provided in the language.

Every module title is delimited by a colon V, and the module

itself is terminated by an ’END module title1 statement or simply by a

triple vertical bar, 11111 •

We have already discussed the formats of some of the definition

modules. The example in Section V will give an idea of the format of a

type ’Procedure' module. The use of type SYNTAX and FORMAT modules will

become clear in the definition of CDL1 itself.

Let me now describe the decoding scheme for a generalized label.

Let us consider, for example the tree of inclusion relationships shown in

Fig* 3# Let each node denote a module, or a group, or a block, or a label

of an item in a group, block, or module. Thus, the Root R contains, say

three modules, with titles NI, N2 and N3, each of which contain, say two

submodules, and so on the tree of modules, blocks and groups grow. Finally,

on the top we have two lists of labelled items (11 to 13) and (11 to 17).

From any one of the nodes in the tree a reference to the

generalized label

'3 IN 2 IN L6 IN N3, GLOBAL’

will denote the search path indicated in Fig. 3 with double lines. The

object denoted is the item at the top end of the path.

A reference to the local label

’13 IN LI IN N1 IN tit*

within the boxed node 16 will have associated with it the search path denoted

by the arrows in Fig. 3. The object denoted is the node 13 at the end of

68

Fig. 3 A Tree of Inclusion Relationships

the last arrow. The same label, if referred to in the boxed node 1, will

have associated with it the new path shown by the arrows beginning at node 1

in Fig. 3.

In both global and local labels the decoding is done right to

left. Evçry up arrow, 111, in a local label denotes a Jump in the family

tree from one node to its parent node. These arrows may occur only on the

rightmost end of the label. In the global label above, fIN R! is implied

at the rightmost end of the label.

H. Block and Group Structure of Program

The BEGIN-END blocks have the usual significance, already discussed

in earlier chapters. In CDU there is another kind of block, called an

Interpretation Block. This is used to describe the functions associated

with the various named items in the language while defining the items. In

a function definition module the function interpretation may appear as

follows:

1|

1 .ft- !.
4¡Hi^i^»-Htyiíli'.: tiiiiiitr,-H»:i¡aj,,»!¡if:. UiJ^

i < M «i t~*« (Hn P'*)' (HlW,ttrtl'-*t I I t

"Label." MAX S (Sexp, Sexp) ->

IF Sexp(*l) >= Sexp(*2) THEN

(MAX - Sexp(*l) EISE MAX - Sexp(*2); <-

Here 'Sexp' standa for a scalar expression. One may read '->' as 'does'

or means', whichever is suitable in a given context. The companion symbol

'<-' indicates the end of interpretation of the item to the left of

It signifies in the language a 'RETORN' statanent. The program following

'“>' may refer to the items occurring in the string to the left of '->'.

Thus Sexp(*l) refers to the first 'Sexp' from left in 'MAX(Sexp,Sexp)'.

The result of the function is assigned to the name of the function. Thus

a function name without argunerts will always refer to its latest value.

The arguments (Sexp, Sexp) specify the type of argments the func¬

tion may have. The general form of an interpretation block is as follows:

(i) "Label." "name"btype" =." ({expression, function name})

n/// restrictiono;" —> program <-

(ii) "Label." atring "/// restrictions;" -> program <-

In form 2 the string should be the name of some item in the description.

In its first form the program might describe the algorithm to

evaluate the expression or function, and assign its value to the fictitious

name given. This name is local to the block and will not have any significance

outside the block, unless otherwise declared in a procedure. The manner

in which an interpretation block is called depends upon the kind of item it

defines. Thus a function interpretation may be called by the function name,

the actions initiated by a control signal of a hardware item may be called

by triggering the control line, the interpretation of an expression may be

called by recognition of the expression within .a statement, etc. All Buch

e^re.g.gion.B.may contain only, one operator symbol. The module-type of the

module in which the interpretation block occurs controls the manner of its

call« We shall see examples of this in the 70/15 memory description in

Section V.

I« The Character Set

I have deliberately relegated this to the last pc.rt in this

section, because I think it does not capture any essential features of a

language, other than the incidental conveniences pertaining to a specific

implementation of a language. No doubt, it might considerably influence

the 'human engineering' aspects of a language. It is, therefore, all the

more important that the character set be not fixed a priori. The language

has been defined using a basic character set of 68 elements:

A,B, • • .,Z,0,1,...,9,

* 9) 3) ^) /J)

\>t} ()))l)]> (>}> (,),

% t,5,=,A,V,-i,<,>,b.

In an implementation one may choose another character set with fewer elements,

if need be, and define some of the characters above as strings in the new

character set. It is possible to devise schemes for consistency checks in

such a notation conversion, and ale: create an I/O software interface which

might translate the internal form of the language to its external forms,

and vice versa.

The exclamation mark ’lr is used purely as a string delimiter in

the language. A string in CDL1 may not contain ’ i ' as one of its character«.

V. 70/15 GORE MEMORY SYSTEM

We shall describe the memory system functionally and operationally

to a certain depth of detail. The various parts of the description may

well correspond to the various design stages of the memory itself. The

data presented in this description have been obtained from *70/15 logic

diagrams', 'correspondence programs', and 'status flows'. All the data given

here do not appear at one place in any of the above manuals.

The description is not complete in the sense that the logic

diagrams and other details of implementation have not been given. It

captures the essential structure and timing details of the system. However,

the description at various levels is complete in the sense that one may

simulate the memory, if need be, by interpreting the description given here.

The kinds of details dealt with in this example give a good

indication of how one may use CDL1 to describe complex structures in parts,

at various levels of detail. The description is compact, precise and rather

detailed in some parts.

It is probably not necessary to describe a memory system in as

much detail as given here, in a design process. We chose this description

to illustrate the complexity of details, which may be handled in CDL1.

Unless the reader is genuinely interested in knowing about the 70/15 core

memory system, it is not necessary to read through the entire example in

detail. The functional description at the beginning is easy to read and

gives a precise description of what the memory does, including the options

on the two sizes of the memory. The structural and operational description

is rather loaded with details, which are not easy to fpllow. The reader

should probably read a few of the subsystem declarations and. descriptions,

to get a feel for the style of description and declarations. The description

of TP, the time-pulse generator, (the 3rd functional description) is probably

representative of the brevity of expression and the details captured. An

interesting example of the uses of parallel autonomous and FOR-loop statements

occurs in the decoder description (item 8 in functional description).

The structure declaration describes the entire memory system structure in

terms of line to line connections of all its subsystems; yet it consists

of only 16 statements. Through the use of signal line (input, output and

control lines) indexing and naming schemes one may declare thousands of

connections, if need be, through just a single statement. The reader may

find it interesting to follow the details of one or two statements in the

structure declaration.

The entire set of functional descriptions and the structure declara¬

tion are embodied in the operational description, presented at the end,

which gives the sequence of controls initiated in the memory LOAD and GET

functions. The description is not entirely operational, since the HR and

MAR register loadings are not described in terms of their associated control

signals. This operational description assumes significance by virtue of all

the functional and structural descriptions declared earlier.

Let me first describe the declaration format for the hardware

items. A hardware item can be a Flipflop (F), Ragi*^ (R)j Network

Delay line (DL), Switch (SW), Gate (G), Bus (B) or an array of any one of the

above items, denoted by

FA, RA, NWA, DU, SWA, GA and BA, respectively,

th. t,,. of an item 1, Identified b, aala. the above abbr.vl.tlo» aa tag.,

which are aafflaad to the hardware »... while declaring th„. Thu*», S

denotes a register called, HAH and MEM EÂ denotes a register array called,

MEM. During declaration one may specify one or more of the following attri¬

butes associated with hardware items in CDL1.

1. Array size: SIZE

2. Array Input size: ISIZE

3. Array Output size: OSIZE

4. Array Control size: CSIZE

These specify the number of input, output or control lines in an

array, and the way they are structured for indexing. The SIZE of an array

similarly specifies the number of elements in the array and their indexing

structure. Thus, if the SIZE is declared as (64,64,2) it means that the

array has 64x64x2 elements, any one of which is pointed to by a triple

indexing scheme: If the name of the array is MEM, then MEM[l,J,K] will

denote the (I,J,K) element of MEM for 1 «< I =*< 64, 1 “< J *< 64 and

1 K *< 2.

5. Array Element size if applicable: EIÆSIZE

This specifies the number of storage units in an element of an array. In

the case of MEM, the element size will be the size of the individual registers

in MEM.

6. Array Element ISIZE: ELBISIZE.

7. Array Element OSIZE: E IE OSIZE

8. Array Element CSIZE: EIECSIZE

These specify the number of 1,0 and C lines of each element in the array,

and their indexing structure. Thus, an ELBISIZE « (5,5) will mean that the

element has 5x5 inputs, any one of which is denoted by a double Index (I,J)

for 1 *< (I,J) “< 5.

74

Unless otherwise specified all input, output, and control lines,

and the storage units are assumed to be binary. A nonbinary signal line

or storage unit may be declared by specifying the 1 STATES1 of the line or

the storage unit. 1 STAUES1 gives the number of states in which an item

may remain.

After specifying the various sizes of I,0,C lines and storage,

one may, if necessary, name subsets of these lines or storage units, for

easy reference to them later in a description. Thus, if ÇS1ZE « 2 for MEM

one may name the individual control lines as, say

READ[1] and WR1TE[2]:

The first control line then assumes the name MEM--READ, and the second,

MEM--WRITE.

In any one declaration it is not necessary to specify any or all

of the above attributes. However, the type of a hardware item should always

be indicated with the appropriate suffixes.

With every declaration one may associate restrictions. These

restrictions may impose constraints on the values, which the various parts

of an item may assume. For example, the declaration of the MR R of size 9,

with the parity constraint may appear as follows:

1. MR R[9] /// MR[9] =-, (0/MR[l:8]).

The triple slashes separate the constraints from the main body of the decla¬

ration. The above constraint specifies that the 9th bit of MR has to be equal

to the complement of the mod 2 sum of the bits 1 through. 8 of MR. This

declaration has the following interpretation: In every use of MR within a

system its contents should always satisfy the given restriction. If at any

time it does not,then it would cause an interrupt in the system operation.

75

In the case of arrays of hardware items, whose elements themselves

are arrays, the nested indexing scheme will be used to denote an element

of an element of an array. Thus, if MEM KA consists of 4096 registers, each

°f SIZE 9, then MEM[l][j] will denote th Jth bit of the Ith array element

for 1 *< I »< 4096 and 1 ■=< J »< 9. Also, MEM[l] will denote the entire

til
I element of MEM, and MEM[*][j] will denote the set of all the 4096 J

bits of every register in MEM.

We may now proceed with the description of the core memory.

HARDWARE DEFINITION

DECLARATION:

1. MAS R [SIZE = 13];

2. MR R [SIZE » 9] ///MS[9] =-,©/MR[l:8];

3. MEM RA

[SIZE - <[4096,8192]);

ISIZE » 9; OSIZE * 9; ÇSIZE *» 2;

ELESIZE » 9;

CONTROL LINE NAMING: READ[1], WRITE[2]]

///MEM[*][9] «—,0/MEM[*][l:8],

MEM--READ A MEM-WRITE = 0;

:- This has two restrictions: The ninth bit of every register in memory

should be equal to the complement of the mod. 2 sum of its 1 through 8th

bits. And, the MEM-READ and MEM-WRITE control signals should imt both ever

have value 1. The size of MEM could be either 4096 or 8192. (The 70/15

memory comes in two sizes);

:- It should be mentioned that it is not necessary to write every time the

name of an attribute before assigning a value to it. One may order the

th

76

i f

ËliSliliiiiiiii

:■ ÜI

attributes in a certain fashion and choose to list their declaration according

to the order. We have here chosen to write them down explicitly since there

are c|uite a few of them; and declaring them in an order without names may

not be very readable. If an interactive system is available,then one may

make the system ask for the various attributes in a certain order. The

user need not remember them all.j

EMD(DECIARA.TION)

FUNCTIONAL DESCRIPTION:

1. MEM—READ ->

WHEN MEM-READ DO

IF SIZE(MEM) = 4096 THEN

(MR - MEM[N/MAR[1:12]+1]; EIEE

MR «- MEM[N/MAR[l:13]+l]j)

/// DELAY 2 MICROS;l <-

:- N/MAR[1:12] denotes the binary number represented by bits 1 through 12 of

MAR. The '+1' occurs because of our convention of numbering the memory

locations from 1 through SIZE(MEM). (The sign may be read as 'DOES'.)

If the SIZE of MEM in an installation is 4096, then only bits 1 through 12

of MAR are used to compute the address. If the size is not 4096 then it is

8192, and in this case all the 13 bits of MAR are used for the address. The

entire memory read operation takes 2 microseconds. For a discussion-.of

the WHEN-statement the reader may see Section IV-E, on autonomous statements.

The above interpretation block describes the function initiated by the MEM-

READ control signal. This functional description is to be invoked, whenever

the MEM-READ control is triggered in a body of description.;

77

.. i

¡¿IwÍiÍBlili>iÍBÍlÍ|(Í||^ÍÍÍl)idlflÍilÍÉH8iÍÍÍÍíUÍÍÍlMSiiÃÍÍwÍlíÉMlÍWu8ÍllHiÍÍÍ|iiiÍiÍijÍ«iiiiltt

: 'i H , .

2. MEM--WRITE ->

.WHEN MEM—WRITE DO

IF SIZE (MEM) = 4096 THEN

(MEM[N/MAR[1:12]+l] - MR; ELSE

MEM[N/MAftH] - MR;) ///

DELAY 2 MICROS; ! <-

:- Notice that the above two interpretation blocks describe precisely the

memory read and write functions in 70/15. The indicated assignments to the

MEM and MR are to be made only if the parity conditions, specified in the

hardware declarations, are satisfied. If the parity is not satisfied, an

interrupt is to be caused.;

END(FUNCTIONAL DESCRIPTION)

END(HARDWARE DEFINITION)

:- We shall now proceed to describe the memory in greater detail. We shall

follow the following scheme of description:

We shall identify each memory subsystem in terms of its input,

output and control lines, and describe the operations initiated by the

control lines for each subsystem. Then we shall specify the detailed

interconnection structure of the memory system in terms of input, output, and

control line connections of each subsystem. After this, we shall list the

control sequences, with timing restrictions. Each control line triggered

in a sequence is to cause its corresponding action description to be called

in. A control line may also be triggered indirectly: A pulse or level signa!

applied by one subsystem at one end of a signal line, is to be traced to

its other end, along paths specified in the structure declaration. If at

the other end, the line is a control line of another subsystem, then its

78

corresponding action description is to get called in. We may thus capture

the precise details of memory operation, with its component subsystems described

either functionally or operationally. Also, in the case of a system design,

as design progresses one may update subsystem descriptions, without having

to modify other parts of the description (unless, of course, there are

design changes). Since, the descriptions will be complete one may also

simulate the system (or subsystems) in the course of their design.

The characterization of each subsystem in terms of its input,

output, and control lines, and the specification of their indexing schema are,

as we shall see, very important steps in the subsequent description of the

entire system.;

mmm DEFINITION;

This is to reopen the definition module which was closed earlier. All

hardware definitions are to be filed in the same file, within a description

module.;

DECLARATION;

i- The submodule, declaration, within the hardware definition module is now

to be reopened. One may now request the filing system to issue the next

item label in order.

Item 4 of the declaration is the memory stack, whose block-diagram

is shown in Fig. 4. The reader should probably see the diagram first.

If a display console is available for I/O then one may declare

these hardware items in terms of their schematic diagrams as shown in the

figures. The filing system may construct from such a declaration the various

attribute functions associated with the hardware item.

riSH W~ LMr- twMiil,-*-« «.tMMialii^olffNIHjl MiU . ■

64
INHIBITLINES

64

îg
64 g
w

II

Fig. 4 Stack Configuration in 70/15

Tha declaration of SXÂ.CK in CDL1 may appear as follows!

4. SIACK RA

[SIZE = (2,64,64);

ISIZE *= (2,4,9);

OSIZE = (2,4,9);

CSIZE = (2,64,2; 2,64,2);

ELESIZE = 9;

STACK NAMING: Nl[l,1:64,1:64],

N2[2,1:64,1:64];

INPUT NAMING: INHLINES;

OUTPUT NAMING; SENSEUNES;

CONTROL NAMING: XDR[1:2,1:64,1:2;];

YDR[;1:2,1:64,1:2];];

•“ This is a rather complex, and interesting hardware array declaration.

The array, STACK itself has 2x64x64 registers, of element size 9. The

registers with indices [1,1 THROUGH 64,1 THROUGH 64] in the SIACK are to be

80

called STACK—NI, and those with indices [2,1 THRO 64, 1 THRO 2] are to

be called STACK--N2. Thus STACK consists of two substacks. (This is

precisely the case in 70/15 memory system.) The substacks were flamed in

the above declaration in 'STACK NAMING'.

STACK has 2x4x9 input lines called, INHLINES. In the physical

stack these are grouped as follows: For each plane in each substack thère

are 4 INHIINES terminals and each substack has 9 planes. If necessary,

we could have named, N1—INHLINES as [1,1:4,1:9] and N2-INHLINES as

[2,1:4,1:9], and PLANE1-INHLINES, as[l:2, 1:4,1], PLANE2—INHLINES, as

[1:2,1:4,2], etc. Since, such naming is not necessary we have chosen not

to do so.

In 70/15 memory, each memory plane has two independent inhibit

line loops. Thus, there are 4 inhibit line terminals per plane.

Similarly, it has 2x4x9 output lines called, SENSEUNES, with the

same kind of distribution as the INHLINES. The control lines are 2x64x2 +

2x64x2 in number; the subset of lines denoted by indices [1 THRO 2,

1 THRO 64, 1 THRO 2;] are called XDR (X-drives) and the rest YDR(Y-drives).

These are distributed in the physical stack as follows: each substack has

64 X-drives and 64 Y-drives, and each X and Y drive has 2 terminals in each

substack. The schematic diagram of the stacks, reflected by the declaration,

is shown in Fig. 4. This describes truely the structure of the stacks in

70/15.

The next item is the array of XFORMERS whose schematic diagram

is shown in Fig. 5 The declaration of this schematic appears as follows.

(The reader should see the schematic first.);

i{ :if-i ' - 'H ''i' fr.ffli!!' H1! ri f

1-1-111^111-^-11^1^111^1 !• -.--111-11 - .m-imi-

5. XFOHMERS NWA

[SIZE » (2,2,8,8);

ISIZE » (2,2,8,8,2);

OSIZE » <2,2,8,8,2);

CSIZE = (2,2,8,8);

EIEISIZE a 2; ELEOSIZE » 2, ELECSIZE « I;

^FORMERS NAMING;

STKlXtl,1,1:8,1:8], SXK1Y[1,2,1:8,1:8],

STK2X[2,1,1:8,1:8], STK2Y[2,2,l:8,l:8]j

INPUT NAMING: RÜINPUT[1:2,1:2,1:8,1:8,1],

WRINPUT[1:2,1:2,1:8,1:8,2];

OUTPUT NAMING: CUROUT[1:2,1:2,1:8,1:8,1],

CURRETUEN[1:2,1:2,1:8,1:8,2];

CONTROL NAMING; CNTRIAP;]; : -

:- The 'voltage switches' have the schematic diagram shown in Fig, 6

Their declaration is as follows:;

6. VOLSWITCHES NWA

[SIZE.« (2,2,8);

ISIZE - (2,2,8);

OSIZg - (2,2,8);

VOIS WITCHES NAMING: STK1X[1,1,1-8],

STK1Y[1,2,1:8],

STK2X[2,1,1:8],

STK2Y[2,2,1;8];

IHEffl NAMING; DECODEROUTPUTS;

OUTPUT NAMING; TOCNTRIAP;];

82

a p

RDINPUT

WRINPUT 8x8

RETURN
8x8/ ^ 8x8

^
' CUROUT

8x8

k RDINPUT
8x8

8x8 WRINPUT

CNTR TAP .
F~T 8

CNTR TAP

DECODER

OUTPUTS

VOLS WITCHES
—STKJX

8
TOCNTRIAP ■

8
i

VOLSWITCHES
—STK1Y DECODER

¿ OUTPUTS

DECODER _

OUTPUTS I VOLSWITCHES
—STK2X TOCNTRIAP á

\ S'

VOLSWITCHES
--SIK2Y

1¾—DECODER

OUTPUTS

Fig. 6 Schematic of VOIEWITCHES,
Array of 32 Switches

a Network

iff*r|1! l:l!'!I rnJiLi.l! 11 !iir''i inf-liir ; 'rí lllrf* il'ill

• r
. MwtKíni^rwfi.í:« ¡I*;.-**»* *•«.■• «• -•«Mr. «•«*v!>SW»a««a»!-.!M*«t.^-..v*'■ - ,- - *" 1

Current switches, network array:

TOWKIOTUT TORDINPÜT

l
C URIN PUT

TORDINPUT

8Í

DECODER

OUTPUT

CURINPUT 8j

DECODER

OUTPUT 8::

SIK1

XRD

8

STK1

XWR

8

/K
<s^* ^ * 8/h

tr~
STK2

XRD

8

STK2 ,

XWR

8

:: 8
.CURINPUT,

— DECODER

OUTPUT

CURINPUT

TT* DECODER —

¿Z OUTPUT ^

Fig. 7 Schematic of Current Switches,

an Array of 64 Switches

NPUT

CURINPUT

Jt-

—DECODER
t8 OUTPUT

CURINPUT

_ DECODER

J8 OUTPUT

7. CÜRSWIICHES NBA

[SIZE - (2,2,2,8);

ISIZE » (2,2,2,8,2)

OSIZE - (2,2,2,8)

CURS WITCHES NAMING:

STK1XRD[1,1,1,1:8],

STK2XRD[2,1,1,1:8],

STK1YRD[1,2,1,1:8),

STK2YRD[2,2,1,1:8],

INPUT NAMING: CURINPUT[1:2,1:2,1:2,1:8,1],

DECODERDUTPUTÍ1:2,1:2,1:2,1:8,2];

OUPTUT NAMING: I0RDINPUT[1:2,1:2,1,1:8],

TOWRINPUT[1:2,1:2,2,1:8] j]j

STKIXWRt 1,1,2,1:8],

STK2XWR[2,1,2,1;8],

STKIYWRt 1,2,2,1:8],

STK2YWR[2,2,2,1:8]j

1

•" Pulse generator network array:

RDX RDY

PCWEROFF

Pig. 8 Schematic of the Pulse

Generator, an Array of
Four Networks

8. PUISEGEN NWA

[SIZE « (2,2);

ISIZE » 2;

OSIZE * (2,2);

GSIZE « 1;

INPUT NAMING: RDP[lJ, WRP[2];

OUTmNAMNG: RDX[l,l], MRX[2,1], WRYt2,2],

CONTROL NAMING; POWEROFF;];

: - Memory timing network;

RDP (read pulse)

WRP (write pulse)

INHP (inhibit pulse)

STROBE (strobe pulse)

Fig. 9 Schematic of Memory Timing Network

85

¡! ¡' l¡

:]-L

^i»iiii^^MttiiintMi^iigii«tN^Hiivm^iim#iitMii$i^^

9. MEMTIHING Ng

[ISXZE « 2;

OSIZE » 4;

IMPUI NAMING: EDC0M[1], WRC0M[2];

JjüIRUr IMMING; RDP[1]j WRI>[2], INHP[3], STROBE[4]j];

:» Notice that this is not any array.;

j- Decoder Network:

MR
OUTPUTS

STK1X

STK1X

STK1Y

STK1Y

STK2X

STK2X

STK2Y

STK2Y

VOLTAGE

CURRENT

VOLTAGE

CURRENT

VOLTAGE

CURRENT

VOLTAGE

CURRENT

Fig. 10 Schematic of Decoder Network, with
13 Inputs, and 64 Outputs

10. DECODER NW

[I SIZE *= 13 j

0SI2E = (2,2,2,1:8);

INPUT NAMING: MROUTPUTS;] ;

:- I have omitted the output naming scheme from the declaration.;

11. INHDRIVERS Hitó

[SIZE = (2,7.,9),-

ISIZE = 9;

OSIZE = (2,4,9);

CSIZE = 3;

INHDRIVERS NAMING.- SIK1PATH1 [1, 1, 1:9],

SIK1PAXH2(1,2, Is 9],

SIK2PAXH1[2,1,1-9],

STK2PATH2[2,2,1:9];

INPUT NAMING; MROUTFUTS;

OUTPUT NAMING; S1P1[1,1S2,1-9], SlP2[l,3:4,1:9],

S2P1[2,1:2,1:9], S2P2[2,3:4,1:9];

CONTROL NAMING: MAR13Í1], MAR6[2], INHP[3];];

FOr eaCh StaCk and each path there a« 2x9 output lines: a pair for

each one of the nine planes, one for the current output and the other for

the return. The schematic is shown below:

87

•Il||ï.«-i"!lll I : i

. i - . if '
i í"! ¡H.t I il tW-Hl ti-M l'I iI ! :' fMïft !

12. SENSEAMP MA

CM = 9;

ISIZE = (2,9,4);

OSIZE = 9;

CSIZE a 2;

TOOL NAMING: STEOBE[l], BIAS[2];

:PUT NAMIMG: MEMOUTj];

The schematic diagram is shown below:

riwr

i hi i.M ftw^iiHK'iJII'i mi'i i'iii ••iki-

M
E
M
0
R
Y

Fig. 12 Schematic of Sense Amplifier Array

13. PCHECKER NW

[ISIZE = 9;

OSIZE * 1;

CSIZE = lj

CONTROL NAMING; WRCCM;];

END (DECLARATION)

FUNCTIONAL DESCRIPTION;

s- This is to reopen the functional description module which was earlier

closed. To describe the operation of the above hardware items we shall need

88

to define several kinds of pulses. We shall first declare these pulses.

With each pulse one may associate the following attributes:

1. ME amplitude,

2. RTIMEi rise time,

3. FTIME: fall time,

4. WIDTH: pulse width,

5. DIRECTION: + or

One may declare the first four of these with tolerances. Thus, amplitude

could be (100, +5, -5) volts.j

DATA, DECLARATION:

1. RDCOM P [100 NANOS];

2. WRCOM P [100 NANOS];

3. RDP P [500 NANOS];

4. WRP P [500 NANOS];

5. INH P [600 NANOS];

6. STROBE P [200 NANOS];

7. SENSE P [300 NANOS];

8. TIME P [300 NANOS];

9. RDDRIVE P [SOO NANOS];

10. WRDRIVE P [500 NANOS];

11. INHDRIVE P [500 NANOS];

:- For none of these pulses were we able to find the amplitude, and rise

and fall time data from the available documentation;

12. RDCUR P [400 NANOS; AMP = 320 MA];

13. WRCUR P [400 NANOS; AMP = -320 MA];

I ü'/vi .M.j. ^ iu..j}| j, ¡.¡u ,

¡Wit, !!f! fl! in ■■. J¡|¡ ■ 1:- HrWI
mi m

:- ’MA' stands for milliampères. We have omitted writing the attribute

mam'every time. Notice that all these pulses have the status of logical

pulses within the language. When DIRECTION is not declared it is assumed

positive. Notice that direction has nothing to do with the sign of the

amplitude of the pulse. The positive direction indicates that all pulses

go from logical value 0 to 1.;

EM (DATA. DECLARATION)

END (FUNCTIONAL DESCRIPTION)

:- I forgot to declare earlier the hardware item, time, pulse generator.

Let me declare it now;

DECLARATION:

14. TP NW [ISIZE = 1; QSIZE = 10;

INPUT NAMING: START;]; |||

:- Xhe triple vertical bar denotes, the end of the declaration module;

FUNCTIONAL DESCRIPTION:

3. TP—START ->

WHEN TP—START DO

1. FOR I = 1 TO 10 DO

TP—OUTPUTfl] - TIME P;

WAIT (200 NANOS);! GO TO 1; ! <-

:- Notice that the pulse, ’TIME' „as earlier declared as a 300-nanosecond

pulse. In the above statement the first ’!' denotes the end of the FOR-loop,

and the second, the end of the WHEN-statement. The FOR-loop consists of

applying the TIME pulse successively to the 10 output lines of the generator,

with 200-nanosecond delay in between. After applying the pulse to the las/

90

■«WiPttRlri:

tih
line (the 10) the entire process is repeated, because of 'GO TO l*. This

operation will continue as long as TP--START has logical value 1.

Thus, once the start switch is turned on the time pulse generator

will begin producing the 300-nanosecond pulses on its output lines. The

pattern of these pulses is shown below:

200 NAlîOS

300 NANOS

_ I X '

<-- 200 NANOS J

300 NANOS
300 NANí

1800 NANOS
— ---4

STG« 13 Time Pulses

4. MEMTIMING—RDC0M ->

WHEN MEMTEMING—RDCCM DO

WAIT (100 NANOS);

MEMUMING—RDPOUTEUT - RDP P;

WAIT (450 NANOS);

MEMTIMING--STROBEOUTPUT - STROBE P; ! <■

5. MEMTIMING- -WRCOM ->

WHEN MEMTIMING--WRCCM DO

MEMTIMING—INHPOUTPUT - INH P-

WAIT (50 NANOS);

MEMTIMING--WRPOUTPUT *- WRP P: ¡ <-

91

il II.lili.

6. PULSEGEN—RDF ->

WHEN PULSEGEN--RDP A-, PULSEGEN--POWEROFF DO

PUISEGEN--RDXOUTPUT, PUISEGEN—RDYOUTPUT - RDDRIVE P- '
mum} 9

■ * RDDRIVE pulse is to be applied to both the outputs: <—

7. PULSEGEN—WRP ->

WHEN PULSEGEN—WRP A -, PULSEGEN—POWEROFF DO

PULSEGEN—WRXOUTPUT, PULSEGEN—WRYOUTPUT - WRDRIVE P; i <-

3. DECODER ->

:- We shall describe the I/O relationship maintained by the decoder. When

a structure containing the decoder is invoked in a procedure, the I/O pro¬

cedure described here is to be invoked to maintain the decoder I/O lines

at the proper values, every time its input value changes.;

IF SIZE (MEM) = 4096 V -, MAR [13]

THEN

(FOR I “ 1 TO 8 DO PARAIT,ET,

1. TRUE :: DECODER-OUTPUT[l, 1,1,1] -

(I = N/DECODER- -INPUT[1:3] +1);

DECODER—OUTPUT[1,1,2,1] - (I = N/DECODER—INPUT[4:6] +1);

DECODER—OUTPUTt 1,2,1,1] *- (I = N/DECODER—INPUT [7:9] +1);

DECODER OUTPUT[1,2,2,1] - (I = N/DECODER-INPUT [10:12] +1);

ELSE FOR I = 1 TO 8 DO PARAT,T.RT,

2- TRUE :; DECODER—0UTPUT[2, 1,1,1] -

(I = N/DECODER-INPUT[l:3] +1);

DECODER--OUTPUT[2,1,2,1] - (I = N/DECODER—INPUT[4:6] +1);

DECODER—0UTPUT[2,2,1,1] *- (I « N/DECODER—INPUT[7:9] +1);

92

A

DEC0DER--0UTPUT[2J2,2,I] - (I = N/DECODER—INPUT[10:12] +1); :: j¡)

/// DELAY (DECODER-DELAY); <-

:- The IF-THEN-EIfiE statement above ...s a complex parallel statement. In

each FOR-loop all the statements obtained for I = 1,2,...,8, are to be

executed in parallel. For every value of I one gets four statements, which

are contained within the parallel.autonomous statement (see Section 4.5 B2-2)

beginning with 'TRUE : • '. This autonomous statement is to be executed un¬

conditionally; all the 4 statements contained within are to be executed in

parallel. Thus, each parallel FOR-loop specifies 32 parallel statements.

This entire set of 32 statements is to be done in a time period equal to the

DECODERDELAY. Since, we could not get the data on this delay we have left

it undefined.;

9. INHDRIVERS ->

WHEN INHDRIVERS—INHP DO

IF -i (INHDRIVERS-MARI 3) V (SIZE(MEM.' = 4096)

THEN (IF INHDRIVERS--MAR6

THEN (FOR I = 1 TO 9 DO PARALLEL

INHDRIVERS—0OTPUT[1,1,1] -

MR[I] A INHDRIVE P;!

EISE FOR I = 1 TO 9 DO PARALLEL

INHDRIVERS-OUTPUTt 1,3,1] <-MR[l] A INHD RIVE P;l);

: - This puts the INHDRIVE pulse in path 1 or path 2 depending upon the value

of INHDRIVERS—MAR6 control lines. All the 9 planes in a stack are excited

simultaneously.;

93

'il'!| !;Hi'H'•Ir.ifiii'iri 1' 'Hi-'iMMuM'-i
-in ¡ni-¡illiS'iliimiii-lliill -i. i-i i M.IíMIIIiIH''»'-?" I! ü:| 4 !

ELSE IF INHDRIVERS —MAR6

10§N I2S_I = 1 S2 9 22 PARALLEL INHDRIVERS-OUTPUTf2,1,1

MR[I] A INHDRIVE P;1

ELSE FOR I = 1 TO 9 DO PARATJ.KT.

INHDRIVERS --OUIPUT[2,3,1] ♦-

MR[I] A INHDRIVE Pj!)j);I <-

:- The second stack inhibit drives are excited only if the size of MEM is

8192 and MAR[13] = 1. Notice that the entire WHEN-statement will be active

only for the duration of the pulse on the INHDRIVERS—INHP, control line.;

10. CURSMITCHES ->

FOR

I = 1 TO 2,

J = 1 TO 2,

K = 1 TO 2,

L = 1 TO 8, DO PARALLEL

WHEN

CURSWITCHES—DECODEROUTPUT[l,J,K,L] DO

CURSWITCHES - -CURINPUT[I, J, K, L] -if

CDRSWITCHES—0UTPUT[I,J,K,L];¡: <-

:- Notice that this establishes a connection between selected I/O lines of

the current switch on the satisfaction of the control condition;

11. VOLSWITCHES ->

FOR I = 1 TO 2,

J ■= 1 TO 2,

K = 1 TO 8, DO PARALT.KT.

l!
, ■

94

WHEN

VOLS WITCHES - -DECODEROUT H)TS[I, J, K] DO

VOISWITCHES—TOCNXmP[I,J,K] - 1; 1Î <-

12. XFORMERS ->

EOR 1=1 TO 2.

J = 1 TO 2,

K = 1 TO 8,

L = 1 TO 8, DO PARALT.RT.

WHEN

XFOEMERS --RDINPUT[I, J, K, *] A XFORMERS - -CNTREAP[I, J, L] DO

XFORMERS - -CUFOUT[I, J, K, L] - RDCUR Pj !

WHEN

XFORMERS —WRINFUT [I, J, K> *] A

XFORMERS-CNTRTÄPfI,DO

XFORMERS--CUROÜT[I,J,K,L] <-WRCtlRP;l] <-

13. STACK ->

FOR I =* 1 TO 2,

J = 1 TO 64

K = 1 TO 64, DO PARALLEL

WHEN STACK-CONTROLtljJ,!; I,K,1] DO

IF (AMP(STACK—XDR[I, J, 1]) = 320 MA) A

(AMPCSIACK-YDRtl,^!]) = 320 MA)

THEN

(IF ((J,K) »< 32 V (J,K) > 32)

THEN (SIACK--SENSE LINES [1,1,*] ^

SENSE P A STACKtl, J,K];

95

i*h4M*HH^44Wwmh- i •»‘MM* •* 11 • """« »k« 11 1 i'.!-H: i.!l A >1 I »W i'll I II

ELSE SIA.CK—SENSEUNES [1,3, *] -

SENSE £ A STACK[I,J,K]j)j)j

IF (AHP(STACK—XDR[I,J,1]) » -320 MA) A

(AMP(SÏACK—YDR[I,K,1]) = -320 MA)

THEN

(STACK[I,J,K] ^ J =< 32 THEN

(-,(STACK—INHIINES[I,1,*])

. ELSE —,(STACK—INHLINES[l,3,*]))j) j 11 <—

:- Both reading and writing of STACK has been described above in terms of

the amplitudes of the current pulses on the X and Y drive line. The AMP

(of a line) is that of the pulse on the line.;

14. SENSEAMP ->

WHEN

SENSEAMP—STROBE DO

FOR 1= 1T02, K=1T09D0 PARALLEL

IF (AMP(SENSEAMP—INPUT[I,K,1]) >» AMP(SENSEAMP—BIAS)

V (AMP(SENSEAMP—INPUT[I,K,3]) >- AMP(SENSEAMP—BIAS)

THEN (MR[K] - 1}

EISE MR[K] - 0j)j:¡ <-

15. PCHECKER “>

WHEN TP—OOTPUT[5] A PCHECKER—WRCCM DO

MR[9] *-“i©/MR[l:8];i

WHEN TP—0UTPUT[7] DO

ERROR FF - -, ®/MR[l:9]j <-

r

END (FUNCTIONAL DESCRIPTION)

STRUCTURE:

:- In this module we shall describe the detailed interconnection structure

of the subsystems of the memory. A schematic of the block diagram is shown

below in Fig. 14.

Fig. 14. Block Diagram of Memory System

97

íaíKíidiüujgbi

I rHM-tW ^I'rtfcMt&l.-M.'TWIaaJi lilHi^ ,■4.1*41— 4-1--4 i- • •'• ■ 1..-1.,. í I t*W-;

1. STACK—XDR[I,8*(J-1) +K,L] - *

XFORMERS—OUTPUT[l,1,J,K,L] ///

1 «< (I,L) =< 2, 1 =< (J,K) *< 8;

:- Within the bounds of the indices all the corresponding connections declared

in statement 1 are admissible. Notice that all statements in structure

declaration are declaratives.;

2. STACK-YDR[I,8*(J-1) +K,L] -*

XFORMERS--OUTPUT[I,2,J,K,L] /// (///1.)-

:- (/// 1.) denotes 'the same restrictions as in 1'.;

3. XFORMERS—CNTRTAP[I,J,*,K] -*

VOIS WITCHES--OUTPUT[I, J,K] /// 1 =< (I,J) »< 2, 1 «< K »< 8;

4. XFORMERS—RDINPUT[I,J,K,*] *-*

CURS WITCHES—TORDINPUT[I ;J,1,K] /// 1 »< (I,J) »<2, 1 -< K -< 8;

5. XFORMERS—WRINPUTtI,J,K,*] <-*

CURSWITCHES—TOWRINPUT[l,J,2,K] /// (/// 4.);

6. VOLSWITCHES—DECODEROUTPUTS[IjJj K] -*

DECODER—OUTPUT[1,1,1,K] /// (/// 4.);

7. CURSWITCHES—DECODEROUTPUTS[l,J,*,K] -*

DECODER--OUTPUT[l,J,2,K] (/// 4.);

8. CURSWITCHES—CURINPUT[*,I,J,*] «V

PULSEGEN[I,J] /// 1 =< (I,J) =< 2;

9. PULSEGEN—INPUT[I] ^ MEMTIMING[l] /// 1 «< I «< 2;

10. STACK—INHLINES[I,J,K1 ^

INHDRIVERS--OUTPUT[I,^,K] ///1 =< I =< 2, 1 -< J -< 4, 1 -< K -< 9;

11. INHDRI VERS—C0NTR0L[1:3] -*MAR[13], MAR[6], MEMTIMING—INHP;

98

12. SENSEAMP[I,J,K] ^ STACK—SENSEUNES[l,K,J,] ///

1 «< I »< 2, 1 =< J n< 1 «< K =< 9;

13. SENSEAMP--STROBE ^ HEMTIMING—STROBE)

14. PCHECKER W; MR)

15. MR[9], ERROR PCHECKER)

16. MR <-* SENSEAMP.

EM (STRUCTURE)

OPERATIONAL DESCRIPTION:

:- We shall define here two functions on MEM) one will be called LOAD

and the other GET. We shall describe the execution of these functions

operationally.)

1. LOAD (MM, NAME R, NAME R) ->

5“ NAME R here refers to the fact that two of the arguments are to be

registers. The size of these registers will get defined in the procedure

below)

TRIGGER (TP—start)) :- This sets the TP-start control signal to 1.;

LET

USE STRUCTURE IN HARDWARE DEFINITION, GLOBAL:

1 TP—OUTPUT* ». ,TP')!

1. TP[1] A-i TP[2] :: MR, MAR - 0) ::)

2. TP[1] : : MAR «- NAME (*1))

READ FF «- 1) ::)

:- We have here implicitly declared a FF, called READ)

TP[2] :: WRITE FF «- 1) 3.

1^141 ■ !» I K.i:3||(|t||%f .||*|
•‘L4M-VH

4. WHEN READ DO

TKIGGER (MEMEIMING--i^OM, RDCCM P); [

5* TPt3] :: BEAD - Oj

6* IP[5] :: MR[1:8] - NAME (*2);

MR[9] - PCHECKER ;

7 * Tpt 7] ! : TRIGGER (MEMTIMING—WRCGM,WRCQM P) ; ; ; •

s* TP[8] :; WRITE «- 0; ::; <-

:- Within the structure of the memory system the trigger conmands initiated

above will cause a whole series of pulses to be generated and applied to

the various signal lines within the system. As these pulses travel along

the signal paths specified in the structure, they in turn will initiate

other actions. Finally, by the time the 8th time pulse arrives, the memory

would have been loaded. Notice that MAR — NAME (*1), defines the size of

MM(*D, by virtue of the size of MAR. So also, MR «- NAME(*2) defines the

size of NAME(*2). •

2. GET (MEM, NAME R) ->

TRIGGER (TP-START);

LET

USE STRUCTURE IN HARDWARE DEFINITION, GLOBAL:

'TP-OUTPUT' =. 'TP'; I

!• TP[1] A—, TP[2] :: MAR, MR - 0;

2* TP[1] :; MAR ^ NAME:

READ FF - 1; - .

3- TP[2] :: WRITE FF - 1; ::;

4. WHEN READ DO

TRIGGER (MEMTIMING—RDCCM, RDCOM P);¡

100

5.

6.

7.

8.

TP[3] : : READ - 0; :

TP[6] :: TRIGGER (MEMTIMING--WRCCM, WRCOM P)j

TP[8] :: WRITE - 0; ::;

TP[4] :: MR <-SENSEAMP--OUTPUT; : : ;

END (OPERATIONAL DESCRIPTION)

END (HARDWARE DEFINITION)

END (70/15 CORE MEMORY SYSTEM, DESCRIPTION)

101

VI. A parallel processor

In this section we shall describe a version of the parallel pro-

cessor scheme proposed by Saul Levy [7]. The description is in the form

of a procedure. The description is not that of a parallel processing machine,

but is that of a scheme, which such a machine might follow. It is entirely

functional, in terms of the string variables, which the procedure handles.

In a sense, this description offers a contrast to the one presented in the

previous section; the interest is purely in the processes involved, and not

In how they are done.

In the example we make use of the 1 PATTERN1 definition facility

which was alluded to in Section IV-B-1. The facility is the following:

While defining string variables, one may define the patterns of

the string values which the variable may assume. Consider for example the

definition.*

1 INS ST =. OPCODE II OPI || 0P2 || OP3 || BOUNDS; '.

This defines the string INS (instruction) as consisting of 5 parts. The

successive parts are shown separated by the concatenation operator. The

patterns of OPCODE, OPI, 0P2, 0P3 and BOUNDS were themselves, say defined

a priori. The above statement in a PATTERN module indicates to the system

the following properties of INS:

1* The string INS should always have the said pattern.

2. The pattern consists of five subpatterns concatenated as shown,

each subpattern having been named as shown.

3. OPCODE(INS), OPl(INS),..,BOUND(INS) are to be given the status

Eg&Lfi™ functions; In a procedure one may now ask for OPCODE(INS) to

102

obtain the opcode of the string called, INS. Thus, pattern definition

gives a naming scheme for substrings of a string. The concatenation operator

separates the individual pattern names, for which pattern functions are to

be formed, for a given string variable. The pattern functions will exist

for a string only if the concatenation operator appears in the pattern

definition of the string. Thus, BOUNDS V defined by,

'BOUNDS V =. (INTEGER. INTEGER):'

will not have any pattern functions associated with it.

The name of a pattern (like OPCODE, 0P1, etc.) cannot be used

also as the name of a variable in a procedure. All pattern names appearing

on the right side of the ' symbol in a pattern definition statement, should

have been defined a priori. The symbols,

'string' (a string under quotes),

b, operator, (,), [,], -, =., =., ::=, /, t, ->, <_, ,, ., .,

I, and Í

are treated as pattern constants. In

'0P1 =. NAME I] [INDEX]; '

0P1 will acquire two pattern functions:

NAME (0P1) and INDEX (0P1). Notice that the second pattern

function is 'INDEX' and not '[INDEX]'j the pattern constants appearing in a

pattern are to be stripped off, while naming a pattern.

New patterns may be created through the use of the nondeterminiStic

.replacement rule. Thus,

'OPCODE' j;« ['ADD', 'SUB', 'DIV', 'MUL'};

defines the pattern of OPCODE as consisting of anyone of the four strings

shown on the right. Only after defining OPCODE thus, one may use it as a

pattern name on the right side of a statement.

103

i «wuîWrti iBÂliaiKtiraïf uiiîa:tIJ3Hlïir |c^¡t¡

i 4011¾WwM. H>i tW«:-lHsh. i|«•- •’■til 11M’llH i'Wi-»1 -1 '¡ « -fa --ü Mh-1-IHiH 1 -Viiíflr. 11>|l|(I ¡H* i IH.MH'il M

A pattern module may not contain any other kinds of statements.

We may now proceed to the parallel processor description. We

leave it to the reader to understand the procedure from the description below:

PARALLEL PROCESSOR, PROCEDURE:

DATA-DEFINITION:

PATTERN:

1. 'IX ST' ::= {'I', INTEGER. (IX), IX<{+,-,*]> IX};

i- This statement defines the pattern of a string called, IX(index). IX

can have as its value ’I', or an integer (INTEGER is a pattern already

defined in the language), or IX under parenthesis, (IX), or IX + IX, IX - IX

or IX * IX4 The definition involves recursion in the usual Backus Normal

form sense. The use of value brackets in ({+,-,*}), denotes the value

of the selection expression, [+,-,*} as part of the pattern, rather then

the expression itself.j

2. BOUNDS V =. (INTEGER. INTEGER) ///

1 =< INTEGER (*1) =< INTEGER (*2);

:- 'BOUNDS* is defined as a vector with two elements, which are both integers

satisfying the indicated restriction. In a procedure one may now ask for

BOUNDS[1] and B0UNDS[2] to call for the first or second element

of the variable.;

3. 0P1 =. 0P2 =. 0P3 =. NAME "|| [IX]";

:- This is a short form for three separate statements: 0P1, 0P2 and 0P3 all

have the same pattern with possibly two pattern functions. One is 'NAME*

and the other IX, The pattern '[IX]* is optional, as indicated by the double

quotes. Thus, the value of the pattern function IX(0P2) could be sometimes

vacuous. Since IX has now been used as the name of a pattern function, it

cannot be used as the name of a variable in the procedure.;

h. 'OPCODE' ;:= ['ADD', 'SUB', 'MUL', 'DIV'];

5. INS ST H. REG ST =. OPCODE ¡¡ OPI || OP2 || OP3 || BOUNDS;

:- Now, 'BOUNDS' has become a pattern function. So, BOUNDS[l] or BOUNDS[2]

will refer to the latest values of the pattern function, 'BOUNDS',if such

values exist, and BOUNDS(INS)[1] and BOUNDS(INS)[2] have their corresponding

connotations.;

6. AREG[I] =. MREG[I] =. DREG[I] =. OPCODE || OPI || 0P2 || OP3

/// I >= 1J

The indexed variables AREG, MREG and DREG have the indicated pattern.

The index should be always >= 1. These are the local registers for the

various adders, multipliers and dividers in the procedure.;

7. ADDQ STV =. MUIQ STV =. DIVQ STV =.

(OPCODE II OPI II 0P2 II 0P3 .' ... OPCODE || OPI || OP2 || OP3>;

:- The pattern of the above string vectors has been defined as the value

of the given string expression. The functions

OPCODE (ADDQ[I]), 0P1(MULQ[J]), etc.

are now meaningful in the procedure for 1 “< (I,J) ■"< DIMN (the STV).;

8. ACAM STV =. HCAM STV ■. DCAM STV =.

(NAME"[INTEGER]"! «/I»!/*

NAME" [INTEGER]") /// I >■= 1}

:- There should be at least one NAME"[INTEGER]" in the above string vectors;

they cannot be vacuous. CAM stands for Content Addressed Memory. ACAM is

the content addressed memory associated with the adders. Similarly, the

prefixes M and D denote multipliers and dividers, respectively. The various

adder, multiplier and divider units store their results in the ACAM, MCAM and

DCAM respectively.;

105

t i 1 <t*»l••Sieltlítl '‘•••H iKWiint-iriMHiMI " 'HíHlWlH1'11 1 lrHI!ii' • ‘11'1

9. STACK STV g, (IHS; , > >INS!); END(PATTERN) .

:- In the above pattern definition all the variable names (those, which

have not been used as pattern function names) are to acquire the status of

declared variables within the ensuing procedure« In the following module,

1 INPUT DATA', the necessary external inputs to the procedure are listed.

The procedure can be executed only if all the inputs listed in this module

have been specified.;

INPUT DATA:

1. STACK STV [DIM VARIABLE]:

:- The value of the string vector STACK is to be declared. Notice that its

value is restricted to be a series of instructions of the form of INS

(pattern definition 9). The dimension of the STV is a variable; it may

change within the procedure.;

2. ACAM STV [DIM VARIABLE] :

3. MCAM STV [DIM VARIABLE]:

4. DCAM STV [DIM VARIABLE 1:

5. DIM(ARV);

:- AR is a vector declared within the procedure. The dimension of this

vector is the number of adder units to be used in the parallel processor.

The elements of AR are bits, AR[l] * 1 if the I**^ adder unit is ready to

accept its next job, otherwise AR[l] a 0. The vectors MR and DR are used

similarly, with the multiplier and divider units, respectively.;

6. DIM (MR V),

7. DIM (DR V);

8. AT S;

:- This is the add time.;

!

P

106

I

9. MT Sj

10. DT Sj

11. ST Sj

:- subtract timej

END (INPUT DATA)

PROCEDURE:

1. LET

1. ADDQfDIMN VARIABLE 1 ;

2. MULQ[DIMN VARIABLE 1:

3. DIVQ[DIMN VARIABLE];

4. EVENT: - We shall now declare a series of event variables;

51 =. 1, :- The start event. Initial value 1.;

52 *». 0; :- Fetch instruction from STACK;

(AljMljDl) =. 0, :- Check ACAM, MCAM and DCAM* respectively, to see whether

the operands in the •present1 instruction are available

in the CAM’s.;

(F1,F2,F3) =. 0, :- The above checks have been completed;

(AQ,MQ,DQ) «. 0, :- The ’present* instruction is to be put in the add, mul.,

or div. queue, respectively.;

F 0, :- Instruction has been attached to the appropriate queue.;

AC V [DEIN « DIMN(AR) +1] (1, (0,...0)),

:- AC[i] for i > 1 indicates that ACAM is available for the (i~l)St

adder unit, to store its results. AC[l] indicates that ACAM is available

for questioning under event Al, above. The following events MC and DC

have similar significance for MCAM and DCAM, respectively.;

107

WM''" ■' HBlif-JÜRWlki •(-i!>ifiWH'i-r«.-»«tmiriíHtWJMteMP-I ... '! "-!'«« -111-1 'I ''t

MC 1 [PIMN « Dj'MdÆR) +1] =. (1, <0,...0»,

DC V [PIMN = DlJffi(DR) -H] =. (1, (0,...0))

AR V ». 1, MR V ». 1, DRV». 1.

(AQR, MQR, DQR) ». 1,

:- These indicate that the ADDQ, MUIXJ and DIVQ, respectively, are ready for

questioning,;

FA V [DIMN(AR)] =. 0,

:- FA[i] « 1 if the i1* adder unit is ready to store its results in the

ACAM, otherwise, FA[i] = 0. Similarly, FM and FD are used with the

multiplier and divider units.;

SM V [DIMN(HR)] ». 0,

FD V [DIMN(DR)] ». 0,,-!

:- The ' terminates the event declaration, and 'J' the IRT-statement.;

WHBM SI A STACK -, E NULL DO

SI - 0* REG - STACKfl];

STACK - SHIFTNM,* STACK); S2 - 1; [

:- On the satisfaction of the condition SI A STACK -,= NULL the tasks are

executed in the given order within the ON statement. terminates

the ON-statement. SHIFTN is a non-cyclic shift function. Since STACK

dimension was declared as a variable, and no 'fill-ins' has been given to

put into the shifted positions of STACK, the stack dimension will be reduced

after the shift. Thus, STACK acts as a 'pop-up' stack.;

WHEN S2 DO

S2 -0; JF BOUNDS (REG) [1] = BOUNDS (REG) [2] THEN

(BRANCH TO(Sl); ELSE I *-BOUNDS (REG) [l];);

108

OPE 1 - 1 (NAME(OP 1(KEG)))"[<<IX(OPl(REG))))]"

OPE 2 <- ,<NAME(OP2(REG))>"t<<IX(OP2(REG))»]'";

OPE 3 - ' (NAME(QP3(REG)) >"[<<IX(0P3(REG)) >)]"';

Al, Ml, D1 - 1;1

:- Within a statement '()' are always treated as meta value brackets. The

values of items enclosed are to be substituted before executing the statement.

Thus, in the third statement the value of NAME(0Pl(IiEG)) is to be substituted

first. NAME(0P1(REG)) calls for the pattern NAME in the pattern QP1 of

REG. Similarly (IX(OPl(REG))) calls for the pattern IX in 0P1 of SEG, and

«IX(OPl(REG)))) calls for the value of <IX(0P1(REG))>, which Is obtained

by evaluating the arithmetic expression. (Notice that IX could be an

arithmetic expression.);

WHEN Al A AC[l] DO

Al, AC[1] *-0;

T1,T2 - (0PE1 s {ACAm}), (OPE 2 = {ACAmJ);

AC2 - 1; FI - 1; i

WHEN -, Al A AC[1] DO

AC[1] - 0; AC[2] <- 1; 1

:- AG[l] indicates that ACAM is available for questioning by the program

analyzer to find out whether OPE1 and 0PE2 are in ACAM. OPE 1 = {ACAM]

stands for (0PE1 = any one of the elements in ACAM). The results of tests

are stored in T1 and T2.j

WHEN Ml A MC[1] DO

Ml, MC[l] - 0;

T3, T4 - OPE1 = {MOAM}, 0PE2 = (MOAM};

MC[2] - 1; F2 ** 1; 1

i

109

SH-11141:11 Mí !
W* H '1 !:IIíI'WiH1 -«I- :i 111 smci U imwifM#*'!

WHEN -, Ml a MC[1] DO

MC[1] - «); MC[2] <- Iji

WHEN D1 A DC[1] DO

Dl, DC[1] - Oj

T5, T6 - OPE1 = {DCAM}, OPE2 = {DOAM);

DC[2] - 1; F3 - 1)1

WHEN -, D1 A DC[1] DO

DC[1] - 0; DC[2] «- 1;!

WHEN FI A F2 A F3 DO

FI, F2, F3 - 0;

IF (Tl V 13 V Ï5) A (T2 V W V T6) THEN

(¢11,12,13,14,15,16) *- 0;

IF ÍOPCODE(REG) = ’ADD’, OPCODE(REG) = 'SUB'.

OPCODE(REG) = 'MUL', 01 "ODE(REG) = 'DlV') THEN

({AQ,AQ,MQ,DQ} - lj)j ELSC

STACK - STACK!REGj BRANCH TO(Sl)j);!

:- (Tl V T3 V T5) A (T2 V T4 V T6) checks for operand availability. If

the operands are available then the instruction in REG is ready to be put

In the appropriate queues, and AQ, MQ,DQ are accordingly set to 1. The

complex IF statement with In the IF condition Is an abbreviated

form of 4 different IF statements. If OPCODE(REG) = 'ADD' then only AQ

will be set to 1, and similarly for the other conditions within {,,,}.

Notice that the 'ELSE' is to be associated with the first IF and not the

second one.;

WHEN AQ A AQR DO

AQ, AQR «- 0;

no

..''■,"WI»WWWS0«¡

ADDQ - ADDQ! OPCODE (REG) || OPEL || 0PE2 || OPE3j

AQR - 1; F - 1-1

WHEN MQ A MAR DO

MQ, MQR «- 0;

MULQ - HULQ: OPCODE (REG) || OPE1 || OPE2 || OPE3j

MQR -!• F <- lj'.

WHEN DQ A DQR DO

DQ, DQR - Oj

DIVQ - DIVO! OPCODE (REG) || OPE1 || OPE2 || OPE3;

DQR - 1; F *- 1; ¡

WHEN (AQ A—, AQR) V (MQ A -, MQR) V (DQ A-, DQR) DO

WAIT; L

WHEN F DO

F - 0; BOUNDS(REG)[l] - BOUNDS (REG)!!!] +1;

BRANCH TO (S2); i

WHEN ADDQ -, = NULL DO

WHEN AR[1] A AQR A-, AQ DO

AQR - 0; AREG[I] - AQDQ[l];

ADDQ - SHIFTN(-1; ADDQ); AQR «- 1; AR[l] - 0;

IF OPCODE(AREGtl]) = 'ADD' THEN

(WAIT(AT); ELSE WAIT(ST); 1;

BRANCH TO (FA[l]);i

FOR I = 2 TO DMi(AR) DO PARALLEL .- PARALLEL indicate that in the

range of index I all the iterations obtained for the values of I are to be

executed in parallel.;

tT’

'■UH» i !!. I,;li'1fhi i-ivmíi .,,.

i.

WHEK -,(A/AR[1:I-1]) A AR[l] A AQR A-,AQ DO

AQR - 0; AREG[I] -ADDQ[1];

ADDQ ~ SKtFTN (-1; ADDQ); AQR - 1;

AR[I] - OJ II OPCODE(AREG[l]) = 'ADD'

THEM WAIT (AT) ELSE WAIT (ST);)j

BRANCH TO (FA[l]); II

FOR I ° 1 TO DXMM(AR) DO PARALLEL

WHEN FA[l] A ACtl+lJ DO

FA[I] - Oj

ACAM - ACAMI0P3(AREG[I]);

AC[I+1] -■ Oj AR[l] 4- 1;

IF 1+1 = DIMN(AR)+1 THEN

(AC[1] - Ij ELSE AC[1+2] - l;);i

WHEN FA[l] A —i AC[I+1] DO WAIT;1

WHEN -, FA[I] A AC[I+1] DO AC[l+l] - 0;

IF 1+1 - DIMN(AR) +1 THEN

(AC[I] - 1; ELSE AC[l+2] *-

WHEN MULQ -, = NULL DO

WHEN MR[1] A MQR A-, MQ DO

MQ : *- Oj HREG[1] - MULQ[1];

MULQ 4- SHCFTN (-1; MULQ)j MQR - Ij MR[l] *- Oj

WAIT(MT)j BRANCH TO (EM[l])j'.

FOR I = 2 TO DIMM (MR) DO PARALLEL

WHEN -i(A/MR[1:1-1]) A MR[l] A MQR A—,MQ DO

MQR - 0; MREG[I] -MULQ[l]j

MULQ *- SHLFTN(-lj MULQ)} MQR - lj MR[l] 4-0j

WAIT(MT): BRANCH TO (EM[I])jii

112
J 1

1

FOR I « 1 TO DIMM (MR) DO PARAT,T.ET.

WHEN FM[I] A MC[I+1] DO

BM[I] *- 0; MCAM »-MCAM:oP3(MREG[I]);

MC[I+1] *- Oj MR[I] - 1;

IF 1+1 o DIMN(MR)+1 THEN

(MC[1] *- Ij ELSE MC[1+2] - 1;) j !

WHEN -, FMfll A MC[I+1] DO

MCtl+1] - 0j

IF I+I = DIMN(MRH1 THEN

(MC[1] <- I; ELSE MC[1+2] - Ij); 1

WHEN FM[I] A-, MC [1+1] DO WAIT: ¡ 11

IfflEN DIVQ -, = NULL DO

WHEN DR[1] A DQR A-, DQ DO

DQR - Oj DREGtl] - DIVQ[1]j

DIVQ - SHIFTN (-lj DIVQ)j DQR - I; DR[l] -

WAIT(DI): BRANCH TO (FDtlj);!

FOR I = 2 TO DIMN(DR) DO PARALLEL

WHEN -, (A/DR[1;I-1]) A DR[l] A DQR A DQ DO

DQR *- Oj DREG[l] - DIVQ[l]j

DIVQ 4- SHIFTN (-1; DIVQ)j DQR <- !• DR[l] ^

WAIT(DT): BRANCH TO (FD[l])j!!

FOR I = 1 TO DIMN(DR) DO PARAT.T.RT.

WHEN FD[l] A DC[I+1] ßO

FD[I] Oj DCAM ^ DCAMlOP3(DREG[l])j

DCtl+1] - Oj DR[I] - lj

IF 1+1 = DIMN(DR) +1 THEN

(DC[1] - lj EIEE DC[1+2] - lj)ji

113

MB
BM

BB
ai

eg

WHEN -, FDlX] A DC[I+1] DO

DC[I+1] - Oj ÍP 1+1 °* DIMN(DR) +1

THEN (DC[1] - 1; ELSE DC[l+2] - 1;); 1

WHEN FD[r] A—, DC[I+1] DO WAIT! i ! !

END(PARALLEL PROCESSOR _1 PROCEDURE)

VII. CONCLUDING REMARKS

Our aim was to develop a formal language with adequate expressive

power and logical structure to describe and document various aspects of a

computing system both during its design phase and after the design has been

completed. We have in this report discussed in fair amount of detail the

considerations that went into the design of such a language, and the language

features that the considerations gave rise to. Also, we have pointed out

the need for a new language, both from the point of view of the expressive

power necessary and the range of applications envisioned.

The examples presented in Sections V and VI point out the variety

of objects that one may describe in the language, and the range of kinds of

descriptions possible* The example in Section IV explains the four levels

of design, and shows how the resulting objects in various levels of design

may be precisely described.

Even though the language has a complex structure, a novice can

easily write descriptions in it using only its more elementary facilities:

the standard operands, and simple assignment and program control statements.

A more sophisticated user will find more sophisticated and powerful

facilities in the language to meet the needs of his applications* data

structure, table and other definitions, pattern declarations, dynamic

memory allocation facilities, autonomous statements, hardware allocation

facilities, facilities to specify error control strategies etc. To use

these powerful facilities appropriately the user should be well versed in

the language, and in the implications the use of these various features may

have on the task at hand. Generally, it is true that the language forces its

users to have a thorough understanding of the objects they may wish to

115

describe, a desirable feature by itself. Also, it imposes on the users a

disciplined way though at an elementary level - of organizing the descriptive

data. The process is quite similar to the one of writing a program in a

programming language. In the context of a design aid system the benefits

for going through such a discipline, and going through a period of training

are quite numerous.

One obtains a systematic, precise and complete (in the sense of

being simulatable) documentation of a system under design at various stages

of its design, from product specification, to its final hardware structure,

operation and software assists. During design one may easily keep track

of design alternatives, design changes and changes in product specifica¬

tion. One may even create automatic processors to trace the consequences

of every given change throughout an entire system. In its present form the

language may already be used for design documentation on paper.

Since descriptive data will be presented in a codified form, and

filed according to a well-defined filing structure it will be possible to

design a great variety of automatic design aids, based on a common data

base: One may design an automatic retrieval system to answer queries,

designers may ask. CDL1 provides a logical structure to consider the

problems arising in such a retrieval system. Such retrieval may be direct

retrieval of portions of descriptive data in file, or it may call for an

analysis of a body of data to obtain the necessary answers. For example,

a designer may want to know the commanda which use a particular register

or network in a system; or the number of times a given bus is used in

an instruction; or the nature of traffic pattern across a given bus, etc.

A large number of such simple analysis tasks may be formulated and solved in

the context of CDL1.

116

Since descriptions are supposed to be complete, at each level of

design one may call for a simulator, to simulate the system at that level

of design. Design alternatives may be evaluated through simulation, or

a design so verified. An entire simulation system may be created to work

directly from the descriptive data base. One need not write special pur¬

pose simulators to test each stage of a design process, either hardware

or software. The formal system in CDL1, we believe, is adequate to create

such simulators.

While describing a system in CDLl, one can set up system error

control criteria and develop error control strategies on the basis of such

criteria. Also, we believe, it would be possible to develop techniques

for generating automatic system diagnostic aids. In fact, this has been

our primary motivation for developing the language itself.

Finally, one may attempt to automate synthesis tasks in the

context of CDLl. The synthesis may be viewed as a translation of a descrip¬

tion at one level to the one at its next more detailed level, satisfying the

design contraints imposed by the auxiliary declarations of objects and

processes made on the side. Though the feasibility of design through such

translation has been studied [^5,8], the problems involved in the process

have not been well understood.

We hope to study these processes, as also those of system error

control, diagnostic aids and simulation, during the course of our future

work. In studies on system organization CDL1 will prove to be useful

to describe new systems, and the associated design aid systems may be used

to simulate and evaluate them. With our present work we have thus laid the

foundation, not only for the development of numerous design aids of

117

immediate practical interest, but also for the creation of a powerful tool

for research on system organization, enror control, and analysis and

synthesis techniques.

Our immediate next goal is the creation of a documentation facility:

an automatic filing system. We anticipate this system to check its inputs

for proper form and syntax and to make certain necessary abstracts of

input data. The system is also to have an elementary data retrieval

capability, to retrieve data called by name. Recently, the problems involved

in the creation of such a system are being studied from the point of view of

file flexibility, the features of CDL1 to be implemented and the techniques

of generating syntax checkers automatically from the formal description of

the language. This study is being conducted jointly with the Product

Planning Group* at Cherry Hill, N. J.

CDLl has been described formally in CDLl itself. The language

description is itself in modules, which decompose the language into parts.

Care has been taken in the definition of the language to make it deterministic

(parsable in a single lert to right scan). We cannot, however, guarantee

determinism at this time: we hope it is deterministic. The sheer size of

the language calls for innovations in the organization of its syntax and

format checker. We believe, the decomposition of the language into parts will

greatly aid its implementation.

*Donald Gorman, McAllister, and Mary Dempsy of RCA's EDP Product Planning
Group are contributing toward this effort.

118

VIII., ACKNOWLEDGMENTS

The work reported here was started by this author during the first

quarter of 1966, when a formal description of 70/15 was written. Our ideas

on the description language grew directly from this experience.

Donald Gorman and Justin Kodner Joined me in this effort in October

1966. The work is the result of joint effort by all three. This author

assumes responsibility for the general organization of the language: Its

module structure, module classification schema, module format and syntax;

the operand dlassification and indexing structure (the multi level nested indexing

was suggested by Donald Gorman); the various expressions syntax; classification

of statement types, their form and syntax (the use of IF-expression was

suggested by Donald Gorman); and concepts associated with the various

kinds of system descriptions, and various levels of design.

I wish to thank Gorman and Kodner for the many discussions we had

and Gorman, especially, for proofreading the several versions of the

syntax, that were written for the language.

FlwPW

W^’llí^l^lf mHimWW ^ hf.lfhil.tl.M. . u, . .-,-... ,, ,,....„ .„ ; ., ..,, |-|H Mil- llli-.í i'MP'fi

IX* REFERENCES

!• Balzer^ R*, "Dataless Programming,^ unpublished interim report*

2. Burnett, G* J*, "A Design Language for Digital Systems,M Master's
thesis, M.I.T.; August 1965.

3. Chu, Y*, "An ALGOL-like Computer Design Language," Comm* of the ACM,
Vol* 8, No* 10, pp* 607-614; Oct. 1965*

4. Falkoff, A. D., et al., "A Formal Description of SYSTEM/360," IBM
Systems Journal, Vol* 3, No* 3, pp. 198-262, 1964.

5. Gorman, D* F. and Anderson, J* P., "A Logic Design Translator," 1962 Proc.
of Fall Joint Computer Conf*, pp, 251-261.

6. Iverson, K. E., A Programming Language* John Wiley and Sons, Inc.,
New York, 1962.

7. Levy, S., "Automatic Sequencing in a Parallel Processor," private
communication.

8. Metze, G. and Seshu, S., "A Proposal for a Computer Compiler," 1966

Proc* of Spring Joint Computer Conf.* pp. 253-263.

9. Naur, P., et al., "Revised Report on the Algorithmic Language ALGOL 60,"
Comm, of the ACM, Vol. 6, No. 1, pp. 1-17; Jan. 1963.

10. Proctor, R. M., "A Logic Design Translator Experiment Demonstrating

Relationships of Language to Systems and Logic Design," IEEE Trans.

Elect. Computers, Vol. EC-13, pp. 422-430, Aug. 1964.

11. Reed, I. S., "Symbolic Design Techniques Applied to a Generalized

Computer," M.I.T. Lincoln Labs., Lexington, Mass., TR. No. 141; Jan. 3,
1957.

12. Schlaeppi, H. P., "A Formal Language for Describing Machine Logic,

Timing and Sequencing (LOTIS)," IEEE Trans. Elect. Computers, Aug. 1964,
pp. 439-448.

13. Schorr, H., "A Register Transfer Language to Describe Digital Systems,"
Tech. Rep. No. 30, Dept, of Elec. Eng. Digital Systems Lab., Princeton
University, Sept. i962.

14. Standish, T. A., "A Data Definition Facility for Programming Language,"
PhD. thesis, Carnegie Inst, of Tech., 1967.

15. PL/1: Language Specifications, IBM Operating Systera/360. IBM Systems
Reference Library File No. S360-29, Form C28-6571-2, Jan. 1966.

120

í *

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D
(Stcutity cUaaittcaiion ot lltla. body of sbatréct and indexing annotation muat 6» enterad whan (At overall report la elaaeitlad)

1 Omc.lHATíN C ACTIVITY (Corporate author)

Radio Corporation of America

RCA Laboratories

Princeton* New Jersey 08540

REPORT TITLE

AN INTRODUCTION TO CDL1* A COMPUTER DESCRIPTION LANGUAGE

4 DESCRIPTIVE NOTES (Type ot report and incluaive datea)

Scientific, Interim.

2*. REPORT SECURITY CLASSIFICATION

Unclassified
26 QROUP

S AU THORNS; (Laat name, lirat name. Initial)

Srinivasan, Chitoor V,

a REPO RT DATE

September 1967
8 a CONTRACT OR GRANT NO.

AF19(628)4789
6. Project* Task* Work Unit Nos.

5632-02-01

c DoD Element 61445014

d DoD Subelement 681305

7a TOTAL NO. OF PAGES

124

76. NO. OF REFS

15
9a. ORIGINATOR'S REPORT NUMftERfSj

Scientific Report No. 1

96. OTHER REPORT NOfô) (Any other numbera that may be aaaignad -() thl* report]

AFCRL-67-0565

10 AVAILABILITY/LIMITATION NOTICES

Qualified requestors may obtain additional copies from the Defense Documentation

Center. All others should apply to the Clearinghouse for Federal Scientific and

Technical Information.

II SUPPLEMENTARY NOTES

TECH, OTHER

12 SPONSORING MILITARY ACTIVITY
- ¿rid Air Force Cam!

(CRB)
L. G. Hanscom Field
Bed ford, .Mags ,,. .017,30

ge Research Laboratories

13 ABSTRACT

The objective of this report is to develop a formal language to describe hard¬

ware and software computing systems. The language is to provide a linguistic basis

to consider machine-aided solutions of a variety of design problems; i.e.* problems

concerning design documentation, data retrieval systems* system simulation* diag¬

nosis* analysis and synthesis. This report discusses in some detail the consider¬

ations that went into the design of the computer description language* called CDLl;

it points out the need for developing such a language and briefly discusses the
kinds of applications such a language may have. The report points out the various

kinds of system descriptions one may encounter in a design process and relates them

to the language features necessary to express them; the language itself is de¬
scribed informally. Examples are presented to Illustrate the use of the language*

the concepts associated with descriptions of systems at various stages of design*

and the consequent hierarchical structure such descriptions acquire.

DD /Ä 1473 UNCLASSIFIED

Security Classification

mm MHMmwMMMMiH*

ft

unclassified
Security. Classification

n'f °*iG^TING ACTIVITY: Enter the name and address
finiîf Bubcontractor. grantee, Department of De*
the report/1*y ^ °ther orKani2ation Corporate author) Issuing

l*' ^EP1?RT, SECURITY CLASSIFICATION: Enter the over-
“¿eatri/tirf °f *he report. Indicate whether
anee Wift! 4 Í8 inc,u<JeA Marking is to be in accord¬
ance with appropriate security regulations.

r2ectlveR?20n:inA^T."lle í°"n8rad‘n8 specified In DoD Di-
n ^ ^Artiied Forces Industrial Manual. Enter

marfcinöf îftmbïr' Al8°' applicable, show that optional
markings have been used for Group 3 and Group 4 as author-

*^°RT TITLE: Enter the complete report title in all
Titles in all cases should be unclassified,

tlon sho^rif1 tl}le be selected without classifica*
mmlrfia? I cla*sifitcatlon ln «11 capitals in parenthesis immediately following the title.

reDo^Pif * IPiTtIVf NOTES: lf appropriate, enter the type of
Gívr ViJ!’fñMl?t nj îrogre®*» summary, annual, or final,
covered* IVe datea when a •Pacific reporting period is

■?; ,iy,lH0R(St): Entcr the n«nie(9) of author<a) as shown on
If mrtî#h» rep°rt* lfl8t narne» first name, middle initial.
the ¿rin/fñ»í ^fQní and bt_ranch o£ service* The name of the principal author is an absolute minimum requirement.

5* R|EPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication. PP

1ÎqJ?HL NIMBER OF PAGES: The total page count
■hould follow normal pagination procedures, i.e., enter the
number of pages containing information.

T, REFERENCES: Ent« the total numb« of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate enter

íh« r'opórt“«« written,0^ °r grant Under 'vh'ioh

PROJECT NÜMÉER: Enter tne .ppropriate
•uterof.otePn^ent lde"tiflcation- 8UC*’ aa PtoJ«^ number, subproject number, system numbers, task number, etc.

9e. ORIGINATOR'S REPORT NUMBER(S): Enter the offl-

aid CMt’roIUd’hr.h1' "¡B docunl«nt will be Identified
bï u^q"e Ji thU rep'o" * * *C“Vlty- Thl' nUmber mu»'

Rf,PORT NUMBERfS): If the report ha. b.en
îïy th? rTp0rt numbef8 (*ithor by thé originator

or by tha sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim*
nations on further dissemination of the report, other than those

súchel bV 8ecurity «^«Ification. using standard statements

(1)

(2)

(3)

(4)

(5)

“Qualified requester® may obtain copies of this
report from DDC.1*

“Foreign announcement and dissemination of this
report by DDC is not authorized. ”

-U. S‘ Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

MU. S. military agencies may obtain copies of this
r_?ï_(îft_dlrectly.from .DDC °th®r qualified users
shall request through

¿l8^lbution °f thl® report is controlled,
ified DDC users shall request through

Qual-

If the report has been furnished to the Office of Technical
fDe?ûrt,?ent °f Commerce, for sale to the public, indi

cate this fact and enter the price, if known.

IL SUPPLEMENTARY NOTES: Uae for additional explana*
tory notes. r

Í.2; H^0^90*!^0 M,ILITARY ACTIVITY: Enter the neme of
îÏS 7^8limental pr^octJ°/flce or laboratory sponsoring (pay¬
ing lor) the research and development Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere In the body of the technical re*
port. If additional space is required, a continuation sheet
shall be attached.

It is highly desirable that the abstract of classified re¬
ports be unclassified. Each paragraph of the abstract shall
end with an indication of the military security classification
of the information In the paragraph, represented óa (TS), (S),
(C), or (U),

There is no limitation on the length of the abstract. How¬
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Iden-
fiers, such as equipment model designation, trade name, mili¬
tary project code name, geographic location, may be used as
key words but will be followed by an indication of technical
context. The assignment of links, rules, and weights Is
options!.

UNCLASSIFIED
security Classification

