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ABSTRACT 

The objective of this report is to develop a formal language to describe 

hardware and software computing systems. The language is to provide a 

linguistic basis to consider machine-aided solutions of a variety of design 

problems; i.e., problems concerning design documentation, data retrieval 

systems, system simulation, diagnosis, analysis and synthesis. 

This report discusses in some detail the considerations that went into 

the design of the computer description language, called CDL1; it points out 

the need for developing such a language and briefly discusses the kinds of 

applications such a language may have. 

The report points out the various kinds of system descriptions one may 

encounter in a design process and relates them to the language features 

necessary to express them; the language itself is described informally. 

Examples are presented to illustrate the use of the language, the concepts 

associated with descriptions of systems at various stages of design, and 

the consequent hierarchical structure such descriptions acquire. 
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INTRODUCTION 

CDLl (Computer Description Language No. 1) is a formai language 

for describing computing systems in various stages of design. Such com¬ 

puting systems could be hardware or software systems, or combinations 

thereof. At the beginning of a system design one may describe in CDLl Its 

functional specifications; when design is complete one may describe its 

structural and operational characteristics in terms of its logical nets, 

controls, and sequencing. Between these two extremes, during the course of 

design, there may exist a variety of descriptions of parts of a system in 

CDLl, specifying to various degrees of detail their functional, structural, 

and operational characteristics. 

As a formal language to describe and talk about systems of this 

kind at various levels of design, CDLl provides a linguistic basis to consider 

machine-aided solutions of a variety of system design problems: problems 

concerning design documentation and their attendant data retrieval schemes, and 

system simulation at different stages of design, system analysis and synthesis. 

In fact, we plan to use CDLi as a basic description language in a class of 

interactive Design Aid Systems (DAS). At present we visualize DAS's with 

the following capabilities: They should have facilities to check descriptions 

in CDLl for validity and file them appropriately; retrieve stored data 

as necessary; provide editing and updating facilities for documenting 

design changes and system modifications; interpret a body of description for 

simulation, design analysis or synthesis; accept commands from users to 

perform desired design tasks; gather abstracts of a body of description in 
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manners specified a priori- build a design library of systems used earlier; 

allow several designers to access and use its files simultaneously; and 

finally even tutor users on the proper means of using the design systems. 

In this environment we wish to automate as many of the design tasks as 

possible. 

To create such DAS's a formal, system description language is 

essential. The language should not only he capable of describing a system 

at various stages of design, but also provide implicitly a filing scheme 

for the descriptive data. We believe CDL1 has the necessary expressive 

power and logical structure to build design aid superstructures of the 

above kinds. 

Presently we do not know how one may go about specifying in detail 

DAS^ of the size and complexity suggested above and estimating the computa¬ 

tional facilities they should have. Systems like these should grow with 

usagej they cannot be specified a priori. Our first task in this endeavor 

has been the specification of rn udeauate description language. In its 

present form CDL1 may already be used as the basis for developing a first 

DAS for design documentation and product specification. Later, in Section VII, 

we shall discuss our plans and the tasks we have set for ourselves in the 

Immediate future* 

Several investigators have attempted to develop description 

languages for hardware and software systems description [2-6, 8, 10-13], 

In my opinion, none of these have adequately considered all the design 

requirements. We hope the reason for this conclusion will become clear in 

this report. 



The general structure of CDLl is described in chis report, with 

examples illustrating its use. We begin in Section II with a discussion of 

what we wish to describe, introducing the principal concepts in the organ¬ 

ization of the language. In Section III we have attempted to justify the 

need for a new language like CDLl, by contrasting it with existing programming 

and description language. Sections II and III together also present in¬ 

directly the considerations that have led us to create in CDLl the features 

it has. The features themselves are discussed in Section IV. Sections V 

and VI present a rather detailed discussion of two examples, *The 70/15 Core 

Memory System', and 'A Parallel Processing Procedure', respectively. Though 

the examples get burdened with details at times, they are illustrative of 

the mass of data that may be systematically described, filed, and later 

referred to in other parts of the description. The report concludes with a 

discussion of our future plans. 

In the forthcoming report (A Formal Definition of CDLl) under 

this contract, the language will be described formally. 
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II- WHAT WE WISH TO DESCRIBE 

Computing machines are command-obeying machines . The basic 

dichotomy of a computing system into hardware and software arises directly 

because of this. It is, therefore, appropriate to describe computing 

machines in terms of their commands, what the commands mean,and how they 

are implemented. Indeed, this is just the way they are described in existing 

machine manuals. 

In CDU we address ourselves to the problem of describing them 
•ft 

formally in this manner, from three points of view; functional, structural , 

an^ I - In doing so we shall find it convenient to recognize 

the following four levels of design: 

(1) specifications, 

(2) data-flow sequences, 

(3) data & control flow sequences, and 

and (4) logical nets. 

Let me discuss these concepts in greater detail and illustrate 

them through a simple example. 

A- The Three Kinds of lescr intions 

The workings of a computer involve movements of data from one 

place to another within the machine, and data modifications performed by 

logical nets. Such movements and modifications are always under the control 

of the commands to the machine. Within a machine, data are represented in 

terms of signal level configurations (states) that parts of the machine may 

assume. So also, the controls initiating data movements and modifications 

By a formal descriptionf we mean one that is machine-interpretable 



are represented in terms of signal levels and pulses that its control lines 

may carry, A description of a machine in terras of its parts, the signals 

they carry and the actions they initiate is referred to in CDL1 as the 

operational description of the machine, A designer may view such a 

description as a detailed specification of the implementation of a set of 

commands to a machine, in a given hardware complement. 

An operational description is usually the result of a design 

process which had its beginnings in an understanding of what a command is 

to do, and what the available hardware facilities are. The function of a 

command may be described as an algorithm in an algorithmic language, and 

the hardware facilities may be described in terras of the component items, 

their input, output and control lines, their interconnections, and finally, 

their own functional and/or operational characteristics. 

We shall call the description of the function of a command or a 

hardware item as an algorithm, its functional description, A functional 

description could be in the form of a table of input/output relationships, 

or it could be a function already defined in the algorithmic language used, 

or it could be a program in the language. It could be completely 

independent of the details of implementation of the hardware item or the 

command. 

The description of a hardware item in terms of its input, output 

and control lines, and a hardware system in terms of the interconnection 

structure of its components, we shall call a structural description. 

The examples in Section II-B and Section IV will illustrate the 

differences of the above three kinds of descriptions. Before considering 

the example, let me point out the essential qualitative differences existing 



among the three kinds of descriptions; these differences will in turn 

manifest themselves in the syntax of statements used to describe them. 

The distinction between a structure specification and the other 

two kinds of descriptions should be obvious. Let us direct our attention 

to the differences between an operational and a functional description, 

which are more subtle. 

The execution of a program (an algorithm) will usually imply the 

existence of a control mechanism, a scheduler, to read the statements in 

the program in the proper order and to activate them at the right times. One 

may imagine a pointer (or pointers) tr versing a program, selecting the 

commands to be executed at different times; a command (statement) will 

become alive only when it is pointed to, otherwise it will remain dormant. 

We shall call such statements in a language, the dormant statements. 

The rules regulating the operation of the scheduler may either be implicit 

in the 'sequential' or 'data-availability' structure of a program, or else 

may be given explicitly through 'transfer control' statements in the program 

itself. We shall use the phrase 'functional description1 to denote 

exclusively a description containing dormant statements. A program so 

described obtains its full meaning only in the context of its scheduler. 

On the other hand,an operational description should be. totally 

self-contained. It should be in terms of the signals, signal lines, gates, 

etc., within a raachine^all of which should have been explicitly defined. No 

part of a machine sequencing of its actions may be left unspecified; they 

should all be explicitly indicated in terms of the controls that initiate 

them. Every statement in an operational description should be self-activating 

on the basis of its event-control signals, which themselves should be part 



of the description. We shall call such self-activating statements, (like 

the 'ON'-statement in PL1 [15]) autonomous statements. 

The autonomous statements are always alive, just as a hardware 

item within a system might be. An operational description of a system will 

consist of only autonomous statements; it may actually resemble the internal 

operation of the system itself. The meaning of such a description will 

depend only on the structure of the system being described; whereas data 

in a functional description might assume a structure as a result of con¬ 

ventions in the language, in an operational description data might assume 

only the structure imposed on it by the hardware. Thus, an operational 

description cannot ever be independent of the details of implementation of 

a hardware or a comnand. 

B‘ The Four Levels of Design: An ExamM* 

Suppose ADD(A,B,C) is a command to a machine yet to be designed. 

One might describe functionally what one wants of ADD(A,B,C) in some 

language, which might look as follows: 

Dl: "THERE EXISTS A SCALAR ARRAY OF SIZE N, CALLED MEM. FOR 

0 < (A,B,C) =< N, ADD(A,B,C) MEANS; PUT IN LOCATION C OF MEM THE SUM OF 

CONTENTS OF LOCATIONS A AND B OF MEM." 

If the description language had conventions for array declarations, 

for accessing elements of an array through indexing and for interpreting 

'+', then the description might look like: 

D2: "DECLARE MEM, SCALAR ARRAY, SIZE N. IF 0 < (A,B,C) =< N THEN 

ADD(A,B,C) MEANS MEM[C] - MEM[A] + MEM[B]." 

7 
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Both D1 and D2 are meaningful only if there are conventions in the language 

to interpret 'scalars', 'sum1, etc.; the semantics of the language 

should be well defined in some sense. D1 and D2 may not yet describe ADD(A,B,C) 

truly, since they do not specify scalar representation and the add 

algorithm used in the object machine. As given above 'scalar', 'sum', 

etc., have their meanings given to them in the language, and not 

the meanings they are to have in the object system being designed. One 

may now declare the desired scalar representation in some form, define 

the add algorithm to be used, and invoke these while interpreting D1 or D2. 

Thus, one may obtain a more precise functional description of ADD(A,B,C)• 

A collection of such functional descriptions, one for each command 

of a machine, might form part of a specification for a new machine. To 

complete the specification one may have to say how the instructions are 

cycled within the machine, what hardware structure (block-diagram) the 

machine may have, and speed, cost and myriads of other restrictions it 

may have to satisfy. 

Suppose that the command, ADD(A,B,C), is to be implemented in 

the system whose block diagram is shown in Fig. 1. We may not yet know 

the details of I/O gating of the registers and memory in the block diagram. 

Still, the very presentation of the structure in Fig. 1 enables one to go to 

the next level of specification of ADD(A,B,C), the data-flow sequence level. 

Let us assume that the block diagram was declared in some form 

to the description files, as part of a structural description of the machine, 

and also it was indicated that 'SUM' or is to be done using the adder 

network shown. Further, suppose that the operation of the adder network 

was specified in terms of the I/O relationship it maintains; this description 
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FIG, 1 Block Diagram of a Hypothetical Machine 

could itself be functional, or operational in terms of component parto of 

the network. Assune also that the scalar representation was specified 

in terms of the bit patterns within MEM. 

One may now obtain the data-flow description D3 below, by following 

the only paths available from memory to adder network and back. In fact, 

one can visualize an automatic synthesis algorithm which could produce D3 

from D2 and all the auxiliary declarations made on the side. 

D3: Data-flow sequence for ADD(A,B,C) 

(1) MR «- MEM[A], 

(2) ADR1-MR, 

(3) MR-MEM[B], 

(4) ADR2 - MR, 

(5) TRIGGER adder control 

(6) MR - ACC, and 

(7) MEM[C] - MR. 

9 
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To interpret D3 formally one should have some conventions concerning data 

movement^ adder over-flow,and interpretation of registers and MEM as data 

items* These conventions could be as follows: 

1* Data transfer between registers is indicated by and is admis¬ 

sible only if the registers are of the same dimension. We may assume that 

the dimensions of the registers have been declared elsewhere. 

2. The over-flow bit might have been stored in a flip-flop within 

the adder/network and this could have been described in the adder network 

operation. 

3. TRIGGER is to be interpreted as a call to the description of the 

operation triggered by the control signal. 

4. Registers are interpreted as vectors and memory as an array of 

vectors. The vectors, in this case, consist of O’s and l*s only. 

Description D3 is still functional, but it speaks more about how 

the ADD comnand is to be implemented in the given structure. In D3 we 

do not talk about data movements in terras of I/O gatings of the registers 

themselves, but in terms of what the data names mean within the language. 

Also, we have not specified timing, and how MEM as a hardware array accesses 

its elements. The only place where we could introduce an operational 

description in D3 is in the adder network call. If the adder had been 

described operationally then one could invoke it in response to 'TRIGGER 

adder control'. Thus D3 could be partly functional and partly operational 

in nature. Let me now take this one step further to illustrate how memory 

operation could be introduced in the description. We need some more decla¬ 

rations. 

10 
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Assume that the number of input and output lines of MEM have been 

fixed, and MEM has two control lines, as shown in Pig. 1. tfe shall first 

describe what happens in response to signals on these control lines. We 

shall assume that control lines assume values 1 or 0 (TRUE or FALSE). The 

description of memory operation might look as follows: 

D4. Functional Description of Memory 

1. WHEN READ = 1 DO 

MR *- MEM [The binary number corresponding to the contents 
of MAR], 

READ - 0. 

2. WHEN WRITE = 1 DO 

MEM [Tlie binary number corresponding to the contents of 
MAR] ♦- MR, 

WRITE - 0. 

3* and WRITE shall never be simultaneously equal to 1. 

Now assume that the instruction format (the way instruction appears within 

a machine) of ADD(A,B,C) was specified elsewhere as the contents of the 

instruction register, IR, as shown in Fig. 1, „here the binary representations 

of numbers A,B, and C are stored in registers AR, BR and OR, respectively. 

One may now rewrite D3 as follows: 

D5 • Data £t Control Flow Sequence 

1. MAR - AR, 

2. TRIGGER read, 

3 . ADR1 «-MR, MAR - BR, 

4. TRIGGER read, 

5. ADR2 *- MR, 

11 
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6. TRIGGER adder control, 

7. MAR - CR, HR - ACC, and 

8. TRIGGER write. 

The trigger conmands in D5 constitute a partial control flow sequence, 

which may be interpreted as calls to appropriate descriptions declared 

elsewhere. Depending upon the nature of descriptions so-called D5 may be 

partly functional and partly operational. 

To obtain a completely operational description of ADD(A,B,C) 

one should declare I/O gatings of the registers (by associating controls 

with them), and specify timing and control signals (pulses and levels)f 

Also, the actions initiated by the hardware items in response to control 

commands (like in D4) should be described. One may then give a sequence 

of control lines to be triggered, with the necessary timing pulses. Such 

a control sequence may then be interpreted in a variety of ways. One may 

either invoke a totally operational description of actions initiated by 

the controls or a totally functional description, or any combination thereof, 

For the sake of simplicity and brevity of this discussion we shall not 

presently enter into the details of logical net designs appropriate for 

the current example. The reader may imagine how it might be done. 

A design process may thus be captured: At each level of design 

one may obtain a formal description, which is not only a true documentation 

of items designed, but also is capable of being interpreted by a machine 

for simulation, design analysis, or automatic synthesis. Also, one may 

design a complex system in terras of its parts and plug in descriptions of 

parts so designed appropriately in a procedure describing the operation of 

the total system. A hierarchical structure of descriptions is so obtained. 

<. 
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Design changes may now be viewed as moving up and down this hierarchy. 

Also, at the end of a design one may compare the operation of a system 

with its functional specification through simulation, and thus develop 

product assurance and system diagnosis techniques. Also, the functional 

specification of a system may be used to debug software written for the 

system. The variety of design tasks for which automatic design aids could 

be developed in this environment is quite numerous. Let us now take a 

brief look at what was involved in the creation of the above sequence of 

descriptions, to understand the kinds of facilities a description language 

should have. 

c* Discussion of the Example 

In the above example we were able to capture the design process 

by having a main scheme of what was to be designed [D2 of ADD(A,B,C) ], 

and progressively modifying this scheme in response to declarations of 

other items created in the design process. Each level of transition in 

design required new objects to be declared. Since the items so declared 

could themselves be cast into a similar description methodology we get a 

hierarchical structure. During the transition from D2 to D5 we had 

occasion to assume declarations of following kinds of items: 

!. -Data-structures: Like registers, memory array, and scalars. 

2. Definition of operators: Like ' + '. 

3* Formats: Like number representation format and the instruction 

format. 

4‘ Hardware items & structure: Like registers, memory and the block 

diagram. 

13 
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5» Procedures: Like the functional and/or operational descriptions 

of the hardware items. 

6. Signals: We did not discuss these in detail in the example. 

One may also need declarations of 

7. Codes of symbols and strings. 

8* Functions on software or hardware items. 

9. Tables and tabular functions: To define these one may have to 

specify how tables are organized, 

accessed and kept updated, and, also, 

what functions are defined on them. 

10. Complex data structures like lists, trees, etc. 

The last three will be particularly useful in software descriptions, 

as we shall later see. In a system design process the number of declarations 

of the above kind are likely to be very large. Also, they are likely to 

be made by different people, at different stages of a design process. There 

should be a scheme to make these declarations in some standard format and 

file them appropriately, so that they may be accessed and used by all the 

designers. To do so it is very desirable to have a uniform set of conventions 

D« Description of Software Systems 

The principal constituents of software systems are aggregates 

of data and algorithms operating on the data. Every data aggregate is 

associated with a storage format and an addressing structure, which determine 

the way it is accessed, treated and kept updated. In the description of a 

software system we shall choose to separate the data definitions from the 

specification of the algorithms [ 1 ]. Such a separation might not only 

14 
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make the relevant algorithms easy to understand, but also provide a facility 

to experiment with alternate data organization schemes suitable for a 

given algorithmic task. Data accessing, updating and creation procedures 

may be declared separately as subroutines, or functions, or macros and 

called into a procedure as and when necessary, through appropriate naming 

schemes. The facilities to invoke the macros, functicns and subroutines 

and link them in various ways will then give such a body of description, a 

hierarchical structure. With this in mind in CDL1 we have provided some 

primitive facilities for data-structure definitions. We shall have more to 

say about this in another report. 

E. A Sunmary 

This then is what we wish to describe: We wish to describe the 

design process in terms of descriptions of the items designed at various 

stages of design (the items could be software or hardware systems); at each 

-l.ey.el of description we wish the documentation to be complete, in the senso 

that, the descriptions themselves could be directly simulated bv a machijie 

M, necessary. We wish to talk about a large system in terms of its parts, 

design the parts separately and link them together as necessary, taking 

care of the boundary conditions. We want to describe procedures as well as 

hardware structures. We wish to describe the parallelism within an algorithm 

or a hardware item as it may actually appear; and to talk about data as 

symbolic items or as machine states, and to describe the relation between 

the two. We wish to be able to specify design alternatives and design 

changes and to assign hardware facilities to various tasks in a procedure, 

either dynamically or statically. Finally, we wish to organize all such 

descriptions in a manner which would be easily accessible and modifiable. 

15 
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III. THE NEED FOR A NEW LANGUAGE 

I shall present the case for a new language from three points of 

1. Objects spoken about, statements and operations. 

2. Program or description structure. 

3. Uses. 

Many of the language features discussed below are available individually 

or in groups in one or the other of the existing languages. But no existing 

language has them all together. The need for three kinds of descriptions, 

the implied documentation facility and the hierarchical structure of descrip¬ 

tions make it desirable to develop a standard set of uniform conventions 

for the entire spectrum of design applications that the language may have. 

Many design problems may then be studied with reference to a single common 

base. This is the principal reason for developing a new language. 

Even if one chose to modify an existing language to suit the new 

requirements the extent of modification and addition will be so great that 

one would essentially arrive at a new language; the existing processors for 

the parent language could not be profitably used. Also, the kinds of uses 

a body of design description might be put to are far different from the 

uses one gets from a program written in a conventional language. Processors 

for design documentation, data retrieval, design analysis and synthesis 

will have to be created from the start; so also, processors for simulation 

will have to be created anew. The existing simulation languages do not have 

a hierarchical structure, and facilities for different kinds of descriptions 

that may arise in a design environment. Thus, they are not suitable to 

16 



describe systems in the process of design. The description languages 

proposed so far [2-5, 8, 13] also suffer from the same kind of inadequacy 

The discussion below will make clear the essential differences. 

A. Objects. Spoken About. Statements and Operations 

In a conventional language the objects spoken about are variables 

and constants, which are usually of fixed types, a characteristic of the 

language itself. Also, one speaks of operations on these objects. Again, 

the kinds of operations and their interpretation are fixed characteristics 

of the language. One may have facilities to create complex data structures 

and specify schemes for addressing them. 

An algorithm in a conventional language is always a finished 

product, not one in the process of design. All details of data and sequencing 

are specified either explicitly or implicitly through the language conven¬ 

tions. Usually one has only limited facilities or none at all for specifying 

paralie1 or autonomous processes. 

In a description language the variety of objects spoken about 

could be much larger. An object could be a constant, a variable, or a data 

structure, or it could be a format, a hardware item, its structure, an 

algorithm, or a definition of an operation. Standard formats for declaring 

these various kinds of objects are necessary. 

A given operand like scalar may be used at times as a string. 

at times as a vector or at other times in terms of its bit string repre¬ 

sentation inside a machine. To do so one needs a dynamic declarative facility 

indicating how an operand is to be used in a given instance. A large 

variety of operand types is desirable. 
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Also, operands and operators may not always have the same standard 

set of possible interpretations; at times one may have to invoke the inter¬ 

pretation they ought to have in the object system being designed (like 'd-' 

and scalar1 in description D2 in Section II). Operand representations may 

change from one system to another? accordingly, the operator interpretation 

also should be changed. There should be facility to define operands and 

operators. In a software description it is desirable to have a facility 

to declare data structures associated with data types. 

A description in a description language may not be that of a 

finished product« A hierarchical descriptive structure is necessary to 

describe systems only partially designed. In many cases in the initial 

stages of design of a system the precise nature of hardware items, or data 

structures may not be known. A user should have facilities to declare 

partially defined items and later specify them in greater detail. 

A description language should also contain a greater variety of 

of expressions than what the conventional languages usually have. Besides 

arithmetic, boolean, and string expressions, one would also like to have 

reduction, selection,and permutation expressions; these were first pointed 

out by Iverson [ 6 ]• Also, the need for three kinds of descriptions (func¬ 

tional, operational and structural) point out the need for three kinds of 

statements: dormant, autonomous, and connection statements, the last one 

being used to indicate hardware connections. Since machine operations 

take place almost always in parallel there should be facilities to describe 

parallel processes. 

In the description of a task to be executed by a system one might 

need a facility to assign hardware items or algorithms to perform the 
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different subtasks that might arise in the course of executing a task. 

Such assignments could be conditional; the very execution of a subtask could 

be conditional on the satisfaction of some error criteria or hardware avail¬ 

ability criteria. These criteria might not have been known at the time 

the descriptions were written. It will be convenient if one could attach 

such conditions to subtaèks, or to variables and hardware items entering 

a task, as and when they become evident, without having to modify the 

already existing descriptions. A designer may profitably use such a facility 

to keep a running commentary on error checks tha:t he might introduce 

within a process. 

None of the existing languages can provide all these facilities 

without undergoing sane modifications, and additions. The description 

language proposed by Iverson [ 6 ] is very skeletal and elementary: It is 

more a notational schema than a language; it does not have declarations, or 

facilities for naming objects, or facilities for function, macro and subroutine 

calls. The design languages proposed by Gorman, Chu, Dennis and others 

[ 5, 3, 2, 8 ] are in the nature of experimental systems, which did not 

consider all aspects of design requirements. They have made a valuable 

contribution to our understanding of description languages. 

B. Program Structure 

Programs in languages like ALGOL and PL1 may have a block and/or 

group structure, which is used to control dynamically the creation and elimin¬ 

ation of variables, locally within a program. Also, a block introduces an 

additional level of labelling of statements; two statements in different 

blocks may have the same label, and may also use the same variable name to 

denote different local variables. This facility is useful for dynamic 
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storage allocation and efficient use of memory space. Block and group 

structures of a program are part of a programming language, in the sense 

that they affect the way the variables are to be interpreted within a program, 

In addition to these, in a time-sharing system programs may 

also have a file structure in terms of segments and pages. These are used 

to address programs within a file in convenient unit sizes, for execution 

or editing. Otherwise, they do not have any relevance within a program. 

A description file should be easily accessible and modifiable. 

Some form of classification of a large body of description in terms of 

smaller parts of it is very desirable. Such classification should not only 

provide a filing scheme, just as segments and pages do, but if it is to be 

useful, it should also reflect naturally the subdivisions of a system into 

its parts. Thus, file classification schemes should be part of a description 

language; the interpretation given to a statement in the language might 

even depend on the classification of the body of data in which it appears. 

In CDL1 such a classification is obtained by the use of what are 

called module-types. A module is a body of data with a title. The title 

consists of two parts: a module-name'and a module-type. Each module is, 

in a sense, a self-contained entity, and usually pertains to a description 

of a particular object or kind of object within a system. In addition to 

this modular structure a procedure (or a description) may also have a block 

and a group structure. 

G. Uses 

A program written in a programming language has only one purpose 

It is to be executed by a machine. A body of description might serve 

This could be vacuous. 
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several purposes in a design environment. It may be just a documentation 

device for which simple retrieval facilities may be built; or one may perform 

some analysis of a body of description and answer some involved questions 

that a designer may ask; or it may be executed in the usual sense of a pro¬ 

gram to cause a simulation; or finally, it may be used as a specification 

to go to the next level of design which may itself be performed automatically. 

The kinds of processors that one needs for a design implementation of a 

description language are quite different from a compiler. 

We leave it to the reader to judge for himself whether the dif¬ 

ferences pointed out above justify the development of a new language. This 

author is of the opinion that only through the creation of a new language 

and associated operating facilities may one introduce a uniform and consistent 

set of conventions adequate for the entire range of discourse. 
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IV. FEATURES OF CDL1 

A. Operands 

CDL1 has a variety of operands. They fall into two basic categories: 

software and hardware operands . Within each category the operands are 

classified according to their data types and attributes. The type of an 

operand governs the way it is stored, accessed and used in expressions; within 

a given data type, the attributes of an operand may introduce variations 

on these. 

The software data types are: 

1. Scalar (S) 

2« Vector (V) 

3- Matrix (M) 

4. Array (A) 

5. STring (ST) 

6. Bit STring (BST) 

7. STring Vector (STV) 

8. STring Array (STA) 

9. Bit STring Vector (BSTV) 

10. Bit STring Array (BSTA) 

11. Index Vector (IV) 

12. Index Vector Array (IVA) 

13. Pulse (P) 

A string vector is a vector whose elements are all strings. So 

also a BSTV will have bit strings as its elements. A BST is always reckoned 

in terms of its bits, where as a ST is reckoned in terms of its characters 

(which may appear in their encoded form)• 

The hardware types are basically of two kinds: (1) One-of-a-kind 

type or (2) an array-of-a-kind type. In the latter case the addressing 

mechanism for accessing one or more items of an array should be part of the 

hardware. All items in a hardware array should be identical to each other, 

with some minor exceptions. The hardware data types recognized in CDL1 are: 
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1. Flip-Flop (FF) 

2. Register (R) 

3. Gate (G) 

4« Switch (SW) 

5. Network (NW) 

6* Bus (B) 

7. System (SYS) 

8. Delay Line (DL) 

and 9. I/O Unit (I/OU) 

These may occur either as one-of-a-kind items, or else as part of an array 

of identical units. In the case of arrays the suffix 'A' is attached to 

the abbreviations given above, denoting unit types. Elements of an array 

may be addressed through suitable indexing conventions which themselves may 

be declared. 

Each operand when first declared should contain a flag denoting 

its data type. The abbreviations indicated above are used as flags, which 

are affixed as suffixes to the respective operand names, with a blank in 

between, like ADDEND S (a Scalar), ACC R (Register), MEMORY RA (Register 

Array), etc. These flags may be omitted in later use, unless one wishes to 

indicate explicitly a change in the operand type, in a specific instance 

of reference to it. If so a new flag may be inserted. The operand will 

then be given the interpretation corresponding to its new type, if possible, 

for that particular occurrence only. Thus, one obtains a dynamic declarative 

facility. 

Each hardware operand is given a software equivalent, which will 

govern its interpretation in expressions. Thus, a Register will be inter¬ 

preted as a Vector in expressions, a Flip-flop as a Scalar, the inputs of 

a network as a Vector or an Array, as the case may be, etc. The data-type 

of a hardware operand may not be changed ever. However, its software 

equivalent may undergo type changes. Thus, one may treat the contents of 
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a register as a vector, or a bit string, or a string, or even a scalar. 

The admissible software type changes are restricted to changes between 

any two among the following data-types: Scalar, Vector, String and Bit 

String. 

DATATYPE has the status of a retrieval function in CDL1. One 

may ask for the DATATYPE of an operand, through the functional notation: 

DATATYPE (Operand name) f • Every data type may have attribute "types associated 

with it. Thus, a Scalar may have four attribute-types: BASE, TYPE, MODE, 

PRECISION, where BASE could be any integer, TYPE could be FIXED or FLOAT, 

MODE could be REAL or IMAG, and PRECISION, a pair of integers. One may ask 

for 'ATTRIBUTES (data type)' to get the attribute-types associated with a 

given data type. One may also ask for 'ATTRIBUTES (operand name)' to get 

the attributes associated with a given operand. Thus, for JIM S_, ATTRIBUTES 

(JIM) could be '10, FIXED, REAL, (8,2)', by a previous declaration. 

Every attribute-type is also the name of a retrieval function in 

CDL1. Thus, for JIM above, MODE (JIM) is REAL. A user may define new 

attribute-types for a data type and declare them while declaring the data. 

Operations on data, and their storage and accessing mechanisms may be depen¬ 

dent on their attributes. Thus, the operation has different interpreta¬ 

tions for a scalar, depending upon, whether the scalar is of type FIXED or 

FLOAT. 

In CDL1 the standard data types have standard attribute-types 

associated with them. Those of a scalar were discussed above. Within the 

language system there are conventions, default conditions (like in PL1), 

which take care of undeclared data attributes. Some of the standard 

attribute-types associated with the CDL1 data types are listed below. 



!• Software Operands 

1. Data types: V, STV, BSTV, IV* 

Attribute-type: DIMN. This stands for the 'dimension1 of the vectors. 

2. Data types: A, STA, ESTA, IVA, IV 

Attribute-type: SIZE* The size of an array is a vector whose 1 

element is the size of the ith dimension of the array. The size of 

an IV is also a vector, whose ith element is the DIM of the i***1 

element of the IV* (An index vector is a vector of vectors.) 

3. Data types: ST, BST 

At tribute-typei LENGTH. 

4. Data type: P (Puls»). 

Attribute-types: WIDTH, AMP, RISE, FALL, DIRECTION. 

'AMP1 stands for amplitude. The direction of a pulse is positive (if 

it goes from 0 to 1) or negative (1 to 0). All pulses are treated as 

logical pulses. One may invoke the amplitude of a pulse in an expression 

only by calling for AMP(pulse name). 

2. Hardware Operands 

The standard attribute-types are: 

1. ISIZE : Input size 

2. OSIZE : Output size 

3. SSIZE : Storage size 

4. CSIZE ; Control size 

Inputs, outputs, controls, and storage may be structured as arrays of arbi¬ 

trary dimensions for indexing purposes. Thus, a hardware item with 25 

inputs may have them indexed linearly from 1 to 25 or as a 5x5 array. 
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5. SIZE 

6. STATES 

7. ISTATES 

OSTATES 

CSTATES 

8. DEIAY 

This applies only to hardware arrays. An 

array could have an arbitrary number of 

dimensions . 

This refers to the number of states a storage 
item can remain in. If unspecified it is 

assumed to be 2. 

These refer to the number of states the 1,0 

and C lines may assume. If unspecified they 
are assumed to be 2. 

This applies to buses, delay lines, gates, 

switches, etc. 

A user may define new attribute-types for any of the above data 

types, and declare modes of interpretation on the basis of such attributes. 

In the next section we shall see the kinds of facilities available in CDL1 

for defining data types and other objects. A user should use these facilities 

only if he wishes to create new data types or other objects which have not 

been already defined in the language. One may skip the next section in the 

first reading, and go directly to Section IV-C to get a quick look at the 

language. 

B. Definitions 

Six kinds of definitions may be made in CDL1: 

(1) Data definition . 

(2) Hardware definition. 

(3) Table and tabular function definition. 

(4) Function definition . 

(5) Macro definition. 

(6) Command definition. 

26 



*il¿ &i!IIÍÍaSUÍ¡tt¿fiWi.)&í.i<^ 

; |l 1 
? i, : t 'i i ■! ! i i ; í; ! ! :¡i ' ¡’!|:i:¡!!!|iü 

I » . • • ' : ; I ! i i I i ' 111 ! Ih '1 1 ! ■ i ; . i ¡i' • ■ i !¡ ! i 
!j . t : ; ‘j!' ' ! 

;¡í H' 
i ü . 1 '' ¡1; • H I i 

■ i 'i •• 'i ! ! 

In each of these one may either define an individual item with a given 

name, or a class of items characterized by a type, and possibly, also 

attributes* Individual members of such a class may later be named and 

declared to a description file. For example, one may define a class of 

data characterized by the type name, TREE, specify its data structure and 

also define operations on it. Later in a description one may declare 

trees with given names,’and use them in manners specified in the TREE 

definition. Similarly, one may define a new hardware-type called, say CPU 

(Central Processing Unit), and specify its function, structure, and operation. 

In a system description, one may declare as many of these as necessary. 

naming them each separately, or naming them as members of an array of CPU's. 

Let me discuss.in some detail the convention for data definition through 

examples, since it is of some interest. 

1. Data Definition 

In order to define a software data-type or a datun one should 

declare one or more of the following items: 

(i) Attribute definition, (v) Patterns, 

(ii) Declaration format, (vi) Print format. 

(iii) Declarations, (vii) Interpretation, and 

(iv) Data structure, (viii) T^rpe changes. 

Let me explain what these items are. 

(O Attribute Definition This may be necessary in case one 
* 

wishes to define new attributes to a standard data type or new data types 

with attributes. The attribute-types one wishes to use are enumerated 

and defined in this section. Thus, for a scalar its attribute definition 

might look as follows: 
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'1. BASE ::= INTEGER: 

2. TYPE ::= 'FIXED' | 'FLOAT'j 

3. MODE ::= 'REAL' | 'IMAG'j 

4. PRECISION ::= (INTEGER. INTEGER).1. 

where the items on the left of 'j:®1 are the attribute-types, and those on 

the right, their possible values. The value of an attribute-type in CDL1 

could be a string constant (like 'FLOAT', 'REAL', etc.) or a pattern (like 

INTEGER), which is already defined in the language, or could be any data 

of a specified data-type. 

(ii) Declaration Format This format is to be used to declare 

token members of a given data type to a description file. A declaration 

format should be specified only when one is defining a new data type or a 

standard data type with new attributes. For a scalar, the declaration 

format might look like: 

NAME S[BASE,TYPE, MODE,PRECISION]1 

indicating the order in which the attributes are to be declared. 'NAME1 

here refers to a pattern, already defined in CDL1, as a 1 letter' followed 

by an arbitrary number of letters and/or digits. 

(iii) Declaration This may be used to declare directly to a 

description file a datun that is being defined. The datum should have a 

distinguished name (different from other names already declared to the 

files). It may or may not have a data type associated with it. Depending 

upon the data type and attribut i associated with it the following cases 

arise. 

Case a A standard data type with no distinguishing attributes: 



In this case the datim will obtain the standard interpretation 

in all contexts of its use in CDL1. 

Case b A standard data type with a distinguishing attribute: 

In this case, on the basis of the distinguishing attribute, one 

may define a new data structure to be used exclusively for the datum, only. 

If no new data structure is defined then the datum will have the structure 

associated with its standard data type. 

So also one may define new interpretations for some or all of 

the operators operating on the datum, or functions using the datum.' For 

operators and functions not so defined the interpretation will depend only 

on the data type of the datum. 

A typical use of this kind of definition could be the following. 

It is desired to create a scalar array, with the usual indexing facility, 

and the usual operations within expressions. However, since most of the 

array elements are going to be zeros, the data structure for the array is 

to be different; only the non-zero elements of the array are to be stored. 

A new data structure for such an array may be defined on the basis of a 

distinguished attribute associated with it. This data structure will deter¬ 

mine the manner in which elements of the array are to be accessed, modified, 

or created. 

C-ase c No data type or a nonstandard data type: 

In this case it is mandatory that a new data structure be defined, 

and also that every possible interpretation of the datum in expressions be 

specified. The datum may be used only in contexts so defined. 

Whenever a datum is defined under Case b , or Case c with a 

nonstandard data type then the data types, and the attributes will them- 
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selves assume the status of having been defined. That is, one may later 

declare other data having the said data types and attributesj these will 

be given exactly the same interpretation as the originally defined 

Considerations of Cases b and c thus apply also for data type definition 

(lv) Data Structure There are several ways of specifying a 

data structure. In the case of elementary items^ like scalars, it may 

be specified in terras of the storage format of the scalar: The storage 

format of a base 10, FIXED, REAL, PRECISION (ra,n) scalar could be: 

1 {DIGIT -/nH-n,!»^/. DIGITV 

wllere DIGIT is a pattern defined in CDL1, ‘digit */m+n,m+n/- digit* is 

a string expression denoting exactly m+n occurrences of digit, and the 

angular brackets, *(•••)*, called the value brackets, denote the value of 

the string expression as being the desired format, in contrast to the 

expression itself. Each digit is to be stored in terms of its machine 

representation, its code, which itself may have to be declared. 

One may also describe a data structure in terras of algorithms 

for address calculation. For example, the address of the (i,j)th element 

of an array may depend on the address of its (l,l)th element as follows: 

ADDRESS (AREAYtl,J]) = ADDRESS(ARRAY[1,1]) + 100 * (1-1) + 

5 * (J-l). 

where 100 and 5 are the characteristics of a particular array organization. 

To describe more complex data structures consisting of aggregates 

of other data structures, it is desirable to have the following additional 

facilities [14]: Facilities to 
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a) declare the addressing structure in terms of linkages among 

the elements of the data, and 

b) declare functional relations among the various elements in a 

data aggregate: Like NEIGHBORS of a node in a graph, or DESCENDENTS of 

a node in a tree, or the TAIL of a list, etc. 

We shall illustrate these facilities through an example. 

EXAMPLE: Definition of a generalized list: By a generalized list, we mean 

one whose elements could be of arbitrary data types. One of the elements 

of the list could be, say, a scalar, another an array and the third, even 

another list. We shall define first the HEAD of a list and then define 

the notion of the NEXT element in a list. We shall then define an indexing 

convention to refer to elements in a list by their position within the 

list. Also, we shall define the TAIL of a list as another LIST consisting 

of all the NEXT elements in the list. Such a description might appear in 

English as follows: 

D6• 1. The POINTER to a IIST points to either NULL, or the HEAD of a 

KLST which could be of any data type, and either the NEXT of the 

LIST which could also be of any data type, or NULL. 

2. The HEAD of a LIST points to ITSELF. 

3. The NEXT of a ILST points to ITSELF, and to either NULL, or NEXT 

of NEXT, which again could be of any data type, 

4. NEXT of LIST is the same as NEXT of HEAD of LIST. 

Schematically Do implies the pointer structure shown in Fig. 2. 
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LIST NULL or 

Fig. 2 Schematic of List Structure Described in D6 

One may write this formally as follows: 

D7. UST ~ {HEAD¡ANY | {NEXT;ANY.NULL}.NULL}; 

HEAD - ITSELF; 

NEXT - ITSELF | {NEXT:ANY.NULL};. 

Here the chain brackets denote the selection of one of the items enclosed^ 

separated by commas. The words ITSELF and ANY have been used as reserved 

words; >ANYf denotes 'any data type*. One may now describe the indexing 

scheme and functions on a 1ZST as follows: 

D8. Indexing Scheme for a LIST: 

USTtl] » HEAD(UST); 

NEXT (HEAD) = NEXT(LIST); 

FOR 2 =< I «< SIZECLEST) 

UST[I] = NEXT(UST[I-1]);. 

The SIZE(UST) could be the total number of elements in the list. 

D9. Functions on UST 

1. DECLARE 

TAIL(LIST), Data-type LEST; 

TAIL(LEST) = LEST[2 TO SIZE(LIST)]. 
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(v) Patterns For a string operand, with or without attributes, 

one may define a pattern for the values which the operand may have. When 

the operand is later used in a description or a procedure its value should 

always satisfy the pattern defined for it. An example of pattern definition 

occurs in the •Parallel Processing Procedure* in Section V. So we shall 

not discuss it any further here. 

(vi) Print format This is used to declare the way a datum is to 

appear at the input and output. Specifications may have the usual 

kinds of format statements. 

(vii) Interpretation In this section one may define algorithms 

describing the operations performed by operators (standard operator symbols 

used in the language) on the various data types. 

(viii) Type changes In this section one may specify the conventions 

for changing the type of a data type from one to another. 

2. Hardware Definition 

A hardware definition may consist of one or more of the following 

items: 

(i) Attribute definition, (v) Signal characteristics, 

(ii) Declaration format, (vi) Operations, 

(iii) Declarations, (vii) Compatibility, 

(iv) Structure, (viii) Properties. 

Under 'compatibility1 one may declare the hardware types, with or without 

attributes, which should be mutually input/output compatible. All signal 

lines are assumed to have logical values, which could be multi-valued. 

Under 'signal characteristics' one may associate voltages, currents or 

other physical quantities with the logical values of a line. The notion of 
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compatibility will depend on the signal characteristics so defined. Under 

'properties' one may list any property of interest to be associated with an 

item. Each such property must be titled. The value of a property could 

be any string. 

All hardware items will have the standard set of attributes, which 

were enumerated in Section IV-A. One may define additional attributes and 

describe items on the basis of such attributes. Examples of hardware defini¬ 

tions appear in Section IV. 

3. Table and Tabular Function Definition 

One may declare names to the rows and columns of a table and 

specify table accessing and updating algorithms. Also one may specify 

table updating rules, which may depend on the input strings to the document 

files. Every 'row name (col.name)', or 'col.name(row name)' have the status 

of a table look-up function. 

In a procedure one may assign values to the functions, col. name 

(row name) or row name (col. name). If a table look-up function is called 

before it is defined then a 'SKIP' condition will be set on the statement 

in the procedure issuing such a call. One may name such SKIP conditions, 

as part of the restrictions on a statement, as we shall see, and 

later use them in a procedure in various ways. Once it is used its value 

will be reset to zero. 

4• Functions and Macro-Definitions 

The definition of these is rather straightforward, and we shall 

not discuss them any further. 
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5. Command Definition 

In a command definition module one may declare one or more of 

the following items: 

(i) Command format, 

(ii) Functional descriptions at various levels of design. The 

levels are distinguished by labelling: Functional Description 1, 

Functional Description 2, etc. Some of these could be data- 

flow sequences. 

(iii) Operational descriptions at various levels of design. 

In the conmand format one may specify the command name, and its 

pattern within a machine. 

The syntax and format for all these definitions appear in the 

'formal definition of CDL1'. 

C' Operators and Expressions 

Operators are classified as unary, binary and string operators. 

The unary operators are 

MOD, CLG; FLR, +, -, 

where W is logical NOT, -MOD' is modulus, 'GIß' is the ceiling function, 

X =< CLG(x) < x+1, 'FLR' is the floor function x-1 < FLR(x) «< x, and '+' 

and are arithmetic signs. The binary operators are: 

+> ~ **, MOD, A, V, 

(+) ; -i -, =, -i =, =, =<, <; 

where is the divide symbol, is proper subtraction, (+) exclusive-or, 

x MOD y is x modulo y, and is the symbolic identity operator. The 

rest of the symbols have their usual significance. (V = V) has value 
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1 (TRUE), whereas (V s V) has value 0 (FALSE), (x e y), without 

quotes stand for (value of x = value of y) where x and y may themselves 

be string expressions or string names. We may also have the combination 

('x' = y) or (x e ’yf) with the corresponding meanings. '=1 is numerical 

or logical value equality operator, (x a y) always implies value of x œ 

value of y. 'x' «= 'y' has no meaning. 

All binary and unary operators are initially defined on scalars, 

and then extended to vectors, matrices and arrays component-wise. A binary 

operator on nonscalar operands is well defined if and only if the operands 

have the same dimensionality. Thus, 

x[l], x[2], x[3] + y[l], y[2], y[3] = 

x[l] +y[l], x[2] + y[2], x[3] +y[3], and 

x[l], x[2], x[3] + y[l], y[2] is undefined. 

A special case arises when one of the operands is a scalar. Then the scalar 

is distributed throughout the second operand for each element of the non¬ 

scalar. Thus, 

x[l], x[2], x[3] + y[l] = x[l] + y[l], x[2] + y[l], x[3] + y[l]. 

The above conventions apply also to all relational operators, namely =, 

fa, “<, <, >=, >, -n ® and —i=. 's' and f-n =1 will operate component-wise 

in the case of string vectors and string arrays. 

The string operators are 

\\j II*; •••; */m*n/*, 

where || is the string concatenation operator, ||. is the row concatenation 

operator and ||:, the column concatenation operator. 1 ...1 is a string 

generator symbol. (x...x) stands for an arbitrary number of occurrences 

of x, including zero occurrences (the NULL sfring). In general,in 
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(string 1...string 2) string 2 should always be a prefix of string 1, 

String 2 identifies the beginning of the string which is to be repeated^ 

the termination of the string to be repeated being determined by the first 

in If string 2 is not a prefix of string 1, then the ex¬ 

pression has NULL value. 

(x */n»m/* x) denotes at least n and at most m occurrences of x. 

If m < n then It has NULL value. If m or n is vacuous then the corres¬ 

ponding limit is undefined. 

In CDL1 expressions are classified according to the data type 

of the result they would produce. Thus we have 

Sexp, Vexp, Mexp, Aexp, IVexp, STexp, STAexp, STVexp, IVAexp, 

BSTexp, BSTVexp, and BSTAexp. 

Arithmetic, boolean and string operators may occur intermixed. String 

operators have precedence over others. The syntax of the various expressions 

are given in the Formal Definition of CDLl'. Also^ expression interpreta¬ 

tion under data-type changes of operands are explained. Let me briefly 

explain here the reduction and selection expressions: 

For any binary operator B, (B/Vector) is a reduction expression. 

For example +/(3,8,7,2) = (((3+0)+7)+2) - 20. In the case of arrays 

(B/[i1,i2,.. .^i^] Array) stands for a reduction of the array first along 

dimension i^, then ig, and so on. The dimension of the resultant array 

will be n less than its original dimension. Reduction operations have been 

extended to strings with appropriate conventions. 

1 ..r is a selection expression, which stands for 

fany one of’ the items enclosed, separated by commas. In the case of string 

vectors ' if is used as the separator of string elements, instead of coranas. 

In CDLl, 'If is not a character; it is used exclusively as a delimiter. 
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'(BitString/String or Vector)' is also a selection expression, 

when the lengths of the items on either side of the slash match. The 

elements in string or vector corresponding to the I's in the bit string 

are selected. 

One may also have a binary selection expression: (/Vector; bit 

string; Vector/) denotes the selection of the elements of the first vector 

corresponding to 1 s in the bit string, and those of the second vector 

corresponding to 0’s. Similar expressions are available also for strings, 

bit strings, string vectors and BSTV. 

One may also have cyclic and noncyclic shift operators on vectors, 

strings and BST. In all these we have essentially adopted the operations 

first proposed by Iverson [6]• , 

There are also expressions denoting number representations and 

number valuations. 

(k)N/(vector or string) denotes base k value of the vector or 

string (if such an interpretation is possible for the string). Similarly, 

(1(J)R/Scalar) denotes base I, J digit representation of the 

scalar. 

Let me conclude this section with a note about notations. We 

have freely used symbols as we saw fit. In the internal representation of 

a description each one of these symbols may have a code. In any implementation 

of CDL1 it is possible to introduce a 'notation converter' at the I/O 

interface to which a user may declare the notations he wishes to use. The 

user's character set may be less than that proposed in CDL1. In such a 

case the user may have to define character strings in his alphabet to 

correspond uniquely in a one-one fashion, with the character set of the 



language. Thereafter, one may use one's own notational contentions for the 

descriptions; the 'notation converter' will translate such inputs to the 

standard internal storage codes. In the output process the internal codes 

may be retranslated to the notations of the user concerned. In this manner 

different users utilizing a design aid system may each obtain symbol and 

notational conventions suited to his own I/O equipment characteristics and 

personal preferences. 

The notational schema used should not be considered as the essential 

part of a language. One may if one chooses redefine a language with dif¬ 

ferent notations, maintaining in some well-defined fashion a one-one 

correspondence with its original version. The features of a language lies 

in the kinds of operands, expressions, statements, naming schemes and 

declarations it provides, and the kinds of facilities it may have for pro¬ 

gram control within an algorithm. 

The variety of expressions in CDL1 is quite large. Most of these, 

if not all, will find application in the description of a machine. 

D. Functions 

CDL1 has in all about 24 system functions. A list of these is 

given below without much explanation. The list includes the functions 

first proposed by Iverson [6]. 

1. MAX (1,...1) 

2. MLN (1,...1) 

3. LENGTH (string) 

4. SIZE (ARRAY) : Also ISIZE, OSIZE, CSIZE, and other attribute functions 

5. DIMN (Vector) 
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6« STATES (signal line or a memory unit) 

?• COÜNTN (stringl*,.string! string!). 

Nonoverlapping counts of occurrences of strings 1,2,...etc. in 

the last string. The result is a vector. 

8. COUNTO (string!...string! string!) 

Overlapping count. 

9. COUNt{o,N} ({string!...string} string!) 

Overlapping or nonoverlapping count of occurrences of any one 

of the strings within {...} in the last string. 

10. FULL(I) a vector of I "I's". 

11. ZERO(I) a vector of I "O's". 

12. CH(I,J) characteristic vector of dimension I with a 1 in position J. 

13. PX(I,J) Prefix vector of dimension I. The k element is 1 if k < J. 

14. SX(I,J) Suffix vectc of dimension I. The k*”*1 element is 1 if 

k >= (I-J). 

15. BITS(I) denotes an arbitrary vector of 0*3 and lrs of dimension I. 

16. BITS(I,J) Vectors of 0*8 and I's with exactly J I's, and of 

dimension I. 
17. DITS(I) An arbitrary vector of decimal digits of dimension I. 
18. DITS(I,J) The sum of elements is J* 

19. INTRL(I, J) Equals (I, 1+1,.. .,1-KT-l) or (1,1-1, .. .,I-J+1). 

20. BIANK(K) K blanks. 

th 21. INSERT (string; I; string) Insert string 1 at the I position 

of string 2. 

22. REPLACE ((string! string!)] string) Replace every occurrence of 

string 1 by string 2 in string 3. Only nonoverlapping occurrences 

of string 1 are to be reckoned, in a left-to-right scan. 
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23. FIRST (Vector) The result is a vector with a 1 in the first non' 

zero element of the argument 

24. UST (Vector) The result has a 1 in the last non-zero element 

of the argunent. The result could be all 0's in both 23 and 

24. 

E. Statements 

1» Declarative Statements 

There are six kinds of declarations possible in CDL1. 

a. Declaration through a 'DEFINITION' or a 1 DECLARATION' 

module. 

b. Through a LET-statement within a module. 

c. Implicitly through usage on the left side of an assignment 

statement. 

d. Through a dynamic declaration of the data type of an item, 

o. RELEASE statement. 

f« Coninents. 

Let me now briefly explain the nature of these declarations. 

a. The kinds of items that may be declared through definition modules 

were discussed in Section IV-B. The scope of such declarations is limited 

to the system in whose description they appear. 

b. Through a LET-statement one may make the following kinds of declarations: 

Conditional or unconditional 

(i) symbolic equality, 

(ii) replacement rule, or 
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(iii) value equality declarations^ and/or 

(iv) a data type which has been already defined, 

(v) event names and their initial values, 

(vi) USE-coramandu, 

(vii) DELAY and WAIT declarations, 

(viii) SAVE-declarations, 

(ix) SCOPE-declarations• 

A LET-statement may appear anywhere within a procedure (or a 

description), in any type of module. The statement begins with the reserved 

word 'LET'; this word may then be followed by as many of the above nine 

kinds of declarations as necessary; it is finally terminated by the 'l1 

symbol. The word 'LET1 introduces a new level of labelling. The declara¬ 

tions within a LET-statement may be labelled arbitrarily with mutually 

distinct labels. In CDL1 a group of statements with a new level of labelling, 

but with no block structure is called a group. 

Let me briefly explain the nature of the above nine kinds of 

declarations. 

(i) Symbolic Equality Declaration 

1. JIM =. JOE; 

2. JIM =. JOE IN label IN label IN PARALLEL PROCESSING PROCEDURE, GLOBAL 

3. JOE =. JOHN /// SAVE; 

4. '(+)' =. 

are examples of symbolic equality statements. Their general forms and inter¬ 

pretation are as follows: 

1, ,,Label.,, Namettbtypen =. Name>tbtypenttIN generalized label" "/// SAVE"; 

2, "Label"'string' =. 'string'; 



The above forms are to be interpreted as follows: The label is optional; 

this is indicated by the double quotes enclosing it. The label is to be 

followed by a period 1.. "btype", where b stands for a blank, the 

generalized label11 and ”/// SAVE" are also optional. A generalized label 

has the following form: 

(label IN..,label)(IN module title...IN module title) 

"({global, 

The generalized label in example 2 above is an instance of this form. It 

points to the block or module, in which the named item had been declared. 

There are two kinds of generalized labels: one is with the tag GLOBAL, 

and the other without the tag, but possibly with an arbitrary number of up- 

arrows of the form (t...t). The latter is called a LOCAL label. The global 

label points to an item with reference to the root of a search tree, and the 

local label points to an item with reference to its own position in the 

tree. Every 1t1 denotes a jump from a node in the tree to its parent node. 

The label decoding schemes are described in Section IV-G. 

The symbolic equality statements have the following meaning: In its 

first form it identifies two names as being synonymous; both names denote 

the same data. In its second form it identifies two strings as being 

symbolically equivalent. Thus, in example 4 the string ' (+)1 is being 

identified with the exclusive-or symbol ©. Both identifications are valid 

only within the scope of the declarations. 

The name on the left of form 1 always refers to an operand within the 

scope of the declaration: The operand may or may not have been declared 

earlier; in the latter case its appearance in the statement will be construed 

as a declaration of the operand. The type of a name may be omitted only 
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if it had been declared earlier. If the types of the two operands are 

different, then the statement is valid only if a change of type convention 

for the two types exist* The '/// SAVE' is a restriction on the statement 

having the following significance: 

Without the restriction the data denoted by the names will have two 

copies of it stored under the two names. Both copies will be kept simultaneously 

updated. With the 'SAVE* restriction, only the name on the left side will 

be kept updated, and the one on the right will maintain the old value it had* 

In the case of form 2 the two strings will be treated as being symboli¬ 

cally equivalent to each other in all contexts of their appearance within the 

scope of the statement, with the following restriction: 

The strings should be bounded on either side by a string constant, in 

every instance of their appearance within the scope of the statement, unless 

the strings are so bounded in the statement itself. A string constant is 

any one of the following set of symbols: 

blank, any operator symbol, (, ), [, ], {, }, (, ), =., 

. • S3 / + f W J VS ^ 

This form of the statement may be used for taking note of a notation 

conversion locally within a description. 

Both symbolic equality statements may appear as conditional state¬ 

ments, with IF - THEN - ELSE clauses. The condition should always be a 

boolean condition, which may include relational operators. In that case 

the statements will assume significance only on the satisfaction of the con¬ 

ditions. The variables used in the boolean conditions should themselves 

have been declared within the scope of the statement. 
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The symbolic equality statement will be very useful in a design 

environment where different designers might have used different names for 

the same object, which might have to be later identified as being synonymous 

Also, it is useful to invoke in a procedure or a description a variable 

declared elsewhere. 

(ii) Replacement Rule 

A replacement rule has the following form: Let fstid' denote a 

string identifier, which could be a string constant, or a string under 

quotes, as fe..f, or a string name. A replacement rule is, 

"Labelstid ;:= <fstid, string expression}) "/// restrictions"; 

The restrictions can be any relational or boolean expression on the two stid's 

and/or the string expression. The rule will be executed within its scope 

only if the restrictions are satisfied, at every instance of its application. 

The rule has the following meaning. 

It is a mandatory replacement rule. Every instance of appearance 

of the stid on the left side of the rule is to be replaced by the right side 

within the scope of application of the rule, provided that the following 

restrictions are satisfied: 

1. The restrictions on the rule itself. 

2. Every appearance of the left side stid is bounded by string con¬ 

stants, or the stid itself is so bounded in the rule. 

If 'SAVE* is one of the restrictions then the execution of the rule 

will be stayed; in this case the rule will be executed dynamically during 

interpretation of the module or block In which the declaration appears. The 

old form of every statement within the scope of the rule will be maintained. 
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' 
If the boolean and/or relational conditions in the restrictions 

are not satisfied then a flag will be set, and the name of the flag will be 

the label of the statement. 

This rule may be used to edit a text within the scope of a declara¬ 

tion. The rule may appear also in a conditional form with IF - THEN - ELSE 

clauses. In such a case the rule will assume significance only on the 

satisfaction of the IF-condition. No flags will be set if the IF-condition 

is not satisfied. 

(iii) Valoe Equality Statements 

"Label." (data declaration format) =. value. 

This may be used to assign initial values to data names being 

declared. The statement is especially useful to assign initial values to 

various event names while declaring them. The value could be expressed in 

terms of other values already declared, or soon to be declared within the 

block or module in which the statement appears. Thus, at the time of 

declaration the value may not be well defined. The value equality statement 

algo has a conditional form with IF •• THEN - EÜ5E clauses. 

(iv) Data Declaration 

Any data of a specified recognizable type may be declared according 

to its declaration format, with or without label, thus: 

"Label." Declaration format. 

(v) Event Declarations 

These are prefixed with the reserved word EVENT. The declaration 

will appear as follows: 
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"Label." EVENT(event name =. value,... 

event name =. value). 

The events have significance only within the scope of the declaration. 

(vi) USE Commands 

These have the form: 

"Label." USE (name FOR ([name or operator]), 

... name FOR ({name or operator})); 

The first 'name' in each 'name FOR etc...'phrast jhould be the name of a 

procedure, or a body of description. The second name could be that of a 

function or a macro. The operation could be any one of the standard operators 

in the language. This declaration causes the object denoted by the first 

name to be used in the computation of the process denoted by the second 

name or operator, for each 'name FOR etc.' phrase, within the scope of the 

declaration. 

(vii) DELAY & WAIT Declaration 

This has the form: 

"Label." DELAY time unit. 

The tine unit can be in seconds, MICROS, KANOS, MINUTES, etc. It is inter¬ 

preted as specifying the time to be taken to execute the body of procedure 

within the scope of the statement. One may also specify 

"Label." WAIT UNTIL event expression. 

This indicates that the body of the procedure within the scope of the state¬ 

ment should be executed only on the satisfaction of the given event ex¬ 

pression condition. 
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(viii) SAVE Declaration 

This has the form: 

"Label.11 SAVE({{data-narae, declaration format]),... 

({data-name, declaration format])); 

The values of the named data are to be saved after each execution 

of the procedure within the scope of the declaration. 

(ix) Scope Delcaration 

The scope of a LET-stateraent, if not declared explicitly, is the 

smallest program unit, a block or a module as the case may be, in which it 

appears. The declaration may appear anywhere within its scope. 

If necessary one may declare the scope explicitly as follows: 

SCOPE (generalized labe],...generalized label); or SCOPE WITHIN generalized label 

Phe SCOPE WITHIN declaration invokes all the variables declared in another 

block or module into the block or module of current interest. One may also 

declare SCOPE GLOBAL to declare globally within a given system. 

A given scope declaration in a LET-statement applies to all the 

declarations made piior to it within the LET-statement itself, up to the 

previous SCOPE declaration in the statement. The lET-statement may thus 

have the following form: 

'LET 

declarations of items described above, as many as necessary!1 

It is terminated by 1 ! 1. 

The SAVE declaration may appear by itself outside of a LET-statement, 

anywhere within a procedure or description. The symbolic equality, replacement 

rule, and value equality statements may appear only within a LET-statement. 

So also, the EVENT names and their initial values. USE and DEIAY commands 

may appear as restrictions on an assignment statement, as we shall later see. 
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c. Implicit declarations of data may appear through usage of the data 

name on the left side of an assignment statement, within a program or a 

description. The declaration will have the scope of the smallest program 

unit, a block or a module, in which it appears. 

In both b. and c. the scopes of declarations will permeate all 

the submodules, blocks, and sub-blocks of the module or block to which they 

apply. 

d. We have earlier, in Section IV-A, discussed the significance, use, and 

form of a dynamic type change declaration. 

e. Save & Release Declaration 

This has the form 

"Labei." RELEASE <<{narae, label]),... 

({name, label])) H/// restrictions11 j 

This releases the scope of a variable or a labelled declarative statement 

before the termination of its natural scope. The SAVE declaration was 

discussed in b. (viii). 

f. Comments 

Comments may appear anywhere and may contain any string. These 

are not formally interpretable. 1 : - * is the ' conment begin' symbol and 'j' 

is its termination; a comment termination is indicated by the first free 

1;' that appears in it. A under quotes, is not free. 

2. Executable Statements 

There are four broad classes of these; 
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a. Dormant Statements, 

b. Autonomous Statements, 

c. Connection Statements, 

and d. Program Control Statements. 

Within each one may have 

(a) either conditional or unconditional statements,, 

and (b) serial or parallel iteration statements. 

Every statement may also be either 

(i) deterministic or 

(ii) nondeterrainistic. 

a. Dormant Statements 

(1) Assignment Statement 

"Label." Operand <Uxp, IFexp}) "/// restrictions"; 

The type of operand should be the same as that of the expression, or there 

should be a conversion rule between the two types. An IFexp has the form: 

'IF ([Sexp, Rexp}> THEN ( <{exPj IFexp}) "ELSE <{exPj IFexp})")1 

where Bexp stands for a boolean expression, and Rexp for a relational ex¬ 

pression using the operators <, =<, =, >= , >, -i=, =, —| =. 

The SIZE and DIMN of the two sides of the statement should match, 

otherwise, during execution, an interrupt will be caused. is the 

assignment symbol. Let me explain, at this point, the kinds of restrictions 

that a statement may have: 

(i) Rexp, 

(ii) Bexp, 

(iii) An IF-Rexp of the following form: 
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'IF (fRexp, Bexp}) THEN ((restrictions,...restrictions> MELSE 

(restrictions,...restrictions )");* 

Notice that the bracketing of the THEN-clause to include the corresponding, 

optional EISE-clause will make the expression unambiguous. 

(iv) A series of indexed restrictions of the form: 

'FOR I = lower bound TO upper bound CHECK 

(restrictions,.. .restrictions )i1 

(v) USE-commands of the forra discussed earlier. In each 'name FOR 

({name, operator]>' phrase of the USE-conmand the name or operator occurring 

on the right side should be the ones appearing in the statement to which the 

restriction applies. The connection symbols, and '*•-*' may be used as 

operators ii* a USE-ccmmand. So also, the assignment symbol 

(vi) SAVE restriction of the form: 

1 SAVE (name,...name ); ' 

The names should be the ones appearing on the left side of the assignment 

statement(s)• 

This will cause the old values of the names to be saved in a 

pushdown stack. 

(vii) DELAY and WAIT restriction of the form: 

'DEIAY time unit' or 'WAIT UNTIL event expression1. 

The time unit specifies the time to be taken for the execution of the state¬ 

ment. The WAIT UNTIL-clause will stay the execution of the statement until 

the given condition is satisfied. 

51 

..... •—:,ii 



viii) SKLP-restrictions: 

In case the restrictions are not satisfied, instead of causing an 

interrupt, one may cause a flag to be set» This flag is called the 

skip condition. The flag is labelled in the restriction as follows: 

'SKIP II INTEGER1 

where * INTEGER* refers to *positive integer*. Thus SKIP1, SKLP10, or 

SKLF483 could be the labels of the flags. A statement may have more than 

one restriction. Individual restrictions are separated by commas. The 

restriction field itself is terminated by the first free semicolon. 

(2) Conditional Assignment Statement 

Henceforth, we shall denote by * statement* any statement in 

CDL1, including also a block of statements of the form: 

BEGINNStatement...statement) END. 

Let IFCOND be (tßexp, Rexp}), 

THEN-clause be (statement..,statement) 

and EliSE-clause be the same as the then-clause. The form of the statement is: 

'IF IFCOND THEN (THEN-clause "EISE ELSE-clause")"/// restrictions";* 

The bracketting of the THENrclause and the ELSE-clause makes the statement 

unambiguous• 

(3) Nondeterministic Forms 

The above forms of the assignment statements are deterministic, 

and are thus executable. Their nondeterministic forms have the status 

of a declarative, indicating the possible alternatives, but not specifying 

which one to choose. Nondeterminism may appear either on the left or on the 

right, or on both sides, of an assignment statement, as follows: 



Form i) {operará, ...operand} - <{exp, IFexp}) "/// restrictions"; 

Form ii) operand - {({exp, IFexp] ),... <{exp, IFexp] >} "/// restrictions"; 

or Form iii) a combination of forms i) and ii). 

A procedure containing nondeterministic statements is not execut¬ 

able. One may set up a system to request a rule of decision everytime such 

a statement is encountered during an execution. Such rules of decision 

may be named and later appended to a nondeterministic statement in the form 

of a USE-restriction of the following form: USE(decision rule name). These 

decision rules are called 'scheduling algorithms'. 

A nondeterministic statement may be made deterministic also by 

appending to each selection expression, an index in the 

following manner: 

where 1 =< I =< the # of alternatives. 

Form iv) A statement may be nondeterministic also as a result of a 

nondeterministic USE-restriction on it. Such a USE-restriction may have 

one or more phrases of the following forms: 

i) { (name,.. .name )} FOR ({name, operator}), 

ii) name FOR { (([name, operatorj),... ({name, operator}))} 

iii) a combination of forms (i) and (ii). 

These forms may be useful to specify dynamic resource allocation, 

through scheduling algorithms, which may be specified separately, at any 

stage of a design process. 

There is a special form of a conditional statement which is used 

as a short form for a series of conditional statements. This uses the non- 

deterministic statements of the forms i), ii) and iii) in a special sense, 

as follows: 
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Let 'ND-statement1 denote a nondeterrainistic statement of forms 

i)* ii) or iii)j and let ^-statement1 denote a deterministic statement. 

Also, let NDTHEN-clause be: 

,^BEGïN,l(<{ND-statement, D-stateraent}) .., 

({ND-statement, D-statement} >) "END*11. 

The short form for a series of conditional statements may then look like: 

'"Label.” IF {iFCOND,...IFCOND] THEN 

(NDTHEN-clause) "/// restrictions"; 

The alternate IFC0NDrs should be mutually exclusive, and every ND statement 

in the NDTHEN-clause should have exactly the same number of alternatives as 

r{iFCOND,*..IFCOND}'^ The statement has the following meaning: 

th 
£he i IFCOND is satisfied then in each nonde termini Stic 

statement in the NDTHEN-clause choose the 1th alternative for execution. 

For every IFCOND satisfied execute all D-statements in the NDTHEN-clause. 

If no IFCOND is satisfied then skip to the next statement in order. 

Notice that this special form is not a ND-stateraent by itself, 

even though it uses ND-statements within. The entire statement might, however, 

become nondeterrainistic as a result of a nondeterrainistic USE-restriction 

on it. 

(4) Iteration Statements 

(a) Simple Iteration 

"Label." FOR I = lower bound TO upper bound "BY Nunber" 

DO (statement...statement) 

"CONTINUE ("I," label)" "/// restrictions";'. 

In the above form one may use any index variable instead of I. The index 

variables in CDU are £l,J,K,l,M,N,Index variable || #}. The lower and upper 
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bounds could be any scalar expressions. If "BY number" is absent then incre¬ 

ment (or decrement) by 1 is assuned. If "CONTINUE(...)" is absent then the 

iteration will be performed beginning with the first statement following 

'DO' everytime. Otherwise, through a CONTINUE statement one may declare 

iterations to be performed from the statement specified by the label. 

For example, one could have a FOR-loop of the form: ■ 

"Label." FOR J ^ 1 TO 28 + xy DO 

JIM - 128; 

JOE <- MARY + 3; 

1. statement 

{statement...statement ) 

CONTINUE (1)¡ 

In this case the iterations will be performed from statement 1 everytime. 

In each FOR-loop one may begin an additional level of labelling. A statement 

inside a FOR-loop may be referred to from outside by using the generalized 

labelling schema. In the above loop, JIM and JOE will be set to their initial 

values in the first pass. 

(b) Multiple Iteration 

One may iterate simultaneously on several index variables. An 

example of such a statement is given below: 

2A1. FOR II = 1 TO 100, 

12 = 22 TO -10 BY -2, 

IA » X + 3 TO 81 DO 

statement 

1. statement 

2. statement 
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CONTINUE (11,12,1):: 

(statement.•.statement) 

CONTINUE (13,2)1 

The above statement has the following meaning: Iteration is to be performed 

on indices II and 12 simultaneously; they are both to be incremented or 

decremented, as the case may be, simultaneously and the Iteration is to be 

repeated beginning from statement 1 until both of them reach their 1 upper 

bound1. If one of them reaches the rupper bound* before the other then it 

will maintain its index value in all subsequent iterations until the other 

one also reaches its upper bound. 

Thereafter, the execution is to continue past the 1CONTINUE (11,12,1)' 

statement, and the iterations on 13 are to begin, beginning from statement 2 

every time. During these iterations II and 12 are to maintain their previous 

values. When 13 also reaches its upper bound the execution of the FOR- 

loop is complete. 

The FOR-loop should contain as many free 'Î1 marks as there are 

index variables in the FOR-loop. The general form of such a statement is 

given below. 

Let 'Inva' denote 'Index variable', 'Lb', lower bound and 'Up', 

upper bound. 

"Label." FOR (Inva = lb TO Ub BY Number,... 

Inva = li TO Ub BY Number) DO 

«statement...statement) CONTINUE ((Inva,...Inva), label) 

"III restrictions"; (1...Î) 

(statement... statement) CONTINUE ((inva,.. .Inva), label) 

"III restrictions"; (1...1)) 
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The reader may supply the following restrictions on the above form: All 

Inva's are to be distinct and the count of free should equal the count 

of Inva's in the loop. 

One may also have nested FOR-loops. In the case of multiple 

iterations the CONTINUE-statements are mandatory. A nondeterministic FOR- 

loop will contain nondeterministic statements. Each loop within a multiple 

FOR-loop may have associated with it its own set of restrictions. 

(c) Parallel Iteration 

A simple example of parallel iteration is the following: 

"Label." FOR I = 1 TO 25 DO PARALLEL (statement...statement)! 

This has the following meaning: 

All the 25 versions of the body of the loop consisting of the 

statements, one for each index value within the range, are to be executed 

in parallel, simultaneously. A parallel iteration may contain multiple 

indices, with the following form: 

"Label.11 JtoR <Inva « Lb TO Ub "BY Number,.., 

Inva = Lb TO Ub BY Number) DO PARAT.T/ET. 

(statement...statement) "/// restrictions";I 

In this case all the sets of statements, one for each possible combination 

of the index values, are to be executed in parallel. 

b• .Autonomous Statements 

(1) Serial Autonomous statement! 

This has the form: 

"Label." WHEN Bexp DO 

(statement...statement) "/// restrictions";: 



On the satisfaction of the event-control boolean expression the series of 

statements following 'DO' are to be executed serially (or according to the 

program control specified within). The WHEN-statement is subject to the 

restrictions specified for it. The statement is considered to be 'ON1 only 

as long as the boolean expression itself is true (its truth value could be 

a pulse), unless the following happens: 

The Bexp is turned off within the body of the statement, by turning 

off (setting to 0) one or more of its variables. In that case, a local 

'lock' will be set up for the statement indicating that it has been 

turned on, and it cannot be reinitiated until the task has been completed. 

When the task is done the lock will be released. 

If the Bexp is not a pulse, then it should be always turned off 

explicitly by setting the appropriate variables to 0 or 1, as the case 

may be, at the very beginning of the body of the statement; that is, a lock 

should be always created. The Bexp should contain only event variables 

which have been declared earlier, or will soon be declared. 

None of the statements contained within can be a GO TO statement, 

to a label outside of the WHEN-statement."' Within the WHEN statement one 

may begin a new level of labelling, but its body does not become a block, 

unless otherwise made so explicitly. 

In CDL1 a collection of statements with a new level of labelling, 

but without a block structure, is called a group. (The statements in a 

FOR-loop also form a group.) 

This restriction was pointed out by Gorman. 
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A branch to another part of a procedure can be made through a 

BRANCH TO-statement. One can branch to only another event, not a label. When 

a branch is encountered in a WHEN-group its lock will be released. 

(2) Parallel Autonomous statements 

This has the form: 

,,Label.,,,,Bexp,,: : (statement.. .statement) :: 

({ANY, ALL, Bexp]) "//^ restrictions"j 
y. 

The first Bexp turns the statement on; all the statements contained within 

are then to be executed in parallel. None of the statements may be a 'block1, 

or a GO-TO-statement. One can have BRANCH-TO statements within. A new level 

of labelling is effective for the statements within. Thus, these statements 

form a group. 

The second Bexp gives a termination condition in terras of the 

labels of the statements in the group. The labels here are used as pseudo¬ 

event variables. The entire statement is to be considered terminated when 

the Bexp of the labels becomes true; a label is considered true if the 

statement denoted by it had been executed. 'ANY' or 'ALL', instead of Bexp, 

indicates that the termination occurs when any or all of the statements in 

the group have been executed. When no termination condition is given, 'ALL1 

is implied. 

An autonomous statement is nondeterrainistic if it contains non- 

deterministic statements. 

c. Connection Statement 

(1) Unconditional Form 

Within a procedure a connection statement has the status of an 

executable statement. It should then contain only hardware items which have 

'When it is vacuous the statement is to be turned on unconditionally. 
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been already declared, and it denotes a direct connection between two items. 

Inside a structure definition, they have the status of declaratives, which 

specify the available (or admissible) connections in a structure. In its 

simplest form it may look like, 

"Label,11 name * name; 

where the names refer to hardware items. The statement specifies a connection 

between the outputs of the item on the right to the inputs of the one on the 

left. In a procedure such a connection is to be made only if the lines are 

compatible, in their signal characteristics, or otherwise, have been declared 

as being compatible in their definition. One may impose restrictions on 

a connection statement as follows: 

"Label." name name /// restrictions; 

The restrictions can be WAIT UNTIL event exp., or bounds that may appear 

on the indices of input/output lines. An example, of such a statement is 

the one appearing in the 70/15 memory description: 

STACK--XDRIVES [ I, 8*(J-1) + K,L] «■* 

TRANSFORMER- -0UTPUT[ 1,1, J, K, L] /// 

1 «< (I,L) =»< 2, 1 *< (J,K) »< 8; 

This specifies the lines with the corresponding indices, given as functions 

of I,J,K and L, to be connected. Thus, for I«!, J * 1, K ® 2 and L « 1 

STACK--XDRIVES[ 1,2,1] will be connected to TRANSFORMER--OUTPUT[ 1,1,1,2,1]• 

The indexing structure for these lines should have been declared earlier. 

In the case of WAIT UNTIL restriction the connection is to be delayed until 

the given boolean event expression is not true. 

Explicit references to input (I), output (0) or control (C) 

lines of an item are made by the use of compound names: 
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name--INPUT, name--OUTPUT, name--CONTROL. 

While declaring a hardware item one may assign names to subsets of its 1,0 

or C lines. Thus, STACK--XDRIVES may refer to a subset of input lines of 

the stack, called XDRIVES, with a well specified index structure. We shall 

see examples of these in the 70/15 description. 

In the case of hardware array the suffixes INPUT, OUTPUT and 

CONTROL will always refer to the inputs, outputs and control lines of the 

array itself. Thus, STACK-INPUT[ 1,2,3,5] will refer to the input line 

[1,2,3,5] of the stack, and not to the element [1,2,3,5] of the stack, even 

though STACK had been declared as a hardware array. The inputs, outputs and 

control lines of an element of a hardware array are referred to by the com¬ 

pound names: 

name—ELEINPUT, name--ELEOUTPUT, name—ELEC0NTR0L. 

Individual lines may bereferred to again through indexing on these com- 

pound names. 

Nondeterministic forms of a connection statement always have the 

status of a declarative. The meaning of such a statement may be obtained 

by reading them thus: 

name ^ {name,...name} is to be read as: 

The output of any of {name,♦..name} may be connected to the inputs of 

’name’ (on the left). The chain bracketed expression is read as 'any of. 

Other forms of nondeterministic connection statements are: 

{name,...name] name; and {name,...name] {name,...name]. 

Every such nondeterministic statement implies the existence of a switching 

network at the connection interface to execute instances of the admissible 

connections. 
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Of course, the nondeterrainistic statements may also appear with 

restrictions. 

No connection declaration may contradict a hardware compatibility 

declaration. A connection statement is not valid if the hardware items 

involved have been declared as being not compatible. If no hardware 

compatlblity had been declared then a connection statement will impose 

compatibility on the items. 

(2) Conditional Form 

A connection statement may appear with IF-THEN-EI5E clauses. 

The IF-condition should be a boolean or relational expression, on variables 

already declared. As before, the THEN-clause is bracketed thus, (...), to 

include the EISE-clause. Connection statements may also appear as part of 

autonomous statements • 

d. Program Control Statements: 

There are in all 10 program control s .atements in CDLli 

1. "Label." GO TO LOCAL label "/// restrictions"; 

One may GO TO only labelled statements within the same flojulê; one may jump 

between blocks within a module. 

2. "Label." INITAIATE generalized label "/// restrictions"; 

3. "Label." INITIATE (event name,...event name) "/// restrictions"; 

The initiate command initiates the labelled statements or the said events in 

parallel with the currently running process. 

4. "Label." WAIT time unit. 

The time unit can be in seconds, minutes, MACROS, NANOS, etc. The time unit 

may be specified by a scalar expression. 
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5. "Label," TEIHENATE <event name,...event name) "/// restrictions"; 

This causes the said events to be turned off instantaneously. 

6. "Label." RETURN. 

Within a block or a module it causes the system to return to the point in a 

program next to the one from which it entered the block òr module. The 

entry itself might tur-e occurred ar, a result of a GO TO statement, a function 

or a subroutine call. If there is no place to return to then the system Is 

to return to the console. 

7. "Label." CONTINUE 

Outside a FOR-loop this has the status of a blank statement. 

8. "Label." CALL({procedure name, generalized label]); 

9. "Label." BRANCH TO event name "/// restrictions"; 

This statement may occur only within autonomous statements. One may branch 

to only the statements within the same module. 

10. TRIGGER control line name ", pulse name"; 

This causes the control line to be triggered with the given pulse, or else 

set to 1. 

A program control statement with parameters is nondeterministic 

if there is nondeterminisra in the parameter values. Thus, 

GO TO {label 1, label 2,...} 

is nondeterministic. These have the status of a declarative. 

A program containing nondeterministic statements, itself becomes 

nondeterministic, and thus has the status of a declaration. 

A generalized label has the forms 

(label IN ... label) (IN module title ... IN module title/1 ({GLOBAL, (t.. t)} )" 
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and it is decoded from right to left# The rightmost module title must be uni¬ 

quely identifiable^ and every other reference in the generalized label should 

denote a unique item in the context of the items selected to its right. 

This completes our discussion of statements in CDL1. Let me now 

briefly discuss the indexing conventions in the language^ and then describe 

the modular structure of descriptions in the language. 

F. Indexing Conventions 

1. Vectors 

The elements of a vector are numbered 1 through DIMN of the vector. 

One may visualize the elements arranged in the left to right order. 

(i) Name V [1] denotes the Ith element of the named vector for 

1 «< i «< DIMN (Name). (The suffix 1 V1 is not necessary.) 

(ii) Name V [.(ip ^ • *ir) ] denotes a new vector of dimension 'r1 consisting 

of the elements of the named vector. 

(iii) Name V ti-^!^] denotes 

Name V [i^ if i^ » ±2) 

Name V [(ipi-j+1, *. j^) ] if 1 «< < i2 “< DIMN (Name). 

Name V [(ipi^l,.. .,i2) ] if 1 «< i2 < ^ »< DIMN (Name). 

The elements of a string vector are strings and those of a bit string vector 

are bit strings. The name of a vector without indexing refers to the entire 

vector. 

(iv) The individual characters (bits) of a string (bit string) in a string 

(bit string) vector may be denoted through double indexing as 

follows: 

Name [i][j], 



which refers to the jth character (bit) in the ith element of the 

vector. 

Name STV[ (ip . ir) ] [ j ] 

refers to a new string vector consisting of the jth characters of the 

elements (i^, of the old string vector. 

Name STV[i][< ...,y], 

SIV[(i1,...,ir)][(jkJ..f,jk)] 

Name STVli^Jtj,,] 

have all the corresponding obvious interpretations. 

2. Arrays 

Arrays are multi-dimensional entities, whereas a vector is always 

of dimension 1. 

l) Name A denotes an entire array 

li) Naffig. denotes the [l1,i2, ...,ik]th element of an array 

if 1 «< [i1,i2,...,ik] *< SIZE (name). 

iii) Nanie< [(1^,,^] denotes a subarray consisting 

of elements of the array denoted by the set cross*product of all the 

following indices: 

^1^ ^2* * * * "^r1* ^ 1~^J, * * * y f • • • • .Xi, 

Trl 
where m is the size of the 3 dimension of the array. A as an 

index denotes all the indices in a particular dimension of an array. 

Thus, 

JIM[1:2,(8,6,6), 8:7] 

denotes an array of elements of JIM with the following indices: 

(1,8,8), (1,8,7), (1,6,8), (1,6,7), (1,6,8), (1,6,7) 
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Notice that in the new array some elements may repeat. 

If the elements of an array are themselves strings, bit strings 

or vectors then one may use double indexing, as in the case of STV and BSTV, 

to denote individual components of the strings, bit strings or vectors. 

3. Special Multiple Indexine Schemes 

It may be sometimes convenient to consider an array as beii^ made 

of two or more parts from each of which, everytime one or more elements 

may be selected, in anyone reference to the array. Thus, the drive lines 

of a memory may be structured as: 

MEM--DRIVES[128j128] 

indicating two sets of lines, 128 each (the X and Y lines) from which every¬ 

time one may select two lines, one belonging to each set. Notice that 

in this case the total number oi line elements in the array is only 

128+128 *= 256, and not 128X128. Thun, if the size of an array is 

then the total number of elements in the array is (ijX^ + j1xj2xJ3 + 

Such multiple indexing schemes may be useful to structure input/output/control 

lines of a hardware item, as we shall see in the 70/15 memory description. 

G. The Modular Structure of Descriptions and the Generalized Labelling 
Schema_ 

Descriptions in CDL1 are organized in titled units called modules. 
if 

Each module title consists of two parts: a name and a module-type. The 

module-types recognized in CDL1 are: 

name is optional. 

- __i.. 
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1. SYNTAX, 

2. FORMAT, 

3. Various kinds of DECLARATIONS, 

4. Various kinds of DEFINITIONS, 

5. PROCEDURE, 

6. DESCRIPTION. 

'MEMORY SYSTEM, DESCRIPTION1 1» . typical „odul. title, „he, „odule-typ, 

1. DESCRIPTION. '70/15, HARDUARE DECLARATION' 1« another »odd, title, 

whose type is 'Hardware declaration'. 

Every module-type has an associated format: The format specifies 

the subtitles of items which a type of module may contain. Each such sub¬ 

title defines a submodule of the parent module-type. Thus a 'Data Definition- 

module will have the eight subtitles discussed in Section IV-B-1. The 

syntax and format of data that a subtitle may have are also specified. In 

an Interactive system one may use the module formats to indicate to a user 

the kinds of objects to be described in a given module-type, and the forms 

they should have. 

A module may thus have submodules, which are contained within. 

Also, a module of a given type may contain other modules of different types 

within its scope. Thus, a system description module may contain every other 

type of modile within its scope; a type 'Procedure' module may contain a 

Data Definition module as a submodule. The module containment relationship 

in a description will have, in general, a tree structure. It is this tree 

structure that makes a generalized labelling scheme possible. 

Every part of a system description should belong to some module. 

Ihus, module titles provide a naming scheme for various parts of a body of 
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description. A designer may create arbitrarily any tree structure of inclu¬ 

sion relationships, that is best suited for his purposes, using the various 

module-types provided in the language. 

Every module title is delimited by a colon V, and the module 

itself is terminated by an ’END module title1 statement or simply by a 

triple vertical bar, 11111 • 

We have already discussed the formats of some of the definition 

modules. The example in Section V will give an idea of the format of a 

type ’Procedure' module. The use of type SYNTAX and FORMAT modules will 

become clear in the definition of CDL1 itself. 

Let me now describe the decoding scheme for a generalized label. 

Let us consider, for example the tree of inclusion relationships shown in 

Fig* 3# Let each node denote a module, or a group, or a block, or a label 

of an item in a group, block, or module. Thus, the Root R contains, say 

three modules, with titles NI, N2 and N3, each of which contain, say two 

submodules, and so on the tree of modules, blocks and groups grow. Finally, 

on the top we have two lists of labelled items (11 to 13) and (11 to 17). 

From any one of the nodes in the tree a reference to the 

generalized label 

'3 IN 2 IN L6 IN N3, GLOBAL’ 

will denote the search path indicated in Fig. 3 with double lines. The 

object denoted is the item at the top end of the path. 

A reference to the local label 

’13 IN LI IN N1 IN tit* 

within the boxed node 16 will have associated with it the search path denoted 

by the arrows in Fig. 3. The object denoted is the node 13 at the end of 

68 



Fig. 3 A Tree of Inclusion Relationships 

the last arrow. The same label, if referred to in the boxed node 1, will 

have associated with it the new path shown by the arrows beginning at node 1 

in Fig. 3. 

In both global and local labels the decoding is done right to 

left. Evçry up arrow, 111, in a local label denotes a Jump in the family 

tree from one node to its parent node. These arrows may occur only on the 

rightmost end of the label. In the global label above, fIN R! is implied 

at the rightmost end of the label. 

H. Block and Group Structure of Program 

The BEGIN-END blocks have the usual significance, already discussed 

in earlier chapters. In CDU there is another kind of block, called an 

Interpretation Block. This is used to describe the functions associated 

with the various named items in the language while defining the items. In 

a function definition module the function interpretation may appear as 

follows: 
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"Label." MAX S (Sexp, Sexp) -> 

IF Sexp(*l) >= Sexp(*2) THEN 

(MAX - Sexp(*l) EISE MAX - Sexp(*2); <- 

Here 'Sexp' standa for a scalar expression. One may read '->' as 'does' 

or means', whichever is suitable in a given context. The companion symbol 

'<-' indicates the end of interpretation of the item to the left of 

It signifies in the language a 'RETORN' statanent. The program following 

'“>' may refer to the items occurring in the string to the left of '->'. 

Thus Sexp(*l) refers to the first 'Sexp' from left in 'MAX(Sexp,Sexp)'. 

The result of the function is assigned to the name of the function. Thus 

a function name without argunerts will always refer to its latest value. 

The arguments (Sexp, Sexp) specify the type of argments the func¬ 

tion may have. The general form of an interpretation block is as follows: 

(i) "Label." "name"btype" =." ({expression, function name}) 

n/// restrictiono;" —> program <- 

(ii) "Label." atring "/// restrictions;" -> program <- 

In form 2 the string should be the name of some item in the description. 

In its first form the program might describe the algorithm to 

evaluate the expression or function, and assign its value to the fictitious 

name given. This name is local to the block and will not have any significance 

outside the block, unless otherwise declared in a procedure. The manner 

in which an interpretation block is called depends upon the kind of item it 

defines. Thus a function interpretation may be called by the function name, 

the actions initiated by a control signal of a hardware item may be called 

by triggering the control line, the interpretation of an expression may be 

called by recognition of the expression within .a statement, etc. All Buch 



e^re.g.gion.B.may contain only, one operator symbol. The module-type of the 

module in which the interpretation block occurs controls the manner of its 

call« We shall see examples of this in the 70/15 memory description in 

Section V. 

I« The Character Set 

I have deliberately relegated this to the last pc.rt in this 

section, because I think it does not capture any essential features of a 

language, other than the incidental conveniences pertaining to a specific 

implementation of a language. No doubt, it might considerably influence 

the 'human engineering' aspects of a language. It is, therefore, all the 

more important that the character set be not fixed a priori. The language 

has been defined using a basic character set of 68 elements: 

A,B, • • .,Z,0,1,...,9, 

* 9 ) 3 ) ^ ) /J) 

\>t} ()) )l )]> (>}> (, ), 

% t,5,=,A,V,-i,<,>,b. 

In an implementation one may choose another character set with fewer elements, 

if need be, and define some of the characters above as strings in the new 

character set. It is possible to devise schemes for consistency checks in 

such a notation conversion, and ale: create an I/O software interface which 

might translate the internal form of the language to its external forms, 

and vice versa. 

The exclamation mark ’lr is used purely as a string delimiter in 

the language. A string in CDL1 may not contain ’ i ' as one of its character«. 



V. 70/15 GORE MEMORY SYSTEM 

We shall describe the memory system functionally and operationally 

to a certain depth of detail. The various parts of the description may 

well correspond to the various design stages of the memory itself. The 

data presented in this description have been obtained from *70/15 logic 

diagrams', 'correspondence programs', and 'status flows'. All the data given 

here do not appear at one place in any of the above manuals. 

The description is not complete in the sense that the logic 

diagrams and other details of implementation have not been given. It 

captures the essential structure and timing details of the system. However, 

the description at various levels is complete in the sense that one may 

simulate the memory, if need be, by interpreting the description given here. 

The kinds of details dealt with in this example give a good 

indication of how one may use CDL1 to describe complex structures in parts, 

at various levels of detail. The description is compact, precise and rather 

detailed in some parts. 

It is probably not necessary to describe a memory system in as 

much detail as given here, in a design process. We chose this description 

to illustrate the complexity of details, which may be handled in CDL1. 

Unless the reader is genuinely interested in knowing about the 70/15 core 

memory system, it is not necessary to read through the entire example in 

detail. The functional description at the beginning is easy to read and 

gives a precise description of what the memory does, including the options 

on the two sizes of the memory. The structural and operational description 

is rather loaded with details, which are not easy to fpllow. The reader 

should probably read a few of the subsystem declarations and. descriptions, 



to get a feel for the style of description and declarations. The description 

of TP, the time-pulse generator, (the 3rd functional description) is probably 

representative of the brevity of expression and the details captured. An 

interesting example of the uses of parallel autonomous and FOR-loop statements 

occurs in the decoder description (item 8 in functional description). 

The structure declaration describes the entire memory system structure in 

terms of line to line connections of all its subsystems; yet it consists 

of only 16 statements. Through the use of signal line (input, output and 

control lines) indexing and naming schemes one may declare thousands of 

connections, if need be, through just a single statement. The reader may 

find it interesting to follow the details of one or two statements in the 

structure declaration. 

The entire set of functional descriptions and the structure declara¬ 

tion are embodied in the operational description, presented at the end, 

which gives the sequence of controls initiated in the memory LOAD and GET 

functions. The description is not entirely operational, since the HR and 

MAR register loadings are not described in terms of their associated control 

signals. This operational description assumes significance by virtue of all 

the functional and structural descriptions declared earlier. 

Let me first describe the declaration format for the hardware 

items. A hardware item can be a Flipflop (F), Ragi*^ (R)j Network 

Delay line (DL), Switch (SW), Gate (G), Bus (B) or an array of any one of the 

above items, denoted by 

FA, RA, NWA, DU, SWA, GA and BA, respectively, 

th. t,,. of an item 1, Identified b, aala. the above abbr.vl.tlo» aa tag., 

which are aafflaad to the hardware »... while declaring th„. Thu*», S 



denotes a register called, HAH and MEM EÂ denotes a register array called, 

MEM. During declaration one may specify one or more of the following attri¬ 

butes associated with hardware items in CDL1. 

1. Array size: SIZE 

2. Array Input size: ISIZE 

3. Array Output size: OSIZE 

4. Array Control size: CSIZE 

These specify the number of input, output or control lines in an 

array, and the way they are structured for indexing. The SIZE of an array 

similarly specifies the number of elements in the array and their indexing 

structure. Thus, if the SIZE is declared as (64,64,2) it means that the 

array has 64x64x2 elements, any one of which is pointed to by a triple 

indexing scheme: If the name of the array is MEM, then MEM[l,J,K] will 

denote the (I,J,K) element of MEM for 1 «< I =*< 64, 1 “< J *< 64 and 

1 K *< 2. 

5. Array Element size if applicable: EIÆSIZE 

This specifies the number of storage units in an element of an array. In 

the case of MEM, the element size will be the size of the individual registers 

in MEM. 

6. Array Element ISIZE: ELBISIZE. 

7. Array Element OSIZE: E IE OSIZE 

8. Array Element CSIZE: EIECSIZE 

These specify the number of 1,0 and C lines of each element in the array, 

and their indexing structure. Thus, an ELBISIZE « (5,5) will mean that the 

element has 5x5 inputs, any one of which is denoted by a double Index (I,J) 

for 1 *< (I,J) “< 5. 
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Unless otherwise specified all input, output, and control lines, 

and the storage units are assumed to be binary. A nonbinary signal line 

or storage unit may be declared by specifying the 1 STATES1 of the line or 

the storage unit. 1 STAUES1 gives the number of states in which an item 

may remain. 

After specifying the various sizes of I,0,C lines and storage, 

one may, if necessary, name subsets of these lines or storage units, for 

easy reference to them later in a description. Thus, if ÇS1ZE « 2 for MEM 

one may name the individual control lines as, say 

READ[1] and WR1TE[2]: 

The first control line then assumes the name MEM--READ, and the second, 

MEM--WRITE. 

In any one declaration it is not necessary to specify any or all 

of the above attributes. However, the type of a hardware item should always 

be indicated with the appropriate suffixes. 

With every declaration one may associate restrictions. These 

restrictions may impose constraints on the values, which the various parts 

of an item may assume. For example, the declaration of the MR R of size 9, 

with the parity constraint may appear as follows: 

1. MR R[9] /// MR[9] =-, (0/MR[l:8]). 

The triple slashes separate the constraints from the main body of the decla¬ 

ration. The above constraint specifies that the 9th bit of MR has to be equal 

to the complement of the mod 2 sum of the bits 1 through. 8 of MR. This 

declaration has the following interpretation: In every use of MR within a 

system its contents should always satisfy the given restriction. If at any 

time it does not,then it would cause an interrupt in the system operation. 
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In the case of arrays of hardware items, whose elements themselves 

are arrays, the nested indexing scheme will be used to denote an element 

of an element of an array. Thus, if MEM KA consists of 4096 registers, each 

°f SIZE 9, then MEM[l][j] will denote th Jth bit of the Ith array element 

for 1 *< I »< 4096 and 1 ■=< J »< 9. Also, MEM[l] will denote the entire 

til 
I element of MEM, and MEM[*][j] will denote the set of all the 4096 J 

bits of every register in MEM. 

We may now proceed with the description of the core memory. 

HARDWARE DEFINITION 

DECLARATION: 

1. MAS R [SIZE = 13]; 

2. MR R [SIZE » 9] ///MS[9] =-,©/MR[l:8]; 

3. MEM RA 

[SIZE - <[4096,8192]); 

ISIZE » 9; OSIZE * 9; ÇSIZE *» 2; 

ELESIZE » 9; 

CONTROL LINE NAMING: READ[1], WRITE[2]] 

///MEM[*][9] «—,0/MEM[*][l:8], 

MEM--READ A MEM-WRITE = 0; 

:- This has two restrictions: The ninth bit of every register in memory 

should be equal to the complement of the mod. 2 sum of its 1 through 8th 

bits. And, the MEM-READ and MEM-WRITE control signals should imt both ever 

have value 1. The size of MEM could be either 4096 or 8192. (The 70/15 

memory comes in two sizes); 

:- It should be mentioned that it is not necessary to write every time the 

name of an attribute before assigning a value to it. One may order the 

th 

76 



i f 

ËliSliliiiiiiii 

:■ ÜI 

attributes in a certain fashion and choose to list their declaration according 

to the order. We have here chosen to write them down explicitly since there 

are c|uite a few of them; and declaring them in an order without names may 

not be very readable. If an interactive system is available,then one may 

make the system ask for the various attributes in a certain order. The 

user need not remember them all.j 

EMD(DECIARA.TION) 

FUNCTIONAL DESCRIPTION: 

1. MEM—READ -> 

WHEN MEM-READ DO 

IF SIZE(MEM) = 4096 THEN 

(MR - MEM[N/MAR[1:12]+1]; EIEE 

MR «- MEM[N/MAR[l:13]+l]j) 

/// DELAY 2 MICROS;l <- 

:- N/MAR[1:12] denotes the binary number represented by bits 1 through 12 of 

MAR. The '+1' occurs because of our convention of numbering the memory 

locations from 1 through SIZE(MEM). (The sign may be read as 'DOES'.) 

If the SIZE of MEM in an installation is 4096, then only bits 1 through 12 

of MAR are used to compute the address. If the size is not 4096 then it is 

8192, and in this case all the 13 bits of MAR are used for the address. The 

entire memory read operation takes 2 microseconds. For a discussion-.of 

the WHEN-statement the reader may see Section IV-E, on autonomous statements. 

The above interpretation block describes the function initiated by the MEM- 

READ control signal. This functional description is to be invoked, whenever 

the MEM-READ control is triggered in a body of description.; 
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2. MEM--WRITE -> 

.WHEN MEM—WRITE DO 

IF SIZE (MEM) = 4096 THEN 

(MEM[N/MAR[ 1:12]+l] - MR; ELSE 

MEM[N/MAftH] - MR;) /// 

DELAY 2 MICROS; ! <- 

:- Notice that the above two interpretation blocks describe precisely the 

memory read and write functions in 70/15. The indicated assignments to the 

MEM and MR are to be made only if the parity conditions, specified in the 

hardware declarations, are satisfied. If the parity is not satisfied, an 

interrupt is to be caused.; 

END(FUNCTIONAL DESCRIPTION) 

END(HARDWARE DEFINITION) 

:- We shall now proceed to describe the memory in greater detail. We shall 

follow the following scheme of description: 

We shall identify each memory subsystem in terms of its input, 

output and control lines, and describe the operations initiated by the 

control lines for each subsystem. Then we shall specify the detailed 

interconnection structure of the memory system in terms of input, output, and 

control line connections of each subsystem. After this, we shall list the 

control sequences, with timing restrictions. Each control line triggered 

in a sequence is to cause its corresponding action description to be called 

in. A control line may also be triggered indirectly: A pulse or level signa! 

applied by one subsystem at one end of a signal line, is to be traced to 

its other end, along paths specified in the structure declaration. If at 

the other end, the line is a control line of another subsystem, then its 
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corresponding action description is to get called in. We may thus capture 

the precise details of memory operation, with its component subsystems described 

either functionally or operationally. Also, in the case of a system design, 

as design progresses one may update subsystem descriptions, without having 

to modify other parts of the description (unless, of course, there are 

design changes). Since, the descriptions will be complete one may also 

simulate the system (or subsystems) in the course of their design. 

The characterization of each subsystem in terms of its input, 

output, and control lines, and the specification of their indexing schema are, 

as we shall see, very important steps in the subsequent description of the 

entire system.; 

mmm DEFINITION; 

This is to reopen the definition module which was closed earlier. All 

hardware definitions are to be filed in the same file, within a description 

module.; 

DECLARATION; 

i- The submodule, declaration, within the hardware definition module is now 

to be reopened. One may now request the filing system to issue the next 

item label in order. 

Item 4 of the declaration is the memory stack, whose block-diagram 

is shown in Fig. 4. The reader should probably see the diagram first. 

If a display console is available for I/O then one may declare 

these hardware items in terms of their schematic diagrams as shown in the 

figures. The filing system may construct from such a declaration the various 

attribute functions associated with the hardware item. 
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Fig. 4 Stack Configuration in 70/15 

Tha declaration of SXÂ.CK in CDL1 may appear as follows! 

4. SIACK RA 

[SIZE = (2,64,64); 

ISIZE *= (2,4,9); 

OSIZE = (2,4,9); 

CSIZE = (2,64,2; 2,64,2); 

ELESIZE = 9; 

STACK NAMING: Nl[l,1:64,1:64], 

N2[2,1:64,1:64]; 

INPUT NAMING: INHLINES; 

OUTPUT NAMING; SENSEUNES; 

CONTROL NAMING: XDR[ 1:2,1:64,1:2; ]; 

YDR[;1:2,1:64,1:2];]; 

•“ This is a rather complex, and interesting hardware array declaration. 

The array, STACK itself has 2x64x64 registers, of element size 9. The 

registers with indices [1,1 THROUGH 64,1 THROUGH 64] in the SIACK are to be 
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called STACK—NI, and those with indices [2,1 THRO 64, 1 THRO 2] are to 

be called STACK--N2. Thus STACK consists of two substacks. (This is 

precisely the case in 70/15 memory system.) The substacks were flamed in 

the above declaration in 'STACK NAMING'. 

STACK has 2x4x9 input lines called, INHLINES. In the physical 

stack these are grouped as follows: For each plane in each substack thère 

are 4 INHIINES terminals and each substack has 9 planes. If necessary, 

we could have named, N1—INHLINES as [1,1:4,1:9] and N2-INHLINES as 

[2,1:4,1:9], and PLANE1-INHLINES, as[l:2, 1:4,1], PLANE2—INHLINES, as 

[1:2,1:4,2], etc. Since, such naming is not necessary we have chosen not 

to do so. 

In 70/15 memory, each memory plane has two independent inhibit 

line loops. Thus, there are 4 inhibit line terminals per plane. 

Similarly, it has 2x4x9 output lines called, SENSEUNES, with the 

same kind of distribution as the INHLINES. The control lines are 2x64x2 + 

2x64x2 in number; the subset of lines denoted by indices [1 THRO 2, 

1 THRO 64, 1 THRO 2;] are called XDR (X-drives) and the rest YDR(Y-drives). 

These are distributed in the physical stack as follows: each substack has 

64 X-drives and 64 Y-drives, and each X and Y drive has 2 terminals in each 

substack. The schematic diagram of the stacks, reflected by the declaration, 

is shown in Fig. 4. This describes truely the structure of the stacks in 

70/15. 

The next item is the array of XFORMERS whose schematic diagram 

is shown in Fig. 5 The declaration of this schematic appears as follows. 

(The reader should see the schematic first.); 
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5. XFOHMERS NWA 

[SIZE » (2,2,8,8); 

ISIZE » (2,2,8,8,2); 

OSIZE » <2,2,8,8,2); 

CSIZE = (2,2,8,8); 

EIEISIZE a 2; ELEOSIZE » 2, ELECSIZE « I; 

^FORMERS NAMING; 

STKlXtl,1,1:8,1:8], SXK1Y[1,2,1:8,1:8], 

STK2X[2,1,1:8,1:8], STK2Y[2,2,l:8,l:8]j 

INPUT NAMING: RÜINPUT[1:2,1:2,1:8,1:8,1], 

WRINPUT[1:2,1:2,1:8,1:8,2]; 

OUTPUT NAMING: CUROUT[ 1:2,1:2,1:8,1:8,1], 

CURRETUEN[1:2,1:2,1:8,1:8,2]; 

CONTROL NAMING; CNTRIAP; ]; : - 

:- The 'voltage switches' have the schematic diagram shown in Fig, 6 

Their declaration is as follows:; 

6. VOLSWITCHES NWA 

[SIZE.« (2,2,8); 

ISIZE - (2,2,8); 

OSIZg - (2,2,8); 

VOIS WITCHES NAMING: STK1X[1,1,1-8], 

STK1Y[ 1,2,1:8], 

STK2X[2,1,1:8], 

STK2Y[2,2,1;8]; 

IHEffl NAMING; DECODEROUTPUTS; 

OUTPUT NAMING; TOCNTRIAP;]; 
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Fig. 6 Schematic of VOIEWITCHES, 
Array of 32 Switches 

a Network 
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Current switches, network array: 
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Fig. 7 Schematic of Current Switches, 

an Array of 64 Switches 

NPUT 

CURINPUT 

Jt- 

—DECODER 
t8 OUTPUT 

CURINPUT 

_ DECODER 

J8 OUTPUT 

7. CÜRSWIICHES NBA 

[SIZE - (2,2,2,8); 

ISIZE » (2,2,2,8,2) 

OSIZE - (2,2,2,8) 

CURS WITCHES NAMING: 

STK1XRD[1,1,1,1:8], 

STK2XRD[2,1,1,1:8], 

STK1YRD[ 1,2,1,1:8), 

STK2YRD[2,2,1,1:8], 

INPUT NAMING: CURINPUT[ 1:2,1:2,1:2,1:8,1], 

DECODERDUTPUTÍ1:2,1:2,1:2,1:8,2]; 

OUPTUT NAMING: I0RDINPUT[1:2,1:2,1,1:8], 

TOWRINPUT[ 1:2,1:2,2,1:8] j]j 

STKIXWRt 1,1,2,1:8 ], 

STK2XWR[2,1,2,1;8], 

STKIYWRt 1,2,2,1:8], 

STK2YWR[2,2,2,1:8 ]j 
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•" Pulse generator network array: 

RDX RDY 

PCWEROFF 

Pig. 8 Schematic of the Pulse 

Generator, an Array of 
Four Networks 

8. PUISEGEN NWA 

[SIZE « (2,2); 

ISIZE » 2; 

OSIZE * (2,2); 

GSIZE « 1; 

INPUT NAMING: RDP[lJ, WRP[2]; 

OUTmNAMNG: RDX[l,l], MRX[2,1], WRYt2,2], 

CONTROL NAMING; POWEROFF; ]; 

: - Memory timing network; 

RDP (read pulse) 

WRP (write pulse) 

INHP (inhibit pulse) 

STROBE (strobe pulse) 

Fig. 9 Schematic of Memory Timing Network 
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9. MEMTIHING Ng 

[ISXZE « 2; 

OSIZE » 4; 

IMPUI NAMING: EDC0M[1], WRC0M[2]; 

JjüIRUr IMMING; RDP[1]j WRI>[2], INHP[3], STROBE[4]j ]; 

:» Notice that this is not any array.; 

j- Decoder Network: 

MR 
OUTPUTS 

STK1X 

STK1X 

STK1Y 

STK1Y 

STK2X 

STK2X 

STK2Y 

STK2Y 

VOLTAGE 

CURRENT 

VOLTAGE 

CURRENT 

VOLTAGE 

CURRENT 

VOLTAGE 

CURRENT 

Fig. 10 Schematic of Decoder Network, with 
13 Inputs, and 64 Outputs 

10. DECODER NW 

[ I SIZE *= 13 j 

0SI2E = (2,2,2,1:8); 

INPUT NAMING: MROUTPUTS; ] ; 

:- I have omitted the output naming scheme from the declaration.; 



11. INHDRIVERS Hitó 

[SIZE = (2,7.,9),- 

ISIZE = 9; 

OSIZE = (2,4,9); 

CSIZE = 3; 

INHDRIVERS NAMING.- SIK1PATH1 [ 1, 1, 1:9 ], 

SIK1PAXH2( 1,2, Is 9], 

SIK2PAXH1[2,1,1-9], 

STK2PATH2[2,2,1:9]; 

INPUT NAMING; MROUTFUTS; 

OUTPUT NAMING; S1P1[1,1S2,1-9], SlP2[l,3:4,1:9], 

S2P1[2,1:2,1:9], S2P2[2,3:4,1:9]; 

CONTROL NAMING: MAR13Í1], MAR6[2], INHP[3]; ]; 

FOr eaCh StaCk and each path there a« 2x9 output lines: a pair for 

each one of the nine planes, one for the current output and the other for 

the return. The schematic is shown below: 
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12. SENSEAMP MA 

CM = 9; 

ISIZE = (2,9,4); 

OSIZE = 9; 

CSIZE a 2; 

TOOL NAMING: STEOBE[l], BIAS[2]; 

:PUT NAMIMG: MEMOUTj ]; 

The schematic diagram is shown below: 

riwr 

i hi i.M ftw^iiHK'iJII'i mi'i i'iii ••iki- 

M 
E 
M 
0 
R 
Y 

Fig. 12 Schematic of Sense Amplifier Array 

13. PCHECKER NW 

[ISIZE = 9; 

OSIZE * 1; 

CSIZE = lj 

CONTROL NAMING; WRCCM; ]; 

END (DECLARATION) 

FUNCTIONAL DESCRIPTION; 

s- This is to reopen the functional description module which was earlier 

closed. To describe the operation of the above hardware items we shall need 
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to define several kinds of pulses. We shall first declare these pulses. 

With each pulse one may associate the following attributes: 

1. ME amplitude, 

2. RTIMEi rise time, 

3. FTIME: fall time, 

4. WIDTH: pulse width, 

5. DIRECTION: + or 

One may declare the first four of these with tolerances. Thus, amplitude 

could be (100, +5, -5) volts.j 

DATA, DECLARATION: 

1. RDCOM P [100 NANOS]; 

2. WRCOM P [100 NANOS]; 

3. RDP P [500 NANOS]; 

4. WRP P [500 NANOS]; 

5. INH P [600 NANOS]; 

6. STROBE P [200 NANOS]; 

7. SENSE P [300 NANOS]; 

8. TIME P [300 NANOS]; 

9. RDDRIVE P [SOO NANOS]; 

10. WRDRIVE P [500 NANOS]; 

11. INHDRIVE P [500 NANOS]; 

:- For none of these pulses were we able to find the amplitude, and rise 

and fall time data from the available documentation; 

12. RDCUR P [400 NANOS; AMP = 320 MA]; 

13. WRCUR P [400 NANOS; AMP = -320 MA]; 
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:- ’MA' stands for milliampères. We have omitted writing the attribute 

mam'every time. Notice that all these pulses have the status of logical 

pulses within the language. When DIRECTION is not declared it is assumed 

positive. Notice that direction has nothing to do with the sign of the 

amplitude of the pulse. The positive direction indicates that all pulses 

go from logical value 0 to 1.; 

EM (DATA. DECLARATION) 

END (FUNCTIONAL DESCRIPTION) 

:- I forgot to declare earlier the hardware item, time, pulse generator. 

Let me declare it now; 

DECLARATION: 

14. TP NW [ISIZE = 1; QSIZE = 10; 

INPUT NAMING: START;]; ||| 

:- Xhe triple vertical bar denotes, the end of the declaration module; 

FUNCTIONAL DESCRIPTION: 

3. TP—START -> 

WHEN TP—START DO 

1. FOR I = 1 TO 10 DO 

TP—OUTPUTfl ] - TIME P; 

WAIT (200 NANOS);! GO TO 1; ! <- 

:- Notice that the pulse, ’TIME' „as earlier declared as a 300-nanosecond 

pulse. In the above statement the first ’!' denotes the end of the FOR-loop, 

and the second, the end of the WHEN-statement. The FOR-loop consists of 

applying the TIME pulse successively to the 10 output lines of the generator, 

with 200-nanosecond delay in between. After applying the pulse to the las/ 
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tih 
line (the 10 ) the entire process is repeated, because of 'GO TO l*. This 

operation will continue as long as TP--START has logical value 1. 

Thus, once the start switch is turned on the time pulse generator 

will begin producing the 300-nanosecond pulses on its output lines. The 

pattern of these pulses is shown below: 

200 NAlîOS 

300 NANOS 

_ I X ' 

<-- 200 NANOS J 

300 NANOS 
300 NANí 

1800 NANOS 
— ---4 

STG« 13 Time Pulses 

4. MEMTIMING—RDC0M -> 

WHEN MEMTEMING—RDCCM DO 

WAIT (100 NANOS); 

MEMUMING—RDPOUTEUT - RDP P; 

WAIT (450 NANOS); 

MEMTIMING--STROBEOUTPUT - STROBE P; ! <■ 

5. MEMTIMING- -WRCOM -> 

WHEN MEMTIMING--WRCCM DO 

MEMTIMING—INHPOUTPUT - INH P- 

WAIT (50 NANOS); 

MEMTIMING--WRPOUTPUT *- WRP P: ¡ <- 
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6. PULSEGEN—RDF -> 

WHEN PULSEGEN--RDP A-, PULSEGEN--POWEROFF DO 

PUISEGEN--RDXOUTPUT, PUISEGEN—RDYOUTPUT - RDDRIVE P- ' 
mum} 9 

■ * RDDRIVE pulse is to be applied to both the outputs: <— 

7. PULSEGEN—WRP -> 

WHEN PULSEGEN—WRP A -, PULSEGEN—POWEROFF DO 

PULSEGEN—WRXOUTPUT, PULSEGEN—WRYOUTPUT - WRDRIVE P; i <- 

3. DECODER -> 

:- We shall describe the I/O relationship maintained by the decoder. When 

a structure containing the decoder is invoked in a procedure, the I/O pro¬ 

cedure described here is to be invoked to maintain the decoder I/O lines 

at the proper values, every time its input value changes.; 

IF SIZE (MEM) = 4096 V -, MAR [13] 

THEN 

(FOR I “ 1 TO 8 DO PARAIT,ET, 

1. TRUE :: DECODER-OUTPUT[l, 1,1,1] - 

(I = N/DECODER- -INPUT[ 1:3] +1); 

DECODER—OUTPUT[ 1,1,2,1] - (I = N/DECODER—INPUT[4:6] +1); 

DECODER—OUTPUTt 1,2,1,1] *- (I = N/DECODER—INPUT [7:9] +1); 

DECODER OUTPUT[ 1,2,2,1] - (I = N/DECODER-INPUT [10:12] +1); 

ELSE FOR I = 1 TO 8 DO PARAT,T.RT, 

2- TRUE :; DECODER—0UTPUT[2, 1,1,1] - 

(I = N/DECODER-INPUT[l:3] +1); 

DECODER--OUTPUT[2,1,2,1] - (I = N/DECODER—INPUT[4:6] +1); 

DECODER—0UTPUT[2,2,1,1] *- (I « N/DECODER—INPUT[ 7:9] +1); 
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DEC0DER--0UTPUT[2J2,2,I] - (I = N/DECODER—INPUT[ 10:12 ] +1); :: j¡) 

/// DELAY (DECODER-DELAY); <- 

:- The IF-THEN-EIfiE statement above ...s a complex parallel statement. In 

each FOR-loop all the statements obtained for I = 1,2,...,8, are to be 

executed in parallel. For every value of I one gets four statements, which 

are contained within the parallel.autonomous statement (see Section 4.5 B2-2) 

beginning with 'TRUE : • '. This autonomous statement is to be executed un¬ 

conditionally; all the 4 statements contained within are to be executed in 

parallel. Thus, each parallel FOR-loop specifies 32 parallel statements. 

This entire set of 32 statements is to be done in a time period equal to the 

DECODERDELAY. Since, we could not get the data on this delay we have left 

it undefined.; 

9. INHDRIVERS -> 

WHEN INHDRIVERS—INHP DO 

IF -i ( INHDRIVERS-MARI 3) V (SIZE(MEM.' = 4096) 

THEN (IF INHDRIVERS--MAR6 

THEN (FOR I = 1 TO 9 DO PARALLEL 

INHDRIVERS—0OTPUT[ 1,1,1] - 

MR[I] A INHDRIVE P;! 

EISE FOR I = 1 TO 9 DO PARALLEL 

INHDRIVERS-OUTPUTt 1,3,1] <-MR[l] A INHD RIVE P;l); 

: - This puts the INHDRIVE pulse in path 1 or path 2 depending upon the value 

of INHDRIVERS—MAR6 control lines. All the 9 planes in a stack are excited 

simultaneously.; 
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ELSE IF INHDRIVERS —MAR6 

10§N I2S_I = 1 S2 9 22 PARALLEL INHDRIVERS-OUTPUTf2,1,1 

MR[I] A INHDRIVE P;1 

ELSE FOR I = 1 TO 9 DO PARATJ.KT. 

INHDRIVERS --OUIPUT[ 2,3,1] ♦- 

MR[I] A INHDRIVE Pj!)j);I <- 

:- The second stack inhibit drives are excited only if the size of MEM is 

8192 and MAR[13] = 1. Notice that the entire WHEN-statement will be active 

only for the duration of the pulse on the INHDRIVERS—INHP, control line.; 

10. CURSMITCHES -> 

FOR 

I = 1 TO 2, 

J = 1 TO 2, 

K = 1 TO 2, 

L = 1 TO 8, DO PARALLEL 

WHEN 

CURSWITCHES—DECODEROUTPUT[l,J,K,L] DO 

CURSWITCHES - -CURINPUT[ I, J, K, L] -if 

CDRSWITCHES—0UTPUT[I,J,K,L];¡: <- 

:- Notice that this establishes a connection between selected I/O lines of 

the current switch on the satisfaction of the control condition; 

11. VOLSWITCHES -> 

FOR I = 1 TO 2, 

J ■= 1 TO 2, 

K = 1 TO 8, DO PARALT.KT. 

l! 
, ■ 
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WHEN 

VOLS WITCHES - -DECODEROUT H)TS[ I, J, K] DO 

VOISWITCHES—TOCNXmP[I,J,K] - 1; 1Î <- 

12. XFORMERS -> 

EOR 1=1 TO 2. 

J = 1 TO 2, 

K = 1 TO 8, 

L = 1 TO 8, DO PARALT.RT. 

WHEN 

XFOEMERS --RDINPUT[ I, J, K, *] A XFORMERS - -CNTREAP[ I, J, L] DO 

XFORMERS - -CUFOUT[ I, J, K, L] - RDCUR Pj ! 

WHEN 

XFORMERS —WRINFUT [ I, J, K> * ] A 

XFORMERS-CNTRTÄPfI,DO 

XFORMERS--CUROÜT[I,J,K,L] <-WRCtlRP;l] <- 

13. STACK -> 

FOR I =* 1 TO 2, 

J = 1 TO 64 

K = 1 TO 64, DO PARALLEL 

WHEN STACK-CONTROLtljJ,!; I,K,1] DO 

IF (AMP( STACK—XDR[ I, J, 1 ] ) = 320 MA) A 

(AMPCSIACK-YDRtl,^!]) = 320 MA) 

THEN 

(IF ((J,K) »< 32 V (J,K) > 32) 

THEN ( SIACK--SENSE LINES [ 1,1,*] ^ 

SENSE P A STACKtl, J,K]; 
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ELSE SIA.CK—SENSEUNES [ 1,3, *] - 

SENSE £ A STACK[I,J,K]j)j)j 

IF (AHP(STACK—XDR[I,J,1]) » -320 MA) A 

(AMP(SÏACK—YDR[I,K,1]) = -320 MA) 

THEN 

(STACK[I,J,K] ^ J =< 32 THEN 

(-,( STACK—INHIINES[I,1,*]) 

. ELSE —,( STACK—INHLINES[l,3,*]))j) j 11 <— 

:- Both reading and writing of STACK has been described above in terms of 

the amplitudes of the current pulses on the X and Y drive line. The AMP 

(of a line) is that of the pulse on the line.; 

14. SENSEAMP -> 

WHEN 

SENSEAMP—STROBE DO 

FOR 1= 1T02, K=1T09D0 PARALLEL 

IF (AMP(SENSEAMP—INPUT[I,K,1]) >» AMP(SENSEAMP—BIAS) 

V (AMP(SENSEAMP—INPUT[I,K,3]) >- AMP(SENSEAMP—BIAS) 

THEN (MR[K] - 1} 

EISE MR[K] - 0j)j:¡ <- 

15. PCHECKER “> 

WHEN TP—OOTPUT[5] A PCHECKER—WRCCM DO 

MR[9] *-“i©/MR[l:8];i 

WHEN TP—0UTPUT[7] DO 

ERROR FF - -, ®/MR[l:9]j <- 

r 



END (FUNCTIONAL DESCRIPTION) 

STRUCTURE: 

:- In this module we shall describe the detailed interconnection structure 

of the subsystems of the memory. A schematic of the block diagram is shown 

below in Fig. 14. 

Fig. 14. Block Diagram of Memory System 
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1. STACK—XDR[I,8*(J-1) +K,L] - * 

XFORMERS—OUTPUT[l,1,J,K,L] /// 

1 «< (I,L) =< 2, 1 =< (J,K) *< 8; 

:- Within the bounds of the indices all the corresponding connections declared 

in statement 1 are admissible. Notice that all statements in structure 

declaration are declaratives.; 

2. STACK-YDR[I,8*(J-1) +K,L] -* 

XFORMERS--OUTPUT[I,2,J,K,L] /// (///1.)- 

:- (/// 1.) denotes 'the same restrictions as in 1'.; 

3. XFORMERS—CNTRTAP[I,J,*,K] -* 

VOIS WITCHES--OUTPUT[I, J,K] /// 1 =< (I,J) »< 2, 1 «< K »< 8; 

4. XFORMERS—RDINPUT[I,J,K,*] *-* 

CURS WITCHES—TORDINPUT[ I ;J,1,K] /// 1 »< (I,J) »<2, 1 -< K -< 8; 

5. XFORMERS—WRINPUTtI,J,K,*] <-* 

CURSWITCHES—TOWRINPUT[l,J,2,K] /// (/// 4.); 

6. VOLSWITCHES—DECODEROUTPUTS[IjJj K] -* 

DECODER—OUTPUT[1,1,1,K] /// (/// 4.); 

7. CURSWITCHES—DECODEROUTPUTS[l,J,*,K] -* 

DECODER--OUTPUT[l,J,2,K] (/// 4.); 

8. CURSWITCHES—CURINPUT[*,I,J,*] «V 

PULSEGEN[I,J] /// 1 =< (I,J) =< 2; 

9. PULSEGEN—INPUT[I] ^ MEMTIMING[l] /// 1 «< I «< 2; 

10. STACK—INHLINES[I,J,K1 ^ 

INHDRIVERS--OUTPUT[I,^,K] ///1 =< I =< 2, 1 -< J -< 4, 1 -< K -< 9; 

11. INHDRI VERS—C0NTR0L[ 1:3] -*MAR[13], MAR[6], MEMTIMING—INHP; 
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12. SENSEAMP[I,J,K] ^ STACK—SENSEUNES[l,K,J, ] /// 

1 «< I »< 2, 1 =< J n< 1 «< K =< 9; 

13. SENSEAMP--STROBE ^ HEMTIMING—STROBE) 

14. PCHECKER W; MR) 

15. MR[9], ERROR PCHECKER) 

16. MR <-* SENSEAMP. 

EM (STRUCTURE) 

OPERATIONAL DESCRIPTION: 

:- We shall define here two functions on MEM) one will be called LOAD 

and the other GET. We shall describe the execution of these functions 

operationally.) 

1. LOAD (MM, NAME R, NAME R) -> 

5“ NAME R here refers to the fact that two of the arguments are to be 

registers. The size of these registers will get defined in the procedure 

below) 

TRIGGER (TP—start)) :- This sets the TP-start control signal to 1.; 

LET 

USE STRUCTURE IN HARDWARE DEFINITION, GLOBAL: 

1 TP—OUTPUT* ». ,TP')! 

1. TP[ 1 ] A-i TP[2] :: MR, MAR - 0) ::) 

2. TP[ 1] : : MAR «- NAME (*1)) 

READ FF «- 1) ::) 

:- We have here implicitly declared a FF, called READ) 

TP[2] :: WRITE FF «- 1) 3. 
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4. WHEN READ DO 

TKIGGER (MEMEIMING--i^OM, RDCCM P); [ 

5* TPt3] :: BEAD - Oj 

6* IP[5] :: MR[1:8] - NAME (*2); 

MR[9] - PCHECKER ; 

7 * Tpt 7 ] ! : TRIGGER (MEMTIMING—WRCGM,WRCQM P) ; ; ; • 

s* TP[8] :; WRITE «- 0; ::; <- 

:- Within the structure of the memory system the trigger conmands initiated 

above will cause a whole series of pulses to be generated and applied to 

the various signal lines within the system. As these pulses travel along 

the signal paths specified in the structure, they in turn will initiate 

other actions. Finally, by the time the 8th time pulse arrives, the memory 

would have been loaded. Notice that MAR — NAME (*1), defines the size of 

MM(*D, by virtue of the size of MAR. So also, MR «- NAME(*2) defines the 

size of NAME(*2). • 

2. GET (MEM, NAME R) -> 

TRIGGER (TP-START); 

LET 

USE STRUCTURE IN HARDWARE DEFINITION, GLOBAL: 

'TP-OUTPUT' =. 'TP'; I 

!• TP[ 1] A—, TP[2] :: MAR, MR - 0; 

2* TP[1] :; MAR ^ NAME: 

READ FF - 1; - . 

3- TP[2] :: WRITE FF - 1; ::; 

4. WHEN READ DO 

TRIGGER (MEMTIMING—RDCCM, RDCOM P);¡ 

100 



5. 

6. 

7. 

8. 

TP[3] : : READ - 0; : 

TP[6] :: TRIGGER (MEMTIMING--WRCCM, WRCOM P)j 

TP[8] :: WRITE - 0; ::; 

TP[4] :: MR <-SENSEAMP--OUTPUT; : : ; 

END (OPERATIONAL DESCRIPTION) 

END (HARDWARE DEFINITION) 

END (70/15 CORE MEMORY SYSTEM, DESCRIPTION) 
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VI. A parallel processor 

In this section we shall describe a version of the parallel pro- 

cessor scheme proposed by Saul Levy [ 7 ]. The description is in the form 

of a procedure. The description is not that of a parallel processing machine, 

but is that of a scheme, which such a machine might follow. It is entirely 

functional, in terms of the string variables, which the procedure handles. 

In a sense, this description offers a contrast to the one presented in the 

previous section; the interest is purely in the processes involved, and not 

In how they are done. 

In the example we make use of the 1 PATTERN1 definition facility 

which was alluded to in Section IV-B-1. The facility is the following: 

While defining string variables, one may define the patterns of 

the string values which the variable may assume. Consider for example the 

definition.* 

1 INS ST =. OPCODE II OPI || 0P2 || OP3 || BOUNDS; '. 

This defines the string INS (instruction) as consisting of 5 parts. The 

successive parts are shown separated by the concatenation operator. The 

patterns of OPCODE, OPI, 0P2, 0P3 and BOUNDS were themselves, say defined 

a priori. The above statement in a PATTERN module indicates to the system 

the following properties of INS: 

1* The string INS should always have the said pattern. 

2. The pattern consists of five subpatterns concatenated as shown, 

each subpattern having been named as shown. 

3. OPCODE(INS), OPl(INS),..,BOUND(INS) are to be given the status 

Eg&Lfi™ functions; In a procedure one may now ask for OPCODE(INS) to 
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obtain the opcode of the string called, INS. Thus, pattern definition 

gives a naming scheme for substrings of a string. The concatenation operator 

separates the individual pattern names, for which pattern functions are to 

be formed, for a given string variable. The pattern functions will exist 

for a string only if the concatenation operator appears in the pattern 

definition of the string. Thus, BOUNDS V defined by, 

'BOUNDS V =. (INTEGER. INTEGER):' 

will not have any pattern functions associated with it. 

The name of a pattern (like OPCODE, 0P1, etc.) cannot be used 

also as the name of a variable in a procedure. All pattern names appearing 

on the right side of the ' symbol in a pattern definition statement, should 

have been defined a priori. The symbols, 

'string' (a string under quotes), 

b, operator, (, ), [, ], -, =., =., ::=, /, t, ->, <_, ,, ., ., 

I, and Í 

are treated as pattern constants. In 

'0P1 =. NAME I] [INDEX]; ' 

0P1 will acquire two pattern functions: 

NAME (0P1) and INDEX (0P1). Notice that the second pattern 

function is 'INDEX' and not '[INDEX]'j the pattern constants appearing in a 

pattern are to be stripped off, while naming a pattern. 

New patterns may be created through the use of the nondeterminiStic 

.replacement rule. Thus, 

'OPCODE' j;« ['ADD', 'SUB', 'DIV', 'MUL'}; 

defines the pattern of OPCODE as consisting of anyone of the four strings 

shown on the right. Only after defining OPCODE thus, one may use it as a 

pattern name on the right side of a statement. 
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A pattern module may not contain any other kinds of statements. 

We may now proceed to the parallel processor description. We 

leave it to the reader to understand the procedure from the description below: 

PARALLEL PROCESSOR, PROCEDURE: 

DATA-DEFINITION: 

PATTERN: 

1. 'IX ST' ::= {'I', INTEGER. (IX), IX<{+,-,*]> IX}; 

i- This statement defines the pattern of a string called, IX(index). IX 

can have as its value ’I', or an integer (INTEGER is a pattern already 

defined in the language), or IX under parenthesis, (IX), or IX + IX, IX - IX 

or IX * IX4 The definition involves recursion in the usual Backus Normal 

form sense. The use of value brackets in ({+,-,*}), denotes the value 

of the selection expression, [+,-,*} as part of the pattern, rather then 

the expression itself.j 

2. BOUNDS V =. (INTEGER. INTEGER) /// 

1 =< INTEGER (*1) =< INTEGER (*2); 

:- 'BOUNDS* is defined as a vector with two elements, which are both integers 

satisfying the indicated restriction. In a procedure one may now ask for 

BOUNDS[1] and B0UNDS[2] to call for the first or second element 

of the variable.; 

3. 0P1 =. 0P2 =. 0P3 =. NAME "|| [IX]"; 

:- This is a short form for three separate statements: 0P1, 0P2 and 0P3 all 

have the same pattern with possibly two pattern functions. One is 'NAME* 

and the other IX, The pattern '[IX]* is optional, as indicated by the double 

quotes. Thus, the value of the pattern function IX(0P2) could be sometimes 

vacuous. Since IX has now been used as the name of a pattern function, it 

cannot be used as the name of a variable in the procedure.; 



h. 'OPCODE' ;:= ['ADD', 'SUB', 'MUL', 'DIV']; 

5. INS ST H. REG ST =. OPCODE ¡¡ OPI || OP2 || OP3 || BOUNDS; 

:- Now, 'BOUNDS' has become a pattern function. So, BOUNDS[l] or BOUNDS[2] 

will refer to the latest values of the pattern function, 'BOUNDS',if such 

values exist, and BOUNDS(INS)[1] and BOUNDS(INS)[2] have their corresponding 

connotations.; 

6. AREG[I] =. MREG[I] =. DREG[I] =. OPCODE || OPI || 0P2 || OP3 

/// I >= 1J 

The indexed variables AREG, MREG and DREG have the indicated pattern. 

The index should be always >= 1. These are the local registers for the 

various adders, multipliers and dividers in the procedure.; 

7. ADDQ STV =. MUIQ STV =. DIVQ STV =. 

(OPCODE II OPI II 0P2 II 0P3 .' ... OPCODE || OPI || OP2 || OP3>; 

:- The pattern of the above string vectors has been defined as the value 

of the given string expression. The functions 

OPCODE (ADDQ[I]), 0P1(MULQ[J]), etc. 

are now meaningful in the procedure for 1 “< (I,J) ■"< DIMN (the STV).; 

8. ACAM STV =. HCAM STV ■. DCAM STV =. 

(NAME"[INTEGER]"! «/I»!/* 

NAME" [INTEGER]" ) /// I >■= 1} 

:- There should be at least one NAME"[INTEGER]" in the above string vectors; 

they cannot be vacuous. CAM stands for Content Addressed Memory. ACAM is 

the content addressed memory associated with the adders. Similarly, the 

prefixes M and D denote multipliers and dividers, respectively. The various 

adder, multiplier and divider units store their results in the ACAM, MCAM and 

DCAM respectively.; 
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9. STACK STV g, (IHS; , > >INS! ); END(PATTERN) . 

:- In the above pattern definition all the variable names (those, which 

have not been used as pattern function names) are to acquire the status of 

declared variables within the ensuing procedure« In the following module, 

1 INPUT DATA', the necessary external inputs to the procedure are listed. 

The procedure can be executed only if all the inputs listed in this module 

have been specified.; 

INPUT DATA: 

1. STACK STV [DIM VARIABLE]: 

:- The value of the string vector STACK is to be declared. Notice that its 

value is restricted to be a series of instructions of the form of INS 

(pattern definition 9). The dimension of the STV is a variable; it may 

change within the procedure.; 

2. ACAM STV [DIM VARIABLE] : 

3. MCAM STV [DIM VARIABLE]: 

4. DCAM STV [DIM VARIABLE 1: 

5. DIM(ARV); 

:- AR is a vector declared within the procedure. The dimension of this 

vector is the number of adder units to be used in the parallel processor. 

The elements of AR are bits, AR[l] * 1 if the I**^ adder unit is ready to 

accept its next job, otherwise AR[l] a 0. The vectors MR and DR are used 

similarly, with the multiplier and divider units, respectively.; 

6. DIM (MR V), 

7. DIM (DR V); 

8. AT S; 

:- This is the add time.; 

! 

P 
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9. MT Sj 

10. DT Sj 

11. ST Sj 

:- subtract timej 

END (INPUT DATA) 

PROCEDURE: 

1. LET 

1. ADDQfDIMN VARIABLE 1 ; 

2. MULQ[DIMN VARIABLE 1: 

3. DIVQ[DIMN VARIABLE]; 

4. EVENT: - We shall now declare a series of event variables; 

51 =. 1, :- The start event. Initial value 1.; 

52 *». 0; :- Fetch instruction from STACK; 

(AljMljDl) =. 0, :- Check ACAM, MCAM and DCAM* respectively, to see whether 

the operands in the •present1 instruction are available 

in the CAM’s.; 

(F1,F2,F3) =. 0, :- The above checks have been completed; 

(AQ,MQ,DQ) «. 0, :- The ’present* instruction is to be put in the add, mul., 

or div. queue, respectively.; 

F 0, :- Instruction has been attached to the appropriate queue.; 

AC V [DEIN « DIMN(AR) +1] (1, (0,...0)), 

:- AC[i] for i > 1 indicates that ACAM is available for the (i~l)St 

adder unit, to store its results. AC[l] indicates that ACAM is available 

for questioning under event Al, above. The following events MC and DC 

have similar significance for MCAM and DCAM, respectively.; 
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MC 1 [PIMN « Dj'MdÆR) +1] =. (1, <0,...0», 

DC V [PIMN = DlJffi(DR) -H] =. (1, (0,...0)) 

AR V ». 1, MR V ». 1, DRV». 1. 

(AQR, MQR, DQR) ». 1, 

:- These indicate that the ADDQ, MUIXJ and DIVQ, respectively, are ready for 

questioning,; 

FA V [DIMN(AR)] =. 0, 

:- FA[i] « 1 if the i1* adder unit is ready to store its results in the 

ACAM, otherwise, FA[i] = 0. Similarly, FM and FD are used with the 

multiplier and divider units.; 

SM V [DIMN(HR)] ». 0, 

FD V [DIMN(DR)] ». 0,,-! 

:- The ' terminates the event declaration, and 'J' the IRT-statement.; 

WHBM SI A STACK -, E NULL DO 

SI - 0* REG - STACKfl]; 

STACK - SHIFTNM,* STACK); S2 - 1; [ 

:- On the satisfaction of the condition SI A STACK -,= NULL the tasks are 

executed in the given order within the ON statement. terminates 

the ON-statement. SHIFTN is a non-cyclic shift function. Since STACK 

dimension was declared as a variable, and no 'fill-ins' has been given to 

put into the shifted positions of STACK, the stack dimension will be reduced 

after the shift. Thus, STACK acts as a 'pop-up' stack.; 

WHEN S2 DO 

S2 -0; JF BOUNDS (REG) [1] = BOUNDS (REG) [2] THEN 

(BRANCH TO(Sl); ELSE I *-BOUNDS (REG) [l]; ); 
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OPE 1 - 1 (NAME(OP 1(KEG)) )"[ <<IX(OPl(REG)) ))]" 

OPE 2 <- ,<NAME(OP2(REG))>"t<<IX(OP2(REG))»]'"; 

OPE 3 - ' (NAME(QP3(REG)) >"[ <<IX(0P3(REG)) >)]"'; 

Al, Ml, D1 - 1;1 

:- Within a statement '()' are always treated as meta value brackets. The 

values of items enclosed are to be substituted before executing the statement. 

Thus, in the third statement the value of NAME(0Pl(IiEG)) is to be substituted 

first. NAME(0P1(REG)) calls for the pattern NAME in the pattern QP1 of 

REG. Similarly (IX(OPl(REG))) calls for the pattern IX in 0P1 of SEG, and 

«IX(OPl(REG)))) calls for the value of <IX(0P1(REG))>, which Is obtained 

by evaluating the arithmetic expression. (Notice that IX could be an 

arithmetic expression.); 

WHEN Al A AC[l] DO 

Al, AC[1] *-0; 

T1,T2 - (0PE1 s {ACAm}), (OPE 2 = {ACAmJ); 

AC2 - 1; FI - 1; i 

WHEN -, Al A AC[ 1 ] DO 

AC[ 1] - 0; AC[2] <- 1; 1 

:- AG[l] indicates that ACAM is available for questioning by the program 

analyzer to find out whether OPE1 and 0PE2 are in ACAM. OPE 1 = {ACAM] 

stands for (0PE1 = any one of the elements in ACAM). The results of tests 

are stored in T1 and T2.j 

WHEN Ml A MC[1] DO 

Ml, MC[l] - 0; 

T3, T4 - OPE1 = {MOAM}, 0PE2 = (MOAM}; 

MC[2] - 1; F2 ** 1; 1 

i 
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WHEN -, Ml a MC[ 1 ] DO 

MC[1] - «); MC[2] <- Iji 

WHEN D1 A DC[1] DO 

Dl, DC[ 1 ] - Oj 

T5, T6 - OPE1 = {DCAM}, OPE2 = {DOAM); 

DC[2] - 1; F3 - 1)1 

WHEN -, D1 A DC[ 1] DO 

DC[1] - 0; DC[2] «- 1;! 

WHEN FI A F2 A F3 DO 

FI, F2, F3 - 0; 

IF (Tl V 13 V Ï5) A (T2 V W V T6) THEN 

(¢11,12,13,14,15,16) *- 0; 

IF ÍOPCODE(REG) = ’ADD’, OPCODE(REG) = 'SUB'. 

OPCODE(REG) = 'MUL', 01 "ODE(REG) = 'DlV') THEN 

({AQ,AQ,MQ,DQ} - lj)j ELSC 

STACK - STACK!REGj BRANCH TO(Sl)j);! 

:- (Tl V T3 V T5) A (T2 V T4 V T6) checks for operand availability. If 

the operands are available then the instruction in REG is ready to be put 

In the appropriate queues, and AQ, MQ,DQ are accordingly set to 1. The 

complex IF statement with In the IF condition Is an abbreviated 

form of 4 different IF statements. If OPCODE(REG) = 'ADD' then only AQ 

will be set to 1, and similarly for the other conditions within {,,,}. 

Notice that the 'ELSE' is to be associated with the first IF and not the 

second one.; 

WHEN AQ A AQR DO 

AQ, AQR «- 0; 

no 
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ADDQ - ADDQ! OPCODE (REG) || OPEL || 0PE2 || OPE3j 

AQR - 1; F - 1-1 

WHEN MQ A MAR DO 

MQ, MQR «- 0; 

MULQ - HULQ: OPCODE (REG) || OPE1 || OPE2 || OPE3j 

MQR -!• F <- lj'. 

WHEN DQ A DQR DO 

DQ, DQR - Oj 

DIVQ - DIVO! OPCODE (REG) || OPE1 || OPE2 || OPE3; 

DQR - 1; F *- 1; ¡ 

WHEN (AQ A—, AQR) V (MQ A -, MQR) V (DQ A-, DQR) DO 

WAIT; L 

WHEN F DO 

F - 0; BOUNDS(REG)[l] - BOUNDS (REG)!!!] +1; 

BRANCH TO (S2); i 

WHEN ADDQ -, = NULL DO 

WHEN AR[1] A AQR A-, AQ DO 

AQR - 0; AREG[I] - AQDQ[l]; 

ADDQ - SHIFTN(-1; ADDQ); AQR «- 1; AR[l] - 0; 

IF OPCODE(AREGtl]) = 'ADD' THEN 

(WAIT(AT); ELSE WAIT(ST); 1; 

BRANCH TO (FA[l]);i 

FOR I = 2 TO DMi(AR) DO PARALLEL .- PARALLEL indicate that in the 

range of index I all the iterations obtained for the values of I are to be 

executed in parallel.; 
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WHEK -,( A/AR[1:I-1]) A AR[l] A AQR A-,AQ DO 

AQR - 0; AREG[I] -ADDQ[1]; 

ADDQ ~ SKtFTN (-1; ADDQ); AQR - 1; 

AR[I] - OJ II OPCODE(AREG[l]) = 'ADD' 

THEM WAIT (AT) ELSE WAIT (ST);)j 

BRANCH TO (FA[l]); II 

FOR I ° 1 TO DXMM(AR) DO PARALLEL 

WHEN FA[l] A ACtl+lJ DO 

FA[I] - Oj 

ACAM - ACAMI0P3(AREG[I]); 

AC[I+1] -■ Oj AR[l] 4- 1; 

IF 1+1 = DIMN(AR)+1 THEN 

(AC[1] - Ij ELSE AC[1+2] - l;);i 

WHEN FA[l] A —i AC[I+1] DO WAIT;1 

WHEN -, FA[I] A AC[I+1] DO AC[l+l] - 0; 

IF 1+1 - DIMN(AR) +1 THEN 

(AC[ I] - 1; ELSE AC[l+2] *- 

WHEN MULQ -, = NULL DO 

WHEN MR[1] A MQR A-, MQ DO 

MQ : *- Oj HREG[ 1] - MULQ[1]; 

MULQ 4- SHCFTN (-1; MULQ)j MQR - Ij MR[l] *- Oj 

WAIT(MT)j BRANCH TO (EM[l])j'. 

FOR I = 2 TO DIMM (MR) DO PARALLEL 

WHEN -i(A/MR[ 1:1-1]) A MR[l] A MQR A—,MQ DO 

MQR - 0; MREG[I] -MULQ[l]j 

MULQ *- SHLFTN(-lj MULQ)} MQR - lj MR[l] 4-0j 

WAIT(MT): BRANCH TO (EM[I])jii 
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FOR I « 1 TO DIMM (MR) DO PARAT,T.ET. 

WHEN FM[I] A MC[I+1] DO 

BM[I] *- 0; MCAM »-MCAM:oP3(MREG[I]); 

MC[I+1] *- Oj MR[I] - 1; 

IF 1+1 o DIMN(MR)+1 THEN 

(MC[ 1] *- Ij ELSE MC[1+2] - 1;) j ! 

WHEN -, FMfll A MC[I+1] DO 

MCtl+1] - 0j 

IF I+I = DIMN(MRH1 THEN 

(MC[ 1 ] <- I; ELSE MC[ 1+2] - Ij); 1 

WHEN FM[I] A-, MC [ 1+1 ] DO WAIT: ¡ 11 

IfflEN DIVQ -, = NULL DO 

WHEN DR[ 1] A DQR A-, DQ DO 

DQR - Oj DREGtl] - DIVQ[1]j 

DIVQ - SHIFTN (-lj DIVQ)j DQR - I; DR[l] - 

WAIT(DI): BRANCH TO (FDtlj);! 

FOR I = 2 TO DIMN(DR) DO PARALLEL 

WHEN -, (A/DR[1;I-1]) A DR[l] A DQR A DQ DO 

DQR *- Oj DREG[l] - DIVQ[l]j 

DIVQ 4- SHIFTN (-1; DIVQ)j DQR <- !• DR[l] ^ 

WAIT(DT): BRANCH TO (FD[l])j!! 

FOR I = 1 TO DIMN(DR) DO PARAT.T.RT. 

WHEN FD[l] A DC[I+1] ßO 

FD[I] Oj DCAM ^ DCAMlOP3(DREG[l])j 

DCtl+1] - Oj DR[I] - lj 

IF 1+1 = DIMN(DR) +1 THEN 

(DC[ 1] - lj EIEE DC[1+2] - lj)ji 
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WHEN -, FDlX] A DC[I+1] DO 

DC[I+1] - Oj ÍP 1+1 °* DIMN(DR) +1 

THEN (DC[1] - 1; ELSE DC[l+2] - 1;); 1 

WHEN FD[r] A—, DC[I+1] DO WAIT! i ! ! 

END( PARALLEL PROCESSOR _1 PROCEDURE) 



VII. CONCLUDING REMARKS 

Our aim was to develop a formal language with adequate expressive 

power and logical structure to describe and document various aspects of a 

computing system both during its design phase and after the design has been 

completed. We have in this report discussed in fair amount of detail the 

considerations that went into the design of such a language, and the language 

features that the considerations gave rise to. Also, we have pointed out 

the need for a new language, both from the point of view of the expressive 

power necessary and the range of applications envisioned. 

The examples presented in Sections V and VI point out the variety 

of objects that one may describe in the language, and the range of kinds of 

descriptions possible* The example in Section IV explains the four levels 

of design, and shows how the resulting objects in various levels of design 

may be precisely described. 

Even though the language has a complex structure, a novice can 

easily write descriptions in it using only its more elementary facilities: 

the standard operands, and simple assignment and program control statements. 

A more sophisticated user will find more sophisticated and powerful 

facilities in the language to meet the needs of his applications* data 

structure, table and other definitions, pattern declarations, dynamic 

memory allocation facilities, autonomous statements, hardware allocation 

facilities, facilities to specify error control strategies etc. To use 

these powerful facilities appropriately the user should be well versed in 

the language, and in the implications the use of these various features may 

have on the task at hand. Generally, it is true that the language forces its 

users to have a thorough understanding of the objects they may wish to 
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describe, a desirable feature by itself. Also, it imposes on the users a 

disciplined way though at an elementary level - of organizing the descriptive 

data. The process is quite similar to the one of writing a program in a 

programming language. In the context of a design aid system the benefits 

for going through such a discipline, and going through a period of training 

are quite numerous. 

One obtains a systematic, precise and complete (in the sense of 

being simulatable) documentation of a system under design at various stages 

of its design, from product specification, to its final hardware structure, 

operation and software assists. During design one may easily keep track 

of design alternatives, design changes and changes in product specifica¬ 

tion. One may even create automatic processors to trace the consequences 

of every given change throughout an entire system. In its present form the 

language may already be used for design documentation on paper. 

Since descriptive data will be presented in a codified form, and 

filed according to a well-defined filing structure it will be possible to 

design a great variety of automatic design aids, based on a common data 

base: One may design an automatic retrieval system to answer queries, 

designers may ask. CDL1 provides a logical structure to consider the 

problems arising in such a retrieval system. Such retrieval may be direct 

retrieval of portions of descriptive data in file, or it may call for an 

analysis of a body of data to obtain the necessary answers. For example, 

a designer may want to know the commanda which use a particular register 

or network in a system; or the number of times a given bus is used in 

an instruction; or the nature of traffic pattern across a given bus, etc. 

A large number of such simple analysis tasks may be formulated and solved in 

the context of CDL1. 
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Since descriptions are supposed to be complete, at each level of 

design one may call for a simulator, to simulate the system at that level 

of design. Design alternatives may be evaluated through simulation, or 

a design so verified. An entire simulation system may be created to work 

directly from the descriptive data base. One need not write special pur¬ 

pose simulators to test each stage of a design process, either hardware 

or software. The formal system in CDL1, we believe, is adequate to create 

such simulators. 

While describing a system in CDLl, one can set up system error 

control criteria and develop error control strategies on the basis of such 

criteria. Also, we believe, it would be possible to develop techniques 

for generating automatic system diagnostic aids. In fact, this has been 

our primary motivation for developing the language itself. 

Finally, one may attempt to automate synthesis tasks in the 

context of CDLl. The synthesis may be viewed as a translation of a descrip¬ 

tion at one level to the one at its next more detailed level, satisfying the 

design contraints imposed by the auxiliary declarations of objects and 

processes made on the side. Though the feasibility of design through such 

translation has been studied [^5,8], the problems involved in the process 

have not been well understood. 

We hope to study these processes, as also those of system error 

control, diagnostic aids and simulation, during the course of our future 

work. In studies on system organization CDL1 will prove to be useful 

to describe new systems, and the associated design aid systems may be used 

to simulate and evaluate them. With our present work we have thus laid the 

foundation, not only for the development of numerous design aids of 
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immediate practical interest, but also for the creation of a powerful tool 

for research on system organization, enror control, and analysis and 

synthesis techniques. 

Our immediate next goal is the creation of a documentation facility: 

an automatic filing system. We anticipate this system to check its inputs 

for proper form and syntax and to make certain necessary abstracts of 

input data. The system is also to have an elementary data retrieval 

capability, to retrieve data called by name. Recently, the problems involved 

in the creation of such a system are being studied from the point of view of 

file flexibility, the features of CDL1 to be implemented and the techniques 

of generating syntax checkers automatically from the formal description of 

the language. This study is being conducted jointly with the Product 

Planning Group* at Cherry Hill, N. J. 

CDLl has been described formally in CDLl itself. The language 

description is itself in modules, which decompose the language into parts. 

Care has been taken in the definition of the language to make it deterministic 

(parsable in a single lert to right scan). We cannot, however, guarantee 

determinism at this time: we hope it is deterministic. The sheer size of 

the language calls for innovations in the organization of its syntax and 

format checker. We believe, the decomposition of the language into parts will 

greatly aid its implementation. 

*Donald Gorman, McAllister, and Mary Dempsy of RCA's EDP Product Planning 
Group are contributing toward this effort. 
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