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Abstract

The basic concepts of geometrical optics together with the additional aasump-

tions thal lead to the "geometrical optics approximation" are described here. The

eikonal equation is derived and the relationship of exact electromagnetic theory in
the limit as X - 0 to geometrical optics is made evident. The application of the
"geometrical optics approximation" to phase analaysis and synthesis is described

and an example of synthesis is presented. The concept of power flow in ray tubes
is used to obtain approximations to power distributions in the antenna aperture, in

the focal region, and in the far field. Ray analysis is used to determine those feed
locations in the focal region that will most nearly collimate the far-field rays that
lie in certain desirable planes. The Theorem of Malus is used to formulate the

equal path l2ngth law and applications are given. Focal surfaces (or caustics)
relative to a rectilinear congruence are defined and then used to present a geometrical

optics description of the focal region. The equations of the focal surfaces of a para-
boloid receiving a plane wave 200 off-axis are calculated and photographs of three-

dimensional models of the focal surfaces are shown.
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Application of Geometrical Optics to the Design

and Analysis of Microwave Antennas

1. INTRODUCTION

This report is concerned with the laws, principles, and procedures of geomnet-
rical optics that are applicable to the design and analysis of microwave antennas.

Geometrical optics, considered as a zero wavelength approximation to exact electro-
magnetic wave theory, is very accurate in the design a'd analysis of optical focusing
devices because optical wavelengths are extremely small compared to the aperture
dimensions of optical systems. At microwave frequencies, the wavelength is not
always relatively small compared to the aperature dimensions of microwave sys-
tems. Geometrical optics, however, although certainly an approximation is still
sufficiently accurate to produce meaningful and useful results, even for antennas
with aperture dimensions as small as five wavelengths. The advantages of certain
microwave components over existing optical components and the relaxation in
mechanical tolerance requirements due to the finite wavelength allow the exploitation
of geometrical optics analysis and design at microwave frequencies in certain cases
considerably beyond that achievable in optics. For e.mmpie, low-loss isotropic
artificial dielectrics in a wide range of index of refraction, phase and amplitude
control of sources and receivers, and aspheric as well as nonrotational symmetric
reflecting and refracting surfaces are all available to the antenna designer.

(Received for publication 5 May 1967)
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In general, geometrical optics is concerned with the analysis and synthesis

of optical systems to the approximation that diffraction and interference can be

neglected. In an isotropic medium, classical geometricaL optics assumes that the

power flows along paths called rays at a velocity characteristic of the medium and

that there exists a family of surfaces known as wavefronts that are everywhere

normal to the rays. Point-to-point correlatiop between wavefronts can be estab-

lished by the rays and no power is assumed to be present in regions where there

j are no rays. It is evident, that if all the wavefronts are given, all the rays are

determined and vice versa. Classical geometrical optics, therefore, neglects wave-

length, phase, and the vector nature of electromagnetic wave motion. For micro-

wave applications, it is most useful to extend the classical theory to include effects

of the above-neglected factors. The form of the extension is justified by the asymp-

totic solution as w - oo (X-.0) of the exact electromagnetic field equations to be

discussed in Section 3. The extension consists of introducing wavelength as a small

but finite quantity, identifying the wavefronts with equiphase surfaces, and at each

point on a ray in a homogeneous medium Introducing the electromagnetic field vec-

tor? E and H and relating them as in a plane wave propagating along the ray. We

shall refer to this extension as the geometrical optics approximation.

2. THE E;KONAL AND THE EIKONAL EQUATION

Using the geometrical optics approximation, gssume for a particular wave

motion in a scurce-iree isotropic mediumrn that the equiphase wavefronts are given

by the level surfaces of the function

j = L(x, y, z)

and that the phase b on a general wavefront W is given by

wt - 2L(x,y,z) (1)

)

where w is the angular frequency, c is the velocity in free space, and (V, y, z)

is any point on W. The function L(x, y, z) is known as the e.konal and, together

with the wavefront velocity in the medium, it completely describes the given wave

r motion from the standpoint of classical geometrical optics.

.. F



Consider a general ray path C given by the equations

x = x(s)

y = y(9)

z = z(s) (2)

where s is arc length measured along C from a fixed reference wavefront Wo

given by L(x, y, z) = 0 to a propagating wavefront W (see Figure 1). Let the

position of W along C as a function of time be given by the formula

s = s(t) (3)

where s increases with The wavefront propagation velocity v along, C is

then

v dsd (4)

The value of L(x, y, z) on the wavefront W will change. as W propagates along C.

Since time and position along C are related by (2) and (3), L(x, ., z) may be con-

sidered as a function of either s or t Thus

dL

Sds 1 (5)
dt

Since ýhe phase * on the propagating wavefront W is constant, differentiating

(1) w i t h r e s p e c t t o t y i e l d s

= d 0 GENERAL WMvEFRONT W ---- .dd_ !! •_ .•. = 0,-
dt c dt

S'

dL RAY PATH
"t (6)

SubsUtutiug {') and (6) into (5) we haveI - n (7) REFERENCE WAVEFRONT W,

Figure 1. Ray Pat-is and Wavefronts



4I! where n is the index of refraction of the medium. The partial differential equa-

tion (7) satisfied by the eikonal 1,(x, y, z) is known as the eikonal equation. 4

The eikonal equation can be used to determine the curvature of ray paths in an

inhomogeneous medium. Assume a wave motion in an "nhomogeneous medium pre-

scribed by the eikonal L(x, y, z) and let C be a ray path with arc length s in the

direction of the wave motion. At each point on C let g be the unit tangent vect6r

in the direction of s , let flpbe the unit principal normal vector, and let p be the

radius if curvature. The vector VL evaluhted at any point P is normal to the

wavefront passing through the point P. Hence, at each point on C , the vector

j VL is along C and in view of ne eikonal equation (7),

VL _ (8)

The first Frenet formult (Hildebrand, 1949) of differential geometry can be written

" 9 = -V X (VX ) =p (9)
ds . .. --

Substituting (8) into (9) we have

dq•S -9 X IV X VL X V1"O1n n) X•

and

1 d1.- • " = ft V (in n) =- f Vn. (10)
ds -p n -p

Equation (10) shows that the ray-path curvature is related to the rate of
change of the index of refraction n notmal to the ray path. In particular, for a

homogeneous medium (n constant) the curvature is zero and the ray paLhs are

straight lines.

j

3. GEOMETRICAL OPTICS AS A ZERO WAVELENGTH APPROXIMATION

For a source-free nonconducting isotropic homogeneous medium, Maxwell's

equations for the electric field E and the magnetic field H are

t.



V X E = -jwp#H (l la)

V XH -- jwcE (11lb)

SV. E = 0 0llc)

V-. H = 0 (11d)

where w is the angular frequency, E is the permittivity of the medium, p is the

permeability of Cie medium, and an e j•t time dependence is assumaed. Equations

(11la, b, c) combine to produce

V2 E + k 2 E = 0 (12)

where k = w V-is the phase constant of the medium.

To obtain a zero wavelength or high frequency approximation, the electric

field is assumed in the form of an asymptotic series (Luneberg, i944; Kline and

Kay, 1965; Kouyoumjian, 1965) in descending powers of w, as follows:
.• Er(x,y. z)

i•ejkoL(x, y, z) 00E M(xy.z

E (x,y, z, w) = e (13)

m=O (U-°)m

where E o(x, y, z) is real and k° = Li -o#° is the phase constant of free space.

Substituting (13) into (12) and independently equating to zero the coefficients of
2W and w, the highest powers of w present, yields

IVLI 2 
= n2  (14)

and

(VL .v)E + L 0, (15)

where n is the index of refraction of the medium.

Note that (14) is the eikonal equatio-n and hence L(x, y, z) is the eikonal. As

wj becomes large, the leading term of (13) predominates and becomes EHF' the

high frcquency approximation to the electric field, as follows:

EHF = ;to(x,y,z)e . (16)

Since E. (x, y, z) is real, th. equiphase surfaces L(x, y, z) = constant of E F

are identical with the wavefronts of geometrical optics. Again, the rays can be

.I ... ... .... ... ......
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defined as the family of curves normal to the wavefronts. In the present case of

an isotropic homogeneous medium, the rays are straight lines (see Section 2).

At each point on a ray _L_= S is a unit vector tangent to the ray [see Eq. (8)1.
n -

Thus,

VLd
VL V = n 1- -. V = n_9-V = n (17)

n - ~ ds

d
where T is the directional derivative in the direction of a ray with respect to

arc length s along the ray. Equation (15) can now be written

dEa 2L
,- 17 EL÷E = 0. (8

as 2 n --o

The solution to (18) along a ray through the point (xo, YO" zo) can be expressed in

the form
S

f V2L ds (19)

E o (s) = Eo(s 0 ) e

where so is the distance from a reference wavefront to the point (xo0 YO, Z ). Thus,

Eo (S) at any point on a ray is completely determined once its value is known at one

point on the ray. This is a very clear statement of the geometrical optics property

of point-to-point correlation from wavefront to wavefront along a ray. It is also

evident from (19) that the direction of E is the same for all points on a ray (ex-

cept possibly for sense).
2

Substituting (13) into (Ilc) and equating to zero the coefficient of w , the

highest power of w , leads to the result

7 L- EHF = 0 (20)

and hence E1 IF at each point on a ray is n,. ial t" the fay. Substituting (13)

into (lla) and retaining only the highest order terms in w yielas H HF. thc high

frequency approximation to the magnetic field, as follows:

H -jk VL X-EkoL -\- X EHF (21)LHHF :-j- Wg-- -0 AX9 . "H

Equations (20) and (21) show that EHF and HHF along a ray are related prccisely

as in a plane wave propagating in the direction of the ray.
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II S~Simplification of (19) is best accomplished b-v considering the vector field

F Kn A . K (22)

where at each point R, and R 2 are the principal normal radii of curvature of the
I

wavefront passing through that poirt (see Appendix A). The quantity K -
evaluated at a point on a surface is known as the Ga'ussian curvature of the surface

at that point. It can be shown that the surface integral

JF 'dA = 0 
(23)

where Z is any closed surface lying in the isotropic homogeneous medium being

considered. The divergence theorem then requires that

V. F= 0

throughout the medium and hence

(n-" V) K -KV. n• -- -KV2L.

in view of (17) it follows that

dK +V ( K 0
ds n

Hence,

fn
K(s' = e so

KI 0

Equation (19) can no%% be written

Ks(s) E~s-Y K(s) (24)- 7 0~o

By api-"ri (17) to the eikonal L(x, y, z) and using (14) we have

2 dL
VL, VL = n n Ss
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or

dL nds

For a homogeneous medium n is constant and

L = ns+Lo (?5)

Substituting (24) and (25) into (16) yields

H(so) - ) e -,k°0L°0 e--jks.(k

-HF (26)

Note that the amplitude factor4,, is precisely equivalent to the geometrical

optics power factor K shown in (B3) of Appendix.B.

4. FERMAT'S PRINCIPLE AND SNELL'S LAWS

The optical path length (OPL) along a ray patn C is defined as t"" line inte-

gral nds where n is the index of refraction of the medium and s is arc length

along C. Fermat's principle states that electromagnetic energy traveling between

two points will follow any ray path that makes the OPL integral stationary. Clearly

then, ray paths in a homogeneous medium will be straight lines.
Snell's laws of reflection and refraction of rays at a boundary surface ,

two different media can be derived directly from Fermat's principle, but will

merely be stated here. The law of reflection states that the incident ray and the

reflected ray lie on the same side of the boundary surface, are coplanar with the

' normal to the boundary surface at the point of reflection, and make equal angles
I * with the normal. Thus, 0. 0 where 0. is the angle of incidence and 0 is

1 r I r
the angle of reflection, as shown in Figure 2. This reflection law can be expressed

I in any of the equivalent vector forms

fi " (ar ) = 0, (27h)

a-r - 2-i -- f!) il (27c)

or

Sr -2( fi) fi (2d)
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where

I~ilI= I~rI =I21 I: (2'7e)

and C. is in the direction of the indicent ray, ir is in the direction of the reflected

ray, and Ai is normal to the boundary surface (see Figure 2).

REFLECTED A

AtI; A~t- "~~TRANSMITTED RAY

INCIDENT RAY - -

INDEX OF REFRACTION ni INDEX OF REFRACTION nt

Figure 2. Reflection and Refraction at a Boundary

The law of refraction states that the incident ray and the transmitted or refracted

ray lie on opposite sideŽs of the boundary surface, are coplanar with the normal to

the surface at the point of refraction, and satisfy the condition

n. sin 0 = nt sin 0t, , (28)

where ni and nt are the indices of refraction in the incident and transmitted

regions respectively and 0 and 0 are the angles of incidence and refraction

respectively (see Figure 2). This refraction law can be expressed in the vector

form

A X(ni )i nt It 0 (29)

where ni , -9. ni, and nt are as defined above and C- is a unit vector in the

direction of the transmitted ray.

Combining (27a) and (29), we have as a statement of both of Snell's laws

fiXn. A. = hXn C = fiXn C (30)
- rI - r t -

where n r = n. that is, the incident and reflected regions have the same index of

refraction.

L'
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5. PHASE ANALYSIS ANB PHASE SYNTHESIS

The geometrical optics approximation can be applied usefully to certain

problems in phase analysis and phase synthesis. An application to phase synthesis

is given in this section.

If L(x,y, z) is the eikonal function, then, according to (1), the phase 0 at a

point P with coordinates (x, y, z) is

wt =t- cý L(x, y,z/.
C

If W is the wavefront L(x, y, z) = 0 then the phase 00 over the whole wavefront

W is

00

The phase at P relative to the pnase on W , that is, the phase difference (PA

between P and W will be

L- (-;L x,y, z). (31)

Assuming that the ray through P intersects W at point P0 , then, according
to Section 4, the optical path length from P to P is defined a6

P /

OPL f nds, ,7

P0

where n is the index of refraction of the medium and the path of integration is

along the ray from P0 to P. The phase differetce 0. between P and Po

can be expressed in terms of OPL as follows:

- f jnds, (32)

0
UPJr

S 2i ,
where A0 is the free-space wavelength. Noting that X- -- and compar-

0

ing 031) with (32), it is evident that the eikonal function L(x, y, z) evaluated at P

is equal to the OPL from the reference wavefront to P . The geometrical optics

determination of phase will clearly fail in any region where two or more rays pass

through each point.

Now consider the problem of designing a point-source-fed reflector in two dimen-

sions in a medium of index n that will synthesize to within the geometrical optics

7

/
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approximation a given phase distribution along a line (Sletten, 1958). Let the point

source be located at the point F with coordinates (0, a) and let the x axis be the

line along which it is desired to achieve the phase function f (x) . If a ray reflected

from the reflector at the po-'.t P with coordinates (x, y) intersects the x axis at

the point P0 with coordinates (x , 0), as shown in Figure 3, then it foilows from

(32) that

(-) 2 + (y-a)2 +(2') n ý(Xx x) 2 + y 2  -f(x ) + C1  (33)

where C 1 is a consi-.nt that can be adjusted to control the position of the reflector

and the extent of useable aperture. For x0 fixed (33) as a function of x and y

represents an ellipse with foci at F and P . With x variable (33) represents0 0
a one parameter family of ellipses that, in general, has an envelope. To each

ellipse in the family there corresponds a unique point on the envelope where the

ellipse is a tangent to the envelope. By using the envelope as the reflector surface,

it is clear that at each point on the envelope the incident ray is precisely reflected,

as from the ellipse corresponding to that point, and hence arrives at the x axis in

proper phase.

The envelope of the family of ellipses is given by the simultaneous sol,,tio-- of

(33) with the partial derivative of (33) with respect to x0 , that is,

(x - x0)
=f(xo) . (34)S(xX) + 2IN -;072

Carrying out the simultaneous solution of (33) and (34) leads to the result

y

-a)a

xXo +• B- _- aELCO

where(35)P'AESCIIEDE PHASE f(x)

A 2-~j (C fx 0) Prdc Deie Phs Aln a1-Line

Figure 3. Geometry of Reflector to

_ _ _ _ _ __- 2 + _ _ _ _ _ _

_B (A -x-. -1

y 0(00
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and

B 2 Vn

An experimental line source feed designed by the above procedure

for off-focus feeding of a paraboloid, was very successful in producing a well-

focused off-axis fan beam.

6. POWER FLOW IN RAY TUBES

One of the important assumptions of geometrical optics is that the power flows

along the ray paths. Therefore, a ray path diagram presents an overall picture of

the power flow for a lossless source-free medium to within the accuracy of this

approximation. The totality of rays that pass through any given closed curve

constitutes a ray tube; and, under steady state conditions, the total power flowing

across any cross section of a ray tube must be constant since no power can flow

across the lateral surfaces of the cube. Thus, as a ray tube cross section decreases

the power density increases and, conversely, as a ray tube cross section increases

the power density decreases. These two cases correspond to converging and diver-

ging rays respectively. In particular, if dA is a differential area on a wavefront

W 'find if the ray tube passing through dA intersects the wavefront W' in the

differential area dA' (see Figure 4), then, the total power flow through dA must

equal the total power flow through dA'. Thus, we have

PdA = P'dA' (36)

where P is the power density at dA

w',._.- and P' is the power density at dA'1 . -dA' It iE clear that the ray tube concept of
SRAY TUIE power flow will break down at focal

points since at such points the ray tube

cross section vanishes and (36) predicts

infinite power density.

The concept of power flowing in

w ray tubes as applied to the region be-

dA tween the primary-feed and the aper-
ture is particularly useful in the design

Figure 4. A Ray Tube Between and analysis of antennas. In far-field
Wavefronts

considerations, it is also useful in the

design and/or analysis of certain shaped
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beam and off-focus-fed antenna systems. The ray tube concept finds little appli-

cation in far-field considerations relative to *ell-focused pencil beam systemsii since in such cases the pattern is determined entirely by diffraction.

7.POWER DISTRIBUTION IN THE APERATURE

* In using geometrical optics to investigate antenna aperture-plane power dis-

tributions or to design primary feeds for optimum illumination, the important

quantity furnished by the ray tube concept is an approximation to the relative

power distribution.

To determine the relative power distribution, it is necessary to know the

absolute power distribution to within only an arbitrary multiplicative constant.

Hence, if either the absolute or the relative power distribution is known on a wave-

front W (see Figure 4), then, in using (36) in the form

aA
P' t= P (37)

to determine the geometrical optics approximation to the relative power distribu-
dAi ~ tion on W' it is necessary to know to within only a multiplicative constant.

For a well-focused, point-source-fed antenna system, the usual procedure for

determining the geometrical optics approximation to the relative power distribution

on the antenna apert- re plane for a given primary feed power, pattern is to first

analyze che system when fed by an isotropic point source. All wavefronts will be

spheres for the isotropic feed and the power density will be constant over any

fixed wavefront W . Also, any differential element of area dA on the wavefront

W will be proportional to the differential 'solid angle dil subtended by dA as

measured4 at the feed. .A general ray trace of the antenna system will determine

the aperture coordinates of the exit ray, as functions of the ray direction coordinates,

as measured at the feed. These relations will determine the area dA' `n the aper-

ture pl.ne W' (assumed to coincide with a wavefront) that corresponds to the dif-

ferential element of area dA in the wavefront W. Since dfl = KdA, where K
dQt dA

is a constant, the quantity d is proportional to d and can therefore be used in

the calculation of the relative power distribution on W'. If the primary feed has a

relative power pattern P(0, 4p), where 0 and 0 are the ray direction coordinates,

then the geometrical op+ics approximation to the relative power distribution on the

aperture plane is pro~portional to P(O, 4)) L- , where (in theory) 0 and 0 can

be expressed in terms oi the aperture coordinates.

The geometrical optics approximation to the relative power distribution on the

aperture of a weifo-2oused, line-source-fed cylindrical antenna system can be
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determined by procedures analogous to those used for the point-source case. It

will be assumed that the relative power pattern of the line-source feed is of the

form P(O, z) = g1 (O)g 2 (z) , where z is the linear coordinate parallel to the feed

line and 0 is the angular coordinate around the feed. Since the antenna system

is cylindrical, all rays from any one point on the feed line remain in a plane nor-

mal to the feed line and, in all such planes, ray trace diagrams are identical.

Thus, power will only flow parallel to these planes and the identity of the ray

trace diagrams guarantees that the relative power distribution on the aperture

plane in the z direction will be proportional to g 2 (z) . This reduces the problem

by one dimension and leads to the consideration of the power flow in a typical plane

normal to the feed line. For a feed isotropic in 0 , the wavefronts are circles and

the power density on these circles iB uniform. If ds is a differential element of

arc length on a fixed wavefront C and if dO is the differential angle at the feed

subtended by ds, then, since C. is a circle, it follows that ds is proportional

to dO . A general ray trace will relate 0 to h , where h is the exit ray aperture

coordinate normal to z ; this relation will determine the differential element oh

in the aperture plane (assumed coincident with a wavefront) that corresponds to ds
dOSince ds - K' dO where K' is a constant, it follows that -h is proportional tods

Sand can therefore be used in the calculation of the relative power distribution

on the aperture plane with respect to the h coordinate. For the given feed with

relative power pattern P(9, z) = g1 (0)g 2 (z) , the geometrical optics approxima-

tion to the relative power distribution on the aperture plane is proportional todO
g 1(0)g 2 (z) -e, where (in theory) e can be expressed in terms of h.

As a simple example of this procedure applied to a cylindrical system, con-

sider a parabolic cylindeýr reflector of focal length f with its focal line coincident

)y with the z axis. Figure 5 shows a

central plane section of this reflector

with polar coordinates (r, 0) describ-

ing the reflector surface and the linear

do coordinate h designating position in

dh the aperture plane x = 0 . The equa-

tion of the reflector surface in (r, 0)
X coordinates is

2f 2
-4PARABOLIC r= 1+ cos 0 = f sec2(0 /2).

APERTURE PLANr' CYLINDER
SSECTION The primary feed located at F (see

Figure 5) is assumed to radiate uni-

formly in 0 and all rays originating
Figure 5. Central Plane Section of a
Parabolic Cylinder Antenna at F are assumed to be reflected
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parallel to and in the direction of the negative x axis. Thus,

h = r sinr = 2ftan(0/2)

dh = f sec 2 (O/2)d9 - rdO

and

dO _ 1
dh r

If the given primary feed has a power pattern P(O, z) = g9(0)g2 (z), then, Pa'

the geometrical optics approximation to the relative power distribution on the

aperture normalized at the center of the aperture, is given by

P g 1 (O)g 2 (z) (38)Pa =r gl(0)g2(0) {8

This is certainly a correct result from the geometrical optics standpoint since it

clearly demonstrates that the power spread3 radially, that is, inversely propor-

tional to distance, only in planes normal to the feed line and only over the dis-

tance from the feed to the reflector, that is, over the distance r . After reflec-

tion, the rays are collimated and no more spreading takes place out to the aperture

plane.

8. POWER DISTRIBUTION IN THE FOCAL REGION

In the analysis of an imperfectlyefocused antenna sucn as a spherical reflector

or an off-axis-fed paraboloid, it is frequently desired to obtai.x an estimate of

the relative power distribution along some focal surface or curve in the focal re-

gion. In this case, the ratio of a differential element of surface area of the incoming

plane wavefront to the corresponding differential element of surface area or arc

length in the focal region is an estimate of the relative power distribution on theii appropriate focal surface or curve.

Consider, for example, the problem of determining the power distribution

along the axis of a spherical reflector of radius 'a illuminated by a plane wave

incident along the axial direction (see Figure 6). By symr etry all ray-, after

reflection pass through the reflector axis. The height h of an incident ray and

the coordinate z of the intersection of the corresponding reflected ray with the

reflector axis are related to the angle 0 as follows:
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h =asin0

and

a

Z = 2 cos 0

INCOMING PLANE WAVE

SPHERICAL = ed~~~'
REFLECTOR =-h

REFLECTOR AXIS dz

REETRCNTER OF
CURVATURE

Figure 6. Central Section of a Spherical Reflector

Hence,

.2 =a 2  1_a 2 (39)

4z

The differential area dA generated by re rolving the line segment dh about the

refl-ector axis is

dA = 27rh dh.

All incident rays passing through dA will., after reflection, pass through the

differential line element dz. Thus, the power distribution P along the reflector

axis is

P = B 2r hBdh (0dz 2 hdz (0

where B is a constant. From (39) we have

,•~
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2h dh = a_4

5h j2z

and (40) becomes

4.Ba
P r= a

2z3

From (39) we have

lir z = a/2 . (41)

h-.0

This is known as the paraxial focus point. Normalizing the power distribution to

unity at the paraxial focus point the relative power distribution Pr along the re-

flector becomes

3

r z3Z

9. POWER DISTRIBUTION IN THE FAR FIELD

In the use of the ray tube concept to approximate antenna far-field power

patterns, the underlying assumption is that the radiated power after it leaves the

final surface of the antenna flows along ray tubes- not only up to the aperture plan4

but indeed on out into the antenna far field. This assumption is clearly invalid for

well-focused antenna systems, that is, for systems all of whose exit rays are nearly

parallel, since in such cases the pattern is determined entirely by diffraction.

Howevrer, for 3ystens that are not well-focussed in one or in both planes, the ray

tube concept provides a useful approximation to the relative far -field pattern. In any
plane in w -dch *he exit rays are not parallel, the power flow per '.nit directional angle or

per unit solid angle in the exit ray system is determined by the ray-tube concept

as a function of angular direction; this function, after appropriate normalization,

is the geometrical optics approximation to the far-field antenna pattern.

As an example of the use of this far-field spproximation, consider the design

of a iine-source fed cylindrica] reflector to produce a fan beam of prescribed

shape (Spencer, 1943). Let S be the plane of symmetry of this antenna normal

to Lhe line source. The cylindrical geometx y guarantees that all exit rays lying

in planes normal to S are parallel and therefore S will be the plane of the fan
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beam. It is desired to determine the shape of the reflector cioss section that will

cause ray dispersion in the plane of S appropriate to nroduce the prescribed

fan beam shape. It is assumed that the primary feea pattern Pf(0) and the de-

sired secondary power pattern P(O) are gi'•en. The angles 0 and 0 are mea-
sured positive clockwise in the plane of S . (See Figure 7a. ) For practical pur-

poses, the useful portion of the primary fked pattern P f(0) lies between its -10 dB
points and will be designated by the interval 0 1- 0 n 0 . Generally, the function

12'
P(o) vanishes everywhere except within some interval, say 01 1- 0 -2 ' where it

takes on a prescribed ivr~rn. Thus, rays from the line-feed incident on the reflec-
tor with inclination angle 0 , 0 1" -0 02 must produce reflected rays ;ith in-

clination angle 0, o 1 ._ 0 OP2 (see Figure 7a).

The problem now is to determine a one-to-one correspondence .;e-ween the

incident and reflected rays-that is, a function o =(0) such that -he reflected

ray system has a power distribution corresponding to P(O). In a differential sec-

tor dO of the incident ray system, the power flow is proportional to Pf(0)dO;

in a corresponding differential sector do of the reflected ray system, the power

flow is proportional to P(4) do. Thus,

• Pf(0) dO = KP (0) do

wht re K is determined by the relation

J 02 o/ 2

It f Pf() dO = K P(O) do
01

which is equivalent to requiring equal total powers in the incident and reflected ray

systems. We also require the power in the incident ray system in the interval 0 1

to 0 to be equal to the power in the reflacted ray system in the interval 41 to P.

Thus,

• Pf (0) dO f P( o) d o 42
0 0

Jrf~1UU ~~I~u4~(42)
01

Pf?0) dO P(O) dd
1 . f

and this expression determines the required relationship 0 =( 0) .

We now turn to the determination of the equation for the reflector curve. With

the reflector curve denoted by r = r(0) we have from Figure 7b

tt

~ -,. -~- - ~- - - ---- - . '-- --,t-
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tanr rdO

and

+~ 0
2 2

T• Feeo

FEED

REFLECTOR *Zzzzzz::

Figure 7a

REFLECTOR " '

II- \ FEED

Figure 7b

Figure 7. Shaped-Beam Reflector Geometry in the Plane of Symmetry S
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Thus,

rdr cot (0..j2 diO cot [-..~~JdO

or

0Iln i)r fcot dB.~! (43)

"vhere

r = r(0).

Equation (43) determines the desired reflector curve to within a radial scale factor

1. Overall physical dimensions, as well as the requirement that the reflector be

in the far field of the feed, establish s range of permissible values for ro .

Generally, the function Pf(0) is given graphically while P(0) may be given

analytically, graphically, or numerically. Therefore, in most cases numerical

integration will be required to determine p - 0(8) from (42) and the resultant

relationship will be expressed in numerical form. Numerical integration will be

reouired to solve (43) for the reflector curve r = r(9).

* i 10. REFLECTION FROM A CONDUCTING SURFACE

In an isotropic homogeneous medium, the geometrical optics approximation

assumes that the energy propagates along the rays as in a planto wave. To within

this approximation, therefore, the field vectors E and H along a ray are relatedI as follows:

S - EXH* E 2S (44b)

S E -- H = E- H = 0 (44c)

where S is the Poynting vector and A is a unit vector in the direction of the ray

(see Figure 8). The magnitude of E (and hence of H and S) is prescribed by

(24).
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With the above assumptions, con-

sider reflection from a smooth, be irel
perfectly-conducting surface V Let E

E i be the electric field incident on V
along the ray direction § . let E rbe

the electric field reflected from V

along the corresponding ray direction Electric and

g and let ft be the unit surface nor- Along a Ray Path

mal to V (see Figure 9).

INCIDENT RAY

to, AREFLECTED RAY

INCIDENT RAY TU E REFLECTED RAY TUBE

Figure 9. Incident and Reflected Electromagnetic Fields
and Ray Tubes

Consider a differential area dA on V . Let dA. be the differential cross section1

of the ray tube incident on dA and let dAr be the differential cross section of the

ray tube reflected from dA. Evaluaiting dA. and dAr at V, we have the fol-

lowing relations:

dA= dAi dAr

SIsSince Snell • law, (27b) gives

SiI =" "rl

Ii
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we have

dA. dA
1 r

and hence at V

I~ii =I~rl.(45)

The continuity of the tangential electric field at the surface V requires

fiX(Ei+ Er) = 0 (46)

and the plane wave assumption requires

EE. = S E = 0 (47)-i - i -r - r "

It follows from (45) and (46) that at V

fi - (Ei-Er)E 0 (48)

and

E = 2 (l E.) f-E. (49a)
-r .. I-1

or

E = (ft E) fi - fAX(E XfA) . (49b); -r . . . . ..--i

The magnetic fields H. and H at V are given by (44a) and (49a) or (49b).
1 -r

The above results show that,under the assumptions made,the reflection process

locally at each point of V is equivalent to plane-wave reflection from an infinite

S1conducting plane tangent to V at the point (Silver, 1949). The assumptions of

plane-wave propagation along rays and local reflection behavior as from an infinite

plane lead to useful approximations of the polarization' characteristic3 of reflector-

type antennas.

11. RAY COLLIMATION AND OFF-FOCUS."EEDINGI Consider a focusing system fed by a point source not necessarily located at a

focus point and let a be a unit vector in the direction of the general exit ray.r

I,
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The components of f will be the direltion cosines of 'he exit rays, that is,

gr = cosa +cos + cos 2
-r .... +osy~ °

A different set of exit rays and associated direction cosines is generated for each

different feed position. If the direction cosines are considered as functions of co-

ordinates u and v that designate the rays-for instance, exit aperture coordinates-

then total collimation of the rays is characterized by the conditions

a Cosa _ a Cos a cosy (50a)

j ' and

acosCf_ acos 3 cosY(
av av av

All exit rays are totally collimated and the above conditions hold for all u and v

in the on-focus case for a perfectly focusing system. Overall total collimation does

not occur in the off-focus case; but, there may be conditions under which partial col-

limation is achieved for certain families of rays. Rays will be considered to be

pa- tially collimated if they are all parallel to the same plane; rays that are all

parallei to two nonparallel planes will be totally collimated. Requiring any one

of the direction cosines to vanish will determine conditions for partial collima-

tion relative to one of the coordinate planes; for instance, setting cos a = 0 will

determine for each different feed position the rays that are parallel to the plane a = i/2,

that is, the yz plane. The location of these partially-collimated rays is parti-

cularly important in antenna design, as it determines those portions of the focus-

ing system that are the most effective in achieving partial collimation.

In practice, most focusing systems nave a plane of symmetry U and all rays

leaving the feed in U will remain in U . Therefore, these rays are partially

collimated. If U is taken to be the yz coordinate plane, as shown in Figure 10,
each ray in U can be designated by the angle 0 at which it leaves the feed point

(0 , Yo ' z0 ).

Applying the geometrical optics concepts of pover flow in the far field as

described in Section 9 to the two-dimensional case of the rays in U , the power

density P per unit angle 4 at a range R is given by the expression

p K G(O) (51)

dO
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where K is a constant and G(O) is the

EXIT RAY feed power pattern iM U. This expres-

sion gives a rough estimate of the far-

- field power pattern in the plane of U,

provided - / 0 . If the exit ray at

- angle k = 00 corresponds to the ray
z leaving the feed at angle 0 = 0 the

00

(01 Y1 ZO) condition

FCSNG SYSTE EDPON - =0 (52)

Figure 10. Section of Focusing
System in the Plane of Symmetry U determines the feed position that will

produce local collimation of the rays in

U that are in the neighborhood of the exit ray in the direction k = 0o. Under these conditions,

geometrical optics predicts an infinite singularlity in the far-field pattern, which may
R:E • be interpreted as a power pattern maximum in the direction q5 = €o ; but, relative

magnitudes obviously cannot be determined without, the use of diffraction.

12. CONGRUENCES AND THE EQUAL PATH LENGTH LAW

A two-parameter family of curves constitutes what is known in differential

geometry as a congruence. The member curves of a congruence are called genera-

tors. If these generators are straight lines, the congruence is denoted as recti-

linear. Furthermore, if there exists a surface that is normal to all the generators,

the congruence is designated as normal. Thus, in a homogeneous isotropic medium,

the normals to a wavefront-that is, the rays themselves--constitute a normal

rectilinear congruence. It can also be shown that a normal rectilinear congruence

possesses not just one normal surface but a whole family of normal surfaces

-- (Eisenhart, 1960, p. 393); these surfaces, of course, correspond to wavefronts

of the corresponding ray congruence.

Rectilinear congruences are not necessarily normal and, therefore, the Theorem

of Malus (Eis.enhart, 1960, p. 403) is of fundamental importance in ray-path analysis.

9 This theorem states that if a family of rays, initially a normal rectilinear con-

gruence, is reflected or refracted any number of times by successive homogeneous

isotropic media, the rays will continue to constitute a normal rectilinear congruence.

Therefore, for antenna systems satisfying the condition' of this theorem, both

incident and exit wavefronts are guaranteed to exist. Since wavefronts are equi-

phase surfaces, it follows that between any two specifir'wavefronts the optical path

lengths along all ray paths must be equal; this is a mos4 important result and forms

Ii

I!
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the basis of the equal path length law and the associated design procedures appli-

cable to reflection and ref'-action.

Consider the problem of designing a reflector R passing through a given point

P0 that will reflect a given incident wavefront W into a desired reflected wave-

f ont W' (see Figure 11). The desired reflector surface is given by the locus of

points P determined by the condition

d+ d' = d + d' (53)
0 0

POP
It is very important to note here that Snell's

law of reflection will automatically be satis-
fied at the reflector surface. In the corres- N d. W1

ponding refraction problem, it is desired to

determine the boundary surface S between W

two different homogeneous media passing

through a given point P0 such that a given Figure 11. Wavefronts and Rays for

incident wavefront W is converted into a Reflection From a Curved Surface

desired refracted wavefront WI (see

Figure 12). In this case, the surface S is the locus of points P determined by

the condition

nd+ n'd' = nd + n'd' , (54)
0 0

and Snell's law of refraction will automatically be satisfied at the interface.

d d

W

INDEX OF INDEX OF
REFRACTION n REFRACTION nt

Figure 12. Wavefronts and Rays for Refraction
Through a Curved Interface

In both of the above-mentioned procedures, it is necessary that the reflecting

or refracting surface be located in a region where through each point there passes

not more than one ray of the incident ray congruence and not more than one ray of

the reflected or refracted ray congruence. If this restriction is violated, it will

11'1 ýRgwm
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not be possible to design a reflecting or refracting surface that satisfies the equal

path length requirement along all rays.

As an example of the application of the equal path length law, consider the

design of a reflector to correct for the inherent spherical aberration of a spherical

reflector (Holt and Bouche, 1964). Let the radius of curvature of the spherical

reflector be %" and let the center of curvature be the origin. With the x axis as

the reflector axis, an incoming plane wave along the x axis is assumed; the yz

plane is the reference wavefront. The spherical reflector, the corrector, and the
associated ray system are all radially symmetric about the reflector axis; there-
fore, all sections in planes through the x axis are the same (see Figure 13).

y
* GENERAL RAY CORRECTOR

REFLECTORCAXI

CENTER OF CURVATURE 2.

f8

0~~~ V'0. (b)0

REFERENCE WAVEFRONT 0

SPHERP",•L REFLECTOR

Figure 13. Spherical Reflector Section in the xy Plane

To fix the solution, let V with coordinates (a, 0) be the vertex of the reflec-

tor, let V' with coordinates (a', 0), a 1_- a/2, be the vertex of the corrector, and

let F with coordinates (b, 0), b >a', be the final focus point. The condition

a'-< a/2 guarantees that the corrector will lie in a repion where only one ray of
the incident ray congruence and only one ray of the reflected ray congruence will

pass through each point.

Applying the equal path length law to the general ray QPP'F and the axial

ray GVV'F , we have

ýP + TPPI + PFF -5-1:1+ T7• + V'F

or

a(cos 0)+ + 2x'-x +y y) 2 + 2 a+b-2a
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where

x = acos 0 , y a sin 0 , and y'- y = (x'- x) tan 20

Solving for x' and y', we obtain-

x1 = acos 0 -n2 cos2 0 -4a(a-a') cose- (a 2 + b 2) +(2a+b-2a') 2J (2 cos 2 e - 1)

4(b cos 29 - a cos 0 - a' + a)

(55a)

y, = + (2x' cos_0 - a)(sin 0) (55b)
(2 cos 0- 1)

These are thr coordinates of the corrector surface in terms of the parameter 0

Provided a' and b lie in the indicated ranges, the answer given above is valid

and unique. (The + sign for the y' value merely indicates symmetry with respect

to the x axis.)

13. FOCAL SURFACES

Let us consider a wavefront W and its associated ray congruence. Let P be

a point on W and let PN be a line segment normal to W (see Figure 14). If CR

is a line of curvature of W with p = R 1 at P (see Appendix A), then in the near

vicinity of P the normals to W along C R appear to converge to a point Q 1 on

PN on the concave side of C at a distance R from W. Similarly, if CR 2
C1l dsacR 1 fro W.

is a line of curvature with p = R 2 at P , then in the near vicinity of P the normals
to W along CR 2 appear to convergc to a point Q 2 on PN op the concave side of

CR 2 at a distance R 2 from W . Thus, to each point P on the wavefront W

there is assoc:ated a unique pair of points Q 1 and Q2 on the normal line PN.

These points are called focal points; in general, the totality of all these points

constitutes two surfaces which are called focal surfaces or caustics. These surfaces

may de,,enerate into such forms as a single surface, a surface and a curve, a single

curve, or a single point. It is important to note here that the focal surfaces are the

same for all wavefronts of a particular ray congruence.

The focal surfaces cin also be described in terms of the envelopes of certain

families of rays. A family in this case consists of the totality of rays passing

throgh a particular line of curvature of W , - ruled surface so constituted is

known as a principal surface. Two typical families are shown in Figure 14. It is

characteristic of each family that it envelopes a curve in space (SI and S2 in

Figure 14). It can be shown that each of these spaze curves lies on a focal surface;
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thus, the rays of a congruence are tangent to the focal surfaces ilong these envelope

curves. The totality of all the envelope curves constitutes the focal surfaces.

In any specific problem regarding

the determination of focal surfaces,

either a ray congruence or a wavefront
will generally be given. Since all wave-

fronts can be determined from the ray

"congruence and vice-versa, these two

forms of tne statement of the problem

. •I• are entirely equivalent. In actually
carrying out the computations to obtain' ' I I

/ the focal surfaces, however, the form

E P 1 al of the statement of the problem and the
JWauf s1 --- , / functions involved will determine the

best solution procedure. Two proce-

dures will be given here-one particularly

"'iii applicable when the wavef.ont is given

and the other applicable when the ray

EN•VELOPE s2 congruence is given.
Consider the problem of determining

the focal surfaces given a wavefront W

in the form

N P = x(u,v) ý+ y(u v)j+ z(uv) z

Figure 14. Ray Paths in the Prin- where P is a vector from the origin to
cipal Planes a point P on W and u and v are

curvilinear coordinate3 on W. The nor-

mal vector to W aL P is given by

N = PXP ,

where the subscripts denote partial differentiation and the expression is evaluated
at P. To each of the two lines of curvature CR and C through P there

corresponds a principal unit normal vector. These unit vectbrs will be in the

directien of N or -N, whichever points to the concave side of the correspond-

ing line of curvature. Let nI be the principal unit normal for CR and let

be the princiý -1 unit normal for C R2. The principal normal radii of curvature

R1 and R2 it W at P are given by the solutions to the quadratic equation
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(eg- f 2 )p - (Eg - 2Ff + Ge)p + (EG -F 2 ) 0

where

E P u P' e = (Puu N)!D

F =P u P v f = (P uv N)/D

G P P g = (P, N)/D,

and D 2 EG-F 2 = N" N

The sdbsczipts in th. above expressions denote partial differentiation. The focal

points of W at P will then be given by the formulas

•I: q• = P+R 1~.

and

2 = P+ R 2-n.

As P ranges over W, the above formulas determine the focal surfaces.
The problem of determining the focal surfaces for a given ray congruence is

now considered. A ray congruence is, in general, specified by giving the ray

direction at eacr. point on a eference surface-the reference surface not necessarily

being a wavefront. Let the reference surface V be given in the form

R n x"', v)R+y(u,v) +z(u,v)2, (56)

where R is a vector from the origin to a point R on V . Let the ray directions
at each poi t on V be specified by the unit vector function

w = w_(u, v) .

If L is the ray through R , the distances ct and a 2 from R along L to the

focal surfaces are given by the solutions to the quadratic equation

(EG -F2)• + (qg_ - 2 Ff+ .G': ! + (e g.-_k57)
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where

E = Wu wu, e Ru u

F = w fkR wk = (58)
u vW , V g-V

-f v -V"v "v

with the subscripts denoting partial differentiation. The focal points on L will be

Q1 =R+ flw (59n,)

and

Q2 = 2f2 (.59b)

As R ranges over V, the above formulas determine the focal surfaces.

Consider, for example, the determination of the focal surfaces or c/,ustics

produced when a paraboloid of revolution receives off-axis (Parke Mathematical

Laboratories, Study No. 3, 1952). Let the paraboloid of focal length f be located

with its vertex at (0, 0, f) and its focus point at the origin and let the' incoming rays

be in the direction

-. = - I +Cny+cosa Y

as shown in Figure 15. The paraboloid

surface will be considered the reference

surface and in terms of the parameters

r , P its equation is

xX x r cos n

zz 4f2 - r2
x• • = ~4f '(0

Applying Snell's law, (27c), at the re-
PARABOLOID .2 y2

. -4f(Z-I) flector surface leads to the reflected

Figure 15. Geometry of Paraboloid ray directions
ReceivAng a Plane Wave Off-t~xis

Ii

rij

Ii•
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!r x- + +az , (61)

S~where

a =a2r
2 siny sir. Ocos d- 4rf cos y cos p

x ~ 22x r + 4f

sn2r2  y sin2 - 4rf cos - sin 6ry r + 4f2 sin -y (62).

a 4rf sin.T sin 0-.8f2 cos2+Co -

r + 42

Rith

r cs 2+ rsif2 .2 r2
R = co € t~r in ,92 , and w -- A

the equations (60), (F,1,:, and ,2) -onti•t -ate a normal congruence in the •suai ;orm

of a reference surface with ray dir-ct_,ons specified -,ý each poiht on Ch1 reference

surface as . funct;,,n of ?urvtinear coordintces. The seccnad prc~cedure 1o1 Jeter-

mining the focal curfaces ;s, th-refore, the moT t applicable in this case.

T:'c fundame:,tai ,uacn.ties becorm,.
9

i2f2cos•y + .2n 2 2E = iff krOS + sn -y sin Oj

F = (16rf 2 3in 2 %- sin 0 + 8:'2f sin -v cos - cos <,)/A2

G = 4r 2 [r2+4f2 -(2fsiny sin 9-) r cos:) 2 /A 2

and

_= 2(r siny sin -2f cosy)/A

f =0

9

g_ = 2r(r sin-y sin • - 2f cos y)/A

where

A = r
2 +4f
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Substituting into (57) Rnd solving f,' p (with much labor), we obtain

t2 + sin 2Y + 8f2Ml = 2 (2f cos7y - r sin - sin d,'

-4rf si. rcosy sin 0 ± (r2 + 4?) sinn7y

(rr2 - 4f2 ) cosy +4rf ein ysin Pj2
S~r2 + 462

Equations (59a -nd b) then give the focal surfaces in terms of the curvilinear coor-

dinates (r, :).E In terms of cartesian coordinates (x, y, z) on the paraboloid surface, the equa-

tions for the focal surfaces become

+-x--, y 2f - z) sin-Y

(+ z-B 1 2fo- y ) cos, (63)

~z-2f 2cos y- ysiny

where

B 2f- z+cos-y (z cos y, - y sin -) +(2f-z)s 1- cos -ysinz
Sf All 2f-z

(64)
Calculations for the particular case y = 200 have been carried out ana the

focal surfaces calculated and constructed (Parke Mathematical Laboratories,

Report No. 1, 1952). Figures 16a, b, and c show the focal surfaces individually

"and sup'.rimposed.

"14. GENERA.. COMMENTS ON FOCAL SURFACES

The normals to a wavefron- through a line of curvature tend, in general, to

focus on one or the other of the two focal surfaces. The physical extent of the

focal surfaces is, therefore, a measure of the focusing ability of the ray congruence

associated with the wavefront. If the focal surfaces are extensive and far apart,

the focusing is poor; ff the focal surfaces are small and closely spaced, the focus-

ing is good. If the focal surfaces degenerate to a line or to a point, the focusing

may be considered as perfect. dependJing or, the application.
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P~

4 Figure 16a. Paraboloid and One Focal Figure 16b. Parapoloid and a Second
Surface Focal Surface

F

Figure 16c. Paraboloid and Composite of Focal Surfaces

Figure 16. F'.•-l Surfaces of a Paraboloid Receiving a Plane Wave 200 Off-Axis



If it is desired to receive the energy of a converging wavefront by means of a

point source, the optimum position for the point source will, in general, be either

on one of the two focal surfaces or between them. Regions where the focal surfaces

are close together or intersect generally have high energy density. Degenerz.te

j focal surfaces are also regions of high energy density. Since 6vcry ray is tangent

to each of the two focal surfaces, the total energy in the wavefront can be collected

p by locating properly-phafsed receivers on one or the other or on parts of both of the

focal surfaces.

For purposes of low side lobes in a focusing system there generally is

a power taper across the wavefront whether considered in the focal region

or in the aperture plane. This taper places greater importance on the rays through

the center of a focusing system-that is, rays near the chief ray-than on rays near
the edge of the system.

In general, the existence of two distinct focal surfaces in the focal region of a

focusing system indicates the presence of astigmatism. For each different direc-

tion of incoming energy, the separation of the focal points " I and Q2 (see Figure 14)I along the chief ray is particularly important because it is a measure of the astigma-

tism in a region of high power density. In most one-dimensional scanning systems,

the plane of scan is a-plane of symmetry of the system and also a principal surface

,& of all ray congruences in the focal region. The other principal surfaces for all

chief rays in the plane of scan will be normal to the plane of scan, As the direction

of the incoming energy changes in the plane of scan, the two focal points associated

* with the chief ray describe two curves. Rays in the plane of scan near each chief

ray will focus on one of these curves, known as the T (tangential) curve, while rays

near the chief ray but in a plane normal to the plane of scan will focus on the other

curve, known as the S (sagittal) curve. The separation of the S and T curves

is thus a measure of the astigmatism along the chief ray for directions of incoming

energy in the plane of scan and hence is an indication of the scanning capability of

the system. if the S and T curves are close together, beam scanning can be ac-

complished by point-source feeding along a mean curve between the two. If multi-

ple beams broad in the plane of scan but narrow in the other dimension are de-

sired then point-source feeding along the S curve will produce the desired result.

If multiple beams narrow in the plane of scan but broad in the other dimension

are desiredthen point-source feeding along the T curve will produce the desired

result.
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4Appendix A

Principal Normal Radii of Curvature, Principal Directlons, Principal PNanes,
and Lines of Curvature

Let P be a point on a surface W and let PN be a line segment normal to W

at P (see Figure Al). Each normal plane through PN intersects W in a curve

"C and each curve C has a unique radius of curvature p at P. In general, for

each point P there is also a unique position of the normal plane, such that the
k intersection curve C = C 1 has a radius of curvature p = R at P that is maximum

(see Figure A2). Similarly, there is a unique position of the normal plane, such that the

Sthe intersection curve C = C 2 has a radius of curvature p = R2 that is minimum.

These extreme values R and R are called the principal normal radii of curva-

ture of W at P; the directions of C 1 and C 2 at P are knowr is the principal direc-

tions of W at P; and the normal planes whose intersect with WV produce C1

and C2 are called the principal planes of W at P , A ve on W that at each

point has a direction corresponding to a principal direction of W at tnat point is

known as a line of curvature of W. It can be shown that the principal planes at each

point are mutually orthogonal and hence the two families of lines of curvature form

an orthogonal curvilinear coordinate system on W

(

*1.
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Appendix B
Geometrical Optics Power Flow in a Source Free, Nonconducting,

Isotropic, Homogeneous Medium

The ray paths for this case are straight line3 'see Section 2). In Figure B1, P

is a point on a wavefront W, P I is the corresponding point on the wavefront WI,

and d is the distance from P to P.

The differential element of area dA on , C,

"W is centered at P and the correspond- dA

ing element dA' is determined by the

intersection of the ray tube through dA

with the wavefront W' . Tne curves

C 1 and C2 through P are lines of 
d .

curvature of W and hence are mutually

orthogonal (see Appendix A). The cor- p C2

responding curves CI al C2 in W' Ic

are also orthogonal lines of curvature.

If the principal normal radii of curva-

ture of W at P are R 1 and R 2 and

the centers of curvature are located as

shown in Figure B1, the principal normal

radii of curvature of W' at PI are PRINCIPAL NORMAL CENTERSS~OF CURVATURE

R{ =R1 +d and R = R 2 + d. Thus,
dA is proportional to R1 R and dA'1 2
is proportional to R 1 R1 = (R 1 +d)(R 2 +d)

If S is the power density at P and if Figure B1. Geometrical Optics

S is the power density at P ,Power Flow

Si
5'i h oe est tP

I , .................... . .. . . .... . . ..... . . . .. ...... .. .. ......................................................
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(36) becomes

SdA S' dA'

or

= dA S (R1+ + d) (BI)

The Gaussian curvature K of WI at P' is defined to be

1 -- I-__ _ 1K 1- 111 - (RI+ d)(R2 +d) (B2)

1and hence is a function of d . Since K(0) =RI1 R2 , we can write

S, S SKI, (33•:u) (B3)
VqU)

This equation relates the power density S? at the point PI on a ray to the power

density S at a reference point P. The power flow so expressed is equivalent to

the pr,-, er flow implied by the field intensity relation (26).



Unclassifiec
"Security Classfic&-ion

COCLWMENT cOWTRO. DATA. -R&
(Sec';ity cla.stiscation of ttle, b0V of G ,...rt ae, t desa; aneo:,aon ,at.,: De ensercd .wAn Me overrli isort is cciasiftidi.

1. ORIGINATINI ACTIVITY (.oq',y" iJ aw r) " , RrPOiT TSCUhITY CLAJS'FICAT Ot

Air Force Cambridge lheseareh Laboratories (CR.- f UncJassified
L. G. Hanscom Field
Bedford, Massachusetts 01730

1 REPORT TITLE

APPLICATION OF GEOMETRiCAL OPTICS TO THE DESIGN AND ANALYSIS
OF MICROWAVE ANTENNAS

4 DESCRIPTIVE NOTtS (Te ofrept adnlusdve da"cc)
Scientific. Interim.

F. Sheppard Holt

B REPORT DATE I&* TOTAL NO. OF PAGC$ j'7 NO. OF REFS

September 1?67 45 'I_ 12
Ia. CONTRACT CR GRANT NO. PG. ORIGINATOWS REPORT $UMB•EW')

AFCRL-67 -05011
b. PROJECT. TASK. WORK UNIT NOS. 5635-02-01

c. 000 ELEMENT 6144501F ,&A oýS) (Aslly ode M AM a be

d. 000 SUSELEMENT 681305

10. DISTRIBUTION STATEMENT J _

Distribution of this dozument is unlimited. It may be released ýb the
Clearinghouse, Department of Commerce, for sale'to he gertral publ;.,z.

11. SUPPLEMENTARY MOTESt SPOS'rNN ýAC:WISAir ForX &b• id•R ese.x•rch
TECH ... . I Laboratot (CR

TECH, OTHER L. G. Hansc' n Field
,- edford, M achuses ,1730

1S. ABSTAACT /// - r "-

The basic concepts of geometrical optics together * h'theadditiona!
assumption that lead to the'Igeometrical optics ap aao•-, are described
here. The eikonal equation is derived and the relationship of exact electro-
magnetic theory in the limit as" 7 -* X to geomet-icaldpH is made evident.
The application of the "geometricif1optics approximati' tophase analysis
and synthesis is described and an example of aynthesis presented. The
concept of power flow in ray tubes is used to obtain appr rximations to power
distributions in the antenna aperture, in the focal regih, and in the far field.
Ray analysis is used to determine those feed locations G the focal region
that will most nearly collimate the far-field rays that l1t in certain desirable
planes. The Theorem of Malus is used to formulate the equal path length law
and applications are given. Focal surfaces (or caustics) elativ.e to a recti-
linear congruence are defined and then used to present a,geometsical opti€s
description of the focal region. The -quations of tne fr.cql surfaces of a para-
boloid receiving a plane wave 20" off-axis are calculated and photographs of
three-dimensional models of the focal surfaces are shown.

DDFR`1473NV aUnclissified

Secuiry Cassificadow



Unclassified

14. SKEY WOCA S LINK A LINK T LINK C

ROLE WT ROLE ROLE WT

M crowave Optics
Geometrical Optics

tntenna Design and Analysis

I *I,

ii i"

S~Unclassified
kSec-ity Cssification

t


