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Abstract

The basic concepts of geometrical optics together with the additional assump-
tions tha! lead to the ""geometrical optics approximation'" are described here. The
eikonal equation is derived and the relationship of exact electromagnetic theory in
the limit as A — 0 to geometrical optics is made evident. The application of the
"geometrical optics approximation" to phase anaiysis and synthesis is described
and an example of synthesis is presented. The concept of power flow in ray tubes
is used to obtain approximations to power distributions in the antenna aperture, in
the focal region, and in the far field. Ray analysis is used to determine those feed
locations in the focal region that will most neariy collimate the far-field rays that
lie in certain desirable planes. The Theorem of Malus is used to formulate the
equal path length law and applications are given, Focal surfaces (or caustics)
relative to a rectilinear congruence are defined and then used to present a geometrical
optics description of the focal region. The equations of the focal surfaces of a para-
boloid receiving a plane wave 20° off-axis are calculated and photographs of three-
dimensional models of the focal surfaces are shown,
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Application of Gecmetrical Optics to the Design

and Analysis of Microwave Antennas

1. INTRODUCTION

This report is concerned with the laws, principles, and procedures of geoinet-
rical optics that are applicable to the design and analysis of microwave antennas.,
Geometrical optics, considered as a zero wavelength approximation to exact electro-
magnetic wave theory, is very accuratie in the design ard analysis of optical focusing
devices because optical wavelengths are extremely small compared to the aperture
dimensions of optical systems, At microwave frequencies, the wavelength is not
always relatively small compared to the aperature dimensions of microwave sys-
tems. Geometrical optics, however, although certainly an approximation is still
sufficiently accurate to produce meaningful and useful results, even ior antennas
withaperture dimensions as small as five wavelengths, The advantages of certain
microwave components over existing optical components and the relaxation in
mechanical tolerance requirements due to the finite wavelength allow the exploitation
of geometrical optics analysis and design at microwave frequencies in certain cases
considerably beyond that achievable in optics. For exampie, low-loss isotropic
artificial dielectrics in a wide range of index of refraction, phase and amplitude
control of sources and receivers, and aspheric as well as nonrotational symmetric
reflecting and refracting surfaces are all available to the antenna designer,

(Received for publication 5 May 1967)
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In general, geometrical optics i8 concerned with the analysis and synthesis
of optical systems to the approximation that diffraction dnd interference can be
neglected. In an isotropic medium, classical geometirica: optics assumes that the
power flows along paths called rays at a velocity characteristic of the medium and
that there exists a family of surfaces known as wavefronts that are everywhere
normal to the rays, Point-to-point correlatior between wavefronts can be estab-
lished by the rays and no power is assumed to be present in regions where there
are no rays. It is evident, that if all the wavefronts are given, all the rays are
determined and vice versa, Classical geometrical optics, therefore, neglects wave-
length, phase, and the vector nature of electromagnetic wave motion. For micro-
wave applications, it is most ugeful to extend the classical theory to include effects
of the above-neglected factors. The form of the extension is justified by the asymp-
totic solution as w — o (A —=0) of the exact electremagnetic field equations to be
discussed in Section 3, The extensicn consists of introducing wavelength as a small
but finite quantity, identifying the wavefronts with equiphase surfaces, and at each
point on a ray in a homogeneous medium introducing the electromagnetic field vec-
tore E and H and relating them as in a plane wave prepagating along the ray., We
shall refer to this extension as the geometrical optics approximation,

2. THE EiKONAL AND THE EIKONAL EQUATION

Using the geometrical optics approximation, assume for a particular wave
motion in 2 scurce-iree isotropic medinm that the equiphase wavefronts are given
by the level surfaces of the function

L = L{x,y,2)

and that the phase ¢ on a general wavefront W is given by

¢ = wt -(-:-L(x,y,Z) (1)

where « is the angular frequency, c¢ is the velocity in free space, and (x,y, 2)
is any point on W, The function L(x,y, z) is known as the eikonal and, together
with the wavefront velocity in the medium, it completely describes the given wave
motion frem the standpoint of classical geornerrical optics.




DT
T e T T R STV P A Y PV FTreey

o0

Do

Consider a general ray path C given by the equations

: x = x(s)
y = y(s)
z = z(s) (2)

where s is arc length measured along C from a fixed reference wavefront Wo ,
given by L(x,y,2) =0 to a propagating wave‘ront W (see Figure 1), Let the
position of W along C as a function of time be given by the formula

St oy

n
"

s{t) (3)

where s increases with .. The wavefront propagation velocity v alony C is
then

ds
& (4)

V=
The value of L(x,y, z} onthe wavefront W will change. as W propagates along C.
Since time and position along C are related by (2) and (3), L(x, s, 2z) may be con-
sidered as a function of either s or t, Thus

i eprer as o o <y Y

. dL
" IVIJI "d—s—

dL

&

= E . (5)
dt

Since ihe phase ¢ on the propagating wavefront W is constant, differentiating
{1} with respect to t yields

GENERAL WA(EFROKT W ——

3 or S,
: A {e) RAY PATH ¢
Subsiituting (4) and {6) into (5) we have
tvr] = $ = n @ REFERENCE WAVEFRONT Wo

A Figure 1. Ray Patas and Wavefronts
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where n is the index of refraction of the medium, The partial differential equa-

2 UL P N

tion (7) satisfied by the eikonal I.(x,y,z) is known as the eikonal equation, 4
The eikonal equation can be used to determine the curvature of ray paths in an
inhomogeneous medium. Assume a wave motion 1n an nhomogeneous medium pre-
: scribed by the eikenal L{x,y,z) and let C be a ray path with arc length s in the
g direction of the wave motion, At each pointon C let § be the unit tangent vecth
in the direction of s, let pre the unit principal normal vector, and let p be the
radius of curvature. The vector VL evalusted at any point P is normal to the
wavefront passing through the point P, Hence, at each point on C, the vector

VL is along C and in view of .ne eikonal equation (7),

VL

n

(8)

jur

The first Frenet formulc (Hildebrand, 1949) of differential geometry can be written

ds§ fi
= =(8.VvV8 = -8 X (VX = =P (9)
ds { - - ( §.) B

v mers S ent ALy bre B by e sl

Substituting (8) into (9) we have

t

:

N and

| 1 a 1

H - = o = = - = - . V 0
; 5 .-ﬁap IS -gp v(ln n) = -~ ﬁp n . (10)
z Equation (19) shows that the ray-;’)ath curvaiure % is related to the rate of

3

‘; change of the index of refraction n nofmal to the ray path, In particular, for a

homogeneocus medium (n = constant) the curvature is zero and the ray pa.hs are

PR

straight lines.

v

|
3. GEOMETRICAL OPTICS AS A ZERO WAVELENGTH APPROX!MATION

[P

s For a source-free nonconducting isotropic homogeneous medium, Maxweli's
equations for the electric field E and the magnetic field H are

ot

?
W
i

i
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VXE = -jwuH (11a)
VXH = jweE {11b)
V. E =0 (11ic)
vV-H = 90 (11d)

where w is the angular frequency, € is the permittivity of the medium, p is the
permeability of tiie medium, and an 219t time dependence is assumed., Equations
(11a, b, ¢} combine to produce

vZE+k’E =0 (12)

where k = w\/e—p_is the phase constant of the medium.

To obtain a zero wavelength or high frequency approximation, the electric
field is assumed in the form of an asympiotic series (Luneberg, 1944; Kline and
Kay, 1965; Kouyoumjian, 1965) in descending powers of « as follows:

[+ o}
E (x,y,2,0) = e Fol{xy.z2) §7 M (13)
ot » 2 » - X m »

froer (jw)

where _P_J_o(x, ¥,2z) is real and ko =0y €oHy is the phase constant of free space.
Substituting (13) into (12) and independently equating to zero the coefficients of
wz and w, the highest powers of « present, yields

lvL]? = n? (14)
and

v’L
(VIJ 'V)E.o+_2_§o = 0, (15)

where n = k-k— is the index of refraction of the medium,
Note tha? (14) is the eikonal equaticn and hence L{x,y, z) is the eikonal. As

w becomes large, the leading term of (13) predominates and becomes -E-:-HF , the
high frcquency approximation to the electric field, as follows:
-jkoL(x, Y, 2)
= B .
Euyr = B oy, 2le (16)

Since _I_S_o(x, ¥, z) is real, tiie equiphasge surfaces L(x,y, z) = constant of EHF

are identical with the wavefronts of geometrical optics. Again, the rays can be
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defined as the family of curves normal to the wavefronts, In the present case of
an isotropic homogeneous medium, the rays are straight lines (see Section 2),

At each point on a ray _Vn_L_= 8 is a unit vector tangent to the ray [see Eq. (8) ] .
Thus,

VL'V=nV—nL-'--V=nS~V=n—d- (17)

where a—% is the directional derivative in the direction of a ray with respect to
arc length s along the ray. Equation (15) can now be written

dE 2
~0 1 Z°L _
i "7 7w S0 (18)

The solution to (18) along a ray through the point (x ot Yo zo) can be expressed in
the form

ds (19)
_ (]
E (s) = Eo(so)e o

where s, is the distance from a reference wavefront to the point (xo, Yor zo). Thus,
EO(S) at any point on a ray is completely determined once its value is known at one
point on the ray. This is a very clear statement of the geometrical optics property
of point-to-point correlation from wavefront to wavefront along a ray. It is also
evident from (19} that the direction of Eo is the same for all points on a ray (ex-
cept nossibly for sense).

Substituting (13) into (1lc) and equating to zero the coefficient of w? , the
highest power of w , ieads to the result

. T EHF = 0 (20)
and hence EHF at each point on a ray is nu. .2l t» the cay. Substituting (13)

into (11a) and retzining only the highest order terms in w yielas EH o ihic high
{frequency approximation to the magnetic field, as follows:
~ik koL _~ [
S a— X L) = €
Hop Tou VLXE_ € I S$XEyp - (21)
and H along a ray are related precisely

Equations (20) and (21) show that EHF Hyp

as in a plane wave propagating in the direction of the ray.
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Simplification of (19) is best accomplished by considering the vector field
F=KnS,K=F—%— (22)
= - 172

where at each point R, and R2 are the principal normal radii of curvature of the

. . - . 1
wavefront passing through that point (see Appendix A). The quantity K = R "2
evaluated at a point on a surface is known as the Gaussian curvature of the surface

at that point. It can be shown that the surface integral

f/g’dé.:O (23)
p>

where I is any closed surface lying in the isotropic homogeneous medium being
considered. ThLe divergence theorem then requires that

V-f=0

througheut the medium and hence

(8- VK : -KV-ng = -K VL.
in view of (17) it follows that
2
CLLg (V L)K - 0.
ds n
Hence,
s
2
f
K(s' So
Ry ° ° :

Equation (19) can now be written

= R v | Kis
E_(s) - gogsr)\/?(@lg . (24)

By apyTring (17) to the eikonal L(x, y, z) and using (14) we have

; - n? . pdl
Ti,*- VL = n 'nds
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8
or

dL = nds.
For a homogeneous medium n is constant and

L. = ns+ Lo . (?5)

Substituting (24) and (25) into (16) yields

-3k L .
- LK(s) Horo -jks N
Eyr = E (s) K(s,) e e . (26)

Note that the amplitude factor "éﬂ(sﬁ); is precisely equivalent to the geometrical

oplics power factor }%(%% shown ino(B3) of Appendix-B.

4. FERMAT'S PRINCIPLE AND SNELL'S LARS

The optical path length (OPL) along a ray patn C is defined as th~ line inte-
gral A nds where n is the index of refraction of the medium and s is arc length
along C. Fermat's principle states that electromagnetic energy traveling between
two points will follow any ray path that makes thc OPL integral stationary. Clearly
then, ray paths in a homogeneous medium will be straight lines.

Snell's laws of reflection and refraction of rays at a toundzry surface Liiween
two different media can be derived directly from Fermat's principle, but will
merely be stated here. The law of reflection states that the incident ray and the
reflected ray lie on the same side of the boundary surface, are coplanar with the
norral to the boundary surface at the point of reflection, and make equal angles

« with the normal. Thus, Oi = Br where Oi is the angle of incidence and Br is
the angle of reflection, as shown in Figure 2. This reflection law can be expressed

in any of the equivalent vector forins

AXxX(8,.-8) <0, (272)

A-(8.+8) =0, (27b)

& - 8 -2 Ma, (27)
or

§ - S.-2e - Ma, @"a)

e tmta— S - e — -
~ - — e = —
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where

I_g_il = Igr = Ig |- 1 (27e)

and _s_i is in the direction of the indicent ray, _s_r is in the direction of the reflected

ray, and ;_‘1_ 1s normal to the boundary surface (see Figure 2).

A

REFLECTED RAY——=">\ A

-~ ST IRANSMITTED RAY

y INCIDENT RAY —=— =i

4

; INDEX OF REFRACTION n; INDEX OF REFRACTION n;

Figure 2. Reflection and Refraction a! a Boundary

The law of refraction states that the incident ray and the transmitted or refracted

VAL 0

ray lie on opposite sides of the boundary surface, are coplanar with the normal to
the surface at the point of refraction, and satisfy the condition

n, sin@, = n, sin@,, . 0 (28)

#

where n, and n, are the indices of refraction in the incident and transmitted

regions respectively and 6i and 8t are the angles of incidence and refraction
respectively (see Figure 2). This refraction law can be expressed in the vector
form

AXin; 8 -n 8 ) = 0 (29)

where 1, §i .y

direction of the transmitted ray.

, and n, are as defined above and ."i: is a unit vector in the

Combining (27a) and (29), we have as a statement of both of Snell's laws

-y
e

j3=1

Xniéi = _‘x}angr = antit (30)

J where n.=n., that is, the incident and reflected regions have the same index of
A
refraction.

j ‘W”Ww
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5. PHASE ANALYSIS AN PHASE 3YNTHESIS

The geometrical optics approximation can be applied usefully to certain
problemns in phase analysis and phase synthesis. An application to phase synthesis
is given in this section.

If L{x,y, z) is the eikonal function, then, according to (1), the phase ¢ ata
point P with coordinates (x, y, z) is

¢ = wt-% L(x,y, z) .

If WO is the wavefront L(x, y, 2z} = O then the phase ¢, over the whole wavefront
W _ is

The phase at P relative to the phase on Wo , that is, the phase difference N
between P and Wo , will be

6y = ®-¢, = ~= Lixy,2). (31)

Assuming that the ray through P intersects W° at point Po , then, according
to Section 4, the optical path length from P to PO is defined a$

OPL =/ nds , ‘//

where n is the index of refraction of the medium and the path of integration is
along the ray from Po to P . The phase difference ¢, between P and Po
can be expressed in terms of OPL as follows:

6 = -2T [ na (32)
A T f :
°p
o
where A, is the free-space wavelength. Noting that cﬂ = leand compar -

. o
ing (31) with (32), it is evident that the eikonal function L(x, y, z) evaluated at P
is equal to the OPL from the reference wavefront to P . The geometrical optics
determination of phase will clearly fail in any region where two or more rays pass

through each point.
Now consider the problem of designing a point-source-fed reflector in two dimen-

gions in a medium of index n that will synthesizz to within the geometrical optics

 m - A—at P P < - e e met— . emt e e e o - s S —— ———
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approximation a given phase distribution along a line (Sletten, 1958). Let the point
! source be located at the point F with coordinates (0, a) and let the x axis be the
! line along which it is desired to achieve the phase function f (x) . If a ray reflected
F from the reflector at the po::t P with coordinates {(x,y) intersects the x axis at

the point Po with cocrdinates (x0 , 0), as shown in Figure 3, then it foilows from
(32) that

(%)n qxz + (y-a)z +(2§L) n J(x-xa))2 +_y_£- = -f(xo) +C, (33)

where Cl is a conswant that can be adjusted to control the position of the reflector
and the extent of useable aperture. For X, fixed (33) as a functionof x and y

! represents an ellipse with foci at F and Po . With X, variable (33) reoresents

! a one parameter family of ellipses that, in generai, has an envelope. To each

‘ ellipse in the family there corresponds a unique point on the envelope where the
ellipse is a tangent to the envelope. By using the envelope as the refiector surface,
it is clear that at each point on the envelope the incident ray is precisely reflected,
as from the ellipse corresponding to that point, and hence arrives at the x axis in
proper phase,

The envelope of the family of ellipses is given by the simultaneous soluticn of
(33) with the partial derivative of (33) with respect to Xy 0 that is,

(x - x))
: M = . k). (34)
A ,(X_XO)Z +y [o]

Carrying out the simultaneous solution of (33) and (34) leads to the result

' y
2 2 2
(A" + x~ -a%)
! x = x +5B 2 } Px¥) REFLECTOR
j ot 2 1(Bx_+A+a VI-BY
1 [} F
(0,a)
2 2 2
A%+ ¥l -
, 1-82 ( x, - a ) .
2 (Bx, +A+a Vi-8% Po(Xo0)
(35) PUESCRIBED PHASE #(x)
where
A Figure 3. Geometry of Reflector to
A =5~ [C1 - f(x ) Produce Desired Phase Along a Line

R ’ PSR

N
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and
Y Sy
B = 2nn f (xo) :

An experimental line source feed designed by the above procedure
for off-focus feeding of a paraboloid, was very successful in producing a well-
3 focused off-axis fan beam.

6. POWER FLOW IN RAY TUBES

One of the important assumptions of geometrical optics is that the power flows
along the ray paths. Therefore, a raypath diagram presents an overall picture of
the power flow for a lossless source-free medium to within the accuracy of this
approximation, The totality of rays that pass through any given closed curve
constitutes a ray tube; and, under steady state conditions, the total power flowing

across any cross section of a ray tube must be constant since no power can flow

across the lateral surfaces of the cube. Thus, as a ray tube cross section decreases
the power density increases and, conversely, as a ray tube cross section increases
the power density decreases. These twe cases correspond to converging and diver-

[y Ty

ging rays respectively. In particular, if dA is a differential area on a wavefront
W 'dnd if the ray tube passing through dA intersects the wavefrent W' in the
differential area dA' (see Figure 4), then, the total power flow through dA must

LN AR

equal the total power flow through dA'. Thus, we have

PdA = P'aAa’ (36)

Ty e B v

~ where P is the power density at dA
and P' is the power density at dA'’,

NAe o 10t Yo b

-— dk It is clear that the ray tube concept of

RAY TUBE power flow will break down at focal

points since at such points the ray tube

TN

cross section vanishes and (36) predicts
infinite power density.

The concept of power flowing in
ray tubes as applied to the region be-
tween the primary-feed and the aper-

ture is particularly useful in the design
Figure 4. A Ray Tube Between

Wavefronts and analysis of anternas. In far-field

considerations, it is also useful in the

design and/or analysis of certain shaped
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beam and off-focus-fed antenna systems, The ray tube concept finds little appli-
cation ia far-field considerations relative to well-focused pencil beam systems
since in such cases the pattern is determined entirely by diffraction.

7.PORER DISTRIBUTION IN THE APERATURE

In using geometrical optics to investigate antenna aperture-plane power dis-
tributions or to design primary feeds for optimum iilumination, the important
quantity furnished by the ray tube concept is an approximation to the relative
power distribution.

To determine the reiative power distribution, it is necessary to know the
absolute power distribution to within only an arbitrary multiplicative constant.
Hence, if either the absoclute or the relative power distribution is known on a wave-
front W (see Figure 4), then, in using (36) in the form

ot - gﬁ P (37)

to determine the geometrical optics approximation to the relative power distribu-
tion on W', it is necessary to know é—dﬁ-,- to within only a multiplicative constant.

For a well-focused,point-source-fed antenna system, the usual procedure for
determining the geometrical cptics approximation to the relative power distribution
on the antenna apert re plane for a given primary feed power pattern is to first
analyze che system when fed by an isotropic point source. All wavefronts will be
spheres for the isotropic feed and the power density will be constant over any
fixed wavefront W . Also, any differential element of area dA on the wavefront
W will be proportional to the differential solid angle dQ subtended by dA as
measured at the feed. A general ray trace of the antenna system will determine
the aperture coordinates of the exit ray, as functions of the ray direction coordinates,
as measured at the feed, These relations will determine the area dA' °n the aper-
ture pizne W' (assumed to coincide with a wavefront) that corresponds to the dif-
ferential element of area dA in the wavefront W, Since d© = KdA, where K
is a constant, the quantity %AQ’ is proportional to %21‘ and can therefore be used in
the calculation of the relative power distribution on W'. If the primary feed has a
relative power pattern P(0, ¢), where 6 and ¢ are the ray direction coordinates,
then the geometrical optics approximation to the relative power distribution on the
aperture plane is pruvortional to P(8, ¢) -d—j,% , where (in theory) 6 and ¢ can
be expressed in terms uof the aperture coordinates,

The geometrical optics approximation to the relative power distribution on the
aperture of a weil-forused,line-source-fed cylindrical antenna system can be
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determined by procedures analogous to those used for the point-source case, It
will be assumed that the relative power pattern of the line-source feed is of the
form P(9,z) = gl(O)gz(z) , where z 1s the linear coordinate parallel to the feed
line and 6 is the angular coordinate around the feed. Since the antenna system

is cylindrical, all rays from any one point on the feed line remain in a plane nor-
mal to the feed line and, in all such planes, ray trace diagrams ai-e identical,
Thus, power will only flow parallel to these planes and the identity of the ray
trace diagrams guarantees that the relative power distribution on the aperture
plane in the z direction will be proportional to g2(z) . This reduces the problem
by one dimension and leads to the consideration ¢f the power flow in a typical plane
normal to the feed line. For a feed isotropic in 8 , the wavefronts are circles and
the power density on these circles i8 uniform. If ds is a differential element of
arc length on a fixed wavefront C and if df is the differential angle at the feed
subtended by ds, then, since C is a circle, it follows that ds is proportional
to dé . A genecsral ray trace wiil relate 8 toh, where h is the exit ray aperture
coordinate normal to z ; this relation will determine the differential element ah
in the aperture plane (assumed coincident with a wavefront) that corresponds to ds.
Since ds = K' d§ where K' is a constant, it follows that —da% is proportional to
-g}s-; and can therefore be used in the calculation of the relative power distribution
on the aperture plane with respect to the h coordinate. For the given feed with
relative power pattern P(9,z) = gl(e )gz(z) , the geometrical optics approxima-
tion to the relative power distribution on the aperture plane is proportional to
g,(0)g,(z) 'ddih , where (in theory) 6 can be expressed in terms of h.
As a simple example of this procedure applied to a cylindrical system, con-
sider a parabolic cylindar reflector of focal length f with its focal line coincident
y with the =z axis. Figure 5 shows a
central plane section of this reflector
| with polar coordinates (r, 8) describ-

| ing the reflector surface and the linear

I } do coordinate h designating position in
1
dh N X‘/ the aperture plane x = 0. The equa-
h d{ tion of the reflector surface in (r, 0)

/F T = X coordinates is
FOCAL POINT

|
l b2
] PARABOLIC " 1+cos @
APERTURE PLANE i CYLINDER
SECTION

L) /2.

The primary feed located at F (see
Figure 5) is assumed to radiate uni-

formly in 8 and all rays originating
¢ figure 5. Central Plane Section of a
! Parabolic Cylinder Antenna at F are assumed to be reflected
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parallel to and in the direction of the negative x axis. Thus,

h = rsir@ = 2ftan(9/2)

éh = fse02(0/2)d9 = rdf '
and

g _ 1

dh r -

If the given primary feed has a power pattern P(6,z) = gl(e)gz(z) , then, Pa ,
the geometrical optics approximation to the relative power distribution on the
aperture normalized at the center of the aperture, is given by

LAl

Pa = }—g‘—-_-1<0)g2(0) . {38)

This is certainly a correct result from the geometrical optics standpoint since it
clearly demonstrates that the power spreads radially, that is, inversely propor-
tional to distance, only in planes normal to the feed line and only over the dis-

tance from the feed to the reflector, that is, over the distance r . After reflec-

tion, the rays are collimated and no inore spreading takes place out to the aparture
plane.

8. POWERDISTRIBUTION IN THE FOCAL REGION

In the analysis of an imperfectly=focused antenna such as & spherical reflector
or an off-axis-fed paraboloid, it is frequently desired to obtai.r an estimate of
] the relative power distribution along some focal surfacz or curve in the focal re-
gion. In this case, the ratio of a differential element of surface area of the incoming
plane wavefront to the corresponding differential element of surface area or arc
length in the focal region is an estimate of the relative power distribution on the
appropriate focal surface or curve.

Consider, for example, the prcolem of determining the power distribution
along the axis of a spherical reflector of radius "a' illuminated by a plane wave
incident ailong the axial direction {see Figure 6). By symn etry all ray: after
reflection pass through the reftector axis. The height h oif an incident ray and
the coordinate z of the intersection of the corresponding reflected ray with the
reflector axis are velated to the angle 4 2s foliows:
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h = asinég
and
a
Z % 3Cos o
1
; ™ E——INCOMING PLANE WAVE
SPHERICAL = 3 ul \
REFLECTOR 5~ ’
it S h
% N ) -
T~
;T
REFLECTOR AXIS ] q
[+
REFECTOR CENTER OF
CURVATURE
Figure 6. Central Section of a Spherical Reflector
Hence,
2 -
h2 = 32 (1- __3.2) * (39,
42

The differential area dA generated by re solving the line segment dh about the

reflector axis is
dA = 27hdh.

All incident rays passing through dA will, after reflection, pass through the
differential line element dz. Thus, the power distribution P along the reflector
axis is

- p9A | dh
P = B3 = 27hB g (40)

where B is a constant. From (39) we have
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dh 2t
2z3

and (40) becomes

P - 7.'Ba4

223

From (39) we have

limz = af2, (41)
h-0

This is known as the paraxial focus point. Normalizing the power distribution to
unity at the pzraxial focus point the relative power distribution Pr along the re-
flector becomes

a3
P = =5
r 87.3

9. POWER DISTRIBUTION IN THE FAR FIELD

In the use of the ray tube concept to approximate antenna far-field power A
patterns, the underlying assumption is that the radiated power after it leaves the ?
final surface of the antenna flows along ray tubes not only up to the aperture plané
but indeed on cut into the antenna far field. This assumption is clearly invalid for
well-focused antenna sysiems, that is, for systems all of whose exit rays are nearly
parallel, since in such cases the pattern is determined entirely by diffraction. )
However, for 3ysiems that are not weli-focussed in one or in both planes, the ray
tube concept provides a useful approximation to the relative far -field pattern. In any
plane in which the exit rays are not parallel, the power flow per unit directional angle cr
per unit solid angle in the exit ray system is determined by the ray-tube concept
as a function of angular direction; this function, after appropriate normalization,
is the geomretrical optics approximaticn to the far-field antenna pattern.

As an example of the use of this far-field approximation, consider the design
of a line-source fed cylindrical reilector to produce a fan beam of prescribed
shape (Spencer, 1943). Let S be the plane of symmetry of this antenna normal
to «he line source. The cylindrical geometry guarantees that all exait rays lying
in pianes normal to S are parallel and therefore S will be the plane of the fan

TS
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beam. It is desired to determine the shape of the reflector c10ss section that will
cause ray dispersion in the plane of S appropriate to croduce the prescribed

fan beam shape. It is assumed that the primar:y fecd pattern Pf(e) and the de-
sired secondary power partern P(¢) are given. The angles ¢ and ¢ are mea-
sured positive clockwise in the plane of S. {See Figure 7a.} For practical pur-
. poses, the useful portion of the primary fced pattern Pf(O) lies between its -10 dB
points and will be designated by the interval § 1=8= 9, . Generally, the funcuon
’ P{¢) vanishes everywhere except within some interval, say 015 o3 s¢2 , where it
: takes on a prescribed furm. Thus, rays from the line-feed incident on the reflec-
3 tor with inclination angle 6 , 6 1—’ 86 <=8 2 must produce reflected ravs with in-
clination angle ¢, ¢1 =¢= ¢>2 (see Figure 7a).

K

The problem now is to determine a one-to-one correspondence .e.ween the
incident and reflected rays—that is, a function ¢ = ¢(8) such that “he reflected

ray system has a power distribution corresponding to P(¢). In a differential sec-

[ et )

tor d0 of the incident ray svstem, the power flow is proportional to Pf(e)de;
in a corresponding differential sector d¢ of the reflecied ray system, the power

Pl St

flow is proportional to P{9) d¢. Thus,

P(6) d9 = KP (¢) d¢

O A

-

where K is determined by the relation
®2

8y
/ P (6} do = K/ P(¢) do,

94 %,

YT NIV

Sy N g BV ARY e

which is equivalent to requiring equal total poewers in the incident and reflected ray
systems. We also require the power in the incident ray system in the interval @ 1
to @ to be equal to the power in the reflected ray system in the interval o, to ¢ .

fatd ualsSdnt LA TR A e t L
R T

Thus,
§ .
; 0 ¢
] : f P.(6) do f P(¢) do
: ‘ f (42)
H a8 1 ¢1

Q\
<
[\"]
J
A}
.
<
~
o,
D
o
d
—
©
[=N
o

and this expression determines the required relationship ¢ = ¢{(9} .
We now turn to the determination of the equation for the reflector curve. With
the reflector curve denoted by r = r{8) we have from Figure 7b
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and

REFLECTOR

3

Figure 72

REFLECTOR

FEED

Figure 7b

Figure 7. Shaped-Beain Reflector Geometry in the Plane of Symmetry S
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% Thus,
4 14 - cot(‘—’Tﬁ) dé = cot [9 "”(9)] de
‘ or
6
In (_’;) =f cot [6_'51(_6.).] dB , (43)
(s}
% vhere
. g ry = r{0) .
‘

Equation (43) determines the desired reflector curve to within a radial scale factor
r,. Overall physical dimensions, as well as the requirement that the reflector be
in the far field of the feed, establish a range of permissible values for r_.
: Generally, the function Pf(e) is given graphically while P(¢) may be given
analytically, graphically, or numerically. Therefore, in most cases numerical
integration will be required to determine ¢ = ¢(8) from (42) and the resultant
relationship will be expressed in numerical form. Numerical integration will be

reguired to solve (43) for the reflector curve r = r{(8).

18. REFLECTION FRUM A CONDUCTING SURFACE

In an isotropic homogeneous medium, the geometrical optics approximation
assumes that the energy propagates along the rays as in a plan: wave, To within
this approximation, therefore, the field vectors E and H along a ray are related

as follows:
3 H =J£_' 8XE (44a)
— B o= -
i s - Exme-ys [P 8 (44
8§+ E <8 -H=E H=0 (440)

where S ig the Poynting vector and 8 is & unit vector in the direction of the ray
(see Figure 8). The magnitude of E (and hence of H and §) is prescribed by
(24).
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With the above assumptions, con-
sider reflection from a smooth,
perfectly-conducting surface V. Let
Ei be the electric field incident on V
along the ray direction -§i , let Er be
the electric field reflected from V
along the corresponding ray direction

-Q-r , and let A be the unit surface nor-

mal to V (see Figure 9).

INCIDENT RAY

INCIDENT RAY TUSE

L R 1]
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Figure 8, Electric and Magnetic Fields
Along a Ray Peth

REFLECTED RAY

REFLECTED RAY TUBE

Figure 9. Incident and Reflected Electromagnetic Fields

and Ray Tubes

Consider a differential area dA on V. Let dAi be the differential cross seciion
of the ray tube incident on dA and let dAr be the differential cross section of the

ray tube reflected from dA.

lowing relations:

dA; ~ dAr

B-&l B g

Since Snell 's law, (27b) gives

Evaluating dA; and dA_ at V, we have the fol-
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we have

and hence at V
g:_i’ = ,grl (45)
The continuvity of the tangential electric field at the surface V requires
AX(E;+E) = 0 (46)
and the plane wave assumption requires
- E. =8 - E =0, (47)

It follows from (45) and (46) that at V

f - (B -E) <0 e
and

E. 2@ E)A-E o
or

B, s @ E)6-AXE XN on!

The magnetic fields gi and g_{r at V are given by {44a) and (49a) or (49b).

The above results show that,under the assumptions made,the reflection process
locally at each point of V is equivalent to plane-wave reflection from an infinite
conducting plane tangent to V at the point (Silver, 1949). The assumptions of
plane-wave propagation along rays and local reflection behavior as from an infinite
plane lead to useful approximations of the polarization characteristica of reflector-
type antennas,

11. RAY COLLIMATION AND OFF-FOCUS_FEEDING U

Consider a focusing system fed by a point source not necessarily located at a
focus point and let _Q_r be a unit vector in the direction of the general exit ray.

.
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The components of §r will be the direktion cosines of the exit rays, that is,

- )
.g.r -

cosa® +cosf § +cosv2.
A different set of exit rays and associated direction cosines is generated for each
different feed position. If the direction cogines are considered as functions of co-

ordinates u and v that designate the rays--for instance, exit aperture coordinates—

then total collimation of the rays is characterized by the conditions

] chsa - 9 cosué _ 9 (E:)(:JS‘Y =0 (508)
and
dcosa_ 3cos B°_ 3cosy _
Fv - 35 3V = 0. (50b)

All exit rays are totally collimated and the above conditions hold for all u and v

in the on-focus case for a perfectly focusing system. Overall total collimation does
not occur in the off-focus case; but, there may be conditions under which partizl col-
limation is achieved for certain families of rays. Rays will be considered to be
pa. tially collimated if they are all parallel to the same plane; rays that are all
parallei to two nonparallel planes will be totally collimated. Requiring any one

of the direction cosines to vanish will determine conditions for partial collima-
tion relative to one of the coordinate planes; for instance, setting cos a = 0 will
determine for each different feed positionthe rays that are parallel to the plane a = %/2,
that is, the yz plane., The location of these partially-collimated rays is parti-
cularly important in antenna design, as it determines those portions of the focus-
ing system that are the most effective in achieving partial collimation,

In practice, most focusing systems have a plene of symmetry U and all rays
leaving the feed in U will remain in U . Therefore, these rays are partially
collimated, If U is taken to be the yz coordinate plane, as shown in Figure 10,
each ray in U can be designated by the angle 6 at which it leaves the feed point
0,y ,z o)' .

A pplying the geometrical optics concepts of power flow in the far field as
described in Section 9 to the two-dimensional case of the rays in U , the power

density P per unit angle ¢ at a range R is given by the expression

o

K G(8)
r-92
dg

(51)

P =
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y where K is a constant and G(0) is the
EXIT RAY 4 feed power pattern im U. This expres-
sion gives a rough estimate of the far-

field power pattern in the plane of U,
provided % # 0 . If the exit ray at
of N angle ¢ = ¢, corresponds to the ray
leaving the fced at angle 0 = 00 , the

0y Y59 2,) condition r ;

FOCUSING SYSTEM -
FEED POINT S e =0 (52)
[o]

Figure 10, Section of Focusing
System in the Plane of Symmetry U determires the feed position that will
produce local collimation of the rays in

U that are inthe neighborhood of the exitray inthe direction ¢ = ¢O. Under these conditions,
geometrical optics predicts an infinite singularlity in the far-field pattern, which may
be interpreted as a power pattern maximum in the direction ¢ = ¢o ; but, relative

magnitudes obviously cannot be determined without the use of diffraction.

12. CONGRUENCES AND THE EQUAL PATH LENGTH LAW

A two-parameter family of curves constitutes what is known in differential
geometry as a congruence. The member curves of a congruence are called genera-
tors, If these generators are straight lines, the congruence is denoted as recti-
linear. Furthermore, if there exists a surface that is normal to all the generators,
the congruence is designated as normal. Thus, in a homogeneous isotropic medium,
the normals to a wavefront—that is, the rays themselves—constitute a2 normal
rectilinear congruence, It can also be shown that a normal rectilinear congruence
possesses not just one normal surface but a whole family of normal surfaces
(Eisenhart, 1960, p.393); these surfaces, of course, correspond to wavefronts
of the corresponding ray congruence,

Rectilinear congruences are not necessarily normal and, therefore, the Theorem
of Malus (Eisenhart, 1960, p.403) is of fundamental importance inray-path analysis,
This theorem states that if a family of rays, initially a pormal rectiiinear con-
gruence, is reflected or refracted any number of times‘by successive homogeneous
isotropic media, the rays will continue to constitute a gormal rectilinear congruence.
Therefore, for antenna systems satisfying the conditioxﬁ‘ of this theorem, both
incident and exit wavefronts are guaranteed to exist. Si’lce wavefironts are equi-
phase surfaces, it follows that between any two specific'wavefronts the optical path
lengths along all ray paths must be equal; this is a mos* important result and forms

j
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the basis of the equal path length law and the associated design procedures apph-
cable to reflection and refraction.

Consider the problem of designing a reflector R passing through a given point
Po that will reflect a given incident wavefront W into a desired reflected wave-
f ont W' (see Figure 11). The desired reflector surface is given by the locus of
points P determined by the condition

= 1
d+d' = do+do . (53)

It is very important to note here that Snell's
law of reflection will automatically be satis-
fied at the reflector surface. In the corres-
ponding refraction problem, it is desired to
determine the boundary surface S between

two different homogeneous media passing
through a given point Po such that a given Figure 11, Wavefronts and Rays for
incident wavefront W is converted into a Reflection From a Curved Surface
desired refracted wavefront W' (see

Figure 12). In this case, the surface S is the locus of points P determined by

the condition
nd+ n'd' = ndo + n'do' , (54)

and Snell's law of refraction will automatically be satisfied at the interface.

\
\‘ d
do
]
INDEX OF INDEX OF
REFRACTION n REFRACTION n?

Figure 12, Wavefronts and Rays for Refraction
Through a Curved Interface

In both of the above-mentioned procedures, it is necessary that the reflecting
or refracting surface be located in a region where through each point there passes
not more than one ray of the incident ray congruence and not more than one ray of
the reflected or refracted ray congruence, If this restriction is violated, it will
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not be possible to design a reflecting or refracting surface that satisfies the equal
path length requirement along all rays.

As an example of the application of the equal path length law, consider the
design of a reflector to correct for the inherent spherical aberration of a spherical
reflector (Holt and Bouche, 1964). Let the radius of curvature of the spherical
reflector be "a" and let the center of curvature be the origin, With the x axis as
the reflector axis, an incoming plane wave along the x axis is assumed; the yz
plane is the reference wavefront. The spherical reflector, the corrector, and the
associated ray system are all radially symmetric about the reflector axis; there-
fore, all sections in planes through the x axis are the same (see Figure 13).

14
}

GENERAL RAY \\ connzlcmn
N a

CENTER OF CURVATURE

REFLECTOR AXIS

1

REFERENCE WAVEFRONT

SPHER!"AL REFLECTOR

Figure 13. Spherical Reflector Section in the xy Flane

To fix the solution, let V with coordinates (a, 0) be the vertex of the reflec-
tor, let V' with coordinates (a', 0), a'= a/2, be the vertex of the corrector, and
let F with coordinates (b, 0), b >a', be the final focus point. The condition
a's af2 guarantees that the corrector will lie in a regicn where only one ray of
the incident ray congruence and only one ray of the reflected ray conzruence will
pass through each point.

Applying the equal path length law to the general ray QPP'F and the axial
ray OVV'F, we have

QP+ PP' +P'F - OV+ VV +V'F

or

alcos 8) + (x' - 02+ (5" -2+ Y(x'-0)2+ y = 2a+b - 2a

R o Ty R I R
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where

X = acos @, y:asind, and y'-y= (x'-x)tan 20 ,

Solving for x' and y', we obtain-

x' = acos § - (a2 cos? g - 4ala-a') cos b - (a2 + bz) +(2a+b -2a19 (2 cosze -1)
4(b 00529 -acos g -a'+a)
(55a)
1=+ (2x' cos 8 - a)lsin 6) {55b)

2 cos%9 - 1)

These are the coordinates of the corrector surface in terms of the parameter 8 .
Provided a' and b lie in the indicated ranges, the answer given above is valid
and unique, (The t+ sign for the y' value merely indicates symmetry with respect
to the x axis.)

13. FOCAL SURFACES

Let us consider a wavefront W and its associated ray congruence. IL.et P be
a pointon W and iet PN be a line segment normal to W (see Figure 14). If CR
is a line of curvature of W with p =R, at P (see Appendix A), then in the near
vicinity of P the normals to W along CR appear to converge to a point Q1 on
PN on the concave side of CR at a distance Rl from W. Sim‘ilarly, if CR
is a line of curvature with p = R2 at P, then in the near vicinity of P the normals
to W along CRZ appear to convergc to a point Q2 on PN or the concave side of

Cr
2
there is assoc:ated a unique pair of points Q1 and Q2 on the normal line PN,

at a distance R2 fromm W, Thus, to each point P on the wavefront W

These pointé are called focal points; in general, the totality of all these points
constitutes two surfaces which are called focal surfaces or caustics. These surfaces

meay de_enerate into such forms as a single surface, a surface and a curve, a single
curve, or a single point. It is important to note here that the focal surfaces are the
same for all wavefronts of a particular ray congruence.

The focal surfaces cnn also be described in terms of the envelopes of certain
families of rays. A family in this case consists of the totality of rays passing
throtgh a particular line of curvature of W, . ruled surface so constituted is
known as a principal surface. Two typical families are shown in Figure 14, It is

characteristic of each family that it envelopes a curve in space (S1 and 82 in
Figure 14). it can be shown that each of these space curves lies on a focal surface;
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thus, the rays of a congruence are tangent to the focal surfaces 1long these envelope
curves, The totality of all the envelope curves constituteg the focal surfaces.

In any specific problem regarding
the determination of focal surfaces,
either a ray congruence or a wavefront
will generally be given. Since all wave-
fronts can be determined from the ray
congruence and vice-versa, these two
forms of tne statement of the problem
are entirely equivalent. In actually
carrying out the computations to abtain
the focal surfaces, however, the form
of the statement of the problem and the

functiong involved will determine the

best solation procedure. Two proce-
dures will be given here-—one particularly
applicable when the wavefront is given

and the other applicable when the ray
ENVELOPE S, ' congruence is given.

I Consider the problem of determining
1 the focal surfaces given a wavefront W
in the form

P o= x(u,v) X+ y(u,vy+zuv)z,

F_ig:lr; 14. Ray Paths in the Prin- where P is a vector from tha origin to
cip lanes apoint P on W and u and v are
curvilinear coordinates on W . The nor-

mal vector to W ai P is given by

..PS = Eu X Bv ’
where the subscripts dencte partial differentiation and the expression is evaluated
at P, To each of the two lines of curvature CRl and CR2 through P there
corresponds a principal unit normal vector, These unit vectors will be in the

directicen of N or -I:a: , whichever points tc the concave side of the correspond-

ing line of cu;vature. Let n, be the principal unit normal for CRl and let n,
be the princir =1 unit rormal for CRz . The principal normal radii of curvature
R; and R, 22 W at P are given by the solutions to the quadratic equation

W w Twe w
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9 9
(eg - 19)p " - (Eg - 2Ff + Ge)p + (EG - F%) = 0,

where
E =Py 2o e = (By,  M/D,
¥ =Eu‘fv‘ f =(£uv‘§)/D’
G =P, -P,, g=g>m,'§)/D,

2 2
and D = EG:F" = N* N,

The sabscripts in th. above expressions dencte partial differentiation, The focal

points of W at P will then be given by the formaulas

Hiav!

Q = E*+*Ry2

and

Q = B+ Ry

&

As P rangesover W, the above fermulas determine the focal surfaces,

The problera of determining the focal surfaces for a given ray congruence is
new considered. A ray congruence is, in general, specified by giving the ray
direction at each point on a 1 eference surface—the reference surface not necessarily

being a wavefront. Let the reference surface V be given in the form

"

R x{u, v) £+ ylu, v) 2 + z{u, v) ?_ , (56)

-

where R is a vector from the originto a point R on V. Let the ray directions

at each point on V be specified by the unit vector function
w = w(u,v).

If L is ihe ray through R, the distances oy and oy from R along L to the

focal surfaces are given by the solutions to the quadratic equation

S
(EG - F*) 8% + (Bg - 2F(+ Bar s + (eg - 1 5 0, \57)
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% . A where
. —E-Eu.n‘:’u’ e_...u':‘;.u
. -“ oA
F = . f F3 . = .
; = ¥ ¥y -t Yy -v ¥ (58)
- . -
G =w_ - = R
. = “-V ey’ 4 - Yv

with the subscripts denoting partial differentiation, The focal points on L will be

-~

5 + le,." (593)

)
—
1]

-~

Q = R+g,w . (59b)

A R S O, ) L Wy

As R ranges over V , the above formulas determine the focal surfaces.

Consider, for example, the determinatior. of the focal surfaces or caustics
produced when a paraboloid of revolution receives off-axis (Parke Mathematical
Laboratories, Study No. 3, 1952). Let the paraboloid of focal length f be located
with its vertex at (0, 0,f) and its focus point at the origin and let thz incoming rays
be in the direction

5 = -siny §+cosy % ,
as shown in Figure 15, The paraboloid
\ ; : surface will be considered the reference
. surface and in {erms of the parameters
j’, - r, ¢ its equation is
z /
<
Ih\r X = T cos 9
)
1
2 lof .
1 ¥ = rsin¢
A
\or z = 1“2_'& H (30)
X aT - v
p
- Applying Snell's law, (27c), at the re-
PARABOLOID x2+y2e-sf{z-§)
oy flector surface leads to the reflected
Figure 15. Geometry of Paraboloid ray directions

Recelv:ing a Plane Wave Off-/xis
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- S &
Er “xii‘““ym*‘%?; s (61)

where

a = Zrz sin y sin ¢cos ¢~ 4rf cos y cos ¢
X r2 + 4f2

2:‘2 siny sin2¢- 4rf cos y sin ¢

a_ = - siny {62}
y 2+ ag°
4rf sin y sin ¢- 812 cosy
a? . 4r smysgup - cOS™ Yy +cosy .
r¢ + 41

With
R=rcosof+rsind §+-tyr— 2 ar

the equations {60}, {£1}, and (62} constitute a normal congruence in the usual jorm
q r 1 K 13

of a reference surfzce with ray dir~ct.ons sgecified ai each poiit on che refersnce
surface as « function of cwvilinear coordineces. The second preceduse tor deter-

mining the focal surfaces is, therefcore, ‘nie most applicable in thig czse,

Tne fundamentat guantities becormne

i
"
s
]
=
-
0
(v
w

-2
"
bt
=3
-
[4]
o
<3

©

o
~.
23

o

Coat o
3]
[\

- (2f sinvy sin ¢ + r cos 7)2 I /A2
and

e = 2{rsinvy sin ¢ - 2f coz y)/A

XA WM

Jrn
"
[}

0
g = 2r7(r siny sin ¢ - 2f cos y}/A

where

r2+4f2.
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Subatituting into (57) =nd solving fAr g (with much labor), we obtain

2 L)
= — r + 4t ‘ [(rz - 4f°) sin?y + 82
181° (2f ccg v - r siny sin o)

- 4rf sin y cos y sin ¢ £ (r° + 4f%) sin yl

2 2
ﬂ_[(r“ - 4f ) cos y + 4rf 2in y sin ¢
1 [ r2+412)

Equations (59a £nd b) then give the focal surfaces in terms of the curvilinear coor-

TR AR, AVRRTVART RSO SR W R TR R ST IR RS 2 1 e

dinates (v, ).
In terms of cartesian ccordinatea (x, ¥, 2) on the paraboloid surface, the egua-

tions for the focal surfaces become

- _Bx T (2f - z) siny

9- {x 2f}§-+ y B.=é+ chrs—x'y-ysin'yl 2

£ nly . (2f-z}cosy

: +e Bll 2fcosy -y siny z. (63)
. where

; B = 2f~z+co8y (zcogv - ysiny) £ (2f - 2) siny\/l - ("" cos-)21f~_yzsiny

(64)
Calculations for the particular case vy = 20° have been carried out and the

i focal surfaces calculated and constructed {Parke Mathemaitical Laboratories,
4 Report No, 1, 18582). Figures 16a, b, and ¢ show the focal surfaces individually
and supuorimposed,

Wap VIS AW A

S

14. GERERAiL. COMMENTS ON FOCAL SURFACES

The normals to a wavefron: threugh a line of curvature tend, in general, ‘o
focuz on one or the other of the two focal surfaces. The physical extent of the
focal surfaces is, therefore, a measure of the focusing ability of the ray congruence

t azsociated with the wavefront. X the focal surfaces are exicnsive and far apart,

RIS

; the focusing is poor; if the focal surfaces are small and closely spaced, the focus-
: ing is geod, 6 the focal surfaces degeneraie to s line or to a point, the focusing

may be considered as perfect, depending on the avplication,

oA 3 WSMAR TRY RS SRGOT ¢ 1
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Parapoloid and a Second

Focal Surface

Figure 16b,

Focal

Paraboloidand One

Figure 16a.
Surface

.
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Paraboloid and Composite of Focal Surfaces

Figure 16c.

Plane Wave 20° Off-Axis

ing a

=21 Surfaces of a Paraboloid Receiv

Figure 16, F-
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If it is desired to receive the energy of a converging wavefront by means of a
point source, the optimum position for the point source will, in general, be either
on one of the two focal surfaces or between them. Regions where the focal surfaces
are close together or intersect generally have high energy density. Degener:te
focal surfaces are also regions of high energy density. Since every ray is tsagent
to each of the two focal surfacesg, the total energy in the wavefront can be collected
by locating properly-phased receivers on one or the other or on parts of both of the
focal surfaces.

For purposes of low side lobes in a focusing system there generally is
a power taper across the wavefront whether considered in the focal region
or in the aperture plane. This taper places greater importance on the rays through
the center of a focusing system—that is, rays near the chief ray—than on rays near
the edge of the system,

In general, the existence of two distinct focal surfaces in the focal region of a
focusing system indicates the presence of astigmatism. For each different direc-
tion of incoming energy, the separation of the focal points ‘Ql and Q2 (see Figure 14)
along the chief ray is particularly important because it is a ineasure of the astigma-
tiern in a region of high power density. In most one-dimensicnal scanning systems,
the plane of scan is a-plane of symmetry of the system and also « principal surface
of all ray congruences in the focal region. The other principal surfaces for all
chief rays in the plane of scan will be normal to the plane of scan, As the direction
of the incoming energy changes in the plane of scan, the two focal points associated
with the chief ray describe two curves. Rays in the plane of scan near each chief
ray will focus on one of these curves, known as the T (tangential) curve, while rays
near the chief ray but in a plane normal to the plare of scan will focus on the other
curve, known as the S (sagittal) curve. The separationof the S and T curves
is thus a measure of the astigmatism along the chief ray for directions of incoming
energy in the plane of scan and hence is an indication of the scanning capability of
the system, Ifthe S8 and T curves are close together, beam scanning can be ac-
complished by point-source feeding along a mean curve between the two, If multi-
ple beams broad in the plane of scan but narrow in the other dimension are de-
sired then point-source feeding along the S curve will produce the desired result.
If multiple beams narrow in the plane of scan but broad in the other dimension
are desired,then point-source feeding along the T curve wil produce the desired
result,
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Appendix A

Principal Normal Radii of Curvature, Principal Directions, Frincipal Planes,
and Lines of Curvcture

Let P be a point on a surface W and let PN be a line segment normal to W
at P (see Figure Al), Each normal plane tarough PN intersects W ina curve
C and eachcurve C has a unique radius of curvature o at P. In general, for
each point P there is also a unique position of the normal plane, such that the
intersection curve C = Cl has a radius of curvature p = Rl at P that 1s maximum
(see Figure A2). Similarly, there is a unique position of the normal plane, such that the
the intersection curve C = C2 has & radius of curvature p= R2 that is minimum,

These extreme values R1 and R2 are called the principal normal radii of curva-~
ture of W at P; the directions of C1 and C2 at P are knowr s the principal direc-
_tions of W at P; and the normal planes whose intersec! with W produce C1
and C, are called the principal planes of W at P, A ve on W that at each

point has a direction corresnonding to a principal direction of W at that point is
known as a line of curvature of W, It can be shown that the principal planes at each

point are mutually orthogonal and hence the two families of lines of curvature form

an orthogonal curvilinear coordinate system on W .
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at a Point on a Surface




SSRGS SNSRI K TR G R T T

Ll el 5

Eak =i’

TR

R R

e

TR AT

v N

nite wz ow F

Bl

Appendix B

Geometrical Optics Power Flow in a Source Free, Nonconducting,

Isotropic, Homogeneous Medium

The ray paths for this case are straight lines {see Section 2). In Figure Bl, P

is a point on a wavefront W, P! is the corresponding point on the wavefront W?,

and d is the distance from P to P!,
The differential element of area dA on
W is centered at P and the correspond-
ing element dA' is determined by the
intersection of the ray tube through dA
with the wavefront V', Tne curves

<
curvature of W and hence are mutually

and C2 through P are lines of

orthogonal (see Appendix A). The cor-
responding curves Ci ar C2' in W!
are also orthogonal lines of curvature.
If the principal normal radii of curva-
ture of W at P are R1 and R2 and
the centers of curvature are located as
chown in Figure B1, the principal normal
radii of curvature of W' at P' are
Ri =R1 +d and Ré =R2+d. Thus,
dA is proportional to Rle and dA!
is proportionalto R} RJ = (R 1-i—d)(R2+d)
If S is the power density at P and if
S' is the power density at P!,

a

PRINCIPAL NORMAL CENTERS
OF CURVATURE

Figure Bl. Geometrical Optics
Power Flow
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(36) becomes

SdA = StdA!
or
R, R
_ Sdb 1 R
St =g = § R+ (R, + @) - (B1)

The Gaussian curvature X of W! at P! iz defined to be

-
RiR

1
K = = 7 : : (B2)
3 TR TR, A

and hence is a function of d. Since K(0) = ﬁ—l-ﬁ_ , we can write
172

st = SIK(-(%))- (B3)

This equafion relates the power density S' at the point P! on a ray to the power
density S at a reference point P . The power flow so expressed is equivalent to
the poirer flow implied by the field intensity relation (26).
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