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A NOTE ON LAGRANGE MULTIPLIERS

F
R. C. Kao

The RARD Corporation, Santa Monica, California

A fundamental assumption common to all economic analyses is the‘
raximization or minimization of some objective function (representing;
say, utility, cost, welfare or vhatnot) subject to certain constraints.
Statements of the type: "A consumer with given income msximizes his
total utility only if his marginal utilities for the various commodi-

ties are proportional to their prices,"” are almost commonplacz in
economic texts and are generally described as "equilibrium conditions"
of the optimization process under consideration. Neveriheless, when
thesc meaningful theorems are presented to even the more advanced
students, the argument is usuelly shrouded with & complete or partial
mystery around the so-called Lagrange ﬁultipliers. Very little
explanation is given to these multipliers themselves except that

they are the coefficients used to form a certain Lagrangian function,

the extremization of which leads to the desired equilibrium

*
I am indebted to Professor A. A. Alchian of UCLA for calling
my attention to this problem.

*'Any views expressed in this paper are those of the author.
They should not be interpreted as reflecting the views of The RARD
Corporation or the official opinion or policy of ite governmental
or private research sponsors. Papers are reproduced by The RAND
Corporation as a courtesy to members of its staff.
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sonditiens.
" characterization of these multipliers and a natural reformulation of

Yo
note is devoted to an intrinsic (1.e., geometric)

the equilibrium conditions that permits a better insight into the
nature of constrained extremum problems in economics.;,
ot N

y = £(x) (1)
- be a real-valued function of a single varisble x. T.e function f
may represent, for exampl.e; the short-run cost curve of a production
pn;eess with only one variasble factoi'. If f is sufficiently smooth
(1.e., x 15 infipitesimally divisible), a necessary condition for a

(relative) minimum of (1) is, as 1s well known,

. 1i(x) =0, (2)

and a sufficient condition for a Jrelative) minimum of {1) 1s }2)

plus

-

n

L-r(x) =& (x) > 0. (3)

=7

X

Geometrically, (2) states thet the tangent vector to the curve C
defined by (1) must be horizontal; and (3) states that it is increas-
ing in slope around any root x° of (2). (Figure 1.)

A more easily generalizable geometric interpretation of 13) is

*Cf. inter alia the following well known economic texts:
R. G. D. Allen, Mathematical Analysis for Econom!sts, London:
Macmillan, 1949, pp. 366-367; idem, Mathematica) Economics, London:
Macmillan, 1956, pp. 610, 614; D. W. Bushav amd R. W. Clower, Intro-
duction to Mathematical Economics, Homewood, Illinois: Irwin, 1957,
p- 331; J. M. Henderson and R. E. Quandt, Microeconomic Theory, A
Mathematical Approach, New York: MecGraw-Hill, 1958, pp. 273-274;
J. R, Hicks, Value and Capital, 2nd ed., London: Oxford, 1956,
p. 305; P. A. Samuelson, Foundations of Economic Analysis, Cambridge,
Massachusetts: Harvard, pp. 362-305; and Taro Yemane, Mathematics
for Economiste, Englewood, New Jersey: Prentice-Hell, 1962, pp. 116-
123. .
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Figure 1

the following: Any function f possessing sufficient number of
derivatives (i.e., sufficiently smooth) may be expanded into a

*
Taylor'e series:

e
£(x) = 2(x%) + & (x - x°) + 3 Lf (x - x°)° -
dxlu-
n,
+...+%-751‘-—-§(x-x°)n+... (%)
*dx

vwhere all derivatives are to be evaluated at x°. (U4) states roughly
that the value of £ at x may be represented by its value at x°
together with those of all derivatives of f at x°. Consequently,

1f x° 1s to be & relative minimum, all sufficiently close neighbor-

ing x must not yield a mmaller y = £(x), 1.e.,

£(x) - £{x°) 2 0, (5)
in terms of (4),

2
at 0,2 \

y S x-x"%20 (6)
ax

*See, e.g., R. C. Buck, Advanced Calculus, New York: McGraw-
Bi11, 1956, pp. T5-T7.
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since,at x°, g = 0; and if x is sufficiently close to x°, the tem
shown in (6) will dominate the combined effect of all succeeding
terms because these remaining terms contain x - x° to a higher
degree. That (6) is equivalent to (3) is obvious.

If £ is nov a function of tyo independent variables, (1) may
be rewritten as:

y = 2(x, x,) (7

and a pair of necessary conditions corresponding to (2) are

%-rﬁ:o , %:g{;o. (8)

These conditions state that the tangent vectors to the surface S
defined by (7) in the directions of increasing X and increasing X,
" must be horizontal, that is, the two tangent vectors must be

parallel to the XX, - plane. (Pigure 2.) If f is sufficiently

smooth, its Taylor expansion around eny root ¥° of (8) 18 given by
a0 Loy . Of ey , O . 0
1(x,, %)) = 7(xy, x,) + & (x-x)) v &= lp=%3)

1 e 3¢

3 { % (xx%2% 42 (x, -x°) ]x,-x°) 19)
laxf 175 = &, i i R
2 .

+-—s-—a§<x2-xg)2 i“" e .

2

By an argument similar to that used to derive (6), a sufficieat

comdition for x° to be & (relative) mintmum is (8) pius

N 2
o°f 0,2 o°f 0 0
3 o2 Oy + 2 5o (uxy) Gp)
2 \
,9f <x2-x372 :l 20 . (10)
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The tangent vectors (dx , 0) = (x, - x;, 0) and (0, dx,) =
(0, x, - xg) to the surface (7) at x° determine a 2-dimensional
tengent plane d8(x”) to 5. Since x° 1s to be a relative rinimm,
all sufficiently close neighboring points must not yleld a smaller
¥, points on the tangents (dxl, 0), (0, dx2) being only special cases.
More generally, points on any tangen;. vector dx = (dil, dia) to S

at x° which is a linear combination of (ax , 0), (0, dx,) uust also

2
not yield a smaller y. Since (dﬁ, 0), (0, dx.,) span (i.e., form a

basis of} d5(x°), dX may be represented as

(d).&, die) = cos @y (dﬁ’ C) + cos a, (0, dxz) (11)

vhere cos @, cos O, are the direction cosines of dx with respect
to the local (orthogonal) coordinate system on dS(x°) with origin

at x° and directions (d&l, 0), (0, dx Consequently, & etrengthened

2)-
neceesery condition for a relative minimum at x°, which includes the

tvo conditions in (8), is

.o of _
Vyit = Fl cos o, + &-2- cos a&, = 0 (12)

vhere cos al, cos a2 are the direction cosines of an arbitrary
tangent vector dx to S et x°, and bf/bxl, bf/ax2 are the components

of the normal to dS (i.e., the gradient vector V¥ to S). Vazs

defined to be the left side of (12), is called the directicnal

derivative of f in the direction of dx. For a =0, a, = /2,

ix = (dx,, 0) end (12) ylelds the first condition in (8); for

/
a, = n/2, a

obtalns.

5= 0, ax = (0, dx,) and the second condition in (8)

Moreover, a strengthened sufficient condition analogous to (3)
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for a relative minimum at x° is, by taking again the d{rectional

derivatives of £ , f  in the direction dx,
X X o
1 72
2

VaxT = Vaz Wazf) = az (s,a?f SLG @ % c08. 0;) =

(Vdi fxl) cos o + ovdi £, ) cés a, = (ESI £, cosa, + (13)

2 1

) ) 0
f_ cos a,) cosa, + ( f_ cos o+ f .osaqa,) cosq, =
3§; X 2 1 EEI X, % 55; X, 2 2
2 521’ 2

o°f 2 o°f 2
——2cos al+2§-&—coaalcosa2+—§cos agzo.
axl 12 ax2

The tangent plane dS(R) at any point £ on S is defined by the

linear terms in the expansion (9), i.e.,
y - 2%, %,) = 3,-;"{ (x, - %) + % (x, - &)) (14)

where (xl, Xo y) is now a point in dS(x), and the partial deriva-
tives are to be evaluated at X. To put the matter differently, if 8
itself 1s a plane, then the expansion (9) at any point on it must
be exect up to and including the linear terms, i.e., #11 higher-
orer terms must vanish identically. The normal to the taﬁgent
plane dS(%) has components proportional to (bf/axl, ar/axa, -1).

. At & relative rizimum point x° where S and dS(xo) are tangent
to each other, y = f(xg; xg) and the left side of (14) vanishes.

Consequently, dS(x°) must be parallel to the X, X,-plane (called the

2
base plane) but aiv Jistance f(xg, xg) from it. For, in that case

the right side of (14) can just as well be written as

%‘_’ (x, - x) + ;,2{ (xy - %) + (1) [y - 22, x9) 1=0  (15)




where y = f(x‘l’, xg) identically in a8(x°), showing the orthogonality
~ o 0

between (aar/axl, Bf/axa, -1) and (%, - x}, %, - X,y 0), & vector in

the base plane. However, the right side of (14) is the same as

gxf defined in (12) if we choose a point (xl, Xp) f(x:, xg)) in
ds(x°) such that

X, - xg = CO8 Oy , X, - xg = CO8 Q, , ¥ - r(xg, xg) =0 . (16)
Since (cos al, cos a2) represents a ueit vector with respect to the
local coordinate system in &S(xo), Vhif is precisely yPe component
(i.e., projeciion) of Vf in the direction dx. (12) states, there-
fore, that at a criticel point x° on 5, the projection of the
gradient vector yf in every d'rection dx in dS(x°) vanishes, where
ds(x°) is parallel to the base plane. As a, Gy in (16) can be
arbitrarily chosen, the right side of (14) can vanish only if fxl, £x2
themselves vanish, justifying (8). Moreover, at a noneritical
point % of S, a point (xl, X y) in dS(X) will generally have its

last component y not identically equal to f(il, ' In fact, these

o)
will usually be equal only for the tangency polnt beiween S and dS(R);
therefore, the right side of (ili) does not now vanish always. It
may vanish for some directions dx i~ dS(&). These results apply,
in general, to spaces of dimensions greater than 2 also.

On the basis of the above geowetric argument, it is now
possible to give an 1ntr1nsié charecterizaticn of Lagrange multi-
pliers. Consider, for example, a constraipned minimum problem of

the following type: Minimize (7) subject to

g(x-lp xa) =0 . (17)
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(17) defines a curve in the hase plene, and minimum of f is to be

sought over all points x = (xl, x2) lying on this curve C. At any
such (relative) minimum point x°, the directional derivative Vf of
£ along the tangent to C must vanish by (12), where cos a,, cos O,
denote the components of the unit tangent dx to C at x°. However,

(17) shows that

i

Viax8

3 3
cos a + cos @, = 0 . (18)
T 008 %+ o8 %

also at this point. Consequently, def and Vix8 must be collinear,

i.e., for some scalar A\

Vaxl = * Vgu8 - (19)
But, (19) is equivalent to

fxlz).gﬁ, fxa-:x%‘e (20)
vhich are the usual conditions derivable from differentiation of
the Lagrangian function. A sufficient condition for a velative
minimm at x° is (13) with cos %, cos O, being again the components

of dx (tangent to C at x°) with respect to the local coordinate
system at x°.
Generalization of the above geometric cha.ra(;terization of
Lagrange multipliers to spaces of higher dimensions is immediate.
Let
y = f(x, 75 ooy X)) (2)
agoin denote the objective function t¢ be extremized, and
gJ(xl, Xpp +oos xn)=0 (J=1, ..., r<n) (22)

denote a set of independent side comstraints. Each 35 defines a
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bypersurface .E!:j in the base plene [1.e., X Xy .xn-plane in
(n+1)-dimensional space E=*. with the lest axis denoted by y]. The
intersection
r
S = N 8 (23)
12...r =1 J

of these hypersurfaces in general ylelds an (n-r)-dimensional sur-

face in the base plane. A% a critical point x° = (xi,. ..,xg) on

812 r (vhich is C in the preceding example), & tangent space dS

geperally exists with basis vectors (dx)l, cory (@)T, and the

12...r

directional derivative yf of ¢ alo.ng each such basis vector or their

linear combinstions must vanish. This suys that ¢f must be orthogo-

nal todS;, ., or Vf lies in dsi"a' _ o the ovthogonal camplement
o
of 48,, &t x . But (22) shows that
r og
r sdax =0 (3=1, ..., 1) (24)
i=1 71

gt x° also. Hence, if dx = (dxl, ceny dxn) is chosen to range over

1 -
the basis vectors (dx)~, ..., (ax)®T of ds, , {24) merely shows

2...7

that each vg,j (§=1, 2, ..., r) is also orthogonal %o d312 r But

if g (§=1, ..., r) are independent, V8ys vy vgJ (J=1, ..., r)

would form & basis for dS‘]{'2 r since
omas), +dimdS, _=n (25)
&t a regular point on 312 e Therefore, for some scalars xl, boog xr
ve must have
r
321 J

expressing linear dependence of Vf on ng (3=1, ..., r). (19) gives,

in component fom,




r og
12 E (eL o), (21)

e

the more familiar equilibrium conditions. In (27), there are n

equations in ntr unknowns x., ..., X3 ¥ xr. But since

1? 17t
(xl, 0o xn) must also satisfy (22), r additionel equations must
be included. Consequently, the Lagrange multipliers are merely
coefficients used in expressing & certain necessary linear
dependence relation of the gradient vector tc the surface defined
by f on those to surfaces defined by 8, (3=1, ..., r).

The sufficiency condition is also easily generalized. With

respect to the basis vectors (dx)l, ver, (ax)™7T of s

12...0° 8
typical unit tangent vector dx in ds,, . bas the fom
. n-r S
ax = I (ax)" cos o (28)
k=l
where cos &y, ..., coe @ __ are the direction cosines of dx with
respect to (dx)l, oo, (@X)®T. Then
v2 n-r aaf
axf s L &, 0% cosayz0 (29)
i,§=1 17

together with (27) ylelds a relative constrained minimum at x°.
Alternativel;, if z = (zl, ceey zn) is any vector in the base piane,

a relative constreined minimum at a point x° is assured by (27) and

Pr 3¢
z'He = (zl, ceey zn) i Ce '
3¢ 3¢ . (30)

&;lg. o e &";2' z

n

1,=1 17
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for all 2 orthogonal to 8» +cey B " that is, for all z

satisfying

3

g
g.l z, =0 (3=1, ..., 1) . (31)
i

f M

i=1

!

That (30) and (31) mey be transiated into appropriate properties of

the bordered Hessian

%, %)
0 * . . . 0 &I . - . . yn
dg og
T T
0 0 E &:
(32)
ag1 Bgr 3%t 3%¢

n

A
A
R
|

aaf 3°r

g,

may also be readily established.

A&
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