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A NOTE ON LAQRABGB MULTIPLIERS* 

R. C. Kao 

The RAND Corporation, Santa Monica, California 

A fundamental assumption common to all economic analyses is the 

maximization or minimization of some objective function (representing, 

say, utility, cost, welfare or whatnot) subject to certain constraints. 

Statements of the type: "A consumer with given income maximizes his 

total utility only if his marginal utilities for the various commodi- 

ties are proportional to their prices," are almost commonplace in 

economic texts and are generally described as "equilibrium conditions" 

of the optimization process under consideration. Nevertheless, when 

these meaningful theorems are presented to even the mo?:e advanced 

students, the argument is usually shrouded with a complete or partial 

mystery around the so-called Lagrange multipliers. Very little 

explanation is given to these multipliers themselves except that 

they are the coefficients used to form a certain Lagrangian function, 

the extremization of which leads to the desired equilibrium 

* 
I am indebted to Professor A. A. Alchian of UCLA for calling 

my attention to this problem. 

Any views expressed in this paper are those of the author. 
They should not be interpreted as reflecting the views of The RAND 
Corporation or the official opinion or policy of its governmental 
or private research sponsors. Papers are reproduced by The RAND 
Corporation as a courtesy to members of its staff. 
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jSpnrtlt»lffnif.     Att note is devoted to an intrinsic (i.e., geometric) 

characterisation of these multipliers and a natural reformulation of 

the equilibrium conditions that permits a better Insight into the 

nature of constrained extremum problems in economics.,, 

Let ' 

y « f(x) (l) 

be a real-valued function of a single variable x. TI,e function f 

may represent, for example, the short-run cost curve of a production 

process with only one variable factor. If f is sufficiently smooth 

(i.e., x is infinitesimally divisible), a necessary condition for a 

(relative) minimum of (l) is, as is well known, 

(2) 

and a sufficient condition for a Jrelative) minimum of (l) is )2) 

plus 

g = f'(X) - 0, 

H = r(x) = |-1-(x) > o. 
dx 

(3) 

Geometrically, (2) states that the tangent vector to the curve C 

defined by (l) must be horizontal; and (3) states that it is increas- 

ing in slope around any root x° of (2). 'JFigure 1.) 

A more easily generalisable geometric interpretation of )3) is 

Cf. inter alia the following well known economic texts: 
R. G. D. Allen, Mathematical Analysis for Economists, London: 
Macmillan, 19^9, pp. 366*367; idem, Mathematical Economics, London: 
Macmillan, 1956, pp. 6l0, 6lh;~f)Tv.  Bushaw and R. W. Clower, Intro- 
duction to Mathematical Economics, Homewood, Illinois: Irwin, 1957, 
p. 331; J. M. Henderson and R. E. Quandt, Microeconomic Theory, A 
Mathematical Approach, New York: McGraw-Hill, 1958, pp. 273-274; 
J. R, Hicks, Value and Capital, 2nd ed., London: Oxford, 1956, 
p, 305; P« A. Samuelson, Foundations of Economic Analysis, Cambridge, 
Massachusetts: Harvard, pp. 362-365; and Taro Yamane, Mathematics 
for Economists, Englewood, Hew Jersey: Prentice-Hall, 1962, pp. II6- 
123. 
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Figure 1 

the following:    Any function f possessing sufficient number of 

derivatives (i.e.,  sufficiently smooth) may be expanded into a 
* Taylor's series: 

f(x) = f(x°) + g (x - x°) ♦ fc ää (x - x0)2 
ax dx~ 

i  anf OvlQ 
♦ ...+£rSLi(x-xT+ ••• n: dx11 w 

where all derivatives are to be evaluated at x .    (U) states roughly 

that the value of f at x may be represented by its value at x 

together with those of all derivatives of f at x .    Consequently, 

if x° is to be a relative minimum, all ;ufficiently close neighbor- 

ing x must not yield a smaller y » f(x), i.e., 

f(x) - fix0) i 0 , (5) 

in terms of (k), 

a2f 
d7 

(x - x°)2 2 0 (6) 

See, e.g., R. C. Buck, Advanced Calculus, Mew York: McGraw- 
Hill, 1956, pp. 75-77- 
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since,at x°, gj * 0; aad if x is sufficiently close to x°, the tenn 

shown <n (6) will dominate the combined effect of all succeeding 

tents because these remaining terms contain x - x° to a higher 

degree.   That (6) is equivalent to (3) is obvious. 

If f is now a function of tyo independent variables,  (l) may 

be rewritten as: 

y « ffx^ x2) (T) 

and a pair of necessary conditions corresponding to (2) are 

* T. °*2   2 

J9) 

These conditions state that the tangent vectors to the surface S 

defined by (7) in the directions of increasing x. and increasing x^ 

must be horizontal, that is, the two tangent vectors must be 

parallel to the x-x- - plane. (Figure 2.) If f is sufficiently 

smooth, its Taylor expansion around any root x   of (8) is given by 

♦ * {§ <v$* + 2 a§q <v# i-2-2) 

^2 

By an argument similar to that uaed to derive (6), a sufficient 

couäitlon for x° to be a (relative) minimum is (8) plus 

*{ A (vxo)2 + 2^_ (vx0) (vx|) 

♦ g (x2-x|)
2 ) » 0 . (10) 
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The tangent vectors (dXj, 0) » (x.   - x?, 0) aal (0, dxj 

<2 " Xl> (09 x0 - x°) to the surface (7) at x° determine a 2-dimensional 

tangent place d8(x°) to S.    Since x° is to be a relative minimum, 

all sufficiently close neighboring points must not yield a smaller 

y, points on the tangents (dx., 0), (0, dxg) being only special cases. 

More generally, points on any tangent vector dx « (dx, diL) to S 

at x° which is a linear combination of (cb^, 0), (0, dx2) must also 

not yield a smaller y.    Since (dx., 0),  (0, dx0) span (i.e., form a 

basis of) dS(x°), dx may be represented as 

(dxx, dx2) - cos o^ (cb^, 0) + cos e*2 (0, dxg) (11) 

where cos a., cos ou are the direction cosines of dx with respect 

to the local (orthogonal) coordinate system on dS(x°) with origin 

at x° and directions (d*L, 0), (0, dx2). Consequently, a strengthened 

necessary condition for a relative minimum at x , which includes the 

two conditions in (8), is 

7dx 
7-xf s sr cos ai* jecos a2 = ° <12> 1     * ™2 

where cos a, , cos ou are the direction cosines of an arbitrary 

tangent vector dx to S at x°, and df/dx., df/ox2 are the components 

of the normal to dS (i.e., the gradient vector Vf to S). V,-f, 

defined to be the left side of (12), is called the directional 

derivative of f in the direction of dx. For a = 0, au « n/2, 

dx ■ (dxx, 0) and (12) yields the first condition in (8); for 

a - n/2,  a2 « 0, dx - (0, dx ) and the second condition in (8) 

obtains. 

Moreover, a strengthened sufficient condition analogous to (3) 
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for a relative minimum at x    is, by taking again the c^rectional 

derivatives of f    ,  f      in the direction dx, 
V    X2 

W ' 7dx <*dxf> " ?dx <S£ C0B °l + S£ C08 a2> " 

foflx fX1
) C0S °l + (vdx %> C0S a2 " <3x7 fxx 

COS «1 + (13) 

gL f^   COS  Qt2)   COS 0^   +   (jjL f^  COS 0^ £- f^   .OS Ofe)   COS Ofe 

r§cos2 *L + 2 5x7s:coe °iC03 a2+ ycos2 a2 * ° • 
ax. 1 2 dx2 

The tangent plane dS(x) at any point St  on S is defined by the 

linear terms in the expansion (9),  i.e., 

* - *V *8> " s[ (xl - V + 3£ <x2 - x2> (lU) 

where (x_, x-, y) is now a point in dS(x), and the partial deriva- 

tives are to be evaluated at x. To put the matter differently, if 8 

itself Is a plane, then the expansion (9) at any point on it must 

be exact up to and including the linear terms,  i.e., all higher- 

o^er terms must vanish identically.    The normal to the tai*gent 

plane dS(x)    has components proportional to (of/ax., of/axp,  -1). 

At a relative ininiaum point x   where S and dS(x ) are tangent 

to each other, y * f(x°, x°) and the left bide of (lk) vanishes. 

Consequently, dS(x ) must be parallel to the x.Xp-plane (called the 

base plane) but at, Jistance f(x^, x^) from it.    For,  in that case 

the right side of (lk)  can Just as well be written as 

5T (xi " xi> + 5T (x2 " x2> + (-x) i"y - f<V *I> 1 - 0     (15) 
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where y » f(x?, x°) identically in dS(x°), showing the orthogonality 

between (Äf/äx^ df/dXg, -1) and (x^  - x£, xg - x°, 0), a vector in 

the base plane. However, the right side of (1*0 is the same as 

V^jf defined in (12) if we choose a point (x^ x2, f(x£, x°)) in 

dS(x°) such that 

a^ - x£ « cos o^ , x2 - x° » cos a2  , y - f(x£, x°) s o .  (l6) 

Since (cos OL , cos ou) represents a unit vector with respect to the 

local coordinate system in &5(x°), 7,-f is precisely the component 

(i.e., projection) of Vf in the direction die. (12) states, there- 

fore, that at a critical point x° on S, the projection of the 

gradient vector vf in every direction dx in dS(x°) vanishes, where 

dS(x°) is parallel to the base plane. As a  a2 in (16) can be 

arbitrarily chosen, the right side of (ik)  can vanish only if f , £ 
Xl  X2 

themselves vanish, justifying (8). Moreover, at a noncritical 

point x of S, a point (x-, Xp, y) in dS(x) will generally have its 

last component y not identically equal to f(xl,, )L). In fact, these 

will usually be equal only for the tangency point between S and dS(£); 

therefore, the right side of (i*0 does not now vanish always. It 

may vanish for some directions dx ±r dS(x). These results apply, 

in general, to spaces of dimensions greater than 2 also. 

On the basis of the above geometric argument, it is now 

possible to give an intrinsic characterization of Lagrange multi- 

pliers. Consider, for example, a constrained minimum problem of 

the following type: Minimize (7) subject to 

g^, x2) = 0 . (IT) 
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(17) defines a curve in the base plane, and minimum of f is to be 

sought over all points x = (x , x^) lying on this curve C.    At any 

such (relative) minimum point x°, the directional derivative Vf of 

f along the tangent to C must vanish by (12), where cos OL, cos a^ 

denote the ccwipc 

(17) shows that 

denote the ccwiponents of the unit tangent dx to C at x°.    However, 

vdx« asf C0S °1 + 35^ C0S «2 " ° ' <l8> 

also at thJs point.    Consequently, y, f arid V, g must be collinear, 

i.e., for some scalar X 

But,  (19) is equivalent to 

fx    s X *x    >    fx    = X «x (*» xl ^1 x2 ^2 

which are the usual conditions derivable from differentiation of 

the Lagrangian function. A sufficient condition for a relative 

minimum at x is (13) with cos a , cos a0 being again the components 

of dx (tangent to C at x°) with respect to the local coordinate 

system at x . 

Generalization of the above geometric characterization of 

Lagrange multipliers to spaces of higher dimensions is immediate. 

Let 

y =» A'x^ *2,  ..., xn) (a) 

ag*iin denote the objective function to be extremised, and 

gJ(x1, x2, ..., xQ) = 0    (j = 1, ..., r < n)      (22) 

denote a set of independent side constraints. Each g. defines a 
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bypersurface S. in the base plane [i.e., x-x^.-.x -plane in 

(n+l)-dimensional space E11* vith the last axis denoted by y]. The 

intersection 

S12...r" * Sj (23) 

of these hypersurfaces in general yields an (n-r)-dii>jea8ional sur- 

face in the base plane.    At a critical point x° * (x?, ...,x°) on 

8.p (which is C in the preceding example), a tangent space dS _ 

generally exist6 with basis vectors (dx) ,   ...,  (dx)n"r, and the 
■ 

directional derivative vf of f along each such basis vector or their 

linear combinations must vanish.    This rays that vf must be orthogo- 

nal to dS_2       , or Vf lies in ds£2       , the orthogonal complement 

of dS10 at x°.    But (22) shows that 

AsfdXi=0 Cd-l,  -., r) (2k) 
1=1 1 

at K° also. Hence, if dx * (dx., ..., dx ) is chosen to range over 

the basis vectors (dx)% ..., (dx) " of dSlp   , (2*0 merely shows 

that each trg. (j«l, 2, ..., r) is also orthogonal to dS 2   . But 

if g^ (j-l, ..., r) are independent, vg^ ..., vg, (j-1, ..., r) 

would form a basis for dST0  _ since Xc...r 

dimdS10 tdiftdB^ »n (25) id,..r id, ..r 

at a regular point on S.p        .    Therefore,  for some scalara X.,   ...,  X 

we must have 

r 
W «    I    X. vg. , (26) 

J-1    °      J 

expressing linear dependence of Vf on Vg. (j=l,   ...,  r).    (19) gives, 

in component fonn, 
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(i -1, ..., n) , (27) 

the more familiar equilibrium conditions. In (27), there are n 

equations in n+r unknowns x., ..., x ; \., .... X . But since l n     l r 

(x.,   ..., x ) must also satisfy (22), r additional equations must 

be included.    Consequently, the Lagrange multipliers are merely 

coefficients used in expressing a certain necessary linear 

dependence relation of the gradient vector tc the surface defined 

by f on those to surfaces defined by g. (J«l,   ..., r). 

The sufficiency condition is also easily generalized.    With 

respect to the basis vectors (dx) ,   ...,  (dx)        of dS.-        , a 

typical unit tangent vector dx in dS ? has the form 

n-r 
dx «     Z    (dx)    cos fry 

k-1 * 
(28) 

where cos a,, .... cos a  are the direction cosines of dx with 
i        n-r 

respect to (dx) , ...,  (dx)n"r. Then 

1,j-1   1 j (29) 

together with (27) yields a relative constrained minimum at x . 

Alte mat ivel;, if z * (z.,   .,.,  z ) is any vector in the base plane, 

a relative constrained minimum at a point x   is assured by (27) and 

/ 

z'Hs » (zv   ..., za) 

ö2f 

a2f 

ä2f 
5T5T 1   n 

b2f 

5? n 

(30) 

8izj>0 
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for all 2 orthogonal to   &.,   ...,    g    « that it, for all z.f   ..., z 

satisfying 

n   dg, 
1 s? ai * ° (J - 1,   .-., r)   . (31) 

1=1 ~i 

That (30) and (31) may be translated into appropriate properties of 

the bordered Hessian 

0    ....    0 

*% 

•^ 

n 

a2f 
ax,2 

a2f 
^ 

a* 

n 

a2f 

*x2 

(32) 

may also be readily established. 


