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PREFACE 

Most If  not  all Air Force  problems  pertaining to system optimization 

involve more  than one criterion function.     This situation is often 

handled by altering the natural problem formulation so as to yield but 

a single criterion.    In recent years,  however,  we have  seen more  and 

more use made of   tradeoff-curve  analysis   (e.g.,  cost-benefit  analysis) 

based on the concept of "efficiency."    A system is  said  to be operating 

at an "efficient  point"  if no criterion can be improved without  worsen- 

ing at  least one  other criterion.    Analysis  in  these terms  is  necessary 

to preserve  the conflicts inherent in noncomparable criteria,   thereby 

enabling the  proper 1)1 ending of human  judgment and mathematical  analysis. 

In this study we reexamlne   :he  fundamental concept of el ficiency. 

The possibility of certain anomalous  situations suggests  the desirability 

of a slight  revision of the customary definition.    The  resulting new 

definition of efficiency--which we call  proper efficiency--Lurns  out 

to permit a very  satisfactory  theory,   a matter of good   fortune  from the 

applications  point of view.    Most of  this   study is devoted  to 

developing the mathematical foundations  of  this  theory.     The  results 

should  be of  interest  to systems analysts  and operations analysts  with 

a background in mathematical programning. 

The author   is  a consultant  to The RAND Corporation. 

•^W- -—.^..t^rtÖM^^c, 
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SUMMARY 

The concept of efficiency In problems with multiple criterion 

functions--sometimes under an alias such as "admissibility" or "Pareto 

optimality"--has  long played an important role  in economics,  game 

theory,  statistical decision  theory,  and in  all  optimal decision prob- 

lems with noncomparable criteria.    Here we propose a slightly restricted 

definition of efficiency  that eliminates efficient points of a certain 

anomalous nature.    This new definition,  which we call proper efficiency, 

is  related in spirit  to  the notion of "proper" efficiency introduced 

by Kuhn and Tucker in  their celebrated paper of  1950;  but the present 

definition avoids certain drawbacks inherent  in  the earlier one.    A 

comprehensive theory of vector maximization is constructed using the 

new definition,  with and without various constraint qualification,  con- 

vexity,  and differentiability assumptions.    The  theory includes as a 

special case the standard  theory of nonlinear programming. 

IM    BÄÄÄMfc itaaumum ,u^i^.AMMaKMA««a.MMi  i >      
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I.     INTRODUCTION 

Given a vector-valued criterion  function f(x)  ■  (f.(x),   ...,   f  (x)) 

and  a set X c R    of  feasible points,   the Vector Maximum Problem 

(VMP) V-MAX f(x)   subject  to x € X 

is  the problem of finding all points  that  are efficient:    x    is  said to 

be efficient  if x e X and there exists  no other feasible point x such 

that   f(x)  >  f(x )   but  f(x)   i- f(x ).     The  concept of efficiency—sometimes 

under an alias  such as "admissibility,"  "maximality," noninferlority," 

or "Pareto optlmality"--has  long played an  important role in economics, 

game  theory,   statistical decision theory,   and in ail optimal decision 

problems with noncomparable criteria. 

In this  study we propose a slightly restricted definition of 

efficiency that   (a)  eliminates efficient  points of a certain anomalous 

type;  and   (b)   lends  itself to more satisfactory characterization  (see 

Theorem 2  below,  and Sec.  II).    We shall call  this new definition proper 

efficiency,  although Kuhn and Tucker  [7] have previously used  the same 

term.    Their  Intent appears  to have been much the same as ours  but,  as 

we shall  see,   the present definition Is  of greater generality and  seems 

to be somewhat more natural. 

PROPER EFFICIENCY 

Definition ;    x    is said  to  be a proper efficient  solution 
of   (VMP)  if it is efficient  and  If  there exists a scalar 
M > 0 such  that, for each  i,  f.(x) > f.(x )  and x € X Implies 

fi( f^x)   -  f^x") 

fjCxo)   -   f^x) s M 

for  some   1  such that f.(x)  < f.(x ) 
J J 
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An efficient point that is not  properly efficient   is said to be 

Improperly efficient.    Thus  for x    to be improperly efficient means 

that   to every scalar M > 0  (no matter how large)   there  is a point 

x C X and an i such that  fAx) > f.Cx0) and 

f^x)   -  f^x") 

fjU0)   - fjU) 
> M 

o v 
for all j such that  f .(x)  < f .(x ).    If we take a  sequence <M > - " 

and remember that  there  is  but a  finite number of criteria, we see  that 

for some criterion 1   ,  the marginal  gain  in  f.     can be made arbitrarily 
o 

large  relative to each of  the marginal losses  incurred by other cri- 

teria.    Assuming that the decisionmaker's desire  for  f      is not sati- 
o 

ated,  x    certainly seems undesirable.    An example of improper efficiency 

is  given in Sec. III. 

CHABACTERIZATIOH 

A matter of great  interest, both computationally and  theoretically, 

is  the relation of the Vector Maximum Problem to  the  following scalar 

maximum problem: 

CPO HAX    £. ^Mx) subject to x c X, 

where  the X.  are nonnegative parameters often normalized according to 

X    ■ 1,    The fundamental results characterizing proper vector max- 

ima  in  terms of the solutions of (P,) are given in Theorems  1 and 2. 

Theorem 1. Let X, > 0 (i - 1, ..., p) be fixed. If 
x0 is optimal in (P^) , then x0 is properly efficient 
in (VHP). 

1      ! 
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Proof;  It Is obvious that x is efficient. We shall show that x is 

properly efficient in (VHP) with M - (p - 1) Max {X,/X. } (we may assume 
i,j  J 1 

that p 2 2). Suppose to the contrary that for some criterion i and 

x e X we have 

f^x) - f^x0) >M(fj(x
0) - fjCx)) 

for all j such that f (x) < f (x0) . It follows directly that 

f^x) - f^x0) >^H  XjCfjCx0) - f^x^for all j f  t. 

Multiplying through by X./(p - 1) and sunning over j / i yields 

X^f^x) - fi(x
0))> ZX^f^x0) - f^x)), 

which contradicts the optimality of x in (?>) • 

Theorem 2. Let X be a convex set, and let the f. 
be concave on X. Then x0 is properly efficient 
in (VMP) if and only if xo is optimal in (Px) for 
some X with strictly positive components. 

Proof;  The "if" part of the theorem is provided by Theorem 1. If x0 

is properly efficient, then there exists a scalar M > 0 such that for 

each i (i ■ 1, ..., p) the system 

f^x) > f^x0) 

fjU) + M fjU) > f^x0) + M f.(x0), all j / i 

admits no solution in X.    By a fundamental property of concave functions 

[2,  p.  62],  for the i1    system there exist X. > 0 (j - 1 p) with 

i^aMK* 
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p  i 
I X    - 1 such that 

J-l J 

Xjf   (x) +   I Xj(f  (x) +M f.(x))  <: Xjf.(x0)  +   E X^(f.(x0)  +M f.(x0)) 
x 1 j^i ■' J 1 1 j^i J    1 J 

or equlvalently f  (x)  +M    S X^f  (x)  s f  (x0)  + H L X^f  (x0) ,  ior all 

x e X.    Sunning over 1 yields,  after some rearrangement, 

J^d + M Z)xbf,(x)  ^ 2l(l + M 2^)f ,(x0) 
j-l iTj  J    J j-l U]  2     } 

for all x « X.    This completes  the proof. 

Thus  from a computational viewpoint,   finding proper efficient 

solutions  is reduced to a parametric programming problem;  (P,) yields 

only properly efficient solutions as \ varies over 

p 
A+ ^ {X c RP   : all X    > 0 and E    X    - l}, 

l-l    t 

and  if concavity holds  then this approach yields all properly efficient 

points. 

A more complete characterization theory for  the Proper Vector 

Maximum Problem is developed  in the next section.     It provides , for 

example , necessary conditions  for a proper vector maximum in  the absence 

of concavity. 

it 
In this regard see, for example, Charnes and Cooper [3, Ch. 9], 

Markowltz [81, and Geoffrion [41. 

- 
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II.     THEORY 

We shall give the   theory of the Proper Vector Maximum Problem In 

terms  of  the  relationships  between  the  following six problems.     In 

problems  3,  4, and 5, X  is  taken  to be of  the  form X ■ {x:g(x) > Oj, 

where  g(x)   •   (gj(x),   ...,  g, (x)).     In problems 3 and 4,   the differen- 

tiability of all  functions  is  presumed. 

Problem 1 - Find a point x that   is a proper efficient 
solution of (VMP). 

Problem 2 - Find a point x  that  is a locally    proper 
efficient solution of  (VMP). 

Problem 3 - Find a  feasible point x such that none 
of the p systems** (i ■ 1,   ...,  p) 

V Mx)'u > 0 x i 

Vxfj(x).u ^ 0, all j / i 

^gjU)-" ^ 0, all j 9 g^x)  - 0 

has a solution u in R . 

Problem 4 - Find a feasible point x, a point y > 0 
in R™, and a point \ e A such that y.g(x) = 0 and 

Vxtt-f(x) + ?-g(x)] = 0. 

Problem 5 - Find a feasible point x, a point y > 0 
in R"1, and a point X ' A+ such that y-gCx) ■ 0 and x 
achieves the unconst 

\   "■ n    such that ygCx) ■ 0 and x 
itrained maximum of \«f(x) + y*g(x). 

Problem 6 - Find a point x and a point X c A such 
that x is optimal in (Pr). 

x is said to be a locally proper efficient solution of (VMP) if 
it is properly efficient in N- H X, where N- is some (open convex) 
neighborhood of x. 

** 
Vcp(x) represents the gradient vector of the function cp evaluated 

at x = x. 

mtm 
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Problem  1 is  the central problem of interest.     Problem 2  is  its 

"local" equivalent, and problem 3 is  the  local  problem in terms of 

directional derivatives.     Problem 4 represents   the  generalized  Lagrange 

aultiplier or Kuhn-Tucker conditions  in differential  form associated 

with problem 1.    Problem 5  is  precisely equivalent  to the  following 

saddle-point  problem: 

Find a point ic, a point y > 0 in R   , and a point ^ €  A 
such that  the pair (x,y)  is a saddle-point  subject  to 
y i 0 of the   function F(x,y)   ■ £»f(x)   + y«g(x);   i.e., 
such that F(x,y)  * F(x,y)   2s F(x,y)   for all x c Rn and 
y i 0 in R1». 

Problem 5 is also of  interest  for its own sake.     Problem 6 is   just  (P^)- 

In stating the  relations between these problems, we shall use  the 

notation j. 
V -*-k, which is to be understood as  follows.     Let 

(u ,v)  be the unknowns of problem J and (u ,w)   the unknowns of problem 

k.    Then this  notation is  to be read:    "If (u,v) solves problem J, 

and if assumptions A.,   ...  hold, then  there exists w such that  (u,w) 

solves problem k."    Or, somewhat more  loosely, "Under assumptions A., 

..., every solution of problem j  is also a solution of problem k." 

The assumptions that will be used at one time  or another are: 

Assumption C:    All  functions are concave on E  . 

Assumption D:     All  functions are continuously 
differentiable on En. 

Assumption Qi;    The  following constraint  qualifica- 
tion holds:     there exists a  feasible  point x such 
that gj(x)  > 0 for gj nonlinear. 

Assumption Q2;     The Kuhn-Tucker constraint  qualifica- 
tion holds  L7.  p.  483]. 

mmm am mtmm 
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We are now in a position to state the relationships between the 

six problems. 

Theorem (Comprehensive) 

Z>'<^ 
C 

Qi 

D 

Q 

^.^ 

For example,  the Comprehensive Theorem asserts   (1 —  2)   that every 

proper efficient solution of (VMP)   is a  locally proper efficient 

C 
solution of (VMP), and  (1 •" 2)   that  the converse  is  true  under Assumption 

C.     It also asserts  (3 "• 6)  that  if (x,y,\)  solves problem 5,  then 
C.Q, 

(x,X)   solves  problem 6;  and  (5 < 6)   that   if  (x,\)   solves problem 

6,   then  there exists a  point y e  R    such that  (x,y,^)  solves problem 5. 

Because of its  length, we  give  the proof in Appendix A. 

The Comprehensive Theorem Is actually many theorems  in one.    Its 

significance  is  that  it  gives,  under various assumptions,  necessary 

and/or sufficient conditions  for proper efficiency.    In order to be 

explicit, we state  the most  important of these conditions as  three 

simple corollaries of the Comprehensive Theorem.     Corollary  1 asserts 

that  under Assumptions  D and Q_,   the  conditions of problem A are neces- 

sary  first order conditions  for proper efficiency.    Corollary 2 charac- 

terizes  problem 1 as  being equivalent   (in the appropriate  sense)   to 

problems  2,5, and  6 under Assumptions C and Q  .     Corollary  3 asserts 

T 
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that all six problems are equivalent under 0,0, and either Q. or Q«. 

COR 1 - If Assumptions D and Q hold, then problem 
2 "• problem 4. 

COR 2 - If Assumptions C and Q. hold, then problem 
1 *• problem 2 *• problem 5 *" problem 6. 

COR 3 - If Assumptions C, D, and either Q1 or Q. 
hold, then problem 1 ** problem j for j =2 6. 

The Comprehensive Theorem subsumes, of course, the cases in which 

there are no constraints or only equality constraints. Again for the 

sake of explicitness, we shall state the main results for these cases 

in Appendix B. 

It is of interest to note that in the special case all of the 

f. are identical or p = 1, the notion of proper efficiency coincides 

with the notion of a constrained maximum, so that the results of the 

Comprehensive Theorem reduce to well-known counterparts in the theory 

of nonlinear programning. 

aaaaaBaaaaaalia 



III. DISCUSSION 

We turn now to further discussion of the notion of proper 

efficiency. 

Just how slight a restriction proper efficiency is over efficiency 

can perhaps be better appreciated in the light of the following. Denote 

the set of all efficient (properly efficient) points by X (X   ), pr, 

inuous and  the image  in  R    of X    under f by f[X "].     If  the  f    are cont 

and  concave on the closed  convex set X,  then f[X ] C f[x ] C f[x ], 

where  the bar denotes  closure.     This  result  is  a consequence of Theorem 

2  and  a result    due  to Arrow, Barankln and  Blackwell   [l].     Thus under 

the given conditions, which are almost always  satisfied  in concave 

programming,  the outcome of any Improperly efficient  point  is always 

the  limit of  the outcomes  of some sequence of properly efficient points. 

COMPARISON WITH THE DEFINITION OF KUHN AND TUCKER 

The notion of "proper" efficiency introduced by Kuhn and Tucker 

applies only when assumptions D and Q» hold.    Under  these assumptions, 

x0  is  said to be "properly" efficient  if it  is efficient and  if  it 

solves problem 3.     Let us denote  the problem of  finding such a "properly" 

efficient point as   (X   ,3).     Then the results obtained by Kuhn and 

Tucker are      (in  the presence of D and Q7): 

* n 
If S is a closed convex set  in R   , then the set of efficient 

points of S contains   the  subset of points of S for which there  is a 
supporting hyperplane whose normal has  all  positive  components, and 
is  contained  in  the closure of  the last mentioned  set. 

** 
Each of  these assertions can be obtained as  an  immediate 

corollary of  the Comprehensive Theorem. 

■■ 



llUMHiLUi.-iL.^ J,l..Lü.'J.L'.^ 

(i)   or, 3)- 

-10- 

-»> 4 [7,  Theorem 4] 

(il)     4 2—^ (xa,  3)  [7,  Theorem 5] 

(iii)     (X2,   3)-»—2 •» 5 [7,  Theorem 6]. 

To  justify excluding efficient solutions that are not  "proper," 

Kuhn and Tucker give an example with p = 2 in which such a solution 

admits a  first-order gain in one criterion at the expense of but a 

second-order loss  in the other.     Indeed, every "improperly" efficient 

solution poses an equally objectionable anomaly.      The converse, however, 

is not   true--not every anomalous efficient point  is  "improper"  in the 

sense of Kuhn and Tucker, as  the  following example shows.     Put  n = 1, 

m ■ 1,  p ■ 2,   g(x)   ■ x,   iAx)   = x   ,   f2(x)   « -x   ,  x    =0.    Assumptions 

D and Q9 hold, and x    is "properly" efficient, but for x positive and 

sufficiently small  the  gain in f.   can be made arbitrarily  large with 

loss 

D,Q2 

respect  to the  loss  in f„ (the gain-to-loss ratio is  1/x  for x > 0). 

Since  1' ^3   (see Comprehensive Theorem),   the  set of points 

"properly"  efficient in the sense of Kuhn and Tucker contains  all  those 

properly efficient  in the present sense.    The above example   (in which 

x    is  improperly efficient in the sense of Sec.  I)  shows  that  the con- 

tainment can be strict. 

To summarize,  the advantages  of  the present definition of proper 

efficiency over  that of Kuhn and Tucker seem to be  that  it  excludes all 

of a  precise  class of anomalies,  and   that   it applies  even  in  the absence 

of Assumption D or Q.. 

For an explicit  proof see  Klinger [&]; his  proof seems to  require 
the   locus  of  x(t)   in the definition of Q2  to be   linear,  but   this  restric- 
tion can  be   removed   (of.   the  proof  of  2 >"■   m 3 in Appendix A). 
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CONCLUSION 

We began with  the premise that,  in optimization problems with 

multiple criteria,   it  is natural  to restrict attention to efficient 

decisions  that are  properly so—in the sense  that  at least one poten- 

tial marginal gain-to-loss ratio must be bounded.    We then obtained, 

in Theorems 1 and 2,  basic characterization results  for proper efficiency 

in terms of the scalar parametric problem  (P>) •    These results were 

extended  in the Comprehensive Theorem to include  the relationships with 

four other intimately related problem formulations,  with and without 

various constraint  qualifications,  differentiability and convexity 

assumptions.    The result is a coherent theory of the Proper Vector 

Maximum Problem which generalizes  the well-known Kuhn-Tucker theory  for 

nonlinear programning.     This  theory seems more  satisfactory than that 

possible using either  the usual definition of efficiency or the closely 

related definition of "proper" efficiency proposed  by Kuhn and Tucker. 

i ^—— 
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Appendix A 

PROOF OF THE COMPREHENSIVE THEOREM 

A.     1 6.    This  is a  restatement of Theorems   1 and 2 

(with \ normalized). 

B.     6  . '5 ■*,4,     These assertions are all  known 

results  from  the  theory of nonlinear programming applied  to  (Px). 

C.Qi 
♦ 5   is a consequence of a  slightly more general  form of 

the Farkas-Minkowski Theorem [2,  p.   67]. 

-»• 6 is easily verified directly. 

H^4 occurs because the gradient of a continuously 

differentiable  function must vanish at an unconstrained extremum. 

4 »5  occurs  because a concave function  (which 

^•f(x)  + yg(x) must be, since ^ > 0 and y > 0) achieves an unconstrained 

supremum at any point  for which its   gradient vanishes. 
C 

C.     1 ' "2.     1 ■ 2  is  trivial. 

Let x be a  locally proper efficient solution in the neighborhooo 

N-.    Under Assumption C, Theorem 2  tells  us  that x maximizes  £*f(x)  on 

N- 0 X for some ^ e A ,    Again   from   Assumption C, x must maximize 

\*f(x)  over X, and so by Theorem 1 x must  be properly efficient.    Thus 

2 ^1. 

D.     3-*- ♦4.    This  result can essentially be found  In [7, 

Theorems  4 and 5]. 

3 « 4 can be shown as  follows.     If (x, y, X)  is a  solution 

to problem 4,   then   £ S   V f (x)  +    Z y    V g,(x)  - 0, where JA 
i-I  1    X 1 jej J    x  ■' 

fj:gi(x)   " 0],   for the complementary slackness condition y'g^)   • 0 

implies  y.   ■ 0 when  g.(x)  / 0.     Upon postmultiplicatlon of  the  vector 
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equatlon by u, we readily see by contradiction that x must be a 

solution of Problem 3. 

Tb see 3 > A,   let x be a solution of Problem 3 and apply 

the Farkas-Mtnkowskl  Theorem in turn to each of the p systems.    As a 

result,  there must exist numbers w    £ 0 and z    £ 0   such that,  for 

1 -  I p. 

r f4(x) +   E w^ Vxf .(x) +   ^ ^ Vi(i)   " 0* 
xi J^i J    x J jej J    x J 

Summing over i yields 

E (1 +   E w^r f .(x) +   E ( E OV ».(x)  - 0. 
J-l i^j J    X J jej 1-1 J    x J 

Put X    - (1 +    E   wf) , J. - ( E   zf)   for J t J 
1 IVJ    J J i-l    J 

and 

and 

P    * 
y   - 0 for j ^ J.     Clearly x, X    - X  /( E    X ) 

* PA 

y, ■ jr.   / ( E   X.)   solves Problem A. 
J        J        i-l    L 

D. Q2 
E«     2 T '3.    We have previously shown 'S •»4 

^5- ■♦• 2; hence 3« ■»•2.    Tb 

complete  the proof of the Comprehensive Theorem it  remains only to 

show 2    D'Q2   ,3. 

Let x be a locally proper efficient solution of (VHP) , and let 

Assumptions 0 and Q. hold.    Suppose, contrary to what we desire to 

show,  that x is not a solution of Problem 3.    Then one of the p systems, 

say  the first, has a solution:     there exists u such  that 
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Vx f! (^   " u > 0 

Vx fj   (^   '  u ^ 0, j  - 2 p 

Vx gj   00   * üä 0, all  j  9 gj   (x)  - 0. 

By assumption Q    there exists a continuously dlfferentlable arc 

x(t),  0 ^ t s 1, contained In  the  feasible region, with x(0)  - x and 

.(0> d* 
some positive scalar or such  thai 

ne   reas 

"VTT »    • • • » 
W    - 

Consider  the  functions  f.(x(t)).     From Taylor's Theorem we have 

tl (j(t)) - fL am + t 
d  Mx(0) 

n      3  f,(x) 
fi tf> a -■ s      aT" 

J-l     0 xj x(tL) 

d ^(0 

dt 

where  t    Is some scalar between 0 and t.    Denote the summation In 

the last term by s, (t) , so that f,(x(t)) -  fL(x) + t 8,(0. 

Evidently s.(0) - or ^    f,(x)   * ü and s.^t)   Is continuous  (from the 

right)   at t - 0.    Now for t sufficiently near 0, x(t)   Ls  In the 

neighborhood within which x Is properly efficient.    Consider a sequence 

v v 
< t > -* 0, where t > 0.  By taking a subsequence, If necessary, 

we may assume that the set {j: f. (x(t )) < f (x) } Is constant for all 

v — call It j'. We know that < s.(tV)> •■» or V f.(x)'u ^ 0, all 
J x    J 

j  C J   .     But s.(t )  < 0 by definition for all v and J  c j', and so 

< s.   (tV) > - 0 for all J e j".     Furthermore, < 8,(tV)   > - a y    t.(*)' 

u > 0.     Therefore  the sequences 

I 

I 
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f, (x(tv)) - f,  Q 
< _i L__>    .jej, 

fj   (x)   -   fj   tf(tv)) 

which can be written 

t     s   (t   ) 
<  i > , j  e J  , 

-t     SjCt   ) 

all   diverge  to + «.     But  this  contradicts  the  local  proper efficiency 

of x,  and so x must  indeed be  a  solution to Problem 3. 

L. 
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Appendix  B 

NO CONSTRAINTS AND EQUALITY CONSTRAINTS 

NO CONSTRAINTS 

Here we consider  the case   in which X is an open set  in  R    (perhaps 

the whole of R ).    Corollary 4  gives  necessary, and Cor.  5  sufficient, 

conditions   for a  locally proper efficient   (l.p.e.)  solution. 

COR 4  -    Let  the  f.   be  continuously differentiable on X. 

If x     is  l.p.e. , then   y   r^'f(x0)] = 0  for some X  e A   . 

Proof;    With m = 0 and x    e X,   Q»  becomes superfluous,   and   the 

Comprehensive Theorem yields   2- ■•O- •4. 

COR 5  -    Let  the  f.   be  twice continuously differentiable 

on an open set X c R  .     If x0  e  X satisfies   V  T^'^Cx')] ■ 0 

for some X e A   , and  the Hessian  ^    fX'fCx0)]  is  negative 

definite,   then x0   is  l.p.e. 

Proof:     The  assumptions  imply  that x*f(x)  is  strictly  concave on some 

(convex)  open neighborhood N  o of x   .     Hence x    maximizes  this  function 

on N o,   and  so by Theorem 1  x    must  be  l.p.e. 

It is clear from the proof of Cor.  5 that the hypothesis "f    twice 
2 

continuously  differentiable and   y   rX'f(x0)]  negative  definite" can be 

weakened  to"f.   continuously  differentiable and X'f(x)   concave on some 

neighborhood of xc . " 

EQUALITY CONSTRAINTS 

Here we consider  the case X=  {x:g (x)  = 0, j  »  I,   ....  m). 

The Comprehensive Theorem subsumes  this case  if we write X as 
m 

{x:g,(x)   a 0,  j  =  I,   ..., m and  -Eg.(x)  ^O}.     Assumption Q.   is 
J j = l   i- ' l 

1'" l' iiBW.fct—j*w, 
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satlsfLed  If and only  L£ al!  constraints are  linear;  and the directions 

u of concern In Q» are  those  for which   V  g.(x)'u ■ 0, j •  l,   ..., m. 

Corollary 6  Is  a Lagrange biiltlpller Theorem, and Cor.   7 examines 

the linear constraints case. 

COR 6 -    Let  the  f.   and g. be continuously  dlfferentlable on some 

neighborhood  of  x   ,   and  let  Q. hold atx.     ifx    is  1.p.e.,   then 

V   rX-f(x0) + n-g(x0)] = 0 
x 

+ m 
for some X e  A    and ^ e R • 

D,Q2 
♦ '♦.     Put Proof;    The Comprehensive Theorem asserts 2 

COR 7  -    Let  the g    be linear, and the  f.   concave.    Then each 

of the  following conditions  Is necessary and sufficient  for 

x0   to  be properly efficient: 

(1)    x0 maximizes \'f{x)   subject   to  g(x) ■ 0 

for some X  e A   ; 

(Ll)     x0   Is  feasible,  and maximizes X-fCx) + lA'g(x)  over 

all x  for some X e A    and ^ e R   5 

(Hi)     there exists \i.°  e Rm such that  (x0 , ^0)   Is a 

saddlepolnt of  the  function F(x, n)  •» X0 • f (x) + p/g(x) 

for some X0  e A+;   I.e.,  F(x0 , v)   2 F(x0, ^0)  2 F(x, u0) 

for all x e R    and y. e  R  . 

If,  In addition,   the f    are continuously differentlable,   then 

a fourth equivalent condition is: 

(Iv)     x0 satisfies 

„^-__^__ 
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V   [\'iU0) + n-g(x0>] = 0 

g(x  )   = 0, 

for some X e  A    and n € Rm. 

Proof ;    Directly from  the  Comprehensive Theorem. 
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