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PREFACE j

Most if not all Air Force problems pertaining to system optimization i
involve more than one criterion function. This situation is often {
handled by altering the natural problem formulation so as to yield but
a single criterion. In recent years, however, we have seen more and
more use made of tradeoff-curve analysis (e.g., cost-benefit analysis)
based on the concept of "efficiency." A system is said to be operating
at an "efficient point" if no criterion can be improved without worsen-
ing at least one other criterion. Analysis in these terms is necessary
to preserve the conflicts inherent in noncomparable criteria, thereby
enabling the proper blending of human judgment and mathematical analysis.

In this study we reexamine :he fundamental concept of c¢tificiency,

The possibility of certain anomalous situations suggests the desirability

of a slight revision of the customary definition, The resulting new

definition of efficiency--which we call proper efficiency--turns out

to permit a very satisfactory theory, a matter of good fortunc from the

applications point of view. Most of this study is devoted to

developing the mathematical foundations of this theory. The results

should be of interest to systems analysts and operations analysts with J
a background in mathematical programming.

The author is a consultant to The RAND Corporation.
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SUMMARY

The concept of efficiency in problems with multiple criterion
functions--sometimes under an alias such as "admissibility" or "Pareto
optimality'--has long played an important role in economics, game
theory, statistical decision theory, and in all optimal decision prob-
lems with noncomparable criteria. Here we propose a slightly restricted
definition of efficiency that eliminates efficient points of a certain
anomalous nature. This new definition, which we call proper efficiency,
is related in spirit to the notion of "proper" efficiency introduced
by Kuhn and Tucker in their celebrated paper of 1950; but the present
definition avoids certain drawbacks inherent in the earlier one., A
comprehensive theory of vector maximization is constructed using the
new definition, with and without various constraint qualification, con-
vexity, and differentiability assumptions. The theory includes as a

special case the standard theory of nonlinear programming.
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1. INTRODUCTION

Given a vector-valued criterion function f(x) = (fl(x), 50 G fp(x))

and a set X C R" of feasible points, the Vector Maximum Problem
(VMP) V-MAX f(x) subject to x € X

is the problem of finding all points that are efficient: x° is said to
be efficient if x’¢ X and there exists no other feasible point x such

j that £(x) > f(xo) but £(x) # f(xo). The concept of efficiency--sometimes
l under an alias such as '"admissibility," "maximality," noninferiority,"

or "Pareto optimality'--has long played an important role in economics,

‘ game theory, statistical decision theory, and in all optimal decision
problems with noncomparable criteria,

In this study we propose a slightly restricted definition of
efficiency that (a) eliminates efficient points of a certain anomalous
type; and (b) lends itself to more satisfactory characterization (see
Theorem 2 below, and Sec. 11). We shall call this new definition proper
efficiency, although Kuhn and Tucker [7] have previously used the same
term. Their intent appears to have been much the same as ours but, as
we shall see, the present definition is of greater generality and seems
to be somewhat more natural,

PROPER EFFICIENCY
Definition: x° {s said tc be a proper efficient solution

of (VMP) if it is efficlent and Lf there gxists a scalar
M > 0 such that, for each 1, fi(x) > fl(x ) and x ¢ X implies

£,(x) - fi(xo)

(6 - £,00

M

for some j such that fj(x) < fj(xo).
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An efficient point that is not properly efficient is said to be

improperly efficient. Thus for x° to be improperly efficient means

that to every scalar M > O (no matter how large) there is a point
X € X and an { such that £ (x) > fi(xo) and

£,(x) - fi(xo)
0y .
fj(x ) fj(X)

>M

for all j such that fj(x) < fj(xo). 1f we take a sequence <M'> -~

and remember that there is but a finite number of criteria, we see that

for some criterion 10, the marginal gain in f1 can be made arbitrarily
o

large relative to each of the marginal losses incurred by other cri-
is not sati-

o
An example of improper efficiency

teria. Assuming that the decisionmaker's desire for fi

ated, x° certainly seems undesirable,

is given in Sec. III.

CHARACTERIZATION
A matter of great interest, both computationally and theoretically,

is the relation of the Vector Maximum Problem to the following scaliar

maximum problem:

(PA) MAX i Xifi(x) subject to x ¢ X,
i=

where the Xi are nonnegative parameters often normalized according to

:f; ki = 1, The fundamental results characterizing proper vector max-
i=

ima in terms of the solutions of (Pk) are given in Theorems 1 and 2,

>0(1=1, ..., p) be fixed. 1If

Theorem l. Let A
QPA), then x° is properly efficient

x© is optimal in
in (VMP).

cnsindiictio

i
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Proof: 1t is obvious that x° is efficient. We shall show that x° is
properly efficient in (VMP) with M = (p - 1) Max {Xj/kil (we may assume

L)
that p 2 2). Suppose to the contrary that for some criterion i and

x ¢ X we have
o o
£ - £, (%) > M(E, (%) - £,(x)
for all j such that £,(x) < fj(xo). It follows directly that
o (p-1) oy _ g
fi(x) - fi(x ) > xi )‘j(fj(x) fj(x)) for all j ¥ 1.
Multiplying through by A,/(p - 1) and summing over j # 1 yields

A (F () - fi(xo))> j?i)\j(fj(xo) - £,(),

which contradicts the optimality of x° in (Px).
Theorem 2. Let X be a convex set, and let the f1
be concave on X. Then x° is properly efficient
in (VMP) if and only if x© is optimal in (Py) for
some A with strictly positive components.
Proof: The "if" part of the theorem is provided by Theorem 1. If x°

is properly efficient, then there exists a scalar M > O such that for

each 1 (1 =1, ..., p) the system
£ (x) > £,(x°)
i i

£(x) + M £,(x) > fi(xo) +M fj(xo), all § # 1

admits no solution in X. By a fundamental property of concave functions

(2, p. 62], for the ith system there exist k; 20( =1, ..., p) with

S S — mmmmmmﬁ "‘ﬁ
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£ A\, = 1 such that
j=1 1

i
kifi(x) + § A

i o i
s j(fi(x) +M fj(x)) < Xifi(x )+ T

o} o]
I g6,

i o i o
or equivalently £, (x) + M I A f (x) < f (x) +MZ A\ f (x), for all
- g# 3 - 3 3

x ¢ X. Summing over i yields, after some rearrangement,

tu + M ;Xi)f‘(x) < tu +M ;.\i)f (x°)
j'l i j j J i j j j

§=1

for all x ¢ X. This completes the proof.

Thus from a computational viewpoint, finding proper efficient
solutions is reduced to a parametric programming problem; (Px) yields
only properly efficient solutions as \ varies over

+ p P
A p{reR :allk >0ad X A =13,
i i
i=1
and 1f concavity holds then this approach yields all properly efficient
*
points.

A more complete characterization theory for the Proper Vector
Maximum Problem is developed in the next section. It provides, for
example, necessary conditions for a proper vector maximum in the absence

of concavity.

*
In this regard see, for example, Charnes and Cooper [3, Ch. 97,
Markowitz [8], and Geoffrion [47.




1. THEORY

1 We shall give the theory of the Proper Vector Maximum Problem in
terms of the relationships between the following six problems. In
problems 3, 4, and 5, X is taken to be of the form X = {x:g(x) 2 0},
where g(x) = (gl(x), ool gm(x)). In problems 3 and 4, the differen-
tiability of all functions is presumed.

Problem 1 - Find a point x that is a proper efficient
solution of (VMP),

- *
H J Problem 2 - Find a point x that is a locally proper
) efficient solution of (VMP).

Problem 3 - Find a feasible point x such that none
of the p systems™ (i = 1, eesy P)

V&fi(i)-u >0
V&fj(i)-u 20, all j#1i

vxgj(i)-u 20, all j > gj(i) =0
has a solution u in Rn.

Problem 4 - Find a feasible point X, a point y > 0
in RM, and a point X ¢ A* such that y.g(X) = 0 and

v, [Kef(x) + y-g(x)] = 0,

Problem 5 - Find a feasible point x, _a point y 20
in KT, and a point X * At such that y- f(X) = 0 and x
achieves the unconstrzined maximum of A« f(x) + y-g(x).

Problem 6 - Find a point x and a point A ¢ A+ such
that % is optimal in (PX)'

*-
x 1s said to be a locally proper efficient solution of (VMP) if
it is properly efficient in N- N X, where N- is some (open convex)

neighborhood of X.

dk
V&¢(x) represents the gradient vector of the function ¥ evaluated

at x = X.




Problem 1 is the central problem of interest. Problem 2 is its
"local" equivalent, and problem 3 is the local problem in terms of
directional derivatives. Problem 4 represents the generalized Lagrange
aultiplier or Kuhn-Tucker conditions in differential form associated
with problem 1. Problem 5 is precisely equivalent to the following
saddle-point problem:

Find a point x, a point y > 0 in R", and a point X ¢ at
such that the pair (x,y) is a saddle-point subject to
y 3 0 of the function F(x,y) = K.f(x) + y.g(x); i.e.,
such that F(X,y) 2 F(X,§) 2 F(x,y) for all x ¢ R" and
y € 0 in R®,
Problem 5 is also of interest for its own sake. Problem 6 is just (PA)'
In stating the relations between these problems, we shall use the
A Bok
notation j———————meepk, which is to be understood as follows. Let

(u,v) be the unknowns of problem j and (u,w) the unknowns of problem

k. Then this notation is to be read: "If (G,;) solves problem j,

and L{f assumptions Al’ ... hold, then there exists w such that (u,w)

solves problem k." Or, somewhat more loosely, "Under assumptions Al

.., every solution of problem j is also a solution of problem k."
The assumptions that will be used at one time or another are:
Assumption C: All functions are concave on E".

Asgsumption D: All functions are continuously
differentiable on E".

Assumption Q3: The following constraint qualifica-
tion holds: there exists a feasible point x such
that gj(ﬁ) > 0 for gj nonlinear.

Assumption Qp: The Kuhn-Tucker constraint gqualifica-
tion holds [7, p. 483],




We are now in a position to state the relationships between the
six problems.

Theorem (Comprehensive)

For example, the Comprehensive Theorem asserts (1 — 2) that every
proper efficient solution of (VMP) is a locally proper efficient
solution of (VMP), and (1 ¢ 2) that the converse is true under Assumption
C. It also asserts (5 = 6) that if (i,;,X) solves problem 5, then

¢,y

(x,X) solves problem 6; and (5<e==——— 6) that if (x,k) solves problem

6, then there exists a point y € R™ such that (i,;,X) solves problem 5.

Because of its length, we give the proof in Appendix A.
The Comprehensive Theorem is actually many theorems in one. Its

significance is that it gives, under various assumptions, necessary

and/or sufficient conditions for proper efficiency. In order to be
explicit, we state the most important of these conditions as three
simple corollaries of the Comprehensive Theorem. Corollary 1 asserts
that under Assumptions D and QZ’ the conditions of problem 4 are neces-

sary first order conditions for proper efficiency. Corollary 2 charac-

terizes problem 1 as being equivalent (in the appropriate sense) to

problems 2, 5, and 6 under Assumptions C and Ql' Corollary 3 asserts
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that all six problems are equivalent under C, D, and either Q1 or Q2.

COR 1 - If Assumptions D and Q2 hold, then problem
2 = problem 4.

COR z - If Assumptions C and Q, hold, then problem
1 = problem 2 = problem 5 * problem 6.

COR 3 - If Assumptions C, D, and either Q. or Q2
hold, then problem 1 *' problem j for j = E, aaon o8

The Comprehensive Theorem subsumes, of course, the cases in which
there are no constraints or only equality constraints. Again for the
sake of explicitness, we shall state the main results for these cases
in Appendix B.

It is of interest to note that in the special case all of the
f1 are identical or p = 1, the notion of proper efficiency coincides
with the notion of a constrained maximum, so that the results of the
Comprehensive Theorem reduce to well-known counterparts in the theory

of nonlinear programming.

= T




II, DISCUSSION

We turn now to further discussion of the notion of proper
efficiency.

Just how slight a restriction proper efficiency is over efficiency
can perhaps be better apprecliated in the light of the following. Denote
the set of all efficient (properly efficient) points by X2 (szr )5

and the image in RP of X2 under f by f[xzj. If the f1 are continuous
and concave on the closed convex set X, then f[xzpr. lc £0x) c f[xzpr. 1,
where the bar denotes closure. This result is a consequence of Theorem
2 and a result* due to Arrow, Barankin and Blackwell [1]. Thus under
the given conditions, which are almost always satisfied in concave

programming, the outcome of any improperly efficient point is always

the limit of the outcomes of some sequence of properly efficient points.

COMPARISON WITH THE DEFINITION OF KUHN AND TUCKER

The notion of "proper'" efficiency {introduced by Kuhn and Tucker
applies only when assumptions D and Q2 hold. Under these assumptions,
x° is said to be "properly' efficient if it is efficient and if it
solves problem 3. Let us denote the problem of finding such a "properly"
efficient point as (XZ, 3). Then the results obtained by Kuhn and

ke
Tucker are (in the presence of D and Qz):

*If S is a closed convex set in Rn. then the set of efficient
points of S contains the subset of points of S for which there is a
supporting hyperplane whose normal has all positive components, and
is contained in the closure of the last mentioned set.

o
Each of these assertions can be obtained as an immediate
corollary of the Comprehensive Theorem.
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|
(1) (X°, 3)——e——e 4 [7, Theorem 4]
(11) 4=——me (x%, 3) [7, Theorem 5]

b |
' (111) (X, 3)e——e—e 5 [7, Theorem 6].

I To justify excluding efficient solutions that are not "proper,"

‘ Kuhn and Tucker give an example with p = 2 in which such a solution H

admits a first-order gain in one criterion at the expense of but a H
second-order loss in the other. Indeed, every "improperly'" efficient
solution poses an equally objectionable anomaly.* The converse, however,
is not true--not every anomalous efficient point is "improper" in the
sense of Kuhn and Tucker, as the following example shows. Put n =1,

m=1, p =2, g(x) =x, fl(x) = x2, fz(x) = -x3, x° = 0, Assumptions

D and Q2 hold, and x° is "properly" efficient, but for x positive and
sufficiently small the gain in f1 can be made arbitrarily large with
respect to the loss in f2 (the gain-to-loss ratio is 1/x for x > 0).

D)QZ

Since | ——=m=—=ap 3 (see Comprehensive Theorem), the set of points

I "properly" efficient in the sense of Kuhn and Tucker contains all those
properly efficient in the present sense. The above example (in which
x° is improperly efficient in the sense of Sec, 1) shows that the con-

tainment can be strict.

To summarize, the advantages of the present definition of proper

efficiency over that of Kuhn and Tucker seem to be that it excludes all

of a precise class of anomalies, and that it applies even in the absence

of Assumption D or Q2'

* .
" For an gxplicit proof see Klinger [6]; his proof seems to require !
the locus of x(t) in the definition of Q2 to be linear, but this restric-
tion can be removed (cf. the proof of 2 2 3 in Appendix A).
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CONCLUSION
We began with the premise that, in optimization problems with
multiple criteria, it is natural to restrict attention to efficient

decisions that are properly so--in the sense that at least one poten-

tial marginal gain-to-loss ratio must be bounded. We then obtained,

in Theorems 1 and 2, basic characterization results for proper efficiency
in terms of the scalar parametric problem (PX)' These results were
extended in the Comprehensive Theorem to include the relationships with
four other intimately related problem formulations, with and without
various constraint qualifications, differentiability and convexity
assumptions, The result is a coherent theory of the Proper Vector
Maximum Problem which generalizes the well-known Kuhn-Tucker theory for
nonlinear programming. This theory seems more satisfactory than that
possible using either the usual definition of efficiency or the closely

related definition of "proper" efficiency proposed by Kuhn and Tucker.
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Appendix A
PROOF OF THE COMPREHENSIVE THEOREM

—_— e
A, 1l 6. This is a restatement of Theorems 1 and 2

(with A normalized).
C,Q; - D
B. 67 5= —+o 4, These assertions are all known
- C
results from the theory of nonlinear programming applied to (P)‘).
C,Q]_

6 —————e—mep- 5 {8 a consequence of a slightly more general form of

the Farkas-Minkowski Theorem [2, p. 67].

5 emeeet 6 15 easily verified directly.
5——D——>4 occurs because the gradient of a continuously
differentiable function must vanish at an unconstrained extremum.

a—c—-—s occurs because a concave function (which

Kef(x) + y+g(x) must be, since K 2 0 and y 2 0) achieves an unconstrained

supremum at any point for which its gradient vanishes.

C
C. 1 * 2- 1“2 18 trivial.

Let x be a locally proper efficient solution in the neighborhooad
N,-(. Under Assumption C, Theorem 2 tells us that x maximizes X-f(x) on
N)—( N X for some X e l\+. Again from Assumpiion C, x must maximize

A f(x) over X, and so by Theorem 1 X must be properly efficient. Thus
C

2 ———,

D, 3<«——————e4, This result can essentially be found in [7,
Theorems 4 and 5].

3 @=—————— 4 can be shown as follows. If (x, y, \) is a solution
to problem 4, then iixi vxfi(;) + ij;j vxgj(;c) = 0, where JA

{j:gj(;t) = 0], for the complementary slackness condition y*g(x) = 0

implies ;j = 0 when gj().() # 0. Upon postmultiplication of the vector

2l

T Seoh i B e g s -t At i ol Sl A Wiy RS DN D
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equation by u, we readily see by contradiction that x must be a
solution of Problem 3.

To see } ===t/ , let X be a solution of Problem 3 and apply
the Farkas-Minkowski Theorem in turn to each of the p systems. As a
result, there must exist numbers wl 2 0 and zl =2 0 such that, for

] J
i=1, ..., p,

(x) + T zg v,8,(X) = 0.

- i
vVE(x)+ Zw, VE
xi) #1 xJ jeJ

j 3
Summing over L yields

: 1 ‘ £ ol ) =0
Z(l+ L wj)vxf (x) + T ¢( zj)vxgj(x) = 0,

=l A : jeJ =1
Y L, P 4
Put )‘L-(l+ ij),yj-(}.." zj) for j ¢ J
: LY} L=l

~N - - a P ~
and yj =0 for § € J. Clearly x, Al = )\1/(121 )\L),

P ~
and ')71 = yj / (I 7\1) solves Problem 4.

=]
D, Q2
E. 2 3. We have previously shown 3 =—mm——s 4
c
< o S ) — | - 2; hence 3—C—>2. To

complete the proof of the Comprehensive Theorem Lt remains only to
show Z—LQ—Z-—B.

Let X be a locally proper efficient solution of (VMP), and let

Assumptions D and Q, hold. Suppose, contrary to what we desire to
P 2 P

show, that X Ls not a solution of Problem 3. Then one of the p systems,

say the first, has a solution: there exists u such that
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fol (X ru>0
foj (x) uz20,j§=2,...,p

(?:)'ﬁ'zo,alljagj (x) = 0.

By assumption Q2 there exists a continuously differentiable arc

x(t), 0 <t s 1, contained in the feasible region, with x(0) = x and

a4 & (0) d % (0) —
some positive scalar a such that TR TR A

Consider the functions fl()“c(c)) . From Taylor's Theorem we have

d fl(ﬁ(ti))

fl (X(t)) = £ (X(0)) + t Fs

n
= fl (x) + = ————
i=1 3 x(t))

where t, is some scalar between O and t. Denote the summation in

the last term by s (t), so that f, (¥(t)) = fL(’-‘> +ts (b).

Evidently BL(O) = avx fL()-c) * u and 'L(t) Ls continuous (from the
right) at t = 0. Now for t sufficlently near 0, X(t) Ls in the
neighborhood within which x Le properly efficient. Consider a sequence
<t’'> = 0, where t¥ > 0. By taking a subsequence, Lf necessacy,

we may assume that the set [j:f.j &%) < fj (x) } Ls conscant for all
v == call it J . We know that < sj(tv)> - a Vx fj(;t) ‘u 20, all

ie¢ J~. But aj(tv) < 0 by definition for all vand j ¢ J-, and so

< sj (tv) > -0 for all § ¢ J . Furthermore, < sl(tv) > = @V, fl(ﬂ-

u > 0. Therefore the sequences

T A i, i S Sl
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£, R(ED)) - £ @

£, @ - f (Re™))

which can be written

S L,ied,

t” s, (") i
WAL A e
-t s,(t)
]
all diverge to + ®, But this contradicts the local proper efficiency

of X, and so x must indeed be a solution to Problem 3.

e
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Appendix B

NO CONSTRAINTS AND EQUALITY CONSTRAINTS

NO_CONSTRAINTS

Here we consider the case in which X is an open set in R" (perhaps
the whole of Rn). Corollary 4 gives necessary, and Cor. 5 sufficient,
conditions for a locally proper efficient (l.p.e.) solution.

COR 4 - Let the fi be continuously differentiable on X.

If x° is l.p.e., then V)Jk'f(x°)] = 0 for some \ € A+.

Proof: Withm =0 and x° € X, Q2 becomes superfluous, and the

D
Comprehensive Theorem yields 2 —-3 &4

e ']

COR 5 - Let the fL be twice continuously differentiable

on an open set X C R". If x° ¢ X satisfies Vx[k'f(xj)] = 0

for some )\ ¢ /\+, and the Hessian vi Th-£(x°)] Ls negative

definite, then x° is L.p.e.
Proof: The assumptions imply that )-f(x) is strictly concave on some
(convex) open neighborhood Nxo of x°. Hence x° maximizes this function
on Nxo, and so by Theorem 1 x° must be l.p.e.

It is clear from the proof of Cor. 5 that the hypothesis "fi twice
continuously differentiable and t7:rk'f(x°)] negative definite" can be

weakened to"fl continuously differentiable and A*f(x) concave on some

neighborhood of x“."

EQUALITY CONSTRAINTS

Here we consider the case X = [x:gj(x) =0,j=1, ..., m}.
The Comprehensive Theorem subsumes this case if we write X as

m
{x:gj(x) 20, j=1, ..., mand jZlgl(x) 2 0}. Assumption Ql is
j=
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satisfied Lf and only If all constraints are linear; and the directions
u of concern in Q2 are those for which vxgj(;)’u =0,j=1, ..., m.
Corollary 6 is a lLagrange Multiplier Theorem, and Cor. 7 examines

the linear constraints case.

COR 6 - Let the fl and gj be continuously differentiable on some

———

neighborhood of xo, and let Q2 hold at x°. 1f x° is l.p.e., then

vxrk'f(X°) +u-g(x)]1 =0
for some \ € K+ and u € R".

D,Q
Proof: The Comprehensive Theorem asserts 2——2—>’4. Put

COR 7 - Let the gj be linear, and the fl concave. Then each
of the following conditions {s necessary and sufficient for

x° to be properly efficient:

(1) x° maximizes A* £(x) subject to g(x) =0
for some X € A+;

(11) x° Ls feasible, and maximizes A°f(x) + p-g(x) over
all x for some A\ € K+ and p € Rm;

(i11) there exists p’ ¢ f® such that (x°, p°) is a
saddlepoint of the function F(x, W) = 2O £(x) + uog(x)
for some A\° € A+; i.e., F(x°, p) 2 F(x°, »°) 2 F(x, u°)
for all x € Rn and u € R".

1f, in addition, the fi are continuously differentiable, then
a fourth equivalent condition is:

(iv) xo satisfies

WER
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o

vV A E(x0) + peg(x™] =

X
g(x’) =0,

+
for some A\ € A and p ¢ R".

Proof : Directly from the Comprehensive Theorem.

A Ry
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