
Ilia

■s«í3.:ep«í
4í i';' '»if, V v-t'^'^va <U r

'"üiil
mMM Eiii|I

.¾¾

S;

M.

I;iôákEÍ!íll|«i||KSÂIS^
ÍMMÍKm» istiasiiö ^?,«U j!Í

'■‘.ll-

-::- * fjfly!»*y£ üä2SS:si r^i •Sfi'SliS

1¾¾
ij&i _I_,..

BM-5270.PR
Mil

- j;

«il
mw-mm

íÉPI

teilte

m

•’ü'i'rr:'.- / .¾^?'pipSSlBH
i®^|pÿrfeMp»r^Ute , I

-'•'•r ,' ■ •• ' . • !

SfSí^B#íPpííi|i
■ív.í'í'r’íj-ht

i v: ^ :
Síí:.:;

1 ' "'

:..: '''; ' '':i . •IifnKí^

sraí'', h í*:;' •¡¡'o.'*'1 s
íiiiiffiSte

• .*'.,* -»T■>, f• *■■ i, ' i '\vir*

■2 .-tiCl .¾V:' :-:1 ‘v

'1^1

l.'y'.i1 »SvSfífSlfii
§fe.VB/ >i','.'< M&a • • ' ; •
P^^iííííí í ?t®*p .4

teteiE": iSÿf Æ ¿feí tílK
MMKÂ''': ííiÂâÍI 4 -^-^-

mm\ Mi®?'?/!® fe v¡ $m\ IÄ«ÄwI Si®

gllllgl |{^||
\ y

Slfe/

: í/fiínv.^ J.' ;!■; .V-;-., ¡/>;v.' ; ¿Si; itÄii.-lui ;«! y K:M;:
• ^

«
.

;

n
, f|ívY-.'-:«-'!. "ï.y 1:yV.:¿‘¿ !vVf¿y/1;f;S'iIyf¡fy>^JKí fiPwsw &

i'b-í’.

J.W. Smith íí;-':; ¡5
WríÍiBíí

¿i!iw;:

... V.

Sil i: ■ S'

; PRBPARBD FOR:

UNITED STATES AIR FORCE PROJECT RAND
MfSSi'Œ®
pKk

D n

ittppy®

ügiaalii Ä/

PSP
í«i@^sk

::1 /

.:

Í3RÍK

$$mw* ¿*;5«P.íf¡b' Jt3
: :: '

úi.wm
r. • . ..

'íií-ku:

\J±

HlRíl

m-%

• •..! :;r.

-1-¾
: : : '

¡iKidiliÉi

flfeSlBli
MlÂ/i t/' fI-M liüwiii

íUÍÜÀi
Reproduced by the

CLEARINGHOUSE

for Federal Scientific & Technical
Information Springfield Va. 22151

.'.'v.'::;''::'.
.

¡Iillllll®l

tHSr'-ilEííf'tíih}
üTn!¡tí:!n';!í!ii!!i

SANTA

îsiïfiiH .||í!»iisyii«íw¡i»a!¡'4,¥

p^nppniHMranlHHI

■

llllilli
llSllMIfíiililiíiiMlf
:'-:;¿ív v’h"' 'l' i * i1' i:!':

Jí ! J
:!.¡M|!;i!:

í¡¡ ::i:
.:; I.'!

i K

;í*';,

MONICA • CALIFORNIA

a
m II.;.! ;

7

:!:!i!i:;i'igi;i¡'¡n.

■S^piiiPPiP«3®
ia®íi¡»i«í s

,,,.1! ? i¡ llifliiilii
mi®

|:i!

iillii.

TO
Ipliiplilll
lliiallpffpp

MEMORANDUM

RM-5270-PR
AUGUST 1967

^Mite.hMWWHtyi«r-Mwi>ii>w»i«.

JOSS: CENTRAL PROCESSING ROUTINES
J. W. Smith

*

f

This research is supported by the United States Air Force under Project RAND—Con-
tract^Vo. F44620-67-C-0045—monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT
Distribution of this document is unlimited.

*
iroo MAIN I». • SANTA MONICA • CAM'OIHIA T04 0 A

BLANK PAGE

-iii-

PREFACE

JOSS, RAND'S on-line, time-shared computing system, is designed

to give the individual scientist or engineer an easy, direct way of

solving numerical problems without recourse to professional computer

programmers or to extensive, ad hoc programming education. To each

user, JOSS appears to be a personal computing aide and file clerk,

responding promptly to instructions couched in a simple language and

transmitted over communication lines from the user's remote, electric-

typewriter console.

Much of the ease and directness of the system may be attributed

to the simplicity and readability of the language and to a collection

of machine-language routines (in the system's central computer) for

interpreting and responding to requests expressed in the language.

The routines, when viewed collectively as an active agent, correspond

to the "central processing unit" of the JOSS "computer."

This memorandum concentrates on the design of the language and

of the central-processing routines. Design details are eschewed in

favor of design considerations and decisions, and the general imple¬

mentation of these decisions. The material is presented in a narra¬

tive style, augmented by flowchart representations of some of the

principal routines, and is intended to provide students, evaluators,

reproducers, and maintainers of the system with a source book and

reference guide. It is also designed to serve as prolegomena to

T
JOSS is the trademark and service mark of The RAND Corporation

tor its computer program and services using that program.

-iv-

the annotated, machine-language listings of the routines (copies of

which are obtainable from RAND) and can be read as an independent in¬

troduction to the system, the language, and the central-processing

routines.

-V-

SUMMARY

JOSS is a multiuser, single-server computing system consisting

of a collection of individual users' consoles connected to a central

computing center by dual communication lines. The consoles are elec¬

tric typewriters augmented by special electronics. The center con¬

sists of a general-purpose, digital computer/ with ancillary devices

for storage and input/output, and a collection of machine-language

routines "permanently resident" in the high-speed core storage of the

computer. There are three sets of routines: (1) input/output rou¬

tines for communicating with the users' consoles and their long-term

(magnetic-disc) files; (2) central-processing routines for interpreting

and responding to requests typed by the users and for interpreting

the users' stored programs; and (3) supervisory routines for general

management and accounting, and for giving each user a fair and pro¬

portionate share of processing. The center may be considered a single,

active agent that serves the consoles and the users by time-sharing

its activities; that is, it turns its attention from user to user so

rapidly and smoothly as to give individual users the illusion of a

single-user, single-server system. The three collections of routines

may be viewed as active subagents, operating concurrently and syn¬

chronized by a common purpose. With this viewpoint as an introduction

to the system, the single, active agent, JOSS, is described in terms

of (1) the actions that can be requested of JOSS; (2) the language

for requesting the actions; and (3) the parts played by the three

+The Digital Equipment Corporation PDP-6.

sets of routines in servicing the users and carrying out the requests.

Associated with each user is a collection of dynamically changing

information: programs, data, information about actions initiated by

the user, and other pertinent data. The central-processing routines

service a user by processing his block of information. Although list

structures are used extensively for storing information in the user’s

block, neither a general structure nor a general processor for lists

is used. Instead, information is maintained in several distinct and

simple list structures, whose representations are attuned both to the

organization of the system's central computer and to the special nature

of JOSS. These and other considerations concerning the storage and

handling of information are discussed in detail, as are the structure

and content of the information.

The organization of the central-processing routines mirrors the

responsibilities of a central processing unit serving more than one

user: communication with the users and with the supervisory routines;

command interpretation and execution; intercommand sequencing and

control; error diagnosis, control, and commentary. For purposes of

storage and execution, commands typed by the users are represented as

almost direct copies of the line typed by the user. The operation is

interpretive; Although the execution of commands often requires that

information be compiled and retained, no compilation in the usual pro¬

grammatic sense is done. An extra level of interpretation controlled

by a tabular representation of the rules for forming commands is not

used. Instead, each type of command is handled by a distinct routine

that "reads" like the rules for forming instances of the command type.

vii-

These routines are composed, in the mairç, of direct examinations of

the primitive tokens entering into the command, mixed with uses of

reentrant subroutines for interpreting more complex expressions. The

major routines are described in terms of requests that can be made of

JOSS, and in terms of JOSS's interpretation of the requests and re¬

sponses to valid and invalid ones. Many design points of both the

language and the responses to requests in the language are discussed

m detail, as are major points of implementation of the routines.

ACKNOWLEDGMENTS

There are three facets to the construction of large software

systems: (1) programming the system's components, (2) marrying the

components, and (3) debugging the components and the entire schmeer,

C. L. Baker, who supervised the effort, did yeoman's work in

resolving design antinomies. The time-shared, software facilities

provided by the Digital Equipment Corporation for their computer con¬

tributed significantly to all phases of the implementation effort.

G. E. Bryan, who built the supervisory unit, and I. D. Greenwald, who

built the input/output unit and the arithmetic/elementary function

subroutine package, made the marriage painless: There was no inter¬

face problem.

The bulk of the acknowledgments must, however, go to 0. A. Gross

of RAND's Mathematics Department for his dedicated and marvelously

ingenious probing of JOSS. The bugs and idiosyncrasies he uncovered,

his suggestions for modifications and extensions, and the humor and

subtlety he used when presenting them were a continual source of de¬

light, enlightenment, embarrassment, and irritation. He must be classed

as a national resource for system testing.

CONTENTS

PREFACE. iii

SUMMARY . V

ACKNOWLEDGMENTS. ix

FLOWCHARTS.xiii

TABLES. XV

Section
I. INTRODUCTION . 1

Aperçu . 2

The System. 6

Remote Console . 7

Input/Output Unit (I0U). . 9

Central Processing Unit (CPU) 10

Supervisory Unit (SU). 12
Background. 13

II. THE USER'S BLOCK OF INFORMATION. 16
Notation and Terminology . 17

General Structure 19

List Structures and List Processing. 20

Representation of Strings of Characters . 24
Accounting and Communication . 27

Place Markers and Other Intrastatement Context 32
Working Storage . 34

Keeping Track of Hierarchical Tasks 36

Context for Disc Operations. . 39

Keeping Track of Parts, Steps, and Forms . 40
Keeping Track of Available Space . 43

Keeping Track of Assignments . 44

Keeping Track of Operands and Results . 46
Object Descriptors . 48
Storing Assignable Objects . 50

Storing Nonassignable Objects . 52

Keeping Track of Operators and Reentrant Routines ... 53

III. THE CENTRAL-PROCESSING ROUTINES . 59

Processing Lines Typed by the User. 63'

Interpreting Commands 67
Reporting Errors . 67

Implementation Notes . 70

Expressing Values . 73

Direct Expressions . 75

Conditional Expressions . , 78

Elementary Functions . . 82

:ü!¡
ï 11 i1 :!'

1 l'l1"!:

iiiimi:;:':!:! ?!é. ;|1|;

-Xll-

Assigning Values {Set) 86
Assigning Formulas {Let) . 89
Expressing More General Objects . 96
Interpreting Expressions for Objects . 99
Elementary Operands . 102
Formulas and Iterative Functions . 109
Grouped Elementary Operands and Conditional
Expressions. 118

Objects of Discourse . 120
Iteration Specifications and Left-hand Sides 121

Sparse Arrays . 123

Deleting Objects {Delete) . . 125
Typing Objects {Type) . 126

Skipping Lines and Pages {Line, Page) . 130
Defining Forms for Formal Output {Form) . 130

Typing in User-defined Forms . 131
Implementation Notes . 133

Executing Stored Programs {Do) 136
Branching Commands {To) . 139

Indirect Stopping Commands {Stop) . 139
Indirect Terminations of Tasks and Portions of
Tasks {Done, Quit). 139

Direct Terminations of Tasks {Cancel, Quit) . 140
Interruptions 140

Parenthetical Do's. 142

Parenthetical Cancel's . 143
Continuing Tasks {Go). 143

Reporting Status . 144
Implementation Notes . 147

Demanding Values To Be Input {Demand). 152
Using the Long-term Files. 153
Storage Management 155
Error Messages .. 159

IV. REPRISE. 163

Appendix

SUMMARY OF JOSS LANGUAGE. l6g

JOSS BIBLIOGRAPHY 173

-xiii-

FLOWCHARTS

1. Gross Flow .

2. Elementary Operands .

3a. Arrays...

3b. Functions . .

4a. Formulas .

4b. Iterative Functions .

5. Grouped Lists and Conditional Expressions

6. Objects of Discourse .

7a. Ranges of Values and for Phrases

7b. Left-hand Sides .

8a. Advance to Next Command .

8b. Control Repetitions of Steps and Parts

61

105

108

108

115

116

119

120

122

123

150

151

-XV-

TABLES

la. Accounting Information and Communication Cells . 28

lb. Sizeâ Time, Users, Timer, and Line Counter. 30

lc. High-speed Register Caches . 31

2a. Place Markers and Other Intrastatement Context . 33

2b. Formula Push-Down List (FPDL) . 34

3. Working Storage. 35

4a. Task Control Information. 37

4b. Push-Down List for Hierarchical Tasks (JPDL) . 38

5. Context for Disc Operations .. 39

6. Part List and Form List. 40

7. Assignment Table Entries . 45

8. Operand-Descriptor Push-Down List (DS) . 47

9. Object Descriptors. 49

10. Representations of Assignable Objects . 51

11. Representations of Nonassignable Objects . 52

12. Terminal Character Descriptors . . . 55

13. Operator Weights . 1q7

au
s

E
&
&
V»

CU Q Q.
in
LO
o

-1-

I. INTRODUCTION

t
JOSS is an on-line, remote-console, time-shared computing ser¬

vice of The RAND Corporation designed to give the individual scientist

or engineer an easy, direct way of solving numerical problems without

recourse to professional computer programmers or to extensive, ad hoc

programming education.

Functionally, JOSS is a multiuser, single-server computing ser¬

vice consisting of a collection of individual users1 consoles connected

to a central computer by full-duplex communication lines. The consoles

are electric typewriters augmented by special electronics. The center

tt
consists of a general-purpose, digital computer, with ancillary de¬

vices for storage and input/output and a collection of machine-language

routines "permanently resident" in the high-speed core storage of the

computer. The center serves the consoles and users by time-sharing its

activities; that is, the computer turns its attention so rapidly and

smoothly among users as to give individuals the illusion of a single-

user, single-server system.

The entire system is dedicated to a single task: providing a uni¬

form, round-the-clock computing service to users, so that JOSS appears

to be a personal "computing aide," privately interacting with the user

and responding promptly and precisely to instructions couched in a sim¬

ple language and transmitted from his electric-typewriter console.

t

JOSS is the trademark and service mark of The RAND Corporation

for its computer program and services using that program.

tt
The Digital Equipment Corporation PDP-6. See facing page.

-2-

APEBÇU

JOSS is an on-line, time-shared computing service of The RAND

Corporation designed to appear to each user as a personal computing

aide and file clerk, interacting privately with the users by means

of their remote electric-typewriter consoles. Control of each type¬

writer is proprietary: Either the user has control for input pur¬

poses, or JOSS has control for output purposes.

Users request actions of JOSS by typing single-line commands. ^

A numeric label prefixed to the command is an implied directive to

JOSS to retain the command as a step of a stored program, rather than

to carry it out directly. JOSS retains steps in sequence, according to

the numeric value of the label or step number. Thus the step number

determines if an addition, insertion, or replacement is required.

Steps are organized into parts according to the integer parts

of the step numbers. Steps and parts are units that may be edited,

deleted, typed out, or filed in long-term storage. In addition, they

are natural stored-program units for specifying, in a hierarchical

manner, procedures to be carried out by JOSS.

Decimal and logical values may be assigned to any of the 52 upper-

and lower-case letters admitted as identifiers. Values may be orga¬

nized into vectors and arrays by using indexed letters, and the letters

may be used to refer to entire arrays for deleting, typing, filing in

long-term storage, and as actual parameters of formulas (see below).

In addition to values, arbitrarily complex expressions for values

and letters may be assigned to a letter, which may then be used as an

+See Appendix for a summary of the language.

-3-

abbreviation for the expression; expressions so assigned are called

formulas. Formulas involving formal parameters may also be assigned

to a letter. The letter, accompanied by expressions for actual param¬

eters, may then be used as an abbreviation for the formula with the

actual parameters substituted for the formal ones. The letter itself

may be used to refer to the formula for purposes of deleting, typing,

filing, and as an actual parameter of formulas.

Expressions for the sum, product, largest and smallest of a set

of decimal values, and for the first in a range of decimal values for

which a condition holds, can be written succinctly and used as ex¬

pressions for values. For example:

= l(l)n: A(i)~\ max(x, y3 z/Z)

minH = 1(1)n: Ad)“] prod(x> y3 z/3)

fivstti = l(l)n: A(i) x B(i)']

Except for the function first, either of the two notâtional styles may
■j*

be used. The conjunction or disjunction of a set of logical values

can also be expressed in either of the two styles and used as exprès-

sions for logical values.

Short ’'programs” for choosing expressions for values differen¬

tially on the basis of a set of conditions can be expressed succinctly

and used as expressions for values. For example, phrases such as

if a = b3 use x + y;

if a > use x;

otherwise, use y

Parentheses and brackets may be used interchangeably in pairs.

-4-

are expressed as

Ca = b: X + y; a > b: x; y).

Such jjerative functions and conditional expressions, together with

formulas, lead to powerful, direct expressions for complex procedures,

even recursive ones.

JOSS represents decimal numbers in scientific notation: nine

digits of significance and a base-ten scale factor with exponent in

the range -99 through +99. Addition, subtraction, multiplication,

division, and square root are carried out to give true results rounded

to nine significant digits; zero is substituted on underflow, while

overflow yields an error message. In other elementary functions, care

is taken to provide acceptable significance, to minimize discontinuities,

to factor out error conditions, and to hit certain "magic" values on

the nose.

The six numerical relations together with and, or, not, and a set

of ad hoc logical functions may be used to express conditions, which

may be attached to any step, and to express logical values.

A general rule governs the formation and use of expressions for

values: With the exception of step labels, which must be decimal

numerals, wherever a decimal (logical) numeral is allowed in a com¬

mand, an arbitrarily complex expression for a decimal (logical) value

may be substituted.

JOSS types answers one-per-line, identifying answers by the ex-

pression used in the step calling for the output; in the event of

conditional expressions, JOSS uses only the chosen subexpression for

identification. Decimal points and equal signs are lined up, and

-5-

fixed-point notation is used when reasonable. For more formal output,

the user can define full-line forms to specify literal information and

blank fields to be filled in with answers. A string of underscores

with an optional decimal point is used to specify fixed-point fields;

a string of periods specifies a tabular form of scientific notation.

Users can request JOSS to file, in long-term storage, identifi¬

able units and collections of units--steps, parts, forms, formulas,

and values. Users may then request JOSS to recall such filed items,

discard them from the files, or type out a list of items in a file.

Users start JOSS off on the task of carrying out a stored program

by directing JOSS to Do a step or part--repeatedly (for a range of

values or a specified number of times), if desired. JOSS cancels all

outstanding tasks before starting out on a direct (initiated from the

console) task, begins the interpretation of a part at the first step

of the part, and then interprets each step in sequence. Each subse¬

quent indirect (initiated by a step of a stored program) Do causes

JOSS to retain the status of the current task, drop a level to carry

out the new task, and then return to pick up the suspended one. If

the user wishes JOSS to act in the same manner for a directly initiated

task, the command must be enclosed in parentheses.

JOSS modifies this general behavior whenever encountering

1. An error.

2. A branching command.

3. A stopping command.

4. A command for terminating a task or a portion of a task.

5. An interrupt signal from the user.

-6-

The deep and involved hierarchy of tasks and formulas that can occur

(recursion is allowed) make it mandatory that JOSS's status be per¬

fectly clear each time control is returned to the user, for any reason.

In addition to error messages, interrupt messages, and stopping mes¬

sages, JOSS types status messages on completion of parenthetical tasks

to distinguish this state from the state of having finished a direct,

nonpareilthetica1 task. JOSS is able to proceed in every situation;

in the event of errors, the user can take corrective action and then

direct JOSS to continue with a Go command.

THE SYSTEM

For the system to function, the central hardware and the asso¬

ciated routines must be able to provide

1. Input/output, for communicating with the consoles.

2. Central processing, for interpreting and executing commands

directed to the system by the users.

3# Supervision, for coordir 'ting input, output, and process¬

ing, in order to provide users with a smooth and unbiased

service, thus maintaining the illusion of a single-user

system.

To perform efficiently, it is essential that the overhead func¬

tions of input, output, and supervision proceed asynchronously and

concurrently with processing. This concurrence is realized by having

the corresponding collections of routines time-share the central pro¬

cessing unit of the computer, in the same way that users time-share

the central processing "unit" of the JOSS system. The computer’s

hardware provides mechanisms for such time-sharing and for coordina¬

tion and simultaneity of input, output, and processing.

An effective concurrence of JOSS functions is realized because

the central processor of the computer spends a minimum of time inter¬

preting and executing the input, output, and supervisory routines.

The corresponding collections of routines may be viewed as independent

units, operating asynchronously and concurrently, and the terms "Input/

Output Unit," "Supervisory Unit," "Central Processing Unit" together

with the abbreviations "I0U," "SU," "CPU" may be used.

REMOTE CONSOLE

The user's only visible link to JOSS is his remote console, which

consists of an IBM Selectric typewriter (with a special character

set) and a small, local-control box equipped with lights and switches.

Control of the typewriter is proprietary: Either the user has control

for purposes of input, or JOSS has control for purposes of output.

Which of these situations holds is indicated by a set of audible, vis¬

ible, and tactile signals.

JOSS is in control when

1. The red light is on.

2. The keyboard is locked.

3. Output is typed in black.

JOSS has returned control to the user when

1. A green light goes on, and the red light goes off.

2. The keyboard is unlocked.

3. Ribbon control shifts to green.

4. An audible tone is heard.

A power on/power off switch is provided on the console to re¬

quest JOSS service and to disconnect the terminal when service is no

longer required. Once connected to JOSS, three white status lights

indicate whether

1, The console is working.

2, The JOSS system is working.

3, The typewriter is working and ready.

When the console is disconnected from JOSS, it may be used as

a stand-alone typewriter, controlled by the typewriter's on/off

switch. When the console is connected to JOSS, the typewriter on/off

switch serves as a ready/hold switch to allow the user to suspend

output typing (for example, if the paper supply becomes exhausted or

the paper jams). Output can be continued after remedial action with

no loss of information. When JOSS has control of the typewriter, an

interrupt button and light allow the user :o request that control be

returned to him. JOSS turns on the interrupt light to indicate that

the request has been sensed and honors the request as soon as possible.

Letters, digits, and punctuation marks occupy their customary

positions on the keyboard. Left and right brackets and the absolute

value bar are included to improve the readability of expressions.

Parentheses and brackets are interchangeable in pairs for purposes

of grouping. The six numerical relation symbols are added, together

....

-9-

with a centered dot for multiplication. The slightly elevated aster¬

isk is used for exponentiation.

Four of the symbols have other applications:

1* The space sign (#) is used as a strike-out character, caus¬

ing JOSS to replace the struck-out character by a space.

JOSS also allows the user to backspace and strikeover char¬

acters, for purposes of correction.

2. The asterisk (4) at either end of a command input line causes

JOSS to ignore the line and return control to the user with¬

out comment. This provides the user with a device for an¬

notating his work and for canceling lines.

.3, The dollar sign (#) may be used in any expression for a

decimal value and carries a value equal to the line number

of the typewriter^ position on the page. This number

(from 1 to 54) is updated by JOSS to allow the user to con¬

trol output formatting. JOSS generally leaves a one-inch

margin at the top and bottom of each page, although a 55th

line will sometimes be typed on the page to prevent split¬

ting two-line outputs over two pages.

4. The underscore (_) may be used to specify lines to be left

blank by JOSS or to specify that JOSS is to leave fields

empty (in user-defined forms for formal output).

INPUT/OUTPUT UNIT (IOU)

Communication between the center and the consoles is on a line-

by-line basis. Typewritten lines from the users are terminated by a

-10-

carrier-retum signal or a page signal. The I0U must accept and test

incoming characters and signals, convert characters to an appropriate

7-bit encoding, collect these in a buffer area in core storage, and

signal the SU whenever a line is terminated and whenever other signals--

on* 0ffs in are received from the console. The I0U has the responsi¬

bility for maintaining exact images of typewritten lines, so that fixed-

length buffers may be used.

On output, the I0U accepts outbound characters and signals from

a buffer, converts these to the necessary encoding, transmits them to

the desired console, and signals the SU when a line has been transmitted.

The I0U time-shares its activities among the various consoles

under the control of hardware signals from a scanning and transmitting

device that connects the communication lines to the computer.

CENTRAL PROCESSING UNIT (CPU)

Associated with each user is a collection of dynamically changing

information: stored sequences of commands, data, information about

actions initiated by the user, and other pertinent data. The CPU ser¬

vices a user edits, displays, interprets, and executes direct (from

the console) and indirect (stored-program) commands--by processing

his block of information.

The CPU requires that a user's block of information be available

in a continuous stretch of core storage for processing. Because core

storage is not large enough to accommodate simultaneously all possible

blocks, a secondary (magnetic-drum) storage is used to cache those not

of immediate concern. The SU must see to it that the appropriate blocks

-li¬

are available in core storage as required and must respond properly

to CPU requests for more storage to handle an expanding user’s block.

Two independently addressed, 16,384-word, core-storage units

t
are available,, The JOSS machine-language routines reside in the

lower addressed unit; one or more users' blocks reside in the second

unit, which holds the blocks of immediate interest to the system.

To ensure that processing of the user's block be independent of

the absolute core-storage locations usea, the address-interpretation

hardware of the PDP-6 was modified to distinguish address numbers

greater than - 1. Such addresses are reduced modulo and then

added to the address number of the first word of the user's block

(stored in a special "relocation" register) to obtain the required

absolute address number. Thus, all addresses referring to the user's

block are, in effect, relative addresses. Further, the scheme limits

the size of users' blocks to 215 words.

Some of the CPU's responsibilities and features are

1. Extensive error detection and alert monitoring of user actions,

2. Precise point-of-error reporting and careful error commentary,

3. The ability to clean up the user's block and back off to the

beginning of a command or to other reasonable stopping posi¬

tions to report an error.

In particular, the CPU makes no irreversible changes in a user's block

until it is certain that the interpretation of a command or an editing

t
The PDP-6 has an 18-bit address field.

-12-

action will be completed or reach a reasonable stopping position with¬

out an error.

In the time-sharing regimen of JOSS, processing of a user's block

may be suspended for many reasons. Whenever a suspension occurs, the

CPU must cache enough information in the user's block to allow the

unit to later pick up the thread of processing on that block. Many

suspensions of processing are the direct result of the processing it¬

self: for example, errors occurring during command interpretation,

execution, or interstep sequencing; input or output actions; insuf¬

ficient buffers for transmitting lines to users; or insufficient core

storage for an expanding user's block. Some suspensions are triggered

by the SU when a user signals that he wishes to interrupt processing

(by sending an vy\ signal), and whenever the SU wishes to reassign the

CPU to a different user's block. These signals are stored in the

appropriate user's block by the SU. The CPU looks for such signals

and acts on them with sufficient frequency to prevent processing

jams.

SUPERVISORY UNIT (SU)

The SU uses a simple priority discipline to schedule the activi¬

ties of the CPU. First priority goes to the servicing of signals from

the I OU: ons off¿ ina oarriev vetuvnà pa.ges and end of transmission.

Second priority is given to the resumption of output-limited tasks that

have been set aside until the typewriters can catch up. Third priority

is given to users with unfinished actions; these are handled on a round-

robin basis.

-13-

The rationale behind this discipline is equally simple. Con¬

ceptually short, direct actions, such as editing of program and/or

data and requests for "modest" computations, should be completed well

before the typewriter carrier has physically returned to its rest

point. Since most lines typed by a user result in such short actions,

carrier-return and page signals are assigned a high priority. Output-

limited tasks should produce a rhythmic pattern of output typing with¬

out stuttering. This is achieved by assigning a high priority to

end-of-transmission signals and to output-limited users. Finally,

high priority should be given to servicing users whose current be¬

havior portends a short burst of processing followed by a long period

of withdrawal, when no processing will be required (e.g., users who are

interrupting JOSS, or are turning on or off, and output-limited users).

Users may ask JOSS to file specified collections of program and

data in long-term (magnetic-disc) storage. The SU properly queues such

requests as they are interpreted by the CPU, and the IOU effects the

required transmissions of information between disc and core storage.

BACKGROUND

The JOHNNIAC Open Shop System (JOSS) was made available on a

daily, round-the-clock basis to RAND personnel and associates in Jan¬

uary 1964,+ Implemented on the RAND-built JOHNNIAC computer, the sys¬

tem provided concurrent service to eight of ten available consoles.

The incipient decline of JOHNNIAC and users* demands for more JOSS

time (i.e., more consoles and a more reliable central computer), for

X
A preliminary version saw limited use during most of 1963.

-14-

more storage space for programs and data, and for long-term storage

and retrieval of programs and data led to a decision in 1964 to expand

and retool the system using modem hardware. Changeover to the cur¬

rent system, implemented on the Digital Equipment Corporation PDP-6,

took place in February 1966.

Many linguistic and processing capabilities above those required

to satisfy the users' requests were incorporated in the new system,

but never in such a way as to seriously stray from the intent of the

parent system: to provide an easily learned, easily used, fail-safe

computational service for the individual scientist or engineer.

The conversion of JOSS from the austere, 40-bit-word JOHNNIAC

to the 36-bit-word PDP-6 had a profound influence on the internal de¬

sign of the new system, particularly on the structure of the CPU and

users' blocks. JOSS numbers that had been neatly represented in a

single 40-bit word could not be represented in a single 36-bit word.

Strings of characters for steps, forms, and formulas took up more 36-

bit words than 40-bit words. The only alternative was a packing that

would have made a mockery of processing-speed commitments. The pre¬

servation of almost nine-digit accuracy for the basic functions without

sacrificing speed became even more of a coding challenge than it had

been on the JOHNNIAC, despite the richer instruction repertoire of

the PDP-6.

A complete redesign of the console and a decision to build the

t
I0U in software (rather than hardware as in the original system) added

t
The JOHNNIAC had no interrupt logic.

-15-

to the conversion burden. Normal delays in delivery and debugging of

the new consoles necessitated that the IOU be designed to accept TTY’s

as well as JOSS consoles, adding further to the cost of conversion

(though resulting in a useful fallout).

Obviously, users could not be penalized by the conversion to the

new system. Neither the number of users that could be accommodated

nor the amount of storage available for a user's block could be less

than that admitted by the original system. In effect, this meant that

no great departure from the original block design could be made, par¬

ticularly in view of the 10 percent degradation in storage capacity

caused by the 40-bit to 36-bit change. The decision to abide by this

precept paid off handsomely--the conversion was made long before the

magnetic drum arrived.

The excellent, time-shared software facilities provided by the

Digital Equipment Corporation for the PDP-6 permitted the concurrent

implementation of the IOU, SU, and CPU via the console TTY and two

additional TTY's obtained specifically for that purpose. Concurrent

debugging of the different units was made possible by the construction

of a version of the CPU (with a surrogate SU) that operated within the

DEC time-sharing system. This version of the CPU is still used, as a

matter of strict policy, to validate modifications and additions to

JOSS before they are presented to the users.

-16«

n¿_THE USER'S BLOCK OF INFORMATION

When a user turns on his console, the SU leads hin, through a

log-on ritual to obtain information for accounting purposes, and the,

places him in the hands of the CPU. Thereafter, each line typed by

the user is interpreted by the CPU, and each line typed by JOSS is

either composed by the CPU or produced under its direction, m a

real sense, the user interacts with the CPU, although the speed with

which JOSS respond, to the user-s requests is determined not only

by the CPU's internal processing speed but also by the SU's ability

to give each user a fair share of the CPU's time. Therefore, it is

appropriate to describe the CPU's gross structure in terms of JOSS's

interpretation of lines typed by the user and JOSS's responses to

them.

Apart from information required by the SU for scheduling, and

volatile information generated by the CPU during processing, all in-

fonction relevant t. the user Is kept in a piece. Durin, suspension,

of processing, the user's block of information »,y be cached on a

magnetic dru» by the SU; during processing, it is »aintained by the

CPU in a consecutive stretch of core storage, »hose precise location

»ay change after any suspension of processing. Much of the CPU's fine

structure can best be demonstrated by examination of the user's in-

formation block.

The only detailed description of the CPU's implementation on the

PDP-6 is furnished by the annotated, machine-language listing of the

central-processing routines, which is mainly of value to maintainors

-17-

of that particular implementation. A thorough knowledge of JOSS’s be¬

havior and of the structure of the user's block is a prerequisite to

reading the listings and to reproducing the CPU on a different com¬

puter. Accordingly, the user's block will be examined in detail, and

the central-processing routines will be described behavioristically.

Major points of the implementation that were strongly influenced by

the PDP-6 computer will be discussed when appropriate; otherwise, only

obscure or controversial points of the implementation will be taken

into consideration.

NOTATION AlW TERMINOLOGY

It is difficult to describe the fine encoding of some of the

information in the user's block without recourse to the 36-bit, word-

oriented central processing unit of the PDP-6. In particular, because

a 36-bit word in core storage may often represent more than one item

of information, a notation for word fragments must be introduced.

The notation

Ò - k)

is used indifferently to refer to the quantity represented by bits

Ò through k of the ith 36-bit word of the set of words being described,

or to the storage fragment associated with the (k - J + 1) bits. To

conform to PDP-6 machine-code requirements, the most significant bit

of a word is called the "zeroth" bit; the least, the "35th" bit.

Thus,

(2, 0-35)

-18-

would refer to the complete second word of the set of words being

described.

A cell is two consecutive words,

A link is a relative (to the beginning of the user’s block) ad¬

dress greater than zero, or it is zero (indicating the last element

of a list).

A left (right) linked cell list is a collection of cells, simply

ordered, with each cell containing a link to its successor in (2, 0-17),

(2, 18-35), respectively.

An object is simply an element of discourse of the language or

of the CPU; for example, an array, a decimal number, or a range of

values for iteration.

A descriptor is a one-word set of information that, in the proper

context, uniquely represents the descriptee.

An object descriptor describes the direct representation of an

object in the user’s block.

The assignment table is a set of 52 contiguous cells, one for

each letter of the double-barreled alphabet, each being the first on

a push-down list of object descriptors and ancillary information.

An object's use count is a count of the number of descriptors

for that object that happei o be in the assignment table at any in¬

stant (multiple assignments can occur during formula evaluations).

object header is a cell containing information about complex

objects, such as arrays, formulas, parts, steps, and forms.

A list header is a single word containing a link to the first

cell of a cell list.

-19-

A line number is a nonnegative integer used as a relative address

in a table of items.

A pointer is a 36-bit quantity describing a specific word frag¬

ment or byte, used by all PDP-6 byte-handling instructions as a de¬

scription of the byte to be manipulated.

GENERAL STRUCTURE

Information in the user's block is organized into

1. SU-maintained identification and accounting information.

2. CPU-maintained console information: type of console, page

number, and line counter.

3. CPU working storage for preserving major context during

processing and ovpr suspensions of processing.

4. PARTS: a list of the representations of the literal strings

of characters for steps of the user's stored programs, ordered

by step number and aggregated by part number.

5. FORMS: a list of the representations of the literal strings

of characters for the user's forms for formal output, ordered

by form number.

6. A table of 52 entries for keeping track of assignments to

letters.

7. JPDL: a push-down list for keeping track of hierarchical

tasks.

8. DS: .a push-down list for keeping track of "operands" during

interpretation.

-20-

9, PS: a push-down list for keeping track of ■’operators” during

interpretation.

10. FPDL: a push-down list for keeping track of place markers

during the interpretation of formulas and iterative functions.

11. ACL: a list of available space units.

Direct representations of objects are never stored on the oper¬

and stack, DS, or in the assignment table. Instead, all such book¬

keeping is done in terms of descriptors that represent objects indirectly.

Whenever available space in the user’s block is used for storage of ob¬

jects, a record of the transaction is stored in either the part list,

the form list, the assignment table, or on the operand stack. The

operator stack, PS, and the formula stack, FPDL, contain only direct

representations of operators, place holders, and other storageless

information; therefore, cleaning up and backing off after errors re¬

quires only that PS, FPDL, DS, and storage for the latter’s objects

be transferred back to the list of available space units.

LIST STRUCTURES AND LIST PROCESSING

Because of the nature of J0SS--as a language and as a system--

list structures and list processing are integral to the structure of

users’ blocks and the CPU. The representation of lists and their ele¬

ments, and the strategy used in list processing (in particular, the

handling of available space), depend on many factors, including

1. The kinds of elements and structures to be processed.

2. The kinds of processing to be done on elements and structures.

-21-

3. The particular computer to be used.

4. System specifications.

5. Desired balances between storage economy and processing

efficiency.

6. The personal taste of the implementer.

The special-purpose nature of JOSS led to a fairly simple choice of

representation and strategy. It is always difficult to justify such

a choice, but an attempt must be made.

First, available space is partitioned into two-word cells, which

are the atomic storage elements of all list structures in the user’s

block. The use of standard techniques for handling variable-size cells

(usually multiples of two words per cell) was ruled out on at least

two counts. Most elements of the user’s block fit neatly into two-

word cells, and activities involving such cells far outweigh those

involving larger cells. Consequently, any general scheme for handling

variable-size cells would have caused a significant decrease in the

CPU’s processing speed and a very slight loss in storage capacity.

Indeed, with the relatively few types of list structures required in

the user's block, it would have been far simpler and more economical

of both storage and processing time to take advantage of consecutive

cells only during high-payoff situations—when storing steps, forms,

and formulas.

However, even such an easily implemented and highly effective

strategy was ruled out by the insistence on a certain consistency of

system behavior: Equipment willing, programs and data that have once

been accommodated must always be accommodated. The combination of

-22-

finite core storage and variable-size cells could have caused a con¬

figuration of program and data arrived at by different user actions,

or by the same actions in a different sequence, to fit in some cases

and not in others. Thus, variable-size cells were discarded in favor

of the two-word cells, despite the fact that nonaccommodation of once-

accommodated users' blocks would occur so infrequently that the CPU

could well afford to reorganize storage on such occasions. This is

a straightforward coding job, but, unfortunately, one that requires

temporarily assigned, additional core storage. In the author's opin¬

ion, it would have been far better to rely on the user's sense of

civic responsibility and in extreme cases to allow him to request a

little more than the normally allotted maximum storage.

Other compromises for handling storage were considered and re¬

jected. Volatile information used during command interpretation (in

particular, during expression evaluation) could have been stored out¬

side the user's block to be cached in the user's block only on suspen¬

sions of processing. Or, the user's block could have been partitioned

into "buckets" of varying capacity, one for volatile information, the

others for slowly changing information such as steps, forms, and assign¬

ments (to be maintained in a compact form by rearrangement as required).

Such techniques would have achieved gains in processing speed by permit¬

ting the use of stacking operations rather than list-processing oper¬

ations on push-down lists. For JOSS, these gains were small and worth

neither the complexity nor the effort required to achieve them. It

must be recalled that JOSS is a computer and not a list processor,

although list structures and list processing are necessary to fulfill

-23-

that role. In fact, less than 10 percent of the CPU's time is devoted

to list processing, and this rate would increase to no more than 12 per

cent were the arithmetic and the basic function calculations to be done

in hardware” rather than by routines. (These are conservative esti¬

mates.) Thus, the entire question becomes an academic one. The han¬

dling of available space, in particular the question of what to do with

released cells, is a standard problem. Should the cells be returned

to the available space list when released or should they be collected

only in extremis? In the latter case, should they be marked to facil¬

itate subsequent collection, or not? Marking released lists either

restricts the range of representations that may be used or costs a

little in storage capacity. Moreover, for the simple lists used in

JOSS, marking takes as much time as returning a cell to the available

space list. The simplest technique would have been to collect only

when necessary, using a "storage map" outside the user's block for

marking during collection.

The decision to eschew collection in favor of returning cells

when released was influenced by the fact that all list processing

(with the exception of storing and releasing steps, forms, and formu¬

las) could be accomplished by a collection of short, fast macro's, most

of which are composed of a few machine instructions involving transfers

between core storage and high-speed registers. Since macro's are used

extensively, it would be a simple matter to change to a strategy of

collection and then compare speeds.

In summary, available space is partitioned into two-word cells,

which are returned to the available space list when released. Neither

-24-

a general structure for lists nor a general list processor is required

or used. Instead, each of the few types of list structures is handled

by machine-language routines or macros that "know” the structure of

the specific list being processed.

REPRESENTATION OF STRINGS OF CHARACTERS

The I0U receives and transmits characters in a 6-bit, typewriter-

dictated, "tilt-rotate" code with parity bit. These are translated

within the IOU into a 7-bit encoding, and again translated within the

CPU into a CPU-specific, 8-bit encoding. The CPU does little more

than strip off trailing spaces and step numbers, note the position of

conditional clauses, and translate words in JOSSfs vocabulary (and

strings of consecutive spaces) into single, 8-bit codes.

The decision to represent commands and formulas in essentially

their original form requires some comment. The original system made

no syntactic checks of steps before storing them away, because of

JOHNNIAC's limited core storage. Users were not overly penalized

since they could write only small programs. Duplicating this behavior

in the new system was probably a mistake, despite the fact that many

users now use JOSS to build files of textual information ordered

into steps and parts. Nevertheless, there are a variety of represen¬

tations of partially transformed steps and formulas, amenable to

efficient interpretation and execution, that could be used without

demanding error commentary during the required preprocessing. (It

is important that an equivalent of the original typewritten form of

steps and other elements be retrievable from such representations,

• .-h^.. - V..., —.«onu-âal-i-tWINftÂlKWrB

-25-

for display to the user.) These representations are usually strung

out or tabularized, postfix equivalents of the original strings, with

enough ad hoc '’operators" provided to clarify ambiguities. Such trans¬

formations speed up subsequent processing by stripping off parentheses,

reordering operations, and replacing the usual infix notation by an

equivalent postfix representation. i

In word-organized machines such as the PDP-6, the tabularized
!

representation leads to more rapid processing by allowing the coder

f
to take advantage of the natural syllabic structure and/or instruction

format of the computer, with a consequent loss of storage capacity.

An analysis of such representations in the light of JOSS's language

and of the PDP-6 showed that the increase in processing speed would

be marginal in terms of the effort involved. Tabularized representa¬

tions took up too much storage space, while packed or strung-out

representations were no more economical of storage than the one-to-

one representation chosen. (Numerals are usually short, and heavily

parenthesized expressions rare.) Finally, the transformed representa¬

tion produced significant gains in processing speed only with heavily

parenthesized expressions. The representation chosen leaves JOSS

open for the possible inclusion of commands for text construction

and editing.

Before storage of strings for steps, forms, and formulas, trail¬

ing blanks are stripped off, and recognizable words d consecutive

strings of blanks are replaced by single-byte encodings. Strings for

steps undergo further processing. First, a trailing point is replaced

by a unique byte denoting a period. Second, the last occurrence of

-26-

the word "if" not enclosed by quotation marks is replaced by a unique

encoding to distinguish it as the beginning of a conditional clause.

Finally, the step number itself is stripped off and replaced by three

leading bytes. The first byte contains a count of the number of lead¬

ing blanks in the original string plus the number of leading zeroes

in the step number. (These are replaced by blanks whenever JOSS types

the step.) The second byte contains a count that enables JOSS to

type accurately the fractional part of the step number when typing

the step. The third byte contains the index of the byte preceding a

conditional clause if one seems to exist; otherwise, the index is zero.

A specific code in the third byte, indicating that the step was not

ended by a period, permits the interpretation of such steps to be

aborted.

The third byte is an artifact for speeding up interpretation of

commands by bringing conditional clauses into focus quickly and easily.

Other devices could serve the same purpose; for example, conditional

and imperative clauses might be interchanged before storage. The sole

virtue of the device used is its simplicity and ease of implementation.

Stripping off step numbers from steps before storing generally

saves a little space for users; its genesis, however, lies in a per¬

sonal feeling that it should be possible to divorce the text of a

step from the step's number with ease, an action that would be required

for subprogram construction and text manipulation were such facilities

to be included in the system's repertoire. This is achieved at a small

cost to users of the system. (Tabs preceding a step number are not

allowed.)

-27-

ACCOVNTING AW COMMUNICATION (Table 1)

When the user turns on his console, he is assigned a block of

1024 consecutive words of storage by the SU; during subsequent pro¬

cessing, additional, consecutive units of 1024 words are added as re¬

quired by the CPU. The CPU routine X43 sets information in the user’s

block to initial conditions after completion of the log-on ritual,

which is led by the SU. Initially, the user’s block contains

1. SU-maintained identification and accounting information.

2. CPU-maintained console information: type of console, page

number, and line counter.

3. CPU working storage,

4. Heads of empty lists for parts, steps, and forms.

5. Heads of empty push-down lists for keeping track of hierar¬

chical tasks and for keeping track of operands, operators,

and formulas during interpretation of commands.

6. A table of 52 entries for keeping track of assignments of

values and formulas to identifiers.

7. A list of available cells to be used for storing steps,

forms, and values and for bookkeeping during processing.

The CPU routine, whose address resides in the first word of

the user's block, is used for all subsequent resumptions of proces¬

sing. Currently, this is always the CPU routine X44; it is used to

determine user/CPU state and to trigger or continue the appropriate

routines. The determination is made on the basis of a reentry code

and a CPU address number that are stored in the user's block. If

-28-

Table la

ACCOUNTING INFORMATION AND COMMUNICATION CELLS

LABEL

INTENT

SEQ

INITIALS

DESCRIPTION

Address of routine, X44, used for all resump¬
tions of processing

Used by SU

The user’s initials

JOBNO

PAGNO

ONTIME

COMTIME

SPARE1-SPARE5

RISIG

UBUF

ME

RETURN

WIDTH

The user’s project number

The user’s current page number

The time when the user logged on

Cumulative processing time since log-on

Used by SU

Made nonzero by SU to notify CPU that the user
has transmitted an in signal

Temporary cache for address of last console
buffer attached to the user by SU

(1, 0-17) = a reentry codea used by CPU to

resume processing of the user's
block

(1, 18-35) = the CPU address, X44

(1, 18-35) = zero if the reentry code is to
be used

= CPU address where processing is
to be picked up if reentry code
is not to be used

Maximum allowable number of characters for
lines to and from the user's console; 79 for

JOSS consoles, 72 for TTY consoles

a
0: User has just logged on; CPU must preset the user's block.
1: CPU is expecting a direct command of the user.

2: CPU is expecting a response to a demand for input.
3: CPU is expecting a form.

-29-

the address number is zero, action is taken on the basis of the re¬

entry code; otherwise, processing continues at the addressed instruc¬

tion. Processing for the user is aborted if either the reentry code

or the address invalid.

ME and RETURN could become the first on a push-down list of

cells for saving the states of interrupted central processors if an¬

other type of processing facility were to be added to JOSS (e.g.,

text editing). Note that the first twenty-odd items of information

in the user’s block are either maintained by the SU or would have to

be maintained uniformly by any central processor.

WIDTH, which is updated by the CPU whenever a line is typed by

the user, is used to control the width of output lines. Information

about the type of consolé is recorded with the line’s image by the

IOU, as are notes about overlong lines. These are the only instances

of direct communication between the IOU and the CPU, except for status

information during disc operation.

The number of available cells is updated each time a cell is

removed from or restored to the available space list. Originally,

JOSS displayed this value whenever the user requested that size be

typed; in the current system, the value displayed is the number of

cells currently used for storage of steps, forms, assignments, and

information about suspended and ongoing tasks.

Responsibility for keeping track of the user’s line count rests

with the CPU. The maximum number of lines per page (exclusive of the

page heading and margin) is 54, except when an extra line is required

to avoid splitting double lines.

-30-

Table lb

SIZE, TIME, USERS, TIMER, AW LINE COUNTER

LABEL DESCRIPTION

SIZE Current number of available cells

The number of 1024-word core blocks currently
assigned to the user

SPACE

LINE Current value of the line counter, $

Number of cells currently used for storage of

information in the user's block (size)

Current 4-digit time, as an integer (time)

Current number of users being serviced (users)

USIZE

UTIME

UUSERS

Number *f minutes that have elapsed since user
logged r-r. or last reset the value of timer to

zero, rounded to the l/100th minute (timer)

Value of the SU's seconds counter when user
logged on or when he last reset the value of
timer

The value displayed for size, time, users, and timer are set

prior to the interpretation of every command, and only then. Thus,

the values associated with these items and with $ remain fixed during

the interpretation of a command.

The high-speed registers of the PDP-6 are cached in the user's

block whenever the CPU suspends processing for any reason. Register

CR is stored only to facilitate debugging.

The A and B sets of registers are used variously. In particular,

they contain the first and second arguments on entrance to the arith¬

metic and function subroutines. Results of these subroutines are al¬

ways found in the A bank. The first of each set contains the sign and

-31-

LABEL

UCR

UAI

UA

UA2

UBI

UB

UB2

U ACL

UDS

UPS

UCP

ucc

Table le

HIGH-SPEED REGISTER CACHES

DESCRIPTION

Cache for register CR, PDP-6 stack pointer

Cache for register Al

Cache for register A

Cache for register A2

Cache for register Bl

Cache for register B

Cache for register B2

Cache for register ACL; address of first cell
on available space list

Cache for register DS; address of first cell
on operand-descriptor push-down list

Cache for register PS; address of first cell
(second entr/) on operator-descriptor push¬
down list

Cache for register CP; first entry on operator-
descriptor push-down list

Cache for register CC

digit part of the argument and the digit part of the result; the second

contains the sign of the result; and the third contains the exponent

part of the argument and the result in two's complement representation.

Register CC usually contains either the current 8-bit (or 7-bit)

character code being examined or a descriptor for the current, primi¬

tive syntactic element being examined.

Except for register ACL, all the registers are used loosely dur¬

ing preprocessing of incoming lines. After that, their use becomes

-32-

fixed (with the exception of the above-mentioned A and 5 banks and

register CC, which is frequently free).

PLACE MARKERS AW OTHER IltiTRASTATEMENT CONTEXT (Table 2)

The PDP-6 byte-handling instructions all use reference words that

describe the specific byte to be manipulated. These are called "pointers,"

"byte pointers#M or "string pointers." A pointer "points at" the byte

described and "points to" the byte following the one described.

Except for a few instances during the preprocessing of incoming

lines and the composition of lines for output (when pointers may re¬

side in high-speed registers), item U1 always points to the next byte

to be examined.

Item U4 is used solely during expression evaluation to keep track

•f*

of the relative precedence of operators.

The CPU types only the chosen subexpressions of conditional ex¬

pressions when identifying values for the user. This is accomplished

by mar’ mg the beginning and end of each chosen subexpression encoun-

tered during the interpretation of Type commands, which are copied

into working storage in the user's block before being interpreted.

Item U6 is used to control the marking.

To allow users to type, file, and delete simply described objects

when no space is available, three cells of available space are held

back for use when typing, filing, and deleting. Item U7 is used to

note that the three cells are being used.

^See p. 1U7.

^This seemed simpler than saving pointers or copies of substrings
(see p. 134).

-33-

Table 2a

PLACE MARKERS AND OTHER INTRASTATEMENT CONTEXT

LABEL DESCRIPTION

UO Pointer to beginning of current command, form,
or demand response being examined

U1 Pointer to next 8-bit byte (of current string)
to be examined

U2 Numeric code for the imperative or declarative
verb associated with the current command

U3 Descriptor for the expected delimiter of the

current imperative clause being interpreted;

either a period, a special token for if, or
an end-of-string token

U4 Hierarchical weight associated with the last

operator or punctuation mark encountered

U5 Used variously for temporarily relevant string
pointers

U6 -1 if CPU is interpreting the main string of a

Type command; otherwise, nonnegative

U7 -1 whenever the three-cell ace in the hole is
being used for typing, filing, or deleting

U8 Used as a cache during typing, filing, and
deleting

FPDL Formula push-down-list heaaer

LEVEL (1, 18-26) = current level of subprogram nesting

(1, 27-35) = current level of formula nesting

BASE Current level of subprogram nesting

Item LEVEL is used to exercise control over the scope of formal

parameters of formulas and, in the event that subprogram structures

are added to JOSS, the scope of all identifiers.

The Formula Push-Down List (FPDL) is a simple, right-linked cell

list for keeping track of context when interpreting formulas and

iterative functions. (See Table 2b.) In both cases, a place marker

in the string of characters being examined must be saved so that

scanning can be resumed correctly. Each entry for a formula carries

the 8-bit code for the identifying letter and the number of param¬

eters associated with the formula. Cleaning up and backing off re¬

quire that FPDL's cells be released.

The list header resides permanently in the user's block, but

is brought into a high-speed register as required.

Table 2b

FORMULA PUSH-DOWN LIST (FPDL)

(1, 0-35) = U1 when entry was made; where to

resume scanning after formula is

evaluated, or beginning of the ex¬

pression to be evaluated iteratively
if entry is for a function

(2, 0-7) = 8-bit code for letter if a formula;
zero if a function

(2, 8-17) = number of parameters if a formula;

identifying code if a function

0 indicates sum
1 indicates prod
2 indicates max
3 indicates nrin
4 indicates disj
5 indicates eonj
6 indicates first

WORKING STORAGE (Table 3)

An exact image of each line received from the disc or from a

console is copied into item USO. This enables the CPU to restart

-35-

LABEL

USO

USl

US 2

US 3

US 4

US5-US7

UPO-UP12

UX1-UX4

Table 3

WORKING STORAGE

DESCRIPTION

Pointer for linear working string 0 followed
by storage for 85 7-bit bytes

Pointer for linear working string 1 followed
by storage for 88 8-bit bytes

Pointer for linear working string 2 followed
by storage for 88 8-bit bytes

Pointer for linear working string 3 followed
by storage for 20 8-bit bytes

Pointer for linear working string 4 followed
by storage for 32 8-bit bytes

Caches for pertinent pointers

Scratch storage for typing arrays

Context (calling addresses) for various

routines used when typing and deleting

processing of direct lines without requesting the user to repeat. In

particular, if the processing of a direct line causes the CPU to re¬

quest more core storage of the SU, the CPU cleans up and backs off to

the beginning for a retry after space has been obtained.

The preprocessed images of input lines are found in USl, as are

the copies of Type commands. Item US2 is used variously for composing

output lines, as are US3 and US4. Item US3 is used for small frag¬

ments of output lines; US4 is generally used for numeric strings.

The pointer caches, US5 to US7, generally contain pointers to

strings fixed in the CPU storage--error messages, strings of spaces

for indentation of output lines, etc.

-36-

The execution of Tyipe commands involves requests for assignment

of line buffers and for transmission of buffers to consoles, so that

the CPU frequently suspends processing of the user's block while

typing. Items UPO through UP12 are used variously as caches during

such suspensions, as well as for other purposes. In particular, item

UP12 is used as a push-down stack for typing arrays, the ten words

of the stack mirroring the restriction to ten index values for indexed

quantities.

KEEVIUG TRACK OF HIERARCHICAL TASKS (Table 4)

Each Do command causes the CPU to preserve information about the

current state of processing, to drop a level to perform the indicated

step or part as a subroutine, and then to return to pick up the inter¬

rupted thread of processing. If the command carries a modifying clause,

the appropriate list str. -nre is built up. The information that must

be built up for the control of a task consists of

1. A record of what is being done--part or step;

2. The number of the part or step being done;

3. The list structure for the modifying clause, if necessary;

4. A record of how the command was given, either directly

or indirectly.

For convenience in sequencing and control, part and step numbers

of interest are fragmented into

1. A part index--the integral part of the number, represented

as a binary integer;

-37-

LABEL

MODE

JPÜL

JD

JOB-CODE

BREAK

JOB-MODE

SKIP-CODE

U24-U25

CPI

CSI

CSA

Table 4a

TASK CONTROL INFORMATION

DESCRIPTION

0 indicates CPU is processing a direct

line

±1 indicates CPU is processing an in¬

direct step

2 (3) indicates CPU is advancing the

iteration variable associated with a

direct (indirect) task

Link to first cell on push-down list for

hierarchical tasks

Information about current task

(JD, 0-3) 2 if doing step
1 if doing part

0 otherwise

(JD, 4-5) = MODE when command was given

(JD, 6-9) = 1 if iteration variable must
be advanced before going on

= 0 otherwise

(JD, 10-11) = MODE when task was interrupted

(JD, 12-13) = 0 indicates next indirect

command to be processed is
the current one

= 1 indicates next indirect

command to be processed is

the one after the current one

(JD, 18-35) link to modifying phrase list

structure

The number of the part or step associated

with the current task

Integral part of the current step number

8
10 times the fractional part of the cur¬

rent step number

Link to the current step header

-38-

8
2. A step index--10 times the fractional part of the number,

represented as a binary integer.

The record of how the command was given is referred to as its mode;

that is, in "the direct mode" or "the indirect mode."

Whenever the CPU drops a level to begin a new task, all of the

above information must be saved. In addition, the CPU must save the

information required for picking up the interrupted task on comple¬

tion of the interrupting one. All necessary information is saved on

JPDL (Table 4b), a simple, right-linked cell list with an implicit

entry size of three cells. For convenience, the CPU recognizes the

existence of the '.ult task, when there is nothing to be done but

await directions from the user.

Table 4b

PUSH-DOWN LIST FOR HIERARCHICAL TASKS (JPDL)

(1, 0-35)1

(2, 0-17))

(2, 18-35)

(3, 0-35)

(4, 0-17)

(4, 18-35)

(5, 0-35)

(6, 0-17)

(6, 18-35)

number, in JNF (see p. 50),
of part or step to be done

link to next cell

CPI when task was deferred

link to header for associated modifying phrase

link to next cell

CSI when job was deferred

JD when task was deferred

link to first cell of next triple of cells

-39-

CONTEXT FOR PLjÇ OPERATIONS (Table 5)

Items are filed on magnetic-disc storage as collections of literal

strings of characters for steps, forms, value assignment commands, and

formula assignment commands in the standard 8-bit encoding. Thus, the

routines for filing and recalling items reduce to routines for control¬

ling extant routines for processing typewritten lines from the console

and for composing and transmitting lines to the console. Items UDF1

and UDF2 are used for controlling these routines.

Items on the disc are ordered physically into 128-word records.

A single 128-word buffer area is used to transmit records between disc

and core storage, UBFR being used for sequencing through the strings

in the buffer area*

LABEL

UDF1

UDF 2

UBFR

UFILE

UKEY

UNAME

UITEM

Table 5

CONTEXT FOR DISC OPERATIONS

DESCRIPTION

-1 if CPU is using the disc; 0 otherwise

-1 if CPU is expecting a form to be input
from either a console or the disc; 0
otherwise

Pointer to next byte in 128-word buffer
used in disc transmissions

The number of the disc file being used

The key associated with the current file

The key for the current file item being
referenced

The number of the current file item being
referenced

-40-

KEEPING TRACK OF PARTS3 STEPS, AND FORMS (Table 6)

The literal strings of characters for steps and forms are stored

as elements of appropriately ordered list structures. Two-word headers

for these are carried in fixed locations in the user’s block labeled

PARTS and FORMS, respectively.

Table 6

PART LIST AND FORM LIST

PARTS: (1, 0-35) = -1
(2, 0-17) = link to first part header (for lowest

numbered part)

(2, 18-35) = reserved for potential use in sub¬
programs

Part headers:
(1, 0-35) = part number as a binary integer
(2, 0-17) = link to next part header (ordered by

part number)
(2, 18-35) = link to first step header (lowest

numbered step in part)

Step headers:
(1, 0-35) =

(2, 0-17) =

(2, 18-35) =

108 times the fractional part of the

step number
link to first cell of the string of

characters for the step

link to next step header (ordered by

step number)

FORMS: (1, 0-35) = -1

(2, 0-17) = link to first form header (for lowest

numbered form)

(2, 18-35) = reserved for potential use in sub¬

programs

Form headers:
(1, 0-35) =

(2, 0-17) =

(2, 18-35) =

form number as a binary integer

link to next form header (ordered by

form number)
link to first cell of the string of

characters for the form

-41-

Strings of characters for steps, forms, and formulas are repre¬

sented in the userrs block as sequences of 8-bit bytes. Each byte

represents either a single character, a word in JOSS’s vocabulary, or

a set of one to eight consecutive spaces. Strings are stored in lists

of cells, seven bytes to the cell. Each string is terminated by a

unique, 8-bit code (EOS); and the seventh byte in each cell is always

one of sixteen 8-bit codes denoting end-of-cell. The overlapping of

the seventh byte with the address of the next cell requires the use

of a set of such indicators.

Recall that address numbers used to refer to the user’s block

are distinguished by being greater than 215 - 1 (but less than 216).

Thus, the 8-bit octal codes 110 through 117 may serve as end-of-cell

indicators; the codes 100 through 107 serve the same purpose. (This

takes care of zero links and also allows the CPU to run as an inde¬

pendent unit, outside the JOSS system, on users’ blocks that use ab¬

solute address numbers.)

As an example, the string fragment if x ~ a+b, requires two cells

for storage and would appear as follows in, say, cells 23S and 313:

235 if
A

X A • • • •

236 = A

01001000 00001100 1011

313 a b PERIOD « • « •

314 EOS EOS 01000000 00000000 0000

-42-

The four unused bits in the first word of each cell are ignored,

and the choice of odd cell numbers does not indicate that cells are

so constrained.

The use of end-of-cell indicators not only speeds up the scan¬

ning and general interpretation of strings (no counting or testing is

required), but also makes string manipulations independent of string

storage. This independence is used in manipulation on so-called linear

strings that are stored in consecutive words at four bytes per word

(e.g., strings of characters for error messages).

Step numbers are stripped off and replaced by three byte fields.

The first holds the number of spaces preceding the step number, the

second the number of trailing zeroes and/or decimal point. For example:

Line Image

^1.35 ...

"01.35 ...

1.35 ...

1 ...

1. ...

1.0 ...
1.10 ...

First Byte

2

2

0

0

0

0

0

Second Byte

0

0

0

0

1

2

1

The third byte is used to keep track of the beginnings of conditional

clauses. For example, the steps

1.10 Set

1.21 Set z = X +

X ~ 2.
I-16th byte of stored string

y'tf y = a.

would be represented in the parts list as follows:

-43-

PARTS:

KEEPING TRACK OF AVAILABLE SPACE

The Available Cell List (ACL) is a simple, right-linked cell

list. The following processing notes are worthy of mention although

they have no bearing whatsoever on the operation of the system:

1. Initially, ACL is ordered by increasing address numbers,

the top c 1J (first on the list) having the lowest address

number;

2. Cells are taken off the top as required and returned to the

top when released;

3. Additional 512 cell units of space are ordered by increasing

address number but are then slipped in atop the ACL.

The list header resides in a high-speed register during all pro¬

cessing, and is cached in the user's block on suspension of processing.

Operations on ACL are independent of the contents of cells, other than

-44-

the necessary links; therefore, ACL does not need to be kept "clean."

Three cells of available space are held back from the user as an

"ace in the hole" to be used only for typing, filing, and deleting ob¬

jects (actions that must be possible for simply described objects at

any time) and for all other operations on the disc files.

KEEPING TRACK of ASSIGNMENTS (Table 7)

The objects that may be manipulated and assigned to letters are

decimal values, logical values, arrays of values, and formulas. Each

such assignment causes information to be posted in the assignment-table

entry associated with the letter. The information consists of a de¬

scriptor of the object assigned and information concerning the "scope"

of the assignment. Descriptors contain

o !• The 8-bit code for the associated letter.

2. A numeric code identifying the kind of associated object.

3. A link, if necessary, to the first cell associated with the

object's storage.

When an assignment is made to an iteration variable of a function,

or to a formal parameter of a formula, the existing assignment must

be saved. Thus, each assignment-table entry is treated as the top of

a push-down list of entries, so that during the evaluation of iterative

functions and formulas more than one entry in the assignment table may

describe the same object in storage. Accordingly, each object has as¬

sociated with it in storage a use count of the number of descriptors

for that object that are extant in the assignment table.

-45-

In order to exercise some control over the scope of assignments

to letters (in particular, to formal parameters), the level of formula

nesting that attained at the moment of an assignment is also posted

in the assignment table (i.e., the number of referrals to formulas

within formulas that attained). In addition, space is reserved in

each entry for the level of subprogram nesting associated with assign¬

ments, although such objects do not exist at present.

One hundred and four consecutive words of the user's block are

reserved for the 52-cell assignment table. The first 26 cells are

Table 7

ASSIGNMENT TABLE ENTRIES

(1, 0-7) = 8-bit code for the associated letter

(1, 8-12) = not used

(1, 13) = 1 if a descriptor for a sparse3, array

= 0 otherwise

(1, 14-17) = numeric identifying code for the object
assigned

(1, 18-35) - link to first cell of object storage

(2, 0-17) = LEVEL when assignment was made

(2, 0-8) = reserved for level of subprogram nesting

(BASE) that attained when assignment was
made

(2, 9-17) = level of formula nesting that attained

when assignment was made

(2, 18-35) = link to next descriptor on the entry's
push-down list

aSee p. 123.

associated with the upper-case letters, the rest with lower-case let¬

ters (each half is ordered lexicographically). Initially, all entries

are posted as being unassigned.

KEEPING TRACK OF OPERANDS AND RESULTS (Table 8)

The Operand-Descriptor Push-Down List (DS) is a simple, right-

linked cell list for keeping track of object descriptors used and

generated by the CPU during processing. Some descriptors on this list

are simply copies of assignment-table entries, and others describe

objects (generated during processing) that may see only temporary ser¬

vice or may attain permanent status in the user's block. Generated

objects can cause no irreversible changes in the user's block as long

as their descriptors are recorded on the DS. By keeping descriptors

for all generated objects on the DS, the business of cleaning up and

backing off from errors does not involve much more than returning the

cells of the DS and of any associated "scratch" objects to available

space.

In addition to descriptors for assignable objects, the DS can

hold descriptors for

1. The array identifier and associated index values for refer¬

ring to components of arrays.

2. The list of values required for an iteration.

3. A combination of the above for describing for phrases.

4. The number of a required part, step, or form-or a description

of a collection of objects (e.g., all parta, all values, and

all).

Table 8

OPERAND-DESCRIPTOR PUSH-DOWN LIST (DS)

(1, 0-7) = 8-bit code for the associated letter if
the descriptor was copied from the assign¬

ment table

= 0 otherwise

(1, 13) = 1 if a descriptor for a sparse ax%ray

= 0 otherwise

(1, 14-17) = numeric identifying code for object

assigned

(1, 18-35) = link to first cell of object storage

(2, 0-17) = used at times to reorder a sequence of

related descriptors on DS in a "first-in-

first-out manner; otherwise, not used

(2, 18-35) = link to next descriptor on DS

Some descriptors have no associated storage for objects; these

include

1. Formal parameters of formulas to which assignments have been

temporarily made during evaluation of the formula.

2. System-specific marks and words such as size, time, users,

and underscores.

Descriptors for arrays, formulas, and functions are always identi¬

fied; that is, they always carry the 8-bit code for the letter to which

they are currently assigned. Descriptors for values resulting from

arithmetic and logical calculations are always unidentified. Note that

the length of the identification field can be increased from eight to

twelve, accommodating expansions of the set of permissible identifiers.

Object Descriptors (Table 9)

The assignment of an ar.-ual parameter to a formal parameter prior

to evaluation of a formula is kept track of fay posting the appropriate

(type 7) descriptor on the DS. Since the same information is. effec¬

tively available in the assignment-table entry (via the assignment

level recorded there), this is simply a device to save time when releas

ing such assignments by obviating searches through the assignment table

"LHS" denotes the structures compiled from left-hand sides of

assignment commands or for phrases: a letter and a set of index values

"ROV" denotes the structures compiled from lists of values and

ranges of values for iterations.

The structure for a for phrase is a list of two structures, an

LHS and an ROV.

M00D" denotes list structures compiled from such phrases as all,

all parts, all steps, all forms, all formulas, all values, part...,

step..., form..., and formula.... The type of OOD is identified in

(1, 10-13) by a numeric identifying code.

The choice of how much descriptive material to keep with the de¬

scriptor and how much to keep with the object itself is sometimes dif¬

ficult, particularly when one moves away from general list structures.

A simple scheme sufficed for JOSS: Scalar values are distinguished (as

decimal or logical) by information carried in their descriptors; values

identified by indexed letters are so distinguished by information car¬

ried with the values themselves (see Table 10). This scheme is readily

extended to handle, say, complex values, or extended-range decimal

values; beyond that, a fairly major reorganization would be required.

-49-

Table 9

OBJECT DESCRIPTORS

¢1, 14-17)
Identifying Code Object

Logical value 0

Decimal value 1

Array 2

Formula 3

Function 4

Iterative function 5

Unassigned 6

Formal parameter 7

LHS 8

ROV 9

for phrase 10

OOD H

Special elements 12

Cl, 18-35)
Link

Link to item TRUE or item FALSE

Link to object cell

Link to header cell for array

Link to header cell for formula

Line number in system-function table

Line number in system-function table

Zero

Link to cell in assignment table cor¬
responding to the formal parameter

Link to header cell for LHS list

Link to header cell for ROV list

Link to header cell for the list

Link to cell containing object’s iden¬
tification (see subtable below)

0 indicates a string of underscores
1 indicates size
2 indicates time
3 indicates users

00D

all
all parts
all steps
all forms
all formulas
all values
part
step
form
formula

Ç1, 10-13)

0
1
2
3
4
5
8
9

10
11

(1, 18-35)

0
0
0
0
0
0

Link to cell for part number
Link to cell for step number
Link to cell for form number
Link to cell containing assignment
table address

-50-

StoHnçf Assignable Objeate (Table 10)

The nine-digit, floating-decimal numbers of JOSS require one cell

for their representation. The representation consists of a tripartite,

binary encoding called the nJ0SS Normalized Form" (JNF):

1. The sign of the number;

2. The digits of the number, sans exponent, normalized to nine

digits with trailing zeroes;

3. The exponent part of the number.

The logical values, true and false% are represented by single

copies of the JNF representations of 1 and 0, respectively, that are

stored in the user's block and labeled TRUE and FALSE, respectively.

All descriptors for logical values describe one of these copies.

Representations of the scalar elements of arrays are organized

into list structures, ordered in an obvious manner. Vectors, for

example, are represented by a right-linked list of elements, each la¬

beled with its index; matrices are represented by a list of such lists,

each list header carrying its row index. The restriction of indices

to the range [-250, 250] is an implementation decision based mainly

on the packing required to fit sign, digit part, exponent part, index,

and link into a single cell. Components that have logical values are

distinguished by a marked exponent of zero.

To speed up orderly searches through list structures for arrays,

the list headers used in these structures contain information about

the most recently referenced list elements. The routines for assign¬

ing and deleting array components are responsible for keeping this in¬

formation up to date.

-51-

Table 10

REPRESENTATIONS OF ASSIGNABLE OBJECTS

Decimal values (JNF)

(1, 0-0) = binary representation of the sign

(1, 1-35) = binary representation of the nine-digit integer

(2, 0-17) = two's complement representation of the exponent part
(2, 18-35) = use count

Logical values

true = JNF n

false = JNF 0 f one and only one C0Py of each

Arrays of dimension n < 10

(1, 0-17) = link to last referenced subarray of dimension rz - 7

(1, 18-35) = link to first subarray of dimension n - 1
(2, 0-17) = n, as a binary integer

(2, 18-35) = use count

Subarrays of dimension > 0 •

(1, 0-17) = link to last referenced subarray of dimension k - 1
(1, 18-35) = link to first subarray of dimension k - 1

(2, 0-8) = index of subarray, in two's complement representation
(2, 9-17) = not used

(2, 18-35) = link to next subarray of dimension k

Array components

(1, 0-35) = as for decimal numbers and logical values

(2, 0-8) = index of component, in two's complement representation
(2, 9-17) = two's complement representation of exponent part if

decimal number; octal 400 if logical value
(2, 18-35) = link to next component

Formulas

(1, 0-17) = link to string of letters used as formal parameters
(1, 18-35) = link to literal string of characters of the formula

(2, 0-17) = number of formal parameters, as a binary integer
(2, 18-35) = use count

Functions (in CPU)

(1, 18-35) = address of evaluation routine

(2, 0-17) = number of arguments; -1 if an iterative function
(2, 18-35) = use count

Tables for all functions reside in the system's core store,

rather than in the user's block. Assignments of such objects can be

made only to formal parameters of formulas.

Storing Nonassipnable Objects (Table 11)

Objects of types 7 through 12 are compiled or otherwise generated

by the CPU during interpretation. They flare into existence, are used

in further interpretation or execution, and are then released.

Each of these objects corresponds to a well-defined syntactic

Table 11

REPRESENTATIONS OF NONASSIGM&LE OBJECTS

Left-hand sides

(1, 18-35) = link to letter's assignment-table entry
(2, 0-17) = number of indices

(2, 18-35) = link to first index value

Index values in LHS structures

(1, 0-35) = index value, in two's complement representation
(2, 0-17) = not used

(2, 18-35) = link to next index value

Range-of-values list elements

(1, 0-0) = binary representation of the sign

(1, 1-35) = binary representation of the nine-digit "magnitude"
(2, 0-8) = octal 400 if number is a singleton or the right

bound of a range of values; otherwise, zero

(2, 9-17) = two's complement representation of exponent part if

a decimal number; octal 400 if a logical value
(2, 18-35) = link to next element

for and number-of-times phrases

(1, 0-17) = link to LHS list if for

= 0 if number-of-times
(1, 18-35) = link to ROV list if for

= link to cell for number-o f-times

construct in JOSS's language, and each has an associated routine for

interpreting such constructs and compiling the appropriate information.

KEEPim TRACK OF OPERATORS AND REENTRANT ROUTINES (Table 12)

The Operator-Descriptor Push-Down List (PS) is a simple, right-

linked cell list for keeping track of operators, punctuation, and ad¬

dresses of calling instructions for reentrant routines. In addition

to descriptors for such elements, descriptors for arrays, formulas, and

functions are occasionally cached on the PS during processing. The

top descriptor on the list resides in the high-speed register CP; the

link to the next descriptor's cell resides in the high-speed register

PS. These are cached in the user's block on suspension of processing.

Cleaning up and backing off require that the cells of the PS be released.

Most descriptors on the PS represent terminal characters of the

language. These are organized into nine class**:

0. Letters.

1. Decimal numerals; true; false; function names; $; timer.

2. Left groupers (parentheses and brackets).

3. The absolute value bar.

4. Plus, minus, multiplication, division, exponentiation signs.

5. not.

6. andt or.

7. The six numerical relation signs,

8. Right groupers, punctuation marks, and special symbols.

9. Words in JOSS's vocabulary (except those used as logical

operators) and strings of underscores.

Classes are divided into subclasses and, when a finer differentia¬

tion is appropriate, subclasses are divided into "types."

Descriptors for terminal characters are generated during inter¬

pretation (the routine P51 is used for recognizing the next terminal

character in the string of characters under examination), and are (with

the exception of descriptors for decimal numbers and strings of under¬

scores) derived directly via table look-up, with an 8-bit character

code as argument.

The descriptors (see Table 12) occupy a single word with format:

(1, 0-8) » subclass identification

(1, 9-17) = class identification

(1, 18-35) = type identification or other required information

Terminal characters of class 2 through 7 are treated as operators

during interpretation. Associated with each such operator is a pair

of numeric values that are used to govern the order in which adjoining

operations are carried out when evaluating expressions. Differentia¬

tion among operators is provided by the type identification, which is

used as a line number in various CPU tables--including the table of

numeric* value pairs mentioned above.

Three internally generated operator descriptors may also be found

on the PS:

unary plus: class = 4; subclass = 0; type = 17

unary minus: class = 4; subclass = 0; type = 18

"backstop": class = return address for reentrant routines;

subclass = 0; type = 19

-55-

Table 12

TERMINAL CHARACTER DESCRIPTORS

Terminal Character

Letter

Decimal number

Logical number

Function

Iterative function

$ (dollar sign)

timer

((open parenthesis)

[(open bracket)

I (absolute value bar)

+ (plus sign)

- (minus sign)

* (multiplication dot)

/ (division slash)

* (asterisk)

not

and

or

= (equals sign)

* (not equal to)

< (less than)

Class

1

1

1

1

1

1

2

2

3

4

4

4

4

4

5

6

6

7

7

7

Subclass

1

0

4

5

6

7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Type

Link to assignment-table entry

Link to object cell, CPU storage

Link to item TRUE or item FALSE

Line number, CPU function table

Line number, CPU function table

Link to item LINE

Link to item UMIN

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Table 12--continued

Terminal Character Class Subclass Type

> (greater than)

£ (less than/equal to)

> (greater than/equal to)

) (close parenthesis)

] (close bracket)

, (comma)

; (semicolon)

: (colon)

. (period)

? (question mark)

Carrier return

Page

End-of-string

1 (single quote)

H (double quote)

Illegal code

Set

Let

Do

Type

Delete

Line

Page

Cancel

14

15

16

0

1

2

3

4

5

6

7

7

8

9

10

12

0

1

2

3

4

5

6

7

*

-58-

Table 12—continued

Terminal Character

all

if

Special if

in

for

times

as

list

be

sparse

String of underscores

size

time

users

Class

9

9

9

9

9

9

9

9

9

9

9

9

9

9

Subclass

3

4

4

4

4

4

4

4

4

4

5

5

5

5

Type

0

0

1

2

3

4

5

6

7

8

0

1

2

3

-59-

III. THE CENTRAL-PROCESSWG ROUTINES

The general organization of the central-processing routines mir¬

rors the principal responsib lities of the CPU: (1) communication

and synchronization with the supervisory unit; (2) intercommand se¬

quencing and control; and (3) command interpretation and execution.

The central-processing routines fragment into several collections of

routines and information that reflect this division of effort and

responsibility:

1. The coroutines and major subroutines, X43 through X57, for

a. Interfacing with the supervisory routines.

b. Processing lines typed by the user,

c. Composing and controlling the typing of lines.

d. Interstep sequencing and control.

2. The major routines, VO through V16 and D56 through D62, for

controlling the interpretation of commands once the type of

command has been determined.

3. The reentrant subroutines, P35 through P49, for controlling

the interpretation of major syntactic constructs such as ex¬

pressions for values.

4. The routines, EO through E60, for error diagnosis, control,

commentary.

5. Three collections of ancillary subroutines:

a. P51 through P74 for general processing.

b. S50 through S74 for operations on literal strings of

characters and for typing and deleting.

c. D50 through D54 for controlling the transmission of in¬

formation to and from the magnetic-disc files.

6. A pool of fixed information, including controlling parameters,

tables, strings of characters for messages, and machine-

dependent extractors and codes.

7. A separate cache for volatile information that need not be

saved in the user^ block.

Routines will usually be described as active agents rather than

as passive algorithms to be interpreted by the machine, and will always

be referred to by their machine-language labels. Flowchart 1 sketches

the organization and general flow of control, each labeled circle rep¬

resenting a routine or collection of routines.

Routine X43 sets information in the user's block to initial con¬

ditions after the log-on ritual, and then returns control to the user.

Routine X44 controls all subsequent resumptions of processing. Cases

in which processing had been suspended to await the typing of a line

by the user are factored out for individual attention by routine X45;

all other suspensions are resumed at the point of interruption. Rou¬

tine X45 shunts lines that represent forms and responses to demands

for input to the routines for interpreting the associated commands.

Routine X50 processes all other lines typed by the user and all lines

input from the magnetic-disc files. Form declarations and elided

assignment commands are factored out for individual attention, and

indirect steps are stored away in the user's block.

Routine X51 controls the interpretation of all steps other than

form declarations and elided assignment commands. Conditional clauses

-61-

log on

4-

j i resume proaeeetng

return
control
to user

continue interrupted
routine

elided
aeeignment

form declaration

direct
command

V

interpret
comcond 1

X50:

T
after storing

step

carrier return
form or page

V y
response to >—s. A

demand ÍX45J

^ i
conrnmd f

r* long
line

(1)

/ if not

^ return
control
to user

/ *

indirect
command (4,5) — \

(2,3)

/ ©
parenthetical

task

Quit

V
current

^ step

next
step

resume
last
task /

done

N
\

at step
Do

\

\
Go

first
step

/

/
quit

X57|.

\
Cancel

repeat

\
during
step

X56

\
Done

return
(3) control

to ueer

(1) Ignored line, transmission error.
(2) After direct commands and errors.
(3) Nothing to do.
(4) After error diagnosis and commentary.
¢5) After interpretation of all comnands except those indicated above.

Flowchart 1--Gross Flow

-62-

are interpreted before the command is ever examined. The type of com¬

mand uniquely determines which of the V or D (disc commands) routines

is to be used for interpreting the imperative clause. Routine X52,

which is used for interstep sequencing and control (except after Do,

Go, Done, Quit, and Cancel commands) is the central traffic controller,

and is invoked whenever a step has been completed and whenever control

is to be returned to the user: It cleans up the userfs block and then

turns control over to the user or to the routines for continuing the

interpretation of a stored program.

Routines X53 and X54 pick out the next step of a stored program

and initiate interpretation of the step after pausing to honor inter¬

ruptions from the user and recalls from the SU.

Routine X55 controls repetitions of steps and parts that the user

had told JOSS to do; routine X56 restarts the interpretation of steps

and parts that JOSS had been told to do repeatedly; routine X57 cleans

up after the completion of such tasks and controls the continuation

of any suspended tasks.

Not shown in Flowchart 1 are

1. A manifold of short routines for interfacing with the super¬

visory routines on all suspensions of processing.

2. Most of the V and D routines for controlling the interpretation

of individual types of commands.

3. Subroutine X48 for controlling the collection and typing of

all output lines.

4. Subroutine X47 for detecting and honoring interruptions from

the user and recalls from the SU.

-63-

5. Subroutine X46 for selecting the appropriate interface routine

when processing the disc files.

PROCESSING LINES TYPED BY THE USER

Whenever the user has control of the typewriter, JOSS stands ready

to accept and interpret the next line typed by him. Interpretation of

the line will depend on what JOSS expects the user to type. Once past

the log-on ritual, only three possibilities exist:

1. The user is going to type a full-line form to be stored away

and made available for specifying formal output. In this case,

the user should be able to observe or recall that the last in¬

struction he gave was that JOSS stand ready to accept a form.

2. The user is going to type a response to a demand from JOSS

that he input a value to be identified and stored away. This

situation is triggered by a step of a stored program that

caused JOSS to type the user-specified identification, followed

by an equals sign, before returning control to the user.

3. The user is going to type one of the following:

a. A command to be carried out directly.

b. A labeled step to be saved as a step of a stored program.

c. A blank line or a line with an asterisk (*) at either end;

these constitute implied commands to ignore the line and

return control to the user without comment.

In the last situation, JOSS has either typed a status, stopping,

point-of-interruption, or error message before returning control to

-64-

the user, or has returned control without comment, for reasons JOSS

assumes are apparent.

As long as the user has control of the typewriter, he can edit

the line freely: backspacing, overstriking characters, and erasing

characters by overstriking them with the space sign (#). Not until

the user has hit the carrier-return or pagination key does JOSS take

control of the typewriter and begin processing the line. JOSS re¬

sponds to many input lines with dispatch. For example, if the line

represents a form or an indirect step to be stored away, or represents

a request for the assignment of a formula or a quickly computed value,

JOSS carries out the action well before the typewriter carrier has

returned to its rest point. JOSS responds just as promptly to requests

to type out quickly computed values, or elements of the user’s stored

program and data.

While the user is typing the line, JOSS replaces all instances

of the strike-out sign (#) by spaces. When the user releases control,

JOSS examines the line for invalid characters, which may indicate er¬

rors in transmission or double-strikes. Not all errors can be detected,

since errors may cancel and double-striking (or single-striking) may

result in the transmission of a valid character different from the one

typed on the page. JOSS responds to detected errors by retyping the

line, with all invalid characters replaced by the strike-out sign (#),^

JOSS then requests the user to retype the line. If expecting a re¬

sponse to a demand for input of a value, JOSS retypes the identifica¬

tion and equals sign before returning control.

^Primarily to expedite console repairs.

-65-

If the line is "error free," JOSS examines the line's length.

If there are more than 78 characters in the line, including spaces,

JOSS notifies the user that he has typed a line too long to be handled

(excess characters having been lost in transmission) and requests him

4*

to retype the line. If the line is acceptable, JOSS takes differen¬

tial action depending on what is expected. The interpretation of forms

and responses to demands for input will be described later. In all

other cases, JOSS first determines whether the line is to be ignored.

If so, JOSS returns control to the user without comment; otherwise, the

line must represent either a direct command or a labeled step to be

stored away. Step labels must be properly typed and positioned and

must represent valid step numbers; that is,

1. Be preceded by spaces, if at all;

2. Be set off from the remainder of the line;

3. Be explicit decimal numerals containing no more than nine sig¬

nificant digits, exclusive of leading and trailing zeroes; and

4. Represent step numbers lying in the range 1 < step number < 101^.

If the step label is improper, or if it is preceded by tabs,

JOSS notifies the user and returns control to him. If valid, JOSS

carries out the implied addition, insertion, or replacement and then

returns control to the user. If there is not enough storage space

available to make the change, JOSS notifies the user and then returns

control, leaving the existing program intact. JOSS makes no changes

^In the case of commands, this should properly be done after it

has been determined whether the line is to be ignored, rather than
before.

-66-

in the user*3 program or data until certain that enough space is avail¬

able. If space is available^ JOSS makes the change without examining

the remainder of the line. Thus, an indirect step may be complete gib¬

berish as a command. JOSS does not know until the step is encountered

while carrying out a stored program for the user.

If the line is not prefixed by a step label, it must represent a

direct command, and JOSS takes differential action depending on whether

the command begins with

1. The word Form, which indicates that the user is identifying

a form for formal output to be typed on the next line.

2. A single letter, which may indicate that the user has typed

an elided assignment command.

The interpretation of these two cases is direct and will be de¬

scribed later. In all other cases, the line must represent a direct

step to be interpreted in exactly the same manner as an indirect one.

The Input/Output Unit (IOU) collects the 7-bit representation of

the typewritten line in one of the core-buffer areas reserved for this

purpose, together with information indicating the source of the line

(Teletype or JOSS console) and whether or not the line was too long to

fit in a fixed-length buffer area. Because Teletype consoles have

narrower pages than JOSS consoles and type only upper-case letters,^

the CPU records the type of console in the user's block for subsequent

slight change in both the IOU and the CPU would allow Model

37 TTYfs, which type in upper- and lower-case, to be used. However,

the IOU would have to be able to differentiate among the different

types of consoles.

-67-

use in processing the current line and in regulating the width of lines

that it may output.

The CPU notes parenthetical forms of the Do and Cancel commands

by stripping off the parentheses and replacing the 8-bit token for the

verb with a unique 8-bit surrogate denoting the parenthetical form.

INTERPRETING COmANDS

Except for elided assignment commands and form declarations, all

commands take the form of conventional English sentences (and may, in

fact, be read aloud): a capitalized imperative clause followed op¬

tionally by a conditional clause and terminated by a period.

JOSS first examines conditional clauses, which are formed by ap¬

pending a valid expression for a logical value to the word if. JOSS

examines the imperative clause only if the conditional clause is valid

and the condition holds. If no conditional clause exists or if the

condition holds, JOSS looks at the beginning of the command for an

imperative clause, which must begin with a capitalized verb. Further

interpretation is based uniquely on the action specified by the verb.

Reporting Errors

Once committed to the interpretation of any part of a command,

JOSS insists on the use of conventional rules for capitalization,

spacing, punctuation, and spelling. In particular, commands must be¬

gin with a capitalized verb and end with a period; words and numer¬

als may neither be broken by spaces nor run together. With few ex¬

ceptions, spaces can be used freely or, where unnecessary, not at all.

.-«•4 -lili rail, « i 11-9111 WIH fl ll-MHW'tH!!«HtT«HiHÍ.<l ai'11«« ulM-i ii«1**+lnWU-ntKHl|IH|HlllMkn»tl1t>-

-68-

Any error causes JOSS to abort interpretation immediately and

return control to the user after commenting on the error. Whenever

the interpretation of a cormand is aborted for any reason (including

interruptions by the user), JOSS makes sure that all information

stored auay for the user is precisely as it was when JOSS began in¬

terpreting the cormand (including all steps, forms¿ assignments, and

information about ongoing tasks being done for the user). This allows

the user to take corrective action, and then have JOSS continue from

the point of error.^ An exception to this rule occurs whenever JOSS

is preparing to repeat a part or step that the user had asked JOSS

to carry out repeatedly. At such times, JOSS may run out of storage

space or may be unable to find the required step or part. Whenever

this occurs, JOSS makes sure that all information is as it was when

JOSS finished carrying out the most recent action, before returning

control to the user. JOSS tries to identify both the error and the

point of error for the user. The point of error is usually made clear

as follows:

1. If the error occurred while interpreting the last line typed

by the user, JOSS simply comments on the error.

2. If the error occurred while interpreting a step of a stored

program, JOSS describes the error as having occurred at

step....

3. If the error occurred while trying to repeat a step or part,

JOSS describes the error as having occurred

^See p. 143.

-69-

a. during above, if the task was initiated by a direct command;

b. during step..,, if the task was initiated by an indirect

step.

4. If the error occurred while JOSS had dropped one or more levels

to evaluate a formula, JOSS further identifies the error as

having occurred in formula....

JOSS's behavior is modified whenever a transmission between mag¬

netic-disc storage and core storage^ is aborted because of detected

hardware malfunctions or errors that could only be caused by hardware

malfunctions. In such cases, it is not feasible (and usually impos¬

sible) to prevent irreversible changes in either the user's files or

in his block of information. (This i* particularly true during recalls

of items from the files into the user's block.) Despite snapping back

to the beginning of such commands, JOSS reports the errors as having

occurred during the command, as a warning to the user.

Error messages^ themselves are of two types: (1) those that re¬

port' linguistic violations, references to undefined objects, and other

explicit violations of form; and (2) those that report situations for

which a precise and unambiguous error message cannot be composed.

The first type is infrequent, and the error messages are explicit.

Errors of the second type are reported by the brief message Eh?, be¬

cause they are often easier for the human eye to detect than for JOSS

to unravel.

t
See p. 153.

ft
See p. 159.

-70-

Imp Zementation Notes

The formal rules for composing commands factor into

1. Rules for forming terminal characters: words, numerals, and

other permissible strings of atomic characters.

2. Rules for forming, from the above, expressions for individual

objects, collections of objects, ranges of values for itera¬

tions, etc.

3. Rules for forming commands from the above.

Deriving naturally from this classification are the routines for

interpreting commands:

1. The subroutine P51 for advancing to and "recognizing11 the next

atomic or terminal character in the command being interpreted.

2. The reentrant routines and major subroutines, P35 through P49,

for handling complex expressions.

3. The V and D coroutines for controlling the interpretation of

commands once the type of command has been determined.

An extra level of interpretation controlled by a tabular repre¬

sentation of the rules is neither required nor appropriate. Instead,

the routine associated with a type of command "reads" like the rules

for forming instances of the command, and is composed (in the main)

of direct examinations of primitive entities (via P51) mixed with uses

of the routines for interpreting more complex expressions. For example,

VI, the routine for interpreting assignment statements, can be described

metaphorically:

-71-

1. Use routine P40 to determine whether the command begins with

an acceptable left-hand side of an assignment statement; if

so, compile the appropriate information.

2. Using routine P51, determine whether an equals sign comes

next.

3. Use routine P49 to determine whether the right-hand side is

an acceptable expression for a value; if so, compile the ap¬

propriate information.

4. Using routine P51, determine whether the right-hand side is

properly terminated.

5. Carry out the assignment.

The "looser*1 or more »»general** the grammar, the simpler the par-

sing routines, thus, a relaxation of J0SS*s rules would result in some

simplification. For example, it would be a straightforward task to

erase the boundary conditions on many of the routines and simplify them

so that a single routine could be used for interpreting expressions

for a general object or list of objects in any context. Such modifi¬

cations would be justified were it felt that the resulting generality

would be more important than clarity of exposition and consistency of

behavior. Modification might even be necessary if JOSS (or a JOSS-like

system) were to be produced on a machine with austere operational capa¬

bilities or with little core storage. On the other hand, simplifica¬

tion itself does not seem to be a good reason for relaxing all rules

of grammar and behavior. Many of JOSS's rules are dictated by con¬

vention, others by personal taste; they will be described later with

the appropriate routines.

-72-

To such rules is added a modus operandi for dealing with error

commentary. It was felt that the commentary should not be misleading--

that error messages should be appropriate and clear. This meant giving

attention to the order in which errors were detected and commented on.

For example, the command Do form 3, is improper because only steps and

parts can be done by JOSS. If form 3 had not been defined, it would

be inappropriate to notify the user of that fact before mentioning the

impropriety of the statement. In JOSS's language, as in others, a peck¬

ing order of error detection and commentary must be established--in

part natural, in part arbitrary. Such pecking orders can be maintained

in two ways:

1. By ordering searches for alternative instances of a syntactic

construct (and this order will vary with context).

2. By performing a complete analysis of a command each time it

is interpreted and recording all errors.

The latter tack reduces processing speeds and is not feasible for

interpretive systems such as JOSS. The former, which is the one used

in the central-processing routines, is implemented by factoring the

general notion of '’operand" into classes of operands appropriate to

different contexts and using a different routine for each class; for

example, operands suitable for computation, for execution, for deletion,

for display, for assignment to formal parameters of formulas, and for

other distinct purposes.

Instances of expressions for such operands may be considered as

prescriptions for computing values and compiling information, while

the associated routines may be considered as active agents for carrying

-73-

out the prescriptions. From another point of view, these routines

may be looked at as mechanisms for answering the question, "Is the up¬

coming string of characters an instance of the associated syntactic

construct?"--evaluation and compilation being carried out in passing.

Few of these routines are so used; that is, failures are rarely "re¬

ported." Instead, one of the E routines is used for independent field¬

ing of errors, and for cleaning up and backing off if required. This

strategy is appropriate, because the rules for forming commands pro¬

vide the user with few real alternatives except at the most elementary

level involving letters, numerals, operators, and groupers. In almost

all cases, the upcoming syntactic construct is uniquely determined by

what has preceded.^ Metaphorically speaking, once a commitment to a

specific syntactic construct has been made, there exist no alternative

avenues of escape in the event of errors.

EXPRESSING VALVES

From the primary nature of JOSS as a computational assistant, it

follows that expressions for values predominate in most programs. Ex¬

pressions for decimal values are used for

1. Identifying steps, parts, forms, files, and items of files.

2. Assigning values to letters and indexed letters for identifi¬

cation purposes.

3. Assigning values to formal parameters of formulas for evalua¬

tion purposes.

+The sole exception arises because of the two alternative forms as¬

sociated with such functions as sum and vvod\ this case is handled simply

by a few machine-language instructions in the appropriate routine (P36).

-74-

4. Expressing index values.

5. Expressing initial and final values and increments for itera¬

tion purposes.

6. Expressing values to be typed.

Expressions for logical values are used for

1. Assigning values to letters, indexed letters, and formal

parameters of formulas.

2. Expressing values to be typed.

3. Expressing values for conditionally controlling the inter¬

pretation of imperative clauses (in conditional clauses],

4. Expressing values for controlling the differential choice

of expressions for values (in conditional expressions for

values).

5. Choosing the first value in a set or range of values for which

a condition is satisfied (with the function first).

The simplest expressions fcr values are

1. Decimal numerals, which may contain up to nine significant

digits, exclusive of leading and trailing zeroes, and which

must represent numbers less than 10100 in magnitude.

2. The logical "numerals'1 true and false, which carry the cor¬

responding logical values.

3. The dollar sign (¢), which carries a decimal value (from 1

through 54) equal to the line number at which the user's

typewriter carrier is positioned.

The word timer, which carries a decimal value equal to the 4.

-75-

number of minutes' that have elapsed since the user logged on

or last reset the value to zero.

A single, general rule governs the formation of expressions for

values in JOSS?s language: Wherever a decimal (logical) numeral is

allowed in a command, an arbitrarily aoutplex expression for a decimal

(logical) value may be used; there are no exceptions to this rule.

Direct Expressions

Expressions for values are formed from numerals, $, and timer by

repeated application, in any order, of a set of conventional rules for

forming linearized expressions.

1, Values can be assigned to letters and indexed letters, and

arbitrarily complex expressions for the letters and indexed

letters can then be used to refer to these values for pur¬

poses of computation.

2, Decimal values can be

a. Added (plus sign),

b. Subtracted (minus sign),

c. Multiplied (centered dot),

d. Divided (slash),

e. Raised to a power (asterisk), and

f. Compared under any of the six numerical relations

=, <, >, *

3, Expressions for extended numerical relations (e.g., a < b z c)

^Rounded to the nearest 100th minute.

-76-

are permitted and are interpreted in the conventional manner.

4. The logical operations of negation {not), conjunction {and),

and disjunction {or) can be applied to logical values.

5. A set of elementary decimal-valued and logical-valued func¬

tions can be applied to one or more expressions for values

as arguments, and a subset of these can be applied to a range

of values defined iteratively.+

6. Expressions for values can be grouped by using parentheses,

brackets, or absolute-value bars in matching pairs.

7. Traditionally numerical operations can be applied to decimal

values only, and traditionally logical operations to logical

values only. This rule is relaxed to allow logical values

and "mixed" values to be compared for equality or inequality,

mixed values always being unequal.

JOSS interprets expressions from left to right, honoring groupings

as they occur. That is:

1. Whenever encountering a properly used left grouper, JOSS

evaluates the upcoming grouped expression before doing any¬

thing else.

2. Whenever encountering a properly used identifier for a func¬

tion, formula, or array, JOSS evaluates any upcoming list of

arguments, parameters, or index values and then evaluates the

function or formula or searches for the array component be¬

fore doing anything else.

^See pp. 84-85.

i i-H'*« m'A’ifiKrrt »*««•» njuiifH.wí^iw.^rw«-. MkmtM id « W»*1H||r f VIHW^Ui 4M «4«,* « H •< IWWW

-77-

In the absence of groupings:

1. Addition and subtraction associate from the left:

2 + 2-2 + 2 = ((2 + 2)-3)+2 = 3

2. Multiplication and division associate from the left:

2/2*3/2 = ((2/2)^3)/2 = 3/2

3. Exponentiation associates from the left:^*

2*2*3 = (2*2) *3 = 64

4. Addition and subtraction are deferred in favor of multipli¬

cation and division, and all operations are deferred in

favor of exponentiation:

2 + 2*3*2 -6=2 + (2*(2*2)) - 6 = 14

5. Plus and minus signs used as unary operators are treated as

though they had been prefixed by a zero and used as binary

operators (but 2/-3, for example, is illegal):

-2*2*3 = 0 - 2*2*2 = -64

6. Logical operations are deferred pending the evaluation of the

associated logical operands, and relations are deferred pend¬

ing the evaluation of the associated decimal operands:

X + 1 < y/z or X + 1 = w

is interpreted as

((x 'r 1) < (y/z)) or ((x + 1) = w)

7. Disjunction is deferred in favor of conjunction, and both are

deferred in favor of negation:

•j*

It is more customary to associate exponentiation from the right,
probably because (2*2)*3, for example, is more efficiently carried out

when written as 2*(2m2).

-78-

not true or false and false

is interpreted as

(not true) or (false and false)

Extended relations are treated in the conventional manner; for

example,

a + b < a < d

is interpreted as

((a + b) < a) and (a ^ d)

JOSS carries decimal numbers in scientific notation: nine sig¬

nificant digits and a base-ten scale factor with exponent in the range

-99 through +99. Addition, subtraction, multiplication, division, and

square root yield true results rounded to nine digits. Zero is sub¬

stituted on underflows, while overflows cause an error message.

Conditional Expressions

Conditional expressions are used to choose one of a set of ex¬

pressions for values differentially on the basis of a set of associated

conditions, and may be used wherever an expression for a value is per¬

mitted. Expressions for logical values are used as conditions, which

precede and are set off from their associated expressions by colons.

Pairs of associates are separated by semicolons, and the entire set

of pairs must be enclosed in parentheses or brackets.

JOSS evaluates conditional expressions from left to right, as they

occur. If the first condition holds, JOSS evaluates the associated

-79-

expression and then skips over the remainder of the conditional ex¬

pression. If the first condition does not hold, JOSS skips over the

associated expression to examine the next condition, and thus continues

until a condition holds or until assured that none of the conditions

hold. In the latter case, JOSS looks for a final expression (not as¬

sociated with any condition) to be chosen in default. If none exists,

the conditional expression is in error. For example, if a: = 1:

(x < 1: 5; X > 1: 10; x = 1: 20) = 20

(x < 1: 5; x > 1: 10; 20) = 20

(x < 1: 5; x > 1: 10) = ???

If a conditional expression is naturally grouped by virtue of being

used to express the argument of a function or a formula, or the index

value of a vector, an extra set of groupers is not required.

Both the facility and the LlSP-like^ format for conditional expres¬

sions were dictated by a desire to get as much mileage as possible out

of JOSS's line-at-a-time style. A more general facility is provided

by many programming languages through constructions exemplified by

if x < 1 then 5 else if æ > J then 10 else 20

This mode of expression seems appropriate if the conditions can be

used to control the execution of statements or groups of statements.

However, the style seems unnecessarily wordy, and even confusing, when

used solely for choosing expressions--a comment that is completely

independent of the fact that little could be said in a single JOSS

+John McCarthy et al., LISP 1,5 Programmer's Manual> MIT Computa¬
tion Center and Research Laboratory of Electronics, 19f2.

-80-

line. It is this author's opinion that such conditional choices for

values are viewed, in the mind's eye, as spatial entities that can be

grasped in toto, rather than as overly qualified, strung-out sentences

in which the parts obscure the whole. For example:

---X
0 1 2

In any event, the facility is useful enough to warrant incorporation.

The colon separating the condition from its associated expression seemed

appropriate, connoting (as it usually does) a strong connection or as¬

sociation between what precedes and what follows. The semicolon was

adopted in favor of the more immediately appealing comma because it

seemed to stand out better, particularly when comma-separated lists

of arguments and index values were used.

Another compact expression for differential choices can be ob¬

tained by permitting traditionally numerical operations to be applied

to logical values and conversely. For numeric computations, logical

values are treated as a one if true and as a zero if false; for logical

operations, numeric values are treated as false if zero and as true

if not zero. The above example can then be written

(x < 1) *5 + (x > 1).10 + (x = 1).20

The JOSS style is less compact for some simple, binary choices, but

more compact when the final condition is omitted.

-81-

Despite the scheme's first-blush appeal to "completeness" and its

persistent vogue (since, at least, 1959), it has little merit and (in

JOSS) less utility. Several objections can be raised, some rather ob-

vious and others less so.

1. The meaning of an expression (the intent of the programmer to

make a differential choice) can easily be obscured in a welter of arith¬

metic operations. This fact may be of little concern if the program

is designed to be read only by a machine. However, humans do read pro¬

grams, particularly their own.

2. Even when a particular expression is clear, the fact that it

expresses a differential choice may not spring easily into focus under

a quick scan of the program.

3. Expressing differential choices always involves a rerepresen¬

tation of a single entity (a graph, a small decision tree, a table) as

a sequence of primitive arithmetic operations; that is, the user must

always make a translation.

4. Even when subjected to the most exacting scrutiny by a care¬

fully designed interpreting or compiling mechanism, the eventual in¬

terpretation of such expressions will be wasteful of processing time.

In brief, the scheme replaces punctuation by operations, and implementing

operations is always more costly than determining punctuation, even when

the operations are never carried out or are replaced by equivalent, but

faster, operations.

5. Errors m preparing and transmitting a program to the computer

can result in valid expressions that differ markedly from the desired

ones. Such inadvertencies can be guarded against by careful design of

-82-

both the keyboard and the encoding of information. For example, four

of tiie six numerical relation signs on the JOSS keyboard are in upper¬

case above the numerals, and all are well separated from the symbols

for the arithmetic operations; on other more widely used keyboards,

the symbol for multiplication is immediately adjacent to one of the

numerical relation signs, and in the same case.

Expressions that involve mixed arithmetic can' be spruced up to a

certain extent by demanding that the user be more explicit. For ex¬

ample, JOSS and some other current systems do not allow mixed arithmetic,

but allow the user to signal the conversion of a logical value to its

decimal equivalent by enclosing the expression for the logical value

within absolute value bars. The expression in the example therefore

becomes

|x< l\‘5 + |a:> l\'10 + \x = l\ *20

This mode of expression is a bit less error-prone and somewhat more

readable than the usual one, but it still results in inefficient

processing.

Elementary Functions

Sixteen functions are available to the user. Arbitrarily complex

expressions can be used for the argument(s). Unless stated otherwise,

all arguments and functions are decimal-valued. The arguments must be

enclosed in parentheses or brackets, and the left parenthesis or bracket

must follow the function identifier immediately, without intervening

spaces (a compromise in favor of readability and standard practice).

**—*■—---

-83-

Square root : Qqrt()

The argument must have a nonnegative value.

Natural logarithm: 1og()

The argument must be positive.

Exponential : exp()

Underflows (ex < 10“^^) result in zero; overflows (ex z 10^°)

cause an error condition.

Sine and cosine: sin() cos()

The argument is assumed to be in radian measure and must

have magnitude < 1U0.

Argument : arg(,)

The function requires two arguments separated by a comma and

as a result gives the angle between the positive a;-axis of the

(x> y) plane and the line joining the point (0i 0) and a point

(x3 y) defined by the two arguments. The result is in radian

measure in the range -it < arg(J j ^ tt. By definition, arg(Os 0)

yields zero.

Translating decimal values into logical equivalents: tv()

If the value of the argument is zero, the result is false9,

if not zero, the result is true*

Translating logical values into decimal equivalents: tv()

If the argument is true, the result is +1; if false, 0.

Signum: sgn()

The value of signum is +1 for an argument greater than zero,

0 for an argument equal to zero, and -1 for an argument less than

zero.

-84-

Integer part and fraction part: ip() fp()

A nonzero integer or fraction part of a number carries the

sign of the number.

Digit part: dp()

The digit part of a nonzero number is the number normalized

to lie in the interval 1 < magnitude of the digit part < 10, and

carries the sign of the number.

Exponent part: xp()

The exponent part of a number is the power of ten which,

when multiplied by the digit part, yields the number itself:

ip(-12345.678) = -12345

fp(-12345 m678) = -.678

dp(-12345.678) = -1.2345678

xp(-12345.678) = 4

Absolute value: | j

If the argument is decimal-valued, the result is the magnitude

of the argument. If the argument is logical-valued, the result is

the decimal equivalent of the argument (+1 if true, 0 if false).

Sum, product, maximum, and minimum of a set of decimal values :

sum prod max min

The set of values may be represented by a list of expressions

separated by commas, or by an expression to be evaluated iteratively

over a range of values of a variable. In the latter case, the vari¬

able of iteration and the range of values are separated from the

expression by a colon:

-85-

Type sum[i = 1(1)6: i],
sum [i = 1(1)6: i] = 21

Type sum(1, 2, 3, 4, 5, 6).
sum(1, 2, 3, 49 5, 6) = 21

Both letters and indexed letters can be used as variables of

iteration. Existing assignments to such letters are saved over

the course of the evaluation and restored when the function has

been calculated. Thus, variables of iteration for iterative func¬

tions are treated as dummy variables. Arbitrarily complex ex¬

pressions can be used for the expression that is to be evaluated

and for the decimal values and ranges of values of the iteration

variable. For example:

Type sum[i = 1(1)3: sum(i = 1(1)6: i)].
sum[i = 1(1)3: suni(i = 1(1)6: i)] = 63

First value of a variable of iteration for which a condition holds:

Type first[i = 1(1)6: i/3 = 1],
first[i = 1(1)6: i/3 = 1] = 3

If the condition is not satisfied for any value of the iteration

variable, an error results:

Type f irst [i = 1(1)6: i/7 = 1],
first[i = 1(1)6: i/7 = 1] = ???

Conjunction, disjunction of a set of logical values:

oonj dis¿

Conjunction and disjunction admit the dual forms described

under sums prodã etc. For example:

-86-

i = 2
k = 4

Type conj[j = 1(1)6: i < j < kj.
conj[j = 1(1)6: i £ j £ k] = false

Type disj[j = 1(1)6: i < j < kj.
disj[j = 1(1)6: i £ j < k] = true

Type conjLi < k, i = 2J.
conj[i á k, i = 2] = true

ASSIGNING VALVES (Set)

Decimal values and the logical values true and false may be as¬

signed to any of the 52 upper- and lower-case letters admitted as iden¬

tifiers. Values may be organized into arrays by using indexed let¬

ters. Letters and indexed letters may then be used to refer to their

assigned values for purposes of computation, typing, deleting, and

filing in long-term storage. In addition, the letters themselves may

be used for purposes of typing, deleting, and filing entire arrays.

JOSS interprets the entire imperative clause, from left to right,

before considering the assignment itself. Any error encountered during

this interpretation will cause JOSS to abort interpretation of the

command after commenting on the error.

The left-hand side must be either a single letter or a valid ex¬

pression for an indexed letter: a single letter followed immediately

by a properly grouped and comma-separated list of valid expressions

for index values. No more than 10 indices are allowed, and the index

values must be integers not exceeding 250 in magnitude.

The right-hand side can be any expression for a decimal or logical

value, and must be separated from the left-hand side by an equals sign.

Initially, after the log-on ritual, all letters are unassigned.

Once made, an assignment stands until rescinded by another assignment

or deleted by the user. JOSS always deletes the current assignment

before assigning a scalar value to a letter. Assignments to indexed

letters are treated as additions, insertions, or replacements to an

existing array if the letter used already identifies an array whose

dimensions match that of the assignee. Otherwise, the existing assign¬

ment is deleted before the new one is made. JOSS makes no assignment

until certain that there is enough storage space. If not, JOSS noti¬

fies the user and returns control to him, leaving all existing assign-

ments intact.

Type X.
X = ???
Set X = 10.
Type X.

X = 10
Set X = X + 1.
Type X.

X = 11
Set a(l) = l.
Set a(2) = a(l) + l.
Set a(a(l) + 3) = 3.
Type a.

a(1) = 1
a(2) = 2
a(4) r 3

Set a(1, 1) = 1.
Type a.

a(l, D = 1

An elided form of the command sans the word Set can be used, but

only as a direct command. Conditional clauses may not be appended to

the elided form, while the trailing period is optional (a concession

to some users who became compulsive about periods). For example:

-88-

a = 1

Type a.

a = 1

a = 2.

Type a.
a = 2

a = 1 if a > 0
Eh?

JOSS rejects assignment commands whose right-hand sides contain

equals signs used in relations whenever the resulting command might be

confused with so-called extended assignment statements; for example:

Set v = a = 1.

Please use parens or brackets to set-off ambiguous equals signs.
Set X = (a = 1).
Type X.

X = true

Extended assignment statements are usually interpreted as requests for

the simultaneous assignment of a value to a set of letters or indexed

letters. Because no explicit symbol for assignment is available, the

usual notation (e.g.. Set x = y = 0.) would have to be replaced by a

less ambiguous one (e.g,. Set xy y = 0.) to protect users from inad¬

vertently causing JOSS to interpret an extended assignment as a single

assignment of a logical value and conversely. In either case, the im¬

plementation of "simultaneous** assignments is tedious, because assign¬

ments cannot be made simultaneously. For example, because no irre¬

versible changes are made in tin user’s block until there is enough

space to make the change, JOSS would have to make sure that enough

space was available for all the assignments before making any. This

is a simple process only if done sloppily--without, in effect, simu¬

lating the entire set of assignments to determine the exact amount of

-89-

Let f(x) = sqrt(x) + X.
Type f(2 + 2).

f (2 + 2) = 6

Type f[f(4)].
f[f(4)] = 8.44948974

Let h = f(4) + f(9).
Type h.

h = 18

No more than ten formal parameters are allowed, and these must

be identified by distinct letters. The grouped list of formal param¬

eters must follow the letter of assignment with no intervening spaces.

space available at each successive step of the process. (For example,

the assignment of a scalar value to an array identifier could cause

available space to expand.) More important, some assignments could

be so blatantly contradictory as to warrant an error message (e.g..

Set A(2) = '.t It was felt that simultaneous assignment commands

were not worth the effort required to implement them properly, and they

were discarded.

ASSIGNING FORMULAS (Let)

A value assignment command causes JOSS to evaluate the right-hand

side of the expression and assign the resulting value to the specified

letter or indexed letter. A formula assignment command causes JOSS to

assign the literal string of characters constituting the right-hand

side to the specified letter. Arbitrarily complex expressions for values

may be assigned to letters, with or without formal parameters. The let¬

ters and expressions for actual parameters, in conventional functional

notation, may then be used wherever an expression is valid.

JOSS strips leading spaces off expressions before storing them

away and will not accept void expressions. If not enough storage space

is available, JOSS notifies the user and then returns control to him,

leaving all existing assignments intact. Otherwise, JOSS deletes the

current assignment to the formula's identifier before making the new

assignment.

Before computing the value of a formula, JOSS first evaluates the

values of the actual parameters from left to right. If no errors are

encountered, JOSS^ in effect, replaces all occurrences of formal param¬

eters in a copy of the formula by the simplest egressions for the

actual parameter values (e.g., single letters, decimal or logical nu¬

merals), and then interprets the resulting copy. Thus, existing assign¬

ments to letters used as formal parameters remain intact during the

interpretation of the formula; that is, formal parameters are "dummy"

variables.

Let f(x) = sqrt(x) + x.
Set x = 10.
Type f(4).

f(4) = 6
Type x.

x = 10

Single letters may be used to refer to formulas for purposes of

typing, deleting, and filing, except for typing the definition of a

formula with no formal parameters. JOSS interprets such references

as references to the values of the formula. In order to type such

abbreviations, the user must refer to them explicitly as a formula;

for example:

Let h = (b - a)/n.
Let f(x, y) = 3*x + y/x.
b = 1
a = 0
n = 100
Type h, formula h.

h = .01
h: (b - a)/n

Type f(3, 1), f.
f(3, 1) = 9.33333333
f(x, y): 3*x + y/x

Just as conditional expressions and iterative functions allow the

user to write concise expressions for complex procedures, so formulas

allow him to parameterize such expressions. The user can often use

a few short formulas in place of a stored program, which, since JOSS

allows recursive formula definitions,^ can be a branching program.

This ability can be a real boon to the user, particularly when he is

interested in quick, unformatted output and knows his data well enough

to forgo the extensive validations and checks that might go into a

general, stored program.

For example, the amount, An, of a loan left outstanding after n

periodic payments is

Aq = the original principal,

~ An-1 + IAn-l ~ B

where I denotes the periodic interest rate and p denotes the periodic

payments. The corresponding formula, Ain), can be defined as a con¬

ditional expression:

4»

'Formulas that use themselves.

-92-

Let A(n) = [n = 0: P; A(n - 1).(1 + I) - p]
P = 10000
I = .065
p = 1000
Type A(10).

A(10) = 5276.95212

The last value typed by JOSS gives the approximate amount left after

ten yearly payments of $1000 on a loan of $10,000 at an annual interest

rate of 6.5 percent. The rounding required to do "penny" arithmetic

could be incorporated into the formula, if desired, by using expressions

involving the integral and fractional parts of A(n),

The loan is paid off when the amount drops to zero (or less, be¬

cause of the lack of precision). The user can, therefore, request

JOSS to calculate the amount left at the end of each year and type the

number of payments required to amortize the loan:

Type firstEi = 1(1)25; A(i) < 0].
first[i = 1(1)25: A(i) < 0] = 17
Type A(16), A(17).

A(16) = 636.09641
A(17) = -322.557323

The loan will be amortized sometime during the seventeenth year. In

evaluating the first function, JOSS calculates A(l), A(2), and so on

until the first value that drops to zero or less is found. The upper

limit of 25 is simply tossed in as a reasonable guess and could be made

larger or smaller (within reason). To see how long it would take to

amortize the loan with payments of $1500, change p:

p = 1500

Type firstEi = 1(1)25: A(i) < 0].
firstEi = 1(1)25: A(i) < 0] = 10

-93-

A general formula to compute N(p) $ the number of payments of p dollars

required to amortize the loan, can be written

Let N(p) = first[i = 1(1)25: A(i) < 0]
Type NdOOO), N(1500).

N(1000) = 10
N(1500) = 10

Although the formula is formally correct, it gives the same answers

for all values assigned to p. The reason for the error lies in JOSS's

treatment of actual parameters. JOSS replaces occurrences of formal

parameters by actual parameters in the formula itself, but not in for-

4*

mulas that are used by the initial formula. To achieve the desired

result, p must be used as a formal parameter of both formulas:

Let N(p) = first[i = 1(1)25: A(i, p) S 0].
Let A(n, p) = [n = 0: F; A(n - 1, p)*(l + I)
Type N(1000), N(1500).

N(1000) = 17
N(1500) = 10

p]

To get values correct to the penny, amounts must be multiplied by

100, augmented by Jj, chopped off, and then divided by 100:

Let a(n, p) = ip[100-[A(n - 1, p)-(l + 1)] + .5]/100.
Let A(n, p) = [n = 0: P; a(n, p) - p].
Type N(1000).

N(1000) = 17
Type A(16, 1000).

A(16, 1000) = 636.11

As expressed above, A(n) is an example of a function of a single

index of recursion, n\ its value for a specific index is expressed solely

in terms of its values for preceding indices and of fixed parameters and

See p. 109 for a more detailed treatment.

’::Ü1
UP

I I
Vti ilh-li: ;¡¡ : .liM Üiüi i lí í ilk

!|j:i LfH .

"

iilf

SI

iyllili

ütiHir í
Hi! '

!:!¡:|i:Sii

îpL!
/'■ :

!| if

-94-

initial conditions. Such simple recursive functions can often be writ¬

ten in closed form as functions of « alone, and can always be evaluated

by a programmed computation carried out repeatedly for successive values

of an index of iteration. For example.

Let A(n) = [(1 + I)5inJ*P - p*[(l + l)*n - 1]/I.

defines the function in closed form, while

1.1 Set.A = P.
1.2 Set i = 1.
1.3 Set A = (1 + I).a - p.
1.4 Set i = i + 1.
1.5 To step 1.3 if i s n.

is a program that computes the value A for a given n by iteration.

Similarly, the factorial function can be defined recursively:

Let f(n) = [n = 0: 1; n-f(n - 1)].

or iteratively:

Let f(n) = [n = 0: 1; prod[i = l(l)n: i]].

Although recursive formulations are shorter, neater, and fre¬

quently (as in the example) closer at hand, they engender greater

demands on storage space (during evaluation) and lengthier computa¬

tions than do iterative formulations. On the other hand, some compu¬

tations that are palpably iterative in nature can often be expressed

and evaluated more efficiently as recursive functions. For example,

given an approximation r to a solution of an equation f(x) = 0, Newton's

method for refining the approximation is described by

-95-

Set r = r - f(r)/g(r).

where g represents the derivative of the function /. Thus, having

assigned some initial guess to 2%

1.1 Set r = r - f(r)/g(r).
1.2 To step 1.1 if |f(r)| > lQ*(-p)*
1.3 ...

would repeatedly refine the value assigned to r until f(r) was close

enough (to p decimal places) to zero.

A simpler formulation that uses less storage space and less time

is

Let R(x) = [|f(x)| < 10*(-p): x; R[x - f(x)/g(x)]].

As an example, to find an approximate root of

xs - 10x2 - 6x + 10

that gives a value within, say, six decimal points of zero, define

Let f(x) = x*3 - 10«x^ - 6«x + 10.
Let g(x) = [f(x + d) - f(x)]/d.
d = .000001
Let R(x) = [|f(x)| < 10*(-p): x; R[x - f(x)/g(x)]].
p = 6

where a first-order difference approximation over what seems to be a

suitable mesh size, d, has been used. A root is found by using zero

as an initial approximation:

Type R(0), f[R(0)].
R(0) =

f[R(0)] =
.765278678

-l"10*(-7)

ÜÍ..Ü.1: .i'!;;

-96-

expressing more general objects

Expressions for objects other than decimal and logical values

are admitted by JOSS as follows:

1. The user can refer to individual steps, parts, forms, files,

and items of files for purposes of typing, deleting, filing,

and (when appropriate) execution. The corresponding expres¬

sions consist of the associated noun {step, part, fom, file,

rtem) followed by an expression for a decimal value.

2. The user can refer to collections of objects for purposes of

typing, deleting, and filing: all steps, all parts, all form

all values, all formulas, and all.

3. For purposes of typing only, the user can request

a. Blank lines or blank fields in a form, indicated by an

underscore or a string of consecutive underscores.

b. The number of storage units that are being used by JOSS

for storing the user's program, data, and other informa¬

tion {size}

c. The time of day at RAND {time}

d. The number of users being serviced by JOSS {users}

e. A list of the items in any of the user's files (by item

number, item identification, date of filing, and project

number {item-list}}.

4. The user can use single letters to refer to formulas and arrays

for purposes of typing, deleting, and filing, and for assign¬

ment as actual parameters of formulas.

It turns out that the most general expressions for such objects,

as well as for values, can best be described in terms of expressions

for so-called elementary operands:

1. Decimal and logical values not assigned to any letter.

2. Single letters to which scalar values, arrays of values, or

formulas have been assigned.

3. ¢, timer, size, time, users, and strings of consecutive

underscores,

4. Identifiers for functions (e.g., sin, eos, sum, max).

The simplest examples of expressions for values not assigned to a single

letter are decimal and logical numerals, $, and timer. More complex ex¬

pressions for elementary operands are formed recursively from these and

the other elementary operands in conjunction with groupers, punctuation,

and operator signs. It is clear that many expressions that are osten¬

sibly well formed have little utility. For example, one would be hard

put to ascribe meaning to the expression (sin/sum) + Z*max. On the

other hand, if a decimal value had been assigned to the letter a?, one

could read the expression lx = 0: sin; cos~\(y) as "If the value assigned

to X is zero, evaluate sin(y); otherwise, evaluate aos(y).u Here, there

seems to be a choice. Should such conditional expressions for function

identifiers be allowed or should they be legislated against either on

stylistic grounds (they may be difficult to read) or on the grounds

that such expositional power might lead to cases in which errors could

-98-

produce unintentionally acceptable expressions? Similar questions

must be raised about expressions where symbols for traditionally nu¬

merical operations are used with logical operands, and conversely,

and about expressions where operations are applied to operands that

identify complete arrays or formulas. The easiest tack would have

been to allow arbitrarily complex expressions for objects wherever the

simplest expression for such objects had ^meaning.11 JOSS's actual

behavior is less permissive and, therefore, harder to implement and

to explain.

1. Mixed arithmetic is not allowed: Expressions for decimal

values must be used with traditionally numerical operations,

and expressions for logical values with traditionally logical

ones.1* The user is provided the notation and terminology

for specifying the explicit replacement of decimal values by

équivalent11 logical values, and conversely.*^

2. Conditional expressions for function identifiers can be used

only for expressing actual parameters of formulas.

3. Conditional expressions for array and formula identifiers

can be used only for expressing actual parameters of formulas

and for purposes of typing, filing, and deleting.

4. Expressions for sizeà timeã users, and strings of underscores

may be used for purposes of typing only.

5. Within the above restrictions, arbitrarily complex expressions

However, mixed operands and logical operands may be tested for
equality and inequality; mixed operands are always unequal.

*f**f*See p. 83 {tv) and p. 84 (absolute value).

-99-

«.ww it awnitó!iB«i«Bu uj(»tuaai«auuN!t»;*í4(m«.

for elementary operands may be used freely for purposes of

computation, typing, expressing actual parameters of formulas,

and for assignment as formulas.

The principal effect of this extended treatment of operands on the

user (and its justification) is that it allows him to use identifiers

for arrays, formulas, and functions (as well as expressions for decimal

and logical values) as actual parameters of formulas. For example, to

define a formula for computing the average of a list of n values:

Let m(L, n) = sumfi
a(l) = 1
a(2) = 2
a(3) = 3
a(4) = 4
a(5) = 5
Type m(a, 5).

m(a, 5) =

= l(l)n: L(i)]/n

INTERPRETING EXPRESSIONS FOR OBJECTS

The bulk of JOSS's interpretation is handled by a group of re¬

entrant subroutines:

1. P49 controls the interpretation of expressions for elementary

operands.

2. P42 controls the interpretation of properly grouped lists of

expressions for elementary operands, separated by commas.

3. P40 controls the interpretation of left-hand-side expressions:

a single letter or a single letter followed by a properly

grouped list of expressions for index values, separated by

commas.

. :

.

- . *
.

I if :
. :

. > ; -'i-
-- • :-*• :

jíp-pir-

• ' .‘v-'V

-100-

4. P39 controls the interpretation of for phrases: a left-hand-

side öApression followed by an equals siga followed by a comma-

separated list of expressions for values and ranges of values

for iteration.

5. P35 controls the interpretation of suspected conditional ex¬

pressions for elementary operands.

As a convenience in error control, other syntactic entities are handled

by distinct subroutines:

1. P38 controls the interpretation of expressions for objects of

discourse: individua: ;teps, parts, forms and formulas, and

collections of objects.

2. P38E controls the interpretation of expressions for individual

steps and parts for purposes of execution.

3. P37 controls the interpretation of expressions for elementary

operands to be deleted or filed.

Routines P38, P38E, and P40 are also used for determining and

reporting whether an instance of the associated construct might be

coming up. The choice of which of the routines to use is always made

on the basis of what type of construct is expected. If the interpre¬

tation is successful, the appropriate information is compiled and stored

in the user's block, and a descriptor representative of the compiled

information is stored atop a common operand stack in the user's block.

This stack (DS)^ is the key to error recovery and snap back, since it

^See p. 46.

-101-

constitutes a record of all temporary uses of the user’s available

space. The major part of cleaning up and backing off after errors is

the releasing of all space used for these operand descriptors and for

the compiled information associated with each descriptor. In general,

the direct representation of objects, once evaluated and compiled, is

rarely used; all bookkeeping is done in terms of descriptors for the

objects. In programming parlance, all bookkeeping is done "by name"

rather than "by value."

The routines associated with the major syntactic constructs are

similar to those for controlling the interpretation of commands and

"read" like a description of the construct. Routine P49 is the major

exception to this rule, reading like a simplified syntactic description

of operand, wherein the conventional rules for association and prece¬

dence of operators have been stripped from the syntax and arithmetized.

Arithmetization consists of associating a pair of numerical values with

each operator and then replacing the original syntax by a collapsed

one, augmented by a rule for comparing the values associated with opera¬

tors to determine the order of operations. Pairs of values rather than

single values are required, since conventions concerning left and right

associativities of operations usually result in a partial ordering of

the operations.

Routine P35 is an appendage of P49, and its principal function is

the marking of chosen subexpressions of conditional expressions to be

typed.***

f
See p. 134.

S ul 11 mm ¡
|¡ll r5 IMNií^'i-sNP'!-:!1:' um«iwwiEwni»in-.irtt=#!!M-4iirm,íiaitaHU*rM¡»i'*iiiMiiJK't*«:Miu-wíiiB&riiiaiiUHíi»*ajuii*í,k.»^H,

102-

Elementary Operands

The reentrant routine P49 controls the interpretation of expres¬

sions for elementary operands. The operand's descriptor is stored

atop the operand stack (DS), and the descriptor for the terminal char¬

acter to the right of the expression is stored in a fixed location,

labeled CC.

Expressions for elementary operands are formed recursively from

1. Terminal operands : decimal numerals, true, false, letters,

$, strings of underscores, size, time, users, timer, and func¬

tion identifiers.

2. A unary operator followed by an elementary operand expression.

3. Two elementary operand expressions connected by a binary

operator.

4. An elementary operand expression bracketed by matched groupers

or absolute value bars.

5. A conditional expression for an elementary operand.

6. A function, array, or formula identifier followed immediately

by a properly grouped list of comma-separated elementary

operand expressions.

7. A function identifier followed by a properly grouped expression

consisting of an iteration specification separated from an

elementary operand expression by a colon.

Minor variations on this theme are caused by

1. The use of conventional rules for spacing.

-103-

2. Prohibitions against the application of numerical operations

ánd relations to logical operands and vice versa.

3. Restrictions on the use of underscores, size, time, and users

(which may be typed only).

4. Prohibitions against the use of consecutive operators (e.g.,

a*-b) not set off by groupers (for readability).

5. The fielding of unassigned letters as they are met (as a

convenience in error control).

Central to all interpretation is Routine P51, which is used to

advance to the next terminal character of the string of characters

being interpreted, A descriptor for the terminal character is stored

in CC, and a count of the number of leading blanks is stored in a

fixed location. Descriptors for operators and left groupers (treated

as operators to speed up processing) consist of two numeric codes.

One is used to differentiate among operators, the other to differen¬

tiate operators from other classes of terminal characters. Once the

latter differentiation has been made, its code is no longer used.

Two uses are made of this free slot:

1. As a cache for counting the number of operands in a grouped

list—associated with the code for the leading left grouper.

2. As a cache for the address number at which processing will be

picked up after use of a reentrant routine-associated with

a code for the f’back stop," an operatorlike character used

to indicate ’»beginning of syntactic construct.”

-104-

Routine P49 may be pictured as a two-state machine. In one state,

an elementary operand is expected; in the second, an operator or a de¬

limiting terminal character. Flowchart 2 depicts the overall flow of

control from P49.1 (expecting an elementary operand) to P48 (expecting

an operator or delimiter for the expression) and back.

The flowcharts are presented as lists of actions and are meant

to be read from top to bottom. Alterations in the sequencing (caused

by differential choices) are indicated by labels in the two rightmost

columns. The absence of a label indicates the continuation of the top-

to-bottom scan.

Note that P49.1 is used again after the occurrence of a left

grouper, rather than P42 (the routine for evaluating grouped lists of

elementary operands). That routine need not be used because JOSS

doe' ?t permit direct arithmetic or logical operations on lists of

operands. For example,

(a, b3 o) + (x3 y3 z)

does not express a legitimate JOSS operation. A slight gain in speed

results, because some context must be saved each time P42 is used.

Function, formula, and array identifiers require excursions to carry

out the necessary interpretation. These are depicted in Flowcharts

3 (page 108) and 4 (page 115) and will be described in detail later.

These excursions usually result in reentrant uses of P49; for example,

when evaluating lists of elementary operands. Once an operand has been

determined, its descriptor is stacked atop DS, and control flips to

the second state (P48).

-105-

LABEL

P49

P49.1

P49.2

P49.7

P49.9

Flowchart 2--ELEMENTARY OPERANDS

ACTION YES NO

Store a back-stop descriptor, with the

calling instruction's address number, in CC.

P52: Save the current operator CP on the

operator stack PS.

Set CP = CC.

P51: Fetch the next terminal character's

descriptor to CC.

What is the next terminal character?

Left grouper, absolute value bar,

unary plus, unary minus, not.

Letter. Fetch assigned operand's

descriptor from assignment table.

Not assigned

Scalar value

Array of values

Function identifier

Formula

String of underscores, size,

times users

None of the above

Function identifier.

Numeral, ¢, string of underscores,

size, time, users, timer.

None of the above.

Copy in the user's block if a decimal value.

Compose the operand's descriptor.

Copy the operand's descriptor on the operand

stack DS.

P49.1

Eo

P49.9

P44

P44F

P41

E5

P44F

E5

P48

-106-

14¡ukn
»biM^.|^4to^ito4MÍMriakáitáa¿a^^

LABEL

P48

P48.6

■*i^<iiiitrtwiiniiMmiiiiiiwiiiiiiitiii,iini

Flowchart 2 (continued)

■ .- I .
. ..: H . ■:

ACTION

P51: Fetch the next terminal character's
descriptor to CC.

If the next terminal character is a binarv
operator: J

Set U4 = right weight for the operator.

Otherwise:

Set U4 = 0.

YES NO

Is the left weight for the current operator
CP less than U4? That is, must things be

deferred until the next operand is obtained?

the valuation-control routine (MPI through
MP8) associated with the current operator CP.

Left grouper

Absolute value

Binary arithmetic

Unary plus and minus

Binary logic {and, or)

Unary logic {not)

Numerical relations

Back stop

P49.1

MPI

MP2

MP3

MP4

MP5

MP6

MP7

MP8

NOTE:

The descriptor for the operand re¬
sulting from the operation, if any, is

always copied or left on the operand
stack DS.

The descriptor for the previous opera-
tor is popped off the operator stack PS
and copied in CP.

Control is passed to P48 after group¬
ers and absolute values, to the calling

instruction after back stops, and to
P48.6 after all other operations.

. •. ..

-107-

In the second state, a binary operator or a delimiting character

is expected. Any terminal character other than a binary operator is an

acceptable delimiter for expressions for elementary operands. The right

weight associated with the new operator (zero for delimiting characters)

and the left weight associated v/ith the last operator are compared to

determine whether the last operation will be carried out or will be de¬

ferred in favor of the new one. The left and right weights associated

with all operators are listed in Table 13. Note that the operation of

raising to a power associates from the left and takes precedence over

unary plus and minus. In effect, unary uses of plus and minus are treated

as though a zero operand had been inserted before the plus or minus sign.

Table 13

OPERATOR WEIGHTS

umi T
! JiTrlÍT

Jilf ^ ' ;;!i£ 1! M.’ •„ ■J 1 r- ’ il

ií(i ¡;! i! '"¡jí^íí

HikÄI |ip!F J^iíj
J-... wu-t iwuiL.iiiuwu;!. .,r Mi;; - ¿ _

••
í¡ HI ‘Hi?. •;• •?,

! ! ... ,* • . |. .

M

' 1
' “ 1 “ •»•••M .♦!* .• , I k--t-

-108-

Flowchart 3a—ARRAYS

ÜBEL

P44

LABEL

ACTION

PS5:
Followed immediately by a left grouper?

eíf>LníímpÍle theJuPcomin8 grouped list of

on y 0pfands> stacking their descriptors
on the operand stack DS. xxpuuis

YES NO

P49.9

P6!: Peel descriptors off the operand stack
DS, examining the elementary operands. Are
they acceptable index values?

E9

assignment-table entry for the
letter being indexed.

Does it identify an array?

Does its dimensionality match the number
of index values just compiled?

E10

be» e"“fi¡ed? P“,icular “»l»1»« °f the «ray

E10

Is the array sparse?
E10

Use a zero value.

Copy the component in the user's block if a

descriptor1116’ ^ Compose the operand's

P49.9

Flowchart 3b--FUNCTIONS

ACTION
YES

P44F PSS:
Followed immediately by a left grouper?

NO

P49.9

P42: Compile the upcoming grouped list of

™e?h2 y operands, stacking their descriptors
on the operand stack DS. ^

Is the number of operands appropriate?
Ell

Use the appropriate routine (SP6 through SP231
to control the evaluation. 8 J

Copy the result in the user's block if a

decimal value, and compose the operand's
descriptor.

i; s'íüh
km" j;
:irf ;i};!

.
ijiijikilji1: J
¿ -I

i!

\r i!j ' SB M ' Í
! • Í3 îlÆ ri|íi
i-.; !'• j \\\h;rAl : ^ !i! íí¡;‘¡ k<

- .:H\‘ !!! '! |Jij! *•! I ¡:M‘ » t'T" • i Û t.i-.-V; .-¡ •/. • , .¡mi!, I
" /iÿ . :: : ¢/: k i/rï!:! :1-,1¾ ¡ i. : . ¡ü’

i|i i
* . c:r!i||Ü!: ijiiij rj.j'ji!
Mi" il' ';! itiüis

f n.fMTM-

m ■ m
«•im \ !'• ;■ \ î

*.¡1 ; • iM ¡m m¡
■U' : ;;¡! i '1!: \ ,:.v¡ •! !ijr¡ • . il • I » -.îi' i . I t i! I* . t • . I 11 '

L ! • f *=• .-. ¡ '• I ! • I M '•! ' : i ' :

Mr 4. . s

r T’.-y * M #4

I?; , 4-.} .
; : Ü-,ÍI I V £i; M -

it',- ¿lii:, M'hi'lí/jji.ijl.í, Hü !'■ ! - tü: !:'.j I
;f | ,

i! i:;

^ ' ! .." *f •* H-b*».-.
; ii'- '' 5 : ! . y-

••i

•‘I ’ll¡
• I 1?:^ i: ; •

i : ' i :.
• - i •: 1 ‘t¡

I .
Wh

•• ! >!' i«,,;

-109-

Forrmlas and Iterative Funotions

Several distinct mechanisms exist for interpreting instances of

formulas. Although the details may differ, the effects may be char¬

acterized as follows. Suppose an instance of a formula occurs in an

expression being interpreted:

1. The expressions for the actual parameters of the formula

may be interpreted in two ways:

a. Replace the formal parameters, in a copy of the formula,

by the expressions for the actual parameters.

b. Evaluate the expressions, obtaining elementary operands,

and replace the formal parameters, in a copy of the formula,

by the simplest expressions for the corresponding elemen¬

tary operands.

2. The copy of the formula may then be interpreted in two ways:

a. Replace the instance of the formula, in a copy of the

expression being interpreted, by the copy of the formula

obtained from item 1, and continue interpretation of the

expression at the point of insertion.

b. Evaluate the copy of the formula, obtaining an elementary

operand; replace the instance of the formula, in a copy of

the expression being interpreted, by the simplest expres¬

sion for the elementary operand and continue interpretation

at the point of insertion.

The formal substitution of items la and 2a is quite general in

that ill-formed expressions may be used. For example,

-110-

Let f(Xj y) = xy)

Type f(3/j (6).

would result in

Type 3/(6).

The mechanism is most useful in applications where the construction

and manipulation of character strings is more frequent or more impor¬

tant than their eventual interpretation. However, in such languages

as JOSS, the mechanism must be used with care to avoid violations of

conventional practices. For example,

Let f(Xy y) = 3*x + y.

Type f(10 + 6, 100)/100,

allows the following four interpretations

la, 2a

la, 2b

lb, 2a

lb, 2b

3*10 + b + 100/100 = 36

(3-10 + b + 100)/100

3-15 + 100/100

(3-15 + 100)/100

= 1.35,

= 46,

= 1.45.

In JOSS, the last result is probably the expected one. In gen¬

eral, rules lb and 2b produce more conventional results than the other

combinations when used with ,?algebraicn programming languages. A more

versatile mechanism to achieve the same effect could be attained by

using rules la and 2a, and placing parentheses about the inserted strings

when ’’necessary." Some such middle ground is required, because the ac¬

tual parameters may be single letters to which arrays or formulas have

Í1;' IIÄÜI
IP
IIP
ÉiÉífrtlK

TP-iP'PIP ::

-Ill-

been assigned; or they may be conditional expressions for such letters.

In JOSS the effect is achieved by using P49 to evaluate expressions

for the actual parameters, producing elementary operands as results.

None of the mechanisms allow the use of abbreviations in a nat¬

ural manner. For example, define a function P(py as b)s where p de¬

notes the probability of an event, and a and b are parameters, by

P(p* a3 b) = ap + bq where q = i - p. (1)

In JOSS, the corresponding definition would be written

Let P(p¿ a, b) = a*p + b*q.

Let q = 1 - p.
¢2)

A request to evaluate; for example,

pr.5j .8, .2)

would result in an evaluation of

(.8)(.6) -f (.2)(1 - p).

That is, the replacement of the formal parameter p by the actual param¬

eter has occurred only in the definition of P, despite the fact that

the intent was that the substitution be carried out in formula q as

well. To achieve the desired interpretation, q would have to be de¬

fined as q(p). The problem is one of determining the intent of the

user. In Eq, (1), the intent is made clear by the use of the word

"where,,f which effectively indicates how q is used. No such intention

can be inferred from Eq. (2) without reading the user's mind, although

-112-

m à Ifi'! ' i i:
’il

some guesses could be made on the basis of the continuity of the two

statements and of the '‘usual11 relationship between p and q.

The mechanization of such inferences would undoubtedly be costly

in terms of processing speeds. More important, there seems to be no

mechanization that would give simple and consistent interpretations

in the absence of specific declarations of intent from the user. For

in the absence of declarations of intent, only two strategies can be

employed:

1, Make substitutions in the formula only.

2. Make substitutions in the formula and in all subformulas to

all levels.

The first, as has been shown, does not permit the use of abbreviations

without explicit use of formal parameters in the definitions of the

abbreviations. The second has several serious drawbacks:

1. The user would have to know the precise order in which sub¬

stitutions are made before he could determine the interpre¬

tation of an expression.

2. Slight modifications in formulas and subformulas could lead

to different interpretations; the user would have to be con¬

tinually on his guard.

3. Most important, the user would have no control over the

process of substitution other than by the careful use of

identifiers.

On the other hand, the method's generality could make it appropriate

to systems designed for users who require the generality and are wil¬

ling to exercise the necessary care. It seems less appropriate for

systems such as JOSS that are tuned to the casual user. JOSS^ inter¬

pretation can best be described in terms of assignments of elementary

operands to formal parameters and to letters used as variables of

iteration for iterative functions.

Operands can be assigned to letters in four ways:

1. By an assignment statement.

2. By using the letter as a variable of iteration to control

the execution of a stored program repeatedly.

3. By using the letter as a variable of iteration to control

the evaluation of an iterative function.

4. By using the letter as a formal parameter of a formula and

then using the formula.

In the first two cases, the existing assignment is deleted before

the new one is made; such assignments are said to be global. In the

last two cases, the existing assignment is saved before the new one

is made; such assignments are said to be local (to the formula or to

the function). Each entry in the assignment table is the most recent

of a stacked sequence of assignments made to the associated letter.

The first assignment, the global one, may indicate that the letter is

unassigned. Associated with each assignment is a record of the level

of formula nesting that attained at the moment of the assignment;

global assignments are at level zero.

In the absence of formulas, the choice of which assignment to

-114-

associate with an occurrence of a letter is immediate: Always choose

the most recent one. The mechanism is fine for iterative functions

but fails for formulas. For example,

y = 2

Let f(x) = X + y.

Let g(y) = f(y).

Type g(l).

would result in

g(l) = 2

which is incorrect. In brief, the user would not be able to use let¬

ters freely as formal parameters--an intolerable situation. A direct

mechanism for treating formal parameters correctly is to

1. Replace all instances of formal parameters in a formula by

unique 8-bit codes denoting Mfirst formal parameter/* ,,second

formal parameter/* etc.

2. Associate with each of these objects a unique entry in an

augmented assignment table--ten more entries suffice for JOSS.

3. Use the most recent assignment associated with letters or the

ten parameter codes.

The technique actually used (see Flowchart 4), which permits a

little more control over the situation, is to

1. Keep track of the level of formula nesting by incrementing

a level counter prior to the evaluation of a formula and

'¡ íil1 ¡i,
" : ;l, '!:!• i

-115-

decrementing the counter on completion of the evaluation.

Post with each assignment a record of the level of formula

nesting that attained when the assignment was made.

Choose the most recent assignment associated with a letter if

the assignment has been made at the current level of formula

nesting; otherwise, choose the first assignment.

Flowchart 4a--F0RMULAS

LABEL

P41

P41.1

P41.6

ACTION

Formal parameters associated with the formula?

Increment level of formula nesting (LEVEL),

P55: Followed immediately by a left grouper?

P42: Compile the upcoming grouped list of

elementary operands, stacking nheir descriptors
on the operand stack DS.

Is the number of operands correct?

Are all the operands assignable objects?

P58: Save (push) the assignment-table entries
associated with the formal parameters.

Assign the actual parameters to the formal ones,

incrementing the use count when assigning decimal
values, arrays, and formulas.

Save formula identification and place marker in

the current string being interpreted on the
formula push-down list FPDL.

P49: Evaluate the formula.

Decrement the level of formula nesting (LEVEL).

Formal parameters associated with the formula?

Delete the actual parameter assignments to the
formal parameters, and restore the original
assignments.

YES

P41.1

NO

P41.6

P49.9

E22

E5

P49.7

P49.7

a

-116-

Flowchart 4b—ITERATIVE FUNCTIONS

LABEL

P36

P36.9

P36.0

P36.1

ACTION

PSS: Followed imediately by a left grouper?

Which notational styles does the function admit?

Grouped list of operands.

Expression defined over a range of values.

Either style; does upcoming string resemble
a for phrase?

Assume grouped list of operands. Does function
admit this style?

P42: Compile the upcoming grouped list of ele¬
mentary operands, stacking their descriptors on
the operand stack DS.

Use the appropriate routine (SP18 through SP23)
to control the evaluation.

Copy result in the user’s block if a decimal
value, and compose the operand's descriptor.

P39: Compile the upcoming for phrase, leaving
descriptor for the list structure on the
operand stack DS.

Followed by a colon?

Followed by the appropriate right grouper?

Erase for phrase list structure.

Save function identification and place holder
in current string on the formula push-down
list FPDL,

Save (push) assignment-table entry for the
variable of iteration and generate the appro¬
priate initial value as the first partial result,

Copy descriptor for partial result on DS.

Is next value for iteration a decimal value?

P67: Assign it to the variable of iteration.

P49; Evaluate the next expression.

Followed by the appropriate right grouper?

Calculate next partial result.

P71: Any more values for iteration?

Tidy up and restore context.

YES

P36.9

P36.0

P36.0

NO

P49.9

P49.9

ES

P36.9

P36.1

P49.9

ES

ES

ES

The interpretation is described simply: Letters used as formal

parameters in a formula are replaced by the simplest expressions for

the actual parameters (parenthesized if necessary) prior to evaluation

of the formula.

Since this scheme does not allow ’’local” abbreviations to be de¬

fined in a natural manner, it became necessary to consider methods

for allowing the user to exercise some control over the scope of as¬

signments to formal parameters. Several methods were examined and

discarded for a variety of reasons; for example:

1. Allowing the user to associate with a formula, subformulas

as local abbreviations: This foundered oecause of the dif¬

ficulty in easily expressing, modifying, and overlapping such

abbreviations.

2. Allowing the user to define some formulas as global abbre¬

viations: This was discarded as being incomplete without the

ability to define local abbreviations.

3, Treating formulas with no formal parameters as global

abbreviations: This was felt to be dangerous, as well as

incomplete.

4, Allowing the user to mark those formal parameters of a formula

(in the definition of the formula) whose assignments were to

be substituted in all subformulas of the formula: This was

discarded because of incompleteness, and vague feelings of

dissatisfaction about what appeared to be a ’’programming”

artifice.

-118-

jin i ii ' f |¡|}|gíi|:[liPil . .:
--ÍJ --

. •;

Were subprogram structures to be added, the entire question would

be reopened. In fact, the principal reason for discarding the methods

described above was a belief that they should be considered in the

light of the general problems of program structure and declarations,

rather than in a restricted context.

grouped Elementary Ovejmnda and Conditional Expressions (Flowchart 5)

Routine P42 compiles lists of elementary operands, each evaluated

by using P49. Operand descriptors are stored on the operand stack,

DS, in order of appearance, and a count of the number of operands is

Stored. Routine P42 is also used to sense upcoming conditional ex¬

pressions, so that they may be used for function and formula parameters

or as indices of vectors without the required extra set of groupers.

For example, 8in(a = b: x; y) may be used instead of the technically

required sinifa = b: x; y)). The evaluation subroutine for left groupers

MPI, also determines upcoming conditional expressions by noting the cur¬

rent terminal character, CC, whenever MPI is "fired." if CC is not a

matching right grouper, P3S is used.

The main duty of P35 (not indicated on Flowchart 5) is to mark

conditional expressions to be typed, so that the subroutines for typing

can type only the chosen subexpression.+ Routine P35 replaces the left

and right delimiters (groupers, colons, semicolons) of the chosen sub¬

expressions by unique surrogate characters.

-119-

Flowchart 5—GROUPED LISTS AND CONDITIONAL EXPRESSIONS

LABEL ACTION YES NO

P42

P42.1

P42.2

P42.3

P35

P35.1

P35.2

P35.5

P35.9

Sava context and initial count (zero).

P49: Evaluate the next elementary operand.

Increment the count.

Followed by a comma?

Followed by the appropriate right grouper?

Only one elementary operand collected?

P35: Evaluate upcoming conditional expression

Restore context.

Save context.

Followed by a colon?

Pop last operand off DS.

Logical value?

Is it true?

Skip over the next expression.

Followed by appropriate right grouper?

Followed by a semicolon?

P49: Evaluate the next elementary operand.

Followed by appropriate right grouper?

P49: Evaluate the next elementary operand.

Followed by a semicolon?

Skip over the remainder of the conditional.

Followed by appropriate right grouper?

Restore context.

P42.1

P42.3

EXIT

P35.5

E61

P35.9

EXIT

E5

E5

E5

ES

P35.1

E5

-120-

Objecta of Diacouree (Flowchart 6)

Routines P38 and P38X evaluate expressions for individual steps,

parts, forms, and formulas (e.g., fomrula f), and for collections of

objects. Routine P38 simply notes the type of object and the object's

identification, if applicable, in scratch storage; P38X copies the

P38.0

P38.1

P38.2

P38.3

P38.9

P38F

Flowchart 6—OBJECTS OF DISCOURSE

ACTION

Save context; fetch the next terminal character

The word formulai

The word dill

A singular noun?

Restore context and report failure.

If next terminal character is a plural noun

compose the appropriate OOD descriptor; other-
wise, compose the descriptor for dll,

“TÍ7 described object (a singular
noun followed by a decimal numeral that does

not seem to be embedded in a complex expression
tor an elementary operand)?

P49: Evaluate the upcoming elementary operand.

PS3: Pop result off DS. Is it a decimal value?

P70: Is the object's number appropriate?

Has the object been defined?

Compose the appropriate 00D descriptor.

Restore context and report success.

Is the w-cà formula followed by a single letter
to which a formula has been assigned?

Compose the appropriate OOD descriptor.

P38F

P38.0

P38.1

EXIT

P38,9

P38.3

P38.9

EXIT

E5

E32

E33

P38.9

E5

object's identification in the user's block and stores the proper de¬

scriptor on DS.

The procedure is straightforward except for the extra detail

necessary to detect expressions for simply described objects without

using any available space.

If the first terminal character encountered indicates that no

expression for an object of discourse is coming up, context is re¬

stored and failure is "reported."

Iteration SpeaifioatioriB and Left-hand Sides (Flowchart 7)

Routine P39 compiles list structures associated with for phrases:

a left-hand side followed by an equals sign, followed in turn by a

list of values and ranges of values for an iteration. The structure

consists of a left-hand-side list and a list of scalar values. Single

values and right limits for ranges of values are marked to permit con¬

trol of the iteration, and logical values are marked to distinguish

them from decimal ^ nes. Ranges of values whose left and right limits

are equal collapse into a single value. Otherwise, zero step values

and unreachable right limits (e.g., 1(-1)10) are treated as errors.

Routine P40 compiles list structures associated with acceptable

left-hand sides for assignment: a single letter or a letter followed

immediately by a properly grouped list of expressions for index values.

If the first terminal character is not a letter, context is restored

and failure is "reported." Otherwise, barring errors, a list consis¬

ting of the letter's assignment-table address and the index values (if

any) is compiled, and a descriptor for the list is stored on DS.

Flowchart 7a—RANGES OF VALUES AND fov PHRASES

LABEL

P39

F39.1

P39VU

P39.2

ACTION YES NO

Save context,

P40: Compile list structure for left-hard side,
if one is coming up.

Followed by an equals sign?

Compose descriptor for null range-of-values list.

P49: Evaluate upcoming elementary operand.

P63: Store value on tail of ROV list.

Followed by a left grouper?

P42: Compile upcoming grouped list of

elementary operands.

A single item?

P63: Store value on tail of ROV list.

P49: Evaluate upcoming elementary operand.

P63: Store value on tail of ROV list.

Examine the last three values:

Do they define an acceptable range?

Collapse into a single value if the right
and left limits are equal.

Mark the last value as being the last in a

range for a single value).

Followed by a comma?

Compose for* phrase list structure from left-
hand side and range-of-values structures.

E5

ES

P39.2

ES

E23

P39.ll

P39.1

Compose descriptor; leave it atop DS; restore

context. EXIT

Flowchart 7b--LEFT-HAND SIDES

LABEL ACTION

P40

P40.2

Save context. Fetch the next terminal character.

Is it a letter?

Restore context and report failure.

Followed immediately by a left grouper?

YES

P42: Compile upcoming list of elementary

operands, stacking descriptors on DS.

Are there too many?

P61: Peel the descriptors off DS and examine

the objects they define.

Values?

Acceptable as index values?

Compose the appropriate list structure,

Compose the lis^s descriptor and store it

atop DS,

Restore context and report success

EXIT

NO

E8

EXIT

P40.2

ES

E9

SPARSE ARRAYS

JOSS permits the user to conserve storage and increase processing

speeds for arrays of predominantly zero values by allowing him to as¬

sign only pertinent elements of such arrays and then identify the array

as being "sparse." For purposes of computing and typing, JOSS assumes

that all unassigned components of sparse arrays are zeroes.

The user identifies the array by its letter and tells JOSS to

treat it as sparse; for example, Let A be sparse* If the letter iden¬

tifies an array, JOSS notes that it is to be so treated, but does not

clean out existing zero elements* If the letter does not identify an

r’”;Tg ? ?• •ríi"?"’’? pyp'—r'.’-TTj'ir

H

-124-

array, JOSS deletes the current assignment before making the new one,

but rejects all subsequent references to the array until its dimension

has been established by the assignment of a value to an element of the

array.

When the user requests that a sparse array be typed or filed,

JOSS identifies the array as being sparse after typing or filing its

components :

a(l) = 10
a(3) = 7
a(10) = 12
Type a.

ad) = 10
a(3) = 7

a(10) = 12

Type sum[i = 1(1)10; a(i)].
a(2) = ???

Let a be sparse.
Type sum[i = 1(1)10: ad)].
sum[i = 1(1)10: a(i)] = 29

Type a.
a(l) = 10
a(3) = 7

a(10) = 12

a is sparse
Type a(4).

a(4) = 0

Let B be sparse.
Type B.
B = ???

Type B(4).
B(4) = ???

b(i) = i
Type B(4),

B(4) = 0

Type B.
Bd) =

B is sparse
1

DELETING OBJECTS (Delete)

Users can delete

1. Individual steps, parts, forms, values, arrays of values,

and formulas.

2. Collections of these objects via

all all parts all formulas

all steps all forms all values

For example:

Delete all.

Delete part 1, all forms, A, B.

JOSS interprets the entire clause from left to right before de¬

leting anything. If an object has not been defined, or if any other

error is detected, JOSS aborts interpretation and notifies the user.

Whenever the user deletes all, JOSS cancels all outstanding tasks,

resets the user's block to its log-on state (except for accounting

information), and returns control to the user without comment.

Whenever all components of an array have been deleted, JOSS ef¬

fectively deletes the array:

Delete all.

X = 1

Delete x, y.

y = ???
Type x.

x =

a(l) = 1
Delete a(l).

Type a.

1

TYPING OBJECTS (Twe)

The user may request JOSS to type any combination of

1. Decimal values.

2. Logical values.

3. Arrays of values.

4. Formulas.

5. Individual steps, parts, and forms.

6. Collections of the above via

all foms

all steps all formulas

all parts all values

7. Blank lines, indicated by an underscore or a string of con¬

secutive underscores.

8. The number of units of storage currently being used by JOSS

for storage of the user's program, data, and other informa¬

tion {size).

9. The time of day at RAND {time).

10. The current number of users being serviced by JOSS {users).

For example:

Type sqrt(x), x, y.

Type part 1, all forms. A, B, x + sqrt(y).

JOSS interprets the entire imperative clause from left to right

before typing any of the required output. An error encountered during

-127-

interpretation will cause JOSS to abort interpretation of the command

after commenting on the error:

Type sqrt(x), x < y,
X = ???

x = 12
Type sqrt(x), x < y.
y = ???

y = log(x)
Type sqrt(x), x < y.

sqrt(x) = 3.46410162
x < y = false

JOSS will type values one-per-line, using a standard indentation

whenever possible, and will Uy to line up decimal points and equals

signs, compromising first on the equals signs, then on the decimal

points, and finally on the single-line style:

Type x, sqrt(x), sqrt(sqrt(x)), sqrt(sqrt(sqrt(x))), sqrt(sqrt(sqrt(sqrt(x))))

sqrt(x) = 3.46410162
sqrt(sqrt(x)) = 1.86120972

sqrt(sqrt(sqrt(x))) = 1.3642616

sqrt(sqrt(sqrt(sqrt(x)))) = 1.1680161

JOSS uses fixed-point notation for decimal values except where

the magnitude of the number makes this unreasonable:

x = sqrt(x)

Type x, x*10*5, x*10*6, -x*10*6.

X = 3.46410162
x»10*5 = 346410.162

x»10*6 = 3.46410162»10*6

-x»10*6 = -3.46410162-10*6

JOSS will usually identify values by the exact expressions used

lii;r,:n..iam.;i!.;im.i :11.111¾.½ -i; 1:::1., ;

-128-

in the command calling for the output. If a conditional expression

is used, JOSS will use the chosen subexpression, enclosed in paren¬

theses or brackets, to identify the output. Values, arrays, and

formulas identified by single letters will always be identified by

the letter, no matter how expressed. For example:

a(l) = 1
a(2) = 2
i = 2

Type a(2), a(i), [i = 0: x; sqrt(x)].
a(2) = 2
a(i) = 2

Csqrt(x)] = 1.86120972

Type (i = 0; x; a).
a(l) = 1
a(2) = 2

Let f(x) = x.
Type f(f), f(a), f(_), f(time), f(i), f(i = 2).

f(x): x
a(l) = 1
a(2) = 2

time: 0939
f(i) = 2

f(i = 2) = true

JOSS always interprets references to formulas having no formal

parameters as implied requests for the actual evaluation of the for¬

mula. To see the actual definition of such a formula, the user must

request JOSS to type formula*. For example:

Let h = (b - a)/n.
b = 1
a = 0
n - 100
Type h, formula h,

h = .01
h: (b - a)/n

-129-

Let h = f.

Type f, formula f, h, formula h.

f(x): X
f(x): X

f(x): X

h: f

JOSS uses a fixed order of output when requested to type all:

1. All steps, ordered by step number and separated into parts.

2. All forms, ordered by form number.

3. All formulas.

4. All scalars,

5. All arrays of values, separated into arrays of common dimen¬

sion, in order of increasing dimension.

Collections of formulas and values are typed in the lexicographic

order of the identifying letters, first the upper-case letters, then

lower-case.

Blank lines are used to set off subcollections and to indicate

the absence of members of subcollections of parts, forms', and values.

For example:

Type all.

f(x): X
h: f

a =
b =
i =

n =
X =

y =

o
1
2

100
3.46410162
2.48490665

-130-

Skipping Lines and Pages (Line. Page)

Line causes JOSS to effectively depress the carrier-return key,

and Page causes JOSS to depress the pagination key. Whenever JOSS

ejects the paper to the top of the next page, a standard page heading

is printed, followed by a one-inch margin. The heading contains date,

time, user identification, console identification, and page number.

When either command is given, if the typewriter carrier is posi¬

tioned at the end of a page (line 54), JOSS ignores the command and

simply ejects the paper and types the usual heading and one-inch margin

Defining Forms for Formal Output (Form)

Users can direct JOSS to stand ready to accept a full-line form

to be stored away and made available for typing formal output. The

command may only be given directly and consists of the word Pom, fol¬

lowed by a valid expression for a decimal value to identify the form,

and a colon. Form numbers must be positive integers.

The user then has the entire width of the next line for speci¬

fying literal information and fields to be filled in with answers.

Two types of fields are provided for displaying numeric answers: A

string of underscores with an optional decimal point specifies fixed-

point notation, and a string of four or more periods specifies a tabu¬

lar form of scientific notation in which the digit part and exponent

part of the answer are typed. JOSS rounds answers to fit the field

and notifies the user whenever unable to express a value in a field.

Only strings of underscores can be used for displaying logical values

and the current time. For example:

-131-

Form 1 :
Fixed point field: _

Type form 1.
Fixed point field: _

Type all forms.

Form 1 :

Fixed point field: _

Type n, x in form 1.
Fixed point field: 100

Typing in User-defined Forme

The user may request JOSS to type any combination of the following

in a form he has specified:

1. Decimal values.

2. Logical values.

3. Blank fields indicated by an underscore or string of underscores.

4. size, time, and users*

JOSS interprets the entire list of expressions and the expression

for the specified form before typing. An error encountered during the

interpretation causes JOSS to abort interpretation after commenting on

the error.

Once the expressions have been evaluated and the form found, JOSS

begins to replace the fields in a copy of the form by the literal strings

of characters representing the values. JOSS does not type the line un¬

til assured that

1. No used fields abut.

Each field is long enough to hold the associated literal string.

scientific notation: .

scientific notation: ..

scientific notation: .

scientific notation: 3.464 00

2.

3. There are at least as many fields as there are items. For

example:

Type n, X in form 1.
Fixed point field: 100 scientific notation: 3.464 00

Form 2:

Type n5 X in form 2.
I canft make out your fields in the form.

Form 2:

Type n, X in form 2.
I can’t express value in your form*

Form 2:

Type n, X in form 2.
I have too many values for the form.

Form 2:

Type n, X in form 2.
100 3.4641 00

4f there are more fields in the form than items to be typed, JOSS

will chop off the form after filling in the last required field, and will

try to type pertinent, literal information following the last filled field

Form 1 :
current = _._ amps. voltage = _._ volts

Type X in form 1,
current = 3.46 amps.

JOSS aan make mistakes in chopping off forms¿ but will include

conventionally spaced, literal information when chopping off forms.

:áiL .

133-

Implementation Notes

Users must be able to type, file, and delete objects without con¬

cerning themselves with the number of available cells. Even when

available space has been "exhausted," JOSS must be able to perform the

requested actions when the objects are described by simple expressions

(e.g., all parts, form 2, step 1.5, formula f, x. A). This can be

done by holding back a part of available space to be used only when

typing, filing, or deleting; or by using detailed machine-language

segments for sensing simple cases. A compromise is struck as follows:

2.

P38 is used for evaluating expressions for simply described

steps, parts, forms, and collections of objects without using

any available space.

Three cells of'available space are held back from the user

for general use by the routines for typing, filing, and

deleting.

The technique for reserving the cells is mundane:

1. The recorded number of available cells is always three less

than the actual number.

2. Before the coroutines for typing, filing, and deleting are

used, the recorded count is increased by three, and a flag

is set in the user’s block to record the fact.

3. Whenever the user’s block is cleaned up, the flag is reset

and the count decreased by three if necessary.

Since the typing and filing of all but the simplest objects will

l.t

T

-134“

assuredly be suspended at least once, some fixed space in the user's

block must be reserved to cache information during such suspensions.

This fixed overhead is small except when typing arrays, which must be

done in an orderly manner. Restricting the number of indices to ten

strikes a balance between denotative ability and fixed drains on the

user*s block, sets well with the line-at-a-time style of JOSS, and is

easily remembered.

The CPU selects chosen subexpressions of conditional expressions

to be typed by marking the bytes that delimit each chosen subexpression,

unless embedded in an iterative function or a formula. To avoid having

to undo or otherwise deal with such markings, only strings included in

Type commands are so treated, and these are copied into working storage

before being interpreted. A flag that controls the marking is set to

-1 before the main string of a Type command is to be interpreted and

to 0 prior to command interpretation. The flag is then increased

by one each time the CPU drops a level to evaluate a formula or an

iterative function, and is decreased when the evaluation is done.

Marking occurs only when the flag is negative.

Quotations and phrases such as item-list are factored out first.

The remainder of the command is copied, additional space is obtained,

and the appropriate flags are set. The balance of the command is in¬

terpreted, and descriptors for the objects to be typed are stacked on

the operand stack in order of occurrence. During this process, in¬

formation for typing is collected in the user's block: UP3 is used

for counting the number of expressions in the list, UP1 for noting the

first byte of the first expression, and UP2 for noting the last byte

of the last expression. Commas separating the expressions are re¬

placed by a unique 8-bit code to facilitate the typing of the actual

expressions as identification for scalar values.

Subroutine X48 collects message fragments and types the collected

message. It is the only such subroutine and is an integral part of

the routines for error- and status commentary, typing, and filing.

Except for S55 (the routine for collecting and transforming mes¬

sages into the 7-bit representation for typing), the process is simple.

Requests for pagination are noted, and a buffer area is requested from

the supervisory routines. A 7-bit representation of the line to be

typed is made in the assigned buffer area, and the message is typed;

if another line is required for the message, the process repeats.

Routine S55 controls the collection and transformation of message

fragments, which may be represented by

1. The address number of a core location containing a pointer

to the first 8-bit token of the 8-bit representation of the

string of characters.

2. The pointer itself.

3. The 8-bit representation of the string itself, with a dis¬

tinctive leading token to differentiate it from 1 and 2.

The transformation to 7-bit encoding iè a recursive process, since

a single 8-bit token may represent a word or a larger message fragment,

and fragments may themselves contain tokens for fragments.

There is no necessity for automatic end-of-line justification. In¬

stead, permissible line breaks are indicated with the message fragments.

-136-

EXECUTim STORED PROGRAMS (Do)

To start the task of interpreting steps of a stored program, the

user tells JOSS to do a step or part a specified number of times, or re¬

peatedly, for a set of values to be assigned to a variable of iteration.

Expressions for decimal values are used to

1. Identify steps and parts to be done.

2. Specify the number of times ? step or part is to be done.

3. Specify initial values, final values, and increments for

ranges of values to be assigned a variable of iteration.

Expressions for decimal or logical values can be used to specify

individual values to be assigned to a variable of iteration. Ranges of

values having identical initial and final values collapse into single

values, and ranges of values whose initial and final values are in¬

compatible with the increment are rejected. For example:

1.1 Type i.
Do part 1.
Error at step 1.1: i = ???
Do part 1 for i = 1(-1)2.
Illegal set of values for iteration.
Do part 1 for i = 1(1)2(2)6, 8.

i = 1
i = 2
i = 4
i = 6
i = 8

Do part 1, 2 times.
i = 8
i = 8

The comma preceding the number of times is mainly required for

readability, although a glottal-stop convention is sometimes necessary

(e.g., Do part n-x+1 times, is ambiguous).

-137-

Any letter or indexed letter can be used to identify the variable

of iteration; JOSS deletes an existing assignment to the letter before

assigning a new value for iteration. Since JOSS keeps track of the last

value assigned for iteration, the required step or part will always be

done for the specified values and ranges of values. For example:

1.1 Type i.

1.2 Set i=2-i+l.
1.3 Type 1,

Do part 1 for i = 1(1(1)2.
i =

i =

1
3

i =
I =

2
5

JOSS calculates the successive values of the iteration variable

by adding the increment to the last value rather than by adding the

product of the increment and an iteration counter to the initial value.

Either method can produce iteration values that are slightly "off11

because of round-off error. The first method exhibits a cumulative

loss of precision; the second method is sporadically imprecise. In

either case, a rule for termination and for assignment of the final

value must be selected. JOSS always hits initial and final values on

the nose in order to honor all "fixed points" of extended ranges.

For example, the range of values l(i)10(j)20 will be interpreted

so that the values 1, 109 and 20 will be hit exactly (and only once)

even though the values assigned to i and j do not divide ten evenly.

JOSS does this by snapping back to the final value when overshoots

occur, despite the fact that this strategy sometimes causes JOSS to

carry out an iteration for an extra value;

jim» Mit

-138-

Delete all.

1.1 Type i.
Do step 1.1 for 1

i =

i =

i =
i =

i =

0(1/3)1.

0

.333333333
• 666666666
.999999999

1

It is clear that two rules are required: one for snapping back on

overshoots, the other for moving up whenever the current value is close

enough to the final one. "Closeness" is usually defined in terms of

the increment J; I/n, I/2nJ I/10n are frequently mentioned candidates.

However, because no value for n could be found that exhibited uniform

behavior, the method was abandoned (a mistake: I/108 works acceptably).

JOSS never begins execution of a task until certain that

1. The required step or part can be found.

2. There is enough storage space to save the status of the

task being suspended.

3. There is enough storage space to carry out the assignment

of the first value to the iteration variable.

JOSS begins the interpretation of a part at the first step of the part,

and then interprets each step in sequence. Whenever encountering a

Do command, JOSS pauses to carry out the indicated task as a subroutine

before continuing to the next step. When the original step or part has

been done the required number of times, JOSS returns control to the user

without comment and awaits the next direct command from him. Errors,

branching commands, stop commands, commands for terminating a task, and

interrupt signals from the user modify this general behavior.

-139-

Bvaxiching Cormands (To)

To break the step-by-step sequence, branching commands direct

JOSS to take a specified step or the first step of a specified part

as the next step in sequence. JOSS continues the step-by-step se¬

quencing at the new step. The command consists of the verb Tos fol¬

lowed by a valid expression for a step or a part:

To step 1.1.

To part n + 1.

The branching command may not be given directly, although the

obvious interpretation could have been made if given directly during

a task interrupted at a step. However, no reasonable interpretation

could be found for direct To's given during intratask iteration (J

have nothing to do. would be misleading in such cases).

Indirect Stopping Cormands (Stop)

The Stop command causes JOSS to suspend step-by-step sequencing

and return control to the user after typing a status message (e.g,,

Stopped by step 1.2.). If the user subsequently tells JOSS to con¬

tinue, JOSS does so at the step following the stopping command.

Indiveot Terminations of Tasks and Portions of Tasks (Done* Quit) i
The Done command causes JOSS to omit the remaining steps of a

part.

The Quit command causes JOSS to terminate the current task, as

if the required step or part had been done as often as requested

After ending the current task, JOSS looks around for something to do.

If there is nothing .to do, JOSS returns control to the user without

comment. If there is a suspended task, JOSS continues with the sus¬

pended task without comment.

Direot Terminations of Tasks (Cancel, Quit.)

nie Cancel command causes JOSS to terminate all suspended and on

going tasks and then return control to the user without comment. The

user can ask JOSS to Quit directly. JOSS notifies the user if there

is nothing to do; otherwise, JOSS terminates the current task and

looks for a suspended task. If none exists, JOSS returns control to

the user without comment. Otherwise, JOSS determines whether the

suspended task had been initiated directly or indirectly. If indi¬

rectly, JOSS continues with the suspended task; if directly, JOSS

returns control to the user after typing a brief status messaged

Interruptions

Once the user has directed JOSS to start or to continue a lengthy

computation or filing action, he can only regain control of the type¬

writer before JOSS has finished (or encountered an error or stopping

command) by depressing the interrupt button. JOSS's response to in¬

terruptions is dictated by the "inertia" of the action being performed

for the user at the moment. If typing output for the user, JOSS always

finishes typing the current line (and often types a few more lines) be¬

fore honoring the interruption. If a filing action for the user is in

-141-

progress, the interruption is ignored until JOSS has finished or has

aborted the action for any reason.

If the interruption occurs after the beginning of a stored pro¬

gram, JOSS responds by typing its position in the stored program be¬

fore returning control to the user (e.g., at step 3.2.). Other¬

wise, JOSS simply types Revoked by interrupt. In either case, JOSS

makes sure that the status of the user's block is precisely as it would

have been had the command never been started.

The SU sets flags to signal the CPU that the current user has

transmitted an in signal or that the CPU is to be reassigned to a

different user. The overall timing of activities in the JOSS system

does not require that the CPU monitor these flags continuously. In¬

stead, they need be examined only at points of "minimum context":

between steps, prior to*descending a level to evaluate a formula; be¬

tween iterations for iterative functions; and at other appropriate

instances during typing and filing. The maximum delay in honoring

these signals is measured by the longest computation that does not

involve formulas or iterative functions. In JOSS, this occurs for a

string of 38 successive raisings-to-a-power, resulting in a computa¬

tional delay in the order of 50 ms, or about three-quarters of the

least time in which a single character can be typed. The probability

of a processing jam occurring during such an interval (by almost simul¬

taneous carrier-retum3 off, on, and in signals) is vanishingly small.

By the same token, in signals are fielded smartly enough to appear

instantaneous to the user, except during most disc actions, which are

allowed to run to completion before the interruption from the user

is honored.

Ail- -^uy-sirtMr.-mrffT ■ «'Wüvnii üy^iw1 ‘m^'WW-nnM^aiW.^ii.iiRyiriÄPKWrit’S^if'^B1

i

142-

Parenthetieal Do's

Each direct Do command causes JOSS to cancel all suspended tasks

before beginning a new one, unless the command is given in paren¬

theses. JOSS interprets such parenthetical Do's as implied commands

to save all suspended tasks and pause to carry out a new task as a

subroutine; that is, JOSS treats direct, parenthetical Do's as in¬

direct Do's (but see p. 145).

Originally, JOSS did not admit parenthetical tasks. The treat¬

ment of direct tasks was appropriate, because users generally desired

a cancellation before introducing a new direct task. Requiring users

to cancel would have become onerous; treating direct tasks like in¬

direct ones could have caused the user to use up, inadvertently, the

small amount of storage space available in the original system. Since

the original system did not tell the user the point in his program

where storage space had been exhausted, the user could have been led

into indeterminate situations. JOSS now gives the user more status

information in such situations. However, since tasks cannot be se¬

lectively canceled, users could still be led into situations where

the space used to store information about inadvertently uncanceled

tasks would be unrecoverable without undoing the current tasks. Ac¬

cordingly, direct, nonparenthetical tasks are handled as in the orig¬

inal system, and parenthetical Do's are introduced to allow the user

to hold a direct task before starting a new one. JOSS always notifies

the user of its status on completion or when told to terminate a paren¬

thetical task, and then returns control to the user instead of con¬

tinuing any suspended tasks

-143-

Favenfhetioal Cancel*s

The Cancel command in parenthetical form causes JOSS to cancel

only the last directly initiated task and all indirectly initiated

tasks stemming from it. JOSS then notifies the user of status before

returning control to him.

Continuing Tasks (Go)

Whenever JOSS is awaiting a direct command, the user can instruct

JOSS to continue a suspended task by typing the command Go* If no

suspended task exists, JOSS responds by typing I have nothing to do*

Otherwise, JOSS’s response depends on the manner in which the task

was suspended; three possibilities exist:

!• The task was suspended because of an interruption or an error

encountered during the interpretation of an indirect step.

Such suspensions are characterized as having occurred at a

step. JOSS continues the task as though that step were the

next one to be interpreted.

2. The task was suspended by a stopping command. J0SS*s state

is characterized as being ready to go from a step* JOSS con¬

tinues the task as though that step had been the last one to

be carried out.

3. The task was suspended while JOSS was preparing to repeat a

step or part being done repeatedly or over a range of values

of an iteration variable. If the Do command that initiated

the task had been given indirectly, the suspension would have

been characterized as occurring during a step; otherwise,

-144-

duving above. JOSS continues at the point of suspension by

searching for the required step and carrying out any reassign¬

ment of the iteration variable before beginning the step or

part anew.

Reporting Status

JOSS reports status and returns control to the user whenever the

CPU

1. Honors an interruption from the user.

2. Encounters a stopping command,

3. Completes a direct command that refers to the magnetic-disc

files,

4. Completes or is directed to terminate a parenthetical task.

5. Encounters an error.

6. Is unable to obtain enough storage space for the user’s block

of information.

If interrupted during the inverpretation of a direct command,

JOSS types

Revoked by interrupt.

If interrupted during the interpretation of an indirect step,

JOSS types

See pp. 155-158.

I'm at step....

-145-

If interrupted by a stopping command, JOSS types

Stopped by step»•••

JOSS always notifies the user on successfully completing a di¬

rectly given command that refers to the magnetic-disc files: The

typed response Roger, indicates that JOSS has found the file requested

by the user. The message Done, is typed on completion of any action

on a file.

Because parenthetical commands can only be given directly, JOSS

always returns control to the user on completing or when directed to

terminate such a command. At such times it seems reasonable to re¬

mind the user that JOSS's status has reverted to what it was when the

conmand was given. If no suspended task exists, JOSS returns control

to the user without comment. Otherwise, JOSS types one of the following

messages:

1. Done. I'm ready to go at step ... if the task was suspended

by an interruption or error during the interpretation of an

indirect step,

2. Done. I'm ready to go from step ... if the task was suspended

by a stopping command.

3. Done. I'm ready to go in step ... if the task was suspended

during an indirectly initiated Do.

4. Done. I'm ready to go. if the task was suspended during a

directly initiated Do.

Jn the first three cases, JOSS also checks to make sure that the step

-146-

still exists (the user may have deleted it during a suspension of the

parenthetical task), and notifies the user if the step cannot be found

(e.g.. Done. I'm ready to go at step 3.2, altho I can't find it.).

The following set of examples is designed to illustrate JOSS1s

responses to a number of situations:

Delete all.
Form 1:

Typed by step • i =

1.1 Stop if i = 2.
1.2 Type 1.2, i in form 1.

Do part 1 for i = 1(1)3.
Typed by step 1.20 i = 1

Stopped by step 1.1.
Go.

Typed by step 1.20 i = 2
Typed by step 1.20 i = 3

Do part 1 for i = 1(1)3.
Typed by step 1.20 i = 1

Stopped by step 1.1.
(Do part 1 for i = 11, 17.)

Typed by step 1.20 i = 11
Typed by step 1.20 i = 17

Done. I’m ready to go from step 1.1.
Go •

Typed by step 1.20 i = 17
Typed by step 1.20 i = 3

1.1 Done if i = 2.

Do part 1 for i = 1(1)3,
Typed by step 1.20 i = 1
Typed by step 1,20 i = 3

1.1 Quit if i = 2.

Do part 1 for i = 1(1)3.
Typed by step 1,20 i = 1

Go •
1 have nothing to do.

1.1 Stop if i = 2.
2 Do part 1 for i = 1(1)3.
2.1 Type 2.1, j in form 1.
Type all parts.

rjmww» íswmsímwmmíiHWihmm.

-147-

1.1 Stop if i = 2.
1.2 Type 1.2, i in form 1.

2 Do part 1 for i = 1(1)3.
2.1 Type 2.1, j in form 1.

Do part 2 for j = 11, 17.
Typed by step 1.20

Stopped by step 1.1.
(Do part 1 for i = 1(1)3.)

Typed by step 1.20
Stopped by step 1.1.
Quit.
Done. Ifm ready to go from
Go.

Typed by step 1,20
Typed by step 1.20
Typed by step 2.10
Typed by step 1.20

Stopped by step 1.1.
(Do part 1 for i = 1(1)3.)

Typed by step 1,20
Stopped by step 1.1.
Delete step 1.1.
Quit.
Done. I’m ready to go from
Go.

Typed by step 1.20
Typed by step 1.20
Typed by step 2,10

i = 1

i = 1

1.1.

i = 2
i = 3
] = 11
i = 1

i = 1

1.1, altho I can’c find it.

i = 2
i = 3
i = 17

Implementation Notes

Information defining the current task consists of^

1. What is being done: step, part, or nothing at all.

2. How the task was initiated: directly or indirectly.

3. A break-code to indicate whether or not the iteration variable

must be advanced before going on.

4. A skip-code to indicate whether the next step to be inter¬

preted is the current one or its successor.

^See p. 36.

-148-

5. The number of the step or part associated with the current

Wsk,

Status and sequencing information residing at fixed locations in

the user's block consists of

1* CPI: the integer part of the current step's number.

Q

2. CSI: 10 times the fractional part of the current stepfs

number.

3. CSA: the address of the current step*5 header.

4. U24, U25: the JNF representation of the number of the part

or step to be done by the current task.

5. MODE: 0 if in direct mode, 1 if in indirect mode, and 2(3)

if advancing to the next iteration of a direct (indirect)

task.

In add tion, the task status word, JD, contains

!• dob-code: 0 if doing nothing, 1 if doing a part, and 2 if

doing a step.

2. Job-mode: 0 if a direct task and 1 if indirect.

3. Break-code: 1 if advancing to the next iteration; other¬

wise, 0.

4. Skip-code: 1 if advancing to the step after the current

one; otherwise, 0.

5. The address of the fov phrase list header, if any.

The CPU saves this information whenever a task is suspended in

favor of a new one, using three cells on the JPDL, the job push-down

-149-

list. The mode that attained (direct or indirect) at suspension time

is also saved as part of the task status.

Routine X52 controls interstep sequencing after indirect commands

and maintains synchronization with the user after direct commands and

error commentary. Subroutine S60 is used for cleaning up debris in

the user's block and storing all necessary context in the user's block

before examining MODE. If MODE equals zero, the CPU returns control

to the user without further comment. If the CPU has been told to do

a step, routine X55 is used for determining whether it has to be done

again. If the CPU has been doing a part, it searches for the next

step in the part. If none exists, X55 is used. Otherwise, the CPU

honors interruptions from the user and recalls from the SU before

transferring control to X54, which serves as a secondary, traffic-

control point for restarts when JOSS is told to continue after having

returned control to the user for any reason. The user can take any

action he wishes when in control, including changing the current step.

Accordingly, CSA is set to zero whenever the user deletes or changes

the current step, as a signal that a new search must be carried out

before the step can be interpreted. A skip-code is also used to con¬

trol step searches: If zero, the current step is required; otherwise,

the step following the current one. A stopping command causes the CPU

to make the skip-code nonzero.

Routines X55 and X56 are used for intratask sequencing after a

step or part has been done; routine X57 is for mopping up after com¬

pletion of a task and picking up the interrupted task if one exists.

Routine X55 makes the break-code nonzero to indicate that intratask

-150-

Flowchart 8a—ADVANCE TO NEXT COMMAND

LABEL

X52 S60 :

ACTION

Tidy up the user*s block.

YES NO

Is control to be returned to user? (MODE = 0?)

X52.2 Set reentry code and return address to

indicate awaiting command, and return

control to the user.

X52.3

X52.3

X52.4

X53

Anything to do?

Doing a step?

Carrying out a To command?

Set skip-code = 1 to force P74 to

search for the next step in the part.

P74: Search for next step.

Done?

Reset skip-code and break-code to

zero to indicate at step.

Make MODE nonzero to indicate

indirect mode.

X47: Honor interruptions from the user

and the SU.

X54 Make MODE nonzero.

X52.2

X55

X53

X55

P74: Search for current (skip-code = 0)

or next (skip-code = 1) step.

Done?

Compose pointer to beginning of step.

X54.1 Were we doing a part?

Is step being done repeatedly?

P72A: Cancel current task; examine suspended

task.

Type error message (T aantt find step ...).

X54.3 Type error message (J oanft find step ...
for iteration.).

X54.1

X51

X52.4

X54.3

X52

X52

-151-

Flowchart 8b--CONTROL REPETITIONS OF STEPS AND PARTS

LABEL ACTION

X55 Is step or part being done repeatedly?

Set break-code = 0 to indicate duping.

YES NO

X57

X56

X56.2

X57

X57.1

X57.6

Set skip-code to zero.

Set MODE = mode when task was initiated.

P71: Set up for next iteration.

Done?

Set MODE = MODE + 2 to indicate duping.

P73: Search for step or part, taking in¬

dependent error actions.

Set CSA, CSI, and CPI.

Is task governed by a for phrase?

S63: Prepare to make assignment to the

iteration variable.

P67: Make the assignment if there is

enough space.

P72A: Cancel current task; examine status

of suspended task.

Anything to do?

Was this task suspended directly?

Was it suspended during the task?

Was it initiated directly?

Type Done. I'm ready to go.

Return control to the user.

X57

X53

X53 E3

X52

X52

X57.2

X57.2

X57.2 Get correct step number for status message.

If step has ‘been deleted, force {altho I can't

find it) to be appended to status message.

Use the break-code and the skip-code to compose

the appropriate status message (at step, from

step, or in step). Type the status report and

return control to the user.

-152-

sequencing is going on and resets MODE to its value at the time the

task was. initiated.

Routine X56 reassign, the variable of iteration, if required,

and restarts the interpretation of the required step or part. „ODE

is incremented by two to indicate that this is going on (as a con¬

venience for the error routines in the event that the required step

or part can no longer be found or there is not enough space to carry

out the reassignment).

DEMAWim VALUES TO BE INPUT (Demand)

sew causes JOSS to retun, control to the user so that he on,

input a value to be assigned to a letter or indexed letter. The

conmand consists of the word i^nd f„ll„„ed by a letter or a valid

expression for an indexed letter to „hich the input v.,„e ls be

assigned. JOSS types the identifying letter or indexed letter fol¬

lowed by an equals sign and then turns control over to the user, hh

the user releases control, JOSS evaluates the expression typed by th,

user, makes the assignment, and continues to the next step of the

stored program in progress. If the user types nothing a. all, Joss

takes this as an implied request that the system suspend whatever it

is doing and return control to the user (i.e„ as an interruption,.

JOSS responds to errors in the expression hy commenting on the

error and then repeating the command. The user can backspace, over-

strike, and strike out charartpre «
cnaracters> and can cancel the line by typing

an asterisk as the last character fine;«; a
racter. (JOSS responds to canceled lines

by repeating the command.)

-153-

No more than one value can be demanded in a single step. State¬

ments such as

Demand a(i)3 i3 b(i).

admit two interpretations; The assignments can be made "simulta¬

neously," or sequentially. Although the statement itself carries a

connotation of simultaneity, its execution in terms of JOSS demands

and user responses is palpably sequential. In either case, the im¬

plementation is not straightforward, since multiple assignments are

involved. As in the case of simultaneous-assignment commands,^ it

was felt that multiple-demand commands were not worth the effort re¬

quired to implement them properly.

The user can specify an "alias" for the identifying letter or

indexed letter. For example,

Demand t as "temperature",

would cause JOSS to use the identification, temperature, when re¬

questing the value to be assigned to t.

USING THE LONG-TERM FILES

Files are identified by a unique number, which is assigned to

the user on application to the proper authorities at RAND, and by

a nickname (up to five letters and/or digits) chosen optionally by

the user. Any collection of objects that can be deleted constitutes

an acceptable item for filing. Items of a file are identified by a

tSee p. 88.

-154-

number and an optional nickname, both supplied by the user when he re¬

quests JOSS to file the item. Items can be recalled into the user's cur¬

rent collection of program and data and can be discarded from the files.

JOSS files away the constituent elements of an item as an exact

image of a line or set of lines the user could type to define the

elements directly: Values are filed as elided assignment statements

and formulas as formula-assignment statements; steps and forms are

filed as they would appear if the user had requested JOSS to type all

steps and forms. JOSS recalls items from the file a line at a time

and treats each line as though it had been typed directly by the user.

Expressions for files and items consist of the word file or item*

followed by the object's identification: an expression for the ob¬

ject's number followed by its nickname, which must be parenthesized

or bracketed and set off from the number by spaces.

The user must tell JOSS what file to use for filing operations.

JOSS will continue to use the specified file until told to use another

one. When requested to type a file's item-list, JOSS will type, in a

tabular format, each item's identification, filing date, and other

information.

Filing actions can be aborted because of hardware malfunctions

and because of lack of storage space on either the disc (during filing)

or in the user's core storage (during recalls). JOSS makes no effort

to protect the user from prematurely terminated recalls. This is the

sole exception to the general rule prohibiting irreversible changes

in the user's block until JOSS is certain that the entire action can

be carried out without error.

• ■> .«MM» M**4 «»■ ”«11 " -«WWIWHH» >.«rliw» ww»-1»« W^mStlll^ll^.W^WBl^.WflllllfíilIlttlrHlíUWiVMimiPh r-4MlCM«9lH«l frnitrri»trti1li|iii»t»i—iMi « mir»—rit-lMr;-i-

-155-

The standard 8-bit representation is used for filing line images,

and collections of 8-bit line images are recorded and read as 128-

word groups (line images do not extend over group boundaries).

The routines and subroutines for typing objects are used for

filing. A switch (UDF1) is used to shunt the line's image to the

disc buffer area rather than to the console after the line has been

composed.

The routines and subroutines for processing lines are used for

recalling an item. For recalling items, the same switch shunts control

back to the routines rather than to the user. Lines received from the

disc may be direct commands, form declarations, or indirect steps to

be stored.

One of the input/output subroutines is used for typing item-

lists, an item at a time, from a representation of the list in a 128-

word buffer. Because only one user can access the files at a time,

the original representation of the list in the disc buffer is copied

directly into the user's block, and the disc is released before typing

begins. This requires that the user's block be temporarily expanded

while the list is being typed. The necessary space is always fur¬

nished by the supervisory routines unless no more space is available.

STORAGE MANAGEMENT

In multiuser systems it is prudent to attempt to keep as many

users "in core" as possible to reduce the overhead associated with

core reorganization and with the swapping of users' blocks between

core storage and intermediate drum storage. In JOSS this is achieved

-156-

12
by limiting the size of individual user's blocks. The 2 word limit

that was tentatively chosen seemed to strike a balance among (1) the

expected number of concurrent users, (2) their expected requirements,

and (3) the 214 words of core storage available for users' blocks.

This limit still stands. Most users are comparatively "small," while

"large" users segment their programs and data and use the disc files

to effect program and data overlays (all file actions can be carried

out indirectly as well as directly). The distinction between these

two broad classes of users is actually a sharp one. Users in the for¬

mer class rarely butt up against the 2^ word limit (except briefly,

in the case of errors caused by inadvertent infinite recursions);

"large" users, on the other hand, are always wringing out the last

drop of space. This fact was overlooked in the design of the CPU.

A cavalier attitude toward the use of the last few words available,

coupled with a profligate use of general routines for interpreting

classes of complex expressions, made life awkward for the space-limited

users. Two errors in design were particularly contributory:

1. A general, reentrant routine (P40) for interpreting expressions

for left-hand sides was used for interpreting left-hand sides of assign¬

ment statements. The routine requires a minimum of three cells for the

simplest expressions (e.g., x) and more for lengthier, but equally sim¬

ple, expressions such as A(l)j M(2S3),

2. The assignment of new objects (steps, forms, values, and for¬

mulas) to previously used identifiers was carried out without taking

account of the space that would be made available by the deletion of

the old objects assigned to the corresponding identifiers.

-157-

This treatment was justified by the rationalization that the user

could always delete an object before redefining it, although even this

was sometimes impossible for elements of arrays. The real problem

popped to the surface when disc files were added to the system, cata¬

lyzed by yet another design decision: to represent elements of a use^s

program and data on the disc files as exact representations of steps,

forms, and assignment statements for values and formulas, and to use

the general routines for Set and Let statements to carry out the as¬

signments when recalling items from the file. It turned out that it

was sometimes .mpossible to recall items from the files, because the

CPU was using too much space for bookkeeping by wheeling in ponderous,

space-using routines to interpret simple expressions for left-hand

sides. The situation was rectified, and the general strategy for the

use of space during interpretation is now as follows:

1. Three cells of available space are held back from the user

and used only for interpreting Type, Delete, Use, File, Dis-

ccæd, and Reoall commands. This is the smallest number of

cells required by the routines for interpreting expressions

for steps, forms, and elementary operands.

2. Left-hand sides of assignment statements are examined for

simplicity before using the general routine for interpreting

left-hand sides, and simple left-hand sides are compiled

without recourse to available space.

3. Whenever new objects are assigned to previously used identi¬

fiers, the space used for storing old objects is taken account

of in providing space for new objects.

-158-

Whenever evailable space is exhausted, JOSS tidies up and snaps

back to the beginning of the eo-and being interpreted before request¬

ing an additional core block of the SU. If the request is granted,

the additional block of 1024 vords is incorporated into tbe available

ep.ce list, and JOSS begins the interpretation of the interrupted co„-

»and anew. (This requires that copies of direct co-ands and co-ands

coming fro, th, disc files be saved for such contingencies.) If „„

space is available, JOSS „„tifies the „er and then returns control

to him. If the incident occurred during an operation involving the

disc files, JOSS types

I've run out of space during above.

or

b’ve ■■‘un out of space during step....

as a warning to the user that the aborted action might have caused

irreversible changes in the user's program, data, or files. n. sa„e
mossages are tfped when JOSS runs out of space while preparing to ,,.

peat a step or part. Otherwise, JOSS types

Revoked. I ¿ i out of space.

I van out of spaae at step....

-159-

ERRQR MESSAGES

Whenever an error (or a system malfunction) is detected, JOSS

tries to identify both the error and the point of error** for the user.

Errors that cannot be described precisely and unambiguously, and errors

that are easily detected by the user, are reported by the brief mes¬

sage Eh?. System malfunctions, references to undefined objects, errors

in arithmetic evaluations, and many explicit violations of form occur

infrequently, and the error messages are explicit. These are best de¬

scribed by the following record of a session with JOSS.

Demand x.

Don't give this command directly.

Done.

Don't give this command directly.

Stop.

Don't give this command directly.

To step 1.1.

Don't give this command directly.

1.1 Go.

Do step 1,1.

Error at step 1.1: Don't give this command indirectly.

1.1 Cancel.

Do step 1.1.

Error at step 1.1: Don't give this command indirectly.

Delete all.

Type x.

x = ???

i = 1

3 = 2

Type A(i, j).

A = ???

+See p. 67.

-160-

Ad, 1) = 11

Type A(i, j).
Ad, 2) = ???

A(l, 2, 3, 4, 5, 6, 7, 8, 9; 10, 11) = 1
Please limit number of indices to 10.

A(300) = 1
Index value must be integer and |index| < 250.

TiyE
e 10*100.
ave an overflow.

Type i/0.
I nave a zero divisor.

Type (-i)*(1/2).
I nave a negative base to a fractional power.

Type 0*(-2).
I have zero to a negative power.

Type sqrt(-i).
I have a negative argument for sqrt.

Type log(-i).
I have an argument i 0 for log.

Type sin(lOO).
Please keep |x| < 100 for sin(x) or cos(x).

Type sum[i = 1(-1)10: i].
Illegal set of values for iteration.

Type 123456789.9.
Please limit numbers to 9 significant digits.

Type step -1.
Step number must satisfy 1 < step < 10*9.

Type part 1.1.
Part number must be integer and 1 < part < 10*9.

Type form 1.2.
Form number must be integer and 1 < form < 10*9.

123456789.9 Type i.
Please limit step labels to 9 significant digits.

Type step 1.1.
I can’t find step 1.1.

-161-

Type part i.
I can't find part 1.

Type form j .
I can't find form 2.

1.1 Stop.

Do part 1, 2 times.
Stopped by step 1.1.

Delete part ^

Go.
Error during above: I can't find part 1 for iteration.

1.1 Stop.

Do step 1.1, 2 times.
Stopped by step 1.1.

Delete part 1.

Go. .
Error during above: I can't find step 1.1 for iteration.

Cancel.

Go.
I have nothing to do.

Let f(a, b, c, d, e, f, g5 h, i, j, k) = a formuJa with too many parameters.
Please limit number of parameters to 10.

Form 1 :

Type i, j in form 1.
I have too many values for the form.

Type 123456 in form 1.
I can't express value in your form.

A(i) = 1

Type A in form 1.
I need individual values for a form.

Form 1 :

Type i, j in form 1.
I can't make out your fields in the form.

A transmission error was forced while typing this line.
A transmission##error was forced while typing this line.

Sorry. Say again:

;< = 1+1.
Please limit lines to 78 units Scheck margin stops). Say again:

-162-

1.1 Type i.
Do part 1, 1.2 times.

Number-of-times must be integer and £ 0.

X = i = 1.

Please use parens or brackets to set-off ambiguous equals signs.

Type (i = 2: i; i = 3 : i + 1),
(i = 2: i; i = 3; i + 1) = ???

Type first(i = 1(1)10: i < 0).

first(i = 1(1)10; i < 0) = ???

Use file 4 (S618).

I canft find the required file.

Use file 4000 (S6180).

File number must be positive integer < 2750.

Use file 4 (S.6180).

Please limit IDfs to 5 letters and/or digits.

Use file 4 (S6180).

Roger.

Recall item 120.

Item number must be positive integer < 25.

Recall item 2 (A.ml).

Please limit IDfs to 5 letters and/or digits.

Recall item 2 (Ami),

I canft find the required item.

File all as item 2 (Amort).

Please discard the item or use a new item number.

Other messages that may be typed by JOSS are

Something’s wrong. I can’t access the files.

I’ve run out of disc space.

Something’s wrong. Try again.

The last message is typed by the CPU on finding something awry in its

records or receiving contradictory status reports from the I0U during

actions on the file.

-163-

IV. REPRISE

The PDP-6 version of JOSS was initially conceived as a recasting

of the original JOHNNIAC version into faster and more reliable hard-

ware* Core storage for individual users* blocks was to be increased

at least fourfold; facilities for filing programs and data were to be

added; the consoles were to be redesigned using more modern typewriters

and electronics; and the new system was to be agile enough to service

at least sixty consoles simultaneously without noticeable interactive

degradation. These modifications and extensions were sufficient in

themselves to cause major changes in the profile of the users' com¬

munity. In brief, users' requirements expanded to take advantage of

the increased resources of JOSS. The fourfold increase in the size of

users' blocks attracted users who wrote larger programs than could have

been accommodated by the original system. The availability of the disc

files for long-term storage generated a class of users who wrote very

large, segmented programs, and used the files to carry out program and

data overlays. To cater to the latter class, JOSS eventually had to

allow filing actions to be carried out indirectly as well as directly.

The behavior of the system was affected in two, fairly predictable ways.

First, the average computing speed of JOSS turned out to be less than

originally estimated: Because large programs^ generally run longer than

small ones, any increase in the percentage of large programs causes a

shift in the computation/interaction balance--the more programs that are

"compute bound," the slower the processing of individual computational

^More precisely, programs that use a large amount of data.

-164-

requests. Second, the indirect use of the files for program and data

overlays often becomes so heavy as to cause irritating delays to the

casual users who are accessing the files infrequently.

Further, in the face of larger programs using more data, the set

of 52 single-letter identifiers becomes restrictive--not in size, but

in mnemonic richness. The necessity for extending the identifier set

in some regularized manner was recognized fairly early. Postscripted

letters (e.g., A2j m5) and primed letters (e.g., a ' 3 a"'} were considered,

but no clear-cut decision could be reached, and the 52 letter set re¬

mains. The current version of the CPU could be modified, with some care,

to accommodate postscripted or primed letters as identifiers. (A richer

designatory capability is probably neither required by nor suitable for

most JOSS users.) However, there is a growing class of users who are

writing general programs designed to be used by people having no famil¬

iarity with JOSS, from whom--in the estimation of the program designers--

JOSS should be sealed off. The capability for demanding input values un¬

der an alias was added to JOSS to partially satisfy such requirements.

This, together with the capability for typing in forms, allows users to

seal off their programs to some extent. However, the error messages re¬

main: Users cannot be completely isolated from JOSS until provisions

for sensing and fielding error conditions are provided in the language.

Neither block structures nor subprogram structures are offered by

JOSS; that is, users have no way of isolating collections of program

and data so that step numbers and other identifiers used within a col¬

lection can be treated by JOSS as being local to the collection and,

therefore, reusable in coexisting collections without conflict. It is

difficult to assess the effects of this deliberate omission, since

-165-

formulas, conditional expressions, and iterative functions seem to go

a long way toward alleviating the problem (even making it nonexistent)

for all but the "larger" users. The proper handling of block struc¬

tures in an interactive environment is considerably more difficult than

the relatively direct task of recognizing and handling hierarchies of

identifiers (in fact, the latter mechanism is already incorporated in

the current CPU). The difficulty lies in the fact that JOSS would have

to be prepared to keep track of two distinct hierarchies: a dynamic

execution-hierarchy for carrying out stored programs and subprograms,

and a dynamic editing-hierarchy for modifying programs, subprograms,

and data. The questio n that must be answered are

1. How freely may users move within and between blocks and sub¬

programs for purposes of editing and computation?

2. How freely may they modify such structures during execution?

3. How may they express their requests?

4. What effect would such facilities have on the general behavior

of the system? How would the apparent simplicity of JOSS be

affected?

There is always the temptation to simplify the problem by (1) allowing

only a single-level block structure (i.e., a "main" block and a set of

nonoverlapping subblocks); (2) having JOSS cancel all suspended and

ongoing tasks whenever the user "opened" a subblock for editing tasks;

and (3) not allowing direct, parenthetical Do's (at least of sub¬

blocks). Even this simplifying tack does not legislate the problem

out of existence. One must still furnish JOSS (and the user) with a

-166-

simple notation for distinguishing between a letter used as a local

identifier within a block and the same letter used globally (either

as an alias for a global identifier or as a parameter "passed down"

to a subprogram).+ Having JOSS snap back to the "main" program on

errors inside subblocks and type, for example, J have an error in sub¬

block..., would leave the user stranded and informationless in such

situations, and is completely unreasonable for handling interruptions

and Stop commands. The general question is too subtle to be considered

m this study and will not be mentioned further; it is, however, far

too important a question to be swept under the rug for long.

Tripling the number of in-house consoles and speeding up the

system made JOSS more available. The increased availability, coupled

with file storage, resulted in the development and extensive use of a

rash of multiconsole games whose participants communicate via common

files. Such exercises make heavy use of JOSS's scarcest resource,

consoles, and tend to decrease the system’s availability. Further, the

designers of such games now find that they require the capability for

interconsole signaling and communication. The ability to access and

reset the value associated with timer was added to the language as an

ad hoc (and poorly thought out) solution to the signaling problem.

Most users of timer, however, now do so to generate pseudo-random,

decimal digits (the least significant digit of timer).

In summary, the current version of JOSS differs markedly from the

original version, despite the fact that it appears to be a direct.

by the'limitedHcharacter'sets^vailable^and most'ar^incomplete!'^^^6^

innocent extension of the original. Increasing the resources and fa¬

cilities provided by JOSS cianged the behavior of users (and of JOSS

itself), sometimes in predictable ways, often in completely unantici¬

pated ways. Many of the changes can be attributed mainly to the in¬

creased storage and file capability of the current version rather than

to extensions of the language--JOSS, like most systems, cannot be

measured by its language alone. On the other hand, although most of

the extensions were chosen so as not to intrude on "basic" JOSS, casual

users can now get into trouble, often in subtle ways. For example, a

user can inadvertently wipe out an array of values by assigning a scalar

value to the letter identifying the array. In the original system,

such blunders were probably infrequent, because programs were small and

the user could keep track of his identifiers. Moreover, the effects

were not drastic, because of the limited storage provided by the orig¬

inal system. Currently, as users write larger programs and strain the

identifier set, the probability of such blunders increases, and--with

increased storage available--the effects may be catastrophic. JOSS

could easily be made to demand that the user explicitly delete arrays

(and probably formulas) before reassigning the letter of identifica¬

tion to another type of object by treating such reassignments as errors.

Unfortunately, this conflicts with the mechanism used to recall items

from the disc files: Formulas and values are recorded on the files as

Let statements and elided assignment statements, so that the user would

have to take extreme care that recalls of items from his file not be

aborted by reassignments of letters to different objects.

Examples like the above are legion in JOSS and, undoubtedly, in

xr '

-168-

other changing systems. Many carefully considered design points turn

out badly, while some hasty, off-the-cuff decisions turn out to be the

right ones; errors of commission are matched by errors of omission, and

little turns out to be just right. The situation is best summed up in

the words of Congreve:

Thus grief still treads upon the heels of pleasure;
Married in haste3 we may repent at leisure.

Some by experience find those words misplaced
At leisure married^ they repent in haste.

-169-

Appendix

SUMMARY OF JOSS LANGUAGE

Step Number Verb Arguments

X, y, z f 3 1
part 6

Modifiers

* in form 3 if x + y > 10.1
for x = 1(10)100, 1000.

DIRECT COMMAND: Step number not present; command is executed immediately.

STORED COMMAND: Step number present; command ie stored in order of step number.

STEP: A stored command; step number is limited to 9-digit number * 1.

PART: A group of steps whose step numbers have the same Integral part.

FORM: A pictorial specification of literal information and fields to be

filled with values » for formal output. Fields are indicated by

strings of underscores (with optional decimal point) or strings of
periods (for a tabular form of scientific notation):

Form 7:

I = • amps• V - ... volts

NUMBERS: Nine significant digits; 10-99 s \value\ s 9.99999999*1099 or value - 0.

SYMBOLS: Single-letter identifiers, upper- or lower-case. May identify decimal

values, logical values (true, false), formulas, and arrays of values.

FORMULAS: May have up to ten formal parameters (distinct letters) or none (see Let).

ARRAYS: May have up to ten, integer-valued indices in the range [-250, 250].

ARITHMETIC: Addition (*), subtraction (-), multiplication (*), division (/), exponen¬

tiation (*), and square root (aqrt) give true results rounded to nine
significant digits. Zero is substituted on underflow.

RELATIONS:

LOGIC:

GROUPERS:

IMPLIED

GROUPINGS :

< > ^ £ = * (extended relations permitted; e.g., a < b £ c),

and or not

() [] used Interchangeably, in pairs.

3 + 1/2 + 1/4*5 -♦ (3 + 1/2) + (1/4)*5

-2*3*4 -5-. [-(23)*4] - 5

2*3*4 -* (23)4

a or b and not c or d —» a or [b and (not c)] or d

-170-

Set

Let

Delete

Me

Demand

Do

(Do ...)

Done

SUM
Cancel

(Cancel.)

To

Go

Assigns a value. Set and final period nay be omitted on direct commands*
Set X = 3.

Set a(5t x) = y + 3«z - x*2.

Defines a fovmula of up to ten parameters.
Let f(xt y) = x*2 + 10-x - 6*y.
Let h = (b - a)/2.

Let D(ff x) = [f(x + d) - f(x)]/d.

Erases values, parts, steps, forms, formulas.
Delete x, part 3, all forms.

Delete all values, all formulas.
Delete all.

Types quoted text, or types blank lines (_), values, parts, steps, etc.
Type "The quick brown fox".

Type x + 3, D(sin, 0), all steps.
Type all.

Types identification and equals sign, then waits for user to input value.
Treats blank input lines as interruptions.
Demand a(3, i).

Demand t as "temperature"

Initiates execution of step or part (step by step beginning at fxrst step
of part), repeatedly if modified by a for or a times phrase.

Do part 6 for x = .1, 2(2)10, 100*a + 2*b.

Interprets direct Do as a stored Do (i.e., does not cancel before execu¬
tion), but returns to user when done.

(Do part 3.)

Terminates execution of current Do for current repetition.

Terminates execution of current Do for all repetitions.

Terminates execution of all Do's,

Direct only! Terminates execution of last (Do ...).

Alters step-by-step sequencing. Continues at indicated part or step.
To step 3.5. K

Suspends step-by-step execution to await instructions from user.

Continues execution after interrupt^ error message, or Stop command.

t
Pressing the INTERRUPT button on the console.

-171-

Page

Line

Form

Use

File

Recall

Discard

times

in form

sparse

iterrn list

time

users

size

timer

i

Advances paper to next page.

Types a blank line.

Identifies (by an integer) and stores the form typed on the next
input line.
Form 3:
X = _._ y = _._ z = ..

Prepares to use indicated file for all subsequent file actions.
Use file 107 (code)J

Stores an item in the file.

File part 3, x, z as item 7 {code).

Retrieves an item from the file.
Recall item 3 {code).

Erases an item from the file.
Discard item 3 {code).

Modifies any command. JOSS carries out comoand if condition holds.
Type X if 0 si X < 5.
Set y = 3 if X £ 10 and x*y = 10.

Modifies Do only. JOSS executes part or step repeatedly for specified
set of values.

Do part 3 for x = 1(1)10(10)100, 1000.
Do step 1.2 for x = .01, .03, .l(a)b.

Modifies Do only. JOSS executes part or step specified number of times.
Do part 4, 43 times.
Do step 7.3, n + 1 times.

Modifies Type only. JOSS types values in fields of specified form.
Type x, y, z*2 in form 3.

Modifies JOlS’s treatment of missing array elements. JOSS treats them
as zeros and they require no storage.

Let A be sparse.

A summary of items in the file being used.
Type item-list.

Time of day at RAND.
Type time.

Number of consoles being serviced by JOSS at the moment.
Type users.

Number of storage units currently occupied by user's program and data;
about 1900 are available.

Time in minutes and hundredths since log-on or last Reset timer.

Current line number (1-54) on typed page.

Codes, if used, are composed of no more than 5 letters and/or digits; no dis¬
tinction between upper- and lower-case.

-172-

sqrt(x)

sin(x))

cos(x))

log(x)

exp(x)

arg(x, y)

equare root, x ^ 0

\x in radians\ < 100

natural log, x > 0

ex

angle (see figure) in
radians, arg(0, 0) = 0.

sgn(x)

ip(x)

fp(x)

dp(x)

xp(x)

-lf 0, +1 for x<0,x=0>x>0

integer part ip(100.5) = 100

fraction part fp(100.5) = .5

digit part dp(l00.5) = 1.005

exponent part xp(100.5) = 2

absolute value for decimal values

I true I = 1

I false I = 0

sum[i = a(b)c: f(i)]

prod[i = a(b)c: f(i)]

min[i = a(b)cî f(i)]

inax[i = a(b)c: f(i)]

conj[i = a(b)c: P(i)]

disj[i = a(b)c: P(i)]

sum(x, y, z + 10)

prod(xj y, z + 10)

niin(x, y, z + 10)

max(xf y, z + 10)

conj(x < y ^ z, y > 3,

disj(x < y i z, y > 3,

first[i = a(b)c: P(i)] gives first value of i for which P(i)

tv(P) “ ^ V is false, = 1 if ? is true,
= false if P is zero, = true if P is nonzero

P)

P)

is true

<Pr El* P2: E2; • • ‘ j‘ En
where: are expressions for logical values,

means: If is true use otherwise if is true use ffg.otherwise use E .

Set x = (0 < y £ 5: 0; y < 10: y*2; 5). *
Let P(x) = [x = 0: 1; prod(i = l(l)x: i)].

-173-

JOSS BIBLIOGRAPHY

PUBLICATIONS OF CURRENT INTEREST

Baker, C. L., JOSS: Console Design^-The RAND Corporation, RM-5218-PR,
February 1967.

-, JOSS: Introduction to a Helpful Assistant, The RAND Corporation,
RM-5058-PR, July 1966.

-, JOSS: Rubrics, The RAND Corporation, P-3560, March 1967.

Bryan, G. E., JOSS: Accounting and Performance Measurement, The RAND
Corporation, RM-5217-PR, June 1967.

-, JOSS: Assembly Listing of the Supervisor, The RAND Corporation,
RM-5437-PR, August 1967.

-, JOSS: Introduction to the System Implementation, The RAND
Corporation, P-3486, November 1966; also published by the Digital

Equipment Computer Users Society, VECUS Proceedings, Fall 1966.

-, JOSS: 20,000 Hours at the Console—A Statistical Summary,
The RAND Corporation, RM-5359-PR, August 1967.

-, JOSS: User Scheduling and Resource Allocation, The RAND
Corporation, RM-5216-PR, January 1967.

Bryan, G. E., and E. W. Paxson, The JOSS Notebook, The RAND Corporation,
RM-5367-PR, August 1967.

Bryan, G. E., and J. W. Smith, JOSS Language (Aperqu and Précis,

Pocket Précis, Poster Précis), The RAND Corporation, RM-5377-PR,
August 1967.

Gimble, E. P., JOSS: Problem Solving for Engineers, The RAND Cor¬
poration, RM-5322-PR, May 1967.

Greenwald, I. D., JOSS: Arithmetic and Function Evaluation Routines,
The RAND Corporation, RM-5028-PR, September 1966.

-, JOSS: Console Service Routines (The Distributor), The RAND
Corporation, RM-5044-PR, September 1966.

-, JOSS: Disc File System, The RAND Corporation, RM-5257-PR,
February 1967.

Marks, S. L., and G. W. Armerding, The JOSS Primer, The RAND Cor¬
poration, RM-5220-PR, August 1967.

PUBLICATIONS OF HISTORICAL INTEREST^

Baker, C. L., JOSS: Scenario of a Filmed Report, The RAND Corporation,
RM-4162-PR, June 1964.

"The JOSS System: Time-Sharing at RAND," Datamation, Vol. 10, No. 11,
November 1964, pp. 32-36. (This article is based on RM-4162-PR above.)

-174-

Shaw, J. c., JOSS: Conversations with the Johmiaa Open-Shop Sustem
The RAND Corporation, P-3146, May 1965.

.' ¿OSS: A Designer's View of an Experimental On-Line Computing
System, The RAND Corporation, P-2922, August 1964; also published

in AFIPS Conference Proceedings (1964 FJCC), Vol. 26, Spartan Books
Baltimore, Maryland, 1964, pp. 455-464.

----, JOSS: Examples of the Use of an Experimental On-Line Computing
service. The RAND Corporation, P-3131, April 1965.

.• J0SS: Experience with an Experimental Computing Service for
Users at Remote Typewriter Consoles, The RAND Corporation. P-3149

1QAC r > I

