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Abstract

The transformations of the components of a two-dimensional vibration

caused by axis rotation and by a relative phase retardation are used to

derive three methods for expressing the changes suffered by polarized

light travelling through an inhomogeneous stress field, namely the Poincar4

sphere; Neumann's differential equations; and 2x2 complex transformation

matrices, and shows their relation with the explicit solution of Drucker

and Mindlin. The complex matrix method is applied to the calculation of

strain birefringence by alignment and of polarization changes in a stress

field with a continuous variation direction and magnitude of principal

stress-difference. A comparison with experimental observations shows ex-

cellent agreement and indicates some of the difficulties inherent in the

problems of birefringence in rotating stress fields. It is hoped that the

unified derivation of these methods will facilitate their wider use in

photoelasticity. TE0FlnRIOAL LIBRARY
BLDG 313
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Introduction

The stress-optical relation used in ordinary photoelasticity is strictly

valid only in homogeneous stress fields and approximately correct also in

fields with stress gradients but without any rotation of the principal di-

rections [1,4]. The laws of birefringence in inhomogeneous stress fields

containing azimuth changes of the principal directions are considerably more

complicated. Neumann [2] first solved the problem in 1841 for a succession

of steps of simple retardation alternating with steps of pure rotation of

principal directions (i.e. axis change) and derived the differential equa-

tions bearing his name. Drucker and Mindlin [3] have obtained an explicit

solution for fields of constant stress difference and constant rate of rota-

tion per unit length. Mindlin and Goodman [4] gave the general differential

equations for light propagating in any inhomogeneous state and showed that

they simplify into Neumann's equations for harmonic waves and with certain

approximations which hardly affect the accuracy for ordinary photoelastic

materials and rates of rotation. Their differential equations have not been

solved for fields more complicated than the one considered by Drucker and

Mindlin. Jones [5,6], Mueller [7], Richartz and Hsu [8] and Aben [9,10)

have developed matrix transformations of the components of the light vector

passing through birefringent and rotating media. Poincare [11-14] with a

vague reference to M. Mallard introduced an ingenious geometric representa-

tion of elliptically polarized light on the surface of a sphere where a sim-

ple change of relative retardation corresponds to a rotation about one diameter

and a pure axis change by a rotation about a perpendicular diameter. Accord-

ingly Poincare s sphere is a spherical analog of Neumann's equations. These
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results have not been widely noticed and have frequently been re-derived

under different forms by other investigators. For example, Menges [15]

and Kuske [16] developed a plane geometric representation which corre-

sponds to a modification of a plane projection of Poincare's sphere. Fur-

thermore the exact similarity between crystal birefringence with rotatory

power and stress fields of varying principal direction has not been recog-

nized by all,so that the wealth of information available from physical op-

tics has been frequently ignored in stress-optical studies.

In recent times the effect of the rotation of the principal stresses

in photoelasticity has been ignored up to the publication of Drucker and

Mindlin's [3] paper. Even then, however, no practical problem with a sig-

nificant rotational effect was found, so that doubts existed on their im-

portance. More recently rotational effects have appeared to be rather un-

important in some problems [17-19] with strong rotation and significant in

others [10, 20-23]. A significant step would be made by learning to dis-

tinguish when the rotational effects are important. The most useful result,

however, would be to obtain an inverse solution of the stress distribution

solely from the total optical effect on light crossing the stress field. At

present this problem has not been solved except approximately for a few spe-

cial cases [10,23] or, for transparent shells,by comparison with the optical

effect caused by a large number of stress variations [21,22]. O Gen-

eral experimental solutions of three-dimensional problems can be obtained

when additional information is obtained either by stress-freezing and cutting

the model up [24-26], or from transverse observations in scattered light over

the whole light path [26,27]. The problem of scattered light in rotating

stress fields has been treated by Menges [15] and by Robert [28] who devel-

oped special equipment and methods of measurement.
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The present paper gives a common derivation and comparison of various

apparently different methods of expressing and calculating the birefrin-

gence in inhomogeneous stress fields, and uses them in the calculation of

birefringence by alignment and of the rotational effects in birefringent

coatings. The discussed methods include simple variations of retardation

and orientation of the vibration ellipse, the Poincare sphere, Neumann's

equations, Drucker and Mindlin's and Goodman's solutions, 2x2 unitary ma-

trices, and the Stokes vector. It is hoped that this unified derivation

will increase their usefulness in photoelasticity and will facilitate the

choice of the most suitable method for each problem or the switch from one

to another when needed.

Transformation of the Light Vector

The light vector L representing an elliptical vibration at any point

of the ray in a transparent medium can be expressed either in coordinate axes

u,v parallel to the principal stresses a1 02 in the wave-front at that

point, or in its own principal ellipse axes u,v (Fig. 1). The direction of

propagation p is assumed to be outward from the plane of Figure 1 so that

the systems a01 O2 p and u, v, p are right handed. The angle e is

positive when the rotation from a1 to OP is right handed (RH) about p .

In axes u,v the elliptic vibration has the form:

u = A cosecos(Wt t £ + ca)

; (,£) (1)
v A sin~cos(Wt - £ + c)

where tan8 is the amplitude ratio, 2£ the relative phase difference, a

a common or absolute phase angle and A the intensity
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tane = (max v)/(max u)

2c = phase (u) - phase (v) (2)

A (max u) 2 + (max v )2

In its own principal ellipse axes u,v at an angle * to u,v (q > 0

when RH from u to ; ) the vibration takes the general form:

u A cos~cos(wt + ),
, (~,~p)(3)

v A sinbcos(wt - £)J

where e is ±w/4 and tanS is the amplitude ratio. The exact transfor-

mation of (1) into (3) would also require an additional identical phase

angle in both components u,v . Usually only the relative phase difference

of the pair u,v or u,v is needed and the common phase angle is ignored

in both.

It is also useful to determine the sense of rotation around the ellipse.

This can be recognized from the sign of the only non-zero component of the

cross product r x r of the radius vector and the velocity. The criterion

of handedness for w > 0 is

>0 Right-handed (RH) about the
sin2Asin2 0 direction of propagation

or (4)

sin2esin2¢ < 0 Left-handed (LH)

The vibration at a point is fully determined by the pair of variables

(e,0) and relations (1) or by the pair (e,*) and (3). Transformation of

the one pair into the other easily leads to the conditions of equivalence [29]
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sin20 sin2c = isin2]
(5a,b)

tan20 cos2s = tan2J

cos29 cos2* = cos2e f (6a ,b)

cot26 sin2* = 'cot2c J

The upper of the double signs applies for = 7r/4 , the lower for c = -n/4.

The transcription relations (5) and (6) will be used here for a simple deri-

vation of the Poincare sphere, which in turn will lead directly to the com-

plex matrix representation of polarization changes. This common derivation

of both representations is much simpler than the usual methods.

Simple Retardation and Pure Rotation

The changes suffered by polarized monochromatic light passing through a

homogeneously stressed plate with principal stresses al, a2 in the plane of

the wavefront are shown in Fig. 2 making a right-handed system with the direc-

tion p of propagation. The incident plane vibration (0) at an angle 6 to

01 is decomposed into components u,v parallel to 0l, 02 which travel at

different velocities, so that u is accelerated with respect to v by a

relative phase difference 2An = 2wAN , where AN is the corresponding fringe

order in wavelengths. (In some materials the direction of vibration of the

faster ray is parallel to the minor principal stress, which could be called

01 , but with al, 02, p right handed). As the phase difference increases

from 0 to w the two vibrations compose into the RH ellipses (right-handed

about direction of propagation) (1), (2), (3) and for 2c = v into the diag-

onal (4). As 2e increases from w to 2w the resultant vibration assumes

the shape of the same ellipses as before but described in an LH sense and now
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numbered (5), (6), (7),until for 2c 21 the initial plane vibration (0)

is restored. The sequence will be repeated for every increase of 2 c by

2w . If the incident light has the form of any of these ellipses, the se-

quence should start and return to this ellipse. During these changes of

2c the magnitudes of max u and max v hence also 8 remain constant,

but the principal direction V. and the ellipticity tane. of the ellipse
1 2.

vary. A pure retardation alters only £ and not 0 in the representation

(6,C) , but changes both b and * in the representation (e,p) . On the

contrary a pure rotation of axes clearly affects only * and not e in the

form (e,*) , but changes both 0 and £ in the form (6,c) ., Accordingly

a simple approximate method of calculating the polarization changes would be

to simulate the rotating stress field by a series of steps of pure homogeneous

retardation 2Ani alternating with steps of pure axis rotation A0i . The

incident vibration is assumed to be written in the local stress axes in terms

of (eoCo) (1).

a. Increase (e6'£o) to (60 ,o + AnI) = (61,ej)

b. Transcribe in new ellipse principal axes, i.e. find (with (6).

c. Change axes by A0I, i.e. change to (6 1,4i + AOI

d. Using (5) transcribe in local stress axes in the form (61,el)

Operations a to d are then repeated for each small retardation 2Ani followed

by a rotation A 1i , changing (8,*i) into (e i+ 1 ,*+ 1 ) . The emerging light

vector can be directly transcribed in components parallel with the transmission

and extinction axes of a plane polaroid analyzer, the first of which will give

the transmitted intensity. Some care is required with the sign of the change

A* : a positive A* may be achieved in fixed axes u,v by a right-hand rota-

tion of the ellipse axes u,v about the direction of propagation p , or with a
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fixed ellipse but a left-handed rotation of axes uv about p . The ellipse

rotation may occur by a suitable retardation change (as e.g. from diagonal 4

to ellipses 5, 6 and 7 in Fig. 2) or in a dextro-rotating medium. Accordingly

an ellipse rotation is positive when RH; an axis change is positive when LH

about p

Neumann's Equations

When the changes An and Aý are small, the resulting changes in E and

4 can be found by partial differentiation of equations (6) or (7). Assume a

light vector at incidence given by (0,C) in the stress axes, or by (6,*) in

its principal ellipse axes at * to the stress axes. The pure LH axis rotation

A* = Aý > 0 leaves e unchanged but changes 2E by an amount which is found

from the differential of (6b) in A2$ for e constant. After substitution of

(6b) and (5a) the differential becomes

a2- A2ý = -cot28 sin2c A2ý (7)

The change of 2c caused by pure birefringence is A2c = A2n , which added to

(7) will give the total change of 2£ during rotation and retardation

d2£d~2--'2 = Ai2, - cot2e sin2e ti2$

Division by A2ý and substitution of R for AO/An (12),gives equations (7a)

below.

The value of e changes only during rotation but not by retardation, hence

is given by the differential of (6a) in * for e const. After simplifica-

tion with (6a) and (5b) this gives equation (7b)
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d2c= 1 - cot28 sin2c
(7a,b)

d2--0= cos2e

These are Neumann's equations [2,4,30] giving the derivatives of the phase

2c and amplitude ratio 20 in the true stress rotation 2ý . Ordinary

derivative signs are used to show that d2c and d2e are the total changes

from both rotation and retardation. An equivalent pair of differential

equations may be obtained for the change of the ellipse orientation * and

of the ellipticity b caused by a pure retardation 2A, and a stress ro-

tation Aý . Equations (5b) and (5a) are now differentiated in d2r = d2c

for 8 constant and A2ý/A2r is added to the first to give

d2 = R ; tan2e cos2*P

d26 (Sa,b)

d2__. = tsin21p

where the upper of the double signs is valid when = ir/4 and the lower

when £ = -7/4 . Here d2b and d2e represent the total changes from ro-

tation and retardation and the derivatives are given in terms of the pure

birefringence 2 n corresponding to the same stresses without rotation. Fre-

quently equations (8a,b) are preferable to Neumann's.

The existence of a light vector (e,*) or (e,e) remaining invariant

with respect to the rotating stress axes along the light ray is found either

from equations (8a,b) for d2e/d2n = 0 and d20/d2n = 0 , or from (7a,b) for

d2e/d2ý = 0 and d2e/d2* = 0 . Their solution, requiring R constant , is

1) 2 *i = 0, 2 0l *tan-1R1o 2 0I = ±tan- 1R 12 I = 17/2(

or )22) 2•p2 = 0' 2 = -el e = r - 2el • 2 El£
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where the angle tan- R lies in the 1st or 4th quadrants and the upper

sign obtains when E +w/4 , the lower when E = -w/4 . The two solu-

tions have identical ellipticity tanO but opposite sense, and their

major axes are the one parallel, the other perpendicular to a 1, As

will be defined later such vibrations are orthogonal; in fact they ful-

fill the condition of orthogonality (23).

The Poincare Sphere

The derivation of the analog representation of the light vector on

a unit sphere was given by Poincare [11-13] as a projection from a com-

plex representation on a plane. It may be simply and directly derived

from relations (5) and (6), which have the same form as the transforma-

tions between two pairs of spherical coordinates. If a rectangular right-

handed system of axes E, p, p is chosen (Fig. 3), 28, 2* can be in'-

terpreted as latitude and longitude with ý as pole, the £-p plane as

equatorial plane and the circle *-e as prime *-meridian. Correspondingly

20 will be the co-latitude (polar distance) from the £-pole and 2E the

longitude from a prime c-meridian coinciding with the *-equator. The point

P with coordinates (28,20) or (26,2*) will then represent the light

vector L in the forms (1) or (3). Any point F on the *-equator (or

prime £-meridian) (Fig. 3) represents a plane polarized vibration and its

central angle from the e-pole is twice the angle e of the vibration with

a1 . In particular the £-pole represents a plane vibration in the direc-

tion a, , the £-antipole a vibration coinciding with 02 and point B a

plane vibration at 450 to 01 and 02 . The *-pole and antipole represent

circularly polarized light, respectively right and left handed. A pure
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retardation 2An > 0 will be represented by a right-handed rotation by

2An about the c-axis (Fig. 3), which leaves 20 unchanged but alters

both 20 and 2* . Accordingly plane polarized light P passing through

a homogeneously stressed plate at an angle 8 to a1 suffers changes

represented by the motion of point P (Fig. 4) on the parallel circle

projected along the line PNB . After a retardation 2C it will be at

N , after w at B and after 2ff back at P . A pure LH rotation

AO > 0 of the axis system causing an increase in * is represented by

a right-handed rotation 2AO of P about the *-axis (Fig. 3) which

leaves ; unchanged but alters both 28 and 2e .

Simultaneous small rotations 2An and 2A* , can be added vectori-

ally to give a small rotation 2Aa about an axis in the *-c plane at an

angle 2p to the c-axis (Fig. 5) (positive when RH about the p-axis),

where

2Ac = V(2An)2 + (2OA)2 = 2SAn (10)

and

R SAIAn S = \ (11)

2p -tan- 1 R , -w/2 < 2p < ?r/2 (12)

Since repeated small increments An,A* of constant ratio R = A/IAn are

represented by rotations about the same axis, the process is also valid

for simultaneous finite rotations of the same ratio R . A rotation by

2a = 2Sn about an axis in the prime *-meridian at an angle 2p = -tan- 1 R

to the c-axis can indeed be shown to correspond to Mindlin and Drucker's

solution [3].
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The great advantage in using the Poincare sphere is the direct visu-

alization and easy derivation of properties which otherwise may seem quite

complex. For example in the medium of constant rate R of rotation to re-

tardation the poles C and C' of the axis of rotation of the P-sphere

(Fig. 5) will not move. Accordingly the elliptically polarized vibrations

corresponding to C and C' will be invariant with respect to the local

stress axes, i.e. they will rotate unchanged with them, as has already been

found from the particular solution of Neumann's equations for R = const.

This result is well known in crystal optics: birefringent crystals with

rotatory power transmit two such orthogonal elliptically polarized vibra-

tions unchanged, except for rotation.

According to the well known theorem of Euler, the most general rigid

body rotation about a fixed point, hence also the most general transforma-

tion of incident into emergent light vector, may be achieved by a single

rotation about a generic diametral axis (Fig. 6), whether the actual rota-

tion is about the axis, or is made up of partial rotations about any number

of other axes giving the same final position of the sphere. This rotation

of the sphere as a whole transforms incident light P into N (Fig. 4) or

C into C' (Fig. 6), or any other incident light vector D into D' and

is a property of the specific birefringent system for a fixed wavelength,

not of the parameters of the incident polarized light.

The general rotation is defined either by its axis and angle of rota-

tion or by the initial and final positions C,D and C',D' respectively

(Fig. 6) of two points. The rotation of a single point C does not uniquely

determine the rotation of the sphere (one may imagine any additional rota-

tion of the sphere about the radius at C'). When C,D are non-diametral
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and C',D' are known (respectively two incident and emerging vibrations),

the axis of the equivalent single rotation is easily found as the inter-

section of the planes bisecting and perpendicular to the chords CC' and

DD' [11].

As introduced the Poincare sphere rotations represent the polarization

changes of the vibration written in the local (rotated) stress axes. It is

frequently required to refer the light vector to fixed space axes. This can

be easily done after each step (2A$,2An) by rotating back by -2AO from

M to M' (Fig. 7). The position of M' in the initial spherical coordi-

nate system gives the light vector in fixed space coordinates. Accordingly

the Poincare sphere can be used also for finding the light vector in space

coordinates, by simulating the various steps of pure birefringence as con-
/

secutive rotations by 2Ani about temporary e-axes in the plane of the *-

equator, each at angle 2Aýi to the previous one in the same sense about

the *-axis as the rotation of a1 about p (LH positive). For example the

polarization changes in a medium of constant R will be simulated by con-

secutive rotations of the sphere by 2Ad about C-axes in the plane of the

P-equator at 2AO to each other. An elegant equivalent representation,

taken from the kinematics of rigid body motion, is the motion of the sphere

attached to a circular cone of half angle 2 p ,with c' (Fig. 5) as axis

and the center as apex, tangential to and rolling on the plane of the *-

equator. All results found with birefringent and rotating systems may be

easily derived from this very descriptive representation, used by Poincare

[11] to calculate the rotatory effect of piles of discreet ordered plates

(piles of Reusch, treated by Pockels [31], Sohncke [32], and more generally

by R. Clark Jones [5]). Poincare [11] proved essentially that any
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polarization change can be produced in a unique way by a simple retarder

and a pure rotator plate. Of more immediate interest may be the observa-

tion that it may also be achieved by two suitable simple retarders, though

this decomposition is not unique. This follows from a more general obser-

vation that a rigid body rotation about a center is equivalent with two

suitable consecutive rotations about central axes lying in a given plane

(here the equatorial plane, Fig. 3).

Stokes Parameters and Mueller Matrices

In 1852 Stokes defined the state of polarization of monochromatic par-

tially polarized light by four quantities, known as the Stokes parameters

[29,33]. In terms of the intensities A2 and A2 and the relative phase
1 2

difference 2c of the plane polarized components u,v , and of the inten-

sity A2 of the unpolarized component, the Stokes parameters are

0S

o o 1 2

a1 -a 2  
(13)

S2 = 2AIA2 cos2c

S3 = 2A1A2 sin2c

Arranged as a column matrix {So, 'S1'S2'S3} they are known as the Stokes

vector, very useful for the representation of partially polarized light,

whose changes are found by operations with real linear 4x4 operators

(Mueller matrices [7]). For completely polarized light of unit intensity

the first of (13) gives unity and the other three through the substitu-

tions A1 = cose , A2 = sine as in (1),give the direction cosines (L,M,N)

of the radius vector to any point P of the Poincare sphere
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S1 = cos2e = L

S 2 = sin26cos2c = M (13')

S 3 = sin2esinc = N

and the Mueller matrices degenerate into the 3x3 matrices shown on the right

of (16)-(18). Calculations with the Stokes parameters for complete polari-

zation is identical with the process described in page 6 or with rotations

of the Poincare" sphere. A much simpler method is obtained when using the

two component vector and 2x2 complex matrix operators described in the next

paragraph.

Matrix Transformation of Polarized Light

As is usual in optics all transformations of the components (1) of the

light vector L are more conveniently carried out in the complex form

u = A coseei(Wt - E + a)'

L (14)

v = A sineei(Wt + C + a)

The actual vibration components are given by the real parts of (15) and can

be retrieved after any number of linear transformations. In matrix form

"cosOee iiZ i(wt + a)

[sinee ic

The intensity is A2 = L .L (+ means conjugate transpose). Frequently only

the relative phase difference 2e is of importance and in addition A 1

then the factor Aei(Wt + a) is left out and the unit light vector is written
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L cosee-i 14t
L= sinee'le(•"

As alrady seen the most general change of polarization at constant

energy corresponds to a finite rotation of the Poincare sphere about a

generic central axis, hence the new position of any radius vector could

be easily found with the 3x3 transformation matrix of the direction co-

sines of the new axes in the initial system. However, a much simpler

isomorphic representation is obtained with 2x2 unitary matrices. Indeed

it can be shown [5,34,35] that the real 3x3 matrix of a rotation of a

real 3-component vector in cartesian coordinates has a unique one-to-one

correspondence with a 2x2 unitary (complex) matrix operating on a two-

component complex vector (u,v) of the form (14).

The most general form of a unitary matrix is [34,35]

M [ -bj (15)
-b a*]

with aa* + bb* = 1 (15')

Asterisks denote the complex congugate. The elements of (15) are known as

the Cayley-Klein parameters of the rotation. The operation M.L on the

vector L (14) corresponds to a rotation about a general axis. The matrix

will be determined first for simple rotations about the coordinate axes. A

simple retardation increase by c corresponds to a RH Poincare rotation by

2c about the c-axis (Fig. 3) and to an operation on {u,v} by the retarder

matrix B(W) (16). Likewise a simple LH rotation f of the axes al' 02

(Fig. 1) (or a RH rotation of the polarization ellipse in fixed axes) corre-

sponds to a real RH rotation 2f about the *-axis (Figure 3) and to a
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transformation of {u,v} obtained by operating with the rotator matrix

R(W) given below (18).

A real right-handed rotation by 2p about the p-axis (Fig. 3, where

2p is shown negative) is achieved by an operation by the matrix J(p)

(17) on {u,v} . This rotation does not represent an elementary polar-

ization change but may be used as the equivalent of the consecutive oper-

ations B(- -)R(-p)B(-) or R(w/4)B(-p)R(-r/4) . The complex 2x2 matrix
44

operators for {u,v} and their real 3x3 operators for the unit vector

(L,M,N) in axes cp* (Fig. 6) are given side by side for comparison.

Simple retarder: Retardation increase 2C; P-sphere rotation 2E

ie El 0 0 1

B(c) = -i 0 cos2E -sin2j (16)

L esin2c cos 2 Cj

Rotation of P-sphere by 2p about p-axis:

cos2p 0 sin2p
Fcosp isinpF

J(P) 0 1 0 (17)

lisinp cospj sin2p 0 cos2pi

Simple rotator: Stress axis rotation * ; P-sphere rotation 20

cos20 -sin20 0
Fcoso -sin,1[R(O) = ; sin2o cos2o 0 (18)

L sino cos L0
Matrices R , B and J are special forms of the unitary matrix and can

be transformed into each other by a suitable axis change.
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According to the above the changes of the polarized light passing

through a non-absorbing non-depolarizing medium can be found by operating

on the complex light vector L (written in the reference axes used to

measure azimuths) with a rotator R(O) to bring the axes into coinci-

dence with the stress of azimuth 0 , and on the resulting vector with a

retarder B(W) effecting a retardation change by 2c . The resulting

vector

LI = B(c )R(OI)LI (19)

will then be given in the rotated axes. An additional operation by R(-O)

gives the light vector in the initial reference axes

L1 = R(-O1)B(c1)R(O1)Lo 0(20)

Passage through each plate of azimuth *i and birefringence 2ci in-

creases by three the operators in a manner similar to (20). Noting, how-

ever, that R(Oi+l)R(-Oi) = R(oi+l - 0i) = R(Aoi) , the total effect may

be put in the form

R(On)B(En )R(AýnI ) .... R(Aoi)B(ci) .... R(AI)B(c)R(OI)Lo = ML° (21)

The various operators are non-commutative just as finite space rotations

but may first be multiplied between themselves in the proper order to give

a 2x2 matrix operator M of the general form (15), unitary and with unit

determinant as each R and B . This total operator represents the "bire-

fringence" of the non-absorbing non-depolarizing system and may be applied

to any incident polarized vector to give the corresponding emerging vector;

it corresponds to the total finite rotation of the P-sphere about a general

axis and represents the polarization change due to all elements.
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The most general form of the operator M (15) may be found in terms

of the Euler angles [35] of the corresponding general rotation by 2a

[operator B(a)] about an axis c' (Fig. 6) obtained by rotating the ini-

tial axis system ep* first by 2C about c [operator B(C)] and then by

2p about the rotated p-axis [operator J(p)].* Accordingly the general

form of M is

Scospei(a+C) i i(a-ý)

M = B(a)J(p)B(C) = ]in e -isp +• (22)Lisinpe -i~) cospe

The corresponding 3x3 real matrix is more complicated. The general rotation

matrix (19) gives the rotated vector in the new coordinate system £IP?1''

To write it in the initial system cp* , i.e. in the local stress axes, it

is necessary to rotate back the axes by - 2 p and -2C in this reversed

order.

M' = B(-C)J(-p)B(a)J(p)B(a) (22?)

Conversely the axis of rotation corresponding to a matrix in the form (15)

is found as its eigenvector (two eigenvectors corresponding to diametrically

opposite or orthogonal directions) and the rigid body rotation as the matrix

of the type B(A) with the two conjugate eigenvalues XJ as diagonal elements

(interchange of eigenvalues gives the opposite rotation about the opposite

axis). The position of the axis and the rotation may also be obtained by

writing (15) in the form (22), if necessary by taking out a common factor,

and finding p, C and a

According to the traditional definition of the Euler angles, the z-axis
would coincide with c , the x-axis with * ,and the y-axis with -p
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The intensity of the incident light remains unchanged in non-absorbing

media, as has been tacitly assumed when the forms (1) and (15) were intro-

duced (indeed, unitary transformations are energy conserving). Nevertheless,

all the present theory may be extended to media with isotropic absorption

since the intensity ratio of the components will remain unchanged. The treat-

ment of anisotropically absorbing and birefringent media by complex [2x2]

matrices was made by Jones and co-workers [5,6].

General Theorems

The theory of birefringence in rotating stress fields will be completed

with some definitions and theorems useful in ordinary applications.

Orthogonal States of Polarization are represented on the P-sphere by diamet-

rically opposite points. Orthogonal plane vibrations PIP2 (on *-equator,

Fig. 4) are simply perpendicular to each other. More generally vibrations

(e 1 , 1I) and (e 2 ,E2 ) are orthogonal if and only if for k an integer or

zero

2e 2=I + kik 2* 2 = 2*1 +(23)
ko1 f2or

2e2 = 7t + (-1) 2e1 2 = -el

Right- and left-handed circularly polarized vibrations (*-pole and antipole)

are orthogonal, as also are elliptical vibrations of the same axis ratio but

with perpendicular major axes and opposite sense.

In complex form orthogonality of two polarized vibration vectors LI,L,

is expressed by the relation

L -L = 0
1 2 (24)

The resulting two equations lead directly to (23).
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An Elliptic Polarizer or Analyzer admits a specific elliptically polarized

vibration of given sense and extinguishes its orthogonal (e.g. the plane

polarizer; or the circular polarizer which admits right- but extinguishes

left-handed circularly polarized light). Any polarizer is represented on

the P-sphere by the point of the vibration it admits; in the complex nota-

tion by the corresponding unit vector {u,v} .

Theorem Every elliptic vibration of unit intensity may be decomposed

into any pair of orthogonal vibrations having intensities

equal to Ithe square of the chords from their antidiametral

points to the point representing the initial vibration.

The theorem is quite easily proved when the initial unit vibration P and

the pair of orthogonal components PIP 2 are plane, hence are represented

by points on the V-equator (Fig. 4 and inset).

fU1 l2 = A2 = cos 20' 1 (PP2 2

v1 2 = A2 = sin2 e' 1• <PP2Ivll2

In general the initial point L and the pair of antidiametral points LIL 2

lie on a great circle but can be brought onto the *-equator by a single

rigid body rotation of the sphere. Such a rotation represents an energy con-

serving polarization change for each vibration, hence the theorm already

proved for the equator is valid in general. To find the intensity, say of

L1 , we call 2eol,2eo2 the central angles subtended by the arcs (LLI) and

(LL 2 ) , and note that eo1 + eo 2 = 900 Then

A2 (- chord LL2)2 = sin2e ol s (1 + cos2eo)
1 2 2' o c 0 = 2 01
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But cos2eol is readily found in handbooks of mathematical geography in

terms of the pairs of latitude and longitude (90-2e,c), (90-26 1 ,c 1 ) of

the end points L,L 1 respectively. Substitution gives

1

A2  [1 + cos2ecos26 + sin2esin2elcos2(e-e1)] (25)

In matrix notation the decomposition of a unit vibration L into0

the antidiametral pair is written as

L°0 = Ai1Lle ia + A 2 L2 e (26)
L A• e eAtee(26)

where L. are unit vectors of the form (14), L.-L 2  0 , A? are the in-

tensities and a, 0 phase differences from L . Solution for A2 gives

again (25).

Corollary: An (elliptic) analyzer receiving elliptically polarized

light of unit intensity admits an intensity equal to 1

the square of the chord from the incident point to the

analyzer antidiametral point on the P-sphere.

If N is the polarized vibration emerging from a homogeneous specimen

(Fig. 4), the intensity admitted through the crossed analyzer A with anti-
1 )

diametral point A' z P , will beequal to 1 (NA') 2 . Clearly as 2c in-
1

creases from zero the intensity increases to a maximum of 1 sin2 2e for

2c = 7 (point B) and then decreases to zero for 2c = 2w (point P). For

parallel polaroids in general no extinction occurs (except when 0 = 450)

as the analyzer is at P with antidiametral point at A , and NA is never

zero for any point of the parallel circle PNB . This explains why fringe

patterns are unclear in a plane polariscope with parallel polaroids, except

at points with stress at 450 to the incident vibration.
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For a plane analyzer the admitted intensity could be found from eq. (26)

with e1 = 0 , but a more suitable method for computer programming is to re-

write the emerging unit light vector L from local stress axes of azimuth €

into principal analyzer axes of admittance azimuth *A * The admitted inten-

sity will be given by the new u'-component

R(OA - O)L = {u',v'} (27)

It should be remembered that the general polarization change caused by passage

through an inhomogeneous anisotropic body corresponds with a single finite ro-

tation of the P-sphere about a generic axis or with an operator of the type

(22) applied to the incident polarized monochromatic light of any polarization

parameters. Accordingly all that can be achieved by varying the polarization

parameters of the incident light and measuring the parameters of the emerging

light is the determination of the three Euler angles or parameters in (22).

This may be done with two tests employing non-orthogonal incident light vec-

tors. In general, however, the two tests give no information on the actual

inhomogeneous stress and birefringence distribution along the light path. This

inverse problem of determining the rotating stress distribution from the polar-

ization changes will be discussed in a future paper.

Explicit Solutions

In 1940 Drucker and Mindlin [3] presented an explicit solution of the

equations of wave propagation in a medium with constant rate R of stress-

axis rotation to retardation. The solution is in a sense approximate because

some extremely small terms are neglected. As the only explicit solution, it

merits some discussion. The components u,v are given in the local (rotating)
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stress axes by means of somewhat intricate expressions in R, S, n (10,11).

A simpler form is given here. If light is always written in the standard

form (1) in local stress axes, Drucker and Mindlin's solution corresponds

to the following expressions for the parameters (O,e) of the emerging

light in terms of 8, 0 0 of the incident light

tanO = tano sin82/sinSl]

(28a,b)C = 1 + B82 - Co0

where

S cosE - sine tanSn + R cotO tanSncot81

S sine + cose tanSn
o o

(29a,b)

S cose - sine tanSn + R cotO tanSn
cot82 0 o 0 0

S sine + cose tanSn
o o

Accordingly a more general medium of variable R could be approximated by

steps of constant R corresponding to consecutive applications of trans-

formation (28). This would be one integration more advanced than taking al-

ternating steps of pure retardation and simple rotation, hence could use

larger steps.

Drucker's and Mindlin's results can be easily shown to be a special

solution of Neumann's equations (7) for constant R and, though correct,

shown an unnecessarily large rotational effect because they give the new

components of polarization along the rotated stress axes. A part of the

correction is just a transcription of the ellipse of polarization in the

new axes and the remainder is the pure rotational effect. Drucker's and

Mindlin's correction increases continuously with R and S whereas the
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error in the polarization ellipse in fixed coordinates can be shown to be

highest for R = 1 and to diminish to zero for R tending to zero or in-

finity.

Drucker's and Mindlin's solution obviously corresponds to the rotation

of the Poincare sphere and the incident light point by 2a = 2Sn about an

axis in the c-* meridian at an angle 2p = -tan-I R to the £-axis (Fig. 5).

The equivalent operator for such a rotation is given by the matrix M (22)

but with C = 0 . Even then, however, the operation by M would give the

light vector in the axis system c'p'i'. Premultiplication by J(-p) (18)

as in (22') should then give the vector in the (local) e-4 axes with parame-

ters identical with (29), as may indeed be shown after some lengthy transfor-

mations.

Mindlin and Goodman [4] derived the differential equations for light

propagation in a general inhomogeneous anisotropic medium. They showed that

the general equations transform into Neumann's for harmonic waves, but only

after higher order terms are omitted. Theneglected terms correspond to the

influence of stress gradients across and along the light path as well as to

the approximations of Drucker and Mindlin [3]. Accordingly Neumann's equa-

tions and all other equivalent representations discussed in this paper are

approximate solutions, though of an excellent degree for all practical mate-

rials and rates of rotation. No exact explicit solution of Neumann's equa-

tions has been obtained for more general distributions than with R = constant.

This is no drawback in the determination of the polarization changes in in-

homogeneous media, which can be made to any degree of approximation in dis-

creet steps by any of the other methods described. However, the inverse prob-

lem of finding stress distributions from polarization changes is greatly

hindered.
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Applications

1. Strain-Birefringence by Alignment

The high strain-optical sensitivity of certain plastics is produced

by partial alignment of random permanently birefringent elements (molecules

or crystalline microscopic platelets). The initial randomness insures both

macroscopic isotropy and absence of rotatory power: indeed if the elements

were orderly distributed, say in cycles of increasing azimuth, they would

in general cause a rotation without appreciable retardation [11]. For sim-

plicity assume a very large number N of platelets of constant very small

birefringence 0 < 2n << w embedded in a non-photoelastic matrix with their

planes perpendicular to the light ray and their principal directions at com-

pletely random azimuths * . In the Poincare sphere the effect of each

platelet corresponds to a rotation by 2n about an c'-axis at 2ý to the

fixed s-axis (Fig. 4). Each rotation is extremely small, so that the rota-

tion vectors 2n along the c'-axes may be added vectorially (Fig. 8), pro-

vided the resultant does not become appreciable, say does not exceed the un-

dectectably small relative retardation 2vn of v << N parallel platelets.

Projection along and across the reference direction gives

N
-2vn s X = 2ncos2< , v-2n

i~l

(30)
N

-2vn s Y = 2nsin2O s v.2n

which may be considered as the conditions defining randomness provided they

hold for any model thickness up to the maximum considered, i.e. for 0 < v < N
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the body is then subjected to small strains c1 >, 2 (Fig. 8), re-

spectively along and across the direction of reference without any rotation

of these two directions. The maximum engineering shear strain is

2y =£1 - £2 << 1 and material lines initially of azimuth * are tilted

to * - YO , where y = ysin2O . Substitution of O-Ysin2O for 0 , ex-

pansion and the usual approximation for sine and cosine of small angles give:

N N
X = 2n cos2 . - 2ny cos4 . + 2nyN

1 i 
(31)

N N
Y v 2n sin20i + 2nY • sin40i

1 -1 1

The first terms in each of (31) are of the order of 2vn or less and the

second terms are y times smaller, hence both are undetectable. Any de-

tectable birefringence will be given by the last term of X , when this

term is much larger than 2vn , i.e. when yN >> v

X =2nYN Y 0 (32)

If all platelets were stacked at alternating azimuths of +450 and -450

(giving no birefringence when unstrained), the same strain would have

caused a birefringence X = 4nyN or twice as much as for random elements.

The method may also be applied to elements with three-dimensional random-

ness.

Rotational Effects in Birefringent Coatings

The preceding theory and formulas were first checked with a simple

trial problem of two plates in plane stress of various intensities and

azimuths L43] and were next used in the actual problem of the rotational
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effects in birefringent coatings. Birefringent coatings cemented on opaque

bodies for the measurement of surface strain by reflected polarized light

[36-41] may contain appreciable stress rotations, as e.g. when applied on

plates or shells [18,23]. In shells with identical coatings on both faces

(Fig. 9) a unique neutral plane exists [18,42] permitting the use of an

equivalent cross-sectional area A and moment of inertia I per unit width.

On the side z > 0 the principal stress differences at and abz (at dis-

tance z from the neutral plane) caused by principal differences of membrane

force N > 0 and bending moment M > 0 respectively and the corresponding

fringe orders nt and nb visible in reflected light when each acts alone

are

*t = N/A bz= Mz/I = %bz/a (33)

*t = 2atAh/Cy nb 2abAh/Ca (34)

where ab is the pure bending stress at the coating mid-thickness z = a,

Ah the coating thickness and C the stress-optical coefficient.

The superposition of membrane and bending stress with principal direc-

tions at an angle a (Fig. 10) produces a total principal stress difference

a and angle 4z to the major bending plane (plane on which abz > 0 at

z > 0) which vary with the distance z

02 = a2 E1 + (z6/H)2 + 2(z6/H)cos2c] (35)
z t

cos2q 2 = (cos2c + z6 /H)at/az (36)

where 2H is the coated shell thickness and

6 = MAH/NI (37)
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The rotation and variation of az with z is clearly seen on a Mohr circle

construction as in Figure 11. For easier construction all stress states are
1 1

taken to be pure shears al = -2 t = 1 a =-2b = abz,

1
alz - 2 z = , as this leaves their stress difference and birefringence

1 1
unchanged. The Mohr's circle COD for t - at is first constructed

1 1and the bending stresses i Uh' - T- bh at the interface z h are added

at the points A, B respectively to give the points A 1 B . The length
11'

OA OB1 gives the total principal stresses 1 a and - a at the in-

terface z = h . At the free coating surface (z = hI > h) the bending

1 1
stress hl - is larger, represented by AA = BB Now

stes - bhl' h
1Saz = OA2  at z = h2  and angle 252 = DOA2 . The motion of the segment
OA1 to OA2 represents the variation of stress magnitude and of double its

rotation across the coating thickness. The strongest rate of rotation to

stress-difference (retardation) hence the strongest R corresponds to point

G , the foot of the normal from 0 on AA2 ' When G falls between A1

and A2 the point of maximum R is within the coating. Obviously the

strongest R will develop when G is close to the center 0 , i.e. when A

is close to C and AAI, AA2  are respectively shorter and longer than OD ,

hence when z > 0 for 90 < a < 60 and ab = at . For a = 90 , of course,

no rotation occurs as at and ab are parallel and add algebraically, so

that the total stress only changes sign through the value zero without any

rotation.

The polarization changes may be easily calculated when the membrane and

bending stresses are known. Of greater importance, however, is the inverse

problem of using the photoelastic observation to determine membrane and bend-

ing stress-differences when both exist and their principal directions are not

parallel (otherwise the solution is trivial).
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Two approximate solutions of the problem have been given, one [23] for

relatively thin coatings but with rotational effects taken under considera-

tion, another [18] for thicker coatings and with the rotational effect par-

tially ignored. The simplicity of the second method and its surprisingly

good results make it a reasonable choice for practical applications. It is

based on the observation of Drucker and Mindlin [3] that for small values of

R the two components of the light vector parallel to the principal stresses

at incidence follow the rotating axes without giving rise to strong trans-

verse components. Therefore they should re-emerge from the coating again

almost parallel with the surface stresses so that isoclinics corresponding

to the surface stress directions should be visible. In addition the relative

retardation should be almost proportional with the integrated stress through

the coating. (Actually for constant R the retardation at integer fringes

is S times larger than without rotation but S is close to 1 for R

close to zero). Larger values of R could make the "isoclinics" indistinct

and erroneous but, as shown by Fig. 11 and expression (36), large values of

R occur over small path lengths in regions of weak stress, which add little

to the retardation produced over the remaining path. The stress variation

was assumed approximately linear through each coating so that the integrated

stress and the visible fringe order could be taken proportional to the stress

at the coating mid-thickness. An inverse solution was then obtained for the

membrane and bending stress--differences in terms of the fringe orders and

the isoclinic parameters observed on the two coatings [18].

The tests had been made with a 9 in. square 0.25 in. thick aluminum

plate coated on both sides with 0.107 in. thick layers of specially cast

Araldite 6060 resin. The membrane stress consisted of the residual stress
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field caused by a central 1 in. diameter shrink-fitted disc. Anticlastic

bending was produced by corner loads and was constant within at least the

central third of the plate. The values of nb, nt and a were known at

each point; the total fringe orders and the azimuths of the incident plane

polarized light giving a minimum intensity were measured at several points.

Tests and calculations were made for a large number of combinations of n,

nb and a . The calculated membrane and bending values compared surpris-

ingly well with the true, even under the worst conditions of nb m nt = 1

and 60 $ a s 80 (for z > 0), when the isoclinics on each face were very

indistinct and doubtful. Furthermore the fringe order seemed to vary

slightly with the incident azimuth, as frequently happens with rotating

stress. It was decided to calculate exactly the "fringe orders" and the

directions of minimum intensity or "isoclinics" and compare them with the

observed data.

A computer program based on equations (35,36) was used for the calcu-

lation of the relative retardation 2Ae. due to the average stress in each)

step without rotation and of the direction change Aýj across each step.

The step length Az was automatically adjusted to make the product

IJAAcI= IRI(A )2 = (Af)2/IRI smaller than 0.03 rad2 , so that large bire-

fringence steps (Ac) or large rotation steps (Af) could be made when R

was respectively very small or very large, i.e. when the influence of rota-

tion was small.

The transformation matrix AMi for step i was taken as the average

of the matrices found when the rotation step AOi is applied first and the

retardation Aci second, and inversely when Ac. is first and Afi second:

COSAý e iAC i sinA1i
A[B(Aei)R(Afi) + R(Aji)B(Aci)] (38)

AM. 2 1] LsinA.: cosAfie- ij
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This matrix approximates the matrix for constant R when both A i and

Ae are small and tends to the forms R(AO) or B(Ac) (18,16) when Ac

or AO tend to zero. The total matrix for the coating was found by mul-

tiplying the individual step matrices for inward passage (surface to in-

terface) and then premultiplying this by its transpose, which can be easily

shown to be the matrix for reverse passage [5].

The total transformation matrix was calculated for nb = 1 and values

of nt ranging from 0.5 to 2.5 by steps of 0.25. Finally the emerging

light intensities were calculated for crossed polarizers with azimuths of

the incident light varying from 00 to 900 by steps of 50 and for orthogonal

circular polarizers (dark field) with quarter wave plates parallel.

The results for the worst conditions of 600 s a s 800 and nb n t

are shown in the graphs of Figures 12-14. Figure 12b shows the fringe and

isoclinic pattern close to the shrink-fitted central disc of the plate in

anticlastic bending for a bending moment causing by itself one fringe (nb =1)

and the azimuth of the incident plane light at 600 to the major bending di-

rection, which is parallel to the short diameters of the oval fringes.

Without any bending the fringes (n t) are circular, as shown by the thin

circles nt = 1 , nt = 2 of Figure 12a. The thin dotted lines in Fig. 12a

show the contours of equal intensity for the same conditions as Fig. 12b.

The area between the contour lines of lowest intensity is shaded and corre-

sponds to the black lines (fringes and isoclinics) of the photograph. The

agreement is excellent. The heavy lines (continuous and dotted) of Figure 12a

correspond to the calculated fringe pattern in circularly polarized light. As

may be seen the change from plane polarized light at 600 azimuth, to circu-

larly polarized light leaves fringes 1 and 1.5 practically unchanged but shifts

significantly fringe 2.
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The fringe shift during rotation of the crossed polarizers is a char-

acteristic effect frequently noticed in rotating stress fields. It is shown

more clearly by the shift of the minima of the curves of Figure 13 represent-

ing the intensity observed at points along the 700 radius of Figure 12a (i.e.

with an angle a = 700 from principal tension at to principal bending

stress Ob) for incident plane polarized light at azimuths varying from 00 to

750 by 150 (relative to the major bending diagonal). At any one point, how-

ever, the intensity still varied with the sine of the angle of the plane of

vibration with the principal stress at the surface as may be easily seen in a

Poincare sphere representation.

The experimental values of the angle *2 of the total stress at the

free surface to the major bending plane (Fig. 10) agreed well with the com-

puted values except for nb = nt = 1 and angles a of 600 and especially

700 and 800. For nb = 1 , nt = 2 the highest divergence appeared again

at the same angles a and was much smaller than for nt = 1 except for

a = 800 . The calculated variation of intensity vs. azimuth of incident

light for these cases is plotted in Figures 14a-c. Only the parts of the

curves close to their minima are shown. Vertical segments indicate the ob-

served (full segment) and calculated (dotted segment) azimuths of minimum

intensity. Horizontal arrows between them indicate a substantial error

mainly for nt = 1 , a = 600 and to a smaller degree for nt = 2 , a = 800.

The other errors are much smaller. The probable reason is that the points

n b = 1 n nt = 1 a = 600 and nb = 1 , nt = 2 , a = 800 lie on or close

to a fringe (the curves for these points rise very slowly from their minima).

The isoclinic is then unavoidably determined by the minimum intensity of ad-

joining areas which get much brighter when the azimuth is varied. But as
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shown in Figure 14a, the minima of the points with nt = 0.75 and n t 1.25

occur at azimuths quite different from thote of the point with n t 1

These azimuths are about -150 for nt = 0.75 ; 320 for nt = 1.00 ; and 180

for nt = 1.25 . The experimental azimuth of about 20 is in fact the average

of -150 and 180, i.e. the experimenter must have tacitly taken the minimum

intensity azimuth midway between those of the bright regions on each side of

this fringe. Obviously this procedure, permitted in plane photoelasticity,

is invalid in rotating stresses. In all but one instance (Fig. 14b, a = 70°

n = 1), however, the true direction of the surface stress (0 of horizontal

scale) was closer to the experimental minimum intensity azimuth (heavy verti-

cal segments) than to the calculated (dotted segments). This provides a jus-

tification for the simplifying assumption made in the inverse solution given

in reference [18] and an explanation for the obtained accuracy.

Conclusions

A unified derivation of the methods for representing birefringence in

inhomogeneous stress fields brings out their direct interrelation. Both rep-

resentations, by the Poincare sphere and by the complex vector, afford an

easy integration of Neumann's differential equations by three dimensional ro-

tations and by the associated complex 2x2 transformation matrices. Especially

simple are the rotations and the relative matrices corresponding to ratios R

(twice the rotation to the phase retardation) equal to zero (homogeneous bire-

fringence), or infinity (simple axis rotation), or to a constant. The solution

for continuously variable R can be approximated either by consecutive steps

with R = 0 and R = , or better, by steps of constant R . The latter was
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found to give an excellent approximation when the product IAýAcl of rota-

tion by retardation in each step is smaller than 0.03 rad2

In the problem of the birefringent coating on a plate subjected to mem-

brane and bending stress, it was found that the azimuth of the incident plane

polarized light giving minimum intensity through the crossed analyzer may

differ considerably from the azimuth of the principal stress at the surface

of the coating, hence that the method of "isoclinics" is invalid. As expec-

ted from earlier work [18] the difference is largest when the membrane and

bending stress-differences are equal and their principal directions at angles

of about 600 to 800 to each other. This error is quite high in regions very

close to fringes (retardation close to an integer) where the isoclinic changes

with azimuth of incident light in a rapid and irregular way. It appears, how-

ever, that the average of the azimuths of minimum intensity on the two sides

of a fringe and close to it (1 fringe away) may be a better approxi-
4

mation of the principal stress azimuth at the fringe center. This permits a

significant improvement in the method of photoelasticity in rotating stress

fields.
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