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ABSTRACT 

This paper develops the theory of "äynmetry-convex" functions, 

whose appearance In certain scheduling problems as delay-cost functions 

(of waiting times) guarantees that the "flrst-come-flrst-serve" schedules 

will be optimal. These  are the symmetric functions satisfying a mild 

convexity condition (which appears to hold in most if not all practical 

scheduling situations). The conclusion of the present paper is that, 

for a rather special type of scheduling problem, the first-come-first-serve 

schedules are optimal, provided the waiting times of individual Jobs affect 

delay cost symmetrically. Extensions of this conclusion (to be detailed in 

one or more subsequent papers) cover broad classes of scheduling problems 

of great practical significance, relating to both "first-come-first-serve" 

and "first-due-first-serve" scheduling. 

i 
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1,    INTRODUCTION 

Vfe consider the füllowing scheduling problem. 

(l.l)    PROBLEM.   Jobs 1, ...,n will arrive in a system, ready for pro- 

cessing, at epochs x , m ■ 1, ..«,r..   One Job must be processed 

at each of the processing epochs y , m = 1, »..,n.    A schedule is 

a permutation, say % of the integers 1,...,n; with the inter- 
w 

pretation that each processing epoch y   is assigned to Job n(m); 
m 

or, vriting p ■ TT  , that each Job m is to be processed at epoch 

y . .. Schedule TT is feasible if it calls for processing each 
Pirn)   

.lob no earlier than its arrival; i.e., if each y / \ - x i 0. 
p(m^       i 

Ohen y ,  \ - x   " w   is tbe waiting time of Job m.    ühe delay cost 

depends upon the waiting times, being given by ^w.,.,.,w ), where 

Y is a specified function.    It is required to determine vhether 

feasible schedules exist, and if so to choose one which minimizes 

delay cost. 

A first- come -fir st- serve schedule is one under which two Jobs which 

arrive in a given temporal order are always processed in the same order 

(or simultaneously); i.e., a schedule, TT, such that if x. < x , then 

y f.o   ' V r*\t vhere o is iafined and interoreted as in the statement 

of Problem (l.l).   It turnn out that whenever feasible schedules exist, 

then the (easily constructed) first-cone-first-serve schedules are 

feasible. 

We shall take an indirect approach to the problem of minimizing 

delay cost.   Specifically, we determine exactly what assumptions about 

the delay-cost function guarantee that the first-come-first-serve 
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schedules will minimize delay cost whenever feasible schedules exist. 

Happily, rather general assumptions of practical applicability 

afford such a guarantee.   The functions which satisfy these assumptions 

are called synaaetry-convex functions in this paper, for reasons which 

will become clear.    They are the symmetric functions which satisfy a 

certain mild convexity condition.    It is plausible that practical 

delay-cost functions will always fulfill the convexity condition;  and 

i' this be accepted, we can conclude that the first- come-first-serve 

schedules are solutions to real-life instances of Problem (l.l) if and 

only if the individual Jobs are symmetric with respect to their effects 

on delay cost,   Tble last condition is often a matter of high principle 

in customer-service facilities, when managers accept egalitarian ideals 

or simply perceive the customers as a homogeneous population. 

Ihese conclusions are of interest In themselves, but much more so 

because they can be extended to a broad range of scheduling problems 

much more complex than Problem (!•!),  and subject to realistic 

uncertainty.    Suppose, for instance, that "future" arrival and processing 

epochs are not known in advance; and a dispatcher must decide which of 

several waiting jobs should be assigned a "present" processing opportunity. 

If the delay-cost function is symmetry-convex; he can confidently make 

his choice on the basis of the "first-come-first-serve rule"  (assign a 

job which has been waiting longest), knowing that he will thus generate 

a first-come-first-serve schedule,  and consequently minimize delay cost ... 

regardless of what the future holds.   He need not even know which 

symmetry-convex function is operative, or how many jobs are yet to come; 

and he need not even make statistical assumptions beyond broadly accepting 

that his choices will not Influence the (as yet unknown) configuration 

of future arrival and processing epochs in any useful way. 
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Such extensions comprehend a rather complete theory of scheduling 

to minimize delay cost in situations such as those repre^rted by 

classical queuelng models, provided that Individual Jobs nre not stat- 

istically differentiated either as to effects on delay cost or as to 

processing time requirements,    Ihe circumstances covered include con- 

vincing representatives of a large proportion of customer-service oper- 

ations,  and of a substantial realm of manufacturing problems (e.g., repair 

of devices from a homogeneous population, when the required effort for 

a given Job Is not predictable before    the Job is irretrievably in 

process).   The single dictum of the theory is the simple prescription, 

"use the first-come-flrst-serve rule."    Ihe detailed and formal develop- 

ment of these extensions Is reserved, however, for arother paper, for 

which the present paper lays groundwork. 

Outline,    In Section 2, the concept of "symmetry-convexity" is 

introduced for subsets of n-space,  and this concept is developed in 

Sections 2 and 3.   The symmetry-convex functions are defined in Section 

h,  and the main results concerning Problem (l,l) and relating to other 

anticipated applications are developed.    Section 5 is a brief summary 

of results, especially as they are relevant to Problem (l.l).   Wie Appendix 

rounds out portions of the mathematical theory of syrametry-convex'ty. 

Notation and terminology. We use standard set-the ore tic notations; 

such as "£' for "belongs to" (a set), "u" and "c" for "contains" and 

"is contained in"  (among sets),  and "fl" and "\J' for (set) intersection 

and union.    In particular,  a notation of the form fexpresjlon'list of 

conditions^  si^iifics the set of elements represäntablc by the "expression," 

and aatisfying the"lijt of conditions";  uftfl Y:X -• Y denotes a completely 

generol function whose values are defined for arjuments in set X 

and are elements of set Y. 

aaaaaB_a^aB^aaaaaa 
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When no confusion can result, we may notatlonaUy identify a single 

element and the set consisting of that element. 

Real n-apace Is denoted "by Rn; and R = R .   For x € Rn, x^ and (x)m 

both denote the m-th component of x (the latter notation actually being 

used only when the element of R    is denoted by a string of two or more 

symbols).   For x and y € R ^ the segment Joining x and y is 

[x,y] = (ex + (1 - e)ylo 5 6 <: 1); 

vher»? here and subsequently the arithmetic among elements of R and R 

is ordinary vector arithmetic. 

The set of permutations of n objects is denoted by TI .    For x € R 

and TT € TI »  TTX denotes the vector got from x by shifting the m-th component 
n 

to position TT(m). m = 1. ....n:  so that (nx)    = x -1,  »  for each m.    If 
'      '  ' m       TT   \yk) 

also TT*  € IL, then TT'TTX = TT'CTOC).    The notation and conveivtions are 

consistent with viewing the elements of R   as column n-vectors and those 

of 11    as nxn permutation matrices. 

The symbol E   denotes the set of ^ € n   such that, for some i and J 

with 1 j^ J, cr(l) «= J, a(j) » ^t and   ^(m) « m for m / 1, J.    Such a 

permutation is aald to "exchange 1 and J."    It is veil-known (and readily 

verified) that every permutation can be expressed as a product of such 

"exchanges." 

Set X c R   is symmetric if "x g X vrtienever x 6 X and n € n . 
————— n 

Function v^X -♦ Y, where X c R , is symmetric if X is symmetric and if 

•y(x) a "S^rtx) whenever x 6 X and n 6 TI . 

Set X c R   is convex if X is non-empty and if [x,yj c X whenever 
n 

x and y 6 X.    Hie convex hull of X c R   is the intersection of all convex 

sets containing X; or, equivalently (as is easily proved) the set, 

K& 6x x'0 * ex * ^ sxec 0x = ^ • 



Function -^X -» R, where X c   R , Is convex if X is convex and if 

\(z) «j e-Xx) + (l - e)\(y) whenever x and y € X, 0 s 6 £ 1, and 

z = ex + (l - e)y. 

Function yrX -♦ R, vhere X c Rn, is quasi-convex if X is convex and 

and if ^z)  ^ max   {•v(x);\(y)) whenever x and y 6 X and z 6 [x,y].    It 

is well known (and easily proved) that every convex function is quasi- 

convex, but not conversely. 



2.    SMffilRY-OONVKX SETS 

As a basis for an appropriately general äefinition of the symmetry- 

convex functions, and also for analytic purposes, we first introduce the 

concept of symmetry-convexity for sets. 

(2.1) ERFIHITION,   Set X c Rn is symnetry-convex if whenever x 6 X 

and a € E , then segment fx^x] c   X. 

(2.2) DEFINITION, Hie synmetry-convex hull, S(X), of set X c R   is the 

intersection of all synme try-convex sets containing X, 

Our first theorem states several elementary properties of symmetry- 

convexity, 

(2.3) mBORBl,    For X C Rn; 

(2.3.1) S(X) D X. 

(2.3.2) 3(S(X)) - S(X). 

(2.3.3) X Is symmetry-convex if and only if S(X) ■ X, 

(2,3A) S(X) is symmetry-convex. 

(2,3.3)    If X is symmetry-convex, then X is symmetric. 

(2.3.6) If YcX,  then S(Y) CS(X). 

(2.3.7) If X is a union or intersection of synme try-convex sets, 

then X is symmetry-convex, 

(2.3.8) 3(X) - U)c€XS(x), 

(2.3.9) X Is symmetry-convex if and only if X ■ U— S(x). 

Remark,    It is shown in the appendix that each set S(x) is identical to 

the convex hull of the set,  (TIXITT € ^ ) J t>hence (2,3*9) yields a rather 



clear-cut character!Eation of the synraetry-convex sets In terms of 

ordinary convexity. 

Proof of (2.3)»   Statement (2,3.1) is immediate from (2,2), 

Replacing X in (2.3,1) by S(X), ws have S(S(X).) DS(X), and to prove 

(2.3,2) it remains to shov that S(S(X)) c S(X),    Every set intersected 

to form S(X) is a symmetry-convex set containing S(X), and is hence 

among those intersected to form S(S(X)), vhence the required relationship 

follows. 

If X is symmetry-convex, then it is among the sets intersected to 

form S(X),  whence S(X) c X; which with (2.3.1) proves the necessity 

in (2.3.3).   For X c Rn, if x 6 X and a 6 S , then x is in each of the 

sets Intersected to form S(X); whence, since these sets are  symmetry- 

convex, each contains [X,(TX]; which implies [x,(yx] c S(X),    Consequently, 

if S(X) « X,  then [x,ax] c X; Vhich proves the sufficiency in (2,3,3), 

By (2.3.2), S(X) satisfies the sufficient condition of (2.3,3) that 

it tie symmetry-convex; which proves (2,3,10, 

To prove (2.3,5), we assume X is symmetry-convex, and show that if 

K 1 x (: X and TT € 11 .  then T« 6 X.    Vfe can write rr ■ a   ...cr , where each 

(7k € ^j.    Let y0 - x, and yk - oV1'1 for k - 1,...,K.   Then y0 € X; 

k-1 k and, by (2,1), y "    6 X implies y    ^ X.    Ihis completes an induction 

showing that y   - roc € X, as required. 

If Y c X; then, by (2.3.1) and (2.3.U), S(X) is a symmetry-convex 

set containing Y,  and hence among the sets intersected to form S(Y); 

whence S(Y) c S(X), which proves (2,3,6), 
and Y » na(!A Za, 

To prove (2,3.7)/ let X m \j       Z   /where"A is an arbitrary set 

and each Z    is symmetry-convex.    If x e X and ^ € 2 , then x is in some 
& li 

particular Z $ so [X,(TX]   C Z   c X; which implies that X is synmetry- 
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convex, as required to prove the statement concerning unions.   If 

y € Y and er € 2 , then y is in every Z , whence so is [y,oy], vhence 

[y^oy] c H c4 Z   «= Yj which implies that Y is symmetry-convex, and 

completes the proof. 

To prove (2.3.8), write U - Ux€X S(x).   By (2.3.6), S(x) c S(X) 

for x € X, whence U c S(X),    It remains to show that U o S(X).   By 

(2.3.4) and (2.3.7), U is symmetry-convex; and, by (2.3.1), x € S(x), 

whence U z> X,   Hence U is among the sets intersected to form S(X), which 

implies the required relationship. 

Finally, (2.3.9) is an immediate consequence of (2.3.3) and (2.3.8). 

The next theorem provides a sufficient condition that a set be 

symmetry-convex.   It is shown in the appendix that this condition 

is also necessary. 

(2.4)    THEOREM.   Let X c Rn be a union of symmetric sets whose 

intersections with the hyperplanes,  IT.  x   = constant, are 

all convex or empty.    Then X is symmetry-convex. 

Proof.   By (2.3.7), it is enough   to show that a symmetric set is 

cynraetry-convex if its intersections with the hyperplanes,  E x   = 

constant,  are all convex or empty.    Let Y be such a set, y P Y, and 

a € S .   By the symmetry of Y, oy € Y.   Writing c   » 2 y .  it is 
" g y o m 

plain that both y and oy | n {x'x € Rnj S x   = c  ) .    By the convexity 
mo 

of this set it must therefore contain [y,oy]; whence  [y,cTy] <= Y, 

as required to prove Y is symmetry-convex and to complete the proof of 

the theorem. 
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3. FURTHER CHARACTERIZATIONS OF SYMMETRY-CONVEX SETS 

The following theorem links the concept of symmetry-convex!ty 

to Problem (l.l). 

(3.1) THEOREM. For X c R , the following conditions are equivalent; 

(3.1.1) X is symmetry-convex. 

(3.1.2) If u and v ? R , and -r 6 ^ exchanges 1 and ,) such that 

u s u and v < v • then ^v - u € X ImplieB v - u € X. 

(3.1.3) X is symmetrlcj and if u and v € R , u. 5 ... S u . 

v ^ ... < v , and rr € 1 ; then rrv - u 6 X implies 

v - u € X. 

(3.lA)   Jfuandv^R11,  TrandTT»^^,  and (iT»v)i    s (fl*v) 

whenever u.  < u.;  then rrv - u C X imolies rr^v - u 6 X. 

(3.1.5)    If u and v € R , v.   <   v    whenever u   < u ,  and ^T € ^ ; 

then CTV - u ^ X implies v - u 6 X. 

Preliminary interpretation.    Consider a scheduling situation 

identical to that of Problem (l.l); but in which a schedule,  n,  is 

deemed " acceptable"  if and only if Ttf - x £ X, where X c R    is a 

given set.    The equivalence of (3.1.1) and  (3.1.^) implies that 

if any schedule is acceptable,  then the first-come-first-serve 

schedules must be acceptable; provided X is a symmetry-convex set. 

Conversely,  if the existence of an acceptable schedule implies that 

the first-come-first-serve schedules are acceptable, whatever - 'uid 

y may „be;  then X must be  symmetry-convex. 

If "acceptability"   is identified with '•feasibility,"  as defined 
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in Problem (l.l); then, since it obviously follows from {2,k)  that 
! 

the non-negative orthant of R    is symmetry-convex,  the forward 
i 

implication Just made validates the following assertion. 
i 
I 

(3.2)    ASSERTION.    In Problem (l.l), if feasible schedules exist, 

then the first-come-first-serve schedules are feasible. 

The implications,  however,   go much further.    Suppose a schedule, 

■n, is deemed acceptable if and only if its delay cost satisfies 

\(T(y - x) ^ c, where c is a specified constant.    The theorem implies 

that the first-come-first-serve schedules will meet this criterion 

whenever any schedule does, provided the set{ xj-^x)  <• c ) is symmetry- 

convex;  and, conversely,   if this is true for every choice of x and y, 

then   ^cj^x) < c ) must be a syrometry-convex set.    We shall develop this 

line of reasoning fully in Section k. 

Proof of (3.1).       Suppose (3.1 J.)holds,  and let u,  v, and a be 

given as in (3.1.2).    Let 0 = 1 if u.  = u.;  otherwise let 6 = 
* ü 

(u    - u. )/(u. - u    + v.   - v.).    Then it is easily verified algebraically 
j        ^       J        ^        J        J- 

that 0 < 9 5 1 and v - u. = 0(crv - u) + (l -  G)cr(aV ■• u);  whence 

v - u ^ [ov - u,o(crV - u)] ,,;   Hence, by (2.1) rfv - u 6 X implies 

v - u € X, as required to prove (3.1.2). 

Suppose (3.1.2) holds,  and let u,  v,  and TT be given as in 

0 k k-1 (3.1.3).    Let y    = TIV,  and get y   from y       by exchanging components 

,   .      ,. k-1 , ,    _   k-1        ,    _   ,    k-1 i and j; where y       is the least component of y        such that y 

k-1 
< y        for any m < i,  and j is the least m for which this inequality 

holds.    It is easily seen that for some K, y^ = v;  and also that 

(3.1.2) Implies that yk"    - u S X implies yC - u € X.    It follows 



^■BHBPi mm^^mmmm  '^'mmm 

11 

by induction that ifrtv-ucy    - u € X,  then v-u«y-u<=X. 

To prove (S*1^) i* remains to shov that X is symmetric; vhich will 

follow (as in the proof of (2.3.5)) if It is shotm that for x 6 X 

and cr f! S ,  ax 6 X.    This is immediate from (3.1.2) with u = 0 and v = crx- 

Suppose (3.1.3) holds, and let u, v,   TT, and TT* he given as in (3.1.it). 

It is easily seen that p G    n     can he chosen so that pu and  pTT*v satisfy 

the conditions imposed on u and v in (3.1 »3).    By sjomnetry,  if 

TTV - u € X,  then P(TTV - u)  € X.    But 

P(TTV - u) a (pm*"  p"  )(pTT*v) - (pu); 

whence (3.1.3) implies pTT*v - pu e p(Tr*v - u) € X.   Using symmetry 

again,  it follows that TT*V •- u € X,  as required to prove (3.1.^). 

Condition (3.1.5) is simply the special case of (3.I.1*-) in 

which the identity permutation satisfies the conditions imposed in 

(3.1.^)  on Tr*,and is the only TT* considered;   and in which the permutations, 

TT,  of (3.1.^)  are restricted to the elements of 2 .    Thus,   (3.1.^)  implies 

(3.1.5). 

Suppose (3.1.5) holds,  and let x € X and cr € S .    To prove (3.1.1),      * 

it is enough to show that if y €[x,rrxj ,  then y € X.    Let y =  3x + (l -  Q)(jXf 

where 0 < G < 1.    Suppose a exchanges i and j,  choosing the notation so 

x    < x .    Define u and v ^ R1  by u.  = 0;  u.  = -a: u    = b for m / i.j; 
i        j i j '    m ,0' 

Vi = xj  - a;  v . = x.; and v   = x   + b for m ^ i,j; where a a e(xi - xj. J        1 mm j        i" 

and b = x    - rain(x ) .    It is easily verified that ^v - u » x;  whence, by 

hypothesis,  ^v - u € X.    It is also easily verified that u and v satisfy 

the condition of (3.1-5), whence v - u 6 X.    Finally, a simple cal- 

culation reveals that v - u = y;   so it follows that y € X,  as required. 

im*m MMMMH^ 



1,111 I "      ' lLni|l._JLi 'U'-yi   'I..1  I« ■ J'lM 

12 

We have shown that (3.1.1) implies (3.1.2), (3-1.2) implies 

(3.1.3), (3-1.3) Implies (3.1.^), (3.1.^ implies (3.1.5) and (3-1.5) 

implies (3.1.1), which completes the proof of equivalence. 

J 
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k.    SYMffiTRY-CONVEX FUNCTIONS;  THE SCHEDULING PROBLEM 

The following definition (which relates symmetry-convex functions 

to symmetry-convex sets in the same way that quasi-convex functions 

can easily be shown to he related ^o convex sets) is reconciled with 

the intention stated in Section 1 by Iheorem (^.3) and Assertion (4.li). 

{k.l)    DEFINITION.    Function   y: X - R,    where    X c Rn,     is symmetry- 

convex if   X   and all of the sets    {x|x 6 X; Y (X) <   constant) 

are symmetry-convex sets. 

Our first theorem about symmetry-convex functions states the pre- 

cise sense in which they are "somewhat convex". 

(^•2)    THEOREM.    Function   y.X - R, where   X c Rn,     is symmetry-convex 

if and only if,  for   x € X, 7 € S ;    and   y €  [X,TX],    we have 

y € X    and   Y(y) < Y(X). 

Proof.    Let   y by symmetry-convex,  and let    x, T,    and    y   be 

given as in the theorem.    Ihat   y 6 X    follows from the requirement 

that   X   be symmetry-convex.    Let    c - y{x).    Then, by (U.l) and (2.1), 

y 6  {z|z € X; y{z) < c);    so   Y(y) ^ cj    whence   Y(y) s Y(x)i    and the 

necessity in proved. 

Let    Y satisfy the condition of the theorem.    By (2.1),    X    is 

symmetry-convex.    Suppose    x €  (zlz ^ X;    y{z) s cl, 7 6 S ,    and 
n 

y €   [x,ax].    By the condition of the theorem,    Y(y) ^ Y(X),    whence 

Y(y) s c,     and    y C{z|z £ X; y{z) £ c); which proves that this set is 

symmetry convex,  and hence that   Y  is a symmetry-convex function. 
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The following theorem is in essence a translation of (3.1) into 

the language of functions.    The routine proofs, based upon (3.1);  and 

each similar to the proof above of (4.2), are omitted. 

(M)   THEOREM.    For function     y:X-> E,    where   X c Rn,    the following 

conditions are equivalent; 

(4.3-1)   Y is symmetry-convex. 

(U.3.2)    If   u   and   v S Rn,    and   3 € 2     exchanges    i    and    J 

such that   u. s u.    and   v.  £ v ; then   iv - u € X 

implies    v - u ? X   and   Y(
V
 - u) S Y((TV - u). 

(4.3.3) Y is a symmetric function (and    X   a symmetric set); and 

if    u    and.   v S R ,  u, ^  .. .s u ,  v, <: .. .^ v ,  and rr € n^; —   1 n     1 n ' n 

then    rr v - u € X    implies    v - u 6 X   and   Y(V - u) ^ 

Y(TTV - u). 

(4.3.4) If   u    and   v € R , rr and    rr* € IT ;    and    (n*v).  <: (TT*V) . 

whenever   u. < u.;  then   rv - u £ X implies n*v - u € X 

and   Y(n*v - u) SY(rr v - u). 

(4.3.5) If u   and   v € R , v. <: v     whenever   u   < u4,    and 7 € 2 i 

then   rr v - u € X   implies    v - u € X   and   Y(V - u) < 

Y(TV - u). 

Interpretation.    Suppose again that in Problem (l.l) a schedule , r, 

is deemed "acceptable" if and only if   rry - x € X,    where    X c Rn    is 

a jiven set;  and interpret this set    X    as the domain of the delay-cost 

function, Y-    The equivalence of (4.1.1)  and (4.1.4) implies that if 

acceptable schedules exist;  then the first-come-first-serve schedule 

will minimize delay cost over the acceptable schedules; provided   Y is 

a symmetry-convex function.    Conve> .»ely,   if the existence of an accept- 

able schedule implies that the first-come-first-serve schedule will mini- 

mize delay cost,   then   Y must be a symmetry-convex function. 
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Specialized to the case in which "acceptibility" and "feasibility" 

are identified, this yields the answer to the main question raised in 

Section 1. 

(1+.1+)    ASSERTION.    In problem (l.l); the first-come-first-serve sched- 

ules minimize delay cost whenever feasible schedules exist,  if 

and only if the delay-cost function is symmetry-convex. 

(The domain of the delay-cost function in Problem (l.l) muot,  of course, 

be the non-negative orthant of    R  .) 

Equivalent condition (U.3.3)  emphasizes that the different Jobs 

must play symmetric roles with respect to delay cost if we are to be 

sure that the first-come-first-serve schedules will minimize this coot, 

and interprets these schedules simply:    we "may as well" number the 

jobs consecutively in order of arrival, number the processing epochs 

consecutively,  and assign each processing epoch to the identically 

numbered Job.    Equivalent condition (^.3-5) points out that the con- 

ditions on   Y are not actually weakened if we  merely require that no 

first-come-first-serve schedule be subject to improvement (i.e.,  re- 

duction in delay cost) by exchanging the processing epochs of a single 

pair of jobs.    Tnis condition can be reformulatea parallel to (4.3-3); 

or,  more simply;  (4.3-3) remains an equivalent condition to the others 

if "TT f nn"    and    V    are replaced throuihout by "7 6 2 "    end V. 

Condition (4,3.2) is of particular interest because it facilitates 

inductive proofs of theorems relating to more complex situations than 

those to which this paper is devoted.    Suppose in particular that the 

xm    are reinterpreted as  "due-dates," and that new variables,  say    z  , m m 

are introduced as  "arrival epochs"; where the    z      now determine which 
m 

schedules are feasible,   as do the    x      in Problem (l.l),  but the    x 
m m 

pertain to "tardiness cost" precisely as they do to delay cost in Prob- 

lem (l.l). 

m—m 
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It can be shown, using (4.3.2), that the symmetry-convex tardi- 

ness-cost functions are those for which "first-due-first-serve" sched- 

iiles, defined in a natural way, minimize tardiness cost whenever feas- 

ible schedules exist.    The rigorous formulation and proof of this re- 

sult is left for another paper,  in which its implications for a wider 

range of "due-date scheduling problems" will also be developed. 

A special case.   Because the symmetry-convex functions are un- 

familiar,   it seems appropriate to conclude this section with special 

j cases of the sufficiency in (h.k),  concerned with functions defined 

using classical concepts, and to give some examples.    The following two 

lemmas,  of some interest in themselves,  directly imply Theorem (^.T), 

whose sufficient condition that a function be symmetry-convex is in- 

corporated into Assertion (4.9)*  below. 

(4.5) LEMMA.    If   y.X - B.,    where    X c Rn   is a symmetry-convex set, 

is an inflmum of syimctry-convex functions, then   y is symmetry-convex. 

Proof.    Let   y = inf CA  ( Y   ^    where    A   is arbitrary.    Suppose 

x € X, rr € £ ,     and   y €  [X,TX].    For    e > Ü    there exists a ? A    such 

that   \{x) > y    (x) - e.    By (4.2),  since   v      is symmetry-convex, a a 

Y (x) 2 Y    (y)i whence it follows that   y{x) > y(y) - e.     Since    e    is a a 

arbitrary^  it follows that   y{x) s Y(y); whence the conclusion follows 

from (4.2). 

(4.6) LEMMA.     A quasi-convex symmetric function is symmetry-convex. 

Proof.    Let   y: X - B.   be a quasi-convex symmetric function.    From 

the definition (Section l),    X    is convex and symmetric;  whence,  by 

(2.4),    X    is symmetry-convexi  and the first part of the condition of 

Theorem (4.2)  is satisfied. 
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Plirther, if   x € X, rr e Dn,    and   y 6 (X,CTX];    then   Y(X) ■ Y('?X)>    ^7 

symmetry; and, by quasl-convexlty,   Y(y) ^ «M* {Y(X); Y(crx)) ■ Y(3t); 

which verifies the second part of the condition of (^.2), showing that 

Y    is symmetry-convex,  and completing the proof. 

(4.7) THBDREM.    Let function   Y:X-• R,    where    X c Rn   is a symmetry- 

convex set, be an infimum of quasi-convex symmetric functions. 

Then   Y    is symmetry-convex. 

We omit the routine proof of the following theorem, whose con- 

dition is also Incorporated into {k.$), but draw attention to the 

significantly changed position of the word,   "symmetric," as compared 

to (M). 

(4.8) THEOREM.    Let function   y: X - R,    where   X c Rn   is a symmetry- 

convex set, be a symmetric supremum of qiiasi-convex.functions. 

Hien   Y is symmetry-convex (in fact,  quasi-convex, if   X   Is 

convex). 

Our next assertion is Immediate from (4.U),  {k.'j), and (4.8). 

(U.9)    ASSERTION.    In Problem (l.l), suppose the delay-cost function 

is either an Infimum of quasi-convex aynmetrlc functions,  or a 

synmetric supremum of quasi-convex functions.    Then, whenever 

feasible schecules exist, the first-come-first-serve schedules 

minimize delay cost. 

Examples.    If   Y(X) = max (sU )}    over   m = 1, ...,n, where 

s:R -• R   is quasi-convex; then   Y    is symmetry-convex, by (4.8).    In 

particular, max {x.;...^ ) Is symmetry-convex;  and so is the function 

defined as the number of   x      which exceed any specified bound. 

mammmm 
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Thxxs, in Protlem (l.l); the first-come-first-serve schedules minimize 

the maximvun delay, and also the number of jobs subject to delay ex- 

ceeding any specified duration, 
n 

If Y(X) S Z  . g(x ), where g:R -• R Is convex; then It is 
m —i.       m 

easily verified directly that y    is convex (and hence quasi-convex) 

and symmetric; whence by a "degenerate" application of either (^.T) or 

(U.8), Y i8 symmetry-convex. Ihus, ia Problem (l.l), if the delay 

cost is the sum of costs attached to the individual Jobs, each deter- 

mined by the same convex function of the Jobs' waiting times; then 

the delay cost is minimized by the first-come-first-serve schedules. 

Plausible specific functions in this category include the sum of the 

waiting timts, and the sum of the squares of the waiting times. 

m—m tarn 
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5.    CONCLUSION 

One can easily construct symmetric functions which are not 

symn dtry-convex.    The appearance of such a delay-cost function in 

Problem (l.l) not only dissolves our assurance that the first-come- 

first-schedules must minimize delay cost;  but in fact guarantees that 

the first-come-first-serve schedules will not be optimal, for at least 

some sequences of arrival and processing epochs.    The same is true if 

a non-symmetric delay-cost function appears. 

But, within the realm of symmetric functions,  it is difficult to 

avoid artificiality and symmetry-convexity at the same time.    In fact, 

the functions covered by Assertion (^.9) seem to comprehend the full 

range of plausible delay-cost functions which are symmetric. 

We conclude that,   in practical situations lihe that of Problem 

(l.l),  it is generally safe to assume that the first-come-first-serve 

schedules will minimize delay cost whenever feasible schedules exist, 

provided the delay cost is a symmetric function of the waiting times. 

As was remarked above,  this dictum remains valid for a wide range 

of more complex and realistic scheduling problems;  and these problems 

will be explored in snoth.r paper. 
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APPENEEX 

FURTHER CHARACTERIZATIONS OF SYMMETRY-CONVEX SETS AND FUNCTIONS 

Althoujh the practical significance of the more complex symmetry- 

convex sets is doubtful,  along with that of symmetry-convex functions 

heyond those described by Theorems (^.T) and (^.8) of the text;  it is 

of ..ome interest (and potential practical importance with respect to 

presently ananticip-.^ed applications) to have geometric characteri- 

zations of the sets,   and complete characterizations of the functions 

based on classical convexity concepts.    This appendix provides such 

characterizations. 

A key lemma.    The results of this appendix are based upon the 

following lemma. 

(A.l)    LEMMA.    For    x €Rn;    let    C(x)    be the convex hull of the set, 

{nxirr€nn}.    Then    C(x)  =S(x). 

Proof.    Since    C(x)    is obviously symmetric,  and convex by defi- 

nition,  (2.U) implies that    C(x)    is symmetry-convex.    Since    x 6 C(x), 

It follows by (2.3.6) and (2.3-3) that    C(x) ro S(x). 

It remains to show that    C(x) c S(x).    Suppose it proved that,   if 

y1 s  ...s yn,    then    C(y) c S(y).    Given arbitrary    x € Rn,     it is 

easily seen that we can choose    rr 6 ^      such that    (nx),  s ...< (rrx)   . 
n 1      v 'n 

Since C(x) is obviously symmetric, and 3(x) is symmetric by (2.3-'+) 

and (2.3.5), we have C(x) = C(rx) and S(x) = S(TTX). Ly supposition^ 

C(TTX) C 3(TTX); SO it follows that C(x) C S(x). 

It remains to show that, if x. <- ...s x , then C(x) c S(x). We 

do so by induction. 

mm* 
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Let Cj. (x) be the set of y € Rn which are expressible in the form, 

y = 2 9 TTX, where 0 ^9 si and 2 9 =1, and where 9-0 unless 
rr TT n TT 

n(m) = m for m > M. For M = 0, the one permutation which satisfies 

this last condition is the identity, whence  C0(x) - {x}. Hence, by 

(2.3.1), C0(x) c s(x). For M sufficiently large (M « n is obviously 

large  enough), the restriction on permutations Is vacuous; whence 

CM (x) = C(x). 

To complete a proof by induction, it remains to show that, for 

1 < M, if x1 < ...< x , then O., (x) c s(x) implies CM(x) C S(x). 

Suppose the same statement proved, but with C.,(x)    replaced by 
M 

I\f(x) = {y|y d  CM (x); yM = max (ym) over ra < M). 

Let y € C. (x). It is plain that we can choose n € n  such that 

(rry).. = max {y ) over m < M, and also. ,Tr(m) = m for m > M. It is Mm ~* 

easily verified that    Try ? Aj(x)i whence, by supposition,    TT y 6 S(x). 

Consequently, by the symmetry of   S(x), y 6 3(x).    It follows that 

C^ (x)c S(x). 

It remains to show that, for 1 < M, if x, < .. .< x , then - 1 -       -   n 

CJJ^^X) c s(x)    implies    1^ (x)   c S(x).    We do so by induction. 

Let    EL „(x)   be the set of   y € A/*)   örtlich are expressible in the 

form,    y = Z 9 nx,    in accord with the conditions imposed on similar 
TT 

expressions representing elements of CL/x), and with the added re- 

striction that there be at most N different permutations TT such 

that 9 > 0 and TT(M) £ H.    If N - 0, then 9 « 0 unless TT(M) = M, 
TT TT 

whence in fact 9*0 unless TT (ra) " m for m > M - 1; and it 
TT 

follows that E^ 0 (x) c (V jjx). Consequently, by supposition, 

I^j 0 (x) c S(x). For N sufficiently large (N » n! is obviously 

large enough), the restriction delineating AJ » (x) as a subset of 

IL (x) is vacuous; whence n, „ (x) » II. (x). 
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To complete a proof by induction, it remains to show that, for 

1<M and 1 < N, if x1<*.,<xi  then ^ JJ.! (x) c s(x) imVu * 

\^M  C S(x), i.e., r^jj^U) c S(x) implies that if y G ^N (x) 

then y € S(x). 

Let y C 1^ N (x). If y ^ I^j JJ.-L (x); then, by supposition, 

y € S(x), nnd we are done. Otherwise, we can write y = Z 0 nx, 

where 0 < 9 < 1 and Z 9 =1, where 6 = Ouiless vim)  = m for 
—   TT — TT n 

m > M, and where 0 > 0 for exactly N permu    is    n such that 
TT 

TT(M) 4 M. Since N > 1, we can choose o £ ^      such that 9 > 0 ' — n p 

and p (M) / M. Let i = p(M) and J = p"1^). Let T € E exchange 

i and M. Let z = y + 9 (rrpx - ox). 

From the above representation for y, a representation, z = 

L CD nx, of z can be derived which is identical to that for y 
TT 

except that p has been "eliminated" and crp has been 'introduced" 

or its coefficient has been increased. Also, {n  p) (j) = T(p(j))=i; 

and similarly (ap) (M) e M and (ap) (m) = p(m) for m ^ j, M. 

Since obviously j < M, it follows that this representation of z 

satisfies the conditions imposed on the above representation of y, 

but with N replaced by N - 1. By straightforward calculations 

(remembering that (rrx) = x -1/ \), we find that z. = yJ - 9 mrrvm^ lip 
(xM " V' ZM = yM + ep  (xM " xj)f    and    Zm = ym    for   m ^ i' M-    " 
follows,  using the assumption that    x1 < .. .< x ,    that    z   < y      and 

Z
M - yM'  Since y ^ H« (x^  we have yyi= max ^y ^  over m < Mi 

which, with the relationships just established between components of 

y    and    z,  implies that    z.. = max {z )    over   m < M.    This, with the 
M m — 

previous conclusions about the representation,    z = 2 CD   n x,  implies 
' TT 

that    z ^ A,» M»!^)'    Hence, by supposition,    z € S(x).    Consequently, 

by (2.3.^) and (2.1),   [z^z] c S(x). 
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To show that y € S(x), and thus complete the proof of the lemma, 

we need only show that y (■  [Z,CTZ]; i.e., that y = 9z + (l - 9)rrz> 

for some 9 such that 0 < 3 < 1. It is easy to verify algebraically 

that the required conditions are satisfied by 9 = 1 if z. = z^.,  and 

otherwise by 6 = (zM - y^ / (zM - 2^). 

Characterization of symmetry-convex sets. By (A.l) and (2.3-9)/ 

set X c R  is symmetry-convex if and only if X = U^y C(x). The 

C(x) are obviously symmetric sets whose intersections with the hyper- 

planes, IT  x = constant, are all convex or empty; so the following 

theorem is an immediate consequence of the statement just made and 

Theorem {2.k). 

{A.2)    THEOREM. For X c Rn, the following conditions are equivalent: 

(A.?.l) X is symmetry-convex. 

(A.2.2) x = U ex C(x), where C(x) is the convex hull of the 

set  [nx|n6 n )• 

(A.2.3) X is a union of symmetric sets whose intersec .ions with 

the hyperplanes, IT . x    =  constant, are convex or empty. 

It is clear that the symmetry-convexity of a set X c R  is 

actually a property of its intersections with the hyperplanes, R = 

(xjx € R ;  Zfj-i xm 
= c^ for c ^ K; i.e., every symmetry-convex set 

is a union of(disjoint) symmetry-convex sets contained in the hyper- 

planes R , and every such union is a 3ymmetry-convex set. Thus,  the 

structure of the symmetry-convex sets in R  is completely describable 

in terms of the structure of the symmetry-convex subsets of R . 

2 
It is easily verified that the symmetry-convex subsets of R are c 

2 
identical with the convex symmetric subsets of   R ; but the situation 

b-jcomes more complicated in    R      and in higher-dimensional spaces. 
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In R , consider, for instance, X = C( 1,1,4) U C(0,3,3). Each of the 

two sets conjoined is an equilateral triangle (with its interior) in 

the plane x, + x- + x, = 6. Further, these triangles are concentric, 

and one is rotated 60 with respect to the other.  Thus, X is a Star 

of David (with its interior). Similarly, 0(0.9,0-9; 3.8) II 0(0.2,2.9,2.9) 

Is a Star of David with its points clipped short (but not equally short), 

The reader who wants to get a "feel" for the symmetry-convex sets will 

do well to examine those which are subsets of R , starting with the 

C(x) and with the unions of small collections of these sets. 

Characterization of symmetry-convex functions. It is easily seen 

from the remarks just made and Definition (4.1) that there are symmetry- 

convex functions whose isoclines have the same shape as the outer boun- 

dary of a Star of David; which means that the "cross-section" of such 

a function along a segment like [(0,3,3)^ (l, 1,4)] can rise higher than 

the (possibly equal) functional values at the endpoints. Thus, the 

symmetry-convex functions are not all quasi-convex. The exercise 

suggested above for exploring the symmetry-convex sets; if carried out 

with Definition (4.1) in mind, will also help to get a "feel" for the 

symmetry-convex functions. 

As in the case of symmetry-convex sets, it is easily seen that a 

symmetry-convex function need be no more than a conglomerate of functions 

defined on subsets of the R , unrelated to one another except by name. 

We thus suffer no loss by concentrating on symmetry-convex functions 

with domains contained in the R . 
c 

First,  let   Y* X -• R    be a bounded symmetry-convex function, where 

X c Rc ; and choose    M>lub{Y).    Let    A = ((d,z) |d € R; z € XJYU) < d). 

For    a = (d,z) € A,  define   Y  :X - R by Y    (x) = d if x € C(z),    and 

Y(X) = M if x ? C(z); where C(z) is defined as in (A.l) and (a.2.2). 

ammm 



  .1 '       — 

25. 

It is easily verified that the   Y      are quasi-convex and symmetric, 

and that   Y = inf CÄ (Y  )•    With (U.7) this yields the following 

theorem. 

(A. 3).    Theorem.    Suppose function   Y-'X-♦ R    is bounded, where X c R . 

Then   Y is symmetry-convex if and only if it is an infimum of 

quasi-convex symmetric functions. 

The theorem in fact holds,  and the above proof is valid,   if   R 

in its statement is replaced by R  .    The restriction to bounded func- 

tions is then mere severe. 

To obtain a complete characterization, we define a natural ex- 

tension of the concept of infima of collections of functions. 

Function   Y:X ~« R   is the exinfimum of the collection,   (Y   |a 6 A], of 

functions   Y    :X   -»R,  provided    X c: !j       X ,    and for each    x € X, 'a      a a£A   a 

Y(X) = inf (Y (X)) where the "inf" is taken over as such that x € X . a a 

We then write     Y =   x inf (Y  ) • 

Now,  using the notations of the paragraph preceding (A.3)>  for 

a = (d,z) 6 A,  define   Y  :C(z) - R    by Y    (x) s d.    It is easily veri- a a 

fied that the   Y    are convex and symmetric/  and that    y a    xlnf (Y  )• a a 

The proof of {h-j) actually applies to exinfima (and the convex func- 

tions are quasi-convex);  so the result .iust obtained, with (h.'j), 

yields the next theorem. 

(A.4).    THEOREM.    Function   Y-*X -*R, where   X C Rn,    is symmetry-convex 

if and only if it is an exinfimum of convex symmetric functions, 
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Theorem (A.^) holds without other modification, and the proof 

given remains valid, if R  is replaced in the statement by R . 

But it is easily seen, from the nature of "exinfima" that nothing is 

really added by this modification. 

An alternative innovation to the invention of the exinfima is to 

define "exconvex" functions in the seme way as ordinary convex functions, 

except permitting positive-infinity as a functional value. Theorem {A.k) 

is valid if "exinfimum" is replaced by "infimum" and "convex" by "ex- 

convex." (The statement got by making the first of these changes but 

not the second is false.) 

mm 
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