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ABSTRACT

This paper develops the theory of "dymmetry-convex" functions,
whose appearance in certain scheduling problems as delay-cost functions
(of waiting times) guarantees that the "first-come-first-serve" schedules
will be optimal. These are the symmetric functions satisfying a mild
convexity condition (which appears to hold in most if not all practical
scheduling situations). The conclusion of the present naper is that,
for a rather special type of scheduling problem, the first-come-first-serve
schedules are optimal, provided the walting times of individual jobs affect
delay cost symmetrically. Extensions of this conclusion (to be detailed in
one or more subsequent papers) cover broad classes of scheduling problems
of great practical significance, relating to both "first-come-first-serve"

and "first-due-first-serve" scheduling.




1. INTRODUCTION

We consider the following scheduling problem.

(1.1) PROBLEM, Jobs 1,...,n will arrive in a system, ready for pro-
cessing, at epochs X) D= l,.00yns One job must be processed
at each of the prccessing epochs Yp B = 1,...,n. A schedule is
a permutation, say w, of the integers 1,...,n; vith the inter-
.pretgt':lon that each processing epoch ym is assigned to job n(m);
or, writing p = n-l , that each job m is to be processed at epoch
Yy om)* Schedule 1 is feasible if 1t calls for processing each
Job no earlier than its arrival; i.e., if each yp(m) -x 2 o.
Then yp(m) - xm = wm is the waiting time of job m. The delay cost
depends upon the waiting times, being given by \(wl,... ,wn) , Where
Y 18 a specified function. It is required to determine whether
Teasible schedules exist, and if so to choose one which minimizes

delay cost,

A first-come-first-serve schedule is one under which two jobs which

arrive in a given temporal order are always processed in the same order
(or simultanecusly); i.e., & schedule, m such that if x, <x,, then
yp(i) - yp(J), vhere o 1s Cefined and interoreted as in the statement
cf Problem (1.1). It turns out that whenever feasible schedules exist,
then the (easily constructed) first-come-first-serve schedules are
feasible,

We shall take an indirect approach to the problem of minimizing
delay cost. Specifically, we determine exactly what assumptions about

the delay-cost function guarantee that the first-come-first-serve




schedules will minimize delay cost whenever feasible schedules exist,
Happily, rather general assumptions of practical applicability
afford such a guarantee., The functions which satisfy these assumptions

are called symmetry-convex functions in this paper, for reasons which

will become clear, They are the symmetric functions which satisfy a
certain mild convexity condition, It is plausible that practical
delay-cost functions will always fulfill the convexity condition; and
i® this be accepted, we can conclude that the first- come-first-serve
schedules are solutions to real-life instances of Problem (1.l) if and
ouly if the individual jobs are symmetric with respect to their effects
on delay cost., This last condition is often a matter of high principle
in customer-service facilities, when managers accept egalitarian ideals
or simply perceive the customers as & homogeneous population,

These conclusions are of interest in themselves, but much more so
because they can be extended to a broad range of scheduling problems
much more complex than Problem (1.l), and subject to realistic
uncertainty. Suppose, for instance, that "future" arrival and processing
epochs are not known in advance; and a dispatcher must decide which of
several walting jobs should.be assigned a "present" processing opportunity.
If the delay-cost function is symmetry-convex; he can confidently make
his choice on the basis of the "first-come-first-serve rule" (assign a
Job vhich has been waiting longest), knowing that he will thus generate
& first-come-first-serve schedule, and consequently minimize delay cost ...
regardless of what the future holds. He need not even know which
symme try-convex function is operative, or how many jobs are yet to come;
and he need not even make statistical assumptions beyond broadly accepting
that his choices will not influence the (as yet unknown) configuration

of future arrival and processing epochs in any useful way,




Such extensions couprehend a rather complete theory of scheduling
to minimize delay cost in situations such as those repre.zrted by
classical queueing models, provided that individual jobs are not stat-
istically differentiated either as to effects on delay cost or as to
processing time requirements., The circumstances covered include con-
vincing representatives of a large proportion of customer-service oper-
ations, and of a substantial realm of manufacturing problems (e.g., repair
of devices from a homogeneous population, when the required effort for
a given job is not predictable before the job is irretrievably in
process). The single dictum of the theory is the simple prescription,
"use the first-come-first-serve rule." The detailed and formal develop-
ment of these extensions is reserved, however, for aro>ther paper, for

which the present paper lays groundwork.

Outline, In Section 2, the concept of "symmetry-convexity” is
introduced for subsets of n-space, and this concept 1s developed in
Sections 2 and 3. The symmetry-convex functions are defined in Section
4, and the main results concerning Problem (1,1) and relating to other
anticipated applications are developed., Section 5 is a brief summary
of results, especially as they are relevant to Problem (1.1). The Appendix

rounds out prtions of the mathematical theory of symmetry-convex’ty.

Notation and terminology. We use standard set-theoretic notations;

such as "€" for "belongs to" (a set), "O" and "' for "contains" and

"is contained in" (among sets), and "N" and "Y' for (set) intersection

and union. In particular, a notation of the form fexpression'list of
conditions) sisnifics the set of elements representablc by the "exyression,"
and satisfying the "list of conditions"; ghd v:X - Y denotes a completely
gencral function whose values are dcfined for aruments in set X

and are elements of set Y.




When no confusion can result, we may notationally identify a single
element and the set consisting of that element,

Real n-space is denoted by R"; and R = RY, For x € Rn, x_ end (x)m
both denote the m-th component of x (the latter notation actually being
used only when the element of Rn is denoted by a string of two or more
symbols), For x and y € Rn, the segment joining x and y is

(x,y]=(ex+ (1 - e)ylo s 0 <1);
vwher~ here and subsequently the arithmetic among elements of R and Rn
is ordinary vector arithmetic,

The set of permutations of n objects is denoted by Hn. For x € R®
and 1 € T_'In, mx denotes the vector got from x by shifting the m-th component

to position m(m), m = 1,...,n; so that (rrx)m = xﬂ-l(m) for each m, If
also m' €1, then n'm = m(mx). The notation and conventions are
consistent with viewing the elements of Rn as column n-vectors and those
of Hn as nxn permutation matrices.

The symbol Z‘h denotes the set of ¢ € nn such that, for some i and }
wvith 1 £ 3, o(1) =J, oJ) =4, and o(m) =mform 4 1, J. Such a
permutation is aaid to "exchange i and j." It is well-known (and readily
verified) that every permutation can be expressed as a product of such
"exchanges,"

Set X ¢ R® is symmetric if Tx € X vhenever x € X and nr € !In.
Function v:X - Y, where X C Rn, is symmetric if X is symmetric and if
v(x) = y({mx) whenever x € X and m € M.

Set X c R is convex if X is non-empty and if [x,y]} < X vhenever
x and y € X, The convex hull of X C Rn is the intersection of all convex
sets containing X; or, equivalently (as is easily proved) the set,

0. x'0<6 s1; % 1} .
X x x

yex Leex O =




Function v:X -+ R, where X c Rn, is convex if X is convex and if
¥(z) < 8¥(x) + (1 - 8)\(y) whenever x and y € X, 0 <6 <1, and
z=0x+(1- 6)y.

Function y:X -+ R, where X c Rn, is quasi-convex if X i1s convex and

and if y(z) <max {(x);v(y)) whenever x and y € X and z € [x,y]. It

is vell known (and easily proved) that every convex function is quasi-

convex, but not conversely,




2. SWMETRY-CONVEX SETS

As a basis for an appropriately genersl definition of the symmetry-
convex functions, and also for analytic purposes, we first introduce the

concept of symmetry-convexity for sets.

(2.1) DRPINITION, Set X c R" 1s symne try-convex if vhenever x € X

and ¢ € Zn, then segment [x,0x] C X.

(2.2) DEFINITION, The symmetry-convex hull, 5(X), of set X cR" 1s the

intersection of all symmetry-convex sets containing X.

Our first theorem states several elementary properties of symmetry-

convexity,

(2.3) THEORRM, For X CR':
(2.3.1) s(X) oX.
(2.3.2) 3(s(x)) = s(X).
(2.3.3) X is symmetry-convex if and only if S(X) = X.

(2.3.4) 8(X) is symmetry-convex,

(2.3.5) If X is symme‘ry-convex, then X is symmetric.

(2.3.6) If Y c X, then 8(Y) < 5(X).

(2.3.7) If X is a union or intersection of symmetry-convex sets,

then X is symmetry-convex,
(2.3.8) 8(X) = Ueex S(x).
(2.3.9) X is symmetry-convex if and only if X = Ueex S(x).

Remark, It is shovn in the appendix that each set S(x) is identical to

the convex hull of the set, {m|m ¢ 'rn]; whence (2.3.9) yields a rather




clear-cut characterization of the symmetry-convex sets in terms of

ordinary convexity.

Proof of (2.3), G&tatement (2.3.1) is immediate from (2.2).

Replacing X in (2.3.1) by S(X), we have S(3(X)) o 8(X), and to prove
(2.3+2) 1t remains to show that S(S(X)) < S(X). Every set intersected
to form S(X) is a symmetry-convex set containing S(X), and is hence
emong those intersected to form S(S(X)), whence the required relationship
follows.

If X 1s symmetry-convex, then it is among the sets intersected to
form S(X), whence S(X) c X; which with (2.3.1) proves the necessity
in (2,3.3). For XcR', 1f x € X and g € T, then X is in each of the
sets intersected to form S(X); whence, siuce these sets are symmetry-
convex, each contains [x,0x]; vhich implies [x,0x] c S(X). Consequently,
if 8(X) = X, then [x,0x] C X; ¥hich proves the sufficiency in (2,3.3).

By (2.3.2), S(X) satisfies the sufficient condition of (2.3.3) that
it e symmetry-convex; which proves (2.3.4).

To prove (2.3.5), we assume X is symmetry-convex, and show that if
x€Xand m €T, then i € X, We can write m= g ...o", Where each
ak € N. Let yo = x, and yk = qkyk'l for k = 1,...,K. Then yo € X;
and, by (2.1), ¥> € X tmplies y° € X. This completes an induction
showing that yx = mx £ X, as required,

If Y c X; then, by (2.3.1) and (2.3.4), S(X) is a symmetry-convex
set containing Y, and hence among the sets intersected to form S(Y);
vhence S(Y) < S(X), which proves (2.3.6).

6:%(: 7\513‘%63 %%’an arbitrary set

and each Za is symetry-convex, If x € X and ¢ € Zn, then x i8 in some

To prove (2.3.7), let X = U,

particular Z , so [x,0x] < Za. C X; which implies that X is symmetry-
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convex, as required to prove the statement concerning unions. Ir
Yy €EYand g € Zn, then y 1s in every Za’ whence so is [y,cy], whence
lv,oy] c naeA Za = Y; vhich implies that Y is symmetry-convex, and
completes the proof.,

To prove (2.3.8), vrite U = Uyex 8(x). By (2.3.6), S(x) < 8(X)
for x € X, whence U ¢ 8(X), It remains to show that U > S(X). By
(2.3.4) and (2.3.7), U 1s symmetry-convex; and, by (2.3.1), x € 5(x),
vhence U o X, Hence U is among the sets intersected to form s(X), which
implies the required relationship.

Finally, (2.3.9) is an immedjate consequence of (2.3.3) and (2.3.8).

The next theorem provides a sufficient condition that a set be
symmetry-convex, It is shown in the appendix that this condition

is also necessary,

(2.4) THBOREM, Let X c R” be a union of symmetric sets whose

intersections with the hyperplanes, ‘LL]_ X, = constant, are

all conveXx or empty. Then X is symmetry-convex.

Proof. By (2.3.7), it is enough to show that a symmetric set is
cymnetry~convex if its intersections with the hyperplanes b = X =
constant, are all convex or empty. let Y be such a set, y € Y, and
o € Zn. By the symmetry gny, oy € Y. Writing c, = z Yo it is
plain that both y and oy | N {x'x € R % x, =¢ ). By the comvexity
of this set it must therefore contain y,0v]; vwhence [y,oy] < p oA

as required to prove Y is symmetry-convex and to complete the proof of

the theorem.

T B ey
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3. FURTHER CHARACTERIZATIONS OF SYMMETRY-CONVEX SETS

The following theorem links the concept of symmetry-convexity

to Problem (1.1).

(3.1) THEOREM. For X < Rn, the following conditions are equivalent:

(3.1.1) X is symmetry-convex.

(3.1.2) If uand v €R, and + € % exchanges i and J such that

u, <u, and v, <v,_; thengv -~ u € X implies v - u € X.

i J— 1 3’

(3.1.3) X is symmetric; and if u and v € Rn, U € ees S,
Vi S e SV and ﬂEf!n; then mv - u € X implies
v-uc€lX.

(3.2.4) Ifuand v €R, mand m € 7T, and (mv) < (o),
whenever u, < uj; then mv - u € X implies mkv - u € X,
n
- 2 2 T .
(3.1.5) Ifuand v CR, vy % vy whenever u, <uj, and ~ € ¥ ;
then v - u £ X implies v - u € X,

Preliminary interpretation. Consider a scheduling situation

identical to that of Problem (1.1); but in which a schedule, m, is
deemed "acceptable" if and only if ny - x & X, vhere X C R" is a
given set. The equivalence of (3.1.1) and (3.1.4) implies that

if any schedule is acceptable, then the first-come-first-serve
schedules must be acceptable; provided X is a symmetry-convex set.
Conversely, if the existence of an acceptable schedule implies that
the first-come-first-serve schedules are acceptable, whatever - and
y may,be; then X must be symmetry-convex.

If "ecceptability” is identified with "feasibility," as defined
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in Problem (1.1); then, since it obviously follows from (2.4) that
the non-negative orthant of R" is symmetry-convex, the forward

implication just made validates the following assertion.

(3.2) ASSERTION. In Problem (1.1), if feasible schedules exist,

then the first-come-first-serve schedules are feasible.

The implications, however, go much further. Suppose a schedule,
7, 1s deemed acceptable if and only if its delay cost satisfies
Wty - %) <c, where ¢ is a specified constant. The theorem implies
that the first-come-first-serve schedules will meet this criterion
whenever any schedule does, provided the set{ x|v(x) < c) is symmetry-
convex; and, conversely, if this is true for every choice of x and y,
then {|y(x) < c)must be a symmetry-convex set. We shall develop this

line of reasoning fully in Section 4.

Proof of (3.1). Suppose (3.11)holds, and let u, v, and o be

given as in (3.1.2). Let 6 = 1 if u, = ugs otherwise let 6 =

i
(uJ - ui)/(uJ " U+ - vi). Then it is easily verified algebraically

that 0 s 8 <land v - u = 0(ogv - u) + (1 - ¢)g(ov ~ u); whence
v -uc€([ow-uolov-u)l.. Hence, by (2.1) ov - u € X implies
Vv - u € X, as required to nrove (3.1.2).

Suppose (3.1.2) holds, and let u, v, and m be given as in

(3.1.3). Let yo = v, and get yk from yk-l by exchanging components

k-1 k- k-1
i and j; where y,  is the least component of v ! such that ¥y

< yi-l for any m < i, and j is the least m for which this inequality

r

holds. It is easily seen that for some K, yh = v; and also that

k-1
\g =

(3.1.2) implies that u ¢ X implies yk - u € X, It follows
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by induction that ifmr-u:yo -u € X, thenv-u-yx- u € X.
To prove (3.1.3) it remains to show that X is symmetric; which will
follov (as in the proof of (2.3.5))if it is shown that for x € X
end g € T, ox € X. This is immediate from (3.1.2) with u = 0 and v = oX.

Suppose (3.1.3) holds, and let u, v, m, and m* be given as in (3.1.4).
It is easily seen that p € ;“In can be chosen so that pu and pr¥*v satisfy
the conditions imposed oa u and v in (3.1.3). By symmetry, if
™ - u € X, then p(mv - u) € X. But

(v - u) = (pm¥ o) (prowv) - (pu);

whence (3.1.3) implies gm*v - pu = p(m*v - u) € X. Using symmetry
again, it follows that mv - u € X, as required to prove (3.1.4).

Condition (3.1.5) is simply the special case of (3.1.4) in
which the identity permutation satisfies the conditions imposed in
(3.1.4) on m*,and is the only w* considered; and in which the permutations,
m of (3.1.4) are restricted to the elements of L. Thus, (3.1.4) implies
(3.1.5).

Suppose (3.1.5) holds, and let x € X and 4 € T,» To prove (3.1.1),
it is enough to show that if y €[x,0X], then y €X. Let y = % + (1 - 8)ox,
vhere 0 < € < 1. Suppose g cxchanges i and J, choosing the notation so

X, € X,. Defineuandv’-_Rnbyui=o;u -a;um=bform£i,,j;

177 3 -
Vi =Xy -8 Vo= X and v, = x +b form £ 1,j; vhere a = e(x;i S xi),
and b = xJ - min [xm] » It 1s easily verified that gv - u = x; whence, by

hypothesis, ogv - u € X. It is also easily verified vhat u and v satisfy

the condition of (3,1.5), vhence v - u € X. Finally, a simple cal-

culation reveals that v - u = y; so it follows that y € X, as required.
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We have shown that (3.1.1) implies (3.1.2), (3.1.2) implies
(3.1.3), (3.1.3) implies (3.1.4), (3.1.4) implies (3.1.5) and (3.1.5)

implies (3.1.1), vhich completes the proof of equivalence.
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4., SYMMETRY-CONVEX FUNCTIONS; THE SCHEDULING PROBLEM

The following definition (which relates symmetry-convex functions
to symmetry-convex sets in the same way that quasi-convex functions
can easily be shown to be related +o convex sets) is reconciled with

the intention stated in Section 1 by Theorem (4.3) and Assertion (4.4).

(4.1) DEFINITION. Function vy: X + R, where XCR", is symmetry-
convex if X and all of the sets (x|x € X; vy (x) £ constant)}

are symmetry-convex sets.

Our first theorem about symmetry-convex functions states the pre-

cise sense in which they are "somewhat convex".

(4.2) THEOREM. Function y:X = R, where XC R", 1is symmetry-convex

if and only if, for x €X, 7 €L, and y € [x,+x]), we have

y €X and y(y) < v(x).

Proof. Let vy by symmetry-convex, and let x, ~, and y be
zlven as in the theorem. That y € X follows from the requirement
that X be symmetry-convex. Let c¢ = y(x). Then, by (4.1) and (2.1),
y € (zjz £ X; v(z) <c); so vy(y) <c; whence v(y) <y(x); and the
necessity is proved.

Let vy satisfy the condition of the theorem. By (2.1), X 1is
symmetry-convex. Suppose x € (z|z € X; y(z) < ¢}, 7 € L, end
y € [x,5x]). By the condition of the theorem, vy(y) = y(x), whence

v(y) <c, and y €(z|z € X; y(z) < c}; which proves that this set is

symmetry convex, and hence that ¥y is a symmetry-convex function.
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The following theorem is in essence a translation of (3.1) into
the language of functions. The routine proofs, based upon (3.1), and

each similar to the proof above of (4.2), are omitted.

(h.3) THEOREM. For function vy:X = R, vwhere XCRn, the following

conditions are equivalent:

(4.3.1) y is symmetry-convex.

(4.3.2) If u and v £ RY, and 5 € L exchanges 1 and 3}

and v, <v,; then av -ué€X

J - J*
implies v -u€X and y(v - u) <y(ov - u).

such that ui <u

(4.3.3) vy is a symmetric function (and X a symmetric set); and

if u and vERn,u S .S U, VS .SV, andrreﬂn;

1 1
then mwv-u€X implies v-u€X and y(v-u)s
y(nv = u).

(b.34) If w and vER, mand me €T, and (), < (mhv),
whenever ui<uj;_t_;p_e_n_ ~v = u € X implics m¥v - u € X
and vy(m*v - u) sy(m v - u).

(4.3.5) Ifu and v € RY, visv.j vhenever ui<uj, ﬂ‘l_—rézn;
then o v-u€X implies v-uéX and vy(v-u)c<

v(av - u).

Interpretation. Suppose again that in Problem (1.1) a schedule , T

i deemed "acceptable" if and only if ny - x € X, vhere X CR" is

a siven set; and interpret this set X as the domain of the delay-cost
function, y. The equivalence of (4.1.1) and (4.1.4) implies that if
acceptable schedules exist, then the first-come-first-serve schedule
will minimize delay cost over the acceptable schedules; provided vy is

a symmetry-convex function. Conver,ely, 1f the existence of an accept-
gble schedule implies that the first-come-first-serve schedule will mini-

mize dclay cost, then Yy must be a symmetry-convex functimon.
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Specialized to the case in which "acceptibility" and "feasibility"

are identified, this yields the answer to the main question rsaised in

Section 1.

(4.4) ASSERTION. In problem (1.1), the first-come-first-serve sched-

ules minimize delay cost whenever feasible schedules exist, if

and only if the delay-cost function is symmetry-convex.

(The domain of the delay-cost function in Problem (1.1) must, of course,
be the non-negative orthant of R".)

Equivalent condition (4.3.3) emphasizes that the different jobs
must play symmetric roles with respect to delay cost if we are to be
sure that the first-come-first-serve schedules will minimize this cost,
and interprets these schedules simply: we "may as well" number the
Jjobs consecutively in order of arrival, number the processing epochs
consecutively, and assizn each processing eroch to the jdentically
numbered Jjob. Eguivalent condition (4.3.5) points out that the con-
ditions on vy are not actually weakened if wc merely require that no
first-come-first-serve schedule be subject to improvement (i.e., re-
duction in delay cost) by exchanging the processing epochs of a single

pair of jobs. This condition can be reformulateu parallel to (4.3.3);

or, more sinply, (h.3.3, remains an equivalent condition to the others
1f Ug e Hn" and "n" are replaced througnout vy "y € Z%" end "+".
Conditicn (+.3.2) is of particular interest because it facilitates
inductive proofs of theorems relating to more complex situations than
those to which this paper is devoted. suppose in particular that the

x ~are reinterpreted as "due-dates,"

and that new variables, say zm,
are introduced as "arrival epochs"; where the 2, now determine which
schedules are feasible, as do the x_ in Problem (1.1), but the X,

pertain to "terdiness cost" precisely as they do to delay cost in Prob-
lem (1.1).
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It can be shown, using (4.3.2), that the symmetry-convex tardi-
ness-cost functions are those for which "first-due-first-serve" sched-
ules, defined in a natural way, minimize tardiness cost whenever feas-
ible schedules exist. The rigorous formulation and proof of this re-
sult is left for another paper, in which its implications for a wider

range of "due-date scheduling problems" will also be developed.

A special case. Because the symmetry-convex functions are un-

femiliar, it seems appropriate to conclude this section with special
cases of the sufficiency in (4.4), concerned with functions defined
using classical concepts; and to give some examples. The following two
lemmas, of some interest in themselves, directly imply Theorem (4.7),
vhose sufficient condition that a function be symmetry-convex is in-

corporated into Assertion {4.9), below.

(4.5) LEMMA. If y:X - R, where XC R? is a symmetry-convex set,

is an infimum of symmciry-convex functions, then vy is symmetry-convex.

Proof. Let vy = infaEA ( Ya}’ where A 1is arbitrary. Suppose
x€X, s € Zn, and y € [x,s7x]. For e> 0 there exists a € A such
that vy(x) > Yq (x) - e. By (4.2), since y, 1is symmetry-convex,
Ya(x) 2y, (y); whence it follows that v(x) > y(y) - e. Since ¢ is
arbitrary, it follews that vy(x) = y(y); vhence the conclusion follows

from (4.2).

(4.6) LEMMA. A quasi-convex symmetric function is symmetry-convex.

Proof. Let y: X -+ R be a quasi-convex symmetric function. From
the definition (Section 1), X 1is convex and symmetric; whence, by
(2.4), X is symmetry-convex; and the first part of the condition of

Theorem (4.2) is satisfied.




Purther, if x € X, 4 € L, end yE [x,ox); then y(x) = y(sx), by
symnetry; and, by quasi-convexity, y(y) < max (y(x); v(ox)} = v(x);

vhich verifies the second part of the condition of (4.2), showing that

Yy 1is

(4.7)

dition is also incorporated into (4.9), but draw attention to the

significantly changed position of the word, "symmetric,'
to (4.7).

(4.8)

(t.9)

3:R =+ R 1is quasi-convex; then y 1is symmetry-convex, by (4.8). 1In
particular, max (x

defined as the number of X vhich exceed any specified bound.

1T7.

symmetry-convex, and completing the proof.

THEOREM. Let function y:X - R, where XC R® s a symmetry-

convex set, be an infimum of quasi-convex symmetric functions.

Then vy 1is symmetry-convex.

We omit the routine proof of the following theorem, whose con-

' as compared

THEOREM. Let function y: X - R, where XC R” is a symmetry-

convex set, be a symmetric supremum of quasi-convex.functions.

Then y is symmetry-convex (in fact, quasi-convex, if X is

convex z .

Our next assertion is immediate from (4.4), (4.7), and (4.8).

ASSERTION. In Problem (1.1), suppose the delay-cost function

is either an infimum of quasi~-convex symmetric functions, or a

symetric supremum of quasi-convex functions. Then, whenever

feasible schecules exist, the first-come-first-serve schedules

minimize delay cost.

Examples. If y(x) = max (z(xm)] over m =1,...,n, vhere

e .;xn] is symmetry-convex; and so is the function

N
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Thus, in Protlem (1.1), the first-come-first-serve schedules minimize
the maximum delay, and also the number of jobs subject to delay ex-
ceeding any specified duration.

n
Ir yv(x)= & 1 g(xm), where g:R - R is convex; then it is

m =
easily verified directly that vy 1is convex (and hence quasi-convex)
and symmetric; whence by a "degenerate" application of either (4.7) or
(4.8), vy is symmetry-convex. Thus, ia Problem (1.1), if the deley
cost is the sum of costs attached to the individual Jjobs, each deter-
mined by the same convex function of the jobs' waiting times; then
the delay cost is minimized by the first-come-first-serve schedules.
Plausible specific functiomsin this category include the sum of the

vaiting times, and the sum of the squares of the waiting times.
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5. CONCLUSION

One can easily construct symmetric functions which are not
symnctry-convex. The appearance of such a delay-cost function in
Problem (1.1) not only dissolves our assurance that the first-come-
first-schedules must minimize delay cost; but in fact guarantees that
the first-come-first-serve schedules will not be optimal, for at least
some sequences of arrival and processing epochs. The same is true if
a non-symmetric delay-cost function appears.

But, within the realm of symmetric functions, it is difficult to
avold artificiality and symmetry-convexity at the same time. 1In fact,
the functions covered by Assertion (4.9) seem to comprehend the full
range of plausible delay-cost functions which are symmetric.

We conclude that, in practical situations like that of Problem

(l.l), it is generally safe to assume that the first-come-first-serve

schedules will minimize delay cost whenever feasible schedules exist,

provided the delay cost is a symmetric function of the waiting times.

As was remarked above, this dictum remains valid for a wide range
of more complex and realistic scheduling problems; and these problems

will be explored in znoth.r rpaper.




APPENDIX

FURTHER CHARACTERIZATIONS OF SYMMETRY-CONVEX SETS AND FUNCTIONS

Althoush the practical significance of the more complex symmetry-
convex sets 1s doubtful, along with that of symmetry-convex functions
beyond those described by Theorems (4.7) and (4.8) of the text; it is
of come interest (;nd potential practical importance with respect to
presently unanticip- .ed applications) to have seometric characteri-
zations of the sets, and complete characterizations of the functions
based on classical convexity concepts. This appendix provides such

characterizations.

A key lemma. The results of this appendix are based upon the

following lemma.

(A.1) LEMMA. For x €rY, let C(x) be the convex hull of the set,

{nxjm G.Hn}. Then  C(x) = s(x).

Proof. Since C(x) 1is obviously symmetric, and convex by defi-
nition, (2.4) implies that C(x) 1s symmetry-convex. Since x € C(x),
it follows by (2.3.6) and (2.3.3) that C(x) o S(x).

It remains to show that C(x) < S(x). Suppose it proved that, if

y; 5 -5y, then C(y) ©S(y). Given arbitrary x € R", 1t is
easily seen that we can choose n €T such that (nx)l 5.8 (nx)n.
Since C(x) 1s obviously symmetric, and S5(x) is symmetric by (2.3.4)
and (2.3.5), we have C(x) = C(rx) eand S(x) = S(nx). Iy supposition,
C(mx) < 5(mx); so it follows that C(x) < S(x).

It remains to show that, if x, < ...< x_, then C(x) < s(x). We

1
do so by induction.
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Let ¢, (x) be the set of y € R® which are expressible in the form,
y=2% Gﬂ mx, where O seTT <1 and I E)TT = 1, and where en = 0 unless
w(m) =m for m> M. For M =0, the one permutation which satisfies
this last condition is the identity, whence Co(x) = {x). Hence, by
(2.3.1), Co(x) c 5(x). For M sufficiently large (M = n is obviously
larze enough) , the restriction on permutations is vacuous; whence
Cy (x) = c(x).

To comrplete & proof by induction, it remains to show that, for
1<M, if x,<...<x, then C . (x) © s(x) implies CM(x) c s(x).
Suppose the same statement proved, but with CM(x) replaced by

DM('X) = (yly © CM (x); Yy = mex [ym] over m < M}.
let y € Cy {x). It is plain that we can choose n € m, such that
(ny)M = max [ym] over m< M, eand also. m(m) =m for m> M. It is
easily verified that ny ¢ DM(x); wherce, by supposition, my € S(x).
Consequently, by the symmetry of S(x), y € S(x). It follows that
Cy (x) c s(x).

It remains tec show that, for 1< M, if x, < ... X then

1l
CM_l(x) c S(x) dimplies Dy (x) < s(x). We do so by induction.

Let DM,N(X) be the set of y € Ih(x) which are expressible in the
form, y=2% ennx, in accord with the conditions imposed on similar
expressions representing elements of CM(x), and with the added re-
striction that there be at most N different permutations m such
that 8 > O and m(M) # M. If N =0, then 9 =0 unless (M) = M,
whence in fact eﬂ =0 unless n(m) =m for m>M-1; and it
follows that DM,O (x) c CM_l(x). Consequently, by supposition,

DM,o (x) © S(x). Por N sufficiently large (N = n! is obviously

large enough), the restriction delineating Dy. (x) as a subset of
H

D, (x) is vacucus; whence Dy § (x) = Dy (x).

.
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To complete a proof by induction, it remains to show that, for

1<M and 1<K, if x; < ...<x, then D, o (x) < S(x) dupld s

i1
DM,N(") < s(x); 1.e., qd,N_l(x) < S(x) inplies that if y G D o (x)
[ g then y € 8(x).
. N t
let y € DM,N (x). If ye %,N-l (x); then, by supposition,

' f y € S(x), oand we are done. Otherwise, we can write y = I 6_ X,

vhere 0< 6 <1 and Z0_=1, wvhere §_= Owless m(m) = m for

m > M, and vhere On > O for exactly N permu "18 m such that

m(M) # M. Since N> 1, we can choose o € n, such that ep >0
1
(

and p (M) #M. Let 1=p(M) and 3 =p (M). Let ~ € Zn exchange

1 and M. Let z=y+ep (spx - ox).

From the above representation for y, a representation, 2z =

z con nx, of 2 can be derived which is identical to that for y
| except that p has been "eliminated" and ~p has been "introduced"
| or its coefficient has been increased. Also, (7 p) (J) = ~(p(J))=1;
and similarly (ap) (M) =M and (gp) (m) = p(m) for m # j, M.
Since obviously Jj < M, it follows that this representation of =z
satisfies the conditions imposed on the above representation of vy,
but with N replaced by N - 1. By stralghtforward calculations
(remembering that (mc)m = xﬁ-l(m)), we find that z, =y, -8

p
(xM-xJ), 2y = Yyt ep (m-xj), and 2z =y for m# i, M. It

follows, using the assumption that x < ...< xn, that 2z, < yi and

1 i
Zy > Yy Since y € qw (x), we have Yy = max [ym] over m< M;
which, with the relationships just established between components of

y and z, implies that z, = max [zm] over m < M. This, with the

previous conclusions about the representation, z = I o mXx implies

that =z € Dy N__l(x). Hence, by supposition, 2z € S(x). Consequently,
)

by (2.3.4) and (2.1), [z,472] © s(x).

S
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To show that y € S(x), and thus complete the proof of the lemma,

we need only show that y € [z,5z]; 1.e., that y = 9z + (1 - 8)s2,
for some 9 such that 0< 3 < 1. It is easy to verify algebraically

that the required conditions are satisfied by 8 =1 if 2z, = Zy and

i
otherwise by 6 = (zM - yi) / (zM - zi).

Characterization of symmetry-convex sets. By (A.l) and (2.3.9),

getl X' € Rn is symmetry-convex if and only if X = L&GX C(x). The
C(x) are obviously symmetric sets whose intersections with the hyper-
planes, Zﬁ:l xm = constant, are all convex or empty; so the following

theorem is an immediate consequence of the statement just made and

Theorem (2.4).

(A.2) THEOREM. For XC R”, the followiny conditions are equivalent:

(A.2.1) X is symmetry-convex.

(A.2.2) X = Uey ¢(x), where C(x) is the convex hull of the

set {nx|n€ Hn]-

(A.2.3) X 4is a union of symmetric sets whose intersec-ions with

the hyperplanes, Zgzl X, = constant, are convex or empty.

It is clear that the symmetry-convexity of a set X C R" is
actually a prorerty of its intersections with the hyperplanes, Rg =
(x]x € Rn; Zﬁ:l X, = c), for c € R; i.c., cvery symmetry-convex set
is a union of(disjoint) symmetry-convex sets contained in the hyper-
rlanes R?, and every such union is a symmetry-convex set. Thus, the
structure of the symmetry-convex sets in Rn is completely describable
in terms of the structure of the symmetry-convex subsets of RZ'

It is easily verified that the symmetry-convex subsets of Rs are
identical with the convex symmetric subsets of RS; but the situation

3

becomes more complicated in R™ and in higher-dimensional spaces.




ok,

In R3, consider, for instance, X = C(1,1,4) u ¢(0,3,3). Each of the
two sets conjoined is an equilateral triangle (with its interior) in

F . the plane x, + x, + X3 = 6. Further, these triangles are concentric,

| end one is rotated 60° with respect to the other. Thus, X is a Star

of David (with its interior). Similarly, ¢(0.9,0.9,3.8) 11 ¢(0.2,2.9,2.9)
is a Star of David with its points clipped short (but not equally short).
The reader who wants to get a "feel" for the symmetry-convex sets will
do well to examine those which are subsets of Rg, starting with the

C(x) and with the unions of small collections of these sets.

Characterization of symmetry-convex functions. It is easily seen

from the remarks just made and Definition (4.1) that there are symmetry-
convex functions whose isoclines have the same shape as the outer boun-
dary of a Star of David; which means that the "cross-section" of such

a function along a segment like [(0,3,3), (1,1,4)] can rise higher than
the (possibly equal) functional values at the endpoints. Thus, the
symmetry-convex functions are not all quasi-convex. The exercise
suggested above for explorins the symmetry-convex sets, if carried out

with Definition (4.1) in mind, will also help to get a "feel" for the

symmetry-convex functions.

As in the case of symmetry-convex sets, it is casily seen that a
symmetry-convex function need be no more than a conzlomerate of functions
defined on subsets of the RZ, unrelated to one another except by name.

We thus suffer no loss by concentrating on symmetry-convex functions
with domains contained in the R:.

First, let y: X = R be a bounded symmetry-convex function, where
XCR::1 ; and choose M> 1lub {y}. Let A= ({d,2)|d € R; z € X;y(z) < d}.
For a = (d,z) € A, define Y X = Rbyy, (x) =d if x € ¢(z), and

v(x) = M if x § C(z); where C(z) is defined as in (A.1l) and (a.2.2).
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It is easily verified that the Ya are quasi-convex and symmetric,

and that vy = inf

€A [ya}. With (4.7) this yields the following

theoren.

n
(A.3). Theorem. Suppose function v:X ~R 1is bounded, where XCR_.

Then v is symmetry-convex if and only if it is an infimum of

guasi-convex symmetric functions.

The theorem in fact holds, and the above proof is valid, if Rz
in its statement is replaced by R”. The restriction to bounded func-

tions is then mcre severe.

To obtain a complete characterization, we define a natural ex-
tension of the concept of infima of collections of functions.
Function v:X - R 1is the exinfimum of the collection, [Yala € A}, of
functions Y :Xa -R, provided X C UaEA Xa, and for each x € X,
v(x) = inf [Ya(x)} vhere the "inf" is taken over as such that x € X,
We then write vy = xinf [Ya].

Now, using the notations of the paragraph preceding (A.3), for
a = (d,z) € A, define Ya:C(z) - R by i (x) =d. It is easily veri-
fied that the Ya are convex and symmetric, and that y = xinf (ya].
The proof of (4.7) actually applies to exinfima (and the convex func-
tions are guasi-convex); so the result just obtained, with (4.7),

ylelds the next theorenm.

(A.4). THEOREM. Function vy:X —R, wherc X Rz, is symmetry-convex

if and only if it is an exinfimum of convex symmetric functions.




26.
Theorem (A.4t) holds without other modification, and the proof
glven remains valid, if Rz is replaced in the statement by Rn.
But it is easily seen, from the nature of "exinfima" that nothing is
really added by this modification.
An elternative innovation to the invention of the exinfima is to
define "exconvex" functions in the same way as ordinary convex functions,

except permitting positive-infinity as a functional value. Theorem (A.4)

is valid if "exinfimum" is replaced by "infimum" and "convex" by "ex-

convex." (The statement got by making the first of these changes but

not the second is false.)
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