
A
D

 6
6

1
4

6
9

 Linden Laboratories, Inc. 

State College, Pennsylvania 16801 

Technical Report No. 1 

STRENGTHENING OXIDES BY 

REDUCTION OF CRYSTAL 

ANISOTROPY 

August, 1967 

Prepared by: 

Henry P. Kirchner 

Robert M. Gruver 

Prepared under Contract No. N00014-66-C019Ö for the 

Office of Naval Research, Department of the Navy. 

Distribution of this report is unlimited. 

1 C I E A R Í MG H O U S l 
i o i1 Ft "i-s; .'i St MJTit iit: S ^ 

(.1-.111....1:,011) Si)nn,;¡i!.,-‘d V,: S SlFo 



:. 

:.;.. 

Linden Laboratories, Inc. 

Sr.ate College, Pennsylvania 16601 

Technical Report No. 1 

STRENGTHENING OXIDES BY 

REDUCTION OF CRYSTAL ANISOTROPY 

August, 1967 

Prepared by: ^ 

Henrwtil5. Kirchner 

W V ’ ¿--i a, t/" 

Robert M, Gruver 

i! 
> 11 

Prepared under Contract No. N00014-66-C0190 for the 
Office of Naval Research, Department of the Navy 
Requisition Number NR 0'%§-<'4Qc ' 1 

l* .s * 

Distribution of this report, is unlimited. 



i 

FOREWORD 

This report describes research performed on a program 

sponsored by the Office of Naval Research, Department of the Navy 

under Contract N00014-66-C0190. The research was performed under 

the general bechnical direction of Dr. Arthur M. Diness of the 

Office of Naval Research. 

The authors are pleased to acknowledge the contributions of 

their associates at Linden Laboratories including especially Mrs. 

Violetta Adams, Mr. Ralph E. Walker, Mr. Norman Bierly and Mrs. 

Helen Cuff. The authors are indebted to Dr. W.R. Buessem for 

helpful discussions and to Mr. Charles Bulgey of Cornell Aero¬ 

nautical Laboratory for assistance in measuring the thermal 

expansion of BeO. 



BLANK PAGE 



i 1» ** 

AtSQrpp Afim 
J»XV«*w X 

An investigation of the effect of crystal anisotropy on the 

strength of oxides is described. Solid solutions of various 

materials in rutile (TiOg) and zincite (ZnO) were prepared and the 

thermal expansion properties were measured in an attempt to find 

compositions with reduced anisotropy. 

Bodies composed of 72# AlgO^^S# CrgO^ were prepared by 

reactive hot pressing. Preliminary evidence of a strengthening 

effect compared with pure AlgCU is presented. 
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I. INTRODUCTION 

Three possibilities provide the principal motivations for 

investigations of the thermal expansion of solid solutions of 

ceramic materials. One of these is the use of low-expansion 

solid solutions for chemical strengthening of polycrystalline 

ceramic bodies in a manner analogous to the chemical strengthening 

of glasses. If low expansion surface layers are formed on 

bodies at high temperatures, the bodies tend to contract more 

than the surface layers during subsequent cooling, placing the 

surface layers in compression. The feasibility of chemical 

strengthening of alumina, titania and spinel ceramics by low- 

expansion solid solution surface layers has been established. 

Another possibility is the use of solid solutions with 

reduced thermal expansion anisotropy and/or elastic anisotropy 

to obtain smaller localized stresses between grains in poly¬ 

crystalline bodies and thereby obtain improved properties. 

When a single phase body consisting of anisotropic crystals is 

sintered at high temperatures, little stress is present between 

the individual crystals. However, during cooling the individual 

crystals tend to contract more in the high expansion directions 

than in the low expansion directions giving rise to localized 

stresses in the grain boundaries and in the crystals. In 

addition, localized stresses arise as a result of elastic 

anisotropy. These stresses result from the way in which the 

applied loads, large scale residual stresses, and localized 

stresses are transmitted through elastically anisotropic media. 
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The Importance of these localized stresses has been discussed 

by Buessem et al, ^ Clarke/-^ Buessem and Langeand others. 

An analytical method for estimating the localized stresses 

resulting from thermal expansion anisotropy was presented.^ ; 

Reduction of the thermal expansion anisotropy of rutile (Ti02) 

and cassiterite (Sn02) by addition of vanadium in solution was 

reported by Merz, Brown, and Kirchner. (7) Similar results were 

achieved for corundum (AlgO^) by addition of chromium in 

solution. 

A third possibility is that the study of these solid 

solutions can lead to a better understanding of the roles of 

various ionic species in the dynamics of the lattice, thus 

leading to a more complete understanding of the equations of 

state of oxide materials. Investigations of these last two 

possibilities are the objective of this research. 

Some oxide solid solution systems that were Investigated 

previously include a large number of compositions involving 

TiOg as one component, and compositions in the systems SnOg-VOg 

and AlgO^-CrgO^ all reported by Merz, Brown and Kirchner, v' ; 

! Q ' 
Alg.O^-CrgO^ reported by St rad ley, Shevlin and Fverban , - 

ZngSiO^-MggSiO^ and Zn^GeO^-MggGeO^ reported by Wen, Brown and 

f in} 
Hummel,' 1 and for a variety of solid solutions in zinc phos- 

' 11 \ 
phates and vanadates reported by Brown and Hummel.' ' 

In this report, the results of thermal expansion measure¬ 

ments of end members and solid solutions Ä materials having 

tetragonal and hexagonal structures are presented. These result; 

are discussed in terms of the characteristics of the added ions. 



In addition, polycrystalline ceramic bodies were prepared from 

compositions with reduced expansion anisotropy in the AlpOq- 

Cr^O^ and TiOg-VOg systems. The flexural strengths of these 

bodies in the AlgO^-CrgO^ system are reported and compared with 

the flexural strengths of pure alumina bodies of comparable 

grain size and porosity. These preliminary results indicate 

that strengthening was achieved. 
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II. THERMAL EXPANSION ANISOTROPY OF RUTILE 

STRUCTURE OXIDES AND SOLID SOLUTIONS 

(A). Selection of Materials for Investigation 

In earlier research the thermal expansion anisotropy of 

rutile structure materials (stishovite, SIO^12); GeO^13); 

rutile, TiOg^7)] and casslterite, SnO^7)) was investigated. 

In stishovite and tetragonal Ge02, the thermal expansion in 

the "a" axis direction is greater than in the "c" axis direction 

whereas in rutile and casslterite it is lower. In the cases 

studied previously it seemed that crystals with smaller cations 

tended to have higher expansion in the "a" axis direction than 

In the "c" axis direction and conversely for those with larger 

cations. 

Knowledge of the factors governing the effect of various 

solid solution atoms on the expansion anisotropy will be help¬ 

ful in finding compositions with reduced anisotropy. As an aid 

in determining these factors, more data on pure oxides with the 

rutile structure are needed, so it was decided to attempt to 

measure the expansion anisotropy of tetragonal VOg. This 

material is of special interest because addition of vanadium 

to rutile and casslterite caused substantial modification of 

the expansion anisotropy of those phases. In studying this 

material, it may be possible to determine whether the change in 

anisotropy observed in these phases results from the properties 

of the vanadium or is mainly a result of changes in the lattice 

constants or defect structure when the vanadium is added. 
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In addition to the pure oxides, solid solutions of Ge02, 

SCgOg, Sc2C>3 + VgO^, GagO^ and GagO^ + in were 

investigated. The solid solutions of; GeOg in TiOg were selected 

for investigation because extensive solid solution is indicated 

in the phase diagram and earlier measurements^ had indicated 
* 

reduction of the expansion anisotropy when small percentages 

of germanium were present in rutile. Investigation c; the 

compositions containing scandium and vanadium, and gallium and 

vanadium was done in order to determine whether or not the 

effectiveness of vanadium in reducing the expansion anisotropy 

of rutile was primarily a result of the presence of a smaller 

cation or perhaps a result of other effects such as changing the 

valence state of some of the titanium atoms, or changes in the 

lattice constants of the material. 

(B). Sample Preparation 

YOg was purchased from City Chemical Company. In the 

"as received" condition the material was poorly crystallized 

so that no diffraction peaks were observed in the back-reflection 

region. Therefore, the material was reheated under various 

conditions (atmosphere, time, temperature) in an effort to 

improve the diffraction pattern. After several attempts, treat¬ 

ments at 1000°C for six hours in a helium atmosphere gave 

several diffraction peaks in the back-reflection region. A 

small percentage of material other than YOg was present. The 

thermal expansion measurement was made in a flowing helium 

atmosphere. 
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The rutile solid solutions were prepared by heating the 

mixed oxides. In some cases the samples were quenched in an 

attempt to Improve the sharpness of the peaks in the back- 

reflection region of the X-ray diffraction patterns. 

. . f 

(c)*, Procedures for X-ray Measurements 

A General Electric XRD-5 diffractometer with a copper 

::.;K)SO A for- Kn ivï M 

fraction furnace were used. 

‘cm-Prc;' iiii'.h ‘u-unp^’rat jre X- ray ¡¡ i.f- 

Lines in the back-reflection .region 

used to attain precision and accuracy in the determination of 

the lattice constants. In some cases, considerable difficulty 

with misshapen peaks was encountered. The peak positions were 

taken as the midpoint at an arbitrary distance from the top of 

the peak or as the midpoint at one-half peak height, depending 

upon the shape of the peak and the separation of the K and 

al 
Ka peaks. 

(D), Results and Discussion 

jigjiQ-dlum dioxide (VCL,). The best of the thermal expansion 

results for vrC\, are. presented in Tab I e I and Figuro l.. The ye 

resulto are considered to be tentative because of prob!oms 

associated with indexing the diffraction pattern, poor diffraction 

peak shape and sample stoichiometry. Nevertheless, it is hoped 

that these data will not be too different from the results of 

better measurements. 

Because of the monoclinic- to tetragonal phase transformation 
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in VCU at about 66°C, the measurements were started at 100°C 

and continued at 100°C intervals up to 500°C. At 500°C the 

pattern was so poor that results were not obtained. The "c" 

axis expansion is much greater than the "a" axis expansion, 

In Table II these new results are compared with previous 

results obtained for other rutile structure oxides listed in 

order of increasing cation radius. It is evident from this 

comparison that factors other than the cation radius are 

important in determining the expansion anisotropy. 

The thermal expansion of crystals depends upon two 

principal factors; the tendency of the ions to vibrate and 

exert pressure on the lattice (the so-called thermal pressure), 

and the resistance of the lattice to expansion which depends 

in turn on the elastic constants. The tendency of the ions to 

vibrate varies with temperature. The tendency of the vibrations 

to exert pressure on the lattice is related to structural 

characteristics including the symmetry of the structure and the 

presence of open space in the lattice into which the ions can 

vibrate with less pressure exerted on the lattice. In general, 

one expects to observe high expansion coefficients in phases 

with highly symmetrical, densely packed structures having low 

values of the elastic stiffness constants. Phases with low 

symmetry, open structures and high elastic constants tend to 

have low expansion coefficients. 

The transition metal oxide phases with the rutile structure 

are more densely packed than the phases with group IV-A cations. 

This increase in packing density is illustrated in Figure 2 in 
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which molar volumes of the oxides of titanium and vanadium fall 

below the values expected for cations of their particular sizes 

based upon the lattice constants observed for the phases with 

group IV-A cations. Based upon the factors discussed in the 

previous paragraph, the volume expansion coefficients of TiO 
! ' '2 

and VOg are expected to be relatively high. The volume 

expansion coefficients presented in Table III show that these 

higher volume expansion coefficients were observed. 

TABLE III 

Volume Thermal Expansion Coefficients 
of Rutile Structure Oxides 

(Rm T - 400°C) 

Material 

SiOg (stishovite) 

GeOg 

VOg* 

TiOg (rutile) 

SnOg (cassiterite) 
* 
preliminary data 

Volume Expansion 
. Coefficient 

173xlO“7 0c'1 

197xl0“7 

384xl0'7 

26lxl0~7 

l42xlO~7 

Extending this same type of argument to the comparison of 

differences between the observed lattice constants and the 

lattice constants expected based upon changes in cation radii, 

with the thermal expansion coefficients in the different 

crystallographic directions, it is evident that the lattice 



constants that are larger than expected are associated with 

lower values of expansion coefficient in the same direction and 

vice versa. Using the lattice constants of the composition 

O.90 TIOg-O.lO VOg as a basis for comparison because it has a 

small expansion anisotropy, the above-mentioned differences 

are presented in Table IV. As expected, the lower expansion 

materials have the more positive differences indicating that the 

lattice constants are larger than expected. In addition, the 

larger positive values for Si0o and Ge0o are associated with c 

which is the low expansion direction in each of these phases. 

The larger negative value, meaning that the lattice constant is 

smaller than expected is associated with the cQ for TiOg and 

VOg which is the high expansion direction. The magnitudes of 

the lattice constants of SnOg yield differences that are 

inconsistent with this line of reasoning for reasons that are 

not understood at present. 

This observation of a relationship involving the difference 

between the actual lattice constants and those predicted, and 11 

the thermal expansion anisotropy, may be of great importance in 

further work on this program. It is hoped that by looking for 

large differences between measured lattice constants and those 

expected based upon changes In cation radii, it will be possible 

to find solid solution compositions in which there are substantial 

changes in thermal expansion anisotropy. 



T
A

B
L
E
 
I
V

 

■ 

OJ 

9 •r) LS** 

to T3 
4J CÖ 

K 
S 
-P C 
«J O 
ß -H 
O -P 
O (Ö 

O 
O) 
O 
•H -H 
4-3 
P to 
«0 tí 
m o 

•H 
T3 p 
(U OJ 

ß ß 
0) « 
to ¡> 
ja 
o e 

o 
tí ß 
<U <H 
<D 
S -O 
p tu 
tu P 
ff) o 

(U 
to ft 
tu X 
o W 
ß 
QJ <u 
ß CO 
tu o 

*4H -ß 
tH E-t 
•H 
P T3 

14 

CO I 
tu 
O O 
C o 
tu 
ß , 

I 

IS- 
ö 
OJ 

4^- 
a\ 
o 

o 

LT» 
rH 
o 

Q' 
I 

on vo 
0\ tn 

o 
C\J 
o 

t 

o 

m 

o o 

p o o 
CÖ 4- 

o 

o 

OJ 
o 

ooo 
OUA 

•CA 
o . 

OJ 
tß 
o ;i 

to o 
p u 

§ . 
p on 
to IA 
ßao 
O tA 
O » 

-=t 
<u 
o II 
•H 
p o 
P CÖ 
CÖ 

c 
O 
ft 
P 

X3 
(U 
CO 

$ ff) 

TÎ * 
<D OJ 
P Ö0 

SiS)¿ 
ftp 
X c 
K 

o 
LA 

0) 
M 

I 
P 
Ü 

VI 
tu 

tu CO o 
o ß o 

pH CU 
p pi 
P <u 

rH 
ß LO 

ß cÖ 
H ft O -sf 

CÖ 
O 

I 

co o 
ß o 

CU CU 
O P 

•H 0) 
P 6 
P tö 

ä c3 O 
ft cö 

co 
â 
LO 

CVI 
OL 

cö 
•H 
ß 
tu 
P 
CÖ 
S 

<u 
p 
•H 
> 
o 
p 
co 
•H 
P 
CO 

OJ 
O 
•H 
m 

o 
+ 

co 
OJ 

« 

o 
I 

o 
+ 

0\ 
o 

m 
0O LÛ 
OL 
OJ 

• 
o 

( 

OL 
o 

t- 
00 

o 

CVJ 
LO 
oo 

LA 
OL 

OJ OJ OJ OJ 

CA 
O 

o 
I 

4t 
on 
o 

6’ 
i 

m 
lA 
00 

o 
I 

OJ 
o 

o 
+ 

PO 
o 
o 
o 

« 

o 
I 

£ 
o 
o 

0 

o 

00 
OL 
PO 

LA 
LA 

Iß- 
PO 
OL 
LA 

CU 
I—I 
"H 
P 
P 
ß 

OJ 
o 
tu 
o 

OJ 
o 
> 

o 
LA 
rH 

• 

o 
«j~ 

PO 
p- 
o 

* 

o 
+ 

00 
o 

0 

o 
+ 

o 
PO 
OJ 

0 

o 
+ 

[s_ 
OJ 
LA 

o 
"f** 

PO 
OL 00 

oo 

m 

00 
PO 
N 

0) 
p 
•rl 
ß 
tu 
p 
“H 
ra 
CO 
cö 
u 

0J 0J 
o o 

ß 
Eh CO 

LA 
is- tn 
LO -H 

« 
o <u 

w 

1 § 
PO P 
LO o 

b vs 
rH tu 

p 
•f o 

tu 

s ^ 

b ^ 
Ol tu 

p 
to P 

•H 
tu 

01 ß 
p o 
> <H 

CU 
O ß 

O EH 

V 

OJ rH 
O rH 
•H <u 
tH CJ 

O P 
OL *rl 

• ß 
O p 

ß ß 
o CU 

<p ft 

CO w 

CO 
p 

0 *H 
rC! VS 

Cö 
ß 

ß 
O 

■H 
p 
cö 
u 

0 
p 

M 

o 

p 
•rt 

ß 
o 

VI *H 
<Ö 
ß 

ß 
o 

°H 
P 
CÖ 
o 

0 
bD 
cö 
ß 

P 
cö 
u 

o 

4J 

0 
ß 
(Ö 

0 
ß 

0 0 
> P 

EH 

0 
ß 
0 
P 
S 

UL 
!S 
LO 

O 

I 

V 
ß 

OJ 



- 15 - 

' :• 30solutions. The solid solutions were formed 

by heating the mixed oxides. In general, the back*reflection 

peaks were broad and not useable. Fair results were obtained 

by heating to l400 or 1500°C followed by quenching into water. 

The samples used for the X-ray measurements were prepared by 

this method. 

Thermal expansion curves for solid solutions of Ge0o in 

xiOg having three different nominal compositions are given in 

Figure 3. The actual compositions were estimated from the 

lattice constants assuming that Vegard's Law is applicable between 

the end members. The degree to which Vegard's Law is actually 

applicable is not known. These estimates are given in Table V. 

They indicate that only part of the available GeOg entered the 

solution and all of the expansion curves represent solid 

solution compositions in the range 7-9% GeOg. With chis added 

information, it is apparent that the presence of GeOg in solution 

in TiOg leads to reduction of the expansion coefficients in the 

!'a" and "c" directions and a small reduction in thermal 

expansion anisotropy. 

Since the compositions, estimated from the changes in 

lattice constants, agree when determined by both a and c . 

the proportions of the unit cell seem to change in the way 

predicted from the unit cell dimensions of the end members. In 

this case, then, we expect to observe little difference between 

the actual lattice constants and the expected lattice constants 

(if the composition were known independently) so, based on the 

earlier discussed approach a marked change in expansion anisotropy 
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Figure 3 Thermal Expansm of Ti02*Ge02 Solid Solutions 
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would not be expected and was not observed. 

The volume expansion of 91# Ti02 - 9# GeOg of about 

224x10”^/°C (25-400°C) is much lower than one would expect 

based upon a linear extrapolation between the end members. 

The fact that neither the expansion anisotropy nor the volume 

expansion obeys a linear extrapolation between the end members 

is additional evidence that the expansion anisotropy depends 

on the changes in the individual lattice constants. 

TiCU-Sc^0o solid solutions. The composition 90# Ti0o- 

10# 1/2SC-0- was prepared by heating at l400°C for two hours. 
r j 

The lattice constants of the resulting rutile were aQ =* 4.5931 

and cQ = 2.9596, not significantly different from those of pure 

TiOg, indicating that little, if any, scandium went into 

solution in the TiO^. The thermal expansion curve, given in 

Figure 4, indicates little or no change in expansion from that 

of rutile. 

TlO^-Sc^O^-VO^ solid solutions. The composition 80# 

TiOg + 10# l^SCgO^ + 10# VOg was prepared by firing the oxide 

mixture at 1150°C for one hour. The lower firing temperature 

was used because of the volatility of vanadium oxide. X-ray 

analysis indicated the presence of some unreacted vanadium 

oxide but no unreacted SCgOy In this case the normally 4- 

valent vanadium can change its valence to +5, allowing the 

3-valent scandium to be dissolved in the lattice. The effects 
O 

of the smaller vanadium ion (O.63A) and the larger scandium 
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ion (0u81A) counteract each other and little change in the 

lattice constants is observed. The thermal expansion data are 

given in Table VI and in Figure 5 these data are compared with 

data for pure Ti02 and 90% TiOg + 10% VOg. The thermal 

expansion coefficients in the "a" axis and "c" axis directions 

and the thermal expansion anisotropy are substantially reduced 

compared with those of pure TiOg. However, the expansion 

anisotropy was not drastically lowered as it was in the case 

of 90% TiOg + 10% VOg. 

TiOg-GagCX, solid solutions. The composition 90% TiOg + 

10% 1/2 Gagwas prepared by firing the oxide mixture at 

1150°C for one hour. X-ray diffraction analysis showed a 

small decrease in the lattice constants indicating some solid 

solution formation and some unreacted GagO^. The radius of 

Ga3+ is 0.62A. 

The thermal expansion data are given In Table VII and, 

in Figure 6, these data are compared with data for pure TiOg. 

The thermal expansion in the "a" axis direction is reduced by 

addition of GagO^. The thermal expansion anisotropy is also 

somewhat reduced. 

TlOg-GagO^-VOg solid solutions. The compositions 80% 

TiOg f 10# l/2Ga203 + 10# VOg and 60# TiOg + 20# l/2Gag03 + 

20# VOg were prepared by firing the oxide mixtures at 1150°C 

for one hour. The X-ray patterns indicate some unreacted V^O,- 
2 5 

but little or no unreacted Gag03. The lattice parameters 
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• a-Axis Expansion 

O c-Axis Expansion 

600 
Temperature - °C 

Thermal Expansion of 90* TÍO2 + 10* 1/268203 



decreased as expected as a result of adding two different ions 

2i4- 
both smaller than Ti . 

The thermal expansion data are presented in Tables VIII 

and IX and Figure J. The thermal expansions in the "a" and "c" 

axis directions are reduced compared with TiOg. The thermal 

expansion anisotropy is reduced especially for 60# Ti0o + 

20$ l/2Ga203 + 20$ VOg. 

These results for compositions in the TiOg-GagO^-VOg system 

are very similar to the results obtained for the composition in 

the TiOg-SCgO^-VOg system which had larger lattice constants. 

This comparison provides additional evidence that the reduction 

in expansion anisotropy does not result mainly because of adding 

small ions as was previously suggested but depends mainly on 

other factors. 
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Ill, THERMAL EXPANSION ANISOTROPY OF 

ZnO AND ZnO SOLID SOLUTIONS 

(A). Selection of Materials for Investigation 

One objective of the present program is to attempt to 

determine relationships between thermal expansion anisotropy 

and elastic anisotropy. Substantial effort has been devoted 

by others to investigation of the anisotropic properties of 

hexagonal phases (graphite, zinc and cadmium metal, etc.). 

Using thermal expansion data, Debye temperatures and volume 

compressibilities Riley^1^^ estimated certain elastic constants 

for graphite. Because of the availability of the results of 

.related work on hexagonal crystals, it was decided to investigate 

modification of the thermal expansion anisotropy of hexagonal 

oxides. Because of its rather large expansion anisotropy, zinc 

oxide was chosen as the material for this part of the investi¬ 

gation. 

A search of available phase equilibrium diagrams 

showed that few of the systems involving zinc oxide have been 

investigated and of those that have been studied few show any 

solid solution formation. In addition, it is reasonable to 

expect some limitation of solid solution formation because of 

2+ 
the tendency of Zn toward tetrahedral coordination. Never¬ 

theless, many of the oxide systems having cations with radii 

near that of Zn ’ (O.T^A) have not been investigated and solid 

solution formation in some of these systems is a reasonable 

expectation. Based upon similarities in ionic radii or structures 
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several oxides were reacted with ZnO in an attempt to form solid 

solutions with modified expansion anisotropy. In addition, 

solid solutions of vanadium in ZnO were investigated because of 

the substantial effect that vanadium has on the expansion 

anisotropy of rutile (Ti02) and cassiterite (Sn02). The results 

of these experiments are discussed in the following paragraphs. 

(B) . Sample Preparation 

Fisher certified ZnO was used for these measurements. The 

solid solutions were prepared by heating the mixed oxides in 

air as described more completely in the following sections. 

(C) . Results and Discussion 

Zinc oxidé. The thermal expansion data for zinc oxide 

are presented in Table X and Figure 8. The observed room 

temperature lattice constants were aQ = 3.2484 and cq = 5.2040, 

comparing favorably with those of Swanson and Fuyat^) which 

were aQ =» 3-249 and cQ * 3-205. The thermal expansion in the 

"a" axis direction was somewhat higher than that observed by 

Beals and Cook^1*^ while that in the "c" axis direction was 

somewhat lower than was observed by the same authors. In spite 

of these differences, the agreement is reasonable considering 

the usual errors in measurement and the rather unusual shape of 

the curves in the cited reference. Substantial thermal expansion 

anisotropy was observed. 
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Figure 8 Thermal Expansion of Zinc Oxide 
(Pattern No. 1IA, Miller Indices 205,220) 



ZnO-SnO solid solutions. Mixtures of ZnO and SnO or SnOA 
2 

were prepared and heated in air at l400°C for two hours. The 

following compositions were prepared : 

95% ZnO + 5% SnO 
90% ZnO + 10% SnO 
85% ZnO + 15% SnO 
6?% ZnO + 33% Sn02 

Examination of the X-ray diffraction patterns of these samples 

showed that a second phase was formed by reaction of the mixtures. 

Since the new diffraction peaks were similar to those present in 

the pattern of the 67% ZnO + 33% SnOg sample and since some of 

the peaks characteristic of ZnO disappeared completely in this 

pattern, it is likely that the phase formed was ZngSnO^. The 

positions of the peaks in the back-reflection region that were 

characteristic of ZnO shifted very little so it is likely that 

very little tin went into solution in the ZnO under these treat¬ 

ment conditions. 

ZnO-CuO solid solutions. Solid solutions in the system 

ZnO-CuO were prepared by heating the oxide mixtures at 1400°0 

for 2-1/2 hours. The lattice constants were slightly lower 

than those of pure ZnO indicating that at least some copper went 

into solution in the zinc oxide. The thermal expansion data for 

a composition 80% ZnO + 20% CuO are presented in Table XI and 

Figure 9. The thermal expansion values for both the "a" axis 

ana "c" axis directions are higher than were observed for the 

pure ZnO. The thermal expansion anisotropy is somewhat reduced 

but owing to the large amount of CuO available for reaction in 
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this composition It seems unpromising to add more CuO in an 

attempt to obtain further reduction of the anisotropy. 

ZnOLi2Q solid solutions. A solid solution of lithium in 

ZnO was prepared by heating the composition 90f0 ZnO + 10# i/2Li20 

to 1200 C for one hour. Lithium carbonate was used as the source 

of lithium. The resulting peaks were rather broad so another 

sample was prepared by firing at 1300°C for five hours. In this 

case the back-reflection peaks were much sharper. The lattice 

constants were determined and are only slightly smaller than 

the lattice constants of pure ZnO. This observation coupled 

with the fact that the ionic radius of Li** (0.68a) is substantially 

smaller than that of Zn and no evidence of a second phase was 

available from the X-ray diffraction pattern indicates that some 

of the lithium may have been lost by evaporation and only a 

small amount may have gone into solution. 

The thermal expansion data are presented in Table XII and 

Figure 10. The "a" axis and "c" axis expansions are both slightly 

greater than those of pure ZnO and there is little change in 

the thermal expansion anisotropy. 

soüã solutions. The following compositions 

were prepared : 

90# ZnO + 10# 1/2V205 at 1200°C for 1 hour 

90# ZnO f 10# 1/2V20^ at 1000°C for 5 hours 

80# ZnO + 20# 1/2V20^ at 1000°0 for 5 hours. 

The X-ray diffraction patterns of all of the samples showed 
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Figur« 10 Thermal Expansion of 90« ZnO + 10« 1/2 lijO 
(Pattern No. 12, Miller Indices 205,302) 
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evidence of the presence of a second phase and the positions 

of the peaks in the back-reflection region did not shift as it 

is probable they would do if substantial solid solution 

occurred. Therefore, thermal expansion measurements were not 

performed on these samples. 

ZnO-Fe^Oj| solid solution. The composition 90% ZnO + 10$ 

Fe^Oi, was prepared by heating the mixed oxides at l400°C for 

2-1/2 hours. An X-ray pattern of the sample showed the presence 

of a second phase and no back-reflection peaks. No further 

investigation of these compositions is planned. 

ZnO-CdO solid solutions. The composition 90$ ZnO + 10$ 

CdO was prepared by heating the mixed oxides at l400°C for 

2-1/2 hours. An X-ray pattern of the sample showed small peaks 

characteristic of CdO indicating the presence of a small amount 

of second phase. The back-reflection peaks were rather broad. 

A relatively large shift in peak positions to lower angles was 

observed. This shift indicates an increase in unit cell 

dimensions resulting from solution of the larger Cd2+ ions 

(0.97A) in ZnO. 

Based on the above observations it seems likely that 

considerable solid solution formation occurred. It is planned 

to attempt to improve the sharpness of the back-reflection peaks 

and then measure the thermal expansion properties. 
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ZnO-MnOg solid solutions. The composition 90^ ZnO + 10^ 

MnOg was prepared by heating the mixed oxides at l400°C for 

2-1/2 hours. The X-ray pattern for the sample did not show 

evidence of a second phase. The back-reflection peaks were 

rather broad and were shifted to lower angles indicating larger 

lattice spacings. 

Based on the above observations, it seems likely that 

considerable solid solution formation occurred. It is planned 

to attempt to improve the quality of the back-reflection peaks 

and then measure the thermal expansion properties. 

ZnO-MgO solid solutions. The composition 90$ ZnO + 10$ 

MgO was prepared by heating the mixed oxides at l400°C for 

2-1/2 hours. An X-ray pattern of the sample showed no evidence 

of a second phase. This is rather surprizing since the phase 

diagram shows less than 5% MgO in solution in ZnO. 

The back-reflection peaks were broad. The 220 peak was 

shifted to a lower angle indicating that the aQ value is 

increased by the presence of the MgO. This increase was not 

O-L ° 

expected because the ionic radius of Mg (0.67A) Is less than 

2-1- 

that of Zn . In addition, the 205 peak was shifted to a 

higher angle indicating a probable iiftcrease In Based upon 

the earlier discussion of the relationship of the difference 

between the actual and expected changes in the lattice constants 

and the changes In the expansion coefficients, one would predict 

a marked decrease in the expansion coefficient in the "a" axis 

direction and a substantial decrease in the expansion anisotropy. 



- 4l - 

It is planned to prepare other samples at higher temperatures 

in an attempt to improve the back-reflection peaks and then 

attempt to measure the expansion coefficients to verify this 

prediction. 
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IV. STRENGTHENING OXIDES BY REDUCTION 

OF THERMAL EXPANSION ANISOTROPY 

(A). Introauctlon 

From previous research, several compositions with sub¬ 

stantially reduced thermal expansion anisotropy are known. 

These compositions include the following: 

90% Ti02 + 10# VOg1'7) 

72# A1203 + 28# Cr203(8) 

The thermal expansion curves for these compositions, compared 

with the pure oxides are given in Figures 11 and 12. In addition 

it is known that additions of V02 in solution in Sn02 can be used 

(7) 
to reduce the thermal expansion anisotropy of SnOg. ' ' 

In order to establish that a strengthening effect occurs 

when polycrystalline bodies are prepared from compositions 

having reduced thermal expansion anisotropy and, thus, smaller 

localized stresses, it is necessary to compare the strengths 

of bodies having the same grain size and porosity. It is 

desirable to investigate the strengths of nearly non-porous 

bodies with a wide range of grain sizes because of the pronounced 

dependence of strength on grain size. Furthermore, it is 

possible that the anisotropy itself is responsible for the 

grain size dependence of strength over a range of grain sizes. 

Even though classical mechanics does not predict an increase in 

local stress with increasing grain size, the tendency toward 

crack formation may depend on grain size. For example, It is 

well known that the cracks formed in polycrystalline bodies 
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.8 

Temperature - °C 

Figure 12 Thermal Expansion of AlgOa-CrgOj Solid Solutions 
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composed of anisotropic crystals, when these bodies are cooled 

from sintering temperatures, have a tendency to seize when the 

temperature is raised again. This seizing process is responsible 

for some features of the thermal expansion hysteresis observed 

for these polycrystalline bodies/4'6) it is evident that there 

is a range of crack widths in which the crack is not stable. If 

a crack must open to a particular minimum width by relieving 

tensile stresses and recovering strain energy stored as a 

result of expansion anisotropy, it seems likely to occur in 

large grains rather than in small ones. For example, a simple 

calculation based on Hookes law and assuming typical strengths 

shows that a grain size of at least 1 yu is necessary in order 

to have residual elongations of individual grains of at least 
O ! "J, ' 

10A. It is reasonable that the surface forces could act over 

even larger distances to cause seizing. Presumably, for grain 

sizes less than one micron, localized crack formation will not 

occur because, if one did form, seizing would occur and cause 

ir. to close again. However, in larger grain size bodies localized 

cracks may form as a result of the combined effect of residual 

stresses and applied loads, leading to lower strengths. 

It is significant that the degree of thermal expansion 

anisotropy of crystals in important oxide bodies consisting of 

corundum (A12C>3), rutile (TiOg) or bromellite (BeO), is great 

enough so that the residual elongations in the high expansion 

directions of small crystals cooled in a homogeneous matrix 

from the sintering temperature to room temperature, are of the 

order of 10-100A. 
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It is also interesting to compare the available strength- 

grain size information from the point of view of the degree of 
Î 

anisotropy of the individual phases. Of special interest is 

the fact that MgO which has isotropic thermal expansion 

properties but has anisotropic elastic constants, has only a 

small dependence of strength on grain size. The materials that 

have anisotropic thermal expansion properties have greater 

dependence of strength on grain size. Available literature 

information is collected in Table XIII. The increasing 

dependence of the strength on grain size as the degree of 

anisotropy increases is evident from the data given. In addition, 

in rutile bodies of 28¿i grain size, the localized cracks open 

to a width where they are easily observable by optical microscopy 

even without superimposing externally applied loads. Rutile 

(TiOg) has larger thermal expansion anisotropy (24xlO“7/°C) than 

AlgOg or BeO and is presumed to be weak at temperatures below 

which the cracks form. Increases in strength with increasing 

temperature are well known for materials like graphite that have 

very great expansion anisotropy. 

The small amount of microscopic evidence available in the 

literature indicates that the cracks formed as a result of 

thermal expansion anisotropy are very thin. It Is likely that 

these cracks have high stress concentration factors making them 

more likely sources of failure than voids formed at high 

temperatures where diffusion tends to round any sharp cracks. 

Based upon this approach, the assumed fracture mechanism 

for single phase bodies composed of anisotropic crystals is 
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TABLE XIII 

Degrees of Anisotropy and Grain 

Size Exponents for some Oxides 

Material 
Elastic 

Anisotropy 

Thermal Expansion 
Anisotropy 0C_i 

- oO a 

Grain Size 
Exponent 
Note (1) 

MgO (periclase) 

AI2O3 

BeO 

yes 

yes 

yes 

none 

7(2) 
6.6 X 10 ^ 
(Rm.T-1000°C) 

, .7(3) 
10.4 X 10 ' 
(27-1000°C) 

ax 

-1/6(4) 

-1/3(4) 

-l(5) 

Notes 

(!) the exponent x in S =» S dA in which d is the grain size, 
S is the strength at uhit grain size, and S is the 
strength at grain size d. 
data from Merz, Smyth and Kirchner(10) 
previously unpublished data, see Figure 13 
data from Spriggs and Vasilos (19) 
data from Quirk et al (20) as quoted by Carniglia (21) 
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Figur« 13 ThBrmal Expansion of BeO 
(Millar Indices 114,300) 



as follows: 

1. The residual stresses resulting from thermal expansion 
anisotropy, the localized stresses resulting from elastic 
anisotropy, and the large scale stresses resulting from 
applied loads combine to cause regions of high localized 
stress, 

2. Localized fractures will occur at the largest grains 
present that have the most disadvantageous orientations, 
when the stress is sufficient to overcome the inherent 
strength of the particular locality and when the total 
deformation of the grain is sufficient so that the crack 
formed will open beyond the width at which seizing would 
occur. The reason the cracks occur at the largest grains 
is that only in these grains is there enough total deforma¬ 
tion to attain the required crack width to overcome the 
tendency to seize. 

3. The orientation and the sharpness of these cracks will 
tend to permit propagation of these cracks at lower applied 
loads than are required to propagate other types of cracks. 

The above assumptions lead one to expect the following 

features to be characteristic of nearly non-porous materials 

composed of crystals with reduced expansion anisotropy: 

1. At small grain sizes the observed strengths should be 
those inherent in the composition. 

2. The grain size dependence of the strength should be 
smaller than that of the comparable pure oxides. 

3. If the composition is inherently as strong or 
stronger than the pure oxides, the smaller grain size 
dependence will lead to higher strengths at large grain 
sizes. 

4. Some of the most promising uses of these materials 
are expected in applications in which the materials are 
subjected to temperatures great enough to cause grain 
growth followed by loading at relatively low temperatures. 

The experiments used to attempt to show the strengthening 

effect in compositions with reduced expansion anisotropy were 

designed to show improved strength and reduction of the grain 

size dependence of the strength. 



' (®)* Sample Preparation ' . 

Msgs of the compositions with reduced thermal expansion 

anisotropy and the comparable pure oxides were prepared by 

reactive hot pressing in a resistance furnace with 4o# Rh - 

60% Pt windings. Bars were cut from these discs by diamond 

sawing. In some cases the bars were reheated to grow the 

grains. The bars were polished by diamond lapping and the 

strength was measured in flexure by three-point loading on a 

one-half inch span. The bulk density, porosity and grain size 

of the samples were measured. 

(C). Results and Discussion 

solid solutions. These bodies were prepared 

by reactive hot pressing of coprecipitated hydroxides from a 

solution having aluminum and chromium present in the molar ratio 

72:28. The precipitate was dried at 110°C, prepressed at 

5000 psi and then hot pressed in between graphite discs, with 

an alumina die body and silicon carbide punches. The pure 

alumina samples were prepared by reactive hot pressing of 

Al(0H)3-nH20. 

The pressing conditions, refiring conditions, bulk density, 

grain size and flexural strength of the individual samples of 

the J2% Al203-28# Cr205 are presented in Table XIV. The similar 

data for pure A1203 are given in Table XV. 

The porosities of the samples vary over a wide range. 

Some of the more porous samples are surprisingly strong. When 
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these data were corrected to zero porosity using the method 

described by Spriggs/-19) the resulting strength values were 

unreasonably high. These high values result from non-uniform 

distribution of porosity in the samples. Since three-point 

loading was used, only the center of the disc was tested for 

strength, whereas the test bars contained considerable material 

from the edges. Therefore, further analysis of the data was 

restricted to samples having porosities of less than 3.5 volume 

percent. 

The grain sizes of the pure alumina samples were quite 

small in the "as pressed" condition. The grain size increased 

substantially as a result of refiring at l600°C. In the "as 

pressed" condition the grain size of the 72% kl20^-2Q% Cr^ 

samples was greater than the pure Al^. In addition, the 

grains show little tendency to grow during subsequent heat 

treatment. Therefore, the available grain sizes for the solid 

solution samples fall in the middle of the range represented In 

the alumina samples. 

The few suitable data points for the pure alumina were 

used to construct a curve of the grain size dependence of the 

strength in a manner similar to that used by Spriggs and 

VasilosU9) The dotted line In Figure 14 represents these data 

based upon maximum grain size and strength values not corrected 

o zero porosity. Similar data based upon average grain size 

and strengths corrected to zero porosity are given in Figure 15. 

In each case the lines fall above the curve presented by Spriggs 

and Vasilos perhaps because of the small sample size and the 
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three-point loading compared with four-point loading on a 1.5 in. 

span in the referenced experiments. The slopes determined by 

the present data are slightly lower than those determined by 

the referenced data. 

The data for the three strongest solid solution samples 

are plotted in the figures. These strength values constitute 

preliminary evidence that stronger bodies can be prepared using 

compositions with reduced thermal expansion anisotropy. 

TiOg-VOg solid solutions. Samples with the composition 

90# TiOg-lO# V02 were prepared by hot pressing the mixed oxides. 

The materials used were TAM Heavy Grade Ti02 and Fisher reagent 

grade V20^. Samples of "pure" TiOg were prepared from the Heavy 

Grade TiOg. 

The "pure" material pressed to 98.9$ relative bulk 

density with a grain size of about one micron in one hour at 

1150°C. The flexural strength was 38,700 psi. However, the 

90# Ti02-10^ VOg mixtures reacted with the die materials in 

every case and no satisfactory samples were prepared. 



V. CONCLUSIONS 

1* In Pure oxides or solid solutions lattice constants that 

are larger than expected, based upon the ion sizes, are associated 

with the lower values of expansion coefficient in the same 

crystallographic direction and lattice constants that are 

smaller than expected are associated with higher values of 

expansion coefficient. Using this approach to predicting the 

changes in thermal expansion coefficients as various solid 

solution forming materials are added to an oxide lattice, it is 

hoped that faster progress can be achieved toward reduction of 

thermal expansion anisotropy. 

2. A solid solution having the nominal composition 60$ TiO - 

20# l/2Ga203-20# V02 has substantially lower thermal expansion 

anisotropy than pure TiOg. 

3. Formation of microcracks as a result of localized stresses 

arising from thermal expansion and elastic anisotropy may 

occur only in relatively large grains because of the existence 

of a range of crack widths below some maximum size in which a 

crack is not stable because of a tendency to seize. Therefore, 

the Srain slze dependence of strength may depend upon the 

degree of thermal expansion and elastic anisotropy. If this is 

tr^e, it should be possible to demonstrate a smaller grain size 

dependence of strength for compositions with reduced thermal 

expansion anisotropy. 



4. Preliminary evidence of improved strength in an intermediate 

grain size range for the composition 72% kl^-28% Cro03 which 

nas reduced thermal expansion anisotropy was presented. 
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