
o E
38
i

r>- w

I M

I M
Q £- en w

ESD-TR-67-130

ESD RECORD COPY
RETUf.N TO

SCfcNTJflC & TECHN.Vv; i,Nr"03MATI0N DIVlSÖ*
fESTli W'ttOfMG U'H

MTR-442

ESD ACCESSION LIST
Eii i C211 NO. AL 58357 .

Copy No. . £___ of _/ cys.

\

EVALUATION OF ADAM

AN ADVANCED DATA MANAGEMENT SYSTEM

R. A. J. Gildea

AUGUST 1967

Prepared for

DEPUTY FOR COMMAND SYSTEMS
COMPUTER AND DISPLAY DP7ISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE 8YSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

\

This document has been approved for public

release and sale; its distribution is un-

limited.

Project 512B

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

ESD-TR-67-130 MTR-442

EVALUATION OF ADAM

AN ADVANCED DATA MANAGEMENT SYSTEM

R. A. J. Gildea

AUGUST 1967

Prepared for

DEPUTY FOR COMMAND SYSTEMS
COMPUTER AND DISPLAY DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been approved for public

release and sole; its distribution is un-

limited.

Project 512 B

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

FOREWORD

This report was prepared under Contract No. AF 19(628)-5165by The
MITRE Corporation, Bedford, Massachusetts.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

/ Computer and Display Division

ii

ABSTRACT

This report evaluates the ADAM project (Advanced Data Management
System), its products, applications, and some of its activities,
which were part of a larger project entitled Information Systems
Tools and Software Techniques. The knowledge and conclusions contained
herein are intended for Air Force and other personnel who either are
systems programmers or have had a brief technical orientation in
information processing systems, and are interested in the management
and production of software tools. There are detailed evaluations of
documentation and debugging facilities, system languages and language
manipulators, data structures and memory allocators. Both the design
and implementation of parts of the system, as well as the entire
system are discussed.

1.11

PREFACE TO THE ADAM REPORT

This report was prepared under Contract No. AF 19(628)-5165.
It evaluates the ADAM project (Advanced Data Management System),
its products, applications, and some of its activities, which
were part of a larger project entitled Information Systems Tools
and Software Techniques. The knowledge and conclusions contained
herein are intended for Air Force and MITRE personnel who either
are systems programmers or have had a brief technical orientation
in information processing systems, and are interested in the
management and production of software tools.

The evaluation methodology employed is in form a three-step
process, and in content reflects the considerations and opinions
of experts on separate, but related topics. The initial step in
the evaluation was the production of a very rough draft by seven
of those who constructed and used ADAM. The second step was
accomplished by having one person obtain additional information
from interviews, and then reorganize and rewrite the draft. The
third step in the process consisted of incorporating the criticisms
and comments of eleven reviewers of the second draft. The ADAM
System is a very sophisticated system and it was felt that a
presentation of a tabular comparison with other systems would not
yield as much information and evaluation as the presentation
selected; i.e., evaluation of separate topics with brief explanatory
notes about each.

The team approach that was adopted for the preparation of
this report has the advantage of lessening bias from a single
author and enhancing the possibility of a well-balanced report.
The members of the MITRE technical staff who prepared this report
in some cases had no prior connection with the ADAM project,
and in other cases, were connected with the ADAM project as
system programmer, design coordinator, user, or project leader.

IV

TABLE OF CONTENTS

Pa^e

SECTION I INTRODUCTION 1

SECTION II TECHNICAL OBJECTIVES AND PLANS
OF THE ADAM PROJECT 3

The ADAM System 4

SECTION III HISTORY OF THE ADAM EXPERIMENT 7

SECTION IV EVALUATION 11

A. REALIZATION OF EXPLICIT OBJECTIVES 11
Summary of Explicit Objectives 11

B. MODELING 15
The AFLC/ESD/MITRE Application 15
The Man-Job-Match Application 17
Satellite Test Center Application 18
The Manned Orbiting Laboratory
Application 13
The Tactical Airborne Beacon
System Application 19

Summary 20

C. ADAM DESIGN AND IMPLEMENTATION 22

1.0 Documentation Facilities 22

2.0 Debugging Facilities and
Production Procedures 23

Introduction 23
Description of ADAM Debugging
Facilities 24

Evaluation of ADAM Debugging
Facilities 25

Description and Evaluation of
ADAM Production Procedures 27

3.0 System Data Structures 27
Description 27
Evaluation 30
Summary 33

v

TABLE OF CONTENTS (CONTINUED)

Page

4.0 System Languages 33
IFGL 34
FABLE 34
$UTILITY 35
DISPLAY 35
String Substitution 36
Output Formatting 36
LAP 37
FORTRAN/COMFORT 37
DAMSEL 38
SINTAB 38
SMAC/STRAP 39
Summary 39

5.0 System Language Manipulators 40

6.0 Memory Resource Allocators 42
Memory Allocators 42
Disk. Allocations 42
Core Memory Allocation 43
Routine Allocation 43
Fixed Routines 43
Allocatable Routines 44
Data Allocation 44
Evaluation of Allocators 44

7.0 Summary 45

SUMMARY OF PROBLEMS NOT INVESTIGATED 48
Quality Control of Data 48
Secure Data 48
Error Handling 49
Data Representation 49
Garbage Collection 49
Breakpoint 49

vr

TABLE OF CONTENTS (CONTINUED)

Page

SECTION V CONCLUSIONS 51

SUMMARY OF APPLICATIONS ASPECTS 51
Value of General Purpose Data
Management 51

Data Base 52
Input-Output 53
Languages 54

SUMMARY OF SYSTEM ASPECTS 55
Introduction 55
Support Software and Procedures 55
Application Area 56
Programming Arrogance 56
Internal Communication 56
Languages 56
Input-Output 57
The ADAM Concept of the Repeating
Group 57

Documentation 58

APPENDIX I BIBLIOGRAPHY 59

vii

SECTION I

INTRODUCTION

In 1962 The MITRE Corporation, under contract with the Electronic
Systems Division of the United States Air Force, started the research
work on the design and construction of the Advanced Data Management
System, ADAM. ADAM is a software tool to be used as a design aid
for military information processing systems. It was intended that
the ADAM concept would be validated by using it to design and
exercise models in several application areas. At the conclusion
of the ADAM project in August 1966, it had been used for modeling
of five different systems.

The ADAM System is the most sophisticated general purpose
data management system yet realized. The approaches and concepts
used it* ADAM have influenced the work in general purpose data
management systems throughout the country. The amount of foresight
of the personnel initiating and guiding the early design of ADAM
should not be underestimated. The world of computer science five
years ago is the environment for this foresight and not today's
world with third generation computers.

The ADAM System is large and complex and is composed of both
software and hardware. The hardware is the IBM 7030 (STRETCH)
surrounded by a large disk memory, many magnetic tape stations,
five query stations, and other peripheral equipment. Each of the
five query stations has a line printer, an electric typewriter, and
a cathode ray tube display console with push buttons.

Besides the three programs supplied with the 7030 computer
that were used in ADAM (Master Control Program, MCP; STRETCH Macro
Compiler, SMAC; and the STRETCH Assembly Program, STRAP), the
ADAM software consists of 53 programs, with approximately 130,000
instructions (over 86,400 computer words) exclusive of large work
areas. The majority of these programs constitute the main system
which is run as a single job under MCP. The ancillary programs are
run independently as separate jobs under the MCP. The main ADAM
System may be operated with users not present, by use of card input,
but the normal mode is with users on-line to the system via the
query stations.

The objectives and a short history of the ADAM project are
given in Sections II and III of this report. Section IV is the
main section and is divided into four parts, each presenting the
evaluation of a different aspect. The first part discusses how

many of the objectives of the project were met, while in the second
part, ADAM is evaluated as a modeling tool from the experiences
derived during the five applications. The construction 6f ADAM,
covering some of its features and the programming environment during
construction, is discussed in the third part. Consideration of some
important problems outside the scope of the ADAM project is given
in the fourth part of Section IV. Section V contains some conclusions
derived from this research project that may be of interest to designers
and builders of future general purpose data management systems. In
the Appendix is a bibliographic list of documents pertinent to the
design, construction, use, and applications of the ADAM System.

SECTION II

TECHNICAL OBJECTIVES AND PLANS OF THE ADAM PROJECT

The research problems to be solved in implementing the ADAM
program were substantial. Viewed with respect to then-existing
achievements of the state-of-the-art, the list of objectives reflects
this.

The Electronic Systems Division of the United States Air Force
and The MITRE Corporation initiated activities on the ADAM (Advanced
DAta Management) System as an experiment in creating and developing
special tools and design aids for systems which process military
information. Large volume and complex relationships characterize
the data of a command data base, while a rapid response and increasing
requirements characterize the procedures of the information processing
systems. The enormity and complexity of understanding enough to
specify and formulate an integrated and balanced system in a timely
manner renders pencil-and-paper techniques unfeasible. The need for
computer-aided design is inevitable in military information processing
systems.

Some of the following information about ADAM objectives and plans
has been taken from pertinent ADAM planning documents* and appears
within quotation marks. Some of the objectives herein are taken
from the sections called Project Work Plans. In a few cases there
has been slight editing of the quotations for improved readability,
especially in the verb tenses.

"The Air Force Electronic Systems Division needs a constantly
improving capability to plan, design, and evaluate command and
control systems. This capability must include the best available
methods for generating alternative system designs and precise
techniques for rapidly evaluating existing, prototype, or proposed
system designs or design characteristics.

"In particular, with respect to information processing, system
designers must be provided both with improved operational concepts
of information processing and with improved techniques and flexible
tools for use in the design and evaluation process. These tools
and techniques must be capable of rapidly reflecting the latest
known technology and the latest experimental or proposed designs."

*
ESD/MITRE Technical Objectives and Plans, Information System Tools

and Design Techniques, Project 502, 1 August 1963 and 15 August 1964.

The primary intent of the ADAM project was to provide for the
system designer a laboratory facility for his design work. The
secondary intent was to continue research in information processing.
Because of the research nature of the project, many of the objectives
initially set forth proved to be more fruitful than others, hence
modifications and amendments to the list of objectives occurred. The
intent to validate the ADAM concept for field use was also important
from time to time in the life of the project.

The ADAM System

"The objectives of this project were to investigate, develop,
and evaluate advanced information processing techniques for use in
the system design process and to make available rapid means for
realizing these techniques in an experimental setting." In order
to realize these intentions, the objectives of the ADAM System task
were delineated as follows:

"Develop and implement a computer-program framework into
which potential applications of new computer processes and procedures
can be inserted rapidly and evaluated precisely."

This program was to be adapted to specific simulations and
have the following capabilities:

1. "Generation of user files:

a. from almost any machine-sensible form of the data
as a source;

b. by subsetting existing files;

c. by restructuring existing files.

2. "On-line updating of ADAM files by changing values, adding
new objects, adding new properties, adding synonyms for any name,
and deleting parts of files.

3. "Provision for the inclusion of codes specific to an
application system. Provision was to be made to allow programming
of these routines in a higher-order language. Compiled code was to
be 'called' by the ADAM System by means of the operator language.
Data and storage requirements of the routine were to be relatively
impervious to data-base changes and were to continue to operate
properly as long as the elements of data required by the routine
continued to exist in the data base.

4. "Provision for a basic user language within ADAM for on-
line insertion of user requests. The translation rules for the
operator language were to be externally specified and processed
outside the translator for inclusion in the translator. Because
of the general techniques to be used in this area, it had to be
possible for the user to describe a new language and have ADAM
understand it rapidly. In addition, definition of abbreviations,
synonyms, strings, stored queries, and formats were to be accomplished
on-line.

5. "Utilization of the input-output stations provided in the
Systems Design Laboratory for the 7030 computer. These were to be
dynamically configured by the system as required by the test director,
and appropriate legality checks were to be made.

6. "Generation of reports (and query responses) conditional on
events occurring in the experiment. Information in the reports was
to be organizable according to operator specifications, including
the preparation of summaries and sorting on multiple keys. The
display format for reports (or query responses) was to be specifiable
by the operator and possibly varied by him dynamically."

SECTION III

HISTORY OF THE ADAM EXPERIMENT

In the spring of 1961, programming activities began in support
of the MITRE work on an experimental facility for transport planning
and modeling, known as the Experimental Transport Facility (ETF).
Fortunately, the ETF program was modeled, designed, and implemented,
especially in its externally-described data base structure features.
in such a way as to allow its application to some of the problems in
Project 481, Post Attack Command and Control System (PACCS).

Several successful demonstrations of ETF were conducted in 1962
and 1963, wherein remote teletypewriters were connected through long-
distance telephone lines to the XD-1 computer and a "high-speed"
printer. By extending some of the design and implementation features,
broader application of the ETF approach could be made. Experience
with the transport planning function and the Project 401 application
indicated that the generalized approach used in ETF was valid. By
modifying these approaches and adding new concepts, ideas for an
extremely advanced system evolved. Many of these concepts were new
while others were taken from the more advanced technology in
information processing.

In August of 1962, work was initiated on the ADAM project to
provide at least the same ETF capability, but significantly enhanced
from the point of view of the user in an experimentation facility.
At this time, design concepts were established for the data structures
of the system, and by fall, overall system design was reflected in
functional block diagrams of the major program components.

The supporting 7030 software provided by the vendor was
inadequate as a programming environment for the specialized needs
unique to development of a large data management system. Because
it was felt that programming productivity was inhibited, certain
remedial steps were taken, including the revision of the macro
compiler and the development of specialized production aids.

The three major design decisions that occurred during March and
April of 1963 were to employ a syntax-driven translator for the query
language, to implement an interim version of the system compiler,
and to revise completely the file generation approach.

By August, some more internal formats of data structures were
defined. Functional requirements of other corporate projects influenced
the design of the first experimental ADAM query language, FABLE.

Before the end of calendar year 1963, work started on designing
and implementing the display scope and light pen input capability.
This non-typewriter input capability, integrated into the ADAM System
during the following year, thus enhanced man/machine interface for
query language operations. Also in the fall of 1963, the decision
was made to have output information placed in the format of files
rather than in tables. Provisions were made during the following
January and February to allow FORTRAN subroutines (with certain
limitations) to operate within the ADAM System.

A significant amount of work was discarded when the IBM 7750
input-output computer was deleted from the hardware system configuration
early in 1964.

A reduction in force on the ADAM project occurred during February
and March and it was difficult to minimize its effects on the ADAM
development effort.

In attempting to solve some of the persistent difficulties in
file generation, a third approach began in the summer of 1964 by
merging file generation and retrieval. This proceeded so that in
December the parts of the ADAM System were sufficiently developed
to allow operation in responding to its first query. The system
became available to users in February 1965.

During 1965 increased capability was given to the experimental
query language, testing individual program components was continued,
and the difficulties of matching the interfaces between modules were
isolated and removed one by one. As more of the system became
operational, execution times were measurable.

In the spring of 1966 the file generation was once more
investigated; although it was functional, it was considered too slow.
By reorganizing the program, most of the previous work was saved
and execution time was cut to one-third.

To eliminate the confusion that sometimes occurred when many
users were operating the system simultaneously from different consoles,
in the summer of 1966 every input message became separately identifiable.

Although work on the project officially ended on August 31, 1966,
several exercises have occurred since, including a demonstration of
ADAM given on December 27, 1966.

The ADAM System was applied to experiments in data management
in five areas, and involved a period of activity from January 1965
to December 1966.

Work in one of these areas, the Joint Air Force Logistics
Command/ESD/MITRE Advanced Data Management (ADAM) Experiment, took
place from about January 1965 to August 31, 1966. Use of the AFLC
ADAM System began in April 1966 by operating the ADAM System on the
IBM 7030 computer at Hanscom Field in Bedford with a single remote
console at Wright-Patterson AFB, Dayton, Ohio.

The Man-Job-Match (MJM) project of the Computer-Centered Data-
Base Systems effort of ESD started in January 1965 with its statement
of work and continued to the end of the calendar year 1966, beyond
the official close of the ADAM project in August 1966.

In February 1965 an ADAM application called the Satellite Test
Center was started, and in November of the same year, its demonstration
was given.

The Manned Orbiting Laboratory (MOL) work occurred from April
to July 1965 and included several demonstrations of the MOL ADAM
System early in July 1965. Further support to MOL Activities were
continued until March of 1966.

Work on the Tactical Airborne Beacon System (TABS) occurred
from January 1965 to October 1965. Several hours of successful
operation of the TABS ADAM System were logged during October 1965.

SECTION IV

EVALUATION

A. REALIZATION OF EXPLICIT OBJECTIVES

The intent of the ADAM project was threefold: to produce a
laboratory tool for computer-aided system design, to conduct
programming research, and to validate the ADAM concept for field
use. The use of the ADAM System in applications to five widely
varying information processing systems attests to the fact that
ADAM was used operationally as a laboratory design tool. Further
discussion of these applications are given in the section entitled
MODELING. In particular, the discussion of the AFLC experiment
contains some information on the remote operation of ADAM by mission-
oriented personnel in the field.

The programming research performed in solving some of the
problems of general purpose data management has allowed The MITRE
Corporation and ESD to maintain their position in the field of
information processing. Only a small fraction of the total technical
knowledge derived from this research has been documented; much of it
is being carried over into other projects.

A summarized list of the detailed objectives appearing in
Section II, TECHNICAL OBJECTIVES AND PLANS OF THE ADAM PROJECT,
is given below.

Summary of Explicit Objectives

1. File generation

a. from cards, magnetic tape, et al;

b. by subsetting;

c. by restructuring.

2. On-line updating of files by

a. changing values;

b. adding objects;

c. adding properties;

d. adding synonyms;

e. deleting.

11

3. User Routines

4. Query Language

5. I/O Station Selection

6. Event Triggered Reports

File generation with the ADAM System can be accomplished by
having the new file generated either with data from some external
storage medium as input or by processing data that already exists
in previously created internal data structures. Subsetting a file
already existing within ADAM to form a new file was the usual activity
in most of the applications of ADAM, and the ability to restructure a
file was used to great advantage, especially in the MOL application.

Although the ADAM System could accept information from many input
media and it was possible to generate files by subsetting from an
external medium, it would have taken so much time for the 170 million
character data base of the AFLC experiment that it was not a reasonable
approach in this application.

The on-line capability for the ADAM System was provided in two
ways: typewriter input and display console (non-typewriter) input.
Queries written in the experimental language, FABLE, not only allowed
for processing and retrieving data from files but also for changing
values, names, and descriptions of individual properties or files.
New objects, or values of repeating groups, could be added or deleted
with relative ease. Deleting properties or adding new ones to files
was accomplished by creating a new file with the desired configuration.
The supplementary capabilities of the utility language and string
substitution mechanism, which are described later, were found to be
extremely valuable and were used to a great extent both on-line, with
either typewriter or non-typewriter input, and off-line with card
input.

The ADAM concept provides for a flexible and competent data
management system as a basic system, but also recognizes that additional
unique capabilities will be required by each application. The ADAM
System allows the assimilation of a user's routines for his own
specific application by storing them in the Routine File along with
the system routines. Although the user routines were written in all
of the user languages, they were stored in relocatable machine language
in the Routine File. Exceptions to this are found in the non-typewriter
input capabilities, for which skeletons of source language input queries
and messages are stored in data files.

12

The experimental query language, FABLE, most often provided the
means by which users controlled the particular activities of the ADAM
System for their applications. Provision was made in the query
language to allow for appeals to any of the system or user routines
stored in the Routine File. As the technical objectives demanded,
the experimental languages, IFGL, and three versions of FABLE, were
defined in a compiler-building language and all were recognizable by
a single ADAM table-driven translator. Both these query languages
and the string substitution mechanism of ADAM allowed a great deal
of freedom to the user in naming, renaming, and establishing synonyms
and abbreviations. More detailed discussion and evaluation of
language capabilities occur later in this report. The objectives for the
functions of creating, changing, and manipulating data and files,
as well as the objectives concerning user language capabilities, were
not only met but, in many cases, alternative approaches for accomplishing
the same function were made available to the user.

Punched cards and magnetic tape were the customary input media
especially for large amounts of data, but the list of input media
also includes electric typewriters, push buttons and light pen from
the display scope, local and remote teletypewriter, and equipment for
receiving real-time information. It must be noted that the generality
of the input section of the ADAM System allowed for the addition of
several of these input equipments during the ADAM project with only
slight modification to the ADAM program and the Master Control Program
for the 7030 computer. The need for accepting information from still
more devices was not evidenced during the ADAM project, but it is
reasonable to expect that accommodating such new devices would probably
produce no greater difficulty than the others. ADAM was constructed
in such a way that all query output messages received uniform treatment
until very late in the throughput sequence. A single formatting
routine formatted all output messages by means of tables of character-
istics of output devices, and then transmitted the messages to the
outside world. Prior to the formatting, any message could go to any
output device; the selection was at the user's option.

Within the objective "Event Triggered Report," an event was
intended by the ADAM designers to mean the occurrence of a change in
a property value or the elapse of a specifiable amount of time. The
implementation of such event detection in ADAM was not completed
during the project. The "Event Triggered Report" objective also
involved general requirements concerning all reports, independent
of their cause. These specifications were completely realized, so
that query responses can be organized, sorted, formatted, and
transmitted to dynamically selectable output devices.

13

The objectives of this list are not of equal value, nor do
they constitute a comprehensive list of all the ADAM project objectives,
because many others were imposed that did not appear in the project
documentation and/or were indistinguishable from design specifications.

Perhaps most striking in the examination of the ADAM System is
the realization that the original objectives of the ADAM project are
not only very ambitious, but that many of them appear relatively
nebulous.

1.4

B. MODELING

The building of large information processing systems is very
costly, as is the building of prototypes of them. Quite often, the
cost and lead time for designing, building, and changing the software
significantly exceed those of the hardware. By providing the ADAM
System as an experimental design tool it was intended that the design
of information processing systems would be influenced for the better.
Betterment in this sense may be in the form of:

1. reducing the length of time for the design phase;

2. more complete intial design, that is, without logical gaps;

3. more consistent initial design, that is, with fewer errors
and all the subsystems specified to commensurate levels of
detail;

4. greater capacity for changing the initial techniques by
improving them or substituting new techniques;

5. greater capacity for adding new capabilities and retiring
old ones gracefully.

In order to examine the behavior of a proposed design, a model
is often built and exercised. The level of abstraction in the model
depend on the goals of the exercise, the type and capability of
experimental tools, the capability for validation of the model, and
of course, the judgment of the investigator. For a large and complex
system, building and exercising a model that is detailed enough to be
a prototype was felt to have far less probability of success than
building and exercising a small prototype system. Each information
processing system has some time-consuming executive and housekeeping
operations superimposed on its capabilities as overhead time. To
impose additionally the overhead of a very flexible experimental
design aid upon an already detailed model can easily compound, and
thus extend response time of the system beyond desirable or acceptable
limits. Inasmuch as the goal of the modeling is to demonstrate
feasibility, it is unwarranted to strive for the inclusion of all
capabilities of a full system.

The AFLC/ESD/MITRE Application

The application of ADAM to the Joint Air Force Logistics Command
and Electronic Systems Division experiment involved user operation
of the ADAM System on the 7030 computer at Hanscom Field, Massachusetts,
via a query station located at Wright-Patterson AFB in Ohio. The data

15

base consisted of information about a number of subsets of items,
each numbering from 1000 to 3500 out of the 85,000 items in the full
inventory. This project included not only experiments using the
data base, but also the functional duplication of the computational
capabilities of an operational system. Data base investigations
were done within minutes by having the analyst on-line with the data
base via ADAM. The data base was investigated by queries directed
towards searching out salient characteristics of the data.

During this joint experiment, two separate specifications were
provided for these computations, which are usually performed quarter-
annually. Likewise, the data content and format of the 64 reels of
master file magnetic tapes had two versions. The modeling for both
versions of the computations was accomplished completely in less
than six man-months. The same ease of use was not provided by ADAM
to the modeler in initially subsetting his external data base. Each
AFLC data base subset was instead obtained by passing the data from
the 64 reels of master file information through many FORTRAN pre-
processing programs, and then through an ADAM file generation pro-
cedure. This difficulty indicates deficiencies in the ADAM experimental
file generation language or its implementation because its use for
this subsetting function would have consumed approximately 20 times
as much computer time as the approach taken by applications programmers.

Despite some of these difficulties in subsetting, and although
the full 85,000 items could not be practically handled, it would be
misleading to indicate that only 3500 items were available. In fact,
eight subsets were formed and employed in two ways, but in neither
case was simultaneous processing done on more than one subset. In
one case, many procedures were operated against one subset arbitrarily
selected prior to run time. For the other, different reports were
generated by running the same procedures against several subsets, one
after another within a single MCP job. The capability for substituting
data subsets that are themselve complete and compatible data bases
into the whole system without damaging their environment is itself
a breakthrough. The breakthrough was possible because the data
descriptions were wholly contained within the data base for these
file structures. Thus once the ADAM-based system for the experiment
had been created, the changes to it to treat new data subsets and
computations were nearly trivial. The users commented that the ADAM
data structures should have allowed either an array as ? subfile
structure, or else random access to any value in a repeating group.
Sometimes extra coding was introduced into a procedure because the
design of the repeating groups included only capability for serial
processing.

lb

The Man-Job-Match Application

One of the ADAM applications, called "Man-Job-Match," is itself
a small prototype system. It could be considered one capability in
a larger personnel system of the future, if such were to be developed.
By processing a 5 million character data base with selected queries,
the system extracts the available manpower with proper experience and
qualifications to match open jobs, storing men and jobs in separate
working files. Essentially, there are two main files, the job file
with approximately 5800 jobs listed, and a man file with the same
number of men. Approximately 120 properties are used to describe
each job, while approximately 150 properties are required for each
man.

After further screening is performed by qualifying every man
against each job in turn, a large system of FORTRAN routines compatible
with ADAM, completes the matching of men against jobs. Using the
Hungarian algorithm of linear programming, men are then assigned to
jobs. This prototype system is sensitive to on-line action reflecting
policy changes for both availability and evaluation of men.

A file of about 75 queries is stored in the system. Queries
from this file are selected and qualified via light pen and push
buttons. In addition to these two input media, the full query
capability of the ADAM System is available via typewriter or other
input mechanisms.

In many experiments and demonstrations of this application, the
display language capability enhanced console operations for the user.
It can also be exercised running in batch mode operation of the 7030
computer, that is, using punched card input rather than console input.

The modelers for this application commented that although the
FORTRAN capability was a necessity for practical considerations, the
interface between FORTRAN and ADAM routines for both control and
data was awkward because of the detailed clerical requirements that
the programmer, rather than the system, had to manage when writing
his interface routines. Thus the compatibility was not achieved in
an optimum manner.

The DAMSEL compiler and the Man-Job-Match application were being
developed in parallel, and the application programmers were often
frustrated by the faulty output code of the incomplete and unchecked
compiler.

17

An interesting consideration of the Man-Job-Match application of
ADAM is that its model has some very realistic characteristics. For
example, approximately 30 men and 30 jobs can be matched in about
30 minutes. It is not unreasonable to expect that the needs of one
of the military commands could be met by running such a program several
times a month. The Man-Job-Match application is thus a good one to
use to support the thesis that the ADAM concept is feasible. It
required in its model the manipulation of a data base of a few million
characters and extensive numerical computations, and the model ran
at reasonable speed.

Satellite Test Center Application

The Satellite Test Center application was a MITRE sponsored
experiment using ADAM. The model contained the capability of displaying
the schedules for up to 20 observation sites each on as many as
13 satellites. Along with typewriter and line printer output, the
system utilized the display scope for showing when the satellites
could be observed from each of the sites. For example, a typical
display would represent the information for one site, and be organized
so that a row was given for each satellite, and one column to each
hour of the day. Whenever this site may observe a given satellite
in the row corresponding to the satellite, a horizontal line segment
is drawn through those columns representing the time period of
observation. From this start, there was triggered a considerable
amount of interesting analysis and programming on scheduling policies,
conflict resolution, and associated specialized display techniques.
Although the demonstration of this system was given in November of
1965, much of what was learned on this project influenced the activities
on both the ADAM programming effort for the Manned Orbiting Laboratory
and the subsequent ADAM MOL support work. Many of the Satellite Test
Center routines were based on the routines for the display language
capability of ADAM and were themselves used in the MOL support activities
An interesting capability that seems to hold a lot of promise as a
general planning tool is the one that allows a user at a display scope
to re-position line segments of the display by means of a light pen.
Displays could be made up and modified easily using the light pen.
They could show in graphical form when activities would be occurring,
such as in the manner of a Gant chart.

The Manned Orbiting Laboratory Application

The Manned Orbiting Laboratory application of ADAM extended over
a period of less than four months. During this period, the model was
designed, implemented, and exercised. During the work, the model was
redesigned and as a result, several files had to be restructured.
The ADAM System is most helpful to a modeler under these circumstances;

18

that is, when the total problem and the data itself do not change, but
the processing required and the structure of the files do change.

It was estimated by one of the modelers that without the use of
the ADAM System and using conventional programming techniques, the
design and implementation of the model would have taken at least
eight times as much effort as it did using ADAM.

The ADAM System served well in the MOL experiment and high-lighted
some of the advantages of the general purpose data management system
approach. The biggest difficulty encountered in the MOL experiment
was the creation of the large coverage file which kept the observation
data for the many passes of the satellite over each station. In the
opinion of the application programmers, the greatest advantages of the
use of ADAM for this application were the ability to restructure the
files with FABLE and the short response time obtainable in on-line
use. The value of being able to restructure files on-line and test
the new file design immediately was appreciated early in the project.

The approach of storing a good deal of redundant data in the
coverage file proved to be costly because it lengthened the processing
time.

Some of the functions performed involved the use of light pen
and display scope.

This work exposed several problems in scheduling and conflict
resolution that were the subject of investigations in the MOL support
activity that followed, and the Satellite Test Center project. The
MOL support work borrowed the problem and data base from the MOL
project, and the display techniques and capabilities from the Satellite
Test Center project.

The Tactical Airborne Beacon System Application

The Tactical Airborne Beacon System (TABS) was also a prototype
system. Position information on aircraft was received in the form
of beacon signals by radio frequency receivers. The signals were
processed only slightly and transmitted by communication equipment
to the 7030 computer. Occasionally, command signals from display
and control panels were sent to the 7030 computer. The position
information was fed to tracking programs and upon conclusion of the
calculation, status and history files were updated. The command
signals, when received by the ADAM System, activated pre-stored
queries that transmitted to the display panel the desired information
about any or all of the aircraft being observed.

19

The modeling using ADAM proceeded without much redesign of ADAM
routines. Probably this was due to the fact that required data and
file volume transmission rates and processing were not so severe as
to require performance beyond ADAM's capabilities.

When a general purpose data management system is being used as
a tool to model a given system, the model is usually affected and
shaped by the capabilities of the tool. The TABS application model
was least so affected of the five ADAM applications. In the ADAM
experience, the impressive observation drawn from the TABS application
is that ADAM was able to operate on-line with the TABS equipment in
real time despite the vast overhead of this pioneer general purpose
data management system.

Summary

Although the modeling and remodeling with the ADAM System for
the above five projects were accomplished fairly easily, it must be
noted that some of the models and their data bases were adjusted to
fit within the ADAM System. In the case of the AFLC project, the
operational data base is approximately 25 times larger than the one
used in the ADAM System experiment. The Man-Job-Match project used
as its data base the data (as of December 1965) for the 5800 men and
5800 jobs comprising the Weather Career Field and Personnel Career
Field of the Air Force.

In many cases, there is little advantage to be gained by
experimenting with the full data base, yet there are other cases
for which this is true only initially; as the experimentation develops,
more and more of the full operational data base must be employed for
a true picture of the system.

It was noticed that, in general, the greatest aid that ADAM
provides to a modeler is in investigating the problem to determine
requirements. If the details of the total process, e.g., computations,
formats, and structures of data, have not yet been determined, ADAM
provides a rather flexible and useful tool for experimental formation
of the data base and procedures, and design of output formats.

In using ADAM to imitate another system that is already operating
or specified, much less freedom is provided to the modeler. Of course,
ADAM cannot model any arbitrary system. It models those systems best
which:

1. allow adequate representation of their data bases in the
ADAM serial file structure and in about six million characters
or less;

20

2. benefit from the use of a generalized translation or encoding
mechanism, i.e., the ADAM roll which permits encoding
arbitrary length names and data values into more facilely
manipulated fixed length form;

3. require an on-line query capability consisting mainly of
single file subsetting, simple file updates, and limited
cross-file referencing;

4. do not require a general on-line computational and procedural
programming capability, but are satisfied with such a
capability off-line;

5. may require local or remote display, light pen, typewriter,
and line printer capabilities;

6. benefit from a special-purpose language implemented with
a modest investment;

7. may require specialized routines and thus benefit from the
convenient assimilation of such coding by the ADAM System;

8. have no severe real-time constraints;

9. place a premium on reduced lead time for system definition
and evolution;

10. benefit from format specification which can be independent
of specific files;

11. have not been fully specified, and for which some degree
of freedom remains in the determination of requirements.

21

C„ ADAM DESIGN AND IMPLEMENTATION

1.0 Documentation Facilities

In his article "Management Techniques for Real Time Computer
Programming," T. Holdiman states: "...the craftsmanship of the
programmer cannot be judged by examining his piece in isolation but
rather only as it supports and interacts with other pieces."* A key
element in the successful integration of one program module with the
other modules in the system is the set of documentation facilities
and conventions that are part of the design and production environment.

Initially all ADAM papers were in the form of APS (ADAM Project
Serial) documents. Two types of documents existed: relatively official
documents (designs, specs., etc.) and relatively unofficial documents
(proposals, ideas, etc.). The official documents were produced in
the name of one of the ADAM groups, while the unofficial documents
were produced in the name of the author. APS documents were maintained
by numerical order in a master notebook in the ADAM Administrative
Office. They were distributed to persons concerned according to a
set distribution scheme. As the numbers of APS documents increased,
they were organized into logical categories in order to make the
whole series more readable. Also, a second important change was
implemented. A new series of documents, the D-Spec series, was issued.
The D-Spec, or Design Specification, document was a firm specification
for the design of the ADAM System. Each series was produced and
maintained separately according to a definite set of rules. The D-Spec
papers were considered official ADAM documents while the APS group was
a relatively unofficial series which did not cover design specifications.

As system debugging progressed, three new document series were
initiated: ADAM Newsletters, ADAM Flashes, and Deck and Tape Notices.
ADAM Newsletters presented informal, timely information concerning
system use, debugging, and integration. ADAM Flashes required only
one hour from writing to distribution and were used to report
catastrophic errors, etc. Deck and Tape Notices reported the status
of the latest system decks and tapes.

When the ADAM System became operational, three additional document
series came into existence: Production ADAM System Releases, Production
ADAM System Newsletters, and Production ADAM System Flashes.

Eventually many important documents from all series were used as
the basis for the ADAM User's Guide which was published as a MITRE
Technical Report, MTR-268.

T. Holdiman, "Management Techniques for Real Time Computer Programming,"
Journal of the ACM, Vol. 9, No. 3 (July 1962).

22

Our evaluation of the documentation facilities provided is that
they were well designed. It is unfortunate that during design and
coding they were used only in a passive way. It was common practice
during the construction of ADAM for the documentation to be produced
only after the programming had been accomplished.

Experience in the ADAM project indicates that for such a large
programming effort there is an inherent requirement for training,
despite the absence of plans in the project outline for formal training
of users. The system programmer in one section is often the user of
other parts of the system and has critical need for the documentation.
Prescinding from the many good features of the ADAM documentation,
two difficulties can be noted for the benefit of future system builders.

It was found to be very frustrating to many programmers in search
of specific information to have to read document after document,
picking up in each only a fragment of the desired information and
getting a reference to another document for further details. Moreover,
updating such inter-referenced documents becomes exceedingly time
consuming. The other point to be noted is that although the desir-
ability of documentation was known, there are, nevertheless, parts
of the system for which no documentation exists. Much of this can
be ascribed to conditions that sometimes overlapped. Our experience
was that when schedules for producing programs were jeopardized or
slipped, the first thing affected or completely set aside was the
documentation in order to make more room for programming. It is
also not uncommon to find that the extremely talented, technically
oriented people are not very proficient at expressing thoughts in
written form.

2.0 Debugging Facilities and Production Procedures

Introduction

The creation of a system as large as ADAM produces problems in
debugging and production of a magnitude much larger proportionately
than experienced with small programs. This is one of the reasons for
the unfortunate fact that the cost per instruction of a program
increases with the size of the program.* It is easy to see why this
is so. Time does not permit all the components of a large program
to be produced serially, and instead they must be produced concurrently.
This concurrency of production, undertaken in present day environments,

*
D. F. Parkhill, The Challenge of the Computer Utility, Addison
Wesley, 1966.

23

produces a degree of interference between undebugged programs which
boggles the imagination.* The creation of a satisfactory system of
programs as large as ADAM not only justifies, but requires the
development of system-wide debugging facilities and production
procedures.

It should be recognized that the support software provided with
the IBM 7030 was in no sense adequate for the development of a large
program. Efforts by The MITRE Corporation to modify, extend, and
otherwise enhance the basic capabilities of the operating system and
support software were carried on, and were required by the ADAM
System in order to proceed at all. The resultant system should not
be considered as exemplary of support mechanisms specifically intended
to support large programs. v«

Description of ADAM Debugging Facilities

At the conclusion of its development, the ADAM System included
the following debugging facilities:

1. SINTAB Trace - Most queries processed by the system in
either IFGL or FABLE languages are operated interpretively
as a set of SINTAB entries. This facility is turned on
by setting a bit in core. It prints out the address of
each SINTAB entry as it is executed and the elapsed time.

2. Logging - This facility allows certain programs in the
system to log the time and a preset message on a system
output tape.

3. Routine Trace - This facility allows routines to be selected
for tracing. Upon entry to the routine, some fixed infor-
mation can be printed on a system output tape.

4. COREMAP - Either upon the explicit direction of a program
or under certain abnormal conditions, an annotated map of
core storage can be printed. This enables memory dumps
to be properly interpreted despite the context of dynamic
storage allocation.

5. SINDUMP - This is a mechanism which prints SINTAB in an
easily read format.

*
T. Holdiman, "Management Techniques for Real Time Computer Programming,"

Journal of the ACM, Vol. 9, No. 3 (July 1962).

24

6. Translator Flow Trace - This mechanism logs on a system
output tape the execution flow through the interpretive
diagrams of the translator, and the input to individual
generators.

7. Relocatable Cards - These cards allow the correction of
binary versions of relocatable programs.

8. I/O Logging - This includes logging of all input as
received from input devices and is necessary to determine
errors in hardware.

9. Trap - A trap can be set to produce a coredump following
the execution of a specified routine. The trap is set
through a message preceding the message for which trapping
is desired.

10. Many other special purpose and miscellaneous facilities -
MC, POINTS, $TOPLOG, $0N, $0FF, etc.

Evaluation of ADAM Debugging Facilities

As can be seen from the above list, the set of debugging tools
provided by ADAM is quite extensive. However, despite this invest-
ment in debugging facilities, ADAM was a very difficult system to
debug, in the opinion of a majority of the programmers who worked
on the project. This difficulty reduced the productivity of the
programmers and thus affected schedules and costs. Listed below
are some suggestions by which the conditions producing the difficulties
during ADAM production can be ameliorated for the debugging of future
systems.

1. When selecting a computing system, i.e., hardware and software,
consider how well exercised and general purpose in nature its
debugging facilities are because of the impact in usefulness
and reliability.

2. Include in the system design, initial debugging facilities
with approaches and conventions for subsequent add-on
facilities. Thus, there can be an integrated set of
debugging tools, rather than a collection of ad hoc routines.

3. Provide some automatic method by which the operation of a
new and old version of the system may be checked for
consistency.

25

4. Provide for the programmer the option of debugging on-line
or off-line. This probably implies a time-sharing facility
for large computing systems with high cost,

5 Provide computing services to the programming staff with
turn-around time of less than one hour exclusive of job
running time.

6. Consider readability of the program when coding. At the
start of the ADAM project, programmers were not sufficiently
discouraged from considering the complex timing of individual
IBM 7030 instructions. This has historically been one of the
programmer's most interesting roles, but the timing consid-
erations of the IBM 7030 are so complicated that such
considerations occasionally led to artificial and obscure
coding techniques.

7. For the purpose of early system integration, internal
communication, and maintenance efforts, consider the advis-
ability of conservative selection of a subset of the computer
instruction repertoire. The entire ADAM System was coded in
relatively unrestricted machine language. Coding the system
in either a higher-level language or restricted machine
language could have prevented the problems caused by wild
branches, wild stores, etc. No appropriate high-level language
other than FORTRAN was available, and the IBM-supplied macro
facility was not sufficiently debugged.

8. Strive to simplify and standardize control and data inter-
faces. The design of the interfaces between the user and
the roll routines, allocation routines, and data structure
primitives encouraged a great number of errors because they
were too complex.

9. Be alert to the fact that some system difficulties are
engendered when single routines are allowed to be very
large. The large size of the ADAM program modules prevented
interroutine tracing mechanisms from being effective.

It is thus clear from our experience that even the best programmers,
when building a large program, require fast turn-arcund on a reliable
computer enabled by adequate software, and also a work discipline that
is imposed because of the size of the system. Each programmer when
working alone disciplines himself by following his own design decisions,
coding conventions, and debugging procedures, which most often are not
written down. When the programming effort is large enough to require
many programmers, then these things must be written down so that all

26

the programmers follow the same discipline. This discipline affects
the initial design, the implementation, and even as it did in the
case of ADAM, the actual selection of the machine instructions.

The purpose of recording the experience in developing ADAM and
in evaluating the experiences is to benefit future activities. The
individual programmer can, as he goes about his regular work, make
the right decisions to diminish the adverse effects of the last four
conditions listed above. The first five conditions, however, pertain
more to the environment and tools provided to the individual programmer
and can, therefore, be more readily attended to by his supervisor or
the project leader.

Description and Evaluation of ADAM Production Procedures

Outside of the problem of design control, there is no more
important problem than finding an adequate set of procedures for the
production of a moderate or large size program, Because ADAM was
primarily an experimental vehicle, little attention was paid to the
development of an adequate set of production procedures. What
production procedures there were had the following goals: to maintain
system integrity; to make available up-to-date system components for
all debugging operations; to provide a central place for card decks,
tapes, and listings; to identify common problems; and to simplify
system use.

System integrity was assured by administrative and programming
procedures that maintained symbolic versions of the system on magnetic
tape (the FORGET tape). A macro library provided a uniform definition
of system symbols. A system of deck insertions based on identification
cards for each routine allowed many programmers to debug with the same
basic system. Problems involving system use were fielded by a "duty
man" and a notebook was kept of system difficulties.

The ADAM production procedures would have been more interesting
had it been possible to have the assembler as part of the ADAM System,
and had the system itself been used to maintain its symbolic and
object versions.

3.0 System Data Structures

Description

The set of ADAM data structures includes files, rolls, streams,
and areas. Files and rolls are oriented toward the ADAM user, and
are used to store the user's data base. Streams and areas, on the
other hand, are intended for use by the ADAM System's programmer.

27

From the user's viewpoint, a file can best be thought of as a
collection of information about a set of objects which have in common
a set of properties. A file is thus a collection of sets of property
values. Each property value may be:

1. floating point,

2. compressed floating point (not implemented),

3. integer,

4. Logical (or roll valued),

5. Query Valued (the value of such a property is computed by
retrieving and honoring an associated query) (not implemented),

6. Raw Data (an arbitrary string of bits),

7. Repeating Group,

8. Subfile (not implemented).

ADAM files are serial files in the sense that file objects must
be retrieved as units and appear to occupy contiguous storage. The
term "file," however, is used ambiguously. The above explanation
describing the user's viewpoint is the loose or general meaning. In
reality, the user's file is composed of three data structures: files,
rolls, and streams. Technically, the name "file" is for a specific
ADAM data structure distinct from rolls and containing all types of
properties with one slight exception. The value of a Logical property
is stored elsewhere, and a shorthand, fixed length, internal name for
this user's value is stored in the file.

A role, together with a set of "roll routines," forms a general
purpose encoding mechanism which has many uses throughout the ADAM
System. In general, a roll is a structure which associates names
with values. One of these values, the principal value, or PV, is a
shorthand name for internal use. The other values are called subsi-
diary values. The correspondence between names and PV's is not, in
general, one to one. The totality of roll data associated with a PV
is called an element. The basic concept allows the structure of a
roll to be "anything at all" as long as it communicates with the user
via a standard interface, but only one class of rolls was actually
implemented.

28

Associated with each file structure are at least two rolls: an
object roll and a property roll. The object roll associates object
names with an internal name and the location of the object in the
file. The property roll associates property names with an internal
name and descriptive information which includes type, length, relative
location, and so forth. Values of Logical properties which are
associated with an object are stored in a Logical roll. This roll
must be named by the user and he has the freedom to use as many Logical
rolls as he wishes.

18
A stream is a set of not more than 2 machine words which are

identified by sequential stream addresses. When a stream is being
used, some of the stream is in core and the rest is in secondary
storage. The part in core exists in blocks of 512 words of 64 bits
each. Stream control functions are used to locate stream addresses
in core, but the responsibility of computing core addresses for
referencing and changing stream data rests with the system programmer
wanting to use the system.

An area is a set of machine words which exists only in core in
blocks of 512 words each. Area control functions are used to allocate,
expand, and release core space,, but as with streams the responsibility
of computing core addresses for referencing and changing area data
rests with the user.

The last two types of file properties that are listed above, viz.,
Repeating Group and Subfile are special ones because they describe
data structures. The original intent was to have the Subfile property
represent complex hierarchically structured data with many levels in
the hierarchy. The Subfile would be itself a genuine file and would,
of course, be manipulated by file handling routines. Thus, files
may be nested within files to any level. Each instance of the
property Subfile relates a secondary file as a part of the primary
file with the secondary file being the lower level in the hierarchy.
The intent of the Repeating Group was to j. rovide a structure for
representing simple multi-valued data such as the time history of a
flight plan. It was anticipated that this simple structure could
be processed with simple routines producing greater operational
efficiencies than would be anticipated with the Subfile structure
processing. Notwithstanding the original intent of simplicity, a
generalization was introduced into the Repeating Group design, i.e.,
Repeating Groups may be nested within a Repeating Group. With this
capability added to the data structures, both simple and complex data
could be represented in ADAM user files by either property Subfile or
Repeating Group. The available resources would not allow implementation
of both property types and so the one that seemed to require more
resources to implement, Subfile, was dropped.

29

Evaluation

In evaluating the ADAM data structures, four very significant
concepts became apparent, and although only one concept is original,
they represent considerable innovation over commonly accepted state-
of-the-art techniques when provided together in a single system.

The first of these is the system-wide use of general-purpose
encoding mechanisms. Anyone who has built a compiler knows that the
first thing that must be done to a piece of input text is its con-
version from a sequence of awkward variable length strings into a
sequence of objects which are easy to handle inside the machine. It
is well known that for speed of compilation this is the most important
design point of compiler construction, for if the passing and encoding
of identifiers is done efficiently, nothing short of sabotage will
slow down the compilation process, Of course, in a compiler it is
necessary not only to map names into internal representations, but to
be able to retrieve the original name, and to associate other values
with an identifier, such as type and assigned storage location. This
information is usually kept in a symbol table, and a set of general
purpose subroutines exists for performing the basic operations.

There are many other applications for encoding and symbol tables
besides compilers. A roll is a generalization of a symbol table,
which exists not as part of a compiler or some other program, but as
a separate general purpose entity available for use by a whole class
of users. In ADAM, rolls are used by the translator, the DAMSEL
compiler, file processing routines, the output formatting programs,
and so forth. They are used for encoding property names, object
names, routine names, file names, roll names, and many others. The
recognition of the general utility of a mechanism exemplified by rolls
is an important original ADAM idea that should not be forgotten.

The second significant data structuring concept in ADAM is the
separation of data description from procedure description. It is
possible to think of a computation as involving three things: the
data on which the computation is to be performed, a description of
the data, and a description of the computation. It is common practice
in computing to combine the description of the data with the description
of the computation.* Thus on a typical digital computer, to add two
integers together an integer addition operation is used, whereas to
add two floating point numbers together, a floating point addition
operation is used. An alternative design would be to store the
data description with the data, so that a single operation, add,

Systems which allow "compools" are an exception.

30

would be used to add any two numbers together. The practice of
keeping procedure description and data description together has been
passed upward into higher-level languages. A given FORTRAN subroutine,
for example, contains a complete description of all the data on which
it is to operate. As far as other subroutines are concerned, this
data is non-existent unless they too contain a complete description
of the data, and are told in some ad hoc way that the two data descrip-
tions refer to the same data. Within the ADAM System, an attempt is
made to separate data description from procedure description at all
levels where it is possible. The description of a file, for example,
is not associated with any particular procedure. Associated with
each file are two rolls which describe the data within the file,
Queries and procedures may manipulate files without having the query
or procedure contain a complete description of the data. This is an
important area for consideration by designers of future programming
languages, environments, and systems.

A third significant ADAM concept concerning data structures is
the use of the same data structures and their associated mechanisms
by casual ADAM users, sophisticated ADAM users, and ADAM System
builders. Within ADAM, routines are stored in a routine file,
language descriptions are stored in a language file, and a list of
files is kept in a roll, as is a list of rolls. These are just a
few of the ways in which data structures are shared by users and
systems programmers, and represent the beginning of the recognition
that system builders are users too, and have similar needs.*

Finally, it is important to note that the construction and use
of the ADAM System was eased through the use of data structures of
virtually infinite length. Complication was avoided by restricting
to the basic routines which manipulate the data structures most of
the concerns involved in the use of disk as an extension of core
memory.

Of course, many problems were encountered and mistakes made
during the design and implementation of files, rolls, streams, and
areas. For the benefit of future system designers, the most important
of these are listed below.

1. The interface between the routines that manipulate rolls
and the routine users is far too complex. There is nothing

* Users are system builders too! A general purpose data management
system can perform no more valuable function than providing the tools
to enable a user to extend the system, and build their own application
system.

31

intrinsic to the roll concept that does not allow a far
simpler design of the interface. The complexity of the
use of rolls in ADAM is due simply to poor design.

2. The routines that manipulate streams and areas do not
assume enough responsibility for the bookkeeping of storage
addresses. This is due in part to the fact that streams
and areas store unstructured data which can only be
manipulated by the using routine with the actual physical
address. It is recommended that access to data stored in
stream and area type data structures be made only with
logical address through operative routines.

3. The interface between the users and both the routines that
manipulate streams and the routines that manipulate areas
is inconsistent and too complex. An area, in fact, could
have been made a special case of a stream. There does not
seem to be justification for the existence of two different
types of stream pointers.

4. In any software system, and particularly in a "generalized"
one, the designers and implementors continually establish
trade-offs between "efficiency" (in the performance sense),
and "power" or generality. In ADAM, the decision to
restrict the size of a file object such that each object
must fit in core, places a restriction on the number of
Repeating Groups for an object. However, the 7030 has a
large core and this restriction was seldom evident.
Designers of future systems should cautiously evaluate
decisions cf this type.

5. The data structures provided for the systems programmer
are not varied enough. There is a definite need for
structures smaller than the block of 512 words, and a need
for other structures. The block size might have been
parameterized.

6. Although the file structure was able to handle a large
variety of data organizations, and although the basic
operations existed to process files in an arbitrary way,
the capability to do this was not passed up to the
experimental higher-level query languages. It is unfor-
tunate that the experimental file generation and query
languages impose a rigidity on the processing of files that
is not really required by the primitive file processing
level within ADAM, or that a higher level language for
flexible file processing was neither fully developed nor
available on-line.

32

Summary

Imbedded within the ADAM structures of files, rolls, streams,
and areas are these four significant concepts:

1. the system wide use of general purpose encoding mechanisms;

2. the separation of data description from procedure description;

3. the use of the same data structures and their associated
mechanisms by casual ADAM users, sophisticated ADAM users,
and ADAM System builders, and

4. the use of data structures of virtually infinite length,.

It is our judgment that most of the problems experienced in the design
and implementation of the ADAM data structures are not intrinsic to
the basic concepts. They are due to both detailed design and design
control.

4.0 System Languages

Initially, the requirements of file generation, computation, and
output formatting appeared sufficiently different to necessitate
separate languages within ADAM.

In the case of simple languages within ADAM, interfaces »/ere
generally excellent. But for the more complicated functions, the
language involvements brought on corresponding complexities in the
interfaces between the user, the system and other languages. The
level of implementation of the individual languages did vary somewhat
throughout the system.

All but three of the twelve languages used within ADAM were
provided to give the user ability to handle the various functions
common to the design of processing systems for the management of
large data bases. The functions of initial file generation, file
updating and querying, and executive control of the system are handled
respectively by the IFGL, FABLE, and the Utility languages. The
Display language allows a significant transfer of the capability of
the on-line console languages to the cathode-ray tube, light pen, and
push-buttons. String Substitution and Output Formatting languages
give extra ability to the user for input and output messages. LAP
is the language for specifying languages for ADAM file generation ar^l
querying: the first applications of LAP defined the experimental
IFGL and three versions of FABLE languages. COMFORT and DAMSEL

33

provide the user with the computational capability of FORTRAN and a
procedure language sensitive to the user's data base, respectively.

Separated from the above special-purpose user languages are
S1NTAB, an entirely internal language unavailable to the user, and
SMAC and STRAP, the two general purpose IBM-provided assembly level
languages,

The purposes of each of the languages with comments are discussed
in the following paragraphs.

IFGL

The experimental IFGL (Initial F_ile Generation Language) creates
ADAM files from an external data base stored on punched cards or
magnetic tape. A set of IFGL statements define an ADAM file, the
format of an external data base, and the mapping from the external
data base to the ADAM file. IFGL is a simple near-English or English-
like language.

Although somewhat limited and verbose, the IFGL language is
easy to learn and use. It is simple to modify IFGL statements. A
user need only be concerned with his o«m logical file structure and
is spared the concern over "bit details," such as the memory allocation
of stored data.

The language would have been significantly enhanced if some
features for conditional control were available so that it could
perform more of the functions that for ADAM were done by FORTRAN pre-
processing. Also, one should have included more elaborate diagnostics
and error-handling features,

FABLE

The FABLE (First ADAM Basic LanguagE) language was originally
intended as an experimental interim, simple near-English language for
use by an applications-oriented person at an on-line console for
file querying and file updating.

FABLE is more advanced and powerful than most query languages.
Its utility was significantly increased when additional desirable
features, such as cross-file referencing, were incorporated into the
language in later versions. The simple features of the basic FABLE
language are easy to understand and use. It becomes more complex
and more difficult to use as more of its sophisticated features are
employed. This may be due in part to the lack of standardization in
construction of statements and in use of punctuation and key words,

34

or perhaps because the FABLE approach is not the best way to express
complex procedures.

FABLE is a procedural language, but must be considered deficient
as a programming language. Several users with previous programming
experience have commented that restrictions were sometimes felt due
to the lack of some form of conditional control capability.

Experience has shown that user personnel with programming back-
grounds find that a higher order, near-English computer language,
such as FABLE, is relatively easy to use for most tasks, provided the
constraints are well documented. Formal training facilities and
documentation were not provided Non-programmer users are not
accustomed to expressing their ideas following rigid rules; therefore,
they may have trouble in learning to write a long sequence of steps
for a comprehensive file query without some clerical, logical, or
functional error.

Knowing some of the algorithms by which files are manipulated
gives even the user with little or no programming experience much
more control in using the language for his purpose

$UTILITY

The Utility language allows the user to do simple executive
tasks requiring minimum ADAM System involvement. Examples of such
tasks are time logging, tape mounting messages, job and task termination,
and activation of numerous debugging aids in the system. Correspondingly,
the language is extremely easy to use and because of the philosophy
of system avoidance in its implementation, rapid responses are realized.

DISPLAY

The Display language provides the ability to use the CRT with
its associated light pen, and the push buttons in an interactive manner
as an alternate input device for stored source queries. These queries
are stored in a file called the CEMETERY file. By means of this
language and its implementation, a user operating at a display console
is provided with string substitution and parameter insertions to the
FABLE and IFGL statements. Selections of query language statements,
including substitutions and insertions, are accomplished via light
pen action in an extremely rapid and flexible manner.

Perhaps, more accurately, this should not be called a language,
but a Display Input Capability which is supported by many languages
and facilities of the ADAM System, that is:

35

1. the Output Formatting Language, to describe how an output
may be used as input;

2. IFGL, to generate the CEMETERY file;

3. the Rule Recognizer, to route display inputs;

4. FABLE, into which display inputs are eventually converted;

5. Skeleton language, in which the skeletons stored in the
CEMETERY file are written.

If there is a language to be described in the display input
capability, it is the Skeleton language, last mentioned. However,
it should be noted that the interesting aspect of the display capabi-
lity consists in seeing how all these pieces work together. The
philosophy under which the rest of ADAM was implemented is that ADAM
is non-interactive, yet by utilizing its mechanisms astutely, the
interactive non-typewriter input capability was modeled.

String Substitution

Use of the String Substitution language simplifies input messages
sent to the ADAM translator by allowing the user to define an equiv-
alence between a word and a string of words. This string of words
can be a partial or full query with parameters inserted. The language
is easy to understand and was used extensively.

Output Formatting

The Output Formatting language allows the ADAM user to define
a procedure for transforming data in a file into a suitable form for
output. The notation for specifying formats is that of a macro
language consisting of a set of operators and associated parameters
allowing one to manipulate file values and literal information into
a desired representation on output devices.

Although the output formatting language is easy to use, the
language statements do not lend themselves to direct visualization of
the final format of the output display. The choice of the language
operators was quite complete and they facilitated manipulation of
output data. However, some form of conditional expression, providing,
for example, the ability to skip operators during an output process
would have been valuable, according to several users. Because the
only diagnostics were those of SMAC/STRAP, it was occasionally
difficult to relate them to erroneous statements in the formatting
language.

36

LAP

LAP is a language for defining user languages for file manipulate
It was intended to ease the expansion of the set of ADAM languages by
providing a vehicle for the formal definition of syntax, and a set of
tools for mapping syntactic elements into appeals to a set of basic
code generators. LAP has been used to implement the experimental
languages FABLE and IFGL„ The LAP definition of the syntax of a
language is assembled off-line by the LAP assembly program.

In the construction of a new language or language feature, a
thorough analysis is brought about by using the simple and precise
LAP diagrammatic approach. Translating the information from the
diagram to LAP statements is only a clerical process. Many major
changes to FABLE and I.FGL were expressed with little effort in LAP,

Although it is easy to define the svntax of languages in LAP,
doing so requires a knowledge of the existing generators which,
unfortunately, are not well documented.

FORTRAN/COMFORT

The FORTRAN/COMFORT language is a subset of FORTRAN, with certain
restrictions that enable its compiled output to be integrated into
the ADAM routine file. This language requires modified FORTRAN CALL
statements necessary for ADAM compatibility. With ä few exceptions,
the entire capability of FORTRAN is available. The most awkward
feature in using FORTRAN is the passing of information to and from
the rest of the ADAM system via the interface; users have commented
on the excessive clerical operations required to associate properly
FORTRAN data with ADAM data. Only separate undimensioned variables
can be passed through the interface. The data structures that were
included for convenience of storing and processing, i.e., files and
rolls for ADAM, and arrays for FORTRAN, cannot be passed back and
forth, FORTRAN routines which had been integrated into the ADAM
routine file were, nevertheless, not treated in the same way as other
ADAM routines. When appealing to an ADAM routine, it is not necessary
to specify all the routines that may be appealed to by the one that
is first requested, however, when appealing to a FORTRAN routine,
a complete list of routines must be provided to the monitor that
includes not only the one being called, but all those that it may
call,

The inclusion of FORTRAN capability for ADAM was a retrofit and
this is reflected in many of the inconveniences encountered in its
use. Including this capability in the initial design consideration
could have eliminated many of the difficulties.

37

on.

Users commented that they felt that the interface difficulties
were only inconveniences, and having the computational capability of
FORTRAN was essential.

DAMSEL

DAMSEL was originally intended to be a language for writing system
routines and specialized user procedures to be entered into the system.
The statements were designed to provide convenient ways of specifying
the common operations associated with the ADAM System and can explicitly
reference the names in the user's data base. In addition, DAMSEL
statements may be intermixed with SMAC and STRAP statements.

There was implemented only that subset of the DAMSEL language
which allowed the user to do arithmetic and a restricted set of file
manipulative operations. The SMAC/STRAP intermixing feature eased
significantly the difficulties of a partially implemented DAMSEL and
some of the interface difficulties with FORTRAN. Due to limitations
in the SMAC and STRAP processors, DAMSEL was an off-line compiler
and required a separate job outside of ADAM.

Originally it was intended that the DAMSEL compiler be part of
the main ADAM System and thus be available to any routine requiring
translation. This approach was far too ambitious for the available
resources, and the present version utilizing SMAC and STRAP was begun.
In view of the limited implementation, the limited use, and the
inconvenience of separate jobs, it is not clear that this approach
enhanced significantly the research or application of general purpose
data management systems.

SINTAB

SINTAB is a procedure language consisting of operation codes
and parameter references and is internal to the ADAM System. The
code appeals to system routines to allocate storage, handle files,
rolls, and formats. This code is the object code of FABLE and
IFGL messages and becomes the source code for the interpreter which
performs the processing required by the input message in IFGL or
FABLE. Because it is generated dynamically during the execution of
a task defined by an input message, the user is unaware of its
existence.

The SINTAB language format is highly packed and rather non-uniform.
It contains a general conditional operation and a general control
transfer operation, as well as the facility to provide variables,
functional arguments, and access to any routine in the ADAM routine
file via a generalized routine call mechanism.

38

The implementation of SINTAB would appear weak as the object
language for arbitrary languages defined for processing by the ADAM
translator, in that it provides only a rudimentary procedure mechanism
to support hierarchies of procedures defined in a higher-level language.
It also appears weak in providing scope or block structures for delimiting
the range of context of symbols.

SINTAB routines may have effectively infinite length, since there
is a paging mechanism (provided by software) superimposed on them.
This paging facility represents a desirable feature easily available
in an integrated, generalized system because this basic functional
capability is economically provided by system-wide service routines.

SMAC/STRAP

The 7030 SMAC macro language, written by IBM and modified by
MITRE, facilitates the writing of problem programs. The macros are
translated into STRAP symbolic statements. The STRAP statements,
whether generated manually or by SMAC, are then translated into
relocatable or absolute 7030 machine code.

SMAC includes a library of IBM-supplied macros as well as language
statements for generating new macros. For ease in coding, the processors
have been designed to accept intermixed SMAC and STRAP statements.

The majority of code for building ADAM System routines was written
in these languages. The MITRE modifications to SMAC, although unable
to do much in improving the communication between instances of macros,
were able to increase significantly the general freedom within the
macro generators themselves.

Summary

It was thought at the outset of the ADAM project that the
requirements of file generation, computation, retrieval, and output
formatting were sufficiently different to necessitate special problem-
oriented languages and possibly separate translators. It is our
opinion, in retrospect, that this is incorrect.

Our experience leads us to believe that the requirements of
file generation, computation, retrieval, and output formatting can,
and should be, blended in a single language.

39

Our experience with the implementation of languages showed that
each of the following design decisions must be considered separately
and should be decided independently of the others:

1. whether the language is to be employed by the user on-line
via a query station, or off-line by the user via card input;

2. whether the language is to be compiled or interpreted;

3. whether the language is to be procedural or non-procedural;

4. whether a great deal of attention is to be paid to the
efficiency of execution.

The independence of these factors should not be underestimated
by designers of future systems when providing for the user capabiliites
for trade-offs and optimization.

5.0 System Language Manipulators

In order to implement the languages of the system, the following
manipulators were employed.

LANGUAGE MANIPULATOR

IFGL
FABLE
Utility
DISPLAY
String Substitution
Output Formatting
LAP
FORTRAN/COMFORT

DAMSEL
SINTAB
SMAC
STRAP

ADAM Translator
ADAM Translator
Rule Recognizer, Rule Routine
Non-Typewriter Input Routines
String Substitution Mechansims
SMAC Processor, OUTFOP
LAP Assembler
FORTRAN Compiler and

COMFORT Post Processor
Compiler
Processor
STRETCH Macro Processor
STRETCH Assembly Program

TABLE A

In considering the language manipulators, one may ask the question:
Is the choice of this set of language manipulators a good way to provide
the language translation capability desired? The answer is yes, but
this must be qualified. With the exception of the SMAC processor, the

40

STRAP assembler,* and the partially implemented DAMSEL compiler, the
language manipulators provide the specified language functions and do
so with reasonable performance and moderate freedom from error.

The manipulators were designed and developed by different people
and to meet the separate language requirements at different times
throughout the life of the project. Some of the manipulators are
excellent, while others have features that strongly detract from their
value. In the implementation of the ADAM translator, there were many
mechanisms, new data structures, etc., which unfortunately were not
incorporated into the system at large

A variety of approaches was taken in the language implementation.
In most cases, the choice made to build a compiler or interpreter was
a good decision, even though the particular embodiment may have
included a few undesirable characteristics,

In an evaluation of a complex system such as ADAM, judging each
part by itself and also the collection of parts as they exist is
reasonable, but also significant to the research nature of the project
is the experimentation and attendant learning which may not be readily
deduced from such evaluation results. From today's vantage point, an
operating ADAM System and with the experience thus derived, a key
question to be answered is; What would be changed if the ADAM languages
and their manipulators were to be done over?

The number of languages would be reduced sharply, to about three
or fewer, with a corresponding reduction in language manipulators.
These languages would include all the present language capabilities
integrated within them.

From our experience with applications, it became evident that
two levels of performance are desirable: the first while experimenting
with queries, procedures, and data structures to design the procedure;
and the second while testing the procedure over many objects in the
files. The manipulation capability would best serve the user and
builder if it allowed for options to select flexibility or speed, and
the saving of source and object code.

By flexibility, we mean that the language capability has a
richness in the expression of a wide variety of functions and mentioning
of objects. When a flexible language is to be implemented, we think

*
SMAC and STRAP are not being evaluated in this document

41

it is reasonable that the implementation should save a maximum amount
of information in the system so that the system can communicate with
the user in source language. By speed, we imply the most efficient
object program which the system can generate. In either case, it is
desirable to be able to save object code to avoid retranslation, and
source code to avoid reentering the entire query or procedure.

The most important conclusion to be derived from our ADAM language
experience is that the system must maintain itself and be written in
one of its own languages. Our experience allows us to conclude that
because the environment and circumstances are so complex for the
coding of any function, the language level of the coding should be
high enough to help reduce errors. In this vein, the DAMSEL language
was designed to meet the needs of the system programmer and allow
convenient expression of his algorithms and data. Thus, not only
could the user employ it for specialized routines, but an ADAM System
programmer could design the entire ADAM System, use DAMSEL to write
the system, and have it compile itself.

The enormity of the task of implementing the full language was
too much for the resources available and only part of the language
was attempted. The compiler for even the subset is of such generalized
capability that only near the end of the ADAM project was it checked
out well enough to have the execution of its output code approach any
degree of reliability. Thus, unfortunately, the ADAM System was not
coded in DAMSEL.

6.0 Memory Resource Allocators

Memory Allocations

With few exceptions, memory assignments are made by two allocators:
the secondary storage (disk memory-) allocator, SESCON, and the primary
storage (core memory) allocator, MARASS, Two functional routines,
BASAL and CLOD, transfer between primary and secondary storages data
and routines, by appealing to these primitive allocators.

Disk Allocations

The primary purpose of the ADAM routine in charge of disk allocations
is to make reserved and semi-reserved allocations of physical blocks
on the disk for continuous logical storage. Each new allocation is
given an identification, thereby allowing the user to access disk without
knowledge of the current physical assignments.

In addition to new allocations, the routine will delete or increase
existing allocations and will read from or write to disk storage. User s

42

references are logical and relative to the start of logical storage,
not physical disk assignment.

Although an allocation may consist of a sequence of non-consecutive
disk blocks, the allocator performs any necessary linking, so that the
storage space appears to be uninterrupted. The user, then, need only
concern himself with the identification of the disk allocation and its
size. This interface proved simple to use and made the user relatively
independent of the hardware and details of housekeeping.

For housekeeping purposes, disk locations can be reassigned and
discontinuities removed or at least reduced by the temporary buffering
of data on magnetic tape storage.

Core Memory Allocation

There are two basic types of core allocation, one for routines
and one for data, which employ different methods.

Routines, once allocated in core memory, cannot be moved, whereas
data can be moved by the allocator. Routines are allocated from low
toward high-numbered memory locations in 64-word increments and data
are allocated from high toward low-numbered memory locations in 512-
word increments called pages. This allows the amount of space occupied
by each type of core allocation to be dynamically varied. Operation
has shown this flexibility to be very useful.

Routine Allocation

When a routine is designated as fixed or allocatable, the meaning
is that it is resident in core throughout the operation of the system
or is resident on the disk and transferred to core when needed.

Fixed Routines

Fixed routines remain in core during system operation and reside
in the lowest numbered core locations. The list, in loading order,
of fixed routines is stored in a table used at system initialization
time. The list was chosen to include the most frequently used routines
so they would not have to be dynamically allocated and reloaded, and
also those routines which were multiprogrammed and of necessity had
to remain in core.

Later in the project, the Loading Order Table for fixed routines
was supplemented with another table that allowed the dynamic release
and reassignment of fixed routines. This feature was implemented
specifically for the AFLC project and was found invaluable.

43

Allocatable Routines

When an executing routine requests that another routine be
loaded, a system program, CI.OD„ allocates core memory, transfers the
proper blocks from disk, and performs the necessary modification of
the transferred code by calling the appropriate system routines. When
an allocatable routine is no longer needed it can be dismissed.

Data Allocation

Although data allocation in core memory is performed by BASAL,
it in turn is controlled and supervised by those system routines
that manipulate the data structures. For example, system routines
automatically attended to keeping file data and file structures, which
were both stored somewhat jointly in associated ADAM data structures,
called Files and Rolls, properly meshed for several files simultaneously.

Evaluation of Allocators

The generalized allocation schemes proved extremely valuable to
the ADAM development by relieving the system programmer (and the user
with specialized procedure requirements) of the tedious tasks of
housekeeping both data and routine allocations in primary and secondary
storage. Similarly, he was spared the housekeeping chores for
manipulation of data structures.

Although there were many excellent features of the allocation
concept, the paging mechanism was, unfortunately, sensitive to the
type of information being transferred, viz., routines or data, and
not sensitive enough to the availability of core memory. The core
allocation algorithm does not utilize those available 64-word
increments that lie between other increments assigned to active
routines.

One may consider the internal housekeeping functions of ADAM to
be data management functions, where the data (and resources) managed
represent the programs, internal aata, and so forth, of the system
itself. Considered in this light, and in view of the promise of
generalized data management techniques in the processing of higher-
level data, it seems appropriate to recommend that designers of
future systems seriously evaluate and further explore the possibiliites
of reflexively applying generalized techniques to the management of
the system itself.

Fortunately, the designers of the ADAM System considered that
storage allocation was an essential concept for the system. Its
implementation turned out to be an effective system mechanism in

44

most cases, especially when used by other parts of the system such as
the routines for manipulating data structures. This implementation,
however, included one feature that quite often caused difficulty.
Optional control for dismissing routines that were no longer needed
in core was given to the programmer. When he forgot to include
coding for the dismissal of the given routine, the end result was that
soon all of core memory was indicated to the allocation routine as
being unavailable.

Our experience with the operation of the ADAM System indicated
one difficulty in the design of the allocation scheme which would
prevent the system from operating for any extended period of time
with a reasonable activity level for file manipulation and creation.
In the allocator there is a table of fixed length in which is kept
pertinent information concerning the disk allocations. Whenever
logically related data, such as in a file or roll, are stored on the
disk in consecutive blocks, a certain amount of data is entered into
the table. More data is required whenever the disk blocks are no
longer contiguous, and the disk storage of the file or roll is then
said to be discontinuous. There are no automatic housekeeping routines
available for reducing the discontinuities, and with the fixed length
table, troubles were encountered on some of the long runs of the
system in which there was a fairly active generation of storage
discontinuities.

7.0 Summary

The design decisions that are given below are only some of the
numerous decisions that were important in the design and development
of the ADAM System and they are given in no special sequence.

It was decided that the ADAM data base would hold in common the
data and routines (in object code) for both the system and the user.
Dynamic storage allocation was decided upon and would include the
allocation of core and disk memory. Additionally, it was decided to
have data relocatable in core memory, and routines not relocatable,
on a single allocation. The IBM SMAC compiler and STRAP assembler
programs were the software tools to be used for coding the ADAM
System. Closely related was the decision to design and construct
an ADAM compiler sensitive to the needs of the programmer building
a system such as ADAM. There was a decision to have the on-line
languages translated by a syntax-directed compiler. It was decided
that there would be four data structures within ADAM; files, rolls,
streams, and areas; and early in the project a design of file and
roll structures was set down. Nearly a year after the start of the
ADAM project, there was a decision to have the output of a query

45

structured in the format of a file so that the system would be able
to maintain information from one query to another.

The formats and media for data input during file generation and
output for report generation were to be specifiable by the user.

Seven of the sample of nine design decisions given above are
good to excellent, for they bring into the design many very desirable
concepts. Embodiment of these concepts provided capabilities to the
user to not only do many of his jobs with extra facility, but also
to adapt the system to meet special needs, such as modifying the on-
line languages or writing special computational routines.

Certain aspects of the ADAM conventions for routines seem subject
to debate. Within different environmental conditions these conventions
might obviously be inappropriate. In particular, the use of pure
coding techniques, non-absolute procedure calls and returns, relocatable
(including dynamically) procedures, facility in the invocation of
recursive and co-processor routines, system-managed variables, arrays,
and other data structures should be seriously considered in any future
effort of this type.

In a general context, the ADAM design included provision for four
basic capabilities that should be made available to a user by a general
purpose data management system:

1. definition of the user's own query language,

2. acceptance of input data for file generation in a variety
of formats and media,

3. specification of output formats and media for report
generation,

4. acceptance of routines written by the user for his special
needs as part of the system.

The two decisions to relocate data, but not routines, and the
adoption of SMAC and STRAP, do not aid as do the other seven decisions
in reducing unnecessary complexities and restrictions, and thus are
antisystemic. Distinguishing between data and routines at the basic
conceptual level and so early in design, allowed two incompatible
allocation algorithms to develop, as well as two file handling mech-
anisms. This unnecessary duplication was also accompanied by another
condition that slowed down the checkout of a program. Because routines
would never be relocated in core once allocated, many of them became
self-modifying. When a routine can modify itself, it is more difficult

46

to debug because of the volatility and scattering of the evidence for
debugging. A further consequence, but of less significance, is that
with self-modifications occurring here and there in service routines,
the possibility of writing recursive routines is made more difficult.

STRAP, and its pre-processor SMAC, were written by the manufacturer
with the philosophy that the entire resources of the machine were avail-
able and under their control while operating. This extreme arrogance
did not allow them to become part of the ADAM System in such a way that
a part of the ADAM System could appeal to them for translation while
ADAM was in operation.

The design of too few of the parts of the ADAM System was documented
well and in an orderly fashion: first appearing as a proposal that was
discussed and agreed upon, then revised and issued as a specification.
Other parts, however, were implemented directly from unrecorded con-
siderations of the required functions; and thus design and implementation
often became one: prevalently, an interface was specified by the first
person who needed it. Some significant benefits may have been derived
from having at a very early stage a concise document containing:

1. general system specifications,

2. an enumeration of the subsystems with the major
responsibilities of each,

3. rules and conventions for interfaces,

4. conventions for error handling,

5. instrumentation requirements for routines, and

6. guidelines for designers of subsystems.

Although much of this material did appear later in the project, it
was written in considerable detail and was more concerned with the
separate subsystems rather than the system as a whole.

47

D. SUMMARY OF PROBLEMS NOT INVESTIGATED

Though the ADAM experiment was ambitious, there are many facets
of data management which were outside the scope of its activities
and thus certain aspects of the real-world were not addressed in
the realization of ADAM. The following comments, then, are concerned
with these aspects. They are presented as examples of critical
subjects that are not clearly highlighted by ADAM experience, but
are well known in the technical community. Consequently, conclusions
drawn from the ADAM experience to be discussed later must be interpreted
with these thoughts in mind.

Quality Control of Data

A data management system first needs data to manage. Contemporary
data management systems require large amounts of data. The acquisition,
correction, and verification of a large amount of data is a first-
order problem, certainly equivalent in magnitude to the development
of a large set of procedures comprising a complex program. ADAM,
even in its application experiments, never encountered data that is
wholly representative of the real world. Real-world data is not
nicely structured. Data items, for example, may have errors in
value, be erroneously omitted, or occur out of sequence. In jargon,
data is often called "grubby," for such reasons. When dealing with
a data set of one, or ten, or one-hundred million characters,
attaining adequate confidence in the integrity of the data set be-
comes of extreme concern. It is understandable that ADAM did not
consider this problem in view of the size and requirements for
resource expenditures.

Secure Data

Although ADAM was used successfully in a remote manner, one
should not consider that the solution to all problems associated
with such operation is in hand. At no time in these experiments
was sensitive information transmitted by the system. The related
cryptographic problem is recognized as real, but was not examined
by ADAM.

Similar comments may be made about the problems of authorized
access (for retrieval or change) to subsets of the ADAM data base
or procedure base. Ambitious attacks on these problems are currently
being made in the technical community, utilizing esoteric software
and hardware techniques, but the implementors are not yet ready to
announce success.*

The MIT MULTICS system is an outstanding example.

48

Error Handling

ADAM was implemented in a laboratory environment. The majority
of its users were relatively senior people — capable of a high degree
of adaptation to the system. Perhaps for this reason, and others,
the general problem of error handling received less attention than
seems desirable for a production program.

Data Representation

ADAM is a data management system. One might inquire: What
kind of data does ADAM manage? Casually one might reply: Numeric
and alphanumeric. But such a reply would be naive. Consideration
of numeric data alone quickly leads from integer and floating point
types to rationals, complex numbers, variable-precision numbers and
a host of others. How does one encode and manipulate time, latitude/
longitude, angle measurements, etc.? Obviously numbers alone provide
a very rich data area. ADAM made but a weak attempt at attacking
this area, a field that attracts continuing research.

Garbage Collection

Contemporary techniques for the construction of generalized
systems use methods which tend to produce "garbage." Garbage is
data which is no longer being managed. As such, it is of no con-
cern to a data management system, but the memory space (resource)
it occupies is of concern when it grows large relative to the avail-
able storage resources remaining at any one time. ADAM tends to
produce less garbage than many contemporary systems because there
are a few automatic mechanisms in the program. These separate and
specialized tools are augmented by some options available to the
user in the utility language for other types of cleanup. The
garbage collection problem requires more than this because any
residual garbage will eventually choke a system. Unfortunately,
today's technology has not yielded a satisfactory solution to the
garbage collection problem.

Breakpoint

Finally, ADAM was not directed toward the "breakpoint," "roll-
back," or "un-do" problem. This problem is essentially created by
the necessity of being continually prepared to retreat to a previous
state when data, logical, or hardware problems force the premature
termination of seme operation. In such a case, it is probable that
inconsistencies or errors have been introduced into the data
set. Often such problems may be rectified only by reverting to a
previous instance of the data set. General techniques for dealing

49

with this problem were not attempted during the ADAM project although
some commands in the utility language permitted, at the user's
discretion, the copying onto magnetic tape of the present version of
the system including the data base.

50

SECTION V

CONCLUSIONS

The conclusions are divided into two parts with those concerned
with applications aspects being presented first followed by those
concerned with system aspects.

SUMMARY OF APPLICATIONS ASPECTS

Although some aspects of data management were ignored in ADAM,
a number of valuable conclusions can be drawn. ADAM was applied
to several problems that are appreciably realistic, and will now
be examined from the experience of these applications.

Value of General Purpose Data Management

The applications of ADAM give rise to both optimistic and
pessimistic observations concerning the notion of a general purpose
data management system. The total experience of the project does
not conclusively establish or discredit the general purpose approach
as an effective way to achieve a system of wide applicability. The
promise held out by the ETF effort years ago still remains. However,
current industry-wide interest in ADAM-like systems may lead to a
confirmation or denial of the generalized data management concept
as a consequence of greater experience and effort with these systems.

It has been demonstrated by ADAM that substantial economy in
construction time for applications programs can be realized by the
use of a general purpose data management system. Similar economy can
be realized in the production of certain modeling systems, i.e.,
representations of proposed special purpose data management systems.
In general, the trade-off being made to achieve such economy involves
the cost of implementing the general purpose data management system
itself as well as the performance characteristics or efficiency of
the programs comprising the general purpose data management system..
An ADAM-like system can usually be partially modified or "tuned" so
as to improve its performance on a specific task. The basic trade-
off between generality and efficiency is, however, in the hands of
the ADAM System designer, and not the user. Thus the performance
loss for particular applications may negate the advantages gained
in lead-time economy. A need exists for a mechanism to allow more
extensive and convenient user control or direction of the trade-offs
involved.

51

The ADAM System provides an environment to support the con-
struction of application programs characterized by a tendency to
evolve. Such features as the separation of data description from
procedure description, maintenance of files by the system, and
automatic maintenance of resources of the system are conducive to
the evolutionary development of programs. Inasmuch as so many
application programs have this nature, an advantage accrues beyond
the lead-time gain in initial construction.

Data Base

The ADAM data structures, particularly the file structure,
have demonstrated a true usefulness for the organization of realistic
data. By direct application it was shown in the ADAM experiment
that the file structure accepts a wide assortment of data with
relative ease. This is not to say, of course, that the ADAM file
structure is necessarily adequate for the convenient, efficient
handling of an arbitrary data base.

There were times when the data structures provided by ADAM
were not appropriate to the task. In particular, the absence of
arrays in ADAM was quite awkward on occasion.

ADAM is essentially a disk-oriented system. Such a system
tends to support random access to data and procedures. But the
restriction of data base size implied by a disk-oriented system
is not necessarily insignificant. Very few realistic problems have
data sets of less than five million characters, the ADAM restriction.
The classical solution to this dilemma has been the sole use of
magnetic tapes for data storage. But this attack has obvious prob-
lems in access time, at least. It appears, therefore, that a
hierarchy of storage devices is required, including disks and tapes
at least, and possibly drums, data cells or magnetic card storage,
or bulk core storage.

ETF, the predecessor of ADAM, was characterized by separate
file generation and retrieval facilities implemented on different
computers. The integration of these facilities in ADAM is one of
its significant contributions to the general purpose data manage-
ment system concept. However, this integration led toward a problem
not initially foreseen in the development of ADAM. This problem
is known as the massive update problem. Within the system little
acknowledgement was given to this problem initially. The ability
to accept large quantities of update information while the files
are being maintained by the system in what is essentially a random
access, highly-structured fashion is a problem that must be faced
by any non-experimental general purpose data management system.

32

Solutions to this problem typically are easy in systems which are
optimized towards file generation, and difficult in systems which
are optimized towards rapid retrieval.

Input-Output

The ADAM System contains multiprogrammed input and output
mechanisms by which the system was able to support more than one
user on-line. In some respects, the system appeared to be time-
shared. However, the execution time allotted to a user program was
not constrained to a specified time quantum. Any query processed
by ADAM was scheduled as one continuous task until the occurrence of
an input-output operation. Interaction with a common data base by
several people in a concurrent fashion was also not demonstrated
by the ADAM System and extrapolation to such use cannot be done
lightly. Substantial logical extensions of the system design is
involved to achieve such operations.

During the AFLC experiment, users occasionally posed queries
to the system which created voluminous amounts of printed output.
The output processing performed by ADAM is multiprogrammed, but it
was possible to select an output device for a particular report and
thus tie up that device until total completion of the report produc-
tion. It appears desirable consequently, to provide special abort
or redirection facilities for cases where massive output may occur.

In the AFLC experiment, a remote station with a teletypewriter
and a printer was the total user interface with the system. In
this case, no alternative output devices were available at the user
site. A simple query could then occasionally produce large quantities
of output which impeded the use of the system by successive users.
The remote installation during the AFLC experiment required a special
adapting device at the computer and commercially available devices
at the remote site. Commercial communication lines were used for
data transmission. This was possible since all data processed and
transmitted by the system was nonclassified. The restriction on
the total assortment of output devices was limited by economics in
this case. The installation and use of the system at the remote
site proved quite successful.

In one form of operation, ADAM provided an on-line interface
to analysts. As such, the capability for the analyst to examine
the various properties of the data base was extremely useful. This
is somewhat analogous to the efficiency that can be achieved by
providing interactive programming support services for the develop-
ment of computer programs. The ability to examine new attributes

53

of the data base casually, and to examine the various paths which
are created by decisions during the process of examination can
prove extremely useful.

The addition of display facilities to the ADAM System indicated
the great power and usefulness of graphical techniques. In addition
to being necessary for ADAM as a modeling tool for arbitrary command
systems, the display facilities proved worthwhile during casual use
of the system.

Languages

The two ADAM experimental languages devoted to file manipula-
tion are IFGL, a file generation language, and FABLE, a retrieval
or query language. Examination of the FABLE language evolution
through versions I, II, and III indicates a trend toward increasing
capability for cross-file referencing. The ability to reference
several files concurrently was found to be required in a general
purpose data management system. Indeed the total number of files
that can be processed in this manner should be quite large.

Serious effort was given in IFGL and FABLE to separating data
base description from programming statements. However, the use of
the group, subgroup, property notation in these languages, and the
positioning of statements within the languages are then directly
dependent on the structure of the data. The separation of data
description from program has thus not been done with 100 percent
success. This problem is recognized as a difficult one, and a satis-
factory solution to the problem of separation in a general purpose
data management system might yield high return, especially in a
large programming effort.

Both the IFGL and FABLE languages were relatively weak as
algorithmic programming languages. Of course the primary intent
in their design was the creation of languages to implicitly realize
reasonably simple and routine manipulations for the casual user.
So long as the required functions were indeed quite simple and
routine, these languages were found to be satisfactory. It should
be noted, however, that many mission-oriented people had difficulty
in using FABLE even in applications well within its capabilities.
This may be due to the early unavailability of adequate training
and documentation for ADAM users.

The ADAM experience indicates a necessity for a programming
language suited to the expression of complex algorithms. This need
arises in the file generation, update, and retrieval situations.

54

The file generation capability in ADAM, represented by the IFGL
language, proved inadequate for interfacing with arbitrary input
data sets. As a result, pre-processors were often built for sub-
setting, data verification, and format changing functions.

In addition to the near-English languages IFGL and FABLE, all
the other user languages except the LAP language, were used by the
application programmers for their specialized needs for controlling
the system, mathematical computations, formatting output, and display
console activities. Their evaluation, although strongly supporting
the worth of the language features, is that there were too many
separate languages, and combining the features within a fewer number
of languages would be more desirable.

SUMMARY OF SYSTEM ASPECTS

Introduction

Most of the activity and concern in the ADAM project was due
to the fact that ADAM is a large system of programs. The following
conclusions are derived from the experience of the building of the
system.

Support Software and Procedures

ADAM has demonstrated that the construction of a general purpose
data management system represents a large programming task and re-
quires commensurate support software and production procedures.
Unique, or essentially unique computers aggravate the amortization
problems associated with the development of such large scale support
software packages. Although MITRE modified the software considerably,
it was still not extensive enough to support a very large programming
system.

Automatic aids for programming and debugging were developed,
not only early in the project activities, but as an on-going opera-
tion throughout the project. It is not possible to predict the
needs for software tools to the point where all tools and procedures
are identifiable and can be specified at the start of a research
project, but some manpower must be allocated to meet these programming
needs that develop during the project. The ADAM project demonstrates
that significant benefits can be gained by automating major parts of
the control of the symbology of the system itself. Specifically,
in a case like ADAM, which is a system for general purpose data
management, the system should be self-managing of all its symbolic
form rather than the limited amount managed in ADAM.

55

Application Area

The target application area should be carefully defined in
order to provide the basis for adequate specification prior to the
design effort for the programming project. Care must be exercised,
however, in deriving realistic and obtainable requirements. Once
defined and built, the system should be steered away from applica-
tions not within its context.

Programming Arrogance

General purpose data management systems have demonstrated their
utility in certain problem areas. The use of these facilities as
an integrated subsystem in a larger system should not be excluded
by the adoption of a philosophy of arrogance in the design of the
general purpose data management system, its components, or its
supporting system.

Internal Communication

Key importance in a large programming project must be placed
on the attempt to maintain simple and uniform interfaces for control
and data between component programs. The type and size of data
forms, data form manipulators, and the kinds of conditional program
control features that are used by a programmer in one area of the
system may be convenient for programmers writing other parts of
the system and thus should be considered as candidates for system-
wide use. Further, especially in the case of a general purpose
data management system, many of the needs of the user and system
programmers can be served to a greater extent by making available
to both of them all the data forms, form manipulators, programming
features and languages that are often considered the private
property of one or the other.

Languages

The experience of working with the many languages in the ADAM
System justifies the conclusion that although the number of languages
and language manipulators should be reduced, the features contained
within these languages should not be reduced.

The ADAM translator that accepts IFGL and FABLE input is a
very powerful translator inasmuch as it can accept definitions of
many languages via their descriptions in LAP notation. The design
of the part of the translator that generates the object code, how-
ever, attempted to accomplish too much. This resulted in generators
that were too large and too detailed to be easily used.

36

More properly, the generation of object code should be divided
into two separate functions: generation of symbolic code and final
assignment, such as an assembly program. With such a change, the
ADAM translator would then be able to handle most, if not all of
the translation requirements for the entire system.

Input-Output

Conclusions on input-output may be divided into three parts:
intersystem compatibility, query language capability, and internal
programming for I/O. Although ADAM was intended to be able to re-
ceive data from and generate data for other systems, it cannot be
said that success or failure has been demonstrated conclusively.
ADAM was used as a subsystem for the Tactical Airborne Beacon System
and communicated in real time with other major subsystems.

Applications programmers selected, for economic considerations,
the approach of pre-processing the FORTRAN programs, the large and
complex data base from the AFLC operational system, rather than
exhausting ail possibilities of performing the subsetting exclusively
with the ADAM System.

Special input-output conversion routines and the ability to
specify output formats significantly aided in the success of both
IFGL and FABLE experimental languages.

The philosophy adopted in the throughput part of ADAM is that
the input-output message itself is the important thing and should
remain separate from format and device information as long as
possible, that is, as soon after input and as late before output
as possible. This philosophy is reflected in the ADAM programs and
thus allows the dynamic selection of input-output devices, as well
as addition of new devices to be a simple operation.

The ADAM Concept of the Repeating Group

A very substantial part of the ADAM effort was devoted to the
design and implementation of the repeating group. It has great
significance in applications because of its ability to accept as
properties any property types including nesting Repeating Groups
and because of its ability to accept any number of repetitions
limited only by core memory size. The systems aspects of this
unique subfile structure are also significant inasmuch as it was
the single concept which consumed more of the ADAM project resources
to develop than any other. In the opinion of some, it is the most
distinguishing feature of the ADAM approach. There are some dis-
advantages because of the fact that it requires special routines

57

for Repeating Group handling in addition to the routines for file
handling. This apparent duplication of effort was not undertaken
lightly, in view of the technical problems in the design and implemen-
tation of such capabilities. The Repeating Group was originally
intended for the representation of simple multi-valued data which
would not itself have Repeating Groups as properties, i.e., non-
hierarchical data. The property type "Subfile," which was a genuine
file, was intended to contain the hierarchically structured data.
Because the available resources would not permit the implementation
of both property types, the type Subfile was dropped because it was
more difficult to implement. Although opinions are sharply divided
on the question: Was it right to adopt the Repeating Group in
preference to Subfile as a file property?, there is unanimous agree-
ment that a general purpose data management system should include
at least one of them.

Documentation

The necessity for a good documentation scheme was recognized
early in the ADAM development effort. The general documentation
problems for systems such as ADAM are not solved.

58

APPENDIX I

BIBLIOGRAPHY

1. ADAM Project, "A User1 s Guide to the ADAM System," ESD-TR -
66-644, The MITRE Corporation, Bedford, Mass., August 8, 1966.

2. Baum, C. and L. Gorsch, eds., Proceedings of the Second
Symposium on Computer Centered Data Base Systems, SDC
TM-2624/'l00/00, System Development Corporation, Santa Monica,
California, December 1, 1965, pp. 3-87-3-121.

3. Beilin, I., "MERGE," ESD-TR-67-371, The MITRE Corporation,
Bedford, Mass., August 1967.

4. Buckles, G. A., Lt., USAF, and S. B. Carpenter, Lt. USAF,
"Computer Centered Data Base Systems," ESD-TR-66-499,
Directorate of Computers, Deputy for Engineering and Technology
Electronic Systems Division, Air Force Systems Command, United
States Air Force, L. G. Hanscom Field, Bedford, Mass.,
October 1966.

5. Char, B. F., and C apt. A. Foreman, ESRC, "Final Report—Joint
AFLC/ESD/MITRE Advanced Data Management (ADAM)
Experiment," ESD-TR-66-330, The MITRE Corporation, Bedford,
Mass., September 6, 1966.

6. Clapp, J. A., "A Description of the Internal Operation of the ADAM
System," ESD-TR-67-372, The MITRE Corporation, Bedford,
Mass., August 26, 1967.

7. Connors, T. L., "ADAM—A Generalized Data Management System,"
Proceedings, AFIPS Spring Joint Computer Conference, 1966,
Spartan Book Co., Washington, D. C.

8. Connors, T. L., "An ADAM Presentation," MTP-16, The MITRE
Corporation, Bedford, Mass., October 1965.

9. Connors, T. L., "Software Concerns in Advanced Information
Systems," Proceedings of the Third Congress of Information System
Science and Technology, Thompson Book Company, Washington,
D. C.

10. Foreman, A. C., "Advanced Data Management Experiment," IEEE
Transactions in Aerospace and Electronic Systems, AES-2, January
1966, pp. 115-120.

59

Unclassified
ecurity Classification

DOCUMENT CONTROL DATA -R&D
(Security clan ailicalion ol title, body ol abstract und indexing annolflljini must be entered when the averall report In classified}

I ORIGINATING A c T l v l T v (Corporate author)

The MITRE Corporation
Bedford, Massachusetts

2». REPORT SECURITY CLASSIFICATION

Unclassified
2b. GROUP

3 REPORT TITLE

Evaluation of ADAM, An Advanced Data Management System

4 PFSCRIPT1VE NOTES (Typt o(repofl and inclusive dales;

N/A
5 »UTHORIS1 (First name, middle initial, last name)

GILDEA, Robert A. J.

6 REPORT DATE

August 1967
7«. TOTAL NO. OF PAGES

63
7b. NO. OF REFS

12
B«. CONTRACT OR GRANT NO.

AF 19(628)-5165
b. PROJEC T NO

512B

90. ORIGINATOR'S REPORT NUMBERIS)

ESD-TR-67-130

9fc. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

MTR-442
10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

Deputy for Command
Systems, Computer and Display Division, Elec-
tronic Systems Division, L. G. Hanscom Field
Bedford, Massachusetts

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13 ABSTRACT

This report evaluates the ADAM project (Advanced Data Management System), its products,
applications, and some of its activities, which were part of a larger project entitled Infor-
mation Systems Tools and Software Techniques. The knowledge and conclusions contained
herein are intended for Air Force and other personnel who either are systems programmers
or have had a brief technical orientation in information processing systems, and are interested
in the management and production of software tools. There are detailed evaluations of docu-
mentation and debugging facilities, system languages and language manipulators, data struc-
tures and memory allocators. Both the design and implementation of parts of the system, as
well as the entire system are discussed.

DD FORM
1 NO V 65 1473 Unclassified

Security Classification

Unclassified
ifj*

Sei uritv Classification

KEY WO RDS

L E ! WT ROLE | w T

Advanced Data Management System
Information Systems Tools and SoftwarevTechniques
Information Processing Systems

•

Unclassified
Security Classification

