
MEMORANDUM
RM-5424-PR
OCTOBER 1967

A SURVEY OF SOVIET WORK I:
THE THEORY OF COMPUTER PROGRAMMIN

Robert A. DiPac

J:l::R.EPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA • CAliFORNIA--

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1967 2. REPORT TYPE

3. DATES COVERED
 00-00-1967 to 00-00-1967

4. TITLE AND SUBTITLE
A Survey of Soviet Work in the Theory of Computer Programming

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rand Corporation,Project Air Force,1776 Main Street, PO Box
2138,Santa Monica,CA,90407-2138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

147

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

MEMORANDUM
RM-5424-PR
OCTOBER 1967

A SURVEY OF SOVIET WORK IN
THE THEORY OF COMPUTER PROGRAMMING

Robert A. DiPaola

Thi, n·.,;·urch i.' >Uf>]>Or!nll.) tht· l'nit;·•l Statt·:- Air Fort'!' undt•r l'rojt>ct TL\\D-·-Con-
1 ract \n. F ll(,;!().r,:--C-00 15- m•ltlitor .. .J h\· tlw Di n·<'toral(' of O]H'rat ional Rt·quin·Bu·nt"
<Hid Dn!'loi•f!h'lll 1'1;111". Dt•put\ Chit•f "["taiL Ht·~t·arch and Dn,·lopnwnt. HIJ l'SAF.
\·;,.", nr •·ond!l,illll' contaiw·d in thi" \l•·nwrandum ~lwuld not 1 ... in!Prprdt•d ""
r .. pn·-•·ntin~ tlw oiJi,·ial opinion or polin of tlu· l'nitt'd Sta!t·~ Air Fnrl't'.

DISTBIBUTIO\ STATI:T\11-:\T
Di,trihution of thi" do('Uint·nt i~ unlimited.

Published by The RAND Corporation

-iii-

PREFACE

The aim of this survey is to familiarize Western

readers with some of the more important Soviet efforts

concerning a mathematical theory of computer programming.

It has grown out of the attempt to secure careful surveys

of Soviet research in cybernetics as the Soviets understand

this term. Accordingly it is included within the current

Soviet Cybernetics Technology Project.

In selecting the mathematical theory of computer pro­

gramming, featuring the theory based on the operator method

of A. A. Lyapunov, we have been governed by the following

considerations:

1. The material reviewed should constitute a serious,

continuing Soviet effort.

2. The material should contain a sizable mathematical

component.

3. The material should in some significant sense be

relevant to applications.

4. The survey should not present research that is

already familiar to Western experts, and hence should

pursue topics for which there is no strict analogue in the

West.

The survey makes use of some concepts and results of

the theory of algorithms, lattice theory, and the theory of

categories~ such as a reader may find in Refs o [3] ~· [5],

[23]~ and [26]. It is to be emphasized~ however~ that

-iv-

the requisite level of knowledge of these disciplines is

quite elementary~ since it is only the basic definitions

and theorems of each that are used.

-v-

SUMMARY

This report is about Soviet efforts to develop a

mathematical theory of computer programming. For the most

part, the study traces the development of the theory which

has stemmed from the operator method of programming of

A. A. Lyapunov from its starting point in terms of program

schemes designed to represent specific problem-solving

algorithms to its algebraic formulation in terms of the

theory of categories. The latter part of the report is

concerned with the attempt by various Russian authors to

adapt graph theory and the theory of algorithms to provide

tools for the construction of superior programming lan­

guages. Illustrative examples as well as criticism of the

theory are included, and the relation of the theory to

automatic programming systems is discussed.

-vii-

ACKNOWLEDGMENTS

We have benefited from numerous comments and suggestions,

some of a technical or editorial nature, others having to do

{_~th the translation of refractory Russian sentences. Am::mg

those we wish to thank are Paul Armer, Wade Holland, Cliff

Shaw, Willis Ware, Meredith Westfall, and particularly

Roger Levien. Also, we wish to thank the typists, especially

Mrs. Joy Taylor, for their patient execution of the painful

job of typing.

-ix-

CONTENTS

PREFACE iii

SUMMARY v

ACKNOVlLEDGMENTS vii

Section
1. INTRODUCTION 1

2.

I
3.

1.1. Description of the Method. 2
1.2. Transformations of Program Schemes 6
1. 3. Progranrrning Programs 6
1.4. Organization of the Survey 9

THE OPERATOR THEORY OF PROGRAMMING
2.1. Informal Statement of the Basic Notions
2.2. Transformations on Program Schemes.

2.2.1. Transformations of the Logical
Conditions

2.2.2. Nonlogical Transformations
2.2.2.1. Transformations on the Indices

of Operators
2.2.2.2. An Example

2.3. An Abstract Formulation .
2.3.1. Basic Definitions
2.3.2. An Example
2.3.3. Subschemes
2.3.4. Reduction of an Abstract Scheme to

Form r
2.3.5. Transformations and Parametrization

of Schemes
2.3.6. Reduction of an Abstract Scheme to

a Program Scheme
2.4. Algebraic Treatment of Operator Program-

ming
2.4.1. Basic Notions
2.4.2. (n, m)-Operators and Predicates ..
2.4.3. Synthesis of (n, m)-Operators
2.4.4. An Algebraic Equivalent of Synthesis
2.4.5. An Example ·

OTHER SOVIET EFFORTS .
3. 1. Preliminary Remarks . .
3.2. The Graph Schemes of Kaluzhnin ..

3.2.1. Interpretations of Graph Schemes
3.2.2. The Equivalence of Graph Schemes

12
12
17

17
38

38
44
so
51
55
56

58

60

63

65
66
72
74
77
80

84
84
87
88
93

3.3. The
3.3.1.
3.3.2.
3.3.3.

3. 3 .4.
3.3.5.

3.3.6.

3.3.7.
3.3.8.

4. A COMMENT

REFERENCES ...

-x-

Operator Algorithms of Ershov . . . 94
Motivation for the Definition . . . 94
The Definition of Operator Algorithms 97
The Execution of an Operator Algorithm

Algorithm 101
Examples. 103
The Value and S-Representation of

an Operator Algorithm 107
Operator Algorithms and Graph

Schemes 110
The Amended Definition 115
The Equivalence of Operator

Algorithms 117

122

131

-1-

A SURVEY OF SOVIET WORK IN THE THEORY OF

COMPUTER PROGRAMMING

1. INTRODUCTION

This study is concerned principally with a mathematical

theory that has its source in one of the more extensive

approaches to computer programming in the Soviet Union,

the operator method of A. A. Lyapunov. The method is best

regarded as an alternative to flowcharting as a means of

analyzing and representing an algorithm preparatory to

programming. The counterpart in this approach of a finished

flowchart is a "logical scheme of a program," or a "program

scheme." There is a difference in form: A flowchart is a

planar arrangement of boxes with connecting arrows, while

a scheme is a linear string of symbols called "operators."

Thus, a scheme is linguistic rather than diagrammatic, that

is, it represents an algorithm as a linear sequence of

letters that symbolize various arithmetic or logical opera­

tions. These operators are indexed with various letters

that generally vary over some finite set, thereby indicating

the range of objects upon which the operator acts. For

example, if (a ..) and (b.k) are n X n matrices, the symbol
1J J

"A .. k" could signify the operation of forming the product
lJ

aij · bjk" Here each of i, j, k varies from 1 to n.

Indices also appear in operators to specify which parameters

occurring in some given operation are to assume in succes-

sion some finite range of values upon satisfaction of

some logical condition. This corresponds to the use of

-2-

readdressing instructions in a program to govern execution

of a loop. Flowcharting is the more basic and heuristic

procedure; that is, in constructing a program scheme of a

complex program one would almost inevitably find himself

drawing diagrams, or flowcharts, as an aid. If one were,

on the other hand, to develop a theory about flowcharts,

he would presumably proceed by first replacing the blue­

print format of a flowchart with a more amenable formalism,

much like that of program schemes.

1.1. Description of the Method.

Underlying the procedure is the conception of a program

as a complex operator, acting upon the contents of the

storage cells of a computing machine, and representing a

sequence of operators of several different types. The

basis for this view is the fact that the instructions of

a program resolve conveniently into several groups, within

each of which the prescribed operations are rather homo­

geneous. Examples of such groups of operations are

arithmetical, logical and control, readdressing, dispatch,

and the like. Each of the groups of homogeneous operations

may be labeled as an "operator,'' and the arrangement of

the operators in some order specifies the action of the

program. This provides the basis for a formal description

of the programming process, and the need and the oppor­

tunity arise for making this description more complete by

a thorough classification of operators, for the development

-3-

of general methods, and for the consideration and evaluation

of different arrangements of the operators--all toward the

end of achieving an adequate formalization of programming.

The following classification of the "standard"

operators, together \vith their common designation, is given

by Lyapunov [21] and, with minor modifications, it has

generally been adopted for use in standard Soviet texts on

electronic computing machines [20]:

A, arithmetical operator--prescribes calculations

P, logical operator--evaluates a logical condition

F, readdressing operator--alters the value of
parameters indexing some operator; corresponds
to those instructions in a program that change
the addresses appearing in some instructions.

I, forming operator--generates the initial form of
some operator in a program.

~, restoring operator--restores the initial form of
some operator by restoring the initial values of
parameters indexing the operator.

Z, transfer operator--transfers numerical data from
one location to another. These operators are also
written as "[a - bL" where a is the data to be
transferred and b is the location to which a is
transferred.

All other operators are described as "nonstandard''

and are frequently designated by H.

Let us consider a simple example. A program is to be

written to compute the function

2
~(x) = f(x + x- 1),

where

f(y) =

1

2y - 1

5
t-- 1

-4-

if IYI ~ lJ

if 1 < I Yl ~ 2 J

if I Yl > 2.

One proceeds directly to construct a logical scheme for

the program as follows. First the operators are defined:

no introduces the program.

A1 transforms the initial data into binary form

A2 computes the function y = x2 + x- 1.

tests the condition 1 IYI ~ 0. If this condition

is satisfied) pass to operator A4 . If the condition

tested by P3) or, briefly, condition P
3

, is not

satisfied, transfer to operator P5 .

A4 computes f(y) = y3 - 1.

P5 tests the condition 2- !Yl ~ 0. If P5 is not

A6

A7

satisfied, then

computes f(y) =

computes f(y) =

transfer to operator A7 .

2y- 1.
5

f-- 1.

A
8

converts the result of the computation into decimal

form.

n9 - punches out the result.

~lO - stops the machine.

The logical scheme of the program is

nOAlA2~3A4ilA6l7A8n9~-
l l f .. 10

The passage, of course, is from left to right.

-5-

Here the upper arrows designate the order of execution

of the operators upon satisfaction of some logical condition.

For instance, the arrow above "P3 " means that control is

transferred to P5 if P3 does not hold. Otherwise, control

passes to A4 . The lower arrows indicate unconditional

transfer to the operator to which the arrow leads following

execution of the operator from which the arrow originates.

In order to linearize the operator representation, the

upper arrows are replaced by a pair of half-brackets having

the same index. The left half-bracket is situated immediately

to the right of the operator from which the arrow originates,

and the right half-bracket is situated immediately to the left

of the operator to which the arrow leads. The lower arrows

are replaced by (1) the false proposition denoted by "0,"

to the right of the operator from which the arrow originates;

(2) an immediately following indexed left half-bracket; and

(3) a right half-bracket, having the same index as the left,

to the immediate left of the operator to which the arrow

leads. It is understood that no distinct pairs of half-

brackets have the same index. The scheme thus becomes

The operators of this scheme can be programmed

separately and the resulting subprograms fitted together in

accordance with the plan of the scheme. At this stage

the program is ready to be punched and run on the machine.

-6-

1.2. Transformations of Program Schemes

The theory of operator programming is~ more than

anything else, an investigation of the effects of various

types of transformations on program schemes. A major aim

is to classify those transformations that give rise to a

scheme equivalent to some given scheme in the sense of

prescribing a program that will solve the same problem,

or in some stronger sense, but that exhibits some technical

advantage. For example~ transformations on the logical

conditions present in a logical scheme according to various

rules of the propositional calculus may lead to a simpli­

fication in the form of these conditions that facilitates

the actual programming. Again, transformations on the

parameters indexing the arithmetical operators may be

designed to take advantage of some feature of the problem,

such as symmetry in the case of matrix calculations, and

lead to a new indexing that makes more economical use of

the memory of the machine.

1.3. Programming Programs

The first Soviet attempts at automatic programming,

resulting in "programming programs" (PP), were based on the

operator method. Indeed, Turski in [33] asserts: "On

~considering Soviet achievements in automatic programming

one can easily notice that a great part of the work done

on the problem is connected in one way or another with

Professor Lyapunov of Moscow University. 11 The feasibility

of a PP lies in this: the basic structure of the operators

-7-

of each of the types A, P, Z, F, and ~ does not vary with

the algorithm to be programmed. This basic structure may

be programmed as a collection of "generalized instructions"

that are translated into machine language. Thus, a pro-

gram is constructed which, when supplied with the encoded

form of a logical scheme for a program and with the data

realizing the operators in the given scheme, will assemble

a program prescribed by the logical scheme. For example,

a generalized instruction associated with a logical operator

could be: "Evaluate a given logical function of several

arguments and, depending on whether it is equal to zero or

unity, execute one or another generalized instruction of

the algorithm. 11

The information about the operators which, in coded

form, constitutes part of the input to a PP may be summarized

as follows.

1. A-operator: an ordered list of the calculation

formulas to be used.

2. P-operator: the logical condition to which P

refers, specifying its constituent elementary logical

conditions and the indices of the operators that are to

be executed depending upon the truth or falsity of the

condition . ..
3. F-operator: the operators whose addresses are to

be modified by F and the address of the corresponding

parameter.

-8-

4. Z-operator: the quantities to be transferred to

the standard cells and the addresses of the operators in

which these quantities are to be replaced by the contents

of the standard cells.

5. ~-operator: the addresses of the operators to be

restored.

6. H-operator: the list of machine instructions

comprising H. Thus nonstandard operators receive a different

treatment from that of the other types of operators. The

generalized instruction corresponding to H is typically of

the form: "Carry out a given list of elementary machine

instructions." These machine instructions are written

manually by the programmer.

Additional input data for the PP relates to the assembled

program as a whole:

1. A table of the contents of the elementary logical

conditions.

2. A table describing the indexing of the initial

data of the problem and the transformations that may lead

to a new indexing of this information.

3. A table of auxiliary constants.

4. A table describing the working cells.

5. A table of storage distribution indicating the

addresses in which quantities used in calculations are

stored.

6. The address of the cells at which the program

begins.

-9-

7. The permissible length of the program.

8. The address of the cell to which control should

be transferred at the end of the program.

The reader will observe that the above information

includes implicitly the logical scheme of the program.

All of this information is encoded in numerical form

on program sheets, from which it is transferred to punched

cards that are read into the machine.

The reader can find extensive descriptions of program­

ming programs based on the operator method in [6] and

[19]. Some critical comments on PPs are included in

Part 4.

1.4. Organization of the Survey

Part 2 traces the development of the theory of operator

programming. First, a presentation is given of the initiat­

ing paper of Lyapunov [21}. The subsequent section is

concerned with the study of transformations of program

schemes and divides naturally along logical and nonlogical

lines. The work of Yanov on the transformation of the

logical conditions present in a program scheme is covered,

While the discussion of nonlogical transformations is based

chiefly on papers of Podlovchenko and Arsenteva [2, 27, 28].

A paper of Podlovchenko [29] is presented as a reca­

pitulation of basic terminology and notions of the theory

from a more abstract point of view. It may serve as a

summary of the notions so far developed.

-10-

The algebraic treatment of programming is described

in 2.4. In this treatment the initiating paper is again

due to Lyapunov [22]; two papers by Glebov [14], [15] are

also included. Again the motive is the characterization of

transformations operating on program schemes, but now the

treatment is quite abstract; the framework is that of

lattice theory and the theory of categories.

Part 3 of the survey is concerned not with the theory

having the operator methods as its source, but with the

attempt~ initiated by Kaluzhnin in [18], to develop methods

and a formalism aptly suited for the description of algorithms

to be programmed, and with the related and derived efforts

of Ershov [10, 11] to reformulate the theory of algorithms to

render it more suitable for the study of problems arising

in the theory of programming. In this connection, the work

of Zaslavskii [36] is also mentioned.

Our aim has not been to cover, or even mention, all

Soviet papers that touch on the pertinent topics, but

rather to select representative papers and organize

them into a coherent framework. A number of the papers

are treated in some detail so that the reader can become

fully acquainted with the mathematical setting and

methods should he wish to conduct similar research or

pursue open problems. On the other hand, the technical

developments are always preceded by a informal statement

of the aims, main results, and methods of the papers

-11-

sufficiently complete to allow the reader to omit the

details should he be so disposed. Occasional critical

comments are interspersed throughout the study~ In the

final part, Part 4, summarizing comments are given, and

several questions are posed concerning the further development

and use of the theory.

-12-

2. THE OPERATOR THEORY OF PROGRAMMING

2.1. Informal Statement of the Basic Notions

The aim of this section is to introduce a formalism

!that provides the means for a symbolic description of pro­

grams composed to solve particular problems and to indicate

the possible lines that a theoretical development might

take. The main source of the exposition is due to A. A.

Lyapunov [21].

The initial representation of an algorithm in this

formalism is a calculation scheme--a finite sequence of

symbols, each one of which is either an operator Ai or a

logical condition pj. One should think of the operators as

acting on the contents of some cells in the memory of a

computer. A sequence of juxtaposed operators is termed

their product. The action of an operator frequently depends

on the parameters with which it is indexed. To illustrate~

we construct a calculation scheme for the product C = A • B

of two n x n matrices A and B. Let operator A. 'k represent
l.J

the multiplication aijbjk of elements aij and bjk and addi-

tion of the result to the contents of the cell in which cik

is to be stored. Then

n
TI A. 'k

j =1 l.J

is the scheme of calculation for element cik, and

-13-

n n
n n A .. k

k=l j =1 l.J

is the scheme of calculation for the i-th row of C = A • B.
n n n

Finally~ n n n AiJ"k is the calculation scheme for
i=l k=l j=l

forming the product A • B.

A calculation scheme is obviously a primitive, skeletal

representation of an algorithm. It makes no provision for

loops--the iterated execution of some sequence of operators

in some fixed order. A program scheme, as defined below~

is a development of a calculation scheme in which the role

of the control operators is more fully specified.

The control operators are broken down into the following

categories: (1) readdressing operators, (2) restoration

operators, (3) formation operators, (4) parameter change

operators, (5) transfer operators, (6) logical condition

switching operators, (7) parameter introducing operators.

(Such a list is, of course, in part conventional, and a

little work could result in one having 17 categories

instead of 7.)

A program scheme, then, is a finite sequence of symbols,

each of which is either an operator, denoted by indexed

capital Roman letters, or a logical condition Pif' or pi1'

consisting of a proposition p. and an indexed upward arrow
1. - -- -

j . j
t' or an 1.ndexed downward arrow l" Frequently, the logical

conditions present in a scheme take the form of such state-

ments as up (i)j) 11
, which is true if i)j, and false otherwise.

-14-

The manner of execution of a program scheme~ for some

assignment of values to the parameters present in the

scheme~ is as follows. Begin at the extreme jleft and

proceed to the right until an operator Ai or a logical
k

condition p.f is encountered. If the encountered symbol
J

is an operator A.~ it is executed and the movement to the
]_

right is resumed; if it is a logical condition and = l pj

(= truth) for the given assignment~ again move to the

right~ if the value of p. is 0, and then "branch out"
J k

and enter the scheme immediately to the right of ~· This

procedure may go on indefinitely or may involve execution

of the operator STOP, at which point the process comes to

a halt. (One can be more precise about the syntax of program

schemes~ but at this point, such rigor seems misplaced.)

The program scheme based on the above calculation

scheme for the multiplication of two matrices is as follows:

1,2,3 1 2
J, A . . kF (j) p (j)n) 1 F -n (j) F (k) p (k)n) t F-n (k) F (i)

lJ

3
p(i>n)t STOP. Starting values: i j = k = 1.

Here, an operator of the form F(m • i) means "increment

parameter i by m units. 11 F(m • i) is called a readdressing

or restoration operator, according as m > 0 or m < 0. We

write Fm(k) instead of F(mk).

In some cases, more than one algorithm may solve a

given problem. These give rise to distinct calculation

-15-

schemes, and theseJ in turn, to distinct program schemes.

Comparison of these schemes could hopefully lead to

selection of the better program. "Better 11 here, of course,

has a contextual J but obvious, sense. The scheme, or

resulting program} may be better than another in

facilitating programming or allowing for superior machine

operation.

As an example, let us consider the problem of

calculating the determinant of ann x n matrix (a ..). A
l.J

is assumed to be in upper triangular form, and the determin-

ant is computed as the product of the diagonal elements.

So, for i > j we have the operators

B~J.: evaluate c = a .. /a .. and store.
..... Jl. 1.1.

Aijk: evaluate ajk = ajk - caik and store in the

location of ajk"

Dm: multiply a 11 by amm and store in the location of

a 11 . Calculation schemes:

(1) (~ ~ B.. ~ A .. k) ~ D ,
i=l j=i+l l.J k=l l.J m=2 m

(2) (~:_rr1 ~ B .. ~ p(i)j)A .. k) ~
.... j=l l.J k=l l.J m=2

D . m

-16-

Scheme (1) gives rise to the following program scheme:

2
)
3

B .. ~ A .. kF(k)p(k)n) f F-(n-i)(k)F(j)p(j)n)f
v ~J • ~J

3 4 4
F-(n-i+l)(j)F(i)p(i>n)1 ~ DmF(m)p(m)n) f STOP

Scheme (2) gives rise to

34 2 1 1 2 3
1 Bij ~ p(i<j) t Aijk J F(k)p(k)n) t F-n(k)F{j)p(j)n) t

4 5 5
F-m(j)F(i)p(i>n) t t DmF(m)p(m>n) t STOP.

The first of these schemes contains more orders than

.the second, since F(i) must operate on all instructions

of the form F-(n-i)(k) and F-(n-i+l){j). On the other hand,

the second requires more cycles since F(k) and F(j) readdress

without any computation taking place until k = n + 1 or

j = i + 1. A choice is to be made between these two schemes

on the basis of some criterion.

The tone and style of Lyapunov's paper [21] are loose

and heuristic. There is no substantive mathematics in the

paper, but neither was there meant to be. Questions are

raised that form the basis for papers that follow. For

example, it is noted that the question of equivalent

rearrangements of program schemes should be investigated,

one arrangement possibly leading to the construction of a

"better" program than another. This leads directly to the

work of Yanov, which is discussed in the next section. Also,

-17-

Lyapunov considers a number of other examples such as a

detailed example of solving the Dirichlet problem using a

varying net mesh. The paper also describes a technical

device (logical scales) used to change the logical condi­

tions in a program scheme in the course of the computation.

2.2. Transformations on Program Schemes

2.2.1. Transformations of the Logical Conditions.

In order to treat adequately and precisely the question of

rearrangement of program schemes by changes in their logical

conditions, the formal structure of these schemes must be

more adequately defined. This is achieved in a paper by

Yu. I. Yanov [35]. This paper introduces a formal system,

an interpretation of which is the program schemes of Lyapunov.

In this connection, the questions investigated are of a

metalogical character, questions of the equivalence of

schemes under a certain system of logical transformations

and the completeness of this system. The letters that

represent operations, the operator symbols, now assume the

status of primitives, and the logical scheme looks much like

a program scheme except that the up and down arrows have been

traded in for left and right half brackets, respectively.

Generally speaking, the problems treated by Yanov amount

to considering the effect on a logical scheme of transformations

of the logical variables contained therein. Two such problems

are:

-18-

(1) Under a suitable definition of equivalence, can

the equivalence of two logical schemes be decided by some

uniform effective procedure?

(2) Can a system of logical transformations be devised

i that will generate all logical schemes equivalent to a

given one?

Yanov solves these problems in the affirmative for two

kinds of logical schemes, a one-dimensional or linear type

and a two-dimensional or matricial (rectangular) variety.

He also considers the question of the equivalence of a

linear to a matricial scheme, and shows how to pass from one

to another.

We assume that we have the usual apparatus of the proposi­

tional calculus. If a is a propositional variable and ~
is a left half-bracket, then al_ is a logical condition.

i
A logical scheme of an algorithm is a finite sequence of

symbols composed of operator symbols A1, A, ... ,
2

conditions a L- , t3 L, ... , and right half-brackets
l j

logical

U, _l, ... ,
i j

such that for each left half-bracket L with index i appearing
i

in the sequence there is exactly one right-half bracket LJ
i

with index i, and conversely. It is understood that an

operator has at most one occurrence in a logical scheme.

We must define what makes a (linear) logical scheme

a(A A A) II II th t • h pl' p2, ... , pk' 1' 2' n go ' a ls, t e

procedure by which the scheme is executed. Let o1 , o2 ,

D k denote the 2k possible assignments of values to ••• J 2

-19-

the logical variables p 1 , p 2 , ... , pk' and suppose an

infinite sequence 6 , 6 , ... , of such assignments is
sl sz

given.

Step 1. Assign 6sl to p 1 , p 2 , ... , pk and mark the

left-most symbol in a.
Suppose that t steps have been carried out with the result

that the operators A. , A. , ... ,A. have been marked
1 1 1 2 1 m-l

and that some symbol s of a has been marked in the .t-th step.

Step (.t + 1) is defined as follows:

(a) If S is an operator A. , adjoin it to A. , A. ,
1 m

1 1 1 2
... , A. on the right, giving A. , A. , .•• , A. ; assign

1 m-l
1 1 1 2 1

m

6 sm+l to pl, Pz, · · ·, p~ and mark the symbol in a to the

immediate right of A. .
1m

a (pl' ..• ' pk)~
1

(b) If S

symbol to the immediate right of

, then if a(L)
sm

a(pl' ... , pk)~

marked, whereas if a(Lsm) = 0, the

immediate right of _j is marked.

1.

symbol in 0.. to

i

= 1, the

is

the

(c) If S = j for some i, the symbol to the immediate

right of _j
i

1

in f2 is marked.

No symbol is marked in step (t + 1) except as specified by

(a), (b) or (c). Otherwise, the process terminates.

Knowing the input and manner of operation of a scheme

a(p 1 , ... , pk' A1 , ... ,An)' what is one to understand as

the output or value of the scheme? Yanov chooses to define

the output of a(p 1 , ... , pk' A1 , ... ,An) to mean the entire

sequence of calculations,including the order in which they

are performed. Thus, the value of the scheme for a given

-20-

assignment is the sequence of marked operator symbols. The

value may be infinite or it may be finite even though the

scheme is executed indefinitely. In the latter caseJ the

value is termed an empty periodJ and a pair of parenthesesJ

()J is written to the right of the value.

As an applicationJ consider the normal algorithm ~

over a finite alphabet A with the scheme

.Q s

where p - · Q is the final formula [23].
s s

Let pi stand for the assertion: "The word Pi goes over

into the transformed word"; and let A. represent the sub-
1

stitution of the word Qi for the first appearance of the word

P. in the transformed word. With this interpretation of the
1

logical variables p. and the operators A.J the scheme
1 J

_lp LA 0 L··· _jpLA
s-1 s s s n+s n-1 n n n

oL_j
2n n

_j
n+s

represents the given normal algorithm.

Let us write V(a) for the value of scheme a for some given

assignment.

-21-

P2 l_ A2 . For the assignment (l~O)~ (0~ 0), (0, 0), ... ,
2

v(a) = A1 (), whereas for the assignment (1,0}, (1, 0),

(1, 1)~ ... , v(a) = A1A1A2 . Now~ according to the above

definition of execution, the values of the logical variables

of a scheme may change only as an operator is executed.

The variation of the logical variables controls the order

in which the operation of the scheme is carried on. In

applications, this amount of "transferring" can depend on

the nature of the operators. On the theoretical level

this is reflected in Yanov's notion of a shift distribution,

which is central to his entire development. The manner in

which the logical variables are allowed to change values should

be closely connected with the operators; it proceeds as

follows. A shift distribution can be thought of as a mapping

of the set of operators Ai appearing in

a(pl' P2' . ' . ~ pk' Al' A2' ... ' An)

into the set of subsets

When, in accordance with the definition of operation of a

scheme, the operator Ai is to be executed, only the variables

in Bi are allowed to assume new values, although they may

lalso maintain the same values.

More precisely, suppose that for a given assignment

b, , b, , b, , ••• , t-, , ••• the scheme U(p1 , ..• , pk' A1 ,
sl s2 s3 sm

... ,An) with shift distribution A.- B. has value A. , A. ,
1. 1. 1 1 1 2

-22-

... , Ai ,
m

The given assignment is admissible with

respect to this distribution if for all m, ~ = ~ or
sm+l sm

~ differs from ~ in the values of variables in B ..
sm+ 1 sm --------lm

For example, if a(p1 , p2 , A1 , A2) = P1 L A1 -t~ A2 P2 ~

the shift distribution A1 - {p1}, A2 - 1 £p2} is given,the

assignments

(1) (l,OL (0,0), (0,1), (0,1), ...

and

(2) (1,0), (1,0), (1,0), (1,0), ...

are admissible, whereas the assignment

(3) (1,0), (1,0), (0,0), (0,0), ...

is not admissible.

Now, two algorithms may be said to be equivalent in

and

several different ways. Most generally, two might be

considered equivalent if they give the same (or isomorphic)

outputs for the same (or isomorphic) inputs no matter how

differently the process of computation is carried out; their

"programs" could be very different. With this definition

the general problem of deciding whether two algorithms are

equivalent is, as is well known, recursively unsolvable. Since

we have already stated that Yanov shows that the equivalence

problem is solvable, it is to be expected that he employs

a rather strong definition of equivalent schemes. Indeed,

two schemes a(p1 , ... , pk, A1 , ... ,An) and kf(p1 , ... , pk'

A1 , ... ,An) are equivalent in Yanov's sense with respect

to a shift distribution B if they have the same values for all

-23-

admissible assignments. Thus, if two schemes are equivalent

for a shift distribution, they produce the same sequence of

operations for all admissible inputs and all interpretations

of the operator symbols.

Equivalent schemes need by no means be identical. They

may, in fact, not be equivalent with respect to some other

shift distribution.

The schemes

and

where 0 is the false proposition, are clearly equivalent

with respect to the universal distribution, that is, where

B1 = (p1 , p 2} = B2 . Two schemes that are equivalent with

respect to the universal distribution are equivalent with

respect to any shift distribution, since for the universal

distribution all sequences of assignments are admissible.

On the other hand, the schemes

and

f<Pp P2 , Ap A2) = P1L P2 L _j A1P1 v (p1·p2) L A2 °L _j_j_j
1 23 4 3421

are obviously equivalent with respect to the empty distribu-

tion in Which only the constant sequences are admissible,

but they are not equivalent with respect to the shift

-24-

distribution A1 - (p2 }, A2 - 6. Consider the sequence

(1,1), (1,1), (1,1), (1,0), (1,0), (1,0),

In this case, V(a) = A1A2A1 and V(b) = A1A2A1A2A1A2 A1A2 ...

Here the sequence is admissible for both aand t9, but the

values of a and i/ are different. Hence, a is not equivalent

to zffor this distribution.

It is obvious that equivalence with respect to the

empty distribution is solvable for schemes a(p1 , Pz• ... , pk'

Al' A2 , ... , An) and ff(p 1 , p 2 , ... , pk' A1 , A2 , ... , AnL

since one needs only to examine the zk possible assignments.

This simple fact is important in that a recurrent theme

throughout Yanov's paper is this: A problem concerning two

schemes aand tfwith respect to an arbitrary shift distribution

is translated into a closely related problem concerning
I I

closely related schemes a and t3 with respect to the empty

distribution. In particular, in regard to the problem of

deciding the equivalence of a pair of (linear) schemes, it

is demonstrated that each scheme Uwith a given shift distri-

bution can be transformed into a certain canonical form

a(IJ.), called the stationary merger of a. The stationary

merger is a function of the scheme a and the shift distribution;

different shift distributions in general give rise to different

stationary mergers. It is proved that schemes a and fJ are

equivalent with respect to a given shift distribution if

and only if their stationary mergers are equivalent with

respect to the empty distribution. The basic&[~ ~ZJ

idea of the proof is as follows: Consider a scheme a
with a shift distribution Band the value V of afar some

admissible sequence. By examination of all the various

-25-

possibilities allowed by the set B. associated with operator
1.

A. and the introduction of auxiliary variables, ,4__is transformed
1.

into a scheme ~~) such that if Ai is satisfied, that is, if

Ai is executed for some given sequence of assignments, then

Ai will be satisfied in aC~) for some stationary sequence.

By definition of (L(~) one can find an admissible sequence of

assignments for which Ai is satisfied in a; that is, all

possible variation in the logical variables that would

enable A. to be satisfied in ahave been built into the
1.

definition of a<~) so that we can find a sequence of

assignments such that Ai is satisfied in a for this sequence.

This holds for each operator Ai' and hence for each value V

of tZ.
For our purposes, it suffices to present the definition

of a stationary merger a<~) of scheme a for a given distribu-

tion B.

Let E be an elementary expression, that is, a logical

condition or an operator, in scheme Q(p1 , ... , pk' A1 , ... ,

A) .
n

Let

and a 1 =
i

Then

{

1 if E is executed in {L for
sequence l':.s' 1':.

8
, l':.s' .•• ,

0 otherwise,

the

1, 2, ... , n.

••• J

-26-

Suppose the functions a~,i = 1, 2, ... , n,and the

v-th merger a(v) of a have been defined.

Then a~+l max A~((v)) (pl' · · · ,pk,ql' · · · ,qn)'

Bi,ql,q2, · · · ,qn

i=l, 2, ... ,n.

Q(v+l) '

. . . ' A _j) .
n

jn

It is clear that fori= 1~ 2, ... ,nand all

so a natural number ~ is arrived at such that

i = 1, 2, ... , n. The stationary merger U(~)

defined as follows:

and

A. = max
1

A"
i

~ a.' 1
so A"

i
max Aj_,
B.

1

v v+l v, a a.
1 1

a~+l = a~ for
1 1

of a is

As mentioned before, to say schemes [}_ and: tJ are equiv-

alent for a shift distribution B is to say that they produce

the same sequence of operations for all admissible inputs and

all interpretations of the operator symbols. The area for

-27-

possible variation in equivalent schemes, then, is in the

form of the logical variables. The question arises of having

an effective method for generating all schemes ;8 equivalent to

given scheme arelative to some distribution B. Accordingly~

Yanov supplies a list of eleven transformations such that if

a is equivalent to t3 for some distribution, then a= 8 can

be derived by use of the transformation calculus. In other

words, the list of transformations is complete with respect to

the property of equivalence of schemes. The place of the

shift distribution in the situation is taken into account by

the concept of subordination of an elementary expression E to

a logical function a(E <a). First, given scheme U(p 1 ~ p2 ~

... ' pk' Al' ... ' A) n
with shift distribution B, define

E' = max E®
O._(ll) '

where o_(ll) is the stationary

q 1 ' q 2 ' · · · ' qn ()
merger of a relative to B. E is said to be subordinate

to a(p
1

, p 2 , ... , pk) if E'- a is a tautology. Thus, if

a fails to hold for a given sequence of arguments, the

expression E is not executed for this sequence of assignments.

In presenting the list of transformations some stip­

ulations are in order. The letter "A" stands for an arbitrary

operator, and "1" and "O" denote the true and false proposition,

respectively. In expressions C (CL) in which a occurs, if

(}_ = :1, the operation of substitution of 75 for a in c (tl..) giving

C (B) is defined, provided no confusion results; that is,

provided there results no duplication of indices of right

(left) brackets and no duplication of operators. Under

-28-

interpretation, this includes the fact that if a=~

and C (a) is a scheme, then C (f3) is a scheme and C (fl) = C (/3).

The list is:

I.l. 0 LA_l = 0 L_l.
i i i i

2. 1 Lll_l =fL.
i i

3. _1 a 1 L = a .
i i

II.l. a~ La _l = L ~ La _j _l .
i i i j i j

2. _j a a~ L = _j _la L ~ L .
i i i j i j

3. av~ L=a L~ L_j.
i j i j

III. ail= o L _1 ~ o L _1 a o L _1
i j k i j k

IV. _j _j =_j _j.
i j j i

v. a L _j ;::: /1., where /1. is the null expression.

i i

VI. 1. a L a _l a L ;S _j = a La a L .,g _j _j .
i i j j i j j i

2. aLa_lb_jaL=aLCZ_j_j£ aL.
i j i j i j i j

3. _1 a a L 15 _j a L = _j _1 a a L 8 a L . -
j i i j j i i j

4. _l a L a a L£_1 =a La a L ~ _j _l .
i j ij j i j i

s. _1 a L a _l if a L = a La _l _l 13 a L .
i j j i j j i i

6. _1 a _1 a L t3 a L = _1 _1 t2 a L 13 a L .
j i j i j i j i

VI I. _j a L {2 _j a L = a L a _j _j a L .
i i j j i i j j

VIII. t- a = ~
~a(a) == a:<~>

.

IX. r- fl= lB ~ t c (fl) = D

F c(ib = D

-29-

X. The pair l' _j of half-brackets occurring in an
~ i

expression may be replaced by the pair l_~ _j, provided
j j

no interference of half-brackets results.

XI. If a ~ is subordinated to ~ for a given shift
~

distribution, then a L may be replaced by a~ L·
i i

The proof of the completeness of the system of trans-

formations proceeds by transforming a linear scheme into a

canonical form of the same. Equivalent schemes are trans-

formed into the same canonical form. We confine ourselves

to presenting the definition of the canonical form of a

scheme a relative to a given distribution.

Given a, we put ci 0 =a,

... ' Ai J ' ... ' An) '

i = 1, 2, ... , n,

where A0 is an operator distinct from each of A1 , A2 , ... ,An.

Fori= 0~ 1, ... , nand j = 1~ 2, ... , n we define

a .. (l1)=
~J s

a. +l (6)
~,n s

{

1 if A. is the first operator of
A j a. for sequence 6 , 6 , ... , 6 ,
~ s s s

0 otherwise;

"

the value of s

1 if the value ofai for the sequence 6s' 6s'

• 0 0 '
6 is an empty period,

s

0 otherwise;

1\

1 if the value of ~ for the sequence 6 8 ,

6, ... , 6, , .. is null,
s s

0 otherwise.

-30-

The functions a .. are variants of equivalent schemes,
~J

and conversely, if for schemes G[(p1 , p 2 , o •• , pk, A1 , o o o, An)

... ' A) o. • o (G\) = et •• (13)
n . ~J ~J

for

i = 0, 1, oo•, nand j = 1, 2, ... ' n + 1, n +2, then

The canonical form of the scheme a is

a*-

LL a L _j _j _j ... _j Az
02 n2

A a
n

nl nl nn+Z nn+2 On+l nn+l

_j o L _j
Tl Tl On+2

_j.
nn+2

The process of evaluating a linear scheme acpl~ Pz'

... ~ Pk~ Al~ Az, ... ' An) reveals not only the order in

which the operators are to be applied but also that in

which the logical conditions are to be satisfied. Yet

value of the scheme, for a given assignmen~ does not

include this information about the logical conditions.

the

The information is superfluous as far as knowledge of the

value of the schemes is concerned. Accordingly~ Yanov

gives an alternative representation of the logical schemes

of algorithms in terms of matrices--rectangular schemes

,that do not incorporate this feature.

He again starts with logical variables p 1 , p 2 , ... , Pk

and operators A
1

, A2 , ... ,A. Let a .. (i = 0, 1, 2, ... ,
n ~J

n, j = 1, 2, ..• , n) be any logical functions such that

-31-

operator A. for assignment 6 is to follow application of
J s

operator A .. This condition is satisfied, for example,
l.

by the functions a .. introduced above for linear schemes.
1J

The process of operation of a matrix is again defined

inductively. Suppose we are given a matrix

Ao

a(pl' Pz' ... , pk) - Al

A
n

A
n

a
nn

where A0 stands for an empty "start" operator, and an

assignment 6 , 6 , ... , 6 ,
sl sz sm

Step 1 Examine the values of ~0j(~s 1)

some A. for which a 0 . (~) = 1.
1 1 l.l sl

and write down

Suppose that m steps have been performed and that at

step m operator A. has been written down.
l.m

Step m + 1 Examine the i -th row of the matrix and write
m

down an operator A. for which a. . (6) = 1. The
1 m+l l.ml.m+l sm+l

procedure terminates if all members of the row under examina-

tion are 0. The sequence A. , A. , ... ,A. , ... of operators
11 1z J.m

written down is a value of the matrix for the assignment

6 J 6 J ••• , 6) ...
Sl Sz SID

As in the case of linear schemes a shift distribution

B delimits certain sequences of assignments as admissible

-32-

if among the values of{}__ for this sequence there is one A. ,
ll

A ~ ···~A. , ... such that for each m, 6s = 6 or
i 2

1 m m+l 8 m
6 differs from 6 in values of variables belonging

sm+l sm
to Bi A matrix U(p1 , p 2 , ... , pk) defines a matrix

m
scheme relative to a given shift distribution B if for each

admissible sequence the associated value of lZis unique.

The equivalence of matrix schemes is defined just as

for linear schemes, and it is proved that the problem of

deciding whether two schemes are equivalent with respect

to a given shift distribution is solvable.

For matrix schemes, the problem of designating those

transformations that are complete relative to equivalence

has a nice solution. By a rr transformation we mean a
c:p

mapping such that c:p ~ (n (a) = a) is a tautology. By a
c:p

IT~ transformation of the matrix C2= Ai I a.. we mean the
lJ

replacement of an arbitrary element a .. of its i-th row with
lJ

the function a!. = rr (a ..) . Yanov proves that all !1~11 trans-
lJ c:p lJ i

formations take matrix scheme a into equivalent scheme -sand that

any scheme lJ equivalent to given scheme a can be obtained from

Q i
by a TIA1.' transformation and the addition or deletion

l

of zero rows or columns.

A few words about equivalent MS (matrix schemes) and

LS (linear schemes) are in order. In this connection some

auxiliary concepts must be introduced. A matrix Q.= '~
m

is called complete if for i = 0, 1, ... , n, Ai -+ V a ..
j=l lJ

is a tautology. A set [a.} of logical functions is said to
l

be orthogonal if Ct •• Ct. = 0 for i I j. A matrix a is
- l J

-33-

orthogonal if each row is an orthogonal set. A complete

orthogonal matrix is said to be normal. Of course, each

orthogonal matrix is a matrix scheme for any shift

distribution) and given an MS Cl= Ai I aij' one can

obtain an orthogonal MS equivalent to Ll, namely,

tJ = A. I (A~1 ·a ..); ..g is said to be a reduced form of a.
1 1 1J

To establish a correspondence between linear and matrix

schemes, it is necessary to add to the columns of a matrix

two marked 11
() " and 11

•
11 designating the empty period and the

termination of the procedure, respectively. Given MS

a= A. 1
1

(*)

A n

a ..
1J

, note that the matrix

A A

a
nn

a
nn+l

n
where a

1
.n+l = A a .. J is complete and equivalent to U for

j=l 1J

any shift distribution. Note also that a reduced complete

MS is normal. As the reader doubtlessly anticipates)' MS

a - A. t a .. and LS a (pl, Pz, ... ~ pkJ AlJ Az, ... , An)
1 1J

are eguivalent for a given shift distribution if for all

admissible sequences of assignments their values are coincident.

-34-

/I

We recall now the functions a .. and schemes a.
lJ l

defined earlier in connection with the derivation of the

canonical form of a linear scheme which came up in dis­

cussing Yanov's completeness proof. If we replace the
/I

schemes a. by the schemes a! = 0 L a (Al' ... ~ Ai _j ~
l l l i

... , A) , and the functions et!. are defined, related to (J_!
n 1\ lJ l

as the a . . are to Ql., it is not hard to verify that the
lJ

scheme A. I a!. will be equivalent to the scheme CZfor any
l lJ

shift distribution.

Contrariwise, suppose that a matrix of the form (*)

is given, and that for a given shift distribution, this

matrix is a complete MS. The linear scheme

aOl L · · · a0n+2 L I · · · _j Al011 L · · · aln+2
01 On+2 n1 nl 11

L
ln+2
_j

_j
02

_jo L

_j Az
n2
_j ... _j

A n

nn+l Tl Tl On+2 nn+2

a nn+2 L _j
nn+2 On+l

is equivalent to the MS for the given shift distribution.

For example, consider the following MS with the universal

shift distribution

Al Az ()

Ao pl pl 0 0

Al 0 pl 0 pl

Az Pl"Pz P1·Pz 0 Pz

-35-

The scheme 0 equivalent to it is

a= pl LPl L _j _j Alpl L_pl L _j _j _j A2p1Vp2 LP1VP2 LP2 L _j _j ,
1215 3 42 6 3 5 6 77 4

where the left brackets have been indexed consecutively from

the left, and all occurrences of the function 1 have been

deleted.

This scheme can be transformed:

a= PlL_jAlplL_l _lA2p2LP"lL_lP2LPlL_l _j
2 5 2 2 6 7 5 7 8 6 8 4

_jp1LA1P"1L _l _jA2P2LP1LP1L _j _j
5 2 4 2 1 7 5 6 7 4

= _j _jp 1LA1P1L _jA2P2LP"1LoL _l _j
5 6 2 4 2 7 5 6 7 4

_jp1LA1p1L _jA2P2LP1L _joL _l .J
6 2 4 2 7 5 5 6 7 4

_jp1A1P1 LLP2 L _j ·
6 4 2 6 4

In a computer program, for various reasons, the same

group of instructions may appear at different locations of

the program. To reflect this situation, it is natural to

consider logical schemes that contain repetitions of the

operators. This can be denoted by retaining the same

symbolism and adding a relation of the form A1 = A2 . More

generally, let there be given linear schemes a(p1 , p 2 , · · ·,

pk' A1 , A2 , ... ,An) and

together with t defining

2 2 2 R
2

(A. , A. , ... , A.) ,
~1 ~2 ~n2

and consider the problem

-36-

this generality, however, all is in vain since the problem

includes the word problem for semigroups, which, as is well

known, is recursively unsolvable. More special cases can,

however, be studied. Yanov does consider the case in which

the lone defining relation is A1 = A2 and proves that the

associated equivalence problem is solvable.

Yanov's paper constitutes an impressive, finished piece

of work. The technical level is high, and all questions

considered are nailed down very tightly. Within the limits

he sets up, the logical domain is thoroughly covered, and

such care and completeness are to be welcomed. It should

be pointed out, nevertheless, that the territory covered

invites and facilitates such a treatment. The mathematical

problems are easily identified and quite "doable."

The definition of equivalence employed is surely too

strong to be of much practical value. It seems right that

two computer programs could be judged to be very alike, and

hence uequivalent," without prescribing the same sequence of

• computations for all allowable inputs in some well-defined

context. They could conceivably be required to agree only in

the significant or "major 11 intermediate calculations. Of

course, this is the delicate point. What and how much is to

-37-

be regarded as major? How much can things be disturbed

in various directions without making the problem unsolvable?

Rutledge [31] extends some of Yanov's notions, and

casts the theory in the guise of finite automata; that is,

a scheme becomes a sextuple consisting of sets of operators,

predicates, state functions, and the like. It represents

an abstraction from the concrete peculiarities of Yanov's

schemes. Rutledge also ;solves the equivalence problem

by making use of canonical forms. He shows how to associate

with each scheme a finite automaton, and by having his

output function be a strictly into mapping of the set A

of operators into itself, he arrives at a solution of the

equivalence problem for the case in which certain operators

are identified.

On the other hand, Rutledge's format is rather

skeletal compared to Yanov's. It is certainly of value

in characterizing exactly the mathematics involved, that

is, as a part of the theory of finite automata, but it

leaves an inexperienced reader with a feeling of incomplete­

ness. The schemes of Yanov are symbolically more similar

to computer programs, and hence are more suitable for

performing the calculations that mirror those which come

up in actual programs. Yanov's formalism is more appro­

priate for investigating the logical transformations

performed on schemes; whereas Rutledge's serves to bring

out the central organizing principles.

-38-

2.2.2. Nonlogical Transformations

2.2.2.1. Transformations on the Indices of Operators.

The question underlying the developments of this section con­

cerns the description of the data to be fed into a computer.

Changes in the initial description may be occasioned both by

the programmed algorithm and by considerations of machine storage.

To elaborate, consider an initial indexing, or parametrization

of the elements in the. domain of operators of some program

scheme. Here the elements are indexed as independent units of

information. The algorithm described by the scheme gives rise

to a second indexing in which certain relations of dependence

are expressed among the original parameters. This second

parametrization leads to a new program scheme. Finally, the

storage of the data of the problem occasions a third, operating

parametrization, and this in turn gives rise to the operating

program scheme, on the basis of which the actual program is to

be constructed. The obvious aim is the development of procedures

such that, given scheme ~l based on parametrization P1 and

a new parametrization P2 , one can construct from t21 a scheme

tt2 based on P2 . In other words, how do the representations

of the arithmetical, control, and logical operations in a

program scheme change when a new parametrization is intro-

duced? This question is taken up by R. I. Podlovchenko [28]

and N. G. Arsenteva [2]. These authors actually do little

more, however, than provide illustrative examples. Let us

consider the construction of the program scheme describing

-39-

the product A · B of symmetric n x n matrices A and B.

In this case, the symmetry condition will affect the

parametrization, and hence the operating program scheme.

One starts with the calculation scheme

n n n
n n n

.r=l i=l j=l
A ..

1J t

A program scheme based on this calculation scheme is

1

A .. ,F(j)f(j)p(j) n)jF(-nj)F(i)f(i)(l .-. j)
1J"_.,

2 3

p(i > n)i(l - i)F(-ni)F(t)f(t)p(t > n)jF(-n.rJ

(1 _. t) STOP,

where F, as above, is a readdressing operator; f(i) symbol­

izes that 1 is added to contents of the location storing

i · and "a _. bu means that a is stored in the location. ,

containing b, that is, a displaces b in this location.

Initially, i = j = t = 1. If A = (a ..) ' 1J
B = (bkt)'

c = A·B = (c), and mr A and B are symmetric, new parameters

• I 1 J
• I
J J k I' t I J m I' r' are introduced

1 l

i p(i ~ j)ji 'jj I, t p (k > t) t t I ~k I ,

1 1
1 1-

j = p(i~j)1j'Ji', p (m ~ r) t~ 1 lr
1

, m
1 1

1 1

k = p(k 2 t)tk'lt'' r = p(m > r)tr 1 lm'.
1 1

-40-

Thus, the first of these equations is to be interpreted as

stating that i = i' when i > j and that otherwise i = j 1
•

The following relations hold between the address-

modification operators:
1 2 1 2

F(i)- p(i) j)fF(i')ilF(j ')1; F(k)- p(k > ~)jF(k 1)11F(t')1,

1 2 1 2 1 21 2

(3) F(j) - p(i > j)tF(j)f!F(i ')j,; F(t) - p(k > t)tF(t 1)1j,F(k')J,,

1 } 2 1 21 2

F(m)- p(m > r)tF(m')t1F(r')1; F(r) = p(m > r)jF(r')t~F(m')j,,
1 2 1 2

and similarly replacing i, j, k, .{,, m, r, i', j 1
, k 1

, .t 1
, m 1 ,

r I b ; • k t -ID r • t • I k 1 _,I,
y - , -J' - ' -'V, ' - ' -1. ' -J , - ' 1__. -m', and -r',

respectively,as the argument of the operator F.

It is economical to introduce "formation operators" which

store the initial form of an instruction. The notation

" [1 __, j] 11 denotes the operator that sets j = 1 in operators

depending on j, and replaces j in its location by 1.

Noting that in the case under consideration k = j, m = i,

r = t, system (3) is replaced by

1 2 3 4

F (j) = p (i > j)1 F (j ') t 1F (i ') l p (j 2 -rJ 1 F (k I) i lF (.{, I) 1 '
1 21 2 3 43 4

(4) F(i) = p(i ~ j)tF(i')t~F(j ')Jp(i ~ k)tF(m')tiF(r')l,

1 21 2 3 43 4

F(.t) = p(j > t)tF(t')tj,F(k')j,p(i > .t)tF(r')tj,F(m')j,.

1 2 3 4

-41-

Using (4), formation operators, and the fact that some

logical conditions are universally true and others are

!universally false, program scheme (1) becomes

4 5 6 7

~ A .. p(i > j)1F(j')ttFCi')tp(j ~ ,rJtF(k 1)ttFCt 1)Lf0)
1 2 3 lJ t

' J 4 5 6 7

1 8 9

p(j > n)j[l- j]F(i')p(i ~ t)tFCm')1JF(r')!f(i)p(i > n)

8 9

2 3

1 [1 - i] F (k I) F (m I) f (,t) p (t > n) n 1 d STOP.

It is assumed that the elements of the matrices are

stored by rows into successive memory locations, starting with

a 11 in a 1 , b 11 in b 1 , and c 11 in c 1 . Memory parameters s, t,

v are introduced to represent the fact that the elements

bk' ,t'' em' ,r' are stored, respectivel~ in locations

a al + (j I 1) + i I ~i I 1)
s 2

bt bl + (t' 1) k 1 ~k'
+ 2

1)

+ (r' - 1)
I (I 1~ c cl

+ m _m .
v 2

Making use of the fact that in the case under con­

sideration k = j, m = i, r = t, it follows that

1

i' = p(i ~ j)titj,
1

-42-

1

k' = p(j 2 t)1J1~ '
1 1

m' = p(i ~ t)fi1t
1

Consequently,
1 2

F(i') = p(i > j)fF(is)t~F(js)~,
l 2

1 2

(5) F(j ')- p(j > ~)1F(jt)1~F(tt)J
1 2

1 2

F(m')- p(i 2 t)1F(iv)1~F(tv)1
1 2

Substituting in (4), one obtains

1 2 3 4

F(j) - p(i > j)fF(s)fJF(js)Jp(j > t)tFUt)1~F(t)~,
1 2 3 4

1 2 3 4

F(i) - p(i 2 J)1F(is)1~F(s)Jp(i z t)tF(iv)ttF(v)J,

1 2 3 4
1 2 3 4

F(t) - p(j > t)1F(t)1tF(tt)Jp(i > t)jF(v)ttFCtv)J.

1 2 3 4

One finally arrives at the following operating scheme,

based on the operating parametrization, and employing the

memory parameters:

4 5 6 7

J., Astvp(i > J)tF(s)1JF(js)Jp(j _? t>tF(jt)t

1,2,3 4 5

1

~ F (t) t f (j) p (j > n) 1 [1

6 7
2

F(v)Jf(i)p(i > n)![l

9

-43-

8 9

jJF(is)p(i 2 r)[F(iv)tJ

8
3

i]F(tt)F(tv)f(t)p(t > n)t [1 - tJ STOP.

Other examples are given in the two cited papers: The

Leverrier method of finding the characteristic polynomial

of a matrix, the solution of the Dirichlet problem over a

square, and others.

It must be clear to the reader that the tone, style,

and methods of these papers are of a piece with those of

Lyapunov's earlier paper. The symbolism and methods of

the papers are purely descriptive, and they are written in

a way that looks forward to a more general, systematic analysis

of the problem. Podlovchenko's, On the Basic Principles of

Programming, I [27], seemed to forecast such a treatment,

and in that sense his [28] is disappointing. His [27]

is concerned with the introduction of definitions and

terminology that serve to organize the data of programming

into classes of information, and with the systematic

identification of this information. Chief among the

notions introduced are those of the characteristic of a

system of information, the characteristic of an operator, and

a ranking of operators. The characteristic of a system of

information is the set of parameters indexing the elements

of the set. In the above example, A, B, and C constitute

a system of information and ti, j, k, 1, m, r} is the char­

acteristic of this system, with {i, j} being the characteristic

-44-

of A~ etc. When restrictions are placed on some of the

parameters of a parameterized system of information we

arrive at a subcharacteristic of this system; {i~ j~ k}

is a subcharacteristic of A~ B, C. The argument and value

of an operator symbolizing some operation on an information

class are called its input and output~ respectively. A

subcharacteristic of the input determines a characteristic

of the operator; in the above ti~ j, ~} is a characteristic

of operator A .. ,.
~J.,_.

Suppose we have an operator A. . with character-
~1. · · ~n

istic [i 1 , ... ,in} and i 1 assumes some one of s allowable

values. The resulting operator depends on [i2 ~ ... ,in}

and there are s such operators. The logical product

B · · · of these s operators is said to be an operator
~2~3 · • · ~n

of the first rank relative to A. .
~1 ... ~n· Operators of

higher rank relative

Thus~ an operator of

to Ai
1
... in are defined recursively.

the n-th rank relative to A. .
~1· · ·~n

is independent of parameters.

In short, while [27] seems to make a beginning for

a formal treatment of transformations on indices in schemes,

[28], for the most part, merely catalogues examples.

2.2.2.2. An Example. The transformations of

program schemes by means of changes in the indices of the

operators bear on several special classes of problems, such as

those in which some iterative procedure is applied in some

definite order to each of the arguments of some function of

-45-

several variables. and those which involve branching processes.

An illustration of the former is the calculation of the

partial derivative

given values x~1),
X (l), .. • X (Vp) Of

p p

function values.

of a function f(x 1
, ... , xp) of p variables

(2) (vl) (1) (v2)
x 1 , ... , X , x 2 , ••• x 2 , ... ,

the arguments and hence v 1
·v2 ... vp

Suppose we wish to compute (approximately)

o(x) where X = 'X
1

, X
oxp ' v~. 2, ... '

and there is a positive integer N such that mk + N < vk'

k = 1, 2, ... , p. The value off at xis computed by success-

ive polynomial interpolation, and thence the partial derivative

of f with respect to x at x is calculated. Suppose it is
p

desired to compute the partial derivative of f at x with

respect to each of the other coordinates. A calculation

scheme can be written sketching the procedure for calculating

the partial derivatives of f at x; if these schemes are

arranged in some definite order, then each can be obtained

from the preceding one by a '~ircular substitution of the

subscripts." The objective is the construction of a

program scheme that includes the algorithm prescribed by

the succession of calculation schemes. To illustrate, let

p = 3, and let A. . . be some operator such that the memory
1 31 21 1

cell on which A. . . acts depends on i 3 , i 2 , i 1 according
131211

to some rule ~(i3 , i 2 , i 1). For instance, we might have

-46-

where r 1 ~ r 2 , and r 3 are positive integers. Thus, if we

start at some memory cell a, A. . . is applied to the
~3~2~1

contents of the cell a+ r 3i 3 + r 2i 2 + r 1 i 1 .

We start from the schemes

~Aihill}}

~Aihill}}

{ Ai3i2iJ J} ·
Scheme (1) gives rise to the scheme

3 2

(A -A ...)(m3 - o3)1(m2 ~ o2)t
m3m2ml ~3~2~1 ~

1 1

(ml- 5l)~Ai3i2ilF(l,il)f(l,51)~(5 > nl)fF(-(nl-ml)~il)
(4) 2

F(l, i 2)£(l, o 2)~(62 > n 2)lF(-(n 2-m2)~ i 2)

3

F(l, i 3)£(1, 6 3)~(63 > n 3)f STOP.

Here (A ~A.) means that operator A; is replaced by
m ~ _,_

operator ~; £(1, ~) means that the contents of cell ~ are

-47-

increased by one; and F(m, i) means that m is added to the

parameter i. Also~ designates the contents of the cell 5.

The memory parameter t is introduced via the equations

a+ 0(i3 , i2, il) = a+ t,

a + 0(m3 , m2' ml) a+ to,

where 0 (iy i2, il) = r3i3 +r2i2 + rl il.

We write At for A. . . and At for A
~3~2~1 0 m3m2ml

Taking into account the changes occasioned in the

address substitution operators, the above scheme is trans-

formed into

3 2 1

(At - At)(m3- 03){(m2 ~ 02)1(ml- 0 l)~At
1

F(r1 , t)f(l,6 1)1J(b1 > n 1)fF(-(n 1 - m1)rl' t)F(r 2 ., t)f(l, o2)

1

l-lC62 > n 2)1F(-(n2 - m2)r2 ,t)F(r 3 ,t)f(l,o3)1J(53 > n 3)t STOP.

2 3

To achieve symmetry of representatio~ zero is represent~d

by each of n 0 , m0 , r~and successive address substitution

operators are combined to arrive at:

3 2 1

03)t(m2 - 02)J(ml - 6 1)~At

F(r 1 - r 0 (n 0 - m0), t)f(l, o1)1-l(61 > n 1)1F(r2 - r 1 (n 1 - m1),t)

1

f(l,o 2)1J(52 > n 2)fF(r 3 - r 2 (n 2--m2 Lt)f(l,6 3)1-l(63 > n 3)f STOP.

2 3

Let ~k = rk- rk_1 (nk-l- mk_1). This enables one to write

It is to be understood that the numbers ak are stored

in cells ak~ the mk in ~kJ and the nk in pk. We put

With this abbreviation} the above scheme becomes

By expansion of the products, this can be rearranged to

become

- 3
0 1

(A -A) rr [(~' - 0s)}}At<1 - Yk)(~l- ~k)~~k
to t s=l s

F(lJk)f(l,yk)tJ.(Yk > 3)1 STOP,

1

where the operator (~ 1 ~k) is construed as the execution

of the following three operators:

-49-

The consecutive execution of calculation schemes (1)~ (2),

and (3) then is prescribed by the following program scheme:

3 3
[t (av - a) (mv - t3v') (nv - t3")} TI [ca _, ea) @"y' - ep I)

v=O v v y=l Y ~--'

where 9
0

, e13 ,, and e13
" are "working cells," that is, cells

in which intermediate calculations are carried out and CL(3)

stands for the programming scheme (*).

-50-

2.3. An Abstract Formulation

R. I. Podlovchenko's "On the Transformations of Program

Schemes and Their Applications to Programming" [29], seems

to mark the first abstract treatment of the Lyapunov operator

method of programming. It is wise to consider it separately

since its subject is the systematization and abstract treat­

ment of the notions introduced in the more concrete, special

instances described above. Other papers on which we shall

comment are conveniently suited to a more common treatment

in that they introduce or develop notions absent or scarcely

present in the more practical papers.

This paper occupies a pivotal position in the develop­

ment of the theory. It presents a connected series of

concepts which represent an abstraction from the notions

introduced in the earlier, problem-oriented papers, but which,

at the same time, are directly and easily reducible to

these notions. The paper thus serves to unify the contents

of the papers described previously, and provides the reader

with a rigorous, convenient source of the basic topics

scattered among them.

On the other hand, the possibility of defining a fruit­

ful algebraic structure on the classes of objects considered

by Podlovchenko is not pursued. The theoretical development

remains therefore on the level of mere systematization of

and generalization from concrete instances of program

schemes. The concepts are not related to those of any

established branch of algebra, and hence the possibility

-51-

of pursuing, by analogy, suggested directions of research

as well as use of the battery of techniques provided by

such disciplines are foregone. Podlovchenko's paper thus

appears as transitional, summing up the basic notions so

far introduced, and keeping manageable the distance between

abstract concept and particular example.

2.3.1. Basic Definitions. By a memory is meant a

set Z = [z} of objects whose members are called cells.

Consider a set G = [x} of states and a set Y of mappings

called states of the memory, or memory states, of Z into G.

An operator is a function with domain Y and range a subset

of Y. By a predicate over the memory-states is meant a

function p defined on Y and taking values in the set {0,1}.

By the product (composition) A1 · A2 of the operators A1 and

A2 is meant the operator A= A2 (A1 (X)), X€Y. The operator

{

Al (X)

A(X) =
A2 (x)

is called conditional.

if p
11

(X)

if Pn(X) 0

If Q is some set of operators and l) is a set of

predicates over the memory-states (hereafter for brevity

. the members of e are called simply predicates), then we

consider the smallest superset al) of a which is closed

under composition and forming the conditional of two

operators with respect to some predicate pnc i?.

-52-

It is clear that the members of t2l1 constitute the main

ingredients out of which program schemes are made. Podlovchenko

accordingly introduces his definition of a scheme with a view

toward representing members of ag .
By a logical condition is meant any member of the set

Vtj = [p'll (X)~ .t) J, where p'll € 'tJ and .t is a natural number.

Logical conditions (p'll (X), .t1) and (pn (X), .tz) are said to
1 2

be equal if p'n = p
11

and -r,1 = .t2 . A function mapping
'll 12

tluv~ into itself is said to be a formulator. Let

~ = {~ } be some set of formulators fixed in the sequel.
p

A functor is an element of the set W~ = {(~p~ .t, m)} of

ordered triples, where ~ € J, and .t and m are natural
p

numbers. The definition of equality of functors is obvious.

The interpretation of an occurrence of a functor (<P, .{,m)

in a scheme is as follows: J defines that element of the

scheme that serves as an argument of the function ~' and

the value of ~ for this argument is that element of the

scheme defined by the number m.

Let B(T, X) be a function from N x Y, where N is the

set of natural numbers, into 11. UVf; UW elr' which for t = 0 is

independent of X. Consider a sequence of such functions:

Mn,s(-r,X)

0 1 n) n+l) n+s)
B (,..,X),B (or,X), ••• ,B (T,X ,B (T.X , ••• ,B (-r,X .

-53-

It is such a sequence, with suitable restrictions,

that is to serve as a scheme. It is necessary to define

how to make a sequence Mn's(,.,x) ''go," and in this connec-

tion to define its admissible applications. Given a pair

(,.,x0), then a triple x(,.,x0), k(,. 0 ,x0), Mn,s(,. 0,x0),

where X(T 0 ,x0) is a memory-state and k("r 0 ,x0) is a non­

negative integer~ is said to be admissible if

It is necessary to give the rule e of succession for

admissible triples. 8 is defined by stating how to proceed

from an admissible triple X("r 0 ~xo~ k(r 0 ~x0), Mn's(r 0 ~x0) to

a next admissible triple x(r 0 + l,x0), k(r 0 + l,x0),

Mn,s(r 0 + l,x0), as follows:

t if Bk(To,Xo)(T 0,x0) = (p(X),t) € V~

and p(X(r 0 ,x0)) = o,

k(ro,Xo) otherwise;

(

-54-

Bk(~o,Xo)cT 0 ,x0) = [~,t,m) E w,
rz--

Mn,sc~ 0 ,x0) otherwise,

where Mn's(T 0 ,x0)[~(Bt(r 0 ,x0))- m] is the sequence obtained

from Mn's(T 0 ,x0) by substitution of ~(B1 (T 0 ,x0)) € AUV13.

for the m-th element of the sequence Mn' s (T 0 ,x0).

It is natural to call a triple final, or concluding, if

application of 8 to this triple results in an inadmissible

triple. Thus X(T 0 ,x0), k(T 0 ,x0), Mn's(T 0 ,x0) is final if

or

or

(b) k(T 0 ,X0) = n, Bn(T 0 ,x0) = (pn(X),tk), and

pn(X(T 0,x0)) = 1;

(c) 0 ~ k(T 0 ,x0) = ko ~ n, BkO(T 0 ,x0) = (pkO(X),tko), and

pk0(X(T 0 ,x0)) = O,tko) n·

The function 8 obviously successively generates triples,

and to get started one sets X(O,x0) = x0 for x0 € Y and

k(O,x0) = 0. Consider now a sequence of triples

X(O ,x0) x (1, xt)., ... ' X(v ,x0)., .. ·-
k(O,X0) k(l ,x0), ... ' k(v,x0), .. ·-
Mn,s(O,Xo) Mn' s (1, Xo) ' ... , Mn,s(v,Xo), ...

-55-

A memory-state x0 is said to be M-admissible if there

is a concluding triple in (1), and a sequence Mn' 8 (T,X) is

said to be a scheme if there is at least one M-admissible

x0 E Y. Thus, a sequence Mn' 8 (T,X) is a scheme if for some

x0 the process of generating admissible triples comes to

a halt.

Let YM ~ Y be the set of all M-admissible memory­

states. Toward representing the members of ()$, a few more

auxiliary definitions are needed. Given x0 E YM' VM(X0) is

the number such that the triple X(vM(x0), x0),k(vM(X0), x0),

Mn,s(vM(x0), x0) is concluding. Set RM(x0) X(vM(x0) + l,x0)

and ~(x0) = Bk(O,Xo)(O,x
0
), Bk(l,Xo)(l,Xo), ... ,

Bk(vM(Xo), Xo)(vM(x
0
), x

0
). The scheme Mn's(T,X) is said

to describe the operator A over the set YH if A(X0) =

~(X0) for x0 E YM. Thus, if YM f Y, a single scheme can

describe different operators. Consider, now, the set Mo

of all schemes M such that

(a)

(b)

the sequence M(O,x0) contains no functors;

YM = Y;

(c) the set {~(x0)}, x 0 E Y, is finite, and each

member terminates in an operator.

It follows that a~= [RMjM E M0 }.

2.3.2. An Example. To illustrate some of the above

6 o· notions, consider the sequence M ' = A, B, (p1 ,6), C,

(p1 , 1), D, (p2 , 1). Here A, B, C, and D are operators,

and p 1 and p 2 are predicates. We take the cases (a) p 1 = 1,

-56-

p 2 - 1, (b) p 1 == 0, p
2

== 1 , (c) p 1 = 1, p 2 == 0, and (d)

p 1 - 0, p2 = 0. For an arbitrary initial x 0 € ~ the

sequences X(~,x0) and k(T,X0) in cases (a) and (b), respectively,

are

0 1 2 3 4
(a)

C(B(A(X0))) D(C(B(A(X0)))) D(C(B(A(X0)

5 6 7

(b)

0 1 2 6 7

in case (a), Y 6,0
M

Y, ~(X)= A, B, (p 1 , 6), C, (pl' 1),

D, (p2 , 1), and R 6 0
M '

A · B · C · D; whereas in case (b)'

YM6,0 = Y, ~(X) =A, B, (p1 , 6), (p2 , 1), and RM6 ,0 =A • B.

In cases (c) and (d), the generated sequence of triples

is infinite and contains no concluding triple. Hence, in

these cases Y 6 0 = ~ and T~-(X) and R 6 0 are undefined.
M' 1'1 M'

2.3.3. Subschemes. Prior to considering questions

about the transformation of one scheme into another, basic

questions on the relations of schemes arise. For example,

when is a scheme M2 to be considered a subscheme of scheme

M1 ? Also, what extra conditions must a scheme satisfy

in order to serve as an obvious abstraction of Lyapunov's

program schemes?

Given a scheme Mn's(~,X) and for x 0 E YM the sequence

~(x0), the subsequence LM<Xo) = Bk(po,Xo)(p 0 ,x
0
), ... ,

-57-

of operators in ~(x0) is called an operator sequence.

() - 0 . 1 i-1() Here X p. , x0 - C c ... c X. ,
1 1

k(p ,xo)c) - o 1 B m pm,XO, m- , , ... , A.

0 n1 0) _. 0 1 c1 , .•• , c1 and N2 (X2 - c2 , c2 , ... ,

Suppose that

n2
c2 J where

0 x2 are memory-states, are two sequences of operators.

Associated with each operator c!<~ = 1, 2, i = 1, 2, ... , ~0)
i 0 1 i-1(0) is a memory-state X = C • C ... C X . The sequence
a a 0 a

N2 (x~) is said to include the sequence N1 (X~) over the

\set J c Z\(N2 (X~) ~ N1 (X~) [J]) if there is a subsequence

·~ 0 so Sl snl 0
N2 (X2) = c2 , c2 , .•• , c2 , of N2 (x2) such that

(a)
s. i

c2
1

= cl' i = 0' 1' ... ' n1'

X~(Z) for Z E J and i 0, 1, ... , n 1 .

Let YM and YM be sets of admissible memory-states of
1 2

schemes M1 and M2 , respectively; then X" € YM is said to
2

be an M1-associate of X' € YM over J c Z if
1

* (a) L*:. (X") :J L- (X 1)[J J
-M2 - -Ml '

and

(b) if over J, RM (X 11
) = RM (X').

2 1

Consider a subset YM
1

scheme M1 over sets J

of YM .
1

and YM
1

that is at least one X11
E YM

J 2
J. Notation: M2 ~ M1 [YM].

1

Scheme M2 is said to include

if for each X' E YM , there is
1

an M1-associate of X' over

-58-

Thus, scheme M
1

is included in scheme M2 relative to

a subset T of the memory and subset Y*
Ml

of the admissible

states YM of Ml if for each X' E: YM there is an x" E: YM
1 1 2

such that over T the operator sequence generated by M2 in-

eludes the operator sequence generated by M1 if the memory

states at which M1 and M2 terminate coincide over T.

Podlovchenko makes some observations about this inclu-

sion relation, and the simpler ones are as follows:
T

(1) If T* c T and Y** c Y* and M2 :: M1 [YM] ,
Ml Ml 1

T*
then M2 :: M1 [Y:M*J.

1 T T
Suppose M2 M1 [YM] and M3 M2 (YM J. Let YM

1 2 2
(2)

be the subset of YM consisting of all memory states that
2

* are the M1-associates of at least one member of YM . If
1

YM = Y* n Y and T =TnT are nonempty,
2 M2 M2

then M3 ~ M1 [YM] ,
1

where YM :::_ YM consists of those states having at
1 1

least one M1-associate in YM .
2

2.3.4. Reduction of an Abstract Scheme to Form r. To

reduce a scheme Mn,s('f,X) into a form more nearly approxin:ating

the program schemes of Lyapunov, a few more conditions are

imposed. Attention is focused on the values taken by an

element Bk('f,X) of a scheme Mn's('f,X) until a concluding

triple is reached; that is, if X € YM' let Tk(M,x0) =

[Bk(~,x0)} for~= 0, ... , ~M(x0). The element Bk('f,X) is

called an operator over the set Y;; ~ YM if Mk(M,Y:M) =

U Tk(x,x0) is a subset of Q. The notions of logical con­
x0EYM
clition and a functor over YM are similarly defined. A logical

-59-

element Bk(T~M) € Mn~s(r,X) is called directed if the

* logical conditions of the set Tk(M,YM) differ from one

another only in their predicates. Bk(r,X) is called

M-correct if one of the following conditions hold:

(a) Bk(O,X) t W,

k
(~ ,t,m) E W ,0 ~ t,m < n + s.

A scheme Mn,s(r,X) is said to be representable over

* YM ~ YM if each element is either an operator, or a

directed logical elemen~ or an M-correct functor.

The significance of the representable schemes lies

in this: They are easily and naturally put into a form

recognizably similar to that of program schemes, the

form (r), to use Podlovchenko's term. Consider, then,

n s ·k
a scheme M ' (~,X) that is representable over YM c YM.

With each logical element Bi(r,X) = pi(r,X), ti) over

* YM there is associated a natural number r. and two arrows
r. 1.

1.
indexed with ri: an entering arrow~ and an exiting

r.
arrow tl..

if i = j.

It is understood that r. = r. if and only
1. J

The element (pi(r,X),ti) becomes pi(r,x)f~ and
r.

1. J is placed immediately before (to the left of) the element
i .

Bt (r,X) if 0 ~ tl. ~ n, and to the right of the element

Bn(r,X) if n < ti. In place of each functor over Y~, that

k k k k
is, an element of the form B (T,X) = (9 ,t ,m), 0 ~ k ~

k -
n + s~ one writes the expression 9 and places the number k

k
beneath the element Bt (r,X) and above the element Bmk(r,X).

n+l)
A vertical stroke is placed just before the element B (r,X ,

-60-

and all occurrences of commas in the scheme are omitted.

The result of these alterations is the form (r) of the

scheme Mn,s(T,X) over Y~. * As YM changes, the form (r) of

Mn,s(T,X) may change. Also, it is obvious that there are

several forms (1) of a scheme MN,s(T,X) even over a single

* set YM; these several forms result from notational changes

such as choosing different indices for the logical

conditions, etc.

6 0
Let us take the previous example M ' of a scheme

and rewrite it in a form (1). Application of the above

rules results in

3 2 1 2 1 3

M
6

'
0

=A J t Bpl f Cpl f D t p 2 t.

Next, suppose the sequence

defines a scheme M4 ' l (T ,X), where A, D, B € a, ~ O, ~ 3
€ J"',

p € i?. Here the operators D and B are assumed constant.

Assuming that scheme M4 ' 1 (T,X) is representable for some

x0 E YM4 , 1 , an instance of the form (1) is

1
0 1 0,3

~ ~ A(T

3
B.
0

2.3.5. Transformations and Parametrization of Schemes.

It is to be observed that the starting form Mn,s(O,X) of a

sequence Mn,s(T,x) completely defines the operation and

structure of this sequence. Consequently, to discuss

-61-

transformations of such sequences, it suffices to discuss

transformations of their starting forms.

k k+r A segment ~k,r = B (O,X), ... , B (O,X), k + r ~ n

of given M (O,X) is said to be free, roughly speaking, n,s

if among the first n + 1 elements of the sequence Mn,s(O,X)

which are functors or logical conditions not in the segment,

the affect of these elements falls outside the segment

~k,r' More precisely, ~k,r is said to be free if

(a) for each functor Bi(O,X) = (~i,~i,mi) € Mn,s(O,X),

0 ~ i < n, it is true that ~ i, mi ':/: k, k+l, o o . ,

k + r; and if

(b) for each logical condition Bi(O,X) (pi,~i) in

Mn' 8 (0,X) that does not occur in the segment,

it is true that ~i ':/: k, k + 1, .oo' k + ro

Consider a sequence Mn,s(O,X) capable of being

represented in the form (r), a free segment ~k of the
~ ,r

~o ~r ~

same, and a sequence~~= B, ... , B, r ~- 1, of elements

of a U uv.8 U W .Jr. Suppose Mn' 8 (0 ,X) is put into the form

(r), and the segment ~k is replaced by the sequence ,r
"'~ · · ~Mn+r-r,s(O X) h' h d f' 1r' glvlng a sequence , , w lC e lnes a

~n+r-r s() sequence M ' ~,X. In brief,

Consider now the alteration of a memory state at a

single cell z 0 € Z; that is, for x0 € Y and x € G,

consider the memory state X such that X(z) = X (z) for
0

z :I

over

-62-

zo and X(z 0) = x; write x0 (x ... zo]·

If M is a scheme, the cell zo E: z is said to be M-free
....

y~ c ym if for x0
E: Y;~ ~nd X E: G, x

0
[x ... z

0
J € YM and

(b) for each 0 < ~ S vM(X0) + 1, the memory-states

X(T,X0) and X(T,X0[x- z 0J) differ at most on z 0 ,

and all X(T,X0
) and all X(T,X0

[x ~ z 0J) have the

* same value on z 0 . The set Z(M,YM) of all cells in

Z that are not M-free over Y~ are said to be M-used

over Y~. Now, we associate with each scheme M0 and

set Y:
0

such that

- YM the set ~(M0 ,Y:) of all schemes M

J * 0

··-y~ .
0

into

M :::: M0 [YM] , where ..J is M0-used over

0 *
If Me ~ (M0 ,YM) and some rule maps M

·k 0
a scheme M , this rule is called a trans-

··-formation of Minto Mn, and is said to be

M0-invariant over Y: if M* e: 1'1\(M0 , Y:) .
0 0

For any integral m > 1, consider a finite set Im

[(i1 ,i2 , ... ,im)}, where the is assume only integral values.

Let I~s) denote the projection of the set Im out the i
8
-axis.

Form> 1, if in each set I(s), s 1,2, ... ,m, there is a
m

point that is the image of at least two points of Im'

Im is said to be nonuniform. By definition, I 1 is non­

uniform. A parametrization of a set K is a mapping q

of an Im onto K, and i 1 , i 2 , ... , im are said to be parameters

of the set K. If q is one-to-one, the parametrization is

called restricted. A region Js = {(j 1 ,j 2 , ... ,js)} is an

-63-

extension of the region f(i1 ,i2 , ... ,im)} if s > m, and for

each point (i1 ,i2 , ... ,im) e Im there is a point (j 1 ,j 2 ,

... ,j) e J such that i 1 s s

The introduction of the notion of a parametrization

enables the elements of a scheme to be represented in more

customary fashion. Consider a scheme Mn's(~,X). Let

* _ t f Jv
Tt(M,X0) - {B (~~,x0)l~ e vt(X0), Xo e YM' 0 ~ t q n + s}.

* Suppose that Tt(M,X0) is parametrized by use of the region

Ju = f (j 1 ,j 2 , .. · ,ju)}. For ~t e v t (X0), each pair (~t,x0)

t t * 'o •a
defines an element B (7 ,x0) e T (M,x0). Let (j 1 , ... ,j)

t u

be a preimage of Bt(~t ,x0) in Ju. Define a correspondence

n by

11~ c~ t . xo) = < . o . o . o) 7 t v ex) · ; Jl,J2'"''Ju' E.: .t 0 ·

This done, the element Bt(~t,x0) can be represented

as B~ . . and a logical element as (p~ . . ,) .
J1J2· · ·Ju J1J2· · ·Ju'/\.

2.3.6. Reduction of an Abstract Scheme to a Program

Scheme. A scheme M0 such that its starting form consists

only of elements from a v8 is called a calculation scheme.

Any member of the set /lt(M0 ,x0) is a program scheme

corresponding to the calculation scheme M0 and admissible

state x0 .

To take a particular case, suppose A e Ltand

MnO, O = A A A../ •
"-....,_.._v-~-._,.

n + 1 times

-64-

It is easy to construct a program scheme corresponding

to M3' 0 in which the operator A occurs just once. Let

6(1) be a function of n 0 variables (n
0 z 1) that maps

Gno into G. The function x defined by

(1) x(o ; z1' Zz, ... , z . X(z))
no'

takes Y into G. Let z be a member of z. The function

*(z)
X lx(z) if z :/= ;,

(1) . x(o 'zl, ... , zn ; X(z)) if z = z,
0

X € Y, defines an operator, called an elementary operator,

and is denoted by

Taking n = 3,

Zl' Zz, ... , z , z, X).
no

M3
J

0
= (z I - z 0) l A A (6 i 1) ; z 0 J z I J z 0 ; X) p (z 0 = z II) t .

~ ~(1)(In this case, no= 2, z = zo, and ul xl, Xz) = xl + Xz·
' Now, given an initial state X such that

X'(z 1
) = 1, X 1 (z") = n + 2,

the operator A is executed n + 1 times. It follows from the

-65-

definition of M0-used that the condition

3 0 'm where x0 is a state, reduces toM ' E ,~ 1 (M0 ,x0).

Also~ a memory-state X' which besides having the designated

values on z' and z 11 also agrees with x0 for z e Z(M0, x0),

is an M0-associate of x0 . If the program scheme is to be

considered only with respect to such states, it assumes the

form

1
(1 - z 0) t A f(z 0)p(z0 n + 2),

where f(Z) is short for the operator A(o{1); z, z, z·) X)

with X(z) = 1 for z E z.
Thus, the program scheme M3 ' 0 consists of just four

elements, no matter how large n is. Notice, however, that

2.4. Algebraic Treatment of Operator Programming

A. A. Lyapunov, who more than anyone else should be

considered the originator of the operator approach to

programming, feels that isolation of the notions of

operator programming from the body of mathematics condemns

the former to sterility. The problem, as he sees it, is

to define the mathematical principles basic to programming

so that the methods of the more suitable branches of

-66-

mathematics can be brought to bear. He judges that the

work of Yanov, Podlovchenko, and others on the transfor-

mations of program schemes reveals a similarity between

these transformations and the general classes of transforma-

tions studied in the theory of categories [22]. This paper

is brief and sketchy, with a good number of the proofs

omitted. It nevertheless occupies a position relative to

the algebraic papers analgous to that of Lyapunov's [21] in

the whole series: it gets the show on the road. It sets

the stage for the topics pursued in ensuing papers, especially

those of Glebov. In the sequel, the order of topics taken

up in Lyapunov's paper has been somewhat altered to provide

an easy passage into Glebov's [14].

2.4.1. Basic Notions. If 0, G, and M designate the

memory, the set of states of the memory cells, and the set

of memory-states, respectively, all as defined in Podlovchenko's

[29], a mapping A:M1 ~ M2 , M1 c M, M2 c M is called an

operator over 0. The composition of operators is defined

as above; that is, if A:M1 - M2 and B:M2 - M3 , then A · B:M1 - M3

with, by definition, AB(f) B(A(f)), f € M1 . The class of

operators over 0 constitutes a category ~· The objects

of RD are the subsets M' of M; the abstract maps are the

operators over O,and the identity associated with each

object M' is the identity operator defined on M'.

Given a set U = tu} and M1 c M, a mapping p:M1 - u is

called a predicate over 0.
u

Suppose a system A of operators

-67-

is given that are indexed by the members u of some set

ul uz -
It is allowed that A =A even though u

1
~ u 2 .

The operator B defined by p-composition is prescribed by

the following equation:

B(f) Au(£) where p(f) u.

If P = [p} is a class of predicates over ~ and K is a

class of operators over 0, K is said to be closed with

respect to P if K is closed with respect to p-composition

of elements for p E P.

Lyapunov employs this closure definition to introduce

an equivalence relation between classes of predicates over

0 which enables him to characterize these classes algebraically.

Thus, class P1 of predicates over 0 is said to be subordinate

to class P2 if each class of operators that is closed with

respect to P1 is closed with respect to P2 . The relation

R defined by P1RP2 if and only if P1 is subordinate to P2

and P2 is subordinate to P1 is an equivalence relation.

ObviouslyJ the relation of P1 being subordinate to P2 is a

partial order relation and induces a partial ordering on

the set of equivalence classes of predicates over n.

The smallest algebra of subsets of M that includes

all preimages of elements u in the range of p for all

p E PJ is termed the algebra generated by P. Notation: ap.
The fact is that class P1 is subordinate to class P2

-68-

if and only if t?p
1

c t?Pz' and that the classes of equiva­

lent predicates over 0 constitute a complete lattice under

the aforementioned partial ordering. Suppose besides K and

P we are given a class H = [h} of functions mapping U into

the natural numbers and an expression STOP. A K-term is

an ordered pair (A,m) where A € K and m is a natural number.

A P-term is an ordered pair (p,h), p € P and h € H. STOP

is a 0-term. It is assumed that all K-terms, P-terms, and

the 0-term are distinct. By a term is meant a K-term or

a P-term, or the 0-term.

A logical scheme is a sequence of terms a 1 , a 2 , ... ,

ak, and defines an operator B over 0 according to the following

prescription. Let f 0 be the starting memory state.

(a) Initially, the term with smallest subscript is

marked.

Suppose the term a. has been marked and the current
~

memory state is f.

(b) If a. is a K-term, a. = (A,m), then the memory
~ ~

state f is changed to A(£) and the next term marked is a .
m

If A(f) is undefined, then the process terminates and B(f0)

is undefined.

(c) If a. is a P-term, a. = (p,h), then the memory
~ ~

state continues to be f and the next term marked is ah(u),

where p(f)

(d)

= u.

If a. is the 0-term and f is the current memory
~

state, then the process terminates and B(f0) = f.

-69-

(e) If by application of the above~ the process of

marking next terms continues indefinitely, but from some

point on the current memory state remains f~ then B(f0) = f.

If the current memory state never becomes constant~ then

B(f0) is undefined.

Logical schemes admit of an algebraic characterization

when 0 and G are finite. Suppose this is the case, and

that K contains the identity operator on 0. Lyapunov

states that the set of operators representable by logical

schemes is the smallest category (in the obvious sense)

of operators that includes K and is closed with respect

to p-composition for p € P.

Since a logical scheme defines an operator over 0,

and hence alters the state of the memory, one may think

of an auxiliary memory O' = tc'} in which logical schemes

are stored as exercising a measure of control over 0~

briefly as a control memory. Let G' = (g'] and M' = {m'}

be the set of states and memory-states, respectively,

associated with O'. Associated with each cell c' is the

value o (c') = 1. Assume now a 1 to 1 correspondence m has

been established between all terms a and the states g',

and that the memory cells have been indexed via a mapping

into the natural numbers.

Let Q(a1 ~ a 2 , ···~an' ...)be a logical scheme and

N a set of natural numbers serving as an index set for

the terms of a. Let O' c 0' be the set of cells with
N

-70-

index set N. By a code of the logical scheme is meant the

memory state rna such that l m(an)
if c c n'

m {;__ (c) =
STOP if c I. 0~.

Thus the logical scheme a is encoded in the auxiliary memory

O'. The changes effected in the state of 0 by operation of

l{ now take the following appearance in terms of the code;

(a) Initially, 6(c 1) = 1.

(b) The term is executed whose encoded form occupies

;cell c such that o(c) = 1. According to the process

defined earlier, the next term to be executed is defined.

Let c 1 be the cell containing the code for this next term.

Then o (c 1
) = 1.

(c) If the code for the 0-term appears in cell c

such that o(c) = 1, or if the memory-state f of 0 becomes

constant from some point on, the process of transforming 0

terminates and B(f0) = f, where f 0 is the initial memory­

state.

This relation of an auxiliary memory O' controlling a

memory 0 can obviously be iterated. Accordingly, 0 1 is

n said to be of rank l over n, and if a memory 0 of rank

~ h b d f' d h ~n+l 11· n over ;~ as een e lne , t en a memory u contra lng

0 is said to be of rank n + 1 over 0.

Lyapunov also undertakes to characterize algebraically

classes of operators that specialize to such things as

readdress operators. To this end, consider a set Z = [z}

-71-

and a set 6 = (6} of partial transformations of z. z = 0

fzjz € Z and 6(z) is defined}. By the sum of transformations

61 and 02 is meant the composition of 01 with 62; that is~

(6 1 + o2)(z) = 62 (6 1 (z)). Denoting 6(z) by z + 6 we have

z + (o1 + o2) = (z + o1) + o2 whenever z + c1 E z6 . In
2

the sequel it is assumed that 6 is closed with respect to

composition and that the latter is commutative whenever

both 01 + 62 and o2 + 61 are defined. Note that composition

is associative if either o1 + (o2 + o3) or (6 1 + 62) + o3

is defined.

Operators over 0 are, by definition, operators of

rank 1. A mapping of subsets of categories of operators of

rank n into themselves are operators of rank n + 1. These

mappings also form a category. Now consider a mapping

n:z- Ro· Writing n(z) = A and assuming 6 € A and z + 6 € Z, z

we define

B5(A (f)) =A + 6(f). z z

Note that B0 is of rank 2 and is called a 6-shift of M.

Note also that B0 and B6 commute.
1 2

Next, consider a function ~ defined on M1 c M, and

define ~ to be o1-consistent if

and

(a) f 1 e M1 and f 1 (x) = f 2 (x) for all x e n1 implies

that £2 e M1 ,

(b) £1 and £2 e M1 and f 1 (x)

then ~(£1) = '(f2).

-72-

By an o1-restriction of an o1-consistent function f

defined on M1 c M is meant a function f whose domain

includes M1 such that Y(f) = f(f) if f(x) = f(x) for x E o1

and f € M1 . Notation: Y(f) = f(f/0 1).

Lyapunov lists the following properties of o1 restrictions

of 0-consistent predicates or operators over 0:

(a) If some class of o1-consistent predicates over 0

is invariant with respect to some operation over the values

of the predicates, its o1-restriction has the same property.

(b) If the set of o1-consistent operators form a category,

then their o1
-restrictions also form a category, the o1-

restriction of the original category.

(c) A mapping taking each operator of some category

to its o1-restriction maps the given category onto its

o1-restriction.

(d) An o1-restriction of a class of o1-consistent

operators that is closed with respect to the class P of

o1-consistent predicates may be represented as a class of

operators closed with respect to the o1
-restriction of

class P.

2.4.2. (n, m)-operators and Predicates. Suppose a

mapping v:Z- 0 is given. An n-tuple of cells (x1 , x2 ,

... , x) and memory state f and a function F defined on Gn=
n

GxGx ... xG defines ann-function of special form of the memory
"-...-'
n factors

state if

-73-

If F in the above takes Gn into some set U, the

equation defines a predicate of special form. An n-function

of special form is called an (n,m)-operation if F:Gn - Gm.

A special case of an n-function that is of interest

is an (n,m)--operator. Suppose y1 , ... ,ym are m distinct

cells and an (n,m)-operation Q(x1 , x2 , ... , xnlf) is given.

Then the equation

where f 1 (x) =g. if x = y., and f 1 (x) = f(x) if x f y. for
l l l

i = 1, 2, ... , m, defines an (n,m)-operator of special form.

Notation: A(~(x1 ,x2 , ... ,xnlf), y 1,y2 , ... ,ym) =fl.

i ~ A +"oe:z Let x. = x for z e: Z, u e: u, z .
l z

Bi,&(~(x1 , ... ,xi-l'x!,xi+l'"""'xnlf))

~(x1 , ... ,xi-l' x!+o'xi+l' ... ,xn!f), i ~ n,

The operators

-74-

are called elementary readdress operators.

A readdress operator is a product of elementary readdress

operators. It is clear that composition of readdress operators

is commutative. The reader will notice that readdressing is a

special case of the shift operation,while operators and

predicates of special form are special cases of o1-restrictions.

2.4.3. Synthesis of (n~m)-0perators. In the case of

(n~m)-operators, one has a quantitative measure of the

complexity of these operators, namely, the numbers m and n.

This invites an attempt to represent members of this class in

terms of the more simple members. The problem is that of the

synthesis of an operator from given, simple operators by

representation of the former as a product of the latter;

this is considered by Glebov in [14]. Since the problem

is one of synthesis, it is not surprising that the proofs

of the theorems of the paper are constructive and some

genuine computational questions arise concerning the

efficiency of the method of synthesis.

The synthesis problems treated by Glebov are as

follows:

(1) Synthesis of (n,m)-operators from (n,l)-operators

(2) Synthesis of (n,l)-operators from (m,l)-operators.

(3) Synthesis of (n,m)-operators from (1,1)-operators

with 1-predicates.

-75-

Relative to (3), an operator is said to be obtained

by synthesis of operators and predicates of a given class if

it can be obtained from this given class by means of the

operations of multiplication and p-composition.

In answer to (1) Glebov proves: If a memory n =

{x1 ,x2 , ... ,xn} consists of n cells each of which admits of

a finite number of states, then any operator over n can be

synthesized from (n,l)-operators. In the course of the

proof of this assertion, Glebov introduces the notions of

a transposition operator and a reduction operator.

A transposition operator [g(x),g' (x)] is a mapping of

0 that maps the element g and g' of the set M of memory states

into one another and leaves all other members of M fixed.

* A reduction operator [g,g'J is a mapping of M that takes

g to g' and leaves all other members of M fixed.

To consider the question of estimating the efficiency

of the method of synthesis, a special type of transposition-

and reduction operator is defined. An elementary transposi­

tion operator (gig'). is defined only when g + g' and g
1

differs from g' in only its value on some one cell xi;

that is, g(xi) f g'(xi) and g(xj) = g'(xj) for j f i. Under

these conditions (g,g')i interchanges g and g', and elementary

* reduction operator (gjg'). is defined as was an elementary
1

transposition operator with the difference that, when

* defined, (glg')i takes g to g' and leaves all other

members of H invariant.

-76

Let N be the least integer such that every operator

0 is representable as a product of elementary transposi­

tion and reduction operators. Glebov shows that if each

of the n memory cells admits of q states, then

C(n,q)qn < N where 3/7 < C(n,q) < 1.

He expresses his belief that the upper bound is very crude.

To handle the general case of (1) he proves: If 0 is

an arbitrary memory each cell of which admits of a finite

number of states, then any (n,m)-operator over 0 can be

synthesized from (n,l)-operators over 0. Relative to

consideration (2) is the fact that under the stated condi­

tions on 0, there exist (n,l)-operators over 0 that cannot

be synthesized from (m,l)-operators over 0 when m < n.

Also, he establishes that if 0 consists of n cells, any

operator over 0 can be synthesized from (1,1)-operators

and 1-predicates.

Glebov also considers the question of synthesizing

operators over a memory 0 from (m,l)-operators by use of

additional memory cells. Let 0 = £x1 ,x2 , ..• ,xn} be a

given memory, the cells of which admit of a finite number

of states constituting the set G. O' = txn+l'xn+2 , ..• ,xn+k}

and G' = [O,l, ... ,s-1} denote the working memory and states,

respectively, and M(O) and M(O') represent the sets of

memory-states of 0 and O', respectively. Take G = G U G',

-77-

n =nUn'. Then M(~) = fili:n- G~i:O'- G'}. Define

M0 0]) {gjg € M(O)~g(xi) = 0 for xi En'} and the mapping

0-
a: M (n) __, M (n)

by 0 (g) = g if g(xi) g(x.) for x. En~ g € M(g)~ and
]_]_

g E MO (0).

a is a 1-1 mapping of M(O) onto M0 (n) and induces an

isomorphism a' of the category KQ of operators over n into
0 some category K of operators over IT, as follows. The

domain and range of A0 = a'A correspond to the domain and

range of A under ~and A0 is such that A(g) ~ A0 (g) if
0 -g ~ g.

The problem now takes the form: What are the least
0 0 values of k and s for which any operator A € K can be

synthesized from an (m~l)-operator (2 S m < n) over 0?

A partial answer: At least one working cell is necessary
0 0 for synthesis of an operator A € K from (2,1)-operators

over IT while a single working cell (k = 1) that admits

of two states (s = 2) is sufficient for this purpose.

2.4.4. An Algebraic Equivalent of Synthesis. A

method of synthesizing an operator over a memory from

relatively simple operators is of potential value in that

it is to be expected that programming the simple operators

is itself relatively straightforward, and hence the method

presumably provides the means for programming the more complex

operator. In his interesting paper [15] Glebov develops

-78-

an algebraic equivalent of this situation and gives some

applications. The problem takes the following form: given

an operatory category K and a set E c K, characterize

those members A of K that are representable as products

of members of E. This brings us to a brief mention of the

subcategories of a category.

A subcategory K1 of a category K is said to be proper

if every identity element of K1 is also an identity element

of K. It is clear that the interaction of an arbitrary set

of proper subcategories of a category is a proper sub-

category.

In treating the stated problem, we may assume that

E contains no identity elements. By the proper subcategory

K(E) generated by a set E is meant the minimal proper sub-

category containing E.

It is important to know when the sets of operators

that can be synthesized from two given basic sets are the

same. This consideration leads to the following defini-

tion: sets E1 and E2 are said to be equivalent if they

generate the same minimal subcategory, that is, if

K(E1) = K(E2). To investigate the conditions under which

this equation holds, some auxiliary notions are needed.

Suppose some operator category Ka is given, consisting

of operators A:M1 - M2 , where M1 and M2 are subsets of some
r

set Ma. We define a subordination relation < on Ma x Ma

by these two axioms:

(1)

(2)

Let

-79-

r r r
If f 1 < f 2 and f 2 < f3 ~ then f 1 < f 3 .

r r
If f 1 < f 2 , then A(f1) < A(f2) for any A € Ka

defined on f
1

and f 2 . An example of such a sub-
1

ordination relation is f 1 < f 2 if and only if
2

fl = f2.

(fl, f2)

.tJlcK.
a

Another example is f 1 < f 2 for all

e: M xM .
et. 0:

By a quasi-invariant of lr/.. is meant any
r

f € Ma such that Af < f for all A € 71(. S (/!{) designates

the set of all quasi-invariants of 'tY\ and hence

s (il() n s (A) ,
A€1f!...

where S(A) is the set of all quasi-invariants of the operator

A.

If a is a homomorphism of a category K into Ka' E c K,
r

and R = (Ka~ <, a),then the set R(E) = S(aE) is called the

R-characteristic of E, and the members of R(E) are called

cr=quasi-invariants. These preliminaries put one in a

position to define sets E1 and E2 (each having no identity

elements) as being R-eguivalent if R(E1) = R(E2). Glebov

proves that E1 , E2 c K are equivalent if and only if they

,are R-equivalent.

The R-characteristic of a set E is a function of the
r

operator category Ka~ the subordination relation <~ and
r

the homomorphism a· Thus for each triple R = (Ka, <, a)

we have a possibly different R-equivalence criterion for the

subsets of a category K. In this connection Glebov defines

-80-

an R
1
-criterion to be weaker than an R2-criterion,

R1 < R2 if any pair (E1 , E2) of subsets of K that are

R2-equivalent are also R1-equivalent. (One would think

that Glebov should say, "no stronger than," but he actually

does say, "weaker than 11
). As the reader doubtlessly

anticipates, an R1-criterion and an R2-criterion are

equipotent if R
1

< R2 and R2 ~ R1 . R(K) denotes the set

whose elements are classes of equipotent R-equivalence

criteria.

Concerning the structure of R(K), Glebov proves the

following theorem: The set R(K) is a complete lattice.

2.4.5. An Example. Glebov next turns to an

application of these ideas. Consider a memory 0 consisting

of just three cells, x 1 , x 2 , x 3 , each of which admits of

being in state 0 or state 1. The set M = tf} of memory-

states thus consists of eight elements. Consider the

operator category K of all invertible operators A:M - M

and the set E c K of all (2,1)-operators. In this example,

K is the symmetric group of order ~while the subcategory

K(E) is the subgroup of order 8!/30 = 1344.

The problem is to find necessary and sufficient

conditions for A € K to be a member of K(E). A theorem

of Glebov [14] states that any (n,m)-operator over a

memory 0, the cells of which admit of a finite number of

states, can be synthesized from (n,l)-operators over 0.

Inspection of the proof reveals that if the given operator

is invertible, the factors can be taken to be invertible.

-81-

Consequently K(E) contains all invertible (2,2)-operators,

and the problem reduces to finding necessary and sufficient

conditions for arbitrary A € K to be representable in terms

of invertible (2,2)-operators. This amounts to determining

an R
1

-equivalence criterion for category K such that every

subcategory K1 of K that is not contained in K(E) is not

R1-equivalent to K(E).

To this end we represent the set M by the set M'

{0, 1, ... , 7}, associating with state g the number
3 . 1

n = ~ g(x.)2l- , and the members of K can hence be given
i=l l

the following cyclic form:

A1 (04)(15)(26)(37), A2 = (145)(367), A3 = (246)(357),

A4 (05)(27), A5 = (04)(26), A6 = (01)(45).

Glebov divides the invertible (2,2)-operators into

three types, characterized by the matrices

and

(
o123) , T

2 4567

{ 0246)
T3 \1357 '

respectively.

(
0145)

2367

For example, if A € K and AT1 (
A(O)A(l)A(2)A-(3)) '

A(4)A(5)A(6)A(7)

-82-

then A is a (2,2)-operator of type I if and only if AT1 can

be obtained from T1 by means of column permutations of the

above permutations, A6 is a type I operator, A1 , A2 , and A
4

are type two operators, and A1 and A3 are type III.

Let E = [e} be the set of all subsets e of M' con-

sisting of four elements, e tnp n2, n3, n4}. The

cardinality of E is 8
c4 = 70. Define M1 = {f} to be the set

of all subsets f of E consisting of 14 elements. The
70 cardinality of M1 is c 14 .

generated by the set of all

and define for all f 1 , f 2 E

Take K1 to be the category

invertible operators A':M1 - M1 1
M1 , f 1 < f 2 iff f 1 = f 2 . a 1

is the homomorphism that takes each A e K to the operator

a1A =A' E K such that A' takes f = t(ni1), n~1), ... ,

nd1)), ... , (nf14), ... , nd14))} to the elements f'

{(Ani1), ... , Andl)L ... , (Ani14), ... , And14))}. Set
1

Rl = (Kl, <, al).

Consider fo {el' e2, ••• J el4} E Ml, where e 1 =

(0, 1, 2, 3), e2 (0 J 1, 4, 5L e3 (0, 1, 6, 7L e4

(0, 2, 4, 6), e5 (0, 2, 5, 7), e6 (0 J 3, 4, 7), e7

(0, 3, 5, 6L ei
I for i = 8, 9, 14. Let e 15-i ... ~

K(f0) be the set of all A E K such that f 0 is a cr-quasi-
1

L~nvariant, which, by definition of < is the same as requiring

Using these preliminaries, Glebov establishes that A e K

is representable in terms of (2,2)-operators iff fo is a

01-quasi-invariant of this operator, that is, K(E) = K(f0).

-83-

It is obvious that in general the setting and content of

these papers are quite remote from the practices of computer

programming. One cannot but share A. A. Lyapunov's opinion

that isolation of research in programming from developed

branches of mathematics is undesirable and would probably

frustrate a fruitful development. His selection of the theory

of categories as the framework in which to proceed because

of its "close relationship" to the transformations that occur

in programming and his seeming expectation of big things to

come is perhaps too sanguine. The great generality and

skeletal nature of the theory of categories certainly allows

room for some description of programming but the value of

such a description is another question. In fact, if one

looks at the papers it is clear that the depth into which

the theory is gone is not very great, and that whenever one

gets down to cases (problems), the methods employed don't

have much to do with categories but are, of course, combina­

torial. It is to be expected that the value of an approach

to programming via the theory of categories will remain

largely on the descriptive level. It may help to clarify

the structure of certain problem areas, but the problems

themselves that arise in the development of programming

seem more susceptible to the methods of mathematical logic,

the theory of algorithms, combinatorics, and graph theory.

It will be interesting to see if the work of Glebov will

have applications perhaps to automatic programming.

-84-

3. OTHER SOVIET EFFORTS

3.1 Preliminary Remarks

Another Soviet effort, related to but largely inde­

pendent of the theory surveyed in Part 2, has had to do

with bringing suitably modified versions of such mathemat­

ical disciplines as graph theory and the theory of recursive

functions to bear on the problems originating in computer

programming. In contradistinction to the theory rooted in

the operator method, the analysis is applied not to the

classes of operations prescribed by computer programs but

to the classes of problems susceptible of programmed solu­

tions. The efforts do not take the transformations recurrent

in computer programming as their main point of departure,

but concentrate on the very notion of algorithm, seeking

to adapt the well known definitions such as Turing machines,

normal algorithms, etc., and render them more suitable

instruments for studying the problems of programming. The

parent paper of this development is L. A. Kaluzhnin's [18].

This paper gives the results of a seminar held in Kiev in

1956 at the Mathematical Institute of the Ukranian S.S.R.

Academy of Sciences dealing with the development of com­

puters, and another at Kiev State University, also in 1956,

concerned with the theory of algorithms and mathematical

-85-

logic. Principal descendants of [18] are Ershov's [10] and

[lJ], and Zaslavskii's [36].

The announced aim of [18] is the development of general

methods of preparing mathematical and logical problems for

solution with a computer. In constructing a formalism to

this end, the stated desirable features are as follows:

(1) Formulation of the general problem as a class of

related problems,each of which is described by some word

on a (finite) alphabet. The associated class of words is

to describe the class of problems, and the words should have

some common syntactical property that makes recognition of

them easy.

(2) The solution of the general problem is to be a

class of words also characterized by certain syntactical

properties.

(3) Mechanical rules applicable to initial words and

prescribing the transformation of these words into solution

words, that is,words composing the solution to the general

problem. The collection of these rules may be identified

with the algorithm solving the problem.

(4) The algorithm itself is to be expressible as

words on some enlargement of the original alphabet.

-86-

The entire structure possessing these features

is, as is explicitly stated in [7], a language. It is

also noted that since computer technology advances constantly,

the language should not reflect very closely the structure

of any particular machine, lest it soon become out of date.

More generally, the following are desirable objectives for

the language:

(1) The property of universality: the structure of

the language should reflect the basic characteristics of

a modern computing machine without being tied to any

particular machine.

(2) Standard mathematical and logical algorithms

should be readily expressible in the language.

(3) An automatic translator should be provided

that translates the language into the machine language

of the particular machine being used.

(The reader no doubt recognizes that the features

and objectives listed by Kaluzhnin have been realized to a

great extent in such higher level languages as FORTRAN

and ALGOL.)

One may ask why none of the standard formalisms of

the theory of algorithms would serve as an adequate

language. In the first place, the theoretically desirable

-87-

atomic character of the basic operations of the usual

formalisms make the computations of even rather simple

functions lengthy and tedious. Again, in complex

problems the logical conditions frequently dominate.

A satisfactory language ought to make the programming of

these logical conditions relatively easy, but the simplic­

ity and economy of the basic operations of Turing machines,

systems of equations, and the lik~ make the simulation of

these logical conditions a complicated task. In brief,

the very features that make the common formalisms concep­

tually attractive render them unpractical to be used as

models of a programming language. A discussion of

Kaluzhnin's [18] follows.

3.2 The Graph Schemes of Kaluzhnin

Let~ be class of finite directed graphs G such that

in each G E~, the following conditions exist:

(1) There is a single distinguished node I, called

the input node, of the graph G such that for all other

nodes a of G there is at least one directed edge from I

to a;

(2) there is exactly one node 0 from which no arrow

(directed edge) begins, the output node of the graph;

-88-

(3) there is a partition of all nodes of G other

than 0 into two sets :

(a) nodes of the first kind--those from which

a single arrow exits,

(b) nodes of the second kind--those from which

a pair of arrows exit, one marked with a plus, +, the

other with a minus, -

Suppose that a finite set~; {~1 , ~2 , ... , wn] of

operators and a finite set'; r•.' 'z' ... , .m, of dis-

criminators are given. A graph schemer over t, 'is a

graph G e: ~ in which each node of the first kind and the

output node correspond to some operator ~. and each node
~

of the second kind corresponds to some discriminator'··
J

3.2.1 Interpretations of Graph Schemes. By an

interpretation of an i~Y-graph scheme is meant a triple

(M, iJi __, A, Y _. F), where M is a nonempty set of objects,

iJi - A is a mapping of the operators iJi onto the class A

of mapping Ak of M onto itself, and Y ~ F is a mapping of

the class ' ;
[1!1.} onto the class F [F. 1 of properties

J j•

of members of M. Here

+ [m e: Mlm has the F j J, F. property
J

F. {m e: Mlm doesn't have the property~
J J

-89-

A graph scheme G together with an interpretation

(M, tP _, A, 'f __, F), defines an algorithm in the set M as

follows: A sequence m
0

and simultaneously with each mk there is associated a node

of the graph. Accordingly, m
0

= m and is associated with

the node I. Suppose m
0

, m1 , ... , mk' k > 0, have been

defined and associated, respectively, with I = n
0

, n
1

,

... , nk. If nk is a node of the first kind and mk cor­

responds to nk' then mk+l = Ak (mk)' and mk+l is associated

with the node nk+l connected with the arrow exiting from

nk. If nk is a node of the second kind and discriminator

+
$k corresponds to nk' then mk+l = mk; and if mkeFk , then

nk+l is the node connected with nk by the exiting plus

arrow. If ~eFk-' then nk+l is the node connected with

the ~ by the exiting minus arrow. If nk = 0, then the

procedure terminates, mk = r(m), and mk is said to be

the result of applying r to m.

Graph schemes naturally lend themselves to pictorial

representations. Here are some very simple examples.
I

1.

-90-

Here ~ = 0 andY= fw}. It is clear that given any inter­

pretation (M, ~-A, y ~F), every me M is transformed into

:itself if m has the property F, whereas r(m) is undefined

if m does not have the property F.

2. I

rr

0

' Here 'f [~}. Apply the operator~-

3. I

0

Conditional iteration of operator ~ 1 - Ml is applied

until the current element satisfies property F.

-91-

4. I

Here~ = [w}, ~ = {~1 , ~2]. Apply tom € M the operator

+ ~l or ~2 , according as meF1 or m€F1 .

5. An interpretation (M, iii -A, y F) is called Markovian

if

(1) M is the set of all words on a given finite

alphabet.

(2) All F. are properties of the type F , where F
J X X

denotes the property that some word contains at least one

occurrence of the word x.

(3) All A. are operations of the type A
1 X __, y'

where A stands for the substitution of the word y X ___, y

for the first (left-most) occurrence of the word x in the

word A.

a graph scheme. Consider the normal algorithm over some

alphabet having the scheme

-92-

xl Yl'

x2 - · Y2'

x3 _, Y3,

x4 - Y4.

-A . as the members of 4 A and
X~

Y - F, respectively, the graph-scheme representation of

the given normal algorithm is

I

1{1

+
'~'2

1/;2

+

'~'3

1{3

1/;4
¥'4

-93-

3.2.2 The Eguivalence of Graph Schemes. Kaluzhnin

offers two notions of equivalence for graph schemes. The

first and obvious definition depends on a given interpreta-

tion. Graph schemes r
1

and r
2

are equivalent with respect

to (M, ~ - A, v - F) if for all m in m, r 1 (m) is defined

exactly when r
2

(m) is, and in that case r
1

(m) = r 2 (m).

The second definition is independent of the interpretation,

and reminds one of Yanov's definition of equivalent

algorithm schemes. Thus, r
1

and r
2

are strongly eguivalent

if for all interpretations the algorithms defined by rl

and r
2

are equivalent in the first sense.

Kaluzhnin also mentions the operation of substituting

of one graph scheme into another, with a view toward

.developing an Halgorithm algebra." Suppose r 1 and

r
2

are given ~-v-graph schemes. By the substitution of

r
2

in r
1

is meant the substitution of r
2

for each occurrence

of an operator ~i in r 1 , omitting the input and output nodes

of r 2 . The result of this substitution is itself a ~-r­

graph scheme. In this connection, Kaluzhnin notes the desir­

ability of a substitution operation that could be applied

to discriminators as well as operators. To accomplish this,

he suggests extending the notion of a graph scheme by

providing for two outputs o+ and 0-, arriving at graph

schemes of the second kind. However, he observes that if

-94-

a graph scheme r of the second kind is substituted for an

+ -occurrence of a discriminator ~. the outputs 0 and 0
1

of r will be not m but r(m). Thus at ~. there occurs
1

not simply a decision but a transformation. As a way out,

he suggests the introduction of memory elements into the

notion of a graph scheme. Accordingly, in substituting a

graph scheme of the second kind for an occurrence of a

discriminator, the element m is to be placed in the

+ memory and restored at that one of the outputs 0 and 0

at which it would ordinarily appear. He concludes:

"The problem as to the most rational way of introducing

such memory elements into the graph-scheme, while preserving

the possibility and meaning of the substitution operation,

is an important but as yet unsolved question." This

consideration forms the basis for the paper of Zaslavskii

[36].

3.3 The Operator Algorithms of Ershov

3.3.1 Motivation for the Definition. Ershov's [10] and

[11] on operator algorithms represent an attempt to adapt

the Markov normal algorithm formalism for rendering the

theory more applicable to computer programming, and, in

particular, for constructing more adequate programming

languages. In [11], a reformulation of the basic concepts of

-95-

the theory is carried out, and in [11], applications are

discussed. Such a reformulation has been precipitated as

a result of the development and use of compilers. Ershov

finds the following problems among the more outstanding.

(1) Narrowing the distance between the language in

which an algorithm is to be programmed and the rather formal

language in which the problem is presented to the compiler.

The dissimilarity between the initial description of an

algorithm and that of logical schemes has been a particu­

larly important factor in causing the passage from one to

the other to be lengthy and time consuming.

(2) Developing a measure of the quality of an algo­

rithm, or of different realizations of some general algorithm,

to facilitate optimal programming by selecting the best

realization from a class R of algorithms that are equivalent

(in some suitable sense). In this connection it is impor­

tant to "know" the class R as completely as possible by

constructing a calculus of transformations generating the

members of R.

(3) Developing methods by which the equivalence

of algorithms can be effectively recognized. The most

general instance of this problem has been shown by H. G. Rice

to be recursively unsolvable [30]. The problem thus

-96-

becomes that of examining various definitions of "equiva­

lence," hoping to isolate those which make the question of

equivalence effectively decidable, and yet are sufficiently

broad to include as equivalent a generous portion of those

algorithms that would be expected to be equivalent on

basic or working grounds.

On the basis of the above, Ershov lays down the

following requirements for a formal language to describe

algorithms:

(1) The definition should comprise a rich class of

elementary operations in contrast to the atomic character

of the components of the theoretical formalisms.

(2) The definition should allow for the "instructions"

of an algorithm to be developed in the course of its

operation, as is the case with computer programs.

(3) The language should be flexible enough to reflect

the features of particular classes of problems. For

example, the problems of linear algebra should be described

in terms of the field operations. Thus, the definition of

an algorithm should allow both the form of the information

to be processed and the means by which it is processed to

vary with the class of algorithms considered.

-97-

Ersov is the author of "Progrannning Program for the

BESM Computer" [6], defining a compiler based on the

operator method of progrannning. These earlier efforts

account for retention of the word 11operator" in "operator

algorithms," but there is another relationship:

From the structural point of view the basic
characteristic feature of logical schemes is that
an algorithm is represented in the form of a list
of information processing operators, all the
transitions from one operator to another being
indicated; the selection of one out of the sev­
eral possible transitions, depending on the
results obtained, is carried out by logical
operators. This feature is retained entirely
in our proposed definition of operator algorithms

3.3.2 The Definition of Operator Algorithms. The

syntactic classes of Ershov's definition are those of

variables, operations, formulas, and operators. In each

case, the members of the classes are words on some alphabet.

It is understood that this alphabet always includes the

symbols(,),=}, and*· For each class of operator

algorithms, the class ~of variables is a recursive

subset of the set W of all words on the alphabet of the

class. Variables are denoted by lowercase roman letters,

with or without subscripts:

a, b, c, d, n, x, y, z, x 1 , y 1 , z 1 , ... etc.

-98-

The possible values of the variables also constitute a

recursive subset of W. In general the specification of

the set ~of variables is to include mention of the possible

values of the variables. Intuitively speaking, variables

are to serve as the addresses of memory locations of a

computer, and the values of these variables as the contents

of the locations.

A k-place operation is a word of the form

) ... (

where A0 , A
1

, ... , Ak are words on the given alphabet.

It is understood that the subalphabet of the alphabet of

the operator algorithm in which the variables V and the

words A
0

, ... ,~are written does not contain any of the

symbols (,) , ~ , and *. The result of applying

) ... (

In presenting a class of operator algorithms, a

finite list ;/!.of operations is given. The list corres-

ponds to the "order code" of a computer, that is, to the

selection of elementary operations with which a program

is composed.

The notions of expression, arguments of expressions,

and values of expressions for a given selection of argument

values are simultaneously defined by induction:

-99-

(a) Any variable x e is an expression, and x is the

argument of x. If a is a value of the variable x, a is a

value of the expression x.

(b) Let A0 (

of£. and

) ... ()Ak be a k-place operation

Tl(xll' xl2' · ··' xin
1
), ... , Tk(xkl' xk2' ... , xknk)

be expressions. The word T obtained by substituting in

the i-th place of the operation A0 () ... (

the expression T.(x.
1

, x.
2

, ... , x.) (i
~ ~ ~ ~n.

1' 2' ... ' k) ,
~

namely

Ao(Tl(xll' · ··' xln
1
)) ... (Tk(xkl' ... , xknk))Ak,

is an expression with arguments x 1 , x 2 , ... , xn' where

x
1

, x
2

, ... , xn constitute all those variables that are

arguments of the expressions r 1 , ... , Tk. Let a 1 , a 2 , ... ,

an be the values of x 1 , . . . , X .
n Each a-t (.t = 1, 2, ... , n)

is some aij (1 ~iS k; 1 ~ j < ni).

IfTl(alP ... , alnl) =bl, Tz(a21' ... , a2n2) =bz,

Tk(akl' akZ' ... , aknk) = bk and A0 (b1) ..• (bk)Ak = b, the

expression T has the value T(a1 , ... ,an)' and T(a 1
, ... ,

a) = b.
n

A formula is a word of the form

T(x1 , x2 , ... , xn) .:::9 y,

where 7 is the sign of correspondence, T(x1
, ... , xn) is

-100-

an expression, and y is a variable. The variables x 1 , x 2 ,

... ' x are called the input variables of the formula, and
n

y is the output variable.

An operator is any word of the form

Tl ====? Y1 * T2 ~ Y2 * ... * Tm =9 Ym'

where m ~ 0, and Ti ~ yi (i = 1, 2, ... , m) are formulas.

It is the operators that are the basic building blocks

of operator algorithms. They are the formal analogue of

the instructions of a computer program. In an operator

algorithm, the operators occur as the values of certain

variables, to be termed the operator variables. Thus,

in any operator algorithm certain variables must be

designated as the operator variables.

Suppose that classes l/ and£. of variables and opera-

tions on some alphabet are given. A word n 0 , distinct from

all the variables, is set aside to identify a STOP; r + s

variables p 1 , ... , Pr' x 1 , ... ' x of l/ are selected, the
s

p 1 , ... , pr serving as the parameters and the x
1

, x
2

, ... ,

x as the functional variables of an operator algorithm.
s

Associated with p 1 , ... , pr are designated values q
1

, ... ,

q . From among the parameters, one variable p* is selected
r

as the start variable. Finally, a choice of functional

variables x 1 , x 2 , ... , xs and parameters p
1

, ... , pr with

a start p* and values q 1 , ... , q~ is an operator algorithm

-101-

a from the class of operator algorithms ()(if,£) on the

variables Tl and operations -/'.

3.3.3. The Execution of an Operator Algorithm.

The execution of an operator algorithm is to be conceived

in terms of the operating region of the algorithm.

This region consists of certain variable~ together

with the values of these variables. The effect

of operation of the algorithm is to transform the oper-

ating region. As a result of this transformatio~ the

values of some variables in the operating region are

changed, and new variables, together with their values,

are added to the operating region. The acts of the

algorithm by which these changes are effected reduce to

four: (a) transition to a variable, (b) execution of an

operator, (c) normal stop, (d) stop without result. Of

these, (b) is the most important.

A condition for the start of the algorithm a is that

the function variables x 1 , x
2

, ... , xs be assigned the

a.
a ' s

the initial data of the algorithm

Initially, the operating region of Cl consists of the

variables x 1 , x 2 , ... xs' p 1 , ... , ps and their values

Step 1. The start variable p* belongs to the oper­

ating region of a .

-102-

Step k+l. Suppose that k steps have been performed

and that the k-th step has resulted in a transition to the

variable y in the operating region and the present value

of y is b.

Case 1. b is not an operator. The process terminates

in a stop without result.

Let

T.(z
1

, ... ,z)::::. y.
l n l

be the i-th formula of the operator, i 1, 2, . . . n, with

variables z 1 , z
2

, ... , zn. If any of z 1 , z 2 , ... , zn is not

included in the operating region, the procedure terminates

in a stop without result. On the other hand, suppose all

of z
1

, ... , zn occur in the operating region with values

If T.(v
1

, ... v) is undefined or
l n

T.(v
1

, ..• , v) = v and vis not an admissible value of
l n

y., the procedure terminates in a stop without result. If
l

T.(v
1

, .•. , v) =b., andy. does not belong to the oper-
l n l l

ating region, y. is added to the region with assigned value
l

b.; if y. already is a member of the region with value
l l

b.*, then b.* is replaced by b .. This procedure is
l l l

carried out successively fori= 1, 2, ... , m. It is under-

stood that if for any i,y.
l

y, the replacement of b by b.
l

-103-

is made after the procedure has been carried out for

i=l,2, ... ,m.

If b J the value of y J equals n
0

, the procedure
m m

comes to a normal stop with the result being the values

of all variables belonging to the operating region of t{.

If b f n
0

and either b is not a variable or b
rn rn m

y and

y is not in the operating region, the procedure terrni-

nates in a stop without result. If b = y and y is in
m

the operating region, there occurs a transition to the

variable y, and the next step is executed.

An algorithm Q with parameters pl J ••• , Ps,

functional variables ~1 , ... , xs,and initial data

d 1
, ... , ds is represented as

where it is understood that";" and ~"are not members of

the alphabets in which the variables or the values of the

variables of the class of algorithms are written.

3.3.4 Examples.

1. Algorithms of the class tf.C1Ji, L'
1
). The

alphabet consists of the Arabic numerals. The numerals

representing even numbers different from zero are called

numerical variables. The values of the numerical variables

are the natural numbers. The representations of the odd

-104-

numbers and 0 are called operator variables. Their values

are words on the alphabet [0, ... ,9, + P,(,),*, ~ }.

The list~1 consists of the following two operations:

(a) () = 1, where (~) + 1 = ~ + 1;

(b) p (()()), such that

where ~'~l' and ~2 are natural numbers.

An algorithm for addition:

o Ju ~ s; 1 Jv ~ s; 3* Jt ~ q*r ~ s;

5 .JP(y,q) ~ s; 7 Jx+l =- x*q+l ~ q*r ~ s;

vJ2; tJO; rJ5; uJ7; xJ; yj.

The only functional variables here are x and y.

Given initial data d1 , d2 , we will compute 2 + 1 as follows.

Transition Variable Operating Region

R [0,1,3*,5,7,v,t,r,u,x,y}
0

0

Rl R
0

1

R2 R 'U [q,s}
0

2 5

3 0 R3 R2

4 7 R4 R2

5 5 R5 R2

6 1 R6 R2

-105-

Result [u = s, v = s, t = q*r = s, P(y,q) = s,

x+l = x*q+l = q*r = s,2,0,5,7,3,1,1,2}.

An algorithm of class tCCZ/i,~) for multiplication

. 0 Ju = s; 1 .Jv = s; 3* -'to = z*to = k*ts = s;

5 j(t
5

+1)+1 = u*t2 = v*P(y,k) = s; 7 Jt0 = p*k+l = k

*(((t5+1)+1)+1)+1 = s; 9~(s+l)+l = u*ts = v*P(x,p) = s;

11.../z+l = z*p+l = P*(((t
5

+1)+1 = s; t 0 Jo, t 2 J2;

t
4

J 4; t
5

J 5 ; x..J ; y J .

For any initial data d1 , d2 , the value of the variable

z after application of this algorithm is d1 ·d2 .

2. The class tJ. ({/
2
,~). The variables v; are

words on the alphabet [f}, with the proviso that the word

/1 signifies STOP. Words of length non [f} are

abbreviated as In; and 1°, as well as A, represents the

empty word. The values of the variables are words on the

alphabet A=[~, ... , at},where A indicates T,R,S, ,(,),*,=.

The list of operations ;(
2

consists of 2t+l operations,

where t is the number of letters in A.

Let P be an arbitrary word on A.

(a) The operation T(), such that

T(P) =[p' .if P = sP'(seA),
I\ lf p = J\.

(b) t operations of the form R!i(),i=l, ... ,t

such that

-106-

Rl i(P) = a. ·P
]_

i
(c) t operations of the form Sl () , i

such that

= {~ Sli(P) H

if P a.· P 1 ,
]_

ifPia.·P 1
•

]_

1~ ···~ t,

A noteworthy difference between the algorithms of

classes a_ (Vi,~) and a.c z;;-, ~) is this: those of

tlCZJ;,~2) have the capability of generating operators

while the only transformations of operators that are

performed by those of a..c Zt"i, ,Z:
1

) are the relatively simple

ones of the form x ~ y.

Here is one algorithm of the class t{(~~) that

inverts a nonempty word and sends the empty word into

itself. The following abbreviations are employed:

s () stands for s]i(
) ' a.

l

R () stands for Rj i() .
a.

]_

If s 1 ... sn is a nonnull word on A,

Rs ···s (x) stands for Rs (Rs (... (Rs (x)) ...)),
1 n 1 2 n

Tn(x) stands for T(T(... T(x) ...))
~

n T's.

-107-

The algorithm:

I
0 Jlu ~ s; I Jlv ~ s; \

3
* Jz 0 ~ y*z

4
~ s; \ 4 Jr1 '= k*r2 ~ 1

5

*r
3

~ I 6 *z
5

~ s ; I 5 j I t ~ \ u * I m ~ I v *S \ (x) "'"' s ;

16 JR\(y) ~ Y*T(x) ~ x,r,.z
4

~ s; \ 7 jT(t+u+rn+v+5)(1 5) "'"'1 5

R\t""' \u\m ~ lv*S\(\5) "'"'\5*T(\6)"'"' \6*~\(\6) = \6*T(k) ~ k

*z
5

;;} \u*z
2

"'" lv*Sa(k) => s; \t J\ 7
; \m j\ 6

; r
1

Jita (EA~ a1\)

r 2 Jlt => lu*~m ~ lv*S\ (x) "'"'s; r
3

JR\ (y) = Y*T(x) = X*z 4 ~ s;

zOJA; z2J\2; z4J\4; z5J\5; xJ.

3.3.5. The Value and S-Representation of an Operator

Algorithm. Ershov, in the manner of Yanov, takes the value

of an algorithm, given some initial data, to be the sequence

of operators performed in order of execution; that is, if

algorithm a is applicable to initial data dl, ... ,ds' and

there results the execution of operators n1 , ... ,~, the

word n1*n2*···*nk is the value of~ for d1 ,d2 , ... ,ds.

The value of the algorithm for addition of L2<Vi~~1) for

y = 3, arbitrary x is

r ~ s*P(y,q) ~ S*V ~ s.

Suppose an operator algorithm a from the class

{((~;(})with functional variables x1 , ... ,x
8

is given.

By the function realized by a relative to ye Vis meant

-108-

the function y £2(x1 , ... ,xs) defined for exactly those s

tuples (dl' ... ,ds) to which a is applicable and such

that when defined Yt((d
1

, ... ,ds)=b,where b is the value

of y at completion of the application.

A distinctive feature of Ershov's treatment is his

notion of the S-representation of a value of an operator

algorithm. The motivation behind this notion seems to be

as follows. In running a program on a computer it

frequently happens that we are interested in certain

intermediate results obtained in arriving at the "answer."

On the other hand, much of the information processed in

such a run is of little or no interest. Correspondingly,

certain of the variables present in the value of an

operator algorithm play_an essential role in the calcula-

tion, while others play a merely transitional role. In

defining the S---representation of a value, one seeks to

isolate the more important variables.

Let Z be a value of algorithm L(, and let

F(x1 ,x
2

, ... ,xn) ~ y be the leftmost formula such that its

output variable y is the input variable for another formula

of Z to the right of F = y. Let Z' be that part of Z to

the right of F = y and Z that part of Z' bounded on the
y

right inclusively by the first formula of Z to the right

of F = y which has y as an output variable. To obtain

-109-

the word Z(l) from z0 = Z, all occurrences of y as an input

variable in formulas of Zy are replaced by F(x
1

,x
2

, ... ,xn)

and if Z'fZ, the leftmost F(x
1

, ... ,x) ~ Y* is deleted
y n

from Z. This procedure is repeated until a word Z(m) is

arrived at in which all formulas of the form F ~ y, where

y is an input variable of some formula to the right of

F ~ y, have been eliminated. Finally, all formulas of

Z(m) having the same output variable except the rightmost

are deleted and the result is the S---representation,

s
2

, of Z. For each variable y occurring in Sz, there

is exactly one formula of the form F(p. , ... ,p. ,x. , ... ,
11 11, Jl

x .) ~ y where p. , ... , p. , x . , ... , x . occur among the
Jm 1 1 1

1, J1 Jm

parameters and functional variables of algorithm t{.

If Z is a value of algorithm 0., all variables

occurring as output variables in formulas of Z are called

resulting variables. A formula F ~ y of s
2

is called

the S----representation of the resulting variable y.

The function of the S--representation of a variable

is brought out in the follmving.

THEOREM. Let F(p. , ... ,p. ,x. , ... ,x.) .otybe an
1 1 1 t J1 Jm

S- representation of the resulting variable y for a value

Z of algorithm Gl, given initial data d 1 , ... ,ds. Then if

y{j_ (xl' ... ,xs) is a function realized by a.

-110-

y /J (dl, ... , d) = F (q. , ... , q. , d. , ... , d.) -=-
VL s 1 1 1 t J1 Jm

where q , ... ,q~ are the initial values of the parameters
r 1 _._ .t

p. ' ... 'p. of a .
11 1.£

The S-representation of the value of the above

algorithm for addition when y 3 is

s
2

= (((x) + 1) + 1 ~ x*(((t) + 1) + 1) + 1) ~ q*v ~ s.

3.3.6 Operator Algorithms and Graph Schemes. Con­

sider a class G2CZI;~) of operator algorithms such that

among the operations of 62 there is at least one test

operation, which upon application results in one of two

+
operator variables, n · or n .

A class of graph schemes ,4c V, ;t) is associated with

a_ (V,cl) in the following manner. The operators of ({_(V ;{;)
defined over Z/and /,plus a null operator, constitute the

operators of the graph scheme. Those formulas T ~ y such

that T is a test operation to be applied to expressions

serve as the discriminators ofAC(. To complete the

definition, it is stipulated that associated with each

member of dC 7/, £,.) is certain initial inforrnat ion, con-

sisting of parameters p
1

, ... ,pr with assigned respective

values q
1

, ... ,qr and functional variables x
1

, ..• ,xs.

To relate the execution of a graph scheme of ff(Z/; ~

to that of an algorithm of a (V, L,) note that the result

-111-

of applying a discriminator of the former is understood to

be a plus if application of the corresponding operation of

+
the latter has resulted in n , and minus if application

has resulted in n • The syntactic definitions of operating

region, value of a graph scheme, the S--representation of

resulting variables, the functions realized by a graph

scheme, etc., can nmv be given. To complete the comparison,

we define an algorithm t{ to be of zero rank if all operator

variables of tloccur among the parameters and if upon

application of a the values of the operator variables

remain unchanged throughout the application.

For example~ a graph scheme of the previously given

algorithm in O.ctr1 ,~1) for multiplication is shown in Fig. 1.

the following figure.

After these lengthy preliminaries~ Ershov proves the

following

THEOREM. For any graph scheme.!; e: l;; (l[,;j) with

functional variables x 1 ~. ··~x~ there is an operator algorithm

of zero rank a € a (~;e) with the same functional variables

such that for the set of initial data d 1 ~d 2 ~ ... ,ds if y is

- .. the resulting variable of the graph scheme /t and has an S­

representation F.!J ~ y ~ then y is a resulting variable of a and for

the same set of initial data has an S-representation Ft[~ y

such that

-112-

to =:. z*

to =:> k

1 l
P(y,k) =:. s

+ ~ I.

to =:> p*

k+1=:> k

.J/

P(x, p) =:> s 1
p + 1 =:> p*

z + 1 =:> z

l

Fig. 1

-113-

By use of this theorem and much bookkeeping he proves:

(1) A function ~ is partial recursive if and only if

it is realized by an algorithm of t[0(Zil,~)

(actually Ershov proves a weakened version of the

"if" part of this theorem). Here a:' (VJ:', ~) is

the subclass of Lf(~~) consisting of algorithms

of zero rank.

(2) For any normal algorithm tZ in alphabet

A= [a
1

, ... ,at} where~ and· are not in A, there
....

is an algorithm a of tl< u;, ~) with one

functional variable x and with a resultant variable

y such that

{](x) :::: ya. *(x) ,

where ~ denotes strong equality and tZ<x) is the

word function defined by tl such that Ll(P) = Q

is the result of applying t{to P, where P and Q

are words on A.

Two points one notices about Ershov's reformulation of

the notion of algorithm are its breadth and elegance. His

efforts are very reminiscent of the work of Wang [34],

Minsky [25], and Shepherdson and Sturgis [32], in which the

theory of Turing machines is redone to effect a rapproche-

ment between theory and practice. In part, however,

these later papers are concerned with demonstrating that

-114-

various combinations of rather special logical operations

and arithmetic functions suffice for the computation of

all partial recursive functions. To put it another way,

it is shown that some machines obtained by crippling and/or

modifying a Turing machine in some peculiar manner are

universal. For example, in the paper of Shepherdson and

Sturgis [32], one aim is to modify the definition of

Turing machine to arrive at a machine for which intuitive

computational procedures are easily programmed. These

authors, however, also define a graded series of machines

obtained by restricting the operation and changing the

definition of their initial URM (Unlimited Register

Machine) in various ways. They prove such results as

the fact that a machine using a single binary tape and

having two control heads--a right-hand head that can write,

move only to the right, and print only when moving, and

a left-hand head that can also move only rightwards and read

only when moving (possibly destroying whatever it reads)-­

is a universal machine. Ershov's paper seems to have a more

unified aim--applications to the theory of programming and,

in particular, to the development of programming languages.

It does take a while before one gets accustomed to his

formalism and is able to carry out computations without

-115-

delay; indeed, the format of the papers [25], [32], and

[34] resembles much more closely actual computer programs,

the basic instructions being chosen and named to mirror

actual machine operations. For example, a verbal trans­

lation of the basic instructions of the URM of [32] is

as follows: (a) add 1 to the number in register n; (b)

subtract, from the number in register n; (c) clear register

n; (d) copy from register m into register n; (e) jump to

exit 1; (f) jump to exit 1 if register m is empty. In a

word, Ershov's treatment is more abstract. This is possible

because of his careful analysis of the requirements of a

formal language to describe algorithms and the way in which

those features are built into his definition of operator

algorithm.

3.3.7. The Amended Definition. In [11], Ershov shows

how to represent computer programs and the logical schemes

for programs as operator algorithms. He amends the defini­

tion of operator algorithm in two ways, one for purely

technical convenience, the other for weightier reasons.

First, a zero-place operation is defined to be one of

the form A where the word () is not a subword of A. If A

is a 0-place operation, an occurrence of an expression of the

form A ~ y amounts to giving the variable y some one value.

The point of introducing 0-place operations is that they

-116-

reduce the number of parameters required in an operator

algorithm.

The second change has to do with the representation

of an operator. An operator is a word of a definite form,

namely,

where T. ~ y. for i
1 1

1,2, ... ,m, are formulas. They occur

in an algorithm as the values of operator variables. The

fact that the values of the operator variables must be of

one form introduces a rigidity into the definition;that

can be disadvantageous. For example, in the case of

algorithms of the class a.Cl'l,~), the only possible

transformations of the operator variables are those of the

form x ~ y. These considerations argue for including a

decoding operation in the definition of operator algorithm

that would allow the values of operator variables to

assume a form suited to the given class of algorithms and

be subsequently transformed into an operator upon appli-

cation of the decoding operation. Ershov maintains that

- this arrangement is consistent with computing practice in

that a binary representation may serve as either a number or

an instructio~depending on whether it appears in an

arithmetic or control register.

-117-

The introduction of the decoding operation into the

definition of operator algorithm necessitates an additional

clause in the definition of the application of an algorithm

t{ to initial data d
1

,ct
2

, ... ,ds'' as follows:

Suppose y is the current transition variable and is a

member of the operating region R of tZ and has the current

value b'. If the decoding operation is not defined on b',

the process terminates in a stop without result. If when

applied to b' the operation yields b, and b is not an

operator, the process terminates in a stop without result;

otherwise, the process continues as previously defined.

3.3.8 The Equivalence of Operator Algorithms. Ershov

in conclusion turns to a discussion of the equivalence of

algorithms, noting both the theoretical and practical

importance of this problem. The measure of the strength of

a definition of equivalence is the manner in which the

"output" of an algorithm is defined. If equivalence of

algorithms is taken to mean equal, or isomorphic, outputs

for equal, or isomorphic, inputs, where "output" means the

final result in the usual sense, then the general problem

of deciding equivalence is recursively unsolvable. If it

means that for all admissible inputs two algorithms produce

the same total sequence of operations in the same order,

-118-

then the problem is recursively solvable, as shown by

Yanov. Ershov feels, however, that Yanov's definition is

too strong and that it excludes many algorithms that ought

to be regarded as equivalent. He proposes a definition

somewhere between Yanov's and the general one, based on

the notion of the $-representation of the value of an

algorithm, reasoning that

a definition of equivalence based on the use of
the $-representation for the output [enables one]
... to say that two algorithms are equivalent
with respect to specified variables when corres­
ponding variables in coinciding inputs are
calculated by the same formulas. This is so,
inasmuch as the S-representation of a variable
is nothing other than an explicit expression of
the formulas with which the resulting value of
the variable is calculated.

The most important implication of what we
have said is that in programming (especially at
the transition from logical schemes to the machine
program), obviously, the most important role is
played by transformations of algorithms which
leave the calculation formulas (i.e., the$­
representations) intact. Thus, such basic
programming devices as division of the whole
problem into parts and assigning the parts to
different sections of the machine's memory,
separation of subroutines, partition of
formulas and identification of various inter­
mediate results, transformation of logical
operators, economizing on commands and working
cells--all these lead to transformations of
algorithms which preserve the $-representation
of the resulting variable.

Consider now operator algorithms C(1 and C(2 of the

same class of algorithms.

Certain variables in each are distinguished by the

fact that they, as a result of applying the algorithm, take

the really material values. It is assumed that there is

-119-

a 1-1 correspondence between these variables, as well as

between the functional variables and those parameters in

the algorithms that can enter into the S-representations

of the distinguished variables. Let the functional

variables, parameters, and distinguished variables of ~l
be, respectively, x 1 , ... ,xs, p 1 , ... ,pr, and yi, ... ,yn,

and the corresponding variables of C{2 be x 1 , ... ,xs,

pl' ... ;pr, and yl, ... ,yn.

Gl 1 and C?2 are said to be equivalent with respect

to the distinguished variables y1 , ... ,yn and y1 , ... ,yn

if for all initial data d 1 , ... ,ds wherever one of the

algorithms, say £71 , is applicable to d1 , ... ,ds and the

S-representations of the distinguished variables have

the form

T
1

(x. , ... ,x. ,p. , ... ,p. n) ~ y
1 ~11 ~lml J11 J1~1

T2 (X . ' .•• 'X. 'p . ' ... 'p . .R,)
~21 1 2m2 J21 J2 2 ~ Y2

T (x. , ... ,x. ,p. , ... ,p.)
n 1 nl 1 nrn Jn Jn£

n 1 n

~ y
n

then the other, say t{
2

, is applicable to d
1

, ... ,d
2

and

the s.-representations of the distinguished variables have

the form

-120-

T (x. , ... , x. , p . , ..• , P.) ~ Yn
n 1 nl 1 nm Jn Jnt

n l n

For example, consider the algorithm for addition

7_/ y+l = Y*q+l = q*r ~ s;

v ...12; t _j1; r _is; u_j7; y _j; x _j .

Let ~ define the following correspondence between

the functional variables, parameters, and specified

variables of t1' ("l/{, ~) and the previously defined

{((~ oe;_) as follows:

cp(O)

cp(v)

1, cp(l) = 0, cp(3)

v, ~(t) = t, ~(r)

~(y) x.

3, cp(5) = 5, cp(7) = 7,

r, cp(u) = u, cp(x) = y,

a I (~ tZ;) and ac ~,~<:~) are equivalent With

respect to y and x in the sense of Ershov, as the reader

can readily check.

To cover the case in which &l1 and tC
2

belong to

-121-

different classes of operator algorithms then there are

the following additional requirement: there is an

isomorphism between the sets of operations £ 1 and ;C.
2

of al and {{2' respectively, and between the possible

values of the variables in the sets ~and ~ Under

these conditions, L{
1

and i{
2

are said to be equivalent if

when applied to isomorphic initial data, they result in

$-representations of the distinguished variables that

coincide up to isomorphism of the operations generating

them.

The bulk of [11] is devoted to defining two

classes C/_(~'~C) and a(~S' ~5) of operator

algorithms. The former describes the programs written in

machine language for the conventional computer (CC) defined

in Lyapunov's [21], whereas the latter describes variants

of the logical schemes used as input information to the PPS,

the compiler for the Strela machine. Ershov defines an

algorithm from each of these classes to solve a pair of

linear equations and shows these algorithms to be equivalent.

The details of the definitions of~ ~'~C) and

~(~5,~5) are extensive,and the reader is referred

to [11].

-122-

4. A Comment

An editorial comment concerning the style of many of

the papers surveyed is in order. In genera~ the style is

ponderous, employing much symbolism. The dry, atomistic

analysis will be egregiously familiar to those who have read

papers in recursive function theory by Russian authors,

particularly those in recursive analysis. A special, trying

characteristic of some of the papers--of [21], [27], and

[19], for example--is the encyclopedic recapitulation of the

genesis and nature of programming.

The lengthy, careful preambles are in this case sympto­

matic of the seriousness of the whole effort. The paper

[21] of Lyapunov initiated a systematic, serious attempt to

make computer programming a mathematical discipline. The

semiformal nature of the operator method perpetuates the

view of programming as a several-stage process. Indeed,

Lyapunov emphasizes the distinction between a calculation

scheme and a program scheme. The calculation scheme should

be the result of the analysis of the algorithm into its

·major parts, and is the symbolic expression of the algorithm

as the combination of these parts. As such it does not

reflect any of the characteristics of a computing machine.

The expansion of the abstract operators of the calculation

-123-

scheme as the product of various kinds of control operators,

arithmetical operators, and connecting logical conditions

results in the program scheme, which does reflect some basic

characteristics of a computing machine. For example, the

control operators direct that the memory of the machine be

used in such a way as to effect successive execution of the

arithmetical operators. Prior to coding the program scheme

in machine language, the programmer may seek to improve the

scheme in order to produce a more efficient program by

applying various kinds of transformations. Among these

transformations are those closely related to the work of

Yanov, namely, transformations of the logical conditions

present in a program scheme. Indeed, standard Soviet texts

on computing machines (such as [20]) include chapters on the

"formal transfonnations of the logical schemes of programs."

It is clear that learning to program in this fashion is

a more arduous task than learning to write acceptable programs

in a language such as FORTRAN.

The most convincing evidence of the seriousness of the

Soviet effort is the substantial identity of those who are

responsible for the more important uses of the operator

method and those who have developed the theory surveyed in

this study. Thus, if one looks into Soviet work on automatic

-124-

programming, he frequently reads about the contributions

of A. A. Lyapunov, his pupils, and collaborators; and,

indeed, the mathematical theory herein surveyed is due to

them. Turski writes in [33]: "It seems that apart from

several interesting exceptions ... all major work on auto­

matic programming in the USSR is done in notation, and

uses concepts and definitions conceived by Lyapunov's team."

Again, A. P. Ershov is the author not only of [10], [11],

and [12], but also of [6], [8], and [9]. It is well to

observe here that this commitment to the development of

a mathematical theory of programming on the part of inves­

tigators who were also greatly interested in practical

matters did not soon cease: Lyapunov not only began the

investigation in [21], but also initiated a more abstract,

algebraic treatment in [22].

The most important use of operator methods in the

Soviet Union has been for the automation of programming.

By contemporary Western standards much of the labor asso­

ciated with use of a PP must appear primitive in nature.

The already toilsome task of composition of program schemes

in manual programming becomes yet more taxing when the

program is to be composed with the assistance of a PP.

In manual programming the program scheme is an aid. It

serves as a guide to the writing of the program in machine

language, and hence it does not always need to be constructed

in full detail. But a program scheme used as an input to a

-125-

PP represents the programmer's final product. It is the

fruit of his labor. Thus use of PPs further raised the

technical nature of a programmer's work. (In contrast,

in the United States at about the same time, automatic

programming languages such as FORTRAN were being intro­

duced to enable virtually anyone having a moderately

technical background to learn to be a programmer.) More-

over, until quite recently no Soviet-made computer had a

complete alphanumeric input-output system. In fact,

alphanumeric key punchers have been scarce. Thus, generally,

coding has had to be done in machine language encoded in

digits prior to key punching. The machine coding of an

elaborate program scheme increases the chance of the pro-

grammer committing miniscule errors that are hard to detect,

but ruinous.

The method of PPs has not met with unanimous accept-

ance within the Soviet Union. Criticism and an alternate

approach are given briefly in [16]. The PP method has,

however, been one of the principal approaches. Currently

work is being concentrated on various modifications and

extensions of ALGOL [1], [8], [7]. The Soviets regard

the introduction of ALGOL as a major pioneering step in

the development of automatic programming systems. For

example, Ershov states in [12]:

with respect to the language ALGOL 60, it should
be recognized that with its appearance there
ensued a new stage in the development of the
theory and automation of programming and there

I
I

-126-

emerged new levels of ideas and methods. In .
the first place, with the appearance of ALGOL ~
programming really became an international
discipline, not only because ALGOL is used as
a language for expressing algorithms, but also
due to the increase in the general meaning of
results connected with the realization of
ALGOL. Besides, the richness of its means of
representation, the comparative difficulty of
its realization, the general logical level of
the language, in particular the definition of
its syntax have sharply increased the role of
theoretical research in the design of translators.

Programming languages such as ALGOL were developed in

the West and were designed and implemented without relying

on any theory comparable to that deriving from the opera-

tor method. Thus, the major question concerning the

mathematical theory surveyed herein is: If the means of

programming and, in particular, the means of automatic

programming that have been so closely allied in authorship

and direction to the theory surveyed have shifted to the

use of higher level languages utterly independent of the

theory, is the development of the theory to be further

pursued, and, if so, to what end?

The theory has had some effect on automatic program-

ming systems. The Yanov notation is used in defining value

assignments of variables in [16]. Also, it is plausible

that the transformations of Yanov are being used in the

Alpha-translator of the Alpha automatic programming system

developed by A. P. Ershov and his colleagues at Novosibirsk.

In [12], Ershov gives a transcription of the transformations

of Yanov in terms of graph schemes and presents the system

-127-

in connection with the algebraic problems arising in

construction of a translator. In [9], he says in reference

to the Alpha translator: "The main methods of improving

the efficiency of programming are the applications of

formal transformations and a mixed strategy of programming-­

all this as the basis of multiphase translation." In

describing this multiphase translation, he states that

the "work of the translation proper goes from the highest

level language into the lowest one and is followed by a

series of a formal transformation on the lowest level language,

oriented toward the optimization of the object program.''

He proceeds to list five catagories of these optimizing

transformations, and at least some of these categories

could make use of Yanov's work--for example, the category

of eliminating redundant expressions in unbranched parts

of an Alpha program.

As for future practical applications of the theory,

some authors expect big things to come. For example,

Turski in [33] affirms: "There is no doubt when alphanumer­

ical devices become widely available for Soviet-made

computers, the tremendous theoretical work done in that

country will ripen into many interesting automatized

programming systems."

-128-

Irrespective of whether this has been borne out in

the Alpha programming system, we think that this statement

is probably unduly optimistic,at least insofar as the later

theory surveyed in this report is concerned. Thus, it may

well be that Lyapunov in confidently noting the strong

similarity between the transformations that occur in

computer programming and those of the theory of categories

has exaggerated the situation. It would be foolish, however,

to rule out the possibility of the practical relevance of

this work. In this connection, the question arises as to

the possible use in automatic programming of the work of

Glebov on the synthesis of operators of a given class from

measurably simpler operators of that class.

It is also quite likely that Ershov's reformulation

of the notion of algorithm was of use to him in his work

on automatic programming languages. His latest theoretical

efforts are, however, somewhat puzzling. After in [11]

criticizing Yanov's definition of the equivalence of two

algorithms as being too narrow to be of practical value

and proposing an alternate presumably wider definition,

he in [13], so far as can be adduced from [12], works with

Yanov 1 s definition, and derives Yanov's equivalence theorem

-129-

in a graph-theoretic formalism. What is the reason for

this apparent backsliding? Has any research been conducted

connected with decision problems relative to his own

definition?

The most reliable answers to these questions should

probably be obtained from the authors of the papers

reviewed. Otherwise, we will just have to wait and see

if the questions are resolved by the contents of future

publications.

- ..

-131-

REFERENCES

1. Ageev, M. I.~ "Ocnovy Algoritimicheskogo Yazyka Algol-60," Bsychislitelnyj tsentr An SSSR ("The Basis__Algorithmic Language Algol-60," Computing Center of the Academy of Sciences of the USSR), Moskva, 1965.

2. Arsenteva, N. G., "Ob Nekotorykh Preobrazovani Yakh Skhem Programrn," Problemi Kibernetiki, Vol. 4, Gocy­darstvennoe Izdalelstvo Fizico41atematicheskoj

/

Literatury, Fizmatgiz, Moskva, 1958, pp. 59-68. Translation: "Some Transformations of Program Schemes," Problems of Cybernetics, Vol. 4, Pergamon Press, New York, 1962, pp. 1201-1211.

3. Birkhoff, G., Lattice Theory, revised edition, American Mathematical Society Colloquium Publications~ Vol. XXV, American Mathematical Society, New York~ 1948.
4. Daugvet, 0. K. , I. V. Klokachev, and L. A. Pykhovets, "Ob Automatizatsii Programmirovaniya," Leningrad Engineering-Economics Institute Imeni Palmira Togliatti, VoL 98, pp. 262-26 7.

5. Davis, M., Computability and Unsolvability, McGraw-Hill Book Company, Inc., New York, 1958.

7. Ershov, A. P., G. I. Kozhukhin, U. M. Voloshin, Input Language for Automatic Programming Systems, translated with Introduct1on by R. W. Hackney, Academic Press, New York, 1963.

8. Ershov, A. P., et aL, Alpha Sistem Avtomatizatsii Pro:rammirovaniya (The Alpha System of Automatic Pro_ramming), Novosibirsk, 1965.

9. Ershov, A. P., "Al~ha-:An Automatic Programming System of High Efficiency, ' Journal of the Association of Computing Machinery, Vol. 3, No. 1, 1956, pp. 17-24.
10. Ershov, A. P., "Operatorny Algorifmy I," Problemi Kibernetiki, Vol. 3, Fizmatgiz, Moskva, 1960. Translation: "Operator Algorithms I," Problems of Cybernetics~ Vol. 3, Pergamon Press, New York, 1962, pp. 697-763.

11. Ershov, A. P., "Operatorny Algorifmy II (Opiranie Osnovnykh Konstryktsij Programmirovaniya)," Problemi Kibernetiki, Vol. 8, Fizmatgiz, 1962, pp. 211-234. Translat1on:

-132-

"Operator Algorithms II (Basic Programming Construc­
tions)," Problems of Cybernetics, Joint Publications
Research Service, Department of Commerce~ Washington,
D.C., 1964, pp. 377-407.

12. Er shov. A. P. , "Nekotorpye Voprosy Teorii P.rogrammiro­
vaniya i Konstryirovaniya Translyatorov" ("Some
Questions in the Theory of Programming and the
Construction of a Translator"), Abtorefevat Dissertatsii,
Novosibirsk, 1966.

13. Ershov, A. P., "Operatorny Algoritmy III (Ob Operatonykh
Skhemakh Yannova)," Problemi Kibernetiki (v pechati).
Translation: "Operator Algorithms III (On the Operator
Schemes of Yanov), 11 Problems of Cybernetics (in press).

14. Glebov, N. I., "Sintez Operatorov," Problemi Kibernetiki,
Vol. 8, Fizmatgiz, Moskva, 1962. Translation:
"Synthesis of Operators," Problems of Cybernetics,
Joint Publications Research Service, Department of
Commerce, Washington, D.C., 1964, pp. 191-200.

15. Glebov, N I., "Ob Algebraickeskoj Ekvivalent Nosti
Podmnozhestv Kategorii," Problemi Kibernetiki, Vol. 8
Fizmatgiz, Moskva, 1962, pp. 201-210. Translation:
110n Algebraic Equivalence of Subsets of Categories,"
Problems of Cybernetics, Vol. 8, Joint Publications
Research Service, Department of Commerce, Washington,
D.C., 1964, pp. 358-376.

16. Glushkov, V. M., "Ob Odnom Metode Automatizatsii
Programmirovaniya," Problemi Kibernetki, Vol. 2,
Fizmatgiz, 1959, pp. 181-184. Translation: "On a
Method of Automatic Programming," Problems of
Cybernetics, Vol. 2, Pergamon Press, New York, 1961,
PP· 529-533.

17. Iliffe, J. K., "The Use of the Genie System in Numerical
Calculation," Annual Review in Automatic Programming,
Vol. 2, edited by Richard Goodman, Pergamon Press,
New York, 1961, pp. 1-28.

18. Kaluzhnin, L.A., "Ob Algoritmizatsii Matematicheskikh
Zadach, 11 Problemi Kibernetiki, Vol. 2, Fizmatgiz,
1959, pp. 51-68. Translation: "On the A1gorithmiza­
tion of Mathematical Problems," Problems of Cybernetics,
Vol. 2, 1961, pp. 371-391.

-133-

19. Kamynin, S. S., E. z. Lyubimskii, and M. R. Shura-Bura,
"Ob Automatizatsii Programmirovanniya Pri Pomoshchej
Prograrnmuruyushchej," Problemi Kibernetiki, Vol. 1,
Fizmatgiz, pp. 135-171. Translation: "Automatic
Programming with a Programming Program," Problems of
Cybernetics, Vol. 1, Pergamon Press, New York, 1960,
pp. 149-191.

20. Kitov, A. I., and N. A. Krinitskij, Elektronnye Tsifrovye
Mashiny i Programmirovanie (Electron1c D1g1tal
Computers and Programming), Fizmatgiz, Moskva, 1961.

21. Lyapunov, A. A., "O Logicheskikh Skhemakh Programm,"
Problemi Kibernetiki, Vol. 1, Fizmatgiz, Moskva,
1958, pp. 46-74. Translation: "The Logical Schemes
of Programs," Problems of Cbbernetics, Vol. 1,
Pergamon Press, Oxford, 196 , pp. 48=81.

22· Lyapunov, A. A., "K Algebraickeskoj Traktovke
Programmirovaniya," Problemi Kibernetiki, Vol. 8,
Fizmatgiz, Moskva, 1962, pp. 235-242. Translation:
"Algebraic Treatment of Programming, 11 Problems of
Cybernetics, Vol. 8, Joint Research Publications
Service, Department of Commerce, Washington, D.C.,
1964, pp. 408-422.

23. Markov, A. A., Theory of Algorithms, Works of the
Mathematical Institute V. A. Steklov XLII, published
by the Academy of Sciences of USSR, Moscow, 1954.
Translation published for the National Science
Foundation, Washington, D.C., by the Israel Program
for Scientific Translations, 1961.

24. Ter Mikaelyan, T. M., 110 Programmakh s Izmenyayushchimsya
Poryadkom, Vypolneniya Tsiklov 11 ("On Programs with a
Varying Order of Execution Cycles"), Problemi Kibernetiki
Vol. 12, "Nauka,'' 1964.

25. Minsky, M., "Recursive Unsolvability of Post's Problem
of Tag and Other Topics in the Theory of Turing
Machines," Annals of Mathematics, Vol. 74, No. 3,
1961, pp. 437=455.

26. Northcott, D. G., An Introduction to Homological Algebra,
Cambridge University Press, London, 1960~-

27. Podlovchenko, R. I., "Ob Ocnovnykh_Ponyatiyakh
Programmirovaniya, I," Problemi Kibernetiki, Vol. 1,
Fizmatgiz, 1958, pp. 128-134. Translation: "On the
Basic Principles of Programming, I," Problems of
Cybernetics, Vol. 1, Pergamon Press, Oxford, Paris,
New York, 1960, pp. 141-148.

-134-

28. Podlovchenko, R. I., "Ob Ocnovykh Ponyatiyakh
Progrannnirovaniya, II," Problemi Kibernetiki, Vol. 3,
Fizmatgiz, Moskva, 1960, pp. 123-138. Translation:
"The Basic Principles of Prograrrnning, II, "Problems
of C~bernetics, Vol. 3, Pergamon Press, Oxford, 1962,
pp. 85-907.

29. Podlovchenko, R. I., "O Preobrazovaniyakh Skhem
Progrannn i Ikle Premeni v Progrannnirovanii"
("On the Transformations of Program Schemes and
Their Application to Programming"), Problemi
Kibernetiki, Vol. 7, Fizmatgiz, Moskva, 1962,
pp. 161-188.

30. Rice, H. G., "Classes of Recursively Enumerable Sets
and Their Decision Problems, "Transactions of the
American Mathematical Society, Vol. 74, No. 2,
1953, pp. 358-366.

31. Rutledge, J. D., "On Yanov' s Program Schemata,"
Journal of the Association for Computing Machinery,
Vol. 10, No. 2, 1964, pp. 1-9.

32. Shepherdson, J. C., and H. E. Sturgis, "Computability
of Recursive Functions," Journal of the Association
for Computing Machinery, Vol. 10, No. 2, 1963,
pp. 217-255.

33. Turski, W., "Some Results of Research in Automatic
Programming in Eastern Europe," Advances in Computers,
edited by F. L. Alt and M. Rubino££, Academic Press,
New York, 1964, pp. 23-108.

34. Wang, H., "A Variant to Turing's Theory of Calculating
Machines," Journal of the Association for Computing
Machinery, Vol. 4, 1958, pp. 63-92.

35. Yanov, Yu. I., 110 Logicheskikh Skhemakh Programm,"
Problemi Kibernetiki, Vol. 1, Fizmatgiz, Moskva,
1958, pp. 46-74. Translation: "The Logical Schemes
of Algorithms," Problems of CKbernetics, Pergamon
Press, Oxford, 1960, pp. 82-1 0.

36. Zaslavskii, I. D., "Graf-Skhemy s Pamyatyii" ("Graph­
Schemes with Memory"), Matematychesko~o Instuta
Imeni V. A. Steklova, LXXII, pp. 99-1 2.

RM

5424

PR

