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PREFACE

This Memorandum treats five different problems in-

volving the determination of the shortest path through a

discrete network. Previous important results are reviewed,

and misleading procedures are identified and (in some

cases) modified. Conclusions are drawn and recommendations

are made concerning efficient algorithms.

This work forms a part of RAND's continuing interest

in problems and techniques in optimization theory.

The author, a member of the Industrial Engineering

faculty at the University of California, Berkeley, is a

consultant to the Computer Sciences Department of The

RAND Corporation.

No-
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SUMMARY

This Memorandum treats five discrete shortest-path

problems: 1) determining the shortest path betwec two

specified nodes of a network; 2) determining the shortest

paths between all pairs of nodes of a network; 3) determ-

ining the second, third, etc. shortest path; 4) determining

of the fastest path through a network with travel times

depending on the departure time; and 5) finding the shortest

path between specified endpoints that passes through speci-

fied intermediate nodes. Existing good algorithms are

identified while some others are modified to yield ef-

ficient procedures. Also certain misrepresentations and

errors in the literature are demonstrated.

II
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I. INTRODUCTION

In the never-ending search for good algorithms for

various discrete shortest-path problems, some authors

have apparently overlooked or failed to appreciate previous

results. Consequently, certain recently reported pro-

:cdurcc are inferlor to older ones. Also, occasionally,

inefficient algorithms are adapted to new, generalized,

problems where more appropriate modifiable methods al-

ready exist. Finally, the literature contains some

erroneous procedures. In this Memorandum, we shall briefly

consider various versions of discrete path problems in

the light of known results and some original ideas, and

summarize our conclusions and recommendations.

The reader should realize that our observations are

by no means definitive or final. Despite this fact, it

is hoped that our somewha>skeptical survey of current

literature will put the interested reader on guard and

perhaps save him, or his digital computer, considerable

time and trouble. Since our objective is more to alert

than to resolve conclusively, this Memorandum is informal

and, at times, cryptic. We hope that even our most laconic

remarks will become insightful for any reader deeply in-

volved with the particular procedure.
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II. THE SHORTEST PATH BETWEEN A SPECIFIED PAIR OF NODES

Given a set of N nodes, numbered arbitrarily from

1 to N, and the NxN matrix D, not necessarily synmetric,

whose element dii represents the length of the directed

arc connecting node i to node J, find the path connecting

node 1 and node N of shortest length. We assume initially

that dii 6 and d 2 0. If there is no arc directed

from node i to node J, then dij = , or, for purposes of

digital computation, dij is taken large.

It appears that the computationally most efficient

procedure was de.cribed first by Dijkstra [i in 1959,

and in 1960 by Whiting and Hillier. The algorithm assigns

tentative labels, which are upper bounds on the shortest

distance from node 1, to all nodes; after repeating the

fundamental iterative scep described below exactly one

time for each node, the tentative node labels are all

permanent and represent actual shortest distances. Init-

ially, node I is labelled with the permanent value 0, and

I am indebted to J. D. Murchland for pointing out

this reference to me. I would appreciate being told of

any even earlier reference for this algorithm or any other

one appeaiing in this Memorandum.
tSee Ref. 2, last paragraph beginning on p. 39.
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all other nodes tentatively are labelled *. Then, one

by one, each node label except that at node 1 is compared

with the sum of the label of node I (i.e., 0) and the

direct distance from node I to the node in question. The

smaller of the two numbers is the new tentative label.

Next, the smallest of the N-1 tentative labels is de-

termined and declared permanent. Suppose that node k is

the one permanently labelled. Then, one at a time, each

of the remaining N-2 tentative node labels is compared to

the sum of the label just assigned permanently to node k

and the direct distance from node k to the node under

consideration. The smaller of the two numbers becomes the

tentative label. The minimum of the N-2 tentative labels

is determined, declared permanent, and made the basis of

another modification of the remaining tentative labels

of the type described above. When, after at most N-1

executions of the fundamental iterative step, node N is

permanently labelled, the procedure terminates. (If the

shortest paths from node 1 to all other nodes are desired,

the fundamental iterative step must be executed exactly

N-1 times.) The optimal paths can easily be reconstructed

if an optimal policy table (in this case, a table indicating

the node from which each permanently labelled node was

labelled) is recorded. Alternatively, no policy table
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need be constructed, since it can always be determined

from the final node labels by determining which nodes

have labels that differ by exactly the length of the con-

necting arc.

This algorithm requires N(N-l) additions and N(N-l)
2

comparisons to determine all node labels. (N(N-1) addi-• 2

tions and comparisons to compute tentative node labels

during all steps and another N(N-I) comparisons to pick

out the minimum one during all steps.) All steps are

naturally and easily programmed except that of recognizing

and acting on the basis of which nodes are permanently

labelled and which are tentatively labelled. Some com-

putational experimentation indicates that an efficient

way to treat this consideration is to attach to each node

an index number which is changed from 0 to I (say) when

a node label becomes permanent. When branching out from

a just-permanently-labelled node, the index of the destina-

tion node is consulted as each outgoing arc is considered.

If the index is zero, the temporary label of the destination

is reduced, if appropriate. At the same time, memory cells

containing the smallest temporary label encountered thus

R. L. Mobley very ably programmed this and all other
computational experiments mentioned herein.

I
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far during the branching and the associatcd ;estination

node are modified if appropriate. This programming device

2requires (N-i) comparisons to consult #he indices. Hence,

2 2
a total of about N /2 additions and 2N comparisons are

needed, averaging out to about 3N 2/2 additions and

comparisons.

The first procedure described in Ref. 2, and also

derived independently by Dantzig [3], results in less addi-

tions and comparisons than the above algorithm but involves

ordering, from shortest to longest, the arcs out of each

node, and cancellations in such lists. Since merely

ordering N-I numbers involves on the order of N log 2 N

comparisons, and this must be done at N-i nodes, it appears

that merely the preparation of the data eliminates this

procedure from contention in all but special situations.

Pollack and Weibenson describe and credit to Minty

a systematic and easily progra med permanent label-setting

precursor of the above methods. The method, perhaps the

first permanent label setting procedure, is probably due

originally to Ford and Fulkerson [5' who developed the

algorithm for a more general flow problem, of which the

shortest-path problem is a special case requiring fastest

* See Ref. 4, p. 225.

e"
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flow of one item. In Routine 1 on p. 422 of Ref. 5, if

the times tij are distances and the ccpacities cij are

all arbitrarily set equal to 1, the node aumber vis
when i is labelled, is the shortest distance from P to

0

i. (The actual label of node i is [the node previous

to i i the shortest path tc i, 1] and is irrelevant.)

By increasing the v's associated with unlabelled nodes

by an amount chosen so that one more node can be labelled,

rather than increasing them at each iteration by one, the

'inty algorithm" is obtained. The method requires

approximately N3 /6 addizions and comparisons for solving

the shortest-path problem and hence is not recommended.

Some authors have proposed simultaneously fanning out

frum both endpoints as a means of reducing computation.

This advice is sometimes accompanied by the false asser-

tion that when, for the first time, some node is per-

ma-aently labelled in both fans, the optimal path is

determined and goes through that node [6,7]. In the

problem depicted below, if the Dijkstra scheme is first

used to vermanently label the node nearest A reachable

from A, then the node nearest B from which B can be

reached, then the second closest to A, etc., the node C

is p~rmanently-labelled both "out from A" and "into B"
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after two applications of the procedure at each end,

yet ACB is not the shortest path.

D 3

A

C

When the correct stopping procedure given cryptically

by Nicholson [8] and explained clearly by Murchland [9]

is used, the least upper bound on the computation re-

quired by a two-ended procedure exceeds that for the one-

ended Dijkstra algorithm. This is because, as more nodes

become permanently labelled in the Dijkstra procedure, a

decreasing number of additions and comparisons are needed

to modify all tentative labels. As a result, determining

N3 *
the first Y permanent labels requires roughly -ths the

5

This number is empirical. Theory based on addition

and comparison count predicts about 2/3rds, but machine-
dependent and programming-language-dependent details such
as how and when various address modifications are computed
can cause significant variations in actual computation
times. Clearly the first half of a problem requires more
than half the work of complete solution, which is the
important point.
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work of the complete solution. If the Nicholson stopping

Ncondition is satisfied considerably before T nodes have

been permanently labelled from each terminus, a savings

may accrue; but, in a case where close to all N nodes

must be permanently labelled from either one end or the

other, the two-ended procedure will prove inefficient.

All the above methods require that all elements of

D be non-negative. A related problem assumes that some

d are negative, but that the sum of the d around any
ii ij

loop is positive. (The problem has no solution if nega-

tive loops exist and are allowed to be included in paths.

The problem is very difficult and no satisfactory algo-

rithms are known if negative loops exist and the restric-

tion is made that no node can be visited more than once.)

While better methods for this problem probably are forth-

coming, the author recommends the following iterative

procedure, variations of which have been proposed,

originally for the problem with dii > 0, by Ford [10],

Moore [11], Bellman [12], and undoubtedly others. This

procedure repeatedly updates all node labels (which, for

the initial condition given in Eq. (1), represent, at

iteration k, the lengths of the shortest paths connecting

node I and the labelled nodes containing k+l or less arcs) 4
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and none are considered final until all are. If f(k)
i

represents the label of node i at iteration k, the funda-

mental recursion is

f(k+l) - mind + f(k)] ()i ji i

f(O) di
F lio

For the case d 0, convergence occurs whenever f =)ii i
f k+l) for all i, or ifter N-2 iterations if the former
i

situation does not occur sooner (since no shortest path

contains more than N-1 arcs). If (N-2) iterations are

required, (N-2)(N-l)2 additions and compariLons take place.

The method is inefficient for the positive-distance prob-

lem if 2 or more iterations of equation (1) are needed;

and, unless all N-2 iterations are required, as many

iterations will be needed as the number of arcs in the

shortest path from node 1 to node J, where node j is the

node whose shortest path has the greatest number of arcs.

In a personal communication, C. Witzgall points out
that for networks with far less than the allowable N(N-1)
arcs, the Ford iterative procedire [10] may be superior to
Dijkstra's. This is because the Dijkstra algorithm, even
in this case, must check indices distinguishing permanent
from temporary labels for N-i nodes at ach of N-I itera-tions and hence requires at least (N-I)' comparisons
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(Convergence may be enhanced, and cannot be slowed, by

using f (k+l) on the right in Eq. (1) as soon as it has

been computed. However, given any such immediate up-

dating scheme, examples can be constructed where no im-

provement in rate of convergence results.) When the above

procedure it applied to the problem with some negative

dii, either convergence will occur for k ' N-l, indicating

no negative cycles exist and the solution is optimal, or

a change in some fi will occur on the (N-1)st iteration,

indicating the existence of a negative loop.

The above straightforward and easily programmed pro-

cedure appears slightly preferable to that given by Dantzig

[13]. His scheme is unesthetic to prove, unstraight-

forward to program, and involves kN3 (0 < k < 1) additions

and comparisons, even when the labelling of the set T (see

his Theorem 4) is carried out in the efficient fashion of

Dijkstra, described above in a 4ifferent context. Dantzig's

own bound, based on the admittedly misleading assumption of

effortless sorting, is N 3/2 (his Eq. (17)).

Interestingly, the two procedures recommended below

for solving the shortest route problem for all pairs of

no matter how few arcs are present; while one updating of
all node labels by Ford's procedure involves only as
many additions and comparisons as there are arcs.



nodes easily detect negative loops, if such exist for

the problem with some dij < 0, and are in some cases more

efficient for detecting negative loops than the scheme

described above. However, they are never more efficient

for establishing the optimal path between a particular

pair of nodes if there are no negative loops.

t
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III. THE SHORTEST PATHS BETWEEN ALL PAIRS OF NODES

OF A NETWORK

Two somewhat different, but equally elegant and

efficient, algorithms are recommended. One was published

without comment as an obscure 9-line ALGOL algorithm in

1962 by Floyd (14) based on a theorem by Warshall [15]

and was rediscovered and appropriately extolled in 1965

by Murchland [16]. The other was produced in 1966 by

Dantzig [17]. Since both require exactly the same number

of calculations--N(N-2)(N-2) additions and comparisons for

the case d z 0--are easily proved and programmed, and

culminate a steady progression of successive improvements

([18]. [12], [19], [20); actually [14] precedes the in-

ferior algorithm of [20]), there is good reason to believe

that they are definitive. While it is recommended that

the reader consult the primary sources cited above, we

shall give very brief descriptions.

The Floyd procedure builds optimal paths by inserting

nodes, when appropriate, into more direct paths. Starting

with the NxN matrix D of direct distances, N matrices are

constructed sequentially. The kth such matrix can be

interpreted as giving the lengths of the shortest allowable

paths between all node pairs (ij) where only paths with

(.I
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intermediate nodes belonging to the set of nodes numbered

from I through k are allowed. The (k+l)st matrix is con-

structed from the kth by using the formula

F(k+l) (k) d(k) + (k)]

ij [ij , ik+l +l;ij

d(O)- dij i

Here, k, which is initially zero, is incremented by 1

after i and j have ranged over the values 1,...,N and

k - N-i at termination. To see wLy this procedure is

valid, suppose the shortest path from node 8 to node 5

is 8 - 3 - 7 - 1 - 9 - 5. Iteration 1 will replace d79

by d71 + d19 , iteration 3 will replace the current value

of d87 (which may or may not be the original value) by

d83 + d37 (the optimal value) iteration 7 will replace

the current d8 9 by d8 7 + d79 (where these numbers are the

optimal values as computed above), and iteration 9 will

obtain for d85 the sum of d89 and d95 when d89 is as

computed at iteration 7. Hence, the correct shortest

distance is obtained. (The above indicates the proof

but of course is not one.) A minor modification involving

consideration of diagonal elements yields correct results 4.
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when some dij are negative but no negative loops exist,

as well as an indication of such if negative loops do

exist. An additional advantage of this procedure is that

N-1 additions and comparisons are easily circumvented

whenever an element d(k) equals infinity in (2) (i.e.,
i,k+l

no path exists connecting nodes i and k+l with only nodes

1 through k as intermediate nodes). As in the case of

the particular initial-terminal pair problem, an optimal

policy table (matrix) associating with the initial-terminal

node pair (ij) the next node along the best path from

i to j can be developed during the computation, or can be

deduced from the final shortest-distance matrix.

Dantzig's scheme generates successive matrices of

increasing size. At the kth iteration a kxk matrix is

produced whose elements are the lengths of the shortest

paths connecting nodes i and J, iel,...,k, J=l,...,k,

which contain only nodes numbered between 1 and k as

intermediate nodes. Given the kxk matrix D(k) with

elements d(k) as defined above, D(k+l) is computed as follows:

The additional computation introduced in order to
test for the presence of infinities adds about 5 percent to
the computing time. For a sample problem with 10 nodes and
34 arcs and, hence, 56 infinities initially, the test yielded
a 5 percent net improvement over no test. The amount of net
improvement or degradation depends on the actual network
configuration as well as the number of non-existent arcs... ~I
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1. Compute d(k+l) for i-Il,...,k by
i ,k+1

d(k+l) - idn [d (k) + d k 1  and similarly compute
i,k+l 1jkL 1  ,k+ d k+li"

(dk~li

2. Compute d(k+l) for il,...,k, J-l,o.,k by
ij

d(k+l) - d(k) I (k+l) + ( ]k+l)

ii ' i,k+l

That the d(k) yielded by the above steps are as previouslyij

defined is obvious after a little thought. (A proof is

given in Ref. 17.) If all distances are positive,

d(k) - 0 for all i and k. If not, d can be easily com-
ii ii

puted and if any d(k) is negative, a negative loop exists.ii

It does not appear that the above algorithm can exploit

non-existent arcs in a manner similar to Floyd's.

If the above algorithms, requiring N(N-1)(N-2) addi-

tions and comparisons, are indeed as efficient as possible,

then the most efficient possible particular-pair algorithm

must require at least (N-I)(N-2) such calculations (assuming,

as was the case in Sec. II, that such procedures must--at

least in the worst case--generate best paths from the

initial node to all other nodes). The best algorithm of

,i
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Sec. II, that which required no elaborate data-preparation

or list keeping, involves about 3N 2/2 additions and com-

parisons. This gives, as a reasonable upper-bound estimate

of potential future improvements for the particular-pair-

of endpoints problem, a reduction in computation time of

33 percent. Computational experiments have confirmed that

computing optimal paths between all pairs of nodes by means

of N applications of the Dijkstra method requires one and

one-half-times the time consumed by either of the above

algorithms specifically solving the all-pairs problem.

Viewed from the perspective of a combinatorialist, the well

is rather dry. (Such is not the case for the N3 procedure

recommended above for the problem with negative distances.)

I
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IV. DETERMINA.10N OF THE SECOND SHORTEST PATH

Sometimes it is desirable to know the value of the

second (and third, etc.) shortest path through a network.

For example, suppose that some complex quantitative (or

even qualitative) feature characterizes paths, and the

shortest path possessing this additional attribute is sought.

By ignoring the special aspect in question and ordering

paths from shortest to longest, the best path with the

additional feature can sometimes be determined fairly

efficiently.

In what follows, we shall initially restrict our

attention to the problem of determining the second-best

path between a specified initial node 1, and a specified

destination, N. Then, conclusions will be drawn for more

general problems. Two paths which do not visit precisely

the same nodes in the same order are considered different.

We exclude consideration of ties in our discussion by

assuming, for simplicity, that all paths have different

values. A path with a loop is considered an admissible

path, and indeed such a path can be second best, even for

problems with all d j > 0. Even node N may be visited

twice along the second-best path.
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The earliest good algorithm known to this author was

proposed by Hoffman and Pavley [21). A deviation from the

shortest path was defined to be a path that coincides with

the shortest path from its origin up to some node j on the

path (j may be the origin or the terminal node), then

deviates directly to some node k not the next nude of the

shortest path, and finally precedes from k to the fixed

terminal node via the shortest path from k. The second

shortest path between specified initial and terminal nodes

is shown in Ref. 21 to be a deviation from the shortest path.

To solve the problem posed above, first the shortest paths

from all initial nodes to the specified destination are

determined by any efficient algorithm. Then, all devia-

tions from the shortest path between the specified origin

and terminus are determined, evaluated, and compared, and

the best noted. If the average node has M outgoing links,

and the average shortest path contains K arcs, an average

problem is solved in approximately MK additions and com-

parisons beyond those required for solution of the shortest

path problem.

Suppose second-shortest paths from all nodes to the

specified terminal node N are sought. Then the following

modification of the Hoffman-Pavley method [21] seems ap-

propriate. After solving the shortest-path problem,
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determine VN, the length of the second-shortest path from

N to N (it may be w), by considering all deviations at N

plus best paths to N. Then, for each node k whose shortest

path to N contains only one arc, compare (a) the length of

the shortest path deviating at k and (b) d W + vN. The

minimum of these two quantities is Vk, the length of the

second-shortest path from that node. Then, consider all

nodes j which are two arcs from N via the shortest path.

For each, compare (a) the length of the shortest path

deviating at j and (b) the length of the arc out of J

which is the first arc of the shortest path from j to N

plus v evaluated at the terminal node of that arc. The

minimum value is vj. Repeat this iterative process until

all nodes are labelled. Note that the iteration is per-

formed on an index representing the number of arcs in the

shortest path from each node. This procedure requires about

MN additions and comparisons.

Reference 22, published subsequently to method 1 above,

gives a seemingly different procedure. Define ui as the

length of the shortest path from node i to a specified

terminal node N and vi as the length of the second shortest

th
path. Define mink (xl,...,Xn) as the k smallest value

of the quantities xi. Then, according to Ref. 22, vi is

characterized by the equation
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min2 (dj + uj)-
j i

v- - , nI1..,- m
amini (dij + vi)

ijoi

(3)

vN = min1  i +ui]
-- .L..

(The ui are computed first, as in method 1, by any efficient

procedure.)

The term min2 (dij + u j) determines the value of the

best path originating at node i and deviating from the

shortest path at that node i. The term minl(dij + vj)

determines the best path consisting of any first arc plus

the second best continuation. What was not noted by the

originators of the method or by Pollack [23] is that if

the minimizing node in the min1 operation is not k (the

next node of the already known shortest path from i) but

some other node p, then dip + up (an admissible solution

to the min2 expression) is less than dip + vp (since

Up <vp). Since the term minI(dij + vj) can only yield

the overall minimum in Eq. (3) if j - k, where k is the

node after i on the shortest path from i, the min1 term

in Eq. (3) can be replaced by merely dik + vk. After
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this reduction by a factor of 2 in required computation,

we can calculate the method's approximate computational

requirements. Bellman and Kalaba [22] recommend solution

of Eq. (3) by an iterative procedure, where v is super-

scripted on the left by (k + 1) and vj on the right by (k).

Defining h and N as above and L as the ave-:age number of

iterations until convergence of the iterative solution of

Eq. (3), the method requires NML additions and comparisons

on the average. L is less than N-1 and may be as large as

the number of arcs in the shortest path containing the most

arcs. However, after replacing the min term in Eq. (3)

by di + vk as discussed above, solution can be obtained

by a one-pass scheme first labelling nodes one-arc-by-

shortest-path from N, then two-arcs-by-shortest-path etc.

This reduces the Bellman-Kalaba [22] procedure to precisely

the modified Hoffman-Pavley [21] algorithm recommended above.

Tn summary, if only the second shortest path connect-

ing a particular pair of nodes is desired, method 1 above

is clearly the best since it requires MK calculations

compared to MN for method 2, whict- Ave the all-

initial-node problem in order to solve the particular-

initial-node case. If problems involving all nodes as

initial nodes and a fixed terminal node are to be solved,

the methods as modified in this Memorandum are equivalent.

'"WNW
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These conclusions strongly contradict those of Pollack's

paper [23].

For determination of the third shortest paths from

all initial nodes to N we recommend the following generaliza-

tion of the above procedure. If wi represents the length

of the third shortest path from i, then

dik + wk
w i = rain dA+wk(4)min 2 [dij + u (

Lji

if a single node k follows i along both the first and

second shortest paths. If k is the node following i on

the shortest path and m is the node following i on the

second shorrest, then

dik + vk

w mi min dim + Vm (5)

min 3 [dij + uj]

j 0

The function wi can be computed node-by-node by first com-

puting w at nodes that are one arc from N via the shortest
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path, then two arcs, etc. This one-pass procedure

th
generalizes to the n best path problem, because the

same function appears on the left and right in the

appropriate equation of the type of Eq. (4) above only if

ththe p best path from i for p-l,... ,n-i all go to the

same second node.

- -- - -- -~ - - -- -~-- I ~
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V TIME-DEPENDENT LENGTHS OF ARCS

At least one paper [24) has studied the problem of

finding the fastest path between cities where the time

of travel between city i and city j depends on the time

of departure from city i. When t is the time of departure

from city i for city J, let dij (t) denote the travel time,

(If travel schedules are such that a delay before departure

decreases the time of arrival, dij (t) represents the

elapsed time between time t and the earliest possible

time of arrival.) This model has applications in the areas

of transportation planning and communication routing.

Cooke and Halsey [24] define fi(t) as the minimum time of

travel to N, starting at city i at time t, and establish

the formula

fi(t) -rmin [dij(t) + fj(t + d jt) (6)

joi
- mi (6

fN (t) - 0

In more realistic communication routing problems,
links are sometimes unavailable due to failure or over-
loading. Adaptive routing techniques that adjust to net-
work changes are studied in Refs. 25 and 26.

. .i
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Assuming all the dij(t) are defined at, and take on,

positive integer values, an iterative procedure is given

for finding the quickest paths from all cities to city N,

starting at city i at time 0. Defining T to be the maxi-

mum taken over all i of diN(O) (a smaller T can be de-

termined, at some inconvenience, if this number is infli.te),

and assuming all cities are connected at all times (pei'v,ps

by links taking infinite time), the procedure requires at

2 2
most N T additions and comparisons.

We wish to point out here that this problem can be

solved by the method by Dijkstra [1] discussed in Sec. II

above just as efficiently as can the problem where the

times (or distances) are not time-dependent. Also, the

restriction to integer-valued times can be dropped and

any real-valued times can be treated. Define the tentative

node (city) label fi to be an upper bound on the earliest

time of arrival at node i, and permanent labels to be

earliest possible (optimal) times-of-arrival. Firat,

permanently label node i (the initial node) zero and all0

other nodes infinity. Next, tentatively label all nodes j

with the minimum of the current node label f and the sum

of fi and di (fi Then, find the minimum, non-p n , Ipermanent node label, say fk, and declare it permanent. :
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(fk is the earliest possible time of arrival at node k,

leaving node i at time 0.) Node k is then used to0

possibly reduce the labels at all tentatively labelled

cities, by comparing fk + dkj (fk) to the current label,

and the minimum new temporary label is made permanent,

2 N 2
etc. After at most N comparisons and y- additions, city

N is labelled, and the quickest paths, leaving i at time0

0, to all nodes, including N, are determined. As is the

case for the closely related Dijkstra procedure El],

about 3N 2/2 additions and comparisons are required when a

method of distinguishing temporarily from permanently-

labelled nodes is implemented. If quickest paths from all

cities to N are desired, the algorithm must be repeated

N-1 times; but, even then, the procedure compares quite

favorably, with respect to both required assumptions and

computation, with the Cooke-Halsey algorithm [24].
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VI. SHORTEST PATHS VISITING SPECIFIED NODES

Given a set of N nodes and distances d j a 0, suppose

it is desired to find the shortest path between nodes 1

and N which passes through the k-i nodes 2, 3,...,k < N-i,

called "specified nodes." A simple, but completely

erroneous, solution of this problem was reported by Saksena

and Kumar E27]. Noting this, we wish to give a solution

method.

The fallacy in Ref. 27 is the assertion (subject to

a proviso to follow) that the shortest path from a specified

node i to N passing through at least p of the specified nodes

enroute is composed of the shortest path from i to some

specified node j followed by the shortest path from j to N

passing through at least p-r-l specified nodes, where r is

the number of specified nodes that turn out to lie on the

shortest unrestricted path from i to J. Saksena and Kumar

[271] erroneously assert that this is true provided--should

specified nodes occurring on the shortest path from i to

j also lie on the continuation path from j to N and there-

fore be counted twice--that at least p distinct specified

nodes lie on the path. Should some candidate path corres-

ponding to some j violate the duplication of nodes proviso

above, that possibility is inadmissible and going initially

from i to J is dropped from consideration. The procedure

J,
.*
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fails to note chat, in this case, some less short continua-

tion from j passing through at least p-r-1 specified nodes

and avoiding duplication of nodes may yield a better path

than the best remaining path satisfying the conditions de-

scribed above. For example, in the network shown below,

with all nodes considered specified, suppose we seek the

best path from 1 to 5 passing through at least two inter-

mediate nodes.

3

II 2 3s
4 The best path from 1 to 4 has length 3 and passes through

no nodes enroute, and the best from 4 to 5 passing through

at least one node has length 4; hence, tAis possibility has

length 7. The best path from I to 3 and best continuation

from 3 passing through one node has length infinity (no
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such continuation from 3 exists). The best path from 1 to

2 has length 1 and the best continuation, passing through

one node enroute, from 2 to 5 has length 2 (it returns to

node 1) yielding a sum of 3. However, this possibility is

eliminated by the fact that node 1 is counted twice. The

answer, by the SaKsena-Kumar algorithm [271 would then be

7, the best of the other alternatives. Yet, the path

1-2-3-5 has length 4 and is admissible. This is an example

of a best first portion and a second-best continuation being

optimal. (Or, the same path can alternatively be viewed as

the second-best path from I to 3 followed by the best con-

tinuation.) No simple modification of the referenced method

seems to handle this kind of situation.

Assuming paths with loops are admissible, the problem

can be correctly solved as follows. First solve the

shortest path problem for the r-rode network fcr all pairs

of initial and final nodes. Let d' represent the length

of the shortest path from node i to J. Then, solve the

(k + l)-city "traveling-salesman" problem for the shertest

path from 1 to N passing through nodes 2, 3,...,k where the

distance from node i to J is d'1. Methods of solution are

discussed by Gomory (281. While there are no easy solutions

for the traveling-salesman problem, it is hard to see how

,i

I?
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the specified-city problem can possibly be any easier

than the traveling-salesman problem of dimension k + I

since if k - N-i it is the traveling-salesman problem.

1i
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VII. CONCLUSION

We have given some observations and recommendations

for computationally treating discrete shortest-path problems

of varying degrees of generality. Our intent has not been

definitive solution, but rather to clear the air by pre-

senting both some important methods and references and some

critical comments and warnings.

i
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