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FOREWORD 

The work reported herein was sponsored by Headquarters,   Arnold 
Engineering Development Center (AEDC),   Air Force Systems Com- 
mand (AFSC),  under Program Element 6240518F,  Project 5730,  Task 04. 

The results of research presented were obtained by ARO,  Inc.  (a 
subsidiary of Sverdrup & Parcel and Associates,   Inc.),   contract opera- 
tor of AEDC,   AFSC,   Arnold Air Force Station,   Tennessee,  under 
Contract AF40(600)-1200.    The research was conducted from May to 
July 1967 under ARO Project RW5711,   and the manuscript was submitted 
for publication on August 28,   1967. 

Publication of this report does not constitute Air Force approval 
of the report's findings or conclusions.    It is published only for the 
exchange and stimulation of ideas. 

E.  L.  Hively Edward R.  Feicht 
Research Division Colonel,  USAF 
Directorate of Plans Director of Plans 
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ABSTRACT 

The mathematical similarity of a problem in one-dimensional 
diffusion in a semi-infinite medium when the diffusion coefficient 
varies linearly with concentration to the problem of the fully devel- 
oped boundary layer between two fluid streams has been demonstrated. 
By applying the von Mises transformation in reverse,  the one- 
dimensional diffusion equation was transformed to the Prandtl boundary- 
layer equations,  which were subsequently transformed to a single non- 
linear ordinary differential equation.    The transformed boundary and 
initial conditions of the diffusion problem were shown to correspond to 
the boundary conditions for the mixing of two uniform fluid streams. 
Numerical results for the diffusion problem were obtained from exist- 
ing solutions to the fluid mechanics problem. 
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NOMENCLATURE 

C Concentration (temperature in the case of heat diffusion) 

D Diffusion coefficient (thermal diffusivity in the case of 
heat diffusion) 

f(n) Nondimensional concentration variable or nondimensional 
stream function 

u Concentration variable or velocity component 

v Velocity component 

x Position coordinate or time 

y Position coordinate 

z Position coordinate or stream function 

a Constant in the linear diffusion coefficient equation 

n Transformation variable 

v 
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v Kinematic viscosity 

T Time 

4/ Stream function 

SUBSCRIPTS 

0 Constant reference conditions 

1 For diffusion problem,   refers to conditions at face of 
slab for T > 0,  and for fluid mechanics problem refers 
to conditions in free stream 

2 For diffusion problem, refers to initial conditions of slab 
for 0 < z < «, and for fluid mechanics problem, refers to 
conditions along the dividing streamline 

VI 
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SECTION 1 
INTRODUCTION 

The purpose of this report is to demonstrate the mathematical 
similarity of a problem in one-dimensional diffusion in a semi-infinite 
medium when the diffusion coefficient depends linearly on concentra- 
tion to the problem of the boundary layer between two fluid streams 
having different velocities. *   The problem of diffusion when the diffusion 
coefficient varies linearly with concentration has been treated by Wagner 
(Ref.   1) and Stokes (Ref.  2).    Both of these solutions,   along with many 
others of interest,   are discussed by Crank (Ref.  3) in his treatise on 
diffusion. 

There are many practical problems where the diffusion coefficient 
varies with the concentration,   and over a limited concentration range, 
the diffusion coefficient can often be reasonably approximated by a linear 
equation in concentration.    For example,  the diffusion coefficient for the 
exchange of lead and silver ions in solid silver chloride as solvent is 
expected to be essentially proportional to the concentration of lead chloride 
(Ref.   1).    Moreover,  there are many practical situations where the thermal 
conductivity may be taken to vary linearly with temperature (Ref.  4). 

The similarity between the boundary-layer equations and the one- 
dimensional unsteady diffusion equation is well known.    Korst and 
Chapman (Ref.  5) linearized the boundary-layer equations and obtained 
solutions for the velocity distribution of a laminar or turbulent free-jet 
boundary problem including an initial boundary layer by making use of 
known techniques for solving the heat diffusion equation.    The transforma- 
tion of von Mises (Ref.  6),  published in 1927,  allows the Prandtl boundary- 
layer equations to be transformed into the unsteady one-dimensional 
diffusion equation.    In this case,  however,  the resulting equation is non- 
linear and corresponds to diffusion in a medium whose diffusion coefficient 
depends on the concentration.    In particular,  the diffusion coefficient 
corresponding to the constant pressure boundary layer must vary linearly 
with concentration. 

It follows that one can apply the transformation of von Mises in reverse 
and,  at least for the case in which the diffusion coefficient varies linearly 

* Although this problem is discussed from the standpoint of the 
diffusion of matter,  it has a counterpart in the diffusion of heat. 
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with concentration,  transform the one-dimensional diffusion equation 
into the Prandtl boundary-layer equations,  which can,   in turn, be 
transformed to a single ordinary differential equation.    The resulting 
ordinary differential equation has been solved and tabulated for a num- 
ber of different boundary conditions; thus,   it is possible to make use of 
existing solutions in fluid mechanics in solving a class of problems in 
concentration-dependent diffusion. 

SECTION II 
THEORETICAL DEVELOPMENT 

The equation for one-dimensional diffusion when the diffusion coef- 
ficient,   D,   is a function of the concentration,   C,   is 

(1) 

c 

T    =    0 

Fig. 1   Coordinate System for Diffusion Problem 

Figure 1 illustrates the coordinate system.    For the case of D = DQC/C , 
Eq.   (1) can be recognized immediately as having the same form as the 
boundary-layer equations in stream function coordinates (the von Mises 
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form of the boundary-layer equation).    However,  for the more general 
ft 

case,  D = D0(l + -=—   C),  it is necessary to make a simple transforma- 
^o 

tion for Eq.  (1) to take the form of the boundary-layer equations.    If 

u = 1 + -p;—   C,   Eq.  (1) becomes co 

I?--»•■£-(■$) (2) 

which now has the form of the boundary-layer equations in stream 
function coordinates. 

The boundary and initial conditions to be considered are as follows: 

at z   -   0 C   =   C3 

as z  =  oo C  -*  Ci 

at T  =   0 C  =  C, 

These conditions correspond to diffusion in a semi-infinite medium 
initially at a uniform concentration C\ and having the concentration of 
its face suddenly changed to C2.    In terms of the new variable (u),  the 
above conditions are: 

T   >    0 (3) 
T   >    0 (4) 
0    <    7.    <    00 (5) 

at z  =   0 u  =   1   +■  a —— =   u2 r  >   0 (6) 

as z   -»  00 1       c* u   -»   1   T   a -=— =   u. r  >   0 (7) 

at r =  0 1       cl u   =   1   +   a —pr- ~   u, 
Co 

0 <   r   <   » (8) 

If Eq.   (2) is considered to be the boundary-layer equation,  the 
boundary and initial condition (Eqs.  (6),  (7),   and (8)) correspond to the 
boundary conditions for the mixing of two laminar streams of fluid 
where T and u are the longitudinal position and velocity,  respectively, 
DQ is the kinematic viscosity,   and z is the stream function.    Here uj 
corresponds to the free-stream velocity of one stream,  and U2 corre- 
sponds to the velocity along the streamline which divides the two streams, 

In order to use a notation that is more consistent with the notation of 
boundary-layer theory,  the following are defined: 

v = D0 

X     =    T 

iff   -    Z 



AEDC-TR-67-200 

Thus,  Eq.  (2) becomes 

with corresponding boundary conditions, 

at \  = 0 u   = Ul 

at i// = 0 u    = u2 

If new variabh es y and v are defined as 

y = tk» 
and 

V    = -m, 
it follows that Eq. (9) can be transformed to 

du u V1 + dx 
v 3u   _ 

dy " "&■ 

with 

dy 
0 

The boundary conditions become 

at x  = 0 u   = "l 

at y  =» 0 u   = Uj 

0  <  ip  < « 

0    <    X      <    « 

(10) 

(11) 

(12) 

(13) 

0   <   y    <   » (14) 
0 < x  < » (15) 

Now Eqs.   (12) and (13) may be recognized as the Prandtl boundary-layer 
equations.    Although it may not be obvious,  the boundary conditions (14) 
and (15) are the boundary conditions for the mixing of two uniform streams 
of fluid having different velocities when ui is the initial velocity of the 
upper stream and U2 the velocity along the streamline which divides the two 
streams.    Figure 2 illustrates the coordinate system and flow field for this 
problem. 

If one defines 

f(»j) = t/yf^r (16) 

where 

1 = yV-£ (17) 

then substitution into Eq.   (12) yields 

IV" + ff" = 0 (18) 

where primes denote differentiation with respect to n. 



en 

U, 

I * 

V 

n 

NOTE:  The x axis is made 
to coincide with 
the streamline 
dividing the two 
streams. 

r 

■+-X 

> 
m 
o 
n 

Fig. 2   Coordinate System for Fluid Mechanics Problem 
o o 
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The corresponding boundary conditions are 

ftO) -- u1/ul (19) 
K0)   = 0 (20) 
ft«) = 1.0 (21) 

u2 
Blasius (Ref.  7) discussed the solution to Eq.  (18) for the case — =0 

ul 
in connection with flow over a flat plate.    Goertler (Ref.   8) obtained a 
power-series solution of Eq.  (18) in terms of a parameter (X),  which is 

u2 
related to — ,   in connection with his study of the turbulent free-jet 

boundary.    Other solutions have been given by Howarth,  Lock,   and Crane 
(Refs.  9,   10,  and 11). 

It can be shown that 
u - u, Hi?) (22) 

and $ = Kq) v'm.x (23) 

Thus <p and u are related parametrically through r\.    In the original 
notation, 

C + Cja 
C, + C0/« 

=   fV (24) 

and 
«/VD„(1   +   §)r  =   «.») (25) 

SECTION III 
DISCUSSION OF RESULTS 

From Lock's investigation of the velocity distribution in the laminar 
boundary layer between two incompressible streams having different 
densities and viscosities,  solutions to Eq.   (18) subject to boundary condi- 
tions (Eqs.   (19) through (21)) for several values of U2/u^ can be deduced. 
It should be noted that Lock's fj and i{ correspond to f and f' of this work, 
respectively.    Figure 3 is a plot of (C + C0fa)KC\ + C0(a) versus 

Z{-\JDO(1 + aCi/C0)r for several values of (C2 + CQfa)((C1 + CQfa) as 
obtained from the tabulated results of Lock (Ref.   10).    Also shown in 
Fig.  3 is the solution of Wagner (Ref,   1) for the case of (C2 + Cja)j 
(Ci + C0/o) = 0. 585,   and it is seen that Wagner's solution does not agree 
with the solution obtained from Lock's results.    Although they are not 
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given here,  numerical results can also be obtained from the solution of 
Crane (Ref.   11) for other values of the parameter [(C2 + C0!a)f 
(Ci + C0/c)] than given in Fig.   3. 

1.0 

a°l 

0.4 0.8 1.2 1.6 2.8 3.2 3.6 

T  -   fro 

Fig. 3   Nondimensional Concentration versus the Nondimensional Position-Time Parameter 

The mathematical similarity of a problem in one-dimensional dif- 
fusion in a semi-infinite medium when the diffusion coefficient varies 
linearly with concentration to the problem of the fully developed 
boundary layer between two fluid streams has been demonstrated.    Numer- 
ical results were obtained from Lock's (Ref.   10) analysis of the laminar 
boundary layer between two fluid streams and are presented in graphi- 
cal form. 

Of particular interest is the disagreement between the solution of 
Wagner (Ref.   1) and the solution obtained here from the results of Lock. 
In order to resolve this discrepancy,  Wagner's differential equation and 
boundary conditions were programmed for solution by the method of Runge- 
Kutta on a digital computer.    It was found that the resulting numerical 
solution was in excellent agreement with the solution obtained from Lock's 
results,  which suggests that Wagner's solution may be in error. 
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