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WIDEBAND ELECTRICAL CHARACTERISTICS 
OF SNALL-DIAMETER INSTRUMENTATION CABLES IN SEAWATER 

Prepared by: 
James E. Cottrell, Jr. 

ABSTRACT: Certain oceanographic applications exist where it is 
desired to transmit data over an electrical cable from sea depths of 
ten to twenty thousand feet. Mechanical handling-packaging and 
streaming considerations limit cable diameter, yet impose severe 
strength requirements. In addition, the amount of information to be 
transmitted dictates a large bandwidth requirement. 

The propagation characteristics of several possible cables are ana
lyzed theoretically, considering the effects of seawater. Accurate 
values of attenuation and characteristic impedance have been deter
mined by IBM 7090 computations and are presented graphically over the 
frequency range from ten cycles to one megacycle. The coaxial line 
has the least attenuation of any configuration; for low frequencies 
the sea-return type is found best, but above about 250 kiloc~cles a 
metallic return offers smaller loss. Small-diameter cables l ~ 0.1 11 ) 

can have losses as high as 4 to 9 db per thousand feet. 

The inclusion of steel in cables for strength was studied for its 
effects on electrical characteristics. The primary result is an 
increase in conductor resistance. Measurements made on samples of 
two steel-bearing lines agreed well with predicted values. A novel 
configuration having a steel braid over a copper shield was designed 
and appears to offer the best electrical-mechanical tradeoff. 

All cables showed wide parameter variations with frequency, therefore 
the suitability of a representative cable for transmission of digital 
signals is briefly investigated. Insofar as receiving amplifier and 
cable noises allow, a method of countering waveform degradation by 
proper cable equalization is shown. 

U. S. NAVAL ORDNAOCE LABORATORY 
WHITE OAK, MARYLAND 
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Wideband Electrical Characteristics of Small-diameter Instrumentation 
Cables in Seawater 

This report discusses the most important of the electromagnetic 
properties of small coaxial transmission lines, both dry and in the 
presence of seawater, and presents methods for calculation of their 
effects. Underlying the approach taken have been the following 
objectives: (1) a general feel for the expected magnitude of 
electrical parameters, (2) prediction of the relative effect of 
changes in dimensions or materials, and (3) determination of suit
ability for data transmission at frequencies up to 1 megahertz. 

This report was originally prepared by the author as a master's 
thesis. For the most part the study is theoretical, although 
supported by experiment where possible. The work was peformed under 
BUWEPS Task No. RUDC-3B-000/212-l/S046-oo-oo. It will be of interest 
to those concerned with data transmission over subminiature cables, 
especially in the presence of seawater. 

E. F. SCHREITER 
Captain, USN 
Commander 
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I. INTRODUCTION 

In certain oceanographic research applications at 

great depths, it is desirable that the cable from which 

the deeply submerged instruments are suspended also be 

used as a communications channel over which data can be 

transmitted to a surface vessel. Conversely, it may also 

be said that the wire(s) used for data transmission should 

also function as a strength member. In either case, if the 

length or strength requirements are high, or the volume of 

information to be transmitted large, or both, the electrical 

and mechanical cable requirements are likely to conflict. 

This is especially true for deep submergence applications 

when the allowable size of the cable is limited, as, e.g., 

to minimize cable underwater streaming. If the cables have 

an overall outer diameter of a few tens to a few hundreds 

of a thousandth of an inch, and lengths of ten to twenty 

thousand feet, these conflicts and the trade-offs to be 

effected bear close scrutiny. 

The work presented here is the result of investiga

tions of the foregoing factors which were conducted to 

determine the comparative merits of some possible trans

mission line configurations, the propagation characteristics 

to be expected in some representative sizes, and the 

quantitative effects of including ferromagnetic material 
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(i.e., steel) for strength purposes. A further aim was to 

obtain some idea of the transmission channel effective band

width (or maximum permissible signalling speed - whichever 

approach one prefers) obtainable with a reasonable amount 

of error and terminal equipment complexity. 

By way qf introduction, and for reference purposes, 

a brief review of some pertinent facts about transmission 

lines is presented below and in Appendix A. These topics 

are discussed at lP.ngth in any standard work on the 

subject [21,25,27]*, and only the essentials are given 

here. In all that f<lllows, unless otherwise specified, 

the rationalized MKS system of units is employed; the 

basic assumptions made are that the sea is an infinite 

homogeneous medium, and that the cables are of infinite 

length (or long enough compared to their diameter to be 

considered so). 

Only coaxial cables are considered in this investi

gation because Curtis, Green, and Leibe have thoroughly 

investigated this configuration, along with several other 

possibilities, and have shown that this type has the least 

attenuation of any studied. The relative merits of the 

several types as reported by them [2, p. 28~ are tabulated 

*Numbers in brackets denote references listed in the 
selected bibliography. 
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for reference below. The coaxial configuration was 

taken as a standard. 

Type of Cable 

Coaxial 

Shielded Pair: Round Conductors 

and Oval Shield (approximate) 

Shielded Pair: Round Conductors 

and Circular Shield 

Double Coaxial Circuit 

Relative Attenuation 

1.0 

1.3 

1.5 

2.0 

A uniform transmission line may be considered for 

convenience to be made up of a cascaded series of identical 

network sections of the form of Figure 1-1, each represent

ing a port ion of the line. The larger the number of 

sections, and the shorter the length represented by each 

section, the better does this lumped-parameter model · 

approximate the real line. Thus, the line is characterized 

completely by four parameters, as shown in Figure 1-1, 

namely: 

R, the series resistance in ohms per meter 

G, the shunt conductance in mhos per meter 

L, the series inductance in henries per meter 

c, the shunt capacitance in farads per meter 

These quantities are entirely determined by the 

geometry of the line and the materials of which it is made, 

as will be showno 

3 
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With regard to signal propagation, the properties 

of any line may be described [?1;27 ;31, Chp. 20 ~ i.n terms of 

two quantities, both of' which are complex in their most 

general form. These are (1) the characteristic impedance, 

Z0 , and ( 2) the propagation constant, -y: 
,; 

(1-1) 

In the above equations, Ro and Xo are the characteristic 

resistance and reactan~P of the line, respectively; d. is 

the attenuation corl:ltJin.t, a measure of loss on the line; 13 
is the phase constant, describing the phase shift a signal 

undergoes in traversing the line. Since Z0 and ~ are 

together sufficient to describe the line, as were the 

group R, G, L, arul C introduced above, it is to be expected 

that the two sets of parameters are related. From Appnndix 

A, the pertinent equations are: 

Zo =./ R + j(;UL 
V G + jw c 

(a) 

~ = V (R + jwi.)(G + juJC) (b) 

( 1-2) 

If R, G, L, and C are expressed in the uni.ts shown 

above, then Z0 , Ro, and X0 all have the dimensions of ohms; 

d is expressed in nepers per meter, and .13 in radians per 

m~ter. 

4 
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A glance at equations (l-2) shows that Z0 and ?' are 

functions of frequency, first because of the appearance of 

the factor ~ , and second, because R, L, G, and C are them

selves functions of frequency. Both Z0 and ~may vary widely 

with frequency; thus description of the line's properties 

for large bandwidths is not generally a simple thing. 

Of the four quantities R, L. G, and c, the shunt 

parameters G and c, which are determined largely by the 

dielectric, are found to be independent of frequency (or 

nearly so) up to very high frequencies. For the purposes 

of this discussion, they may be considered constants. It 

is the series parameters R and L, depending upon material, 

size, and placement of the conductors, which are responsible 

for the major part of the variation in Z0 and~. These 

variations of R and L with frequency are the result of the 

well known phenomenon of skin effect. In the frequency 

range of interest, which is 10 cps to l megacycle, the 

amount of variation is considerable, thus complicating the 

description and employment of the lines. 

Reference to handbooks or books on transmission lines 

will reveal simple formulas for characteristic impedances of 

various configurations, as well as for the attenuation and 

phase constants ~and f7 • Sometimes, if the reference author 

is careful, he will state that the formulas are only valid 

5 



NOLTR 67-22 

for high frequencies, or for "lossless" lines. Sometimes 

other formulas are given for very low frequencies. What 

is usually missing is a statement as to what such simple 

expressions really represent, i.e., limiting cases of 

much more general (and unfortunately far more complicated) 

expressions which are obtained from the solutions of 

Maxwell's equations over the line. Equations (l-2) are 

perfectly general, and true at any frequency; substitution 

into them of the proper expressions for R. L. G. and C 

yields the desired quantities Z0 and "/ • The complications 

arise in the expressions for R and L, uhich will be shown 

to be made up largely of Bessel functions. When their 

arguments are large, these Bessel functions may be replaced 

by simpler functions to which they are asymptotic; then Z0 

and ~reduce to their well known simple expressions. The 

arguments become large at high frequency, or for large

diameter coaxial structures. But for the size of cable 

under investigation here, and for the specified frequency 

range, the luxury of asymptotic approximations will have to 

be foregone except in special cases. 

The first step, then, will be to examine the simplest 

type of line, the sea-return type. From there, we may 

proceed logically to more complicated configurations. 

6 
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II. THE SEA-RETURN LINE 

The sea-return line, in which an insulated wire is 

immersed in the ocean, is the simplest form of coaxial line 

to build. In such a line, the wire itself is the center 

conductor. The insulation surrounding it serves as the di

electric layer, and the surrounding ocean, extending 

nominally to infinity, forms the outer conductor. Such 

lines were the earliest form of transoceanic communications 

cables laid, and some of them are still in use today. The 

propagation characteristics were studied around 1921 by 

J. Ro Carson and J. J. Gilbert [11 , who seem to have been 

the first to realize that the "sea-return" impedance is not 

negligible. The form of most of the results presented in 

that paper, while general and extensive, is not readily 

adapted to computation of specific examples, especially of 

the relatively simpler samples treated here. Greater ease 

of practical application may be had from one of the later 

papers which treat the subject [33,34,3~o* Von Aulock 1 s 

work for example, is especially convenient. 

*It might be noted in passing that the equations 
developed in reference [34], because of the assumption made 
in their derivation (p. 16), do not apply throughout the 
present frequency range of interest; they are the high fre
quency approximations to the more general expressions used 
here, and yield attenuation values which are too small at 
low frequencies. (See a~uations (B-15) and (B-16), Appendix 
B. See also ~4, p. 2ll8.) This limitation is not stated 
in the reference. 

7 
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A cross-sectional diagram of the sea-return line is 

shown in Figure 2-1. Calculation of the characteristics 

will begin with the shunt parameters, G and c, and then 

take up the series parameters. In disposing of this case, 

several points will be settled which will apply to the rest 

of the cases as well. The first of these concerns conduct-· 

ance, G. Unless otherwise noted, the dielectric material 

postulated for all lines treated herein is high-density 

polyethylene, for which the value of conductivity ~is 

taken ~3, p. 3§] as lo-13 mho/meter. Then, for coaxial 

structures, the conductance per unit length (meter) is 

given by the expression, [24, p. 332]o 

where 

G : 2Tf(J 
ln (b/a) 

G = conductance in mhos/unit length (meter, in 
RMKS units) 

~= conductivity in mhos/meter 

b = outer radius of dielectric in meters 

a = inner radius of dielectric in meters 

(2-1) 

Calculations show that the value of G due to leakage of the 

dielectric will be of the order of 10-12 to lQ-13 mho/meter 

for the small-diameter lines considered here. 

There are also other dielectric losses at higher 

frequencies, which are usually described by the imaginary 

part of a complGX dielectric constant, or a'~oss angle" 

8 
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(or its tangent), or a dissipation factor 8 , all of which 

are really different ways of describing the same thing. 

For low dissipation factors, dielectric loss may be expressed 

as an equivalent conductance [27, p. 16lf]. 

G1 = (wC)(o) 

where 

G' - equivalent conductance per unit length due to -
dielectric loss, mhos/meter 

5 II dissipation factor 

c • capacitance in farads/unit length 

w - 2 'IT x frequency -
Then in general, the line admittance per unit length Y is 

given by 

Y = G + G1 + jUJ C 

Calculations show that capacitance per foot in these small

diameter lines will be of the order of lo-10 farads. Since, 

even at 10 cycles, G is smaller than C by more than two 

orders of magnitude (a disparity that becomes more marked 

with increasing frequency), loss due to conductance of the 

dielectric may be neglectedo Then, considering only high

frequency losses, which increase as the first power of 

frequency, Y = G1 + j6JC. BUt the dissipation factor of 

high-density polyethylene is given by MIL-P-22748 as 5 x 10-4 

9 
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in the frequency range 1 KC - 1 MC. Thus, 

y =~we+ jwc 

= uJ C ( 5 X 10-4 + j) 

Thus it is reasonable to assume that for our purposes, in 

all that follows 

y : ju>C 

The remaining shunt parameter, C is independent of 

frequency up to very high frequencies. For coaxial struc

tures, the expression for it is entirely analogous to that 

for G, and may be also obtained from any standard text on 

electromagnetic theory. It is [24, p. 33~ 

where 

c = 2/Tt (2-2) 
ln(b/a) 

C = capacitance in farads/unit length (meter, in 
RMKS units) 

E • dielectric constant of the insulation, = E 0 €r 

b = outer radius of the dielectric in meters 

a = inner radius of the dielectric in meters 

For high-density polyethylene Er = 2.38; € 0 is the permit

ivity of free space, 1/(36'17' x 109). As indicated in Figure 

2-1, the center conductor i.s stranded, rather than a smooth 

single conductor. If b >> a, reference ~cl·, p. 69 shows 

that a suitable value for a is the radius of the circum

scribed circle, i.e., 1.5 times the strand radius in the 

10 
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case of 7-strand conductors. As it turns out, the same 

value gives tolerable results even when b is only a few 

times as great as a. ("Tolerable" may be defined here as 

within 4. 5% for b/a = 3, 7% for b/a = 2, or 12-13% for 

b/a = 1.5. The error ts less for cables of more than seven 

strands.) This "calipered" radius (half the "calipered" or 

maximum strand-bundle diameter) is the value used in all 

capacitance calculations here. 

The resistance and inductive reactance of the cable 

arises from a variety of sources. Resistance is present in 

both the center conductor and the return path through the 

seawater. They will be treated separately. The inductance 

normally thought of as the inductance of a coaxial configura

tion, and the value most often given in reference works, is 

the high-frequency or ~~Dal inductance, that is, the 

inductance between conductors. For the coaxial configuration, 

it is easily found to be [2o, p. 167] 

where 

L = 

L = -&L- ln(b/a) 
271' 

inductance in henries/unit length 
RMKS units) 

(2-3) 

(meter, in 

}l = per mea bili ty of the space between conductors, 
= Pollr 

b = inner radius of outer conductor in meters 

a • outer radius of inner conductor in meters 

11 
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The relative permeability Jlr of most dielectrics, includ

ing polyethylene, is unity; .JUo is the permeability of 

free space, 4/1' x lo-7. 

In addition to the external inductance, each conductor 

has some self-inductance of its own, due to partial flux 

linkages with the current within the conductors. This in

ductance is known as the internal inductance; it is a 

function of frequency·, is intimately bound up with the 

phenomenon of skin effect, and is not so easily described. 

Normally, the external inductance predominates in a 

transmission line, because the inter-conductor spacing is 

reasonably large with respect to the dimensions of the 

conductors. Equation (2-3) shows that for a coaxial line, 

inductance will increase with the ratio b/a. Since only 

the current-carrying portion of a conductor's cross-sectional 

area contributes to the internal inductance, this inductance 

will be small at high frequencies where skin-effect forces 

current to the periphery of the conductors; it will usually 

be negligible with respect to the external inductance. If 

the outer conductor is thin, as is often the case with coaxial 

lines, its internal inductance may be negligible at any fre

quency. But at low frequencies the internal inductance of 

the center conductor is not entirely negligible, being up 

to several percent of the external inductance for conductor 

spacings normally found in practical coaxial cables. In a 
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sea-return line, large cross-sections of the ocean are 

involved in the return path, especially at low frequencies. 

Under these conditions, the internal inductance of the outer 

conductor can be several times the external inductance, and 

thus the controlling parameter. 

The behavior of a solid, round straight wire wlth 

frequency is well understood. For direct currents, the 

resistance is the reciprocal product of cross-sectional 

area and material conductivity, times the length of the wire. 

On a unit length basis 

(2-4) 

where 

Rdc = de resistance, ohms/ unit length 

b = radius of the wire, meters 

~ = conductivity of the material, mhos/meter 

The internal inductance of a solid, round wire with uniform 

current distribution is found to be [23; 27, p. 15'9] 

(2-5') 

where 

Ldc = "de" inductance in henries/unit length 

}1 = permeability of the material 

The subscript "de" is applied to this inductance because the 

13 
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condition of uniform current distribution implies zero 

frequency. 

The ac resistance and reactance of round wires, 

accounting for skin effect, have been computed by many 

authors [1,8,19,2i]. Rigorous expressions may be obtained 

as special cases of equations developed in Chapter IV, or 

may be taken directly from [?~], p. 213 wi.th due allowance 

for differences in notation. They are: 

for the resistance, 

R = Rdc ...U.. (ber fHbei 1 ~)-~be~ Jl)~~er 1 u) 
2 ber 1 u) + be1 1 u 

(2-6) 

and for the inductance, 

L • Ldc ....JJ.... (ber uHber 1 u) + (bei uHbei 1 u) 
2 (ber 1 u)2 + (bei 1 u)2 

(2-7) 

where 

R = ac resistance in ohms/unit length 

L = ac inductance in henries/unit length 

u = b{wpcr 

w = radian frequency 

and the other quantities have been defined immediately above. 

The ber and bei functions and their derivatives, ber 1 

and bei 1 , somet i.mes collectively called Thomson functions, 

are related to the real and imaginary parts of Bessel 

functions of the first kind with complex arguments. They 
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are discussed in most books covering Bessel functions. 

Feference [22], in addition to a thorough treatment, gives 

numerical tables and lists of identities for both the first 

and second kinds (p. 168ff). A brief treatment is also 

given in Appendi.x B. The di.mensionless parameter u, which 

appears here as the argument of the Thomson functions, is a 

quantity related to "skin effect". Skin depth, 6 , is the 

distance from the surface of a conductor at which the current 

has decreased to 1/e (1/2.'?1828· • •) of i.ts surface value. 

Since this value is often taken as a measure of the current 

penetration into a conductor, it is of interest to li.st here 

the relation between u and 8 for convenience of reference. 

Skin depth is given by [24; 2?, p. 147] the formula 

t, = l/V1ffpcf ' (2-8) 

from which 

(2-9) 

where b is the conductor radtus. 

Again, as with capacitance, the question of stranding 

is raised. The above formulas are based on a solid, round 

wire, to which, strictly speaking, a stranded conductor is 

only an approximation. The effects of stranding are diffi

cult to handle analytically. In addition to accounting for 
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interstices within the conductor and the complicated 

current distributions arising from skin effects, there 

are second-order effects, such as the twist of the 

strands. Since each of the outer six strands is wound 

around the center strand, they actually form small sole

noids. The resulting slight increase in inductance is, 

of course, a function of the degree of twist (i.e., the 

pitch), and will offset the loss of inductance due to 

the interstices to some extent. In general, it has been 

found [4; 14, p. 39] that, for a wire of seven uninsulated 

equal-sized strands in intimate contact, the ac behavior 

is essentially the same as that of a solid round conductor 

having the same conducting cross-section. Thus, if the 

strand radius is r, the radius of the circumscribing 

circle is b : 3r, and the radius of the equivalent solid 

conductor is b 1 , 

or (2-10) = 'V 7 b b' 
3 

This adjustment of the radius is made for stranded conduct-

ors in all that follows. 

Expressions must also be found for resistance and 

inductance of the seawater return. The procedure begins 

with the electric and magnetic fields of an infinite 
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straight wire in seawater, which may be derived from the 

material of Appendix C and which have been computed by 

several authors. Of several equivalent forms, those de

rived by Von Aulock[33, p. 13] are, in terms of effective-

value phasors and at a distance X from the wire: 
./ 

~ 

E = j w..ui (ker ux + j kei ux) (2-11) 2"11' 
.... 

v IUx (ker' ux + j kel' ux) (2-12) H -- 2Jfx 

where 

"" E - longitudinal electric field along the cable -
(Z-direction in cylindrical coordinates) 

"' H = tangential magnetic field around the cable 
( 'f -direction in cylindrical coordinates) 

r = current in the wire 

Ux = X {(.U }lef 

and the supercarat denotes the effective-value phasor repre

sentation, e.g., E(x,t) =·ReV2E ej 41 t.* The permeability, 

,u, of seawater is essentially that of free space, .,u0 [33, 

p. 15]; the value of conductivity assumed in the work 

presented here is 3.3 mhos/meter. See Appendix D for the 

reasons presented. The ker, kei, ker', and kei' functions 

r arise from modified Bessel functions of the second kind, and 

are analogous to the previously introduced Thomson functions 

* The notation 'Re is read as "the real part of" 
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(ber, etc.) of the first kind. They are also discussed in 

Appendix B. 

The mean power dissipated in the sea 

is ""R.e {F.cb*} or (El 21R; in field form the 

per unit length 

expression is 

where 

00 

P = c:r f :E.cb* 
b 

21f' x dx (2-13) 

P = mean power dissipated in the sea in watts/unit 
length 

~ = conductivity of seawater, mhos/meter 
>/ 
E = longitudinal electric field (eq. (2-11)) 

b = radius of the wire (including insulation) 

and the asterisk denotes the complex conjugate. This mean 

power P is also equal, of course, to I ti2R, where I fl is 

the RMS or effective value of the current in the wire and R 

is the total resistance of the sea-return path. Then, 
0<:) 

R = ~ J ~ker ux) 2 + (kei ux)~ ux dux 
b{~cr . 

(2-14) 

In the seawater, the lower limit of integration will be quite 

small for the wire sizes and frequencies of interest, as shown 

in Appendix E; it may conveniently be taken here as zero. 

The only disquieting thought is the fact that the ker function 

becomes infinite at the origin. Nevertheless, it is possible 

to show (eo g., using the approximations of Appendix B) that 

the limit of the integral in (2-14) approaches zero as the 

argument approaches zero. Armed with this fact, 
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the integral may be looked up [22, p. 172] and evaluated 

to yield 

R - cil;u -a- (2-15) 

where 

R = resistance of the sea-return path, ohms/unit 
length 

p = permeability of seawater 

tv = radian frequency 

Note that, as a first approximation, this resistance is 

independent both of the wire diameter and the conductivity 

of the sea. 

The internal inductance of the sea is computed from 

the average energy stored in the magnetic field: 

u = t..[~{B . H*)dv 

= -'!1...1 H • li* dV 
2 v 

where U = energy in joules/meter3 

B = magnetic induction in webers/meter2 
>/ 

H = magnetic force in amperes/meter 

V • volume in cubic meters 

(2-16) 

Equation (2-16) is a general formula, true anywhere. In 

this case, the volume is a unit length of the seawater 

return. From circuit concepts, the stored mean energy is 

also equal to t L I(t)2 = t Llrl 2, then 
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= p. J H•H* 2'17' x dx 
b 

Inserting equation (2-12) into (2-17), 

L : .&,. r~ker' Ux)2 + {kel 1 Ux)~ux dux 
2fl' b(C.U}lCT 

(2-17) 

(2-18) 

This integral :ma.y also be found in reference [2~ , p. 172, 

but in general it does not assume such a simple form as 

equation (2-1?). However, the Thomson functions can be 

approximated well by the first few terms of their series 

expansions if their arguments are small enough (see Appendix 

B). If, the large-argument approximations [22, pp. 179-18~ 

are used, it is found that the integral in (2-18) approaches 

the form - ~; e-uxff and hence approaches zero as the 

argument becomes infinite. The actual evaluation of (2-18) 

is straightforward but tedious; one convenient form is: 

, ux <<.1 (2-19) 

where 

L = internal inductance of the sea-return path 
henries/unit length 

.u = permeability of seawater 

ux - b {c.u,uo--
b - inner radius of the sea-return path -
(j = conductivity of seawater 

w • radian frequency 
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At the upper frequency of interest, which is one megacycle 

here, ~t.U}lO" ~ 5.1; furthermore only small-diameter cables 

are being considered, for which b~ lo-3 meter. Therefore, 

the approximation of (2-19) is justified. 

Because of the immense amount of labor involved in 

computation of the exact expressions involving the Thomson 

functions, considerable attention has been given to simpli

fications. Appendix B gives some low- and high-frequency 

approximations to the expressions obtained in this section. 

Some others, worked out by Schelkunoff, will be met with in 

a later section. In the numerical results presented here, 

the approximations have usually been used where applicable. 

Now that expressions have been obtained for all 

quantities in all regions, the propagation characteristics 

can be computed from equations (1-2), in which it must be 

borne in mind that R, G, L, and C are total quantities per 

unit length. G has been disposed of as negligible, and C 

has only the one term, given by equation (2-2). For the 

series parameters, 

where 

R = Rwire + Rsea 

(2-20) 
L = Lwire + Lsea + Lext 

Rwire = ac resistance of the center conductor 
( eq. (2-6)) 
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ac resistance of the sea-return path 
(eq. (2-15)) 

internal inductance of the center conductor 
(eq. 2-7)) 

internal inductance of the sea-return path 
(Eq. (2-19)) 

external inductance between coaxial 
conductors (eq. 2-3)) 

and all quantities are, of course, per unit length. Then 

equations (1-2) become 

R + ju.J L 
j4J c 

(2-21) 

for the characteristic impedance, and for the propagation 

constant 

r = 'l{zY = v'(R + j~L)(jt:VC) 
(2-22) 

= V -cu 2 LC + jwRC 

The second form of equation (2-22) shows that it may be a 

dangerous assumption to neglect the inductance of a line 

entirely and assume that one is dealing with an RC line 

(i.e., one having resistance and capacitance only). This 

is especially true at the higher frequencies, above the audio 

range. Such an assumption may very well turn out to be valid, 

but it ought not to be casually made, especially in the case 

of sea-return lines with their large internal inductances in 

the return path. 
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Equations (2-21) and (2-22) have been computed over 

the range of 10 cps to 1 megacycle for several sizes of wire 

and insulation. The choice of dimensions is admittedly some

what arbitrary, being made as it is partly to relate it to 

other work, and partly as a matter of convenience in design 

of instrumentation; the details are not germane to the dis

cussion here, which is concerned mainly with comparative 

results. Dimensions are listed in Table 2-1. Curves of 

characteristic impedance are shown in Figure 2-2, and of 

attenuation in Figure 2-3. 

A further word about attenuation and the form in 

which the results are presented may be in order at this 

point. Equation (A-ll), Appendix A shows that, for a line 

terminated in its characteristic impedance, 

- .X • as -j,ds 
V g e e , Z0 : ZL. (2-23) 

where 
X 

vs - voltage at distance s from the source -
X 

Vg = source (generator) voltage 

~ = d + j p = propagation constant of the line 

s = distance from the source along the line 

and the overcross denotes a peakphasor, e.g., V(s,t) = 
-R.e(~ ejwt). Then the insertion loss is given by 

Loss = ~ s nepers 
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Since the matched loss is the loss that is characteristic 

of the line itself, it is the only interesting quantity 

here. The mismatch losses (if any) due to the terminations 

can be kept separate and worried about at some other time. 

Specifically, for a line of length ~, insertion 

loss = c:t_f,, where ct. = -Re(r). It is this insertion loss 

that is presented as "attenuatlon" in the graphs herein. 

For convenience, line length was taken as 4 kilometers. 

In all that follows, unless otherwise specified, it may be 

assumed that .. $ = 4,000 meters. 
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III. THE METALLIC-RETURN COAXIAL LINE 

Regardless of the configuration of conductors which 

will be employed, the first question to be answered con

cerns the return path -- should it be seawater, or would 

a customary coaxial configuration using a metallic outer 

conductor be preferable? Qualitatively, the two greatest 

advantages of the seawater-return are simplicity and 

relatively large inductance at moderate frequencies. 

This is due in large measure to the internal inductance 

of the return,which is large because the effective cross

sectional area is large. But ~ is inversely proportional 
df 

to reF, where £5 is skin depth, defined in (2-8), and () ls 

conductivity; hence skin effects are more pronounced in 

seawater than they would be in copper. Thus, over the 

rather wide range of frequency under consideration, R and 

L (and hence Z0 and r) will vary more than in a conventional 

cable. 

In a metallic-return, resistance will be greater and 

inductance less at low frequencies, but at high frequencies 

the opposite will be true. Hence, it is of considerable 

interest to compare the examples of the previous configura

tion with conventional coaxial cables of the same dimensions. 

Consider the coaxial line whose cross-section is 

shown in Figure 3-1; it is the insulated wire of the previous 
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section, to which has been added an outer copper conductor 

consisting of an appropriate number of strands of round 

metallic wire. Each strand is bare and is in contact with 

its neighbors throughout its length. For purposes of com

puting its impedance, the return will be considered to be 

a tubular conductor of inner radius a, outer radius b, 

and thickness d = b - a. Calculations of this configuration 

wi.ll parallel those of the previous section, except that the 

internal inductance and resistance of the seawater return 

will be deleted, and the internal inductance and resistance 

of a tubular conductor substituted. For the time being, 

this coaxial cable is assumed to be on land, so that the 

sea exerts no effect on it. 

The general expression for the impedance (often 

called "surface impedance 11 because of its manner of compu-

tation) of a tubular conductor in which all the conduction 

current flowing in the tube returns, i.e., completes the 

circuit path, via a route lying inside the tube, will be 

shown later to be a special case of the equations of 

Chapter 4. Alternatively, we may use directly any one of 

several equivalent expressions [8, p. 557; 22, p. 149; 

24, p. 219], whose derivations may be found in the refer

ences cited. One convenient form is 

z = r ~2 -1f~Oi:~a-
Io(fa)Kl(rb) + Ko(fa)Il( [b) 
Il(fb)KI(fa) - Kl(rb)Il(ra) 
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R + jAJL = impedance of the tubular conductor 
per unit length, accounting for skin effect 

inner radius of tube 

outer radius of tube 

conductor material conductivity 

conductor material permeability 

radian frequency 

modified Bessel functions of the first kind, 
of orders zero and one respectively (see 
Appendix B) 

modified Bessel functions of the second kind, 
of orders zero and one (see Appendix B) 

If a new parameter, v, is defined such that v =V~~~ , 

then 

v .fj = (1 + j) 

and equation (3-1) becomes, by use of the relationships 

listed in Appendix B, 

z = r ~1 + J~ A B = 2~vcm A - B 
2rr o'a v c - D c - D 

where 

A = (ber va + j bei va)(ker 1 vb + j kei 1 vb) 

B • (ker va + j kei va)(ber' vb + j bei' vb) 

c = (ber' vb + j bei 1 vb)(ker 1 va + j kei' va) 

27 
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D = (ker 1 vb + j kei 1 vb)(ber 1 va + j bei 1 va) 

v = v to ).10"' 

As mentioned in the previous section, the exact expressions 

for the impedance of a solid wire may be taken directly from 

[3], p. 213. The same reference (p. 219) gives an exact 

expression for the impedance of a tubular conductor. A 

little reflection will show that the difference between that 

expression, which contains Hankel functions, and equation 

(3-1) is only in the choice of function to be used as a 

second solution to Bessel's equation during the derivation. 

This is largely a matter of personal taste, for Hankel 

functions are tabulated, too [17] • They have their infinite 

series forms and their asymptotic approximations, just as do 

the Thomson functions. However, only the latter are used 

here. 

When Z is computed from equation (3-3), the real 

part yields the a.c. resistance, and the imaginary part the 

internal reactance, of a tubular conductor at any frequency. 

Unfortunately, Z does not simplify greatly upon expansion 

and collection of terms. The ber, bei, ker, and kei functions, 

their four derivatives, and the two arguments involved yield 

12 quantities which will appear in the flmction, of the 16 

possible. 
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Multiplication of numerator and denominator of the 

fraction by the complex conjugate of the denominator leads 

to terms which are each the product of four of these 

quantities. A disheartening percentage of the possible 

combinations will appear; the denominator, for instance, 

is the sum of 16 terms. If the exact expression must be 

used in computing z, the last form given is probably the 

most convenient. 

High- and low-frequency approximations to the modified 

Bessel functions may be used for frequencies such that the 

arguments are " >I' 1" and 11 <:Zl" respectively. While these 

qualifications are often seen in tables, collections of 

formulas, derivations, and the like, the question of 

exactly how much less or greater frequently goes begging. 

If a double inequality sign is interpreted as requiring a 

difference in size at least an order of magnitude, then the 

approximations may be used for frequencies where 

va ~10 

Vb ( 0.1 
-...; 

For the dimensions and materials which will be under con

sideration in this section the frequencies are, unfortunately, 

about 540 kc and 41 cycles, respectively. This is half the 

frequency range considered, and the half in which most of 

the interesting things are happening, at that. 
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The exact expression may still be avoided in the 

specific case under consideration. Schelkunoff, in a 

paper of basic and far-reaching importance [8, p. ''7!] 
states that, if the thickness of the tube is not more 

than 25 percent of the tube's high-frequency (i.e., inner) 

radius, use of the high-frequency approximations at low

frequencies yields errors of less than 1%. Since the 

dimensions met with here will conform to this restriction, 

advantage is taken of the opportunity to use the high

frequency or so-called "thin-wall 11 approximations. 

These approximations are given by the following 

expressions, as will be brought out in Chapter IV: 

R : R l!:!,l Sinh Ul + sin Ul .JL (l + 3Ja.b y 
de l:2 cosh u1 + cos u1 - 88 ~ 

wL = R ~~ sinh u1 - sin u1] 
de [2 cosh u1 cos u1 

where 

(a) 

(3-4) 

(b) 

R = resistance of tubular conductor, ohms/unit 
length 

L - internal inductance of tubular conductors, -
henries/unit length 

a = inner radius of tube, meters 

b = outer radius of tube, meters 

d - thickness of tube = b -a -
ul = dv .f2 
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' = VIA/)).() (evaluated within the conducting 
material of the tube) 

= de resistance of the tubular conductor, 
ohms/unit length = 1 

2 rr <1da 

Equations (3-4) are not quite those given by Schelkunoff. 

If the second term in brackets of (3-4a) is deleted, the 

expressions for R and L are the plane-conductor (i.e., 

large-radius) approximations given by Ramo and Whinnery 

and others [24, p. 219] • The additional term is the first

order correction for curvature (it applies to the resistance 

only), and is incorrect as presented in [8]. This has been 

pointed out in reference [5J, p. 838, which lists the correct 

values (p. 869) as well as the second-order correction terms. 

It might be noted in passing that if the frequency is very 

high, fuxther simplifications of the formulas are possible; 

they will not be given here, but may be found in references 

[8] or[33], if desired. With respect to Schelkunoff 1 s paper 

[a], careful interpretation allows us to tie down the vaguely 

specific term "very high11 : Schelkunoff 1s equations (84) may 

be used in place of equations (3-4) of this paper to within 

1% accuracy, if the arguments of the Bessel functions in 

equation (3-1) are greater than about 6. If the arguments 

are greater than 50, the first terms alone may be used. 

(Most of the error is in the resistance; the inductance is 

little affected.) 
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The de resistance of the tube may be computed from 

the thin-wall approximation: 

where 

Rdc = 
b --
d = 

a' --

= 1 
2'1f cbd 

de resistance, ohms/unit length 

inner radius of the tube, meters 

thickness of the tube, meters 

(3-5) 

conductivity of the material, mhos/meter 

However, because of the geometry of the outer conductor, the 

de resistance may be computed exactly with ease; it is the 

resistance of an appropriate number of circular strands in 

parallel. In a sample calculation where the value was com

puted exactly as 5.03 x 1Q-2Jl/meter, the resistance given 

by equation (3-5) is only 4.24 x lo-2~/meter. Such a dis

crepancy is to be expected, for in assuming a field pattern 

based on a cylindrical conductor one tacitly assumes the 

existence of much more conductor than is actually present. 

This could be compensated for, at zero frequency at least, 

by adjusting one or more dimensions to some equivalent value. 

A safer procedure seems to be to adjust the conductivity of 

the material, for a variety of reasons. First, while the 

coaxial ring of conductors closely approximates a cylinder, 

it is exactly the return conductor of a "cage" transmission 

line. This configuration is discussed by King [19]; the ex

pressio~~ for the internal impedances of the coaxial- and 

cage-line conductors are derived and compared, and adjust

ment of conductivity is mentioned as a technique. Second, 
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the equations for skin-effect resistance and reactance of 

a tubular conductor, or the graphs of these functions [8, 
p. 561; 24, p. 222} ; show at a glance that they are functions 

of the de values. Given that the fields are circularly 

symmetrical, their behavior with frequency depends on the 

tube and the constants of the material; thus it seems 

reasonable that a configuration of very similar geometry 

and the same dimensions and materials will exhibit similar 

behavior. 

With these thoughts in mind, an adjusted conductivity 

may be defined: 

tr'a = (3-6) 

where 

oa = adjusted conductivity, mhos/meter 

~ = conductivity of the material, mhos/meter 

n = number of strands in the tube 

b = radius of the inscribed circle tangent 
to the ring of strands 

r = radius of the strands 

d = thickness of the tube of strands 

As applied to the configuration of Figure 3-1, a further 

simplification could be effected by recognizing that d = 2r. 

This will not always be the case, however, as will become 

evident later on, and it see~s better to leave equation 

(3 -6) as it is • 
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Then, the d.c. resistance may be computed from 

= 1 
27T()abd 

ohms/unit length (3-7) 

The ratio <ra/<iwill, of course, vary as dimensions and 

spacings vary. 

The manner in which the coaxial configurations con

sidered here were arrived at has already been discussed. 

Table 3-1 lists the pertinent dimensions of the examples 

computed. Attenuation and characteristic impedance curves 

are presented in Figures 3-2 and 3-3. Conditions and 

assumptions are the same as for the calculations of the 

previous section. 
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IV. THE METALLIC-RETURN COAXIAL LINE, IMMERSED 

Since the purpose of the cables discussed here is 

oceanographic instrumentation, they will necessarily be 

immersed in the sea. If the cable is bare, so that the 

return is in intimate contact with seawater throughout its 

length, it cannot be assumed that the return current will 

be confined to the copper at all frequencies. As a matter 

of fact, the assumption may not be valid even with a 

jacket, because of the ever-present possibility of breaks, 

cracks, or pin holes which may compromise its water-integrity. 

If there are sufficient of these such that the metallic 

return is shorted to the sea at intervals which are small 

compared to a wave-length of the longitudinal current at 

the highest frequency of interest, the behavior will be 

essentially that of an unjacketed line. (At the maximum 

frequency considered here, which is one megacycle, A min = 
300 meters in air, or about 195 meters for a polyethylene 

dielectric.) 

The method of attack is based on the analysis of a 

laminated conductor, i.e., a conductor consisting of con

centric layers in contact. This analysis was originally 

carried out in [s], and extended in [?3]. The results are 

quite general and lead to many interesting points, as will 

become evident later in this section. 
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As in the previous section, use is made of most of 

the work on the sea-return line, the principal difference 

being in the calculation of the a.c. resistance and internal 

reactance of the outer conductor. This time, however, the 

outer conductor consists of two laminations, an inner copper 

one and an outer one of infinite thickness (the sea). But, 

before proceeding, it is desirable to digress long enough 

to summarize the method of analysis of a laminated conductor, 

because of· its extensive implications. 

At the outset, let us make a point of stating explic

itly what has been implicit in all the discussion of 

propagation characteristics, transmission over the line, 

and so forth. In the steady-state, as soon as frequency 

is mentioned, or an w committed to paper, we are speaking 

of periodic time functions. Specifically, in all that has 

gone before and all that is to follow, rotating phasor 

representations of all field quantities and currents have 

their time dependence given as ej~t. It is customary in 

the literature not to carry along this factor for reasons of 

conciseness of notation, but to understand its presence at 

the proper places. Because this is a mnemonically dangerous 

practice, it seems better to use phasor notation. This is 

the reason for the overmarks (carat and cross) previously 

introduced. Hence 

(4-1) 
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The p.roblem of transmission of currents over the 

structure of coaxial conductors consists in finding a 

particular periodic time solution of Maxwell's equations 

which satisfies the boundary conditions: continuity of 

tangential electric and magnetic forces at the surfaces 

of the conduetors. To begin, Maxwell's equations are 

written within the conductor, making use of (4-1). From 

these equations, electric field intensities may be elimin

ated to obtain a differential equation for the magnetic 

field intensity. The procedure is undertaken in Appendix 

C and in most books on electromagnetic theory; article 

6.03 of reference [24] is one example. In cylindrical 

coordinates, which are best sulted to the coaxial structure, 

the resulting equation is, from (C-21), Appendix c, 

where 

_g_ r ...J.... -L (rib] 
dr I r dr ·-

(4-2) 

r = radial distance from the axis of the conductor 

'X 
H = tangential magnetic field 

and the overcross denotes the peak phasor value. In the 

derivation of this equation, the assumption is almost always 

made that displacement current within the conductor is 

negligible with respect to conduction current. If so, then 
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(4-2) stands as it is. Otherwise, the above approximation 

for r cannot be used to replace the exact value of the 

propagation constant, which is seen from (C-7) to be 

1/j wprJ - w2 f-p. • Here then is the criterion by which 

one may decide whether displacement current effects can 

be ignored. If they can, it must be true that 

u.J2 EN - we << 1 (4-3) -
IJJ ,UV () 

In any metallic conductor () is sufficiently large that 

equation (4-3) holds for any f.requency likely to be met 

with in practice. However, we had better check the inequal

ity in seawater. At the highest frequency of interest here, 

one megacycle, WE /(J = 10-5, whtch is definitely much less 

than unity. But it is seen that, as frequency mounts, sea

water will begin to look less like a conductor and more like 

a dielectric. Ramo and Whinnery [24, p.277] give a value of 

around 9 megacycles as the f:r·equency at whi.ch displacement 

current has increased to one hundredth of the conduction 

current. In any case, however, (4-2) and f are sufficiently 

accurate for the purposes of this investigatton. 

Equation (4-2) is a form of Bessel's equation, the 

solution of which ts, from Appendix B with n = 1 and x = 
r r in (B-6), 

X 

H = AI1 <rr) + BK1 <rr) (4-4) 

38 



NOLTR 67-22 

where A and B are constants to be determined. The 

modified Bessel functions I1 and Kl have been met with 

previously. Now equation (4-4) may be substituted back 

into Maxwell's equations (specifically, into (C-5b), 

Appendix C). After use of some identities relating the 

modified Bessel functions, there results a similar ex:-

pression for the longitudinal electric field: 

(4-5") 

where A and B are the same constants appearing in (4-4). 

Some labor is involved in the calculations. 

The two express ions (4-4) and (4-5) can be applied 

to any conductor configuration in cylindrical coordinates. 

Let it apply specifically to a tubular conductor, Figure 

4-1, which has an inner :radlus a and an outer radius b. 

In the most general case, the current in the tubular con-

ductor may return to the source through two paths, one 

within the tube and the other lying outside. Let the total 

current in the conductor be Ia + Ib, and let the portion Ia 

be the ret urn current \'lhich flows ins ide the tube, the re-

roainder Ib flowing outside. Then the constants A and B in 

equations (4-4) and (4-5) may be evaluated by applying 

Ampere's Law at the inner and outer surfaces of the tube, 

where the roagnntic field intensity is known: 

)( 

H(a) = ' r = a (4-6) 
27Ta 
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)<. 

H(b) = ' r = b (4-7) 

The minus sign appears in (4-6) because current is taken 

as flowing in the positive direction within the tube. 

If (4-5) is written at the surfaces of the tube (r • a 

and r = b), and (4-6) and (4-7) are substituted in these 

expressions, simple manipulation yields the values of A 

and B. Collecti.on of terms then yields equations which 

have the form 
)( 

::~(a) = 

X 
E(b) = 

where 

E(a) = 
X 
E(b) = 
>( 

I a = 

)< 

Ib = 

Za --
zb --
Zt --

)I 

Ztib (a) Zaia + 

(4-8) 
)( " Ztia + Zbib (b) 

longitudinal electric field at the inner 
surface of the tubular conductor 

corresponding quantity at the outer surface 

portion of current flowing in the conductor 
which returns to the generator by a path 
lying in the hole within the tube 

corresponding quantity returning over a 
path outside the tube 

"Surface impedance" for internal return 
current 

"Surface impedance" for external return 
current 

"Transfer impedance" (The development of this 
expression again requires the use of · 
modified Bessel function identities.) 
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It is now obvious where the name 11 Surface impedance" comes 

from. Together these last three quantities define the 

resistance and reactance of a tubular conductor at any 

frequency. 

The expressions for these impedances, developod in 

the manner just described, are: 

Za = r 
2..,. era 

Zt = 1 
27r(Jab 

where 

I 0 (ra) Kl(rb) + Ko(ra) Il{rb) 
Il(rb) Kl(ra) - Kl(rb) I1(ra) 

1 

(a) 

(b) 

• {c) 
I 
J 

(4-9) 

r - ..J jw.uo-

a = inner radius of the tubular conductor, meters 

b = outer radius of same, meters 

= impedances of previously defined, ohms 
per unit length 

As was done in Chapter 3, equations (4-9) may be put in a 

form somewhat more convenient for computation with the aid 

of a few identities from Appendix B and patience in algebraic 

manipulation. The results are 
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A - B 
c - D 

E - F 
c - D 

1 
c - D 

A = (ber ,va + j bei va)(ker' vb + j kei 1 vb) 

B = (ker va + j kei va)(ber 1 vb + j bei 1 vb) 

C • (ber 1 vb + j bei 1 vb)(ker 1 va + j kei 1 va) 

D = (ker 1 vb + j kei 1 vb)(ber' va + j bei 1 va) 

E = (ber vb + j bei. vb)(ker' va + j kei' va) 

F = (ker vb + j kei vb)(ber' va + j bei 1 va) 

v = .Jcvpcr 

(a) 

(b) (4-10) 

(c) 

(4-11) 

Just as in the case of the dry coaxial line con-

sidered earlier, there are approximations to the expressions 

(4-10) - (4-11) which, while not simple, afford a consider

able improvement in ease of calculation. The restrictions 

and qualifications on their use, which were mentioned in 

the previous chapter, apply to them all. Specifically, it 

is the relative thinness of the laminations that permits 

the use here of asymptotic expressions for the modified 

Bessel functions. Then separating the resulting quantities 

into real and imaginary parts gives 
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1 [ul sinh Ul + sin u ( - ] (a) l_ l+.ia Ra = - cos u1 fa b 2'rt r1da 2 cosh ul 

wLa l r-~ sinh ul - sin u~l (b) = 2-r; O'da L2 cosh ul - cos ul 

l l~ sinh ul - sin u1 d (1 ~)] (c) Rb = +m; + 
211' o'db 2 cosh ul - cos ul 

r (4-12) 

1 
l~ 

sinh ul - sin 
u1] (d) wLb -- 27f <'rdb eosh ul - cos ul 

~ ~ + cosh~ sin~ J Rt = 
ul [sinh 2 cos 2 (e) 

2/f o'dfab cosh u1 - cos u1 

1: ~ !!1. - cosh~ sin~_] ul sinh 2 cos 2 (f) (.).) Lt = 2 TT t1d t'"iiO L cosh u1 - cos u1 

where 

R = resistance, ohms per unit length 

L = inductance, henries per unit length 

a = inner radius of tubular conductor, meters 

b = corresponding outer radius 

d - thickness of tube = b - a -
ul = vd .f2 = d l2aJ )10"' 

rJ = conductivity of conductor material, nihos/meter 

.)l = permeability of conductor material 
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subscript a = designator referring to return 
current flowing within the tube 
(internal return current) 

subscript b = corresponding designator for 
external return current 

subscript t = designator for transfer quantities 

LD = radian frequency 

A reminder is made again about the first-order correction 

terms to the surface resistances, as discussed following 

equation (3-4). 

~ now it has probably been noted that equations 

(3-l) and (4-9a) are identical, as are (3-3) and (4-lOa), 

and finally (3-4a & b) and (4-l2a & b) respectively. This 

is only to be expected, for a glance at equations (4-8) 

shows that if the external return current Ib is zero, we 

have just the case of an ordinary coaxial line; it is 

seen to be a special case of the more general case treated 

* here. In computing R8 and La in the previous chapter, 

the factor outside the square brackets was called ~c· 

There seems to be little profit in continuing the notation 

*A second glance shows that, for Ib = 0, the field 
is not necessarily confined to the space between the con
ductors; it has a value at the outer surface of the conductor 
which depends on the current in the conductor and the trans
fer impedance. Of course, as the layer becomes thicker and/ 
or the frequency increases, this field becomes weaker, but 
it is a mistake to say that none exists. As a matter of fact, 
for thin-wall structures where the ratio of radii is not 
greater than 4/3, the external field due to internal currents 
is still about one-tenth of its de value when Ul = 10. 
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in the present case, for the factor differs for each of 

the impedances in (4-12). It is worth noting, however, 

that in every case it corresponds to a de resistance per 

unit length which is calculated using the inner radius of 

the lamination (for internal return current as in the dry 

line), the outer radius (for external return current), or 

the geometric mean radius (for the transfer parameters~ 

In calculating these resistances, it will again be necessary 

to adjust the conductivity, as was done for the Rdc term, 

in any cases in which one must account for the fact that 

a conductor made up of smaller strands is not really a 

smooth tube. An adjusted conductivity will be used in the 

factors corresponding to Rdc in the expressions for surface 

resistances and reactances, but not in the arguments u and 

v. 

Up to this point the discussion has centered on 

the properties of a single tubular conductor. Since any 

layer of a laminated conductor is just a tubular conductor, 

all that remains is to match up the fields at the boundar

ies between layers, in terms of the current in each layer, 

and the properties of the laminated conductor are thereby 

determined. The procedure is carried out in Appendix F. 

The result is a pair of recursion formulas which, as 

applied to an outer conductor, take the form 
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Ztm2 
Zam - ~--~~------

Zbm + za,m-1 

Ztm zt,m-1 
Zbm + za,m-1 

(4-13) 

surface impedance, for internal return 
current, of the first m laminations 
(starting with the outermost lamination 
as No. 1 and counting inward), ohms per 
unit length 

corresponding transfer impedance, ohms 
per unit length 

surface and transfer impedances of the mth 
lamination, ohms per unit length 

As applied to a laminated outer conductor, only the quantity 

Zam is required, for there will be no conduction current 

returning outside the complete structure by hypothesis. By 

definition of Zam and Ztm' it is obvious that 

= Zal 

and (4-14) 
Ztl --

Thus, for any conductor having k laminations in all, it 

is just the quantity Zak, as determined by (4-13) and 

(4-14), which is sought; this gives the ac resistance and 

internal reactance of the conductor at any frequency. The 

quantity ztk is also available if desired. 
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In the present case, the outermost lamination is the 

sea, the internal impedance of which may be computed from 

f+-9c). For the seawater lamination b = oe; if the limit 

of (4-9c) is taken as b~100, it is seen that Ztl = 0. 

Reference to (4-1.3) then shows that if Ztl • 0, all ztm 

will also be zero. Such a result is intellectually very 

satisfying, for the transfer impedance Ztk is a measure 

of the field outside a tubular structure due to current flow

ing inside it, and it is difficult to see how to get outside 

such a structure if it has an infinite radius. 

Before leaving these theoretical considerations for 

calculation of some specific cases, it is worthwhile to 

digress yet a little further and savor once more equations 

(4-9), the expressions for surface and transfer impedances 

of a tubular conductor. It has already been stated that 

these expressions are quite general, and so they are; for 

they apply equally well to tubular conductors whose inner 

radius is zero, or whose outer radius is infinite. Consider 

(4-9b), the surface impedance for external return current; 

for the former case it may be rewritten in the form 

r1 (ra) 
I0 (rb) + K0 (rb) Kl(ra) 
!1 (rb) - K10o) Il(ra) 

K1Cr a) 

(4-15) 

Now, lim Il(ra) = O, and lim Kl(ra) =co, leaving the well-
a-.>o a~ 

known [22, r. 140; 24, p. 212; 27, p. 15'i] expression for the 
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impedance of a solid round wire: 

Zwire -- r (4-16) 
2rr l:tb 

where 

b = radius of the wire 

After rewriting (4-16) in terms of Thomson functions 

(Appendix B) and performing some minor manipulations, there 

results the form 

where 

Zwire = jv 
2'71' Db 

ber vb + j bei vb 
ber' vb + j bei' vb 

b = radius of wire 

v = v /.1.) )l.Cf 

(4-17) 

If the denominator of (4-17) is rationalized and terms of 

the fraction collected, it is found that the real part of 

the resulting expression is just equation (2-6), and the 

imaginary part is 0) times equation (2-7), which is only 

to be expected. 

A similar procedure can be Undertaken for a tubular 

conductor whose outer radius is infinite; this should yield 

the expressions for the impedance of a sea-return. Equation 

(4-9a), the expression for surface impedance with internal 
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return current, is rewritten in this case as: 

(4-18) 

This time, lim K1 (rb) = o, and lim Il(rb) = Q.O, and the 
b~oo b~~ 

result is an expression quite analogous to (4-16): 

Zsea 

where 

= c 
2'Tf O'a 

(4-19) 

a = inner radius of the infinitely thick hollow 
tube (radius of the "hole" in the sea) 

In terms of the Thomson functions, (4-19) becomes 

Zsea = 

where 

-jv 
2rr !1l1 

ker va + j kei va 
kerf va + j kei* va 

(4-20) 

If the same procedure of rationalization of the denominator, 

multiplication, and collection of terms is undertaken, it 

can be shown that the real and imaginary parts of the result-

ing expression correspond to results previously obtained. 

The Thomson functions of the second kind are unwieldy and 

the algebra is therefore not so straightforward, but the 
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procedure is carried through for the real part in 

Appendix E to illustrate the procedure. 

The dimensions of the cables calculated in this 

chapter are listed in Table 3-1 of the previous chapter, 

since the cables themselves are identical and only the 

surrounding sea has been added. The internal impedance 

of the center wire, the capacitance, and the external 

inductance have all been calculated in the second chapter. 

Internal impedance of the sea was also calculated there; 

the resistance term, which is independent of radius, can 

still be used but the reactance will have to be redetermined 

because the copper outer conductor has now added thickness 

to the cable. Impedance of the copper layer was determined 

in the third chaptero The results of this chapter show how 

to combine the effects of the separate laminations. Then 

calculations of attenuation and characteristic impedance 

proceed as before. Results are presented graphically in 

Figures 4-2 and 4-3. 
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V. LINES WITH STEEL 

Up to this point the theory as presented has been 

general enough to accommodate materials of any kind, but 

all the lines considered have contained only materials 

Whose permeability was essentially that of free space. 

Since one of the stated goals of this investigation is a 

cable with a breaking strength higher than that obtainable 

using only copper or other non-ferrous materials, it is 

obvious that any acceptable design will be based largely 

on the question, not of whether steel will be included, 

but of where steel will be included. As far as the mechan

ical requirements are concerned, it is sufficient just to 

have the necessary strength members present, but their place

ment within the cable can make a big difference in the 

electrical characteristics. 

Qualitatively it is not hard to predict what the 

effects of the steel will be: resistance will be higher, 

first because of the lower conductivity of steel, and 

second because, as equation (2-8) shows, skin effects will 

be more pronounced than in copper at any given frequency. 

On the other hand, internal inductance and hence total in

ductance will also increase, which is always desirable for 

the propagation characteristics of the line. In addition, 
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the rate of change of skin depth, 

since it varies inversely as .ffll. 

...s1k.. will be smaller 
df ' 

It is expected, however, 

that the disadvantages will outweigh the advantages. This 

expectation is the motivation for the practice followed in 

this section of additionally computing each sample cable as 

if it were nonmagnetic, in order to give a basis for direct 

comparison. Since the signals to which the line is to be 

exposed will be small in the present application, the 

assumption will be made whenever steel is encountered that 

Pr is a constant, and that hysteresis effects are small 

enough to be negligible compared to other losses. 

B. Steel-Gore Line 

The first cable sample to be investigated is the 

simplest configuration using steel: it is an ordinary 

coaxial configuration, in which each of the seven strands 

making up the center conductor is now of carbon steel of 

very high tensile strength instead of copper. The outer 

conductor is a ring of copper strands, as in previous 

cables. A cross-section of the sample would look quite 

like that shown in Figure 3-1, except that the center and 

outer conductors are of different material. 

The configuration is not difficult to compute; all 

that is required is to use the appropriate value of Pr 

in the equations already developed in Chapters 3 and 4. 
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The results, both for the actual line and the correspond

ing all-copper case are shown graphically in Figures 5-l 

and 5-2. As is only to be expected, this line, while 

strong, has a relatively high attenuation which becomes 

especially objectionable at the higher frequencies. 

Breaking strength of the sample was about 170 pounds. 

c. Bimetal-Braided Line 

The design of the next cable sample is based on 

the premise that the center conductor is a bad place for 

the strength members, at least in a cable with such 

strength, diameter, and bandwidth requirements as are 

stipulated here. If the steel is moved to the outer 

conductor, the same cross-sectional area will displace 

proportionally less copper, and the steel is likely to 

do less damage to the propagation characteristics. 

In this sample, the center conductor is again composed 

of seven copper strands; the novelty of the configuration 

lies in its outer conductor which represents at the 

least, an unusual capability in cable manufacturing. 

This outer conductor is a woven braid (having one 

strand per carrier) in which each strand is a bimetal 

conductor similar to the steel-cored, copper-coated 
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conductors known generally by the trade names "Copperweld" 

and "Copper ply. u The braid is laid on at a very shallow 

angle (almost parallel to the axis of the cable); the exact 

figure was not furnished by the manufacturer, but appears 

from inspection to be about 2t degrees. A cross-sectional 

diagram of the sample is shown in Figure 5-3. 
Nothing that has been presented so far will enable 

us to handle an outer conductor of such complexity, for 

the fields are almost impossible to describe exactly, and 

not at all worth the effort for any practical purpose. The 

logical answer is to try to arrive at some sort of "equivalent 

circuit" which is more easily calculated and will give satis

factory results, at least over a limited frequency range. A 

considerable amount of work has been done by various investi

gators in characterizing braided conductors. Among the 

unclassified papers on the subject, reference 5a] is a good 

example. Most of these, however, are limited to frequencies 

well above the range considered here, where most present-day 

applications for cables exist, where losses are greater, and 

where it is especially necessary (and at the same time more 

difficult) to be able to predict and compute the electrical 

behavior of the conductor. Fortunately, the problem ought 

not to be so severe in this case, because the frequency is 

lower. But at this point it will be necessary to digress 
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long enough to provide some sort of rationale for the 

assumptions which are made later in calculating the pro

pagation characteristics of this cable. The digression 

forms the major portion of this section. 

If the outer conductor of a coaxial cable is braided, 

and if each of the strands making up the braid is a bi

metallic wire consisting of an iron core over which a layer 

of copper is plated or welded, then the cable geometry 

becomes extremely complex. Not only are all the strands 

of the braid no longer parallel to one another, but they 

rise and dive over and under one another in their passage 

along and around the cable. As indicated previously, it 

would be almost impossible to obtain an exact expression 

for the fields as a function of current distribution in the 

braid. The cable sizes and frequencies dealt with here are 

such that internal inductance of the outer conductor cannot 

always be ignored with respect to external inductance, but 

it would be better to do so, or to make an outright un

supported guess, than to attempt an exact solution under the 

circumstances. 

There is one feature of the braid, however, that points 

the way to a possible method of attack: its periodicity. By 

this is meant that the lay of the strands of the braid is 

periodic in space, or alternately, that if we choose properly 
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we can cut a s~ll volume from the braid, within which the 

placement of the strands is the same as in any other iden

tical small volume. A convenient approximate representation 

is shown in Figure 5-4. Then it may be possible to arrive 

at some set of average values which will characterize the 

braid sufficiently well for making comparative estimates of 

various cables. The basic method used here is adapted from 

Sakurai [7], who used a similar procedure in connection with 

his investigations of artificial dielectrics. 

The key idea is the concept of "macroscopic" or 

average dielectric constant, permeability, conductivity, etc. 

Assume the structure of the material under investigation to 

be periodic along all axes of the coordinate system, and that 

the periods are all small with respect to the wavelength of 

any electromagnetic waves present. Finally, assume that 

permeability, conductivity, dielectric constant, etc., are 

constant. 

Since the primary interest is in the average permea

bility, the following procedure will be carried out in terms 

of the magnetic field intensity, although the results are 

equally valid, and the procedure is exactly the same, for 

the average dielectric constant and the electric field. 

Assume a small long cylinder of circular cross-section, 

perpendicular to the plane of the paper and situated some

where in an area ~ A. The area will be taken as a rectangle 
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of width a and height b with axes parallel to the co

ordinate axes. (Such a restriction avoids unnecessary 

complication and is convenient, but there is no loss of 

generality since the analysis holds for any coordinate 

system, including non-orthogonal ones). If the analysis 

is undertaken for unit length of a very long cylinder, 

the three-dimensional problem of [7] reduces to a two

dimensional one. Periodic volume AV becomes periodic 

area b. A, etc. Let the cylinder have permeability Jllt 

and. the remainder of the area Ll A have permeability JUo• 

b.A is the "period" of the macroscopic configuration of 

which the small cylinder is a part. Let there be a uniform 

static field H0 which lies in the plane of the paper 

parallel to the X-axis. All dimensions are small compared 

to a wavelength of the field. For the present, the cylinder 

will be assumed not to carry current, so that the field 

intensity is derivable from a scalar potential function~. 

The boundary conditions which must be satisfied at the surface 

of the cylinder by the static potential ~ 0 outside the 

cylinder and the static potential tjl' 1 inside are 

'Yio Ill ¥1 (5-1) 

and 

JUo Cl~g 
= ..Ul aP1 

lJr 8r 
(5-2) 
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These conditions are simply reiterations of the well-known 

facts that the tangential component of the magnetic inten

sity, and the normal component of the magnetic flux density, 

must be continuous across any boundary. Radius vector r 

is centered on the axis of the cylinder. Almost any book 

on electromagnetic theory {e.g., [29, Sec. A.03] gives the 

solution for the corresponding problem of a dielectric 

cylinder in an electrostatic field. Because of the analogy 

between m~gnetic and electric quantities, the results may 

be carried directly over in the present case by substituting 

B for D, H for E, and JUr for E r [23, p. 288ij. Thus we 

show that, in this case, 'tfo and P1 may be written as 

flo - -H0 [1 - l'l2 
( llJ : »o J] {r cos e} - r 2 {a) .lll ...Up 

(5-3) 

¥1 - -2,u 
(b) - 0 H0 r cos e-

Pl + ftlo 

where 

rl - radius of the cylinder, meters -
r = radial distance from the cylindrical axis, meters 

-"' ..... = angle between H0 and radius vector r 

and the other quantities have been previously defined. Now 

if the gross structure is periodic, then the macroscopic 

value of whatever parameter is sought is the same over any 

period A. A, and must not be a function of the location of 1:::. A. 
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~ A is now taken for convenience with its center on the 

axis of the cylinder, and we proceed to find the average 

value of )l over ,6. A. 

To do this we find first an average value of 
..... 
B. 

A difficulty immediately presents itself: because of the 

distortion of the field due to the presence of magnetic 
..... 

material; B does not have the same direction throughout 

~A. However, along the line through the center of the 

cylinder perpendicular to the external field (along the 
~ 

y-axis in this case) B has the same direction both inside 

and outside the cylinder, and is maximum. Then the assump

tion is made that a value for the flux threading the 

periodic volume (~A times unit length) can be obtained by 

finding the flux threading the rectangle b times unit 

length, where b is the height of ~ A and of the periodic 

volume. Let us reason as follows: 

Flux, $ = £ B dA 

-:::i:" 
• (B)(b)(l) (5-4) 

So that 

B : 

and 

(5-5) 
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where the overbar denotes an average value. The integra

tion in (5-4) should 1 of course, be taken from -b/2 to 

b/2. In order to shorten the algebra, advantage is taken 

of the symmetry of ~ about the x-axis by integrating over 

half the distance and doubling the result, as shown • 
..... 

The field intensity H is obtainable from the 

potentials as 

ii • -v~ 
and in polar coordinates, 

~ 

where Ur and 
~ 

uCf are the unit vectors in the r- and 'f-
~ 

directions respectively. Since H0 has been taken for 

convenience parallel to the x-axis, the angle ~ between 
~ ....:.. 

the radius vector r and H0 is identical to the angle 

~ of the polar coordinate system. Since the integration -of (5-4) is to be taken along the y-axis, H must be 

evaluated at EY = <f? • '71/2. In general, the intensity 

inside the ferromagnetic cylinder is, from (5-3b) and <5-7) 
..:.. 

- Vc'fl Hl • 

2.u2 ...> 't' ~ • H0 (ur cos - u'e sin({') 
All + .uo 

(5-8) 

and along the y-axis 
..:.. 2.ug ..:::.. 
Hl • -V~ . - Ho Uif 

(( = '11'/2 .u1 + Po 
(5-9) 
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The general expression for the intensity over the rest of 

~! is, from (5'-3a) and (5'-7) 

-Ho =-v~o 

: H0 r(cos <{')(1 + r~
2 

111 - ~) iir + L r ~1 + JUo · 

(-r sin e + r, 
2 

.Ul - :?s sin e) !r J 
r .Jll + .llo r 

( 5'-10) 

Evaluating (5'-10) along the y-axis gives 

Ho = -V ~/ • -H0 ( l - M r~ 
2 

) Ute 
'e :7T/2 r 

(5'-11) 

where, for convenience, we define M = 

..:>r .....:... 

Both H1 and H0 are seen to lie here entirely in the 

negative Uce- direction, which, for 4?= '!Tf2, is just the 
~ 

positive tt1 - direction of rectangular coordinates. Thus 

the vector notation may now be dropped and the remainder of 

the analysis carried out in terms of magnitude only. 

Substituting (5-9) and (5'-11) in (5-4), 

J
rl b/2 2 

Bb = 2)11 2.uoHo dy + 4uo [, H0 (1 - M ~) dy (5-12) 
}lo + Pl ' Y 

0 1 

Straightforward iategration and algebraic manipulation then 

yield 

( 5-13) 
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and hence, from ('-5), 

)l : A> (1 + .. ~~2 ,ul - .uo ) 
..Ul + Po 

(5-14) 

If the dimensions of AA are large with respect to the 

radius of the cylinder, the value of r12/b2 on the 

circumference of A A will be small compared with unity. 

The contribution of the ferromagnetic material will be 

small and p will approach p0 • Unfortunately, the value 

of r12/b2 will not be small in the present instance. 

The exact value of ft.1 depends very much on the 

size and shape of .D. A, which is itself open to debate. 

To get some feel for the size of ~' let us assume a 

convenient but reasonable .6 A. Reference to Figure 5-4 

shows that, if a woven braid is to be described by this 

periodic approximation, the rectangle hA must be at 

least 4rl meters square. This is a convenient shape in 

that it simplifies the mathematics, yet at the same time 

its size provides a realistic and not o•erly favorable case. 

If b. A should turn out in practice to be larger so much the 

better, for the effects of proximity to the strand will 

thereby be lessened •• With the above choice of size and 

shape for .6 A, b (and also a) will be 4rl meters and 

there results 

(5-15) 
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Thus we have a general idea of the magnitude of p: 

if the strands are nonmagnetic, or small with respect to 

the spacing between them, p/p0 could be as small as unity; 

if the permeability of the strands is at all appreciable 

and/or they are tightly woven, ~ is increased somewhat; 

for the case above and a strand permeability ~1 = 100~0 , 

ji = 1.245 Po• 

The factor r12/b2 may be written in terms of the 

cross-sectional areas ~A and A. Doing so may appear to 

introduce an unnecessary complication, but the reason for 

it will become evident shortly. The area of ~ A is ab, 

and that of A1 rr r12• Then 

so that 

where 

..!L - rrr12 
= ;rb rl2 - - b2 

(5-16) 

--
= 

D. A ab a 

r 2 
~ T = K 
AA 

(5-17) 

cross-sectional area of the periodic volume 

cross-sectional area of the ferromagnetic 
cylinder 

K • -A- , a constant depending on the proportions 
71'b 

of AA 

Then (5-14) may finally be written in the alternate form 

(5-18) 
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where KA = 21:... ...JL... and the subscript on .ll denotes that 
rr b 

H0 is perpendicular to the axis of the cylinder. 

At first it may seem surprising that the steel should 

have so little effect on average permeability, even when it 

constitutes a fairly large percentage of the shield volume, 

but this is a consequence of the fact that the field is 

required to satisfy boundary conditions involving a unity

permeability medium. In other words, it is a consequence 

of the demagnetizing effect. 

In the foregoing, it was assumed for convenience that 

no current was flowing in the metal within .A A, so that curl 

H = 0 inside as well as outside the metal, and the conditions 

of continuity were as given. But these conditions must hold 

even when one (or both) of the media forming the interface 

carry current. (The application of the boundary conditions 

when curl H ::f 0 is discussed in [1.5', Chap. 12].) But 

our purpose so far has not been to describe the total field 

around a strand when the braid carries current; it was to 

arrive at a basis for assigning an average value for the 

permeability of the braided conductor by examining a field 

in a section of this composite material. The existence of 

the field was given and, if one likes, can be thought of as 

being set up by some other strand. 

It seems best to pause here to review the analysis so 

far, and to recapitulate the assumptions. The braided con

ductor which is to be descri~ed is assumed to be made up of 
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a large number of identical building blocks, of the form 

of or similar to Flgure 5-5, which are placed end-to-end 

and side-by-side, and are possibly also stacked "vertically", 

i.e., in the radial direction, in the most general case. 

Each block consists of bimetal conductors surrounded by a 

dielectric. At the moment, we are searching for an average 

permeability which can be assigned to a hypothetical homo

geneous coDductor which fills the block. To this end we 

have arrived at an average permeability for a block contain

ing a straight, circular, cylindrical, ferromagnet~c 

conductor; the block is situated in a uniform field so that 

the cylindrical axis is perpendicular to the field. (Impli

citly in such an arrangement, the composite conductor is 

"developed•, i.e, unwrapped and straightened out flat, but 

this causes no great concern siace we reiterate that the 

interest at the moment is in the macroscopic properties of 

the material, and not in the field of a given current 

distribution.) 

It vas seen that the average permeability of the 

braid depends iD part on the fraction of the volume of the 

block occupied by ferromagnetic material. In addition, if 

the braid structure is periodic then integrating over the 

volume (6A times unit length) gives the same result no 

matter where the volume is taken. Or, what is the same 

thing, the result is the same no matter where within~ A 
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the cross-section of the cylinder lies (as long as the 

cylindrical axis remains perpendicular to the field). 

These assertions form the basis of the next two approxima

tions: (1) as far as its effect on the value of ~ is 

concerned, we may ignore the fact that the cylinder is not 

straight, especially since its curvature will be periodic 

in the long run, and (2) the presence of two cylinders 

(strands) in 6 A is conveniently handled by simply 

doubling the area of the single cylinder in the formula 

for Jl• Again, both assertions carry the qualification 

that the cylindrical axis is perpendicular to the field. 

This qualification represents the remaining discre

pancy between the building block which we wish to analyze 

and the building block for which we have an analysis. In 

Figure 5-5, the strands cross, and neither has its axis 

perpendicular to the plane in which the field vector is 

taken to lie. To take account of this, it will be helpful 

to return to the idealized straight cylinder at the center 

of .6. A. This time, however, let the field be parallel to 

the cylindrical axis. Then the H-field is not distorted 

by the cylinder, and by the condition that V 0 = ¥'1 on 

the boundary it is the same inside and outside the cylinder. 

Then H = H0 = H1• Now, if )l = )Uo throughout A A, we 

could write B = )Uoll, but in fact B = p 1H within the 

cylinder; therefore 
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B = 11 'H + Pl - .no 
--cJ·o A A (5'-19) 

Since H1 is constant over the area of the cylinder, 

( 5'-20) 

which leads to 

Jl,, • foo ~ + -a- (5'-21) 

Thus it is seen that the average permeability of a building 

block containing a ferromagnetic cylinder depends very much 

on the direction from which the block is viewed. The same 

effect is obtained if the cylinder is canted at an angle ~ 

to the z-axis of the periodic volume. Then the field H0 

makes the same angle &" with the normal to the cylindrical 

axis, and H0 can be resolved into components tangent and 

normal to the cylinder which are given by H0 sin 13"' and 

H0 cos 6' respectively. It is seen that the average permea

bility p of the block of Figure 5'-~ will have some 

intermediate value between P.1 and J.l/1 , depending upon 

the volume of the steel and the angle at which it is laid. 

The basis for the final assumption lies in the principle 

of superposition and the expression for the energy in a 

magnetic field, which was given earlier, 

J ~ ""* U = t -Re B • H dv (2-16) 
v 
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Remember that ..U.L and E 11 are average values over the 

entire periodic volume, derived for two specific direc

tions; we calculate the total energy as 

U = t )lli0
2 = t ..u11 (H0 sin 8') 2 + t Jl.l. (H0 cos 8') 2 

from which follows 

(5-22) 

ji = )lli cos2 9' + )lU sin2 &--" (5-23) 

or, in its complete form, 

- = - I (1 + K 2.J. )11 - Po) 
}1 Po L~ A 11A Ill +Po 

where 

Jlo 

(5-24) 

= permeability of ferromagnetic material in 
the braid 

= permeability of the rest of the material 
(including air gaps or space) of the 
braid 

= fraction of the (periodic) volume of the 
braid occupied by ferromagnetic material 

~ = angle between axis of the braid strands and 
axis of the cable 

KA = a constant, (4/~)(a/b), where a and b 
are respectively the width and the height 
of the unit volume 

There still remains the question of an average value 

for the conductivity of the composite conductor. This is 

easily handled by the following procedure, which is readily 

seen to be an extension of the method used to adjust the 

conductivity of the all-copper line in the previous chapter. 
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Here, however, we will continue to work with the periodic 

cross-section ~A, rather than the entire braid cross

sectional area, which consists of some integer number of 

identical D. A's. The conductance ef the periodic volume 

is given by 

g = (5-26) 

where 

g = conductance (per unit length) 

1f = average conductivity 

Jl = (unit) length 

If all calculations are made on a per-unit-length basis, 

.1 = 1 and need not be carried along. The area~ A 

contains some number of conductors of steel, having 

together a total area of Are' and the same number of 

copper conductors, having together a total area of Acu• 

Conductivity of the steel is ~fe, and of the copper OCu. 

All these conductors are in parallel, so that their con

ductivities add directly. 

Then 

g 

(5-27) 

which leads immediately to 

~ = Are 0: Acu 
u <rre AA + cu AA (5-28) 
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() = average conductivity of the bimetal braid, 
mhos/meter 

Ofe - conductivity of the steel, mhos/meter -
<icu - conductivity of the copper, mhos/meter -
Are - fraction of the (periodic) volume of the 
TA - braid occupied by steel 

~ = corresponding quantity for copper 
LlA 

Armed with the above two constants, JI and Cf , we now 

assume that the braid is replaced by a homogeneous tubular 

conductor to which these constants apply, and compute the 

transmission characteristics as we have done in previous 

chapters. 

The reader may be left with some apprehension as 

to the validity and rigor of the approach just presented 

for computing the braid characteristics. Probably the 

best defense that can be given lies in the following two 

points: (1) As mentioned previously, almost any reasonable 

guess is preferable to the task of computing the fields 

exactly (if it can be done at all); to use a metaphor 

common among engineers, we have at least narrowed the 

search for first base to the ball park; and (2) the most 

important fact to be gained from the foregoing analysis 

is that the effective permeability of the braided structure 

will be considerably less then the permeability of the steel 
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itself, and will not vary widely from that of nonmagnetic 

material; something less than an order of magnitude should 

generally be the rule for strands laid on at small angles 

(20 degrees or less). 

There is one other factor which serves to make the 

struggle for great accuracy unnecessary, at least in the 

present circumstances, and that is the variability of p 

(and 0) for a given steel wire from batch to batch and 

from manufacturer to manufacturer. But it is seen that 

in the present configuration the effect of the permeability 

of the steel is reduced to a relatively minor importance. 

The dimensions and other vital statistics of the 

bimetal-braided cable are presented in Table 5-2. Calcu

lated results for both the sample and the corresponding 

all-copper case appear in Figures 5-5 and 5-6. Breaking 

strength of this sample was about 70 pounds. 

D. Copper Coaxial Line with Steel Overbraid 

The last steel-bearing cable to be considered is a 

combination of types previously encountered. Its base is 

a coaxial line like that of Chapter 3, with a stranded 

copper center conductor and a ring of bare copper wires 

in contact as the innermost layer of the outer conductor. 

Over the copper is woven a braid of high-tensile steel 

strands to provide strength. The cable has no jacket, so 

71 



NOLTR 67-22 

that in operation the sea will penetrate into it as far 

as the outer surface of the dielectric. Since seawater 

is so much less conductive than either steel or copper, 

it is ignored amid the metallic strands for simplicity. 

After conductivities and permeability are adjusted in 

accordance with techniques previously described, there 

results a cable with an outer conductor of three lamina

tions: copper, steel, and sea. Other than the labor of 

computation, the configuration presents no particular 

difficulties. 

The advantage of an arrangement of conductors such 

as that occurring in the present sample is that the high

conductivity material (copper) is located in just the 

regions into which skin effects tend to crowd the current 

as frequency rises; the steel is placed on the outside, 

where it has less effect and soon tends to fall out of 

the picture altogether. The price paid for this, of course, 

is that if the overall cable diameter must be held to an 

upper bound, then only two choices are possible, both of 

which tend to raise the attenuation of the line. Either 

the spacing between the conductors is made smaller, which 

increases capacitance and reduces inductance (both bad), 

or the diameter of the center conductor is reduced from 

the value it would have in an all-copper line in order to 

maintain the optimum 3.6:1 ratio of conductor radii. This 

increases resistance (again bad). Naturally these comments 

72 



NOLTR 67-22 

do not apply if the overall diameter can be increased when 

adding the strength member; in that case the only price 

paid for this configuration is the additional cost of the 

cable. 

A diagram of the cable construction is shown in 

Figure 5-7. Dimensions are given in Table 5-3. Graphs 

of characteristic impedance and attenuation appear in 

Figures 5-8 and 5-9 respectively. Instead of the corre

sponding all-copper case, computations have been carried 

through for a line consisting of the core, dielectric, 

and innermost layer of the outer conductor only, i.e., 

the configuration of Chapter 3. 
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VI. DATA TRANSMISSION 

Now that the electrical properties of the bimetal 

path are known, the next most important question becomes, 

"How good (or bad) is the channel for the transmission of 

data? What can we reasonably expect to accomplish, and 

what, if anything, can be done to improve matters?" This, 

of course, is a big question, and any answers given here 

are certainly not going to exhaust the subject. Much 

depends ~pon the character and strength of the signal, the 

character and strength of the noise, and the terminal 

equipment at the ends of the line. Let us first, then, 

enumerate some boundary conditions which we will assume 

to limit and simplify the discussion: 

1. The effects of cable self-generated noise and 

amplifier noise figure will not be considered. This 

simplification implies that the signal-to-noise ratio at 

the output of the amplifier terminating the line is suffic

iently high at all important frequencies, and hence the 

large attenuations encountered in these small-diameter 

cables can be overcome without penalty by sufficient 

amplification. 

2. The information to be transmitted is digital. 

It is a binary (two-level) non-return-to-zero {NRZ) data 

stream. The desired transmission rate is constant and for 

discussion purposes will be taken as 400 kilobits per second. 
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3. Transmission over the cable is in one direction 

only. 

4. Appropriate sampling and pulse-reshaping cir

cuitry is available at the receiver, if needed. Hence, it 

is not necessary that the data stream at the output end of 

the cable be as clean, square, and noisefree as it was at 

the input end, as long as the signal-to-noise ratio exceeds 

certain definite minimum values determined by such considera

tions as channel capacity and error rate (see below). 

The temptation to regard the transmission path as 

simply an RC line, of which an analysis has been made 

[13, p. 307f~ must be resisted if the bit rate is to be 

as high as 400 kbps, for it has been seen in previous 

chapters that inductance becomes appreciable at the higher 

frequencies, giving an inductance loading effect to improve 

transmission signal resolution, but at the cost of still 

greater signal attenuation. The dividing line is the point 

at which the inequality w<< iR is no longer a valid 

assumption. 

The signal-to-noise ratio required to transmit binary 

information at a given rate and for a prescribed error pro

bability can be computed assuming Gaussian noise. A ratio 

of about 18 to 20 db is required for error probabilities in 

the range lo-4 to 10-6 [26, p. 38~ • But the question im-

mediately arises as to the bandwidth of the channel. Harman 

[16, p. 154] shows that, for binary data, the channel 
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capacity remains constant at the Nyquist rate for any 

signal-to-noise ratio greater than 10 db. In the case 

of a coaxial cable, one may define a 3 db bandwidth, or 

a 20 db bandwidth, or any other convenient figure, but 

the point is that some definition is necessary, for pre

vious chapters have shown that attenuation is minimum at 

d.c. and increases with frequency at an almost constant 

rate from there. For this reason, the bandwidth concept 

does not appear very profitable; a better approach would 

seem to be on the basis of pulse resolution. The two 

concepts are related, of course, but the latter will have 

broader application here, primarily because of the condi

tions stipulated earlier in this chapter. Specifically, 

because of condition 4, our requirements will be satisfied 

if a series of level changes, occurring at the minimum 

transition spacing, can be detected and then regenerated 

to produce a replica of the original data stream. This 

criterion would be met, for instance, if a repetitive 

101010•••data stream at the input were represented at the 

output by a sinusoid. To avoid later confusion, it should 

be noted in passing at this point that a steady stream of 

alternate ones and zeros at a 400 kilobit rate looks like 

a 200 KC square wave. If such a signal is represented at 

the output of a transmission path by a sinusoid, it only 

means that the higher-frequency components of the input 
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have been attenuated by the path, and we would expect the 

sinusoid to have a frequency of 200 KC. 

A moment's reflection will lead one to the conclusion 

that a square wave is not a very good pattern to test the 

data transmission capabilities of a channel with, because 

it allows the channel to settle down to a steady-state 

condition, and this is a state it will never see in practice 

with data consisting of random ones and zeros. Besides, a 

sinusoid will probably be easier to detect than other more 

complicated patterns. A more valid test would be the 

system's ability to pass a pulse. But because the pulse 

can spread in time, an even more meaningful test would be 

the system's ability to transmit, and resolve at the output, 

two pulses separated by the minimum spacing which will be 

encountered. For NRZ data, this condition would be produced 

by a pattern of the form 101 in the midst of an infinite (or 

at least long) string of zeros, or its complement. If the 

system can handle this pattern, it should be able to handle 

anything, for the whole question of required bandwidth can 

be stated in terms of the ability to resolve two minimally

spaced pulses [20, p. 78]. If the minimum spacing (and 

minimum pulse width) is 1:" seconds, the (flat) bandwidth 

must be equal to or greater than 1/(2~ cps for resolution, 

i.e.,~ 200 KC in the present instance. With the minimum 

possible bandwidth, Freeman [1..2, p. 2~ shows that about 

9~ of the pulse energy will be transmitted if there is no 
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attenuation in the passband. 

Now since a digital data stream has such a large 

bandwidth, and the cable that will carry it exhibits such 

wide parameter variations with frequency, it would be 

desirable to get some idea of what the cable will do to 

the signal and how bad the result will be. An actual plot 

of the waveform is especially useful, since the eye is a 

better resolver of d~graded signals than electronic cir

cuitry is. The means of obtaining such a plot is available 

in the te~hnique of Fourier analysis. 

Consider then a pattern having the form 101 followed 

by seventeen (17) zeros (which will be written as 101017). 

While 17 zeros is something short of an infinite string, it 

is mathematically more tractable, and is felt to be suffic

iently long to provide a valid test. The line is driven 

with a signal Vg which is a continuous repetition of this 

20-bit pattern. Then, a Fourier analysis of the driving 

waveform yields a function of the form 
QO 

= a0 +~ancosnw 0t 
n=l 

(6-1) 

where a0 is the average d.c. value of the waveform, in 
)( 

which we are not interested at the moment, and an = Vgn 

is the Fourier coefficient of the nth harmonic (which is 
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of angular frequency nw 0 ). The d.c. component will. be 

important when it comes to the design of a cable driver 

and signal receiving and regenerating circuits (which are 

beyond the scope of the present discussion), but it is not 

a factor when considering pulse resolution and will be 

dropped in all equations from this point on. No sine 

terms appear in (7-1), because the stipulated pulse pattern 

can be made an even function by suitable choice of origin, 

and can therefore be represented by a sum of even functions 

only. 

The propagation characteristics of the signal path 

(the cable) are known. Specifically, any signal at the 

input will suffer attenuation ot.L and phase shift (31. in 

the course of its travel along the cable, where .R. is the 

length of the cable. The only difficulty is that~ and{3 

are functions of frequency. This means first that the 

component cosinusoids of equation (6-1) will not be attenu

ated proportionally, and second, that they will not add in 

their proper phases at the load. The result is easily 

determined; if the cable is terminated in its characteristic 

impedance at all frequencies, there are no reflections and 

the load voltage is (equation (A-12), Appendix A) 

(6-2) 

where 

.L = length of the line in meters 
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7 = o< + j (3 = propagation constant, (nepers + j 
radians)/unit length 

)( 

Now, V gn • an; therefore ~loadn = ane_y'£ and Vloadn = 
1\e ane- r.J ejn<AJ ot. In view of the. form of the applied 

signal from (6-1), the load voltage (less d.c. term) may 

be written by superposition of individual harmonic compon

ents as 

(6-3) 

Other than the great deal of labor involved in the actual 

calculations, (6-3) presents no problems. For the signal 

stipulated, a 20-bit repetitive pattern at a bit rate of 

400 kbps, the fundamental cosinusoid is at 20 KC, and 

'Y'n = <tn + j(3 n is merely -7 of the line evaluated at 

harmonics of 20 KC. 

Equation (6-3) was programmed for the IBM ?090 

computer. Provisions were made to automatically terminate 

the summation at the value of n for which ane-~ns be-

l th t f - :Y,ls h i th comes ess an one percen o a1e , w ere s s e 

distance, along the line from the source, at which the volt

age is being computed. Computations were made at 1-kilometer 

intervals along the line (total length: 4 kilometers) for two 

pulse patterns, 101017 and 1019• The results are shown as 

Figures 6-2 through 6-9. The deterioration in the waveforms 

as they travel along the line is readily apparent, and it is 

seen that the signals at the load are totally unacceptable. 
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Obviously, something must be done. 

In terms of bandwidth rather than pulse resolution, 

the conclusions of Espenscheid and Strieby [3] concerning 

the data transmission problem are summed up (paraphrastic

ally) in two statements: 

1. For a given cable size, "bandwidth" increases 

nearly as the square of the reduction in length. 

2. For a given length, "bandwidth" increases 

approximately as the square of the conductor diameter. As 

mentioned in the introduction, cable outside diameter is 

severely limited in the present application; thus increasing 

the cable size is not likely to represent a practical solu

tion. Nevertheless, it is seen that holding the diameter 

to the maximum allowable limit will be worthwhile. 

Short of giving up all hope of transmitting over 

such distances or at such high bit rates, the most obvious 

solution is the installation of repeaters. Such a course 

of action may or may not be feasible, depending upon many 

factors which are not of immediate concern in the present 

discussion. If repeaters are to be used, equation (6-3) 

provides a convenient starting point .for determining their 

spacing, for the computer program as written has provision 

for graphing the function on a Calcomp plotter, as well as 

printing the results in tabular form. Thus the signal 

deterioration may be seen at a glance, at any distance from 

the source. 
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If repeaters are not to be used, the next best 

answer is equalization. A network (or networks) can be 

placed at the load end of' the line, which will delay the 

lower frequencies more than the higher ones, thus allow

ing the latter to catch up and add in their proper phase 

at the load. It may be shown, although the demonstration 

is beyond the scope of this discussion (as is the whole 

subject of equalizer design), that an equalizer which ad

justs the phase relationships properly will also automatic

ally adjust the amplitude relationships. This is not 

necessarily true in general, but it is true for a transmission 

line, which is a minimum-phase system. 

If an equalization network is placed between the 

line and the load, and if there are no mismatch problems, 

equation (6-2) becomes 

where 

<S = 

Vx v)l -r.e - ( 
load = K g e e (6-4) 

complex transfer constant of the equalization 
network, analogous to ·7' of the line 

K = some multiplying factor 

Now it is not difficult to postulate an equalizer whose 

transfer characteristic is the inverse of that of the line, 

so that ( = - 7.1. It is quite another matter to build one. 

Techniques do exist, however, for the design of' approximations 

which give reasonably good results over a frequency range as 
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wide as one cares to take the trouble to make it. Refer

ence [6] gives an outline of the procedure. The equalizer 

consists of cascaded bridged-Tee networks, the number 

depending on the frequency range and the degree of accuracy 

required. 

Another computer program was written to take into 

account the effects of (physically realizable) equalization. 

The network configuration employed consists of two cascaded 

sections, each having two R-C combinations in the bridging 

arm. A diagram is shown in Figure 6-10. Plots of the 

resulting output waveforms for the 4-km distance and patterns 

are shown in Figures 6-11. and 6-12. It is granted that 

additional amplification will be necessary because the 

equalizers are passive networks; nevertheless, these are 

results we can reasonably expect to accomplish in practice. 

All the above predictions are based on the correctness 

of equation (6-2). The absence of a positive exponential 

term in this e.xpress ion implies that the line is matched 

to its load at all frequencies. We have seen in earlier 

sections that the characteristic impedance of a line varies 

widely with frequency, approaching its high-frequency value 

asymptotically. Therefore, any matching network between the 

line and the load-equalizer combination must vary in the 

same manner. The design of suitable terminations, which 

are simpler to build than equalizing networks, is also 
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covered in reference [6], and their presence is taken for 

granted here. 

As a final note to this section, it may be of some 

interest to the reader to have the Fourier coefficients 

of the two test patterns used in the computer studies 

described above. They are, for the pattern 1019: 

an = ~ sin nli mr ;n) 

and for the pattern 101017: 

an = .2:tA... cos 
n'7T' 

..JUt. 
10 

sin ...n:n: 
20 

(6-5) 

(6-6) 

where A is the peak-to-peak excursion of the NRZ data 

stream, and was taken to be unity in this study. Time

origins were chosen in the center of the pulse for the 1019 

pattern, and midway between the pulses for the 101017 

pattern. Then the patterns are even functions and their 

Fourier coefficients are easily obtainable from half-range 

expansions [32, Sec. 5.4]. 
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VII. EXPERIMENTAL RESULTS 

Not all the lines whose characteristics have been 

computed in the foregoing sections have been fabricated 

and tested for this investigation. As explained in the 

introduction, one of the purposes of the work that has 

been done was to acquire a feel for the behavior of vari

ous line configurations in these small diameters, and an 

idea of the magnitude of the characteristic impedances and 

attenuations to be expected. This has been done by calcu

lation, largely performed on the IBM-7090 computer. The 

analyses on which these calculations are based have been 

thoroughly checked by several investigators, and the 

conclusions corroborated beyond any need for further 

verification here. Samples have been obtained, however, 

of the first two steel-bearing configurations discussed 

in Chapter v, and a considerable quantity of the third 

was also manufactured. 

Before the actual results are presented, a word is 

in order about the methods of measurement. Two quantities 

were sought: characteristic impedance and attenuation. 

The former was obtained in all cases by one of the simplest 

and most convenient methods: open and short-circuit measure

ments. Most references on the subject [20, p. 433; 

27, p. 163] show that the characteristic impedance of a 

network (or a transmission line, which is just a distributed 

network) ie given by 

(7-1) 



where 

Zoe 

Zsc 
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= characteristic impedance of network, ohms 

= impedance looking into network with output 
open-circuited 

= corresponding impedance with output 
short-circuited 

The general measurement setup is shown diagrammatically 

in Figure 7-1. Measurements were made of the input 

impedance of the cable samples under open- and short

circuited conditions over the frequency range of interest. 

Three instruments were used to cover this range: (l) a 

Technology Instrument Corporation (now Acton Laboratories) 

Type 310A Z-Angle Meter; (2) a Type 311A RF Z-Angle Meter 

by the same manufacturer; and (3) a General Radio Type 

916-AL Radio Frequency Bridge. Detector for the last

named instrument was a VTVM. The RF Z-Angle meter is no 

longer being built, nor is a similar instrument being 

offered by the manufacturer as a replacement. The instru

ment was used, however, since it was available. 

From the open- a:m short-circuit measurements, 

characteristic impedance was calculated using equation (7-l). 

Series RC networks having an impedance equal to Z0 were 

then built and used to terminate the line. Regardless of 

their exact value, the networks were adjusted until they 

produced the same readings whether connected directly across 

the impedance-measuring terminals or with the line interposed. 
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Then with the bridge or meter removed, voltages were 

measured across the line at the input and at the output, 

and their ratio taken to calculate the attenuation. A 

diagram of the procedure is shown in Figure 7-2. 

There was some overlap of frequency ranges in the 

three instruments used for measurements. In fact, the 

range could have been covered satisfactorily with only 

the two Z-Angle Meters, but it was thought desirable to 

check the results with a different type of in..c;trument. In 

general, the impedance bridge gave results which appeared 

to be reasonably accurate, as judged by direct measurement 

of resistors, capacitors, and RC networks. Thus, the 

values of Zoe and Zsc of the lines as given by the 

bridge probably represent the true values. Somewhat more 

inaccuracy in readings was noted with the Z-Angle meters, 

however, because they are inherently less aecur·ate instru

ments than the bridge. But regardless of the individual 

readings, it was noted in every case that the values calcu

lated for Z0 from them showed good agreement no matter what 

the equipment used. Coupled with the well-behaved nature of 

the variation in Z0 and q with frequency, it is felt that 

the measurements are satisfactory as intended for the ptiTposes 

here. It is for this reason that only the Z-Angle meters have 

been taken to the field, for they a:re small,' portable, self

contained, and relatively easy to operate for repetitive 
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measurements. In contrast, the General Radio Bridge, while 

more accurate, is bulky, requires an external detector, and 

is very time-consuming to operate if more than just a few 

readings are to be taken. In addition, the bridge should 

rest on a copper ground plane for best results. All three 

instruments require an external source of excitation. 

No measurements were taken in seawater for the second 

sample cable because it had an outer nylon jacket which 

effectively insulated it from the surrounding water. Attempts 

were made, however, to take measurements on the unjacketed 

steel-cored cable in the Chesapeake Bay. A steel watertight 

bottle was fixed on one end and the cable suspended verti

cally from the side of a boat. Wet measurements showed no 

difference from their dry counterparts. It is felt that 

this is largely due to the fact that only sample lengths of 

these cables were available (100 feet in the case of the 

cable measured in water); this is much too short a length 

to produce the fields in seawater associated with a very 

long line, upon which all the foregoing analysis was based, 

without terminal disks or other means to avoid end effects. 

It has been mentioned previously that some long lengths of 

cable were also eventually manufactured. In many tests, 

the number and length of samples was extremely limited, 

being primarily the fortuitous result of experiments with 

the manufacturing processes. It is for this reason that 
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we are forced to content ourselves here with the knowledge 

that the theory of the effects of surrounding seawater has 

been well established, and has ample experimental justifica

tion[l, 34, 36] • 

The results of attenuation measurements of the 

steel-cored cable are presented graphically in Figure 7-3. 

The computed curve is redrawn from Figure 5-2 of 

Chapter v. Plotted points represent values computed 

according to the procedure described above, based on 

readings taken with the RF Z-Angle meter and the impedance 

bridge. No readings were taken at the lower frequencies 

with this cable, first because of the labor involved in 

the procedure and the time element involved, and second, 

because of the greater magnitude and importance of attenua

tion in the high-frequency range. Within the limits of 

experimental error (probably influenced unfavorably by 

the fact that the available cable samples were so short) and 

the variability of values for p and or as given by the 

manufacturer, the results appear to agree satisfactorily 

with the predicted figures over the range in which a 

comparison was made. Figure 7-4 is a graph of computed 

characteristic impedance of the steel-core cable, again 

with measured values plotted as points. Agreement is 

reasonably close. 
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Attenuation measurements of the second cable sample 

(the bimetal braid) are plotted in Figure 7-5, along with 

the calculated attenuation. The calculated curve for the 

corresponding all-copper case is also shown for comparison. 

Again, within the limits of experimental accuracy and 

material variation, it is felt that agreement is suffic

iently close to justify the analysis. Since the computations 

have been performed, it has been noted that there is a 

second-or~er effect that was neglected, and that would 

tend to pull the upper curve closer to the measured points 

at the higher frequencies. In the actual braided bimetal 

conductor, skin effect will tend to crowd the current more 

and more into the copper as frequency increases, and the 

reduced conductivity of the steel core in each strand will 

exert less and less effect. Therefore, while it is still 

necessary to adjust the conductivity of the equivalent homo

geneous conductor, the adjustment factor is now a function 

of frequency and must be computed anew at each frequency. 

The procedure is straightforward and employs the techniques 

outlined in Chapter IV, but is t 9dious and has not been pro

grammed for the computer as yet. Figure 7-6 presents the 

calculated and measured result.s of characteristic impedance. 

The attentuation characteristics of all the coaxial 

samples computed exhibit a characteristic spoon-shaped de

pression at the high end of the frequency range, as it is 
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presented here. Actually this is part of the transition 

region commonly found in such curves, and is to be expected. 

Reference ~6] discusses this behavior at some length, and 

presents a characteristic attenuation curve over a frequency 

range wide enough to demonstrate the phenomenon. In a few 

words, it is shown that attenuation varies as the square 

root of frequency at low frequencies, and that as skin 

effects become appreciable, it again varies as the square 

root of frequency, but with a different constant of propor

tionality. The transition region corresponds to the 

frequency range in which neither the low-frequency nor the 

high-frequency approximation formulas, all of which are to 

be found in any text on transmission lines, are applicable, 

and its appearance both in the calculated and measured curves 

is comforting rather than disquieting. There is, it is true, 

a factor in the high-frequency attenuation expression which 

varies directly with frequency, but it does not become of 

importance until considerably higher frequencies, and is 

of no concern her~at least in the coaxial lines. In the 

sea-return line, this is not true, for the slope of the 

attenuation characteristic is already seen from Figure 2-3 

to be close to unity by the time frequency has increased to 

one megacycle. 

One further result, which is not really an experi

mental result, may be worth including at this point because 

it logically fits better in this chapter than anywhere else. 
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The reader may by this time have begun to wonder just how 

accurate are the approximations (4-12) compared to the 

exact expressions (4-9). Even if the justifications for 

them sound plausible, no approximations are ever really 

wholly satisfying. The time comes eventually when one must 

roll up the sleeves, resign oneself to the labor involved, 

and check a few points to satisfy one's curiosity. The 

effort will be largely wasted, unless one has access to at 

least a desk calculator and fairly detailed tables of the 

Thomson functions, for the complex algebra leads to small 

differences in large quantities and many transformations 

of the complex quantities between rectangular and polar form. 

A slide rule is useless. 

In this age of the digital computer the situation is 

not as hopeless as it would have been a few years ago. Once 

equations (4-9) are programmed, the work is essentially 

finished. There are still difficulties involved, for the 

Thomson functions of the second kind do not converge rapidly, 

and tend to overflow the computer registers for all but the 

smallest values. McElroy [37] has written a routine which 

calculates all the Thomson functions to an accuracy ot at 

least four places. Using this routine, a program was written 

to compute and compare the approximate and exact internal, 

external, and transfer impedances of a la~inated outer con

ductor. It consists of a copper inner layer surrounded by 

the sea, and is the outer conductor of one of the cables 
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calculated in an earlier chapter. The results are presented 

in Table 7-1; it may be seen that the difference is slight, 

and that therefore use of the approximations is justified. 

As a final note to the experimental results, it must 

be mentioned that all calculations have been made using 

room-temperature (25°C) conductivities, because this was 

the approximate ambient temperature at which the experimental 

work vas carried out. (It is also the temperature for which 

conductivities of materials are most often tabulated.) How

ever, as has already been pct~inted out, the average temperature 

over a long deeply submerged cable is more likely to be in the 

neighborhood of 4 degrees centigrade. The effect of reduced 

temperature on attenuation can be calculated as follows. At 

25°C, the temperature eeefficient of copper is 0.00385 per 

degree centigrade. Then the resistance of a copper conductor 

at any temperature can be found from the formula 

(7-2) 

where 

Rt = resistance at temperature t 

t = temperature in OC 

Calculation for a temperature of 4°C yields 

: 1.087 (7-3) 
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Thus, the d.c. resistance as computed is almost nine per 

cent too high. 

The general expression for the attenuation of the 

cable is the real part of equation (l-2b). It is conven

iently listed in [j1, p. 5'5'2] as 

(7-4) 

In all the work here, we have assumed G = 0; for low 

frequencies where G\l L <.< R, one can approximate one 1 s way 

through equation (7-4) to the conclusion that 

(7-5') 

Thus the low frequency attenuation as calculated is about 

4% greater than would be experienced in practice. Similarly, 

for high enough frequency, (7-4) reduces to 

-~ 1 ' 
R << w L (7-6) 

The best way to handle this error, of course, is not to 

introduce it in the first place. Its presence in the re

sults given here has been explained; the subject was brought 

up only to point out that failure to take proper account of 

temperature effects S!D be a mistake of significance. 
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VIII. CONCLUSIONS 

In the preceding sections, several types of small 

diameter coaxial transmission lines have been analyzed. 

As detailed in the introduction. the investigation was 

limited to a consideration of coaxial lines because they 

promised to have the least attenuation for a given size. 

The next most likely configuration, a parallel conductor 

line with an oval shield, would have about 3o% greater 

loss, and if the shield were round the increase would be 

5o%. Some effects of steel have been looked at, and the 

nature of waveform deterioration, with a view to character

izing suitability of the lines for data transmission, has 

been treated. A limited amount of experimental work has 

been performed, where possible, and was found in general 

to corroborate the predictions of the analyses. From 

this work, several significant points have emerged; these 

are recapitulated below. 

First of all, it has been seen that characteristic 

impedance of a transmission line varies widely with fre

quency. It is inversely proportional at low frequencies 

to the square root of frequency, gradually "breaking" 

much as an RC network does. As f increases, it eventually 

becomes asymptotic to the value ~L/C , which is commonly 

taken as the impedance of a transmission line. The char

acteristic impedance of small-diameter cables is lower than 
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that of the standard sizes more cormnonly met with, whose 

characteristics are tabulated in handbooks such as refer

ence ~1:1. The exception to this is the sea-return cable, 

which will have an impedance much higher than a correspond

ing coaxial line. 

Attenuation of small-diameter coaxial lines is 

considerably higher than that of larger sizes, but other

wise their behavior i$ quite similar and predictable. In 

the sizes of interest here, it is seen that the attenuation 

at 200 KC will probably be between 4 and 9 db per thousand 

feet, depending on size and material of the line. 

The sea-return line causes the smallest attenuation 

of any configuration as long as frequency is low. There 

soon comes a point, however, where attenuation begins to 

rise steeply; beyond a certain point the sea-return line 

is lossier than its coaxial equivalent, and losses increase 

faster with frequency. The crossover point .is at about 

250 KC for the cables considered here. 

The effects of the sea in contact with the outer 

metallic conductor of a coaxial line produce an attenuation 

characteristic midway between those of the sea-return line 

and its coaxial counterpart. The comparison is made in 

Figure 8-1, which shows the attenuation characteristics 

of the first three lines considered. At low frequencies, 

the behavior is that of a sea-return line. As frequency 
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increases, the copper outer conductor provides more and 

more shielding of the fields from the seawater until, 

when skin effects are sufficiently pronounced, essentially 

all the outer conductor current flows in the copper. For 

the sizes of cables investigated, this effect becomes 

complete at just about the frequency at which the attenua

tion characteristic enters the transition region. 

The effects of steel in a cable, when in the center 

conductor, are easily handled and quite predictable, assum

ing that the effective values of p and cr of the steel 

are known. When the steel appears in a bimetal braided 

conductor, its greatest effect is to increase the resistance 

of the line; the increased permeability is of relatively 

minor importance. This provides a convenient method of 

increasing a cable's strength without increasing its dia

meter, if the added resistance poses no problem. For greater 

strength, the steel may be moved further to the outside as a 

separate layer over the copper. This yields the double 

advantage of having minimum effect on the signal transmission 

properties and providing, for the strength member, maximum 

cross-sectional area for a given thickness. When the trade

offs between strength, size, and attenuation are closely 

balanced, it is felt that the work done so far indicates 

such a configuration to be the best design. Several long 

lengths of the steel-overbraid cable described in Section C 
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of Chapter V are currently being manufactured and tested. 

If digital data, in the form of pulses or a non

return-to-zero (NRZ) data stream, is sent over small

diameter transmission lines, the speed of transmission is 

severely limited unless the distance is short. Straight

forward methods exist, however, for equalizing the 

attenuation and phase-shift characteristics of such lines, 

which with suitable amplification will compensate for these 

effects. Terminating networks can also be designed, which 

will match the widely-varying characteristic impedance of 

the line to a fixed load. 

"Bandwidth" is not strictly definable in the usual 

sense when talking about cables, but it is often spoken of 

anyway. For digital data transmission, the term can be 

taken to mean the frequency range over which the cable is 

equalized sufficiently well to allow the transmission, 

reception, and proper reconstruction of pulses. This is 

the frequency range over which ~ the amplitude response 

is reasonably flat and the phase shift is reasonably linear 

with frequency. (For the equalizer design presented here, 

the range of flat amplifier response will include, and be 

greater than, the range of linear phase shift.) Theoretical 

minimum bandwidth needed to transmit random NRZ digital data 

at a rate of f kilobits per second is l/(2f) cycles; for 

the postulated 400 kbps rate this means an absolute minimum 
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bandwidth of 200 KC (and practical considerations beyond 

the scope of this discuss ion will dictate a largP.r figure.) 

A final determination of the required value cannot be 

undertaken without a thorough knowledge of the noise 

characteristics of the system, which have not been investi

gated here. 

The information collected and developed in the fore

going pages by no means exhausts the subjects treated, and 

in fact, many points remain to be answered in the course of 

the continuing investigation of which the work presented 

here forms only a part. Nevertheless, some helpful guide

lines have been laid down. 

In summary, the behavior of coaxial cables can be 

predicted with reasonable accuracy. A systematic procedure 

for calculating their propagation characteristics has been 

set forth, and the results obtained for several miniature 

cables, both in and out of seawater, are given. The effects 

of steel, seawater, and variation of size on electrical 

properties, as well as the actual magnitude of these effects 

and properties, have been presented for ready comparison. 

Out of these results has come a cable design which appears 

to offer the best compromise between strength, size, and 

electrical requirements, for which a patent application has 

been filed. In the implementation of the above work, several 

programs and subroutines have been written for the IBM 7090 
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computer. They are quite general, and can handle a wide 

variety of coaxial configurations. Separately, or together 

they provide for computation of impedances, attenuation, 

and network response. Finally, to the extent that the 

assumptions encountered above are valid (or can be made so), 

no phenomena have been uncovered which will necessarily 

preclude the transmission of digital data at the desired 

speeds over coaxial c.ables of the postulated length, 

diameter, and strength. 
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APPENDIX A 

SOME BASIC TRANSMISSION LINE EQUATIONS 

Reference to Figure 1-1 shows that the differential 

equations describing a uniform transmission line with losses 

at any instant are: 

where 

2JL = 
(}s 

- L ~ - RI at 

~ : - C ~ - GV 
as ot 

(A-1) 

V = instantaneous voltage across the line as 
measured from the reference point 

I - instantaneous current in the line at the same -
point 

L = series inductance 

R = series resistance 

G - shunt conductance 
per unit length -

c = shunt capacitance 

s = distance along the line 

t - time -
Strictly speaking, the equations as written are for a point, 

and for the purposes of this appendix Figure 1-1 should be 

thought of as representing an infinitesimal length ds of 

the line, i.e., As = ds. If the line is driven with a 
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sinusoidal function and steady-state conditions prevail, 

equations (A-1) have a general phasor solution of the form 

where 
)C 

v --

• Ae-1's + Be..fs 

peak phasor rep~e~entation of V, i.e., 
V(s,t) • -Re VeJu> t 

(A-2) 

7 = line propagation constant.J (R + jt.UL)(G + j .uc) 
=<'t+ j..8 

and A and B are complex constants to be evaluated from 

the terminal conditions. The evaluation is carried out in 

standard texts on transmission line theory; one reference 

[21, p. 22]J gives as a result: 

where 
){ 

v 

}i 

-- voltage across the line at distance 
the reference point 

s 

(A-3) 

from 

Vr = voltage at a reference point, at which s = 0 
't 
Ir = current at the reference point, at which s = 0 

Z0 = characteristic impedance of the line = 
1/ (R + j~L)(G + jwC) 

·Y = propagatlon constant = V(R + jt<>LHG + ju.JC) 

s = distance from the reference point (see below) 

and the overcross denotes peak phasor values. A similar 

relationshlp exists for the current. 
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Equation (A-3) is general in that it allows the use 

of either the sending end or the receiving end of the line 

as a reference point. When the reference point s = 0 is 

taken at the generator and E is reckoned at or toward the 

load, s is assigned a positive value. When the reference 

point is taken at the load and s is reckoned toward the 

generator, it is given a negative numerical value. It is 

most convenient for the exposition here to take the refer

ence at the sending end. Then the voltage at distance s 

along the line can be written in terms of the line constants 

and terminal conditions as 

(A-4) 

where 

= peak phasor generator voltage 

= input impedance of the line 

The input impedance of the line will depend upon several 

factors, as will be brought out shortly. Manipulation of 

equation (A-4) gives 

V = ( ~gjG + z:j[.-rs + 1 -
l + 

Zo/Z j,n e ?" sl 
Zo/Zin J (A-5) 

From this equation can be seen the manner in which the line 

modifies the generator voltage throughout its length. In 

particular, the two exponentials show that the actual voltage 
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at distance s is composed of two waves traveling in 

opposite directions on the line: one toward the load 

(an e-?"s effect, as the reference point has been 

assumed here) and one away from the load {an e+rs 

effect). Physically the latter wave arises as a reflec

tion from the load because (and if) the load is not 

exactly equal to the characteristic impedance of the line. 

The factor multiplying ·7S e must then be some sort of 

measure of how bad (or good) this reflection is. Unfortun

ately it is not in a very convenient form, because Zin 

depends on so many things, and one usually has no idea what 

this impedance is until one computes it. This may be done 

from the formula 

where 

Zin • 

Zo = 
ZL = 

7 • 

= 

line 

line 

line 

line 

cosh ?'L + Z9 sinh 
cosh r..t + tL siilh 

input impedance 

characteristic impedance 

terminating (load) impedance 

propagation constant 

line length 

(A-6) 

which is also available in all standard references. A 

better feel for the physical picture may be had by substi

tuting (A-6) into (A-5'), but first the hyperbolic functions 

in the former expression are rewritten in exponential form 
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and terms collected; this leads to the equivalent express

ion 

Zin = Zo l __ <_z-L_+_z_o __ )_+_(_Z...;;L--..-_z_o_)_e_-_2_-r._~-] (A-7) 

L (ZL + Zo) - (ZL - Zo) e-2~~ 

which may be simplified still further i.nto 

(A-8) 

by use of the well-known and ubiquitous reflection coeffic

ient, f' , defined as 

-- (A-9) 

Then (A-8) is substituted into (A-5), and after some 

straightforward algebraic manipulation yields 

l( 

v = 

Then it is seen that the generator voltage is modified in 

several ways: first, it is augmented or diminished by the 

load mismatch, as modified by the length of the line (the 

factor 11[1 + (l e-2·r1J); second, it is attenuated and phase

shifted with distance (the factor e- ·rs = e- ~ s e-jf:? s); and 

third, there is added to it a wave reflected from the mis

matched termination (the factor P e-2 .-,!./!, e ?"'s). 

Obviously, from equation (A-9), if the line is ter

minated in its characteristic impedance, ZL = Z0 , f' = 0, 
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and (A-10) becomes 

)( )( - /s 
V = V g e , Zt = Z0 (A-ll) 

showing that the generator voltage is only attenuated and 

phase-shifted along the line. Specifically, the load volt-

age is 

XV -- xVg e- ?".£ load (A-12) 

If, in some frequency range or for some other reason, Zt 

is not equal to Z0 , the line will not be terminated 

correctly and a mismatch loss at the receiving end must be 

accepted as a cost of doing business. Moreover, the input 

impedance as seen by the generator will now be different, 

and will probably not match the generator impedance. Re

flections from the receiving end will be re-reflected at 

the sending end, and a further mismatch loss must be taken 

between line and generator. To account for these factors 

as well as the attenuation inherent in the line, it is 

convenient to view the line as a network inserted between 

the generator and the load and compute the insertion loss. 

Because the design of the transmitter and receiver 

at the two ends of the line can often be made a part of the 

overall data transmission problem (certainly true here), 

adjustment of the generator output impedance and the load 

impedance are under control. A not unreasonable choice is 

to make Zg = Zt• Then, without the line between them, the 
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load and generator are matched and maximum transmission 

occurs. 

If I1 is the current that flows in the load with

out the line interposed, and IL' is the current that 

flows in the load when the line is inserted, then straight

forward two-port network analysis shows that the ratio of 

these currents is given [1?, p. 119 and 23<t.) by 

where 

(A-13) 

)1. 

IL = load current without transmission line inserted 

)4 I 
IL = load current with transmission line inserted 

--
--
--

--

2 ,jZgZL 
Zg + ZL 

2 J ZgZin 
Zg + Zin 

= 

--

reflection factor for Zg and Z1 

reflection factor for 

2 ~ZgZout : reflection factor for Zg and Zout 
Zg + Zout 

l-G:: :~:x~~ ~ ~:~:) -2·)'.A e .:e.= interaction 

factor due to a mismatch at both ends of the 
line. 

Zin = impedance seen by the generator looking into the 
line 

Zout = impedance seen by the load looking into the line 
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Note that the reflection factors are not the same as ,;0, 

the reflection coefficient. Equation (A-13) is a general 

expression; note also that F1 = 1 here because the assump

tion has been made that Zg = z1 • If Zg and z1 are not very 

different from Z0 , or if e-27..l. is small (which will always 

be true in the cases under investigation here), F4 is close 

to unity, and may be taken to be so. (For ZL = Zg = Z0 , 

of course, F4 is identically unity). 

Equation (A-13) is known as the insertion ratio; 

insertion loss is then defined as the natural logarithm 

of the absolute magnitude of this ratio. In general 

Specifically, for the case in which F1 = 1, which implies 

that Zg = Zt, Zg ~ Zin1 and ZL ~ Z0 ut, 

Loss = 2 ln + ~Yt.l nepers (A-15) 

If Z0 = Zg, the line is matched and the insertion loss is 

simply ct.t nepers. For the matched case, the same result 

could have easily been obtained from equation (A-12) merely 

by taking the natural logarithm of the ratio of the generator 

and load voltages. 

Insertion loss can also be expressed in db. For 

reference, the formula is presented here: 
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Loss = 20 (log JL + log w1- - log 
F2 .l'3 

~ - log ~ + 0.434 a_J.,) 
Fl .. '+ 

(A-16) 

In general, loss or gain in db = (8.686)(Loss or gain in 

nepers). 
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APPENDIX B 

THE MODIF!ED BESSEL FUNCTIONS 

The discussion will be limited here to the case 

where n is an integer, since this corresponds to a 

physical field which is always periodic in 271' in its Lf* 
dependence. A more complete treatment of Bessel functions 

may be found in references [2;i] or [32]. 
Bessel's Equation, of order n with (unrestricted) 

parameter~ is a differential equation customarily written 

as 

n2v + ....l... ...J1:i.... + (/\2 -n2 ) Y = o 
~ x dx ~ 

(B-1) 

One general solution to this equation is 

where 

y (B-2) 

Jn = the Bessel function of the first kind and of 
order n 

the Bessel function of the second kind and of 
order n 

AB'l --J constants 

n = an integer which may be positive, negative, or 
zero 

Quite often ~ = lo 

Certain equation...r:; closely resembling (B-1) occur 

quite often; one of these is 
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(B-3) 

which may be rewritten in the form 

+ = 0 (B-4) 

which shows that this is merely Bessel's equation w:ith 

parameter j. From equation (B-2) the solution to (B-4) 

may be written 

(B-5) 

which is inconvenient to use in practice because of the 

i:naginary arguments. Two new functions In(x) and Kn(x), 

which are entirely real, may be defined, so that another 

solution to (B-4) is 

where 

y = A In(x) + B Kn(x) (B-6) 

In(x) = modified Bessel function of first kind, 
of order n = Jn(jx)/(j)n 

• modified Bessel function of second kind, 
of order n = f jn+l ~n(jx) + jYn(jx8 

B 

A~ J = constants 

As indicated, In and Jn are quite simply related, but 

Kn is a complex linear sum of Jn + Yn; hence it is !12..'!:, 

true that Jn(jx) = In(x), or that Yn(jx) = Kn(x). 
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A second equation which closely resembles (B-1) 

is 

(B-7) 

which can be considered either as the Bessel equation of 

order n with parameter l.::f, or the modified nth-order 

equation with parameter v+J. Noting that ~ = {4=i)({j) 

= j3/2, the solution to (B-7) may be written as 

(B-8) 

or in the form 

y = c In<x lj) + D Kn<xv:n (B-9) 

If the argument (j3/2 x) is substituted in the series ex-

pansion for Jn, the terms may then be collected into two 

series; one purely real and the other purely imaginary, i.e., 

Jn(j3/2 x) = bern x + j bein x (B-10) 

A similar procedure for the second solution to Bessel's 

modified equation yields 

= kern x + j kein x (B-11) 

Equations (B-10) and (B-11) are the definitions of the ber, 

bel, ker, and kei functions. These functions were first 

suggested by Sir William Thomson, Lord Kelvin. They are 

all real and have been tabulated LI7,2~. 
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The Thomson functions of the fir!'t kind also have a 

close relation, naturally, to the modified functions in 

equation (B-9). Specifically, for both kinds, 

= (B-12) 

and 

j--~ Kz~ (x.[J) = ker ... (x) + j kei..,.(x) (B-13) 

The subscript ·v is purposely used here instead of n to 

emphasize the fact that, although it was stipulated at the 

outset that discuss i.on would be restricted to integer n, 

there is no mathematical restriction in (B-12) or (B-13) 

on the value of -v. If 7J (or n) is zero, it is customary 

to omit the subscript when writing the Thomson functions. 

Thus, ber0 y is written ber y, etc. Some other useful 

relationships, which wi.ll often be needed, are 

..!l. 
dx 

_g_ 
dx 

ber !., X + j Mi 1. X " .,.. 

(ker_,; x + j kei . ._, x) = ker~ x + j kei!, x 
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Reference 22 contains an extensive collection of formulas 

and handy relationships between the Thomson functions at 

the rear of the book, as well as tables of the functions 

ber 1 , bei 1 , ker 1 , and kei 1 • 

One often finds that approximations to the Thomson 

functions are often used "if the argument is sufficiently 

small." Unfortunately, "sufficiently" is all too often left 

undefined; this can be remedied with only the aid of a desk 

calculator and a little time. It is worth the effort to 

anyone wha is going to compute the fields surrounding cables 

in seawater, for the argument of the Thomson functions will 

be small. The following approximations provide accuracy to 

one percent or better. In these expressions,"iis Euler's 

Constant; ·i = 0.5772157 , and (ln 2 -3} = 0.1159315 

For an Argument z .= 1. 5 , within 1% 

ber z = 1 - z4/64 

bei z = z2!4 - z6/23o4 

ker z = ( ln 2 - 'i- ln z) ber z + '11"/4 bei z - 3z4/128 

kei z - (ln 2 - i- ln z) bei z - "17"/4 ber z + z2/4 -
- l.B33z6/23o4 

ber' z = -z3/16 + z7/18432 

bei 1 z • z/2 - z5/384 

ker 1 z = (ln 2 - "i- ln z) ber' z - ber z 
z 

kei 1 z = ( ln 2 - i -

+7T/4 bei 1 z -3z3/32 

ln z) bei 1 z - bei z 
z 

-~14 ber' z + z/2 - 1.833z5/384 
114 
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For the ber, bei, ber 1 , and bei 1 functions, the above 

approximations are good up to z = 2. The second terms 

of the bei and ber' expressions are not really necessary. 

For an Argument z ~ 0.1, within 1% 

ber z = 1 

bei z = z2/4 

ker z = ln 2 - i- ln z 

kei z = -"71"14 

ber 1 z • -z3/16 

bei' z = z/2 

ker 1 z = -1/z 

kei 1 z = ( t + 1n 2 -11- ln z) z/2 

(B-16) 

There are some simplifications possible to the expressions 

(2-6) and (2-7) for the cases where the argument is fairly 

large or fairly small. The following expressions are due 

to von Au1ock [33, p. 1~. 

If 
u <. 2, 

R = Rdc(l + u4/192) } (B-17) 

L • Ldc 

If 
u > 10, 

R = Rdc(u/2 •12) 

L • Ldc(2 ·12/u) 
} (B-18) 
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where u = b Ji_(j)ld- as defined in those expressions. 

The second of equations (B-18) is actually good down 

to u = 5'. 
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APPENDIX C 

DERIVATION OF BESSEL'S EQUATION TO DESCRIBE THE F~LD 
IN A CONDUCTOR OF A COAXIAL TRANSMISSION LINE 

Maxwell's equations may be written at any point (and 

irrespective of coordinate systems) as: 

.... 
...:.. -dB VI\E -- C3t 

(a) 

~ 
...... 

\l /\ H :: J + £1L (b) 
:;?t 

(C-1) 
....::.. 

VI\ B - 0 - (c) 

~ 

'VI\ D = f> (d) 

where 
~ 

E - electric intensity in volts/meter -
....::.. 
H = magnetic intensity in amperes/meter 
~ 

in webers/meter2 B - magnetic flux density -
~ 

in coulombs/meter2 D = electric displacement .. 
current density in amperes/meters2 J • 

In addition, there are the relationships, true anywhere 
~ EE r·l D = 

(C-2) 
....::.. ~ 

B = Jill (b) 

and the expression of Ohm 1s Law at a point, also true any

where but normally thought of as applying to a conductor 

(C-3) 
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E = permittivity in farads/meter 

Jl = permeability in henries/meter 

For steady-state ac conditions, all field vectors become 

periodic sinusoidal time functions of a common angular 

frequency w = 2 'Tf'f. Then a phasor representation is 

convenient to simplify the equations; for instance, 

where 

--

~ ~ 
E(t) = ~ Eejul t (C-4) 

..... 
peak phasor representation of E(t), a 

complex vector function independent of t 

Under these conditions 
II (7 II 

is equivalent to "jU)" and 
:3t 

equations (C-1) become 
){ )( - ._.:. 

V/\E = -jl.tJB l (a) 
~ 

~+ ~ 
VJ\H • jwD (b) 

)(. ( c -5') 
V·B - 0 J (c) -

~ p V· D = (d) 

Substitution of (C-2) and (C-3) into (C-5') yield, for the 

first two equations 

l (a) 

J (b) 

(C-6) 

Then (C-6b) is substituted in (C-6a): 
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~ 
. )( ~ 

-jw)l}i = vA( Zt!. H ) = 1 V;\t]AH 
(j + j416 (J+ jwt:: 

[ ~ - V7 2ft J 1 V (-q.H) (C-7) = <r+ jw«:r 

From equations (C-2b) and (C-lc) 
~ -"' 
B =pH and 

..:. . ..l> 

therefore, taking .)l constant, "1·;ili = p 'V •H = 0, V (o) 

is always zero, and (C-7) becomes 

2~ V H= 
~ 

(jc..VJU)(O"'+ j41e) H (C-8) 

Since it is usually true that WE<<() for all frequencies 

of interest within a conductor, it is permissible to write, 

within a good conductor, 

2~ 
\1 H : 

X 
~ 

jwpcr H (C-9) 

So far the use of vector notation has allowed us to keep 

the discussion general. To press on to more specific 

results, we must speak more ~oncretely: the time has come 

to choose a coordinate system. Since the structures under 

investigation are coaxial transmission lines, cylindrical 

coordinates are chosen as shown in Figure 4-1. Now, un-

fortunately the Laplacian of a vector is not as simple as 

that of a scalar in any but the rectangular system of 

coordinates, but the additional labor can be minimized by 

stopping to take a look at the physical system we are de

scribing and getting rid of anything not needed. 
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In the first place coaxial cables, as normally 

....... 
energized, have circular magnetic fields; H has a com-

ponent in the ~-direction only. The electric field has 

~ -two components: Fr in the radial direction and Ez 

along the axis of the cable. For the moment, the latter 

will be ignored; the reasons will be given later. 

Secondly, because of the circular symmetry, all deriva

tives with respect to ~are zero, and implicit in ignoring 
~ 

Ez is the assumption that the same is true of all partials 

with respect to z. 

In cylindrical coordinates, V 2H may be defined as 
~ ~ 

V2H : V•('VH) 

where (C-10) -VH 

The quantities ur, ~' and ltz are unit vectors in the 

three directions of the cylindrical coordinate system. 
~ 

It is most convenient to work with one component V H at 

a time 

~H = ...£... ~r ttr + fLe"t<e+ Hzuz J lJ r ~r l. 
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since, in cylindrical coordinates, the partial derivatives 

of all unit vectors with respect to r are zero. It is 

found that the same is true of all partials with respect 
~ 

to z· 
' 

therefore, there is no point in computing ~ • oz 

Even though Hr and Hz are assumed here to be zero, they 

will be carried along for the time being. The next partial 

is 

(C-12) 

This time, however, there are two partials of unit vectors 

which are not zero (the only two which occur in cylindrical 

coordinates): 

and (C-13) 

so that 

:! =(~~r - H<f)~r + c~~Cf + Hr)~ + ~~z uz (C-14) 

Then, neglecting z-derivatives, 

'i/ H _ [gHr ;"! + aH'f' ~- + oHz _,. J ...:. 
- 8 r r CJ r If' '0 r Uz Ur 

(C-15) 

_;,. 

In cylindrical coordinates the divergence of a vector A 

is defined as 
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V •A = ..J... _1Z.. lr(A )l + .l... ~(Atp) 
r qr l r:J r a~ 

+ (C-16) 

Equations (C-15) and (C-16) are then combined to yield 

TT·"H=...l....JL[r(aHr~ + ;;.Hlf'tt,_+ ~Hz "IT \l + 
v v r ~r ~r r ar 'E:: ~ r z lJ 

(C-17) 

Now that there is no doubt about the procedure being 

followed, let us dispense with the rest of the quantities 

which are assumed to be zero. Then (C-17) becomes 

Performing the indicated differentiations and making use of 

(C-13) yields, for the non-zero quantities 

(C-19) 

Thus it is seen that v 2~ is a vector whose only component 

is in the o/-direction, and whose magnitude is 

2 
g H!f? + ..!... ~ H · 
'dr2"" r ;;)r - 7 (C-20) 

122 



NOLTR 67-22 

Since there is now only one variable in the expression, 

the partials are written as total derivatives; and an 

equivalent form of (C-20) is 

lv2ifl - d [ 1 d - or r or (C-21) 

which is best shown by performing the differentiations. -Now H has only a component in the ~-direction (as does 
........ 

V2H) and its magnitude is Hf. For steady-state sinu-

soidal conditions, (C-21) can be written in peak phasor 

form as 

(C-22) 

which is Bessel's equation, and exactly equation (4-2). 

Two assumptions were made in the derivation in this 

appendix, viz., that all partial derivatives with respect 

to z are zero and that all field intensities vary as 

ej W t. These imply a lossless line and a steady-state 

ac transmission. In truth, the field quantities do not 

j Wt 1 th e-""'z + juJ t, where vary as e a one; ey vary as ,, 

"Y = a+ j t9 is the well-known longitudinal propagation 

constant and one of the very things that this whole investi

gation is about. If ~is not neglected and the partials with 

respect to z are carried along, it will be found that the 

exact form of (C-22) is, in peak phasor notation, 

(C-23) 
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where r = Jj aJ)la-' • Since ~ az is equivalent to II -1'11' 

this leads to 

_g_ l..l. -#- crti~~ 
)( 

= cr2 - ,_2)H'f (C-24) 
dr r 

The longitudinal propagation constant ~ will be very 

small compared to r (e.g.' by about 5 orders of magnitude 

or better in copper up to 100 me [8] ) and may therefore 

safely be ignored in (C-24). Then the results of this 

appendix naturally follow. 
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APPENDIX D 

A NOTE ON THE CONDUCTIVITY OF SEA WATER 

The conductivity ()' of sea water i5 open to some 

debate. A good average value is approximately 4 mhos/meter; 

this is the value given by most authors [20, p. 115; 24, 

p. 277; 31, p. 7l!.J. Stratton [2o, p. 606] gives the range 

3-5, with a representative value of 4.3 in the Atlantic. 

Conductivity is very much a function of two factors, 

temperature and salinity, both of which vary wi.th depth. 

Conductivity is strongly affected by temperature, and to 

a much lesser extent by salinity. To arrive at a single 

value of cr which will yield meaningful results over 

10,000- to 20,000-foot lengths of cable suspended vertically 

in various regions of the ocean, the variation of these two 

factors with depth and latitude must be known. Reference 

[11] provides a ready answer to this question. A few 

minutes spent in perusal of the excellent profile charts 

there will lead one rapidly to the conclusion that a good 

round value for temperature is 4°C and, similarly, 35 parts 

per thousand for salinity. Entering the appropriate con-
r· 

version table L35, p. 1~ with these values yields an 

average cond11ctivity of about 3.3 mhos/meter. 
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APPENDIX E 

SIMPLIFICATION OF THE EXPRESSION FOR 

AC RESISTANCE OF A SEAWATER RETURN 

Equation (4-20) givest for the impedance of a 

the water path in a sea-return line 

-jv 
Zsea = 2 7ro-a 

ker va + ~ kei va 
ker* va + kei* va 

(E-1) 

Rationalizing the denominator yields (arguments of the 

Thomson functions are dropped for conciseness of notation) 

Z = -jv 
2 '17" O""a 

(ker + j kei)(ker' - j kei 1 ) 

(ker 1 )2 + (kei 1 )2 

Expanding the numerator and collecting termst 

kei ker' - ker kei' 
(ker 1 )2 + (kei 1 )2 

(E-2) 

(E-3) 

Advantage may be taken of the fact that va will be small 

in seawater. By definition v =v(l.)p(J" • 5.11 x l0-3ff. 

At one megacycle, the highest frequency considered here 

v = 5.11. If the radius a of the outer conductor is 

0.068", as predicated in some of the examples, 

a = 1.73 x lo-3 meters and va = 8.85 x lo-3 at 1 me. 

(It is smaller at lower frequencies o) 

Assume that va is as large as 0.1; then by the 

approximations of Appendix B 
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(ker 1 va)2 + (kei 1 va)2 ~(~) 2 
+ (0.61593 + ln va) 2 ~ 

• 100 + (0.61593 + 2.3026)2 (lo-2;(1') 

= 100 + 0.0213 

. 
• 100 

Thus for the usual size of cables in seawater, it is a safe 

assumption as long as frequency is not too high that 

(ker 1 va)2 + (kei 1 va)2 = (l/va) 2 (E-4) 

Similar calculations using the approximations of Appendix 

B show that, for z = 0.1 

z(kei z ker 1 z - ker 1 z kei 1 z) -= ~ (E-5) 

When z = 0.1, the error in (E-5) is about 3%, but rapidly 

decreases as z decreases. Substituting (E-4) and (E-5) 

in {E-3) yields for the latter 

va ( 1/va )( '11'/4) 
2"ff era 2 (~)2 

= = 

And since v = VtJJ )J(J' , (E-6) beeomes 

~ Z = Rsea =~ 
8 
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APPENDIX F 

DERIVATION OF RECURSION FORMULAS FOR THE IMPEDANCES 

OF A LAMINATED CONDUCTOR 

Consider a conductor having k laminations in all. 

Let Zam and Zbm be the surface impedances at the inner 

and outer surfaces of the mth layer respectively, and let 

Ztm be the transfer impedance of the mth layer. Denote 

by Zam1 Zbm1 and ztm the corresponding impedances of 

the first m layers taken together; let Im be the 

total current flowing in these first m layers in the 

positive z-direction. Remember that in equations {4-8), 

which will be used presently, the current Ia + Ib was 

defined as flowing in the positive direction in the tubular 

conductor, the current +Ia returns to the source in the 

hole within the tube, and the current +Ib does the same 

outside. The important point is that currents are defined 

to flow in the positive direction as shown by the arrowheads 

in Figure 4-1, and equations (4-8) were derived using these 

definitions. 

For convenience, consider the mth layer of a lamin

ated outer conductor, in which the laminations are numbered 

beginning with the outermost one and increasing inward. By 

the definition of Im, the current in the mth layer must be 

Im - Im-l• Now use equations (4-8) to write the longitudinal 
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field intensity at the two surfaces of the mth layer. 

Assuming (Im - Im-1) to be flowing in the positive z

direction, one can think of two currents flowing closer 

to the conductor axis: Ik in the return direction 

(physically, -Ik in the positive z-direction), and 

Ik - Im in the same direction as Im - Im-1• Then the 

net return current internal to the mth layer, in the 

direction of the !a-arrowhead of Figure 4-1, is 

Ik - (Ik - Im) or simply Im• Since all the current Im-1 

external to the mth layer has the same physical direction 

as the current in the mth layer, the net external return 

current Im-1 in the direction of the Ib-arrowhead of 

Figure 4-1 is -Im-1• Then in equations (4-8), Ia corre

sponds to Im and lb to -Im-1, and we have 
)I( X )l 

Em(a) = Zam Im - Ztm Im-1 

(F-1) 

The fields at the surfaces of the mth layer may also be 

written in terms of the combined impedances of the first 

m and m-1 layers. There is, of course, no conduction 

current Ib flowing outside this path. Then, since 

Em( b) = Em-l(a)' 

" I< 
Em(a) = Zam 1m (a) 

~m(b) 
)I( X (F-2) 

= Em-l(a) - Za m-1 Im-1 (b) -
' 
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The quantity ~m(a) may be eliminated between (F-la) and 
X x 

(F-2a) to yield an expression for the ratio Im/Im-1; next 
)( 

Ea(-) 1s eliminated between (F-lb) and (F-2b); the latter 

result is substituted into the former and, after some 

manipulation, there results the desired expression 

2 
Ztm 

Zam = Zam - -w--~~--~Zbm + za,m-1 
(F-3) 

This describes the surface impedance for internal return 

current of the first m layers of a laminated outer con

ductor. The iteration procedure is begun with the outermost 

lamination, for which, of course, Zal = Zal• 

Now return to equation (4-8b), and consider the case 

where Ib = 0 (which holds here since we are considering 

the m outermost laminations, and there is no return con

duction current external to them). The m outermost layers 

themselves form a tube, which carries a current Im in the 

positive z-direction. Within the hollow of this tube there 

flows a current Ik - Im in the same direction as Im, and 

a return current Ik in the opposite direction. The net 

return current internal to the first m layers is then 

Ik - (Ik - Im) or just Im, so that from (4-8b), 

(F-4) 

where now ztm must be used instead of Ztm because the 

first m layers are being considered compositely. But the 

field at the outer surface of the first m layers is the 
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same field as that at the outer surface of the first m-1 

layers; therefore it is just as true that 

--
~ 

zt,m-1 Im-1 (F-5) 

Equations (F~) and (F-5) may now be combined to yield 
~ X 

another expression for the ratio Im/Im-l• This result 

is substituted in the previous expression for the same 

ratio, obtained just above, yielding 

~m • 
Ztm zt,m-1 
Zbm + za,m-1 

(F-6) 

which is the transfer impedance for internal return current 

of the first m layers of a laminated outer conductor. 

Again, the iteration procedure is begun with the outermost 

lamination, and ztl • Ztl• 

For convenience a laminated outer conductor was 

considered in deriving the recursion formulas presented 

here, for that is the configuration encountered in this 

investigation. IdenticallY the same procedure may be 

followed, however, for a laminated inner conductor. Since 

there is no current flowing inside the innermost lamination, 

it is considered first and laminations are numbered pro

gressively outward from the axis (in contrast to the outer 

conductor, in which we proceeded in the other direction). 

Recursion formulas are quite similar to (F-3) and (F-6), 

differing only in the subscripts; they are listed below for 

reference: 
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Ztm2 
Zbm = Zbm - ~--~------Zam + Zb,m-1 

Zam + zb,m-1 ztm = Ztm zt ,m-1 

(F-7) 

where the method and direction of numbering the lamina

tions are as set forth above. 
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Center Conductor: 

Strand Number 

Strand Diameter 

NOLTR 67-22 

"Calipered 11 Diameter 

Dielectric Diameter 

Smaller 
Cable 

7 

0.010 11 

0.030 11 

0.050" 

Larger 
Cable 

7 

o.oll.t-2" 

o.o45 " 

0.065 II 

Table 2-l: Dimensions of Two Miniature Sea-Return Lines 
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Smaller Larger 
Cable Cible 

Center Conductor: 

Strand Number 7 7 

Strand Diameter 0.010 11 0.01011 

Dielectric Diameter 0.050 11 0.065" 

Shield: 

Strand Number 42 56 
Strand Diameter o.oo4" O.Oo4 11 

Table 3-1: Dimensions of Two Miniature Coaxial Cables 
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Center Conductor& 

Strand Number 7 

Strand Diameter 0.008 11 

Strand Material Carbon Steel ("Rocket Wire 11 ) 

Dielectric Diameter o.o44" 

Shield: 

Strand Number 32 

Strand Radius 0.004 11 

Strand Material Copper 

Table 5-l: Dimensions of a Miniature Steel-Gored Coaxial Cable 
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Center Conductor: 

Strand Number 

Strand Diameter 

Strand Material 

Dielectric Diameter 

Braid: 

Strand Number 

Strand Diameter 

Strand Material 

Strand Steel-Core 

NOLTR 67-22 

Diameter 

7 

0.0063" 

Copper 

32 

0.0044 11 

Copper-Coated Steel 

o.oo4o" 

Table 5-2: Dimensions of a Miniature Coaxial Cable 
With a Bimetal Braid 
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Center Conductor: 

Strand Number 

Strand Diameter 

Strand Material 

Dielectric Diameter 

Shield: 

Inner Layer: 

Strand Number 

Strand Diameter 

Strand Material 

Over braid: 

Strand Number 

Strand Diameter 

Strand Material 

NOLTR 67-22 

7 

0.005" 

Copper 

o. 038 11 

16 

0.00511 

Copper 

32 

o.oo4" 
Carbon Steel ("Rocket Wire") 

Table 5-3: Dimensions of a Miniature Coaxial Cable 
With a Steel Overbraid 
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EXACT APPRO X 

FREQ R R 

10. 1e036841E-o5 9.508338E-06 
20. 2.161646E-05 2e078246E-05 
50. 6.009964E-05 s.919673E-o5 

100. la387172E-04 1.376923E-04 
200· 3.451612E-o4 3e437777E-04 
soo. 1e300037E-03 1e296612E-03 

1000· 3.722065E-03 3. 713781E-03 
2000· 9e952036E-03 9.937480E-03 
sooo. 2e469620E-02 2e470766E-02 

10000· 3e366783E-02 3.372363E-02 
zoooo. 3.783623E-02 3e791951E-02 
soooo. 3.966858E-o2 3e976472E-02 

100000. 4e02370lE-02 4.033663E-oz 
200000. 4e100806E-02 4.111165E-02 
500000. 4a506674E-02 4.518867E-02 

1000000· 5a704279E-02 s.n6479E-oz 

FREQ X X 

10· 1e428938E-04 1.428551E-04 
20· 2e769366E-04 2.768782E-Q4 
so. 6e624664E-04 6.622629E-04 

100· 1e277443E-03 1.277047E-03 
zoo. 2.449675E-03 2e449000E-03 
soo. 5.659920E-03 5.659118E-03 

1000· 1e010791E-o2 leOl0994E-02 
2000· le577774E-02 1.579475E-02 
5000. 1.812588E-02 1.818277E-02 

10000· 1.373419E-o2 1.379355E-02 
20000· 9el42807E-03 9e185006E-03 
50000· 6.827453E-03 6e853358E-03 

100000. 8e456878E-03 a.481870E-03 
200000. 1.407204E-02 1.410586E-02 
500000. 3.220740E-02 3.227529E-02 

1000000. 5e868685E-02 s.a75973E-o2 

Table ?-1: Comparison of a Representative Impedance Calcu
lation From Approximate and Exact Formulas. 
The structure i's an outer conductor in contact 
with the sea. R • ~ Za2i X = "tm Za2 
Read 1.23E-o4 as 1.23 x 10-4. 
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EXACT APPROX 

FREQ RA RA 

10, 4.00~914E-02 4,015792E-OZ 
zo. 4o005914E-02 4o01597QE-02 
50. 4.005914E-02 4.0l5864E-OZ 

100. 4o005914E-o2 4,Q15i:l2YE-02 
zoo. 4o005913E-OZ 4.015794£-02 
5QO. 4o0059l4[..;.Q2 '+.Ol5I':I::>E-02 

1000. 4o005915E-02 4.015801[-QZ 
zooo. 4.005922£-0Z 4.015806£-02 
5000. 4o005964E-02 4o015848E-02 

10000. 4o006114E-02 4o015999E-02 
20000. 4.006715E-OZ 4.016603E-OZ 
50000· 4.o1o923E-o~ '+o0iQ830E-Q2 

100000. 4.02~926E -oz 4o03':l897E-Q2 
zooooo. 4. oB5464r>-oz 4.095716t-02 
500000. 4.483368E-02 4.495416E-02 

1000000. 5.686601E-02 ::>.698462E-OZ 

FREQ XA XA 

lOo 6.~8lbb.:l[-07 od473.:l7t::-o7 
zo. lo3l6390E-06 l. 316977£-06 
50. 3,Z9lol3E-o6 3.29o732E-o6 

100o 6o581884E-06 6o590499E-06 
zoo. lo31639ZE-05 1.319116£-05 
500. 3.290952E-05 3.298145[-05 

1000. 6.581960[-05 6.596421£-05 
sooo. 3.Z90954l-04 .:>oi9823bE-04 

l'JOOOo 6.5818Z61::.-o4 bo596'+25E-04 
2nooo. lo316317l-03 +o.:ll9234E-Q3 
50000. 3.289898£-03 .) ,2 97162 E-03 

1ooooo. 6. 572 776E-03 6.587755E-03 
zooooo. lo309468E-02 1.31Z336E-OZ 
500000. 3.18735oE-o2 .:l,l93983E-OZ 

1000000. 5o863990E-02 ;),871300E-OZ 

Table 7-l, continued: Comparison of a Representative 
Impedance Calculation from Approximate and 
Exact Formulas. RA : A\e Za2; XA = ~ Za2. 
Read l.23E-o4 as 1.23 x 10~. 
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EXACT APPRO X 

FREQ Rb Rtl 

10. 4o005914E-02 '+o017367t-02 
20. 4o005914E-02 4.0l7521E-02 
50. 4.005914E-02 4.0l7430E-02 

100. 4o005914E-02 4.0l7399E-02 
zoo. 4.005913E-02 4.0l7369E-02 
soo. 4.QOS9141:.-02 4.0173701:.-02 

1ooo. 4.00591SE-02 4.o1737?E-o2 
zooo. 4.0QS920t-02 4.0l7380E-02 
5000. 4.00S957E-02 4oOl7415E-o2 

10000. 4o006086E-02 4.017':>46E-02 
zoooo. 4.006606E-o2 4.Q18068E-02 
50000. 4o010243E-02 4 .• o21720E-oz 

100000. 4.023l92E-02 4.0347371:.-02 
zooooo. 4o074654E-02 4.0864l7E-02 
500000. 4.418500C:-02 4.4317361:.-02 

1000000. 5.430374E-02 5o4711031:.-02 

FREQ Xb Xtl 

10. 5.6872631:.-07 ':i.483754E-07 
20. 1.1374661:.-06 l.l37797E-06 
so. 2.843673E-06 2.8430l3E-06 

1oo. 5.687298E-06 s.o93832t:-o6 
zoo. 1o137466E-05 l.l39644E-05 
500. 2.8436~0E-05 2.849417£:.-05 

1000. 5.6873441.:-05 )ob98949E-05 
zooo. 1.137461E-o4 1.139803E-04 
5000. 2.843647E-04 2.849498E-04 

10000. 5.68722SE-04 5.6989521:.-04 
zoooo. lo137403E-03 l.139746E-03 
50000. 2 .842725E-03 z.o4o569E-o3 

100000. 5.679S95E-03 S.691461E-03 
zooooo. lol3l4bli:.-QL l.l337<ln:::-oz 
sooooo. z.754120E-o2 2.75942dC:-02 

1000000. 5.059357E-02 5.0724841:.-02 

Table 7-1, continued: Comparison of a Representative 
Impedance Calculation from Approximate and 
Exact Formulas. RB • ~ Zb2; XB • -f.m Zb2 • 
Read 1.23E-o4 as 1.23 x 10-4. 
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EXACT APPRO X 

FREQ RT RT 

1 o. 4o005914E-02 4.0l6622E-02 
zo. 4o005914E-02 4o016787E-02 
so. 4.005914E-02 4.0l6689E-02 

lOOo 4o005914E-02 4o016657E-02 
zoo. 4o005913E-02 4oOl6624E-02 
500o 4o005913E-OZ 4.0l6625t.-oz 

1000o 4o0059lZE-OZ 4.0l66Zt!E-oz 
zooo. 4o0059Q7E-Q2 4o016622E-o2 
sooo. 4o005873E-02 4.0l6587E-02 

10000. 4o005751E-OZ 4.0l6464E-02 
20000. 4o005262E-02 4o015973E-02 
soooo. 4o001843E-02 4.0l2536E-02 

lOOOOOo 3.9896491:::.-0Z 4o000286E-o2 
zooooo. 3o941313E-02 3o951700E-OZ 
sooooo. 3o6Z03Z5E-OZ 3.629145E-02 

1oooooo. Zo667315E-oZ 2o6837ZQE-Q2 

FREQ XT XT 

10o -3.054309E-Q7 -3.341979E-o7 
ZOo -6.108459E-o7 -6.310590E-07 
so. -lo527095E-06 -lo544204E-06 

100o -3.054286E-06 -3.07Q848E-06 
zoo. -6.108442E-06 -6.138260E-06 
500o -1.527133E-05 -1.533247E-05 

1000. -3.o54214E-os -3.o65B68E-os 
2000o -6ol0850lE-05 -6.131467E-o5 
5000. -1.527112E-04 -1.532846E-04 

10000· -3.0541791:::.-04 -3.Q65623E-04 
zoooo. -6ol07852E-04 -6.13Q755E-04 
50000o -1.526137E-03 -1.531856E-03 

lOOOOOo -3.046662E-03 -3.057797E-03 
zooooo. -6.046194E-o3 -6.068653E-03 
500000. -lo433978E-02 -1.439099E-02 

lOOOOOOo -2.387904E-02 -2.416787E-02 

Table 7-1, continued: Comparison of a Representative 
Impedance Calculation From Approximate and 
Exact Formulas. RT = ~ Zt2 ; XT = -f1n Zt2• 
Read 1.23E-o4 as 1.23 x lo-4. 
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FREQ RISEAl XI SEAl 

10. 9e869604E-06 1.411277E-04 
20. le973921E-05 2.735451E-04 
50. 4.934802E-05 6.550766E-04 

100. 9.869604E-o5 1.266602[-03 
zoo. 1.973921E-04 2.446lOOE-03 
500· 4.934802E-04 5.827388E-03 

1000. 9e869604E-04 l.l21926E:.-02 
zooo. le973921E-03 2el56748E-02 
5000· 4e934802E-03 5.1040lOE-02 

10000. 9.869605E-03 9.772502[-02 
20000. 1.973921E-02 1o867397E-Ol 
50000. 4.934802E-02 4.380631E-Ol 

100000· 9o869604E-o2 8e325745E-Ol 
zooooo. 1.973921E-ol 1.578046E-OO 
500000· 4.934802E-Ol 3.657253E-oo 

1000000. 9.869604E-Ol 6.878988E-oo 

Table 7-1, continued: Comparison of a Representative 
Impedance Calculation From Approximate and 
Exact Formulas. 

R(SEA) : ~ z81 •1i.e Za1 

X( SEA) = -iro Zal • ~ Zal 

Read 1.23E-o4 as 1.23 x lo-4. 
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Figure 1-1: Lumped-Circuit Representation of a Small Length of Transmission Line 



Figure 2-1: 

NOLTR 67-22 

Cross-section of a Sea-Return Line. 
The cable consists of a stranded copper 
center conductor surrounded by a dielec
tric. When immersed, the surrounding 
sea forms the outer conductor. 
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Comparison of Characteristic Impedence of Two 
Miniature Sea-Return Lines. 1--Smaller dia
meter. 2--Larger diameter. 
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Figure 2-3: Comparison of Insertion Loss of Two Miniature 
Sea-Return Lines. Figures based on a line 
length of ~ kilometers. 1--Smaller diameter. 
2--Larger diameter. 



Figure 3-1: 

NOLTR 67-22 

Cross-section of One Type of Coaxial Cable. 
The inner and outer conductors, which are 
separated by a dielectric, are made up of 
strands of bare wire in contact throughout 
their length. 
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Figure 4-1: 

NOLTR 67-22 

Cross-section of a Tubular Conductor, Showing 
Current Flow. In the positive z-direction, 
current flows within the material of the tube. 
The return paths are arbitrary, except for the 
constraint that Ia flows inside, and Ib 
outside, the tube. 
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Comparison of Characteristic Impedance of Two 
Miniature Coaxial Cables Immersed in Seawater. 
1--Smaller diameter. 2--Larger diameter. 
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Comparison of Insertion Loss of Two Miniature 
Coaxial Cables Immersed in Seawater. 
Figures based on a line lenrth of 4 kilometers. 
1--Smaller diameter. 2--Larrer diameter. 
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Figure 5-3: Cross-section of a Miniature Coaxial Cable 
With a Bimetal Braid. The outer conductor 
is a woven braid in which each strand 
consists of a steel core covered with a 
copper jacket. The center conductor is 
copper, the dielectric polyethylene. 
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Figure 5-4: Simplified Representation of a Small Section 
of a Woven Braid. The strands shown are 
copper-covered steel. 
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Figure 5-6: Insertion Loss of a Miniature Coaxial Cable 
Having a Bimetal Woven Braid. Figures 
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Figure 5-7: Cross-section of a Miniature Coaxial Cable 
Having a Steel Overbraid. The strands 
of the center conductor and inner shield 
are copper. Strands of the overlying 
braid (shown cross-hatched) are steel. 
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Curves are coinCident. 
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1. The miniature coaxial line considered is the all

copper cable corresponding to the bimetal braid 

configuration of Chapter v, Section B. 

2. The waveforms shown are Fourier reconstructions of 

two repetitive patterns of non-return-to-zero digital 

data at a rate of 400 kilobits per second. The first 

pattern is a "one" followed by 19 "zeros" (denoted 1019). 

The second is "one-zero-one" followed by 17 "zeros" 

(101017). 

). All plots are drawn to the same physical size. Since 

the de component is not considered, all magnitudes 

are scaled such that the maximum excursion from the 

x-axis occupies four divisions as marked on the 

vertical axis. 

4. The number appearing at the upper right of each plot 

is the amplitude of the maximum excursion from the 

x-axis (~the maximum peak-to-peak excursion). 

Hence each vertical division is one-fourth of this 

amount. Read "TXP" as "times 10 to the power • 11 An 

input signal of one volt peak-to-peak is assumed. 

5. Since the 20-bit pattern runs at a 400 kbps rate, the 

fundamental Fourier component frequency is 20 KC. Each 

mark on the horizontal axis sets off one-sixth of a 

cycle of this component (1T/3 radians) or, for this 

Figure 6-1: Notes for Figures 6-2 through 6-12. 
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specific case, 8.33 psec. No attempt should be made 

to correlate horizontal divisions with bit width, 

which is 2.5 psec. 

Figure 6-l, continued: Notes for Figures 6-2 through 6-12. 
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Figure 6-2: 1019 Pattern at 1 Kilometer on a Miniature Line. 
for an explanation of the plot. 

See Figure 6-1 
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Figure 6-3: 1019 Pattern at 2 Kilometers on a Miniature Line. 
for an explanation of the plot. 

See Figure 6-1 

z 
0 
!:j 
:;;o 

o
'1 
I 

"' "' 



Figure 6-4: 1019 Pattern at 3 Kilometers on a Miniature Line. 
for an explanation of the plot. 

See Figure 6-1 
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Figure 6-5: 1019 Pattern at 4 Kilometers on a Miniature Line, Unequalized. See 
Figure 6-1 for an explanation of the plot. 
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Figure 6-6: 101017 Pattern at 1 Kilometer on a Miniature Line. 
for an explanation of the plot. 

See Figure 6-1 
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Figure 6-7: 101017 Pattern at 2 Kilometers on a Miniature Line. See Figure 6-1 
for an explanation of the plot. 
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Figure 6-8: 101017 Pattern at 3 Kilometers on a Miniature Line. 
for an explanation of the plot. 

See Figure 6-1 
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Figure 6-9: 101017 Pattern at 4 Kilometers on a Miniature Line, Unequalized. 
Figure 6-1 for an explanation of the plot. 

See 

z 
0 
I 
--t 
;;:o 

o
""'-1 
I 

"-> 
"-> 



..... 
;:j 

Figure 6-10: Circuit Diagram of a Bridged-Tee 
Equalizer Section 
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Figure 6-11: 1019 Pattern at 4 Km on a Miniature Line, With Equalization For 
That Distance. See Figure 6-1 for an explanation of the plot. 
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Figure 6-12: 101017 Pattern at 4 Km on a Miniature Line, With Equalization For 
That Distance. See Figure 6-1 for an explanation of the plot. 
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Figure 7-1: Diagram of Method Used to Measure 
Characteristic Impedance 
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Figure 7-2: Diagram of Method Used to Measure Attenuation 
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Figure 7-3: Comparison of Experimental and Predicted Attenuation of a Miniature 
Steel-Cored Cable. Curves based on two estimated values of Pr • 
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