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l Summary

Presents a linear solution for determining the effect of combined
axial and lateral loads under which a cylindrical sandwich shell
will buckle. The facings of the sandwich cylinder are treated as
homogeneous isotropic cylindrical shells and the core as an ortho-
tropic elastic body, The characteristic determinant that represents
the solution to the problem is solved numerically. Curves are given
that show how the buckling load changes as the parameters of the
problem change,
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ELASTIC STABILITY OF CYLINDRICAL SANDWICH SHELLS

)
UNDER AXIAL_ AND LATERAL LOAD™

By
A, CARL MAKI, Engineer

Forest Products Lahomtory."‘ FForest Service
U.S. Department of Agriculture

Introduction

Sandwich construction is a result of the search for a strong, stiff, and yet light weight
material, It is usually made by gluing relatively thin sheets of a strong material to the
faces of relatively thick but light weight, and often weak, material, The outer sheets are
called facings and the inner layer is called the core,

Such a layered system presents difficult design problems. What is offered here is a
straightforward method for dealing with some of these problems,

The problem to which the method is appliedis that of the elastic stability of a sandwich
cylinder under uniform external lateral load arnd uniform axial load,

Notalion
r, 9, z radial, tangential, and longitudinal coordinates, respectively
a radius to middle surface of outer facing
b radius to middle surface of inner facing
r ! mean radius
m
t thickness of each facing

1¢his Resgarch Note is a revision, under the same title, of Forest Products taboratory
Report 1852, issued in 1955, It was originaliy prepared by Everett E. Haft, and
Issued as one of a series by the Forest Products Laboratory in cooperation with the
U.S. Navy, Bureau of Aeronautics.

ZMalnmined at Madison, Wis., in cooperation with the University cf Wisconsin,
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length of cylinder

modulus of elasticity of facings

Poisson’s ratio of facings

modulus of rigidity of facings

modulus of elasticity of core in direction normal to facings
modulus of rigidity of core in r@ plane

modulus of rigidity of core in rz plane

intensity of uniform external lateral loading

normal stress in core in radial direction

transverse shear stresses in core

radial, tangential, and longitudinal displacements, respectively
rumber of waves in circumference of buckled cylinder

number of half waves in length of buckled cylinder
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A, B CDK,L,A', B, AY, B"

€
c

G
rz

normal forces and shear force per unit length of facing
transverse shear forces per unit length of fucing
bending moments per unit length of facing

twisting moments per unit length of facing

surface forces per unit area of facing

2
Ecrm(l - u)
Et

2
qrm(l -y

Et

P(I - uz)

4nr Et
m
{a - b)

the value of the lateralload parameter ¢ whenthe axial load parameter
1
¢2 is equivalent to zero

the value of the axial load parameter ¢ _ when the lateral load para-
2
meter ¢ 1 is equivalent to zero

natural logarithm

LU
2r

m

P-or l1-4
3 | +A
total axial load

arbitrary constants

note -~ any of the above terms that appear with a prime (as Nz' ) refer to the inner
facing,
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Figure |.~-Sandwich cylinder,

Figure 2.--Dlfferentia! eiements of core and fecings before bucklling.
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Mathematical Analysis

As previously stated, the core is relatively weak., Because of the high strength of the
facings the core need carry little tension or compression except in a direction perpen-
dicular to the facings. The facings are able to resist shearing deformation in their plane
and it is necessary only that the core be able to resist shear in the radial direction in
planes perpendicular to the facings. In this analysis, the core is considered to be an

orthotropic elastic body, It is unable to resist deformations other than those just men-
tioned,

Interdependence of the core and the facings is gained by equating their displacements

at the interfaces, To simplify the analysis, the core is assumed to extend to the middie
surface of each facing,

Figure 1 shows the cylinder and the coordinates that are used,

Prebuckling Stresses

Before buckling occurs, the cylinder is in a state of uniform compression, The axial
load is carried by the facings since the core material is assumed to be incapable of
carrying load in this direction. With facings of like material, the stress is the same in
both facings. Since the facings have the same thickness hen the loading per unit length
of facing, Nz or Nz' » will be the same. This means that for a total load P

P

2naN_ + 27bN' = P
z z

The calculation of stresses due to the lateral pressure is a problem in rotational
symmetry. Differential elements of the core and of the facings are shown in figure 2.

Summing forces in the radial direction gives for the core

30 g

T

-

:O'

‘5"1

for the outer facing

aq—a(Ur) -Ng =0,
r=a
and for the inner facing

b{o ) - N =0
r=5
Since o = E Qo
ar
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= g+ ( -‘;—) » these equations can he solved for ¢ X 9. and N/,

r=b R —

Ny
The results are}'

=q2
0r =q 7 k
Ne = qa(l -~ k), and
Né = qak where
|
kK =
b
b Et |I'\5"
A
a C

As P and g increase, N N N N é and o also increase. Eventually a condition may

be reached where a slight increase inload causes the cylinder to lose its state of uniform
compression and buckle as a result of elastic instability, This buckling i8 assumed to
cause only a small change in the stress distribution, These small changes will now be

considered,
Buckling Stresses
The core.~~A free body diagram of an element of the core is shown in figure 3.

Neglecting terms which are products of more than three differentials, a summation
of forces in the r, 6 and z direction gives

3, 3t re Ty,
Sp*rart g v 5 7O )
oT
e _
r 3T + 211’9 =0 (2)
ot
rz =
Tt rae =0 (3)

Equation (2) may be integrated to give

8
Tre=:2-f|(6) t,(2) (4)

;"’-Ravllle, M. E. Analysis of long cyllinders of sandwich construction under uniform

external |ateral pressure, Forest Products Laboratory Report 1844, 1954,
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Figure 3.--Differential element of defcrmed core. Z M 105 h6d

Equation (3) may be integrated tc give

T =Af
rz r

S0 f(2) (5)

Ot Trg? and T as defined in terms of u, v, and w are
r _r rz - - -

_ ¢ 9du
o= Ec i (6)
_ | du v _ v
Trg ~ Gre [-r- 3 B3r r] N
: du , ow
Ter * S, [3; * a_rJ 8
It is convenient to assume the displacements u, v, and w in the form
>\
u= fl(r) co8s nj cos; z (9
A
= = 1
v f2(r) sin nd cos o 2 (10)
A
w = f3(r) cos nd s;lna z (11)

This form will permit a unique determination of £ 1(r), £2(r), and f 3(r); assumes h cir-

cumferential waves and m longitudinal half waves upon buckling; results in zero dis-
placements in the radial and circumferential directions at the ends; and imposes no
moment upon the facings at the ends.
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From a consideration of equations (4), (5), {7), (8), (9}, {10), and (11) it can be shown that
X
fl(e)f 1(z) = 8in nd cos " z and

A
f2(e)f2(z) = co8 n@ sin 2 2 80 that
A

= B sin n6 cos a

T
ro 2
by

z and (12)

T = (13)
re

Substituting equation (9) into(6) and then equations (6), (12), &nd (13) into equation (1) gives

w (>

A
cos nf sin ‘; Z.

af, (r) azflm
+Er-— >
¢ Ir

E

B A, _
T +-r-§-+-é-A-0 (14)

which upon integration shows that

f!(r)=C+D!nr+A'r+B'-:— (15)
Equations (S), (10), and (12) are substituted into equation (7) to give

:%:Gre [2— ‘C+0 In r+A'r+5-::} + Bfgif‘) - fz:r) ] (16}
from which

f{r) = Fr + Cn + Dn(l + In r) + A'nr Inr+-8—:—n- (17)
Equations (9), (11), and (13) are substituted into equation (8) to give

Aog lcopimesaren Leod! (18)

r rz r ar
from which

f(r)=K+A"(r2+!nr)+Cr+'7r(lnr-|)+B|nr (19)

3
1t is convenient to have the constants of fl(r). £ 2(r), and fa(r) in nondimensional form,

Redefining the constanis, ihe following form is obtained.

2
a r A
U= Aa+8r+C———r+Da Inva- cosnecos-gz
I

(20)
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R AT

2
vV = {~Ana + Bnr ln-ar-+C%;_— 6p6-Dan(In-g+|)+r,- sin necos%z (21)
r2 6z r r r LA
w = Ar + Ba\{Z— = =% In —|+ Cha In = + DAr{In — - 1} + Lajcos nB sin = Z(22)
Za2 )\2 a a a

The facings,--Since the problem of stability of homogeneous cylindrical shells has
been solved by other authors, it is only necessary in the stability analysis of cylindrical
sendwich shells to consider it as a composite of two homogeneous shells bonded together
by an elastic core subject to the compatibility requirements of equal displacements at
their interfaces, which, to simplify the analysis, is assumed to extend to the middle

surface of each facing,.

Free body diagrams of a facing element showing the sense of the forces and moments
are found in figures 4 and 5.

Moz

7 M 106 302

Figure 5.--Ditferential element of facing showing moments and twlsts,

The equations of equilibrium for the facings can be obtained from a mathematical
theory of thin shells. 1t is felt that for a small deflection analysis the theories presented
by various authors differ principally in second-order effects, as is evidenced by com-

paring the work of Flugge"" and Timoshenko™ on the buckling of cylindrical shells.

A
—FllUgge, W. Stresses in Shells, Springer-Verlag, Berlin, 1962,
2Timoshenko, S. Theory of Elastic Stabitity, McGraw-Hill, 1936,
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As a result, the equations of equilibrium as presented by Timoshenko and subject o
the necessary transformations will be used here. Suchtheory, when applied to cylindrical
shells of radius r, yields the following differential equetions:

3N7 aNez -a-?-l-"- - rN —3-2—! -0 __82u -
0-r ——a— + -—8-6—- - FQZ 322 z0 322 ¢] 9238 oz
32v du = (@)
“Nolams 3|t
O=-3—Ng-*raNze-rN§i- 32“ - v + N 32V +
30 9z 7 322 z 92939 3z 62 \ 32986 9z
(24)
vo. 1 -1 ?—2-9- L LY,
8 r 362 r o
0=+ra:+a§g+Negzgo-g—v +rN£—‘-’-—Nel--|—§;2—;-
z z z z z ., VY
(25)
crav) 2 a5
r 96 0z 9zd6 ¥4
aM oM 2 2
T N S VRN [ R ') I
Or= "3 M2 e (azae t3z] "~ % (26)
M M 2 2
I 1 vy [y, 20
0=—g *r—5z* ™ > Me(azae ¥ az) + o, (27
2 2
9 u v 3 u I 37u I dv
0 =M -2l v M, - M -~ S22+ 2=
z(azae az) z0 a22 92 ( r 382 r 86)
) (28)
M (azae az) 2 \Nze Nez)
FPL~0173 -11-
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Assuming that resultant forces other than Ng and Nz are small and neglecting products

of these forces and the displacements u, V, and w which are also small, and assuming
further a membrane analysis where the bending moments and transverse shear forces

2 \ .
t
fn the individual facings are neglected, ( = 0) , the equilibrium equations can be

reduced to: 12a2
N N 2
R 4 8z _ v du =
0=r—* 738 Ne(3236+32) tre (29)
oN N 2
I I 1 I A
0 = ae + r az rNZ a_?_ + I’Y (30)
&
2 2
VI PRSI IO ' ¥, x
0=-N\l ~r=3*tv5| * ™M 27 (31)
20 9z

Evaluating equations (29), {30}, and (31) for each facingor whenr =a andr = b and
satisfying the compatibility requirements at these interfaces provide the six equations
necessary for the determination of the s.x arbitrary constants found in expressions 20,
21, and 22,

Mathematical Analysis

N, and Ny of equations (29), (30), and(31) aro replaced by [ Mf N 'ﬁz] and [qa(l - K
-_ - m

+ E% , respectively, for the outer facing and by [ 41§ + E;J and [qa.k + _PE '9}. res-

m

pectively, for the inner facing (primes denote inner facing). This .. necessary because
the forces in_the buckled shell are the prebuckling forces plus the forces due to buckling.
The Nz, Nz" Ne, and N éare small forces due to buckling which are later to be expressed

a——

in té-;r.ns of_c-i-isplacg;tents, (which are assumed to have differed negligibly from the
prebuckled state), and the product of these small forces and the displacements are alsc
neglected. Expressions (29), (30), and (31), a8 evaluated for the outer facing then become:

a(ﬁz) oN 2 B?V 3 _
0=BT+—5—6-‘-Q8(|—k) 52—5—6'4'-3—2- + al (32)
AN, aN 2
0 26 aP d'v -
0= E]:) te—5 " Fr L2 + a¥ (33)
m 9z
2 2
P 3y BT TR -1 B (P
0= 41rrm 322 ga(l k) (I 7 oo + 33 ) Ne + aX (34)

FPL-0173 ~12~
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As is customary in such stability problems, the stretching of the middie surface is
taken into account by assuming that the prebuckling stress resultants are very large in
comparison with the other stress resultants; thus the terms

4m_m () + ee) and gall - K)(t + ez)

Hd

should be substituted for the quantities anr andqa(l ~ k), respectively, and the surface
m

forces X, Y, and Z should be multiplied by (1 + €g{1 + € ) in equations (32) to (34). In
these expressions

+

[+ B L-5]
<x>|<
wlc

!

a
_ oW

2 "% (35)

Finally, the expressions for the forces, moments, and twists along with the relation-
ships for the surface faces:

.Z='-(Trz)
r=a
Y=-(1 )
.., (36)
X=q-(33k+g)

are expressed in terms of u, ¥, and w and substituted in (32), (33), and (34). They lead to
the following equations for the outer facing:

2 2 2
e = a2 9w (1 +p) v 9u o (I -y 3w
ze'o‘aaz+ 7 29738 T Mt T3 7
z 39
{37
- ad, (Il - k) _3_2_\I__+3_U _.a_z_(l_-_}f_;g _32*_&1_
¢l 9236 3z Et rzlaz r
groeoo it A G- 29%v, w2, afv, 8y
8 , 3236 2 27w 2% 2 ,
ol o 39
_fu -3 [rau,av v (38)
Et ro |a 96 r a
BF =0z -ap - ys 5=k u+ﬁ\+a2 2%y g U (39)
r Haz " 38" Y " ¢ 262 ¢ AT

where ¢ and ¢2 are as defined under notations,

FPL-0173 -13-
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To achieve proper interaction between the core and the facings, the displecements of
the middle surfaces of the facing are set equal to the displacements of the core at r = a
andr =D,

Thus, displacements u, ¥, and w in equations (37), (38), and (39) are replaced by equa-
tions (20), (21), and (22) evaluatedatr = a, In this manner, three equations in six arbitrary
constants (A, B, C, D, L, and F) are written for the outer facing. In a like fashion, three
equations are written for the inner facing, These equations can then be written in matrix

form as:

B3 %13 %3 ®yg ®15 B35 | (A

21 %22 P23 %24 %25 %6 B

%31 %32 %33 %3¢ %35 %36 < c /)= {0} (40)
80 %2 %43 a4 %45 Y46 D |

81 %52 %53 %54 %55 g6 F

%1 %2 %3 %64 %65 %66 | L "

where the iu’s are defined in terms of geometric, loading, and material parameters,

Equations (40) are satisfied if the constants A, B, G, D, F, and L are all equal to zero,
This represents the uniformly compressed circular form of equilibrium of the cylinder,
A buckled form of equilibrium is possible only if equations (40) yield nonzero solutions
for the constants, This requires that the determinant of the coefficients of these constants
be equal to zero.

It is possible to find simultanecus minimum values (absolute sense) of ¢>1 and ¢2 for

which these six equations will be satisfied for any values of the arbitrary constants,
Mathematically this means that for such a combination of loads and material parameters
the deflections are indeterminate. The shell becomes elastically unstable and the loads
that bring about this condition are the desired critical loads,

Numerical Computations

A literal solution of the sixth order determinant for the eigenvalues (¢ X ¢2) is not
feasible. A numerical solution, from which curves may be drawn, is possibg if-; digital
computer is used.

For sandwich construction, particularly for that utilizing honeycomb cores, the equa-
tions can be greatly simplified by assuming EC = o, This substitution is common with

this type of construction due to the small relative displacement occurring between the

FPL-~0173 ~ 14~
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sandwich facings. Indications are that analyses based on this assumption are sufficiently
accurate in most ranges, but for relatively short cylinders having weak cores such an 3
assumption may result in serious error,

Poisson’s ratio for the facings can be taken as one-third and the value of k closely
approximated by the fraction one-half for most cylinders where the radius is large
compared to the sandwich thickness h.

Making these substitutions, the f'_li’s in equations (40) are found to be
¢
a, = {-P(u A+ A - DO+ D) ['? - +A€)}

a,Z: %i*_vﬁ-n_)\_“ [_2__0_'“ +A)]§

13 201 + A) 3 2
aM= {O}
_ 2 9 ']
als— i-n)\(l+A)[—3~-—§(l+A)$
2
S I B4 2 . n
a|6- 3 [X 1+ A +—3]$
U S PPN SNSRI BTN IR
21 3 V4
v 2
a5y © +—-—'-§-—-2-[)\2(I—A)2+-'13-] In R~R
Al + A)
o L Y™ 2 L
23 2401 + A3 2
3,4 = 10}
r_ ¢l
a 2
3y = 3-Rn)\(l-A)l-§-—§(l+A)]%
- 2
- 2.0 _ a2 . n
356 = 3—[>\(I A) +-—-3~j]$
) 2 Y- 2,1
a5, = {n(n - D - s &g ¢2>>
332= {O}
Vi 2 2 2.1
833= 3-—————-—2—[n +>\(!+A)(-3—¢’2))+I$
2801 + A)
FPL-0173 -15-
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L
|2
Tk
4
: a5 = 10}
i3
& ay5 = g [n2+ A2() + A) (-'3-+ ¢2)]$
L. 2
:; 836 { -gnk(l + A)}
b 2,1
: 3y * {n(n - 1) - 8 (3 + 6
§ 2RnAV
: %2 W'"R%
v
ro 2 2 2,
a. = |- A=A == -1
43 2A(|-A§)[ 3 2] ‘
244 = 10}
del2z. 2 a2 0o
a5 = gR[n F20 -7 5 ¢2):H
_ 2
846— {--:,)-n(I—A)}
a_ = (nz-n|-3'-<|+A)-AZ(|+A)2<1+¢,)
5 2 37 9
ag, = {-A(1 + &)
Voo
33 = |l - ————7
241 +A)
254 = {1
355 = f-n}
= LA
356 ~ { 3 (r+ A»}
Y2 ] 2, a2l
ag = %(n -I)[I-—2-(1+A) - A% - &) (-_),-+¢2)]}
AVF'Z
a62= ’R—_——ZA(l""A) lnR+ X(l"A)
v
ro
a,= lenlt+ —0
63 2801 - &)
%4 = K1
365= {-»Rn}
- = LA -
366 - {3“ A)}
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The problem is now reduced to developing a search technique whereby minimum values
of ¢ and ¢ can be determined for given values of V Vo’ V 2’ A, and Y, such that the

determinant goes to zero,

This problem was programed for the digital computer and results are presented in
figures 6, 7, and 8, The solutions show a linear relationship between ¢> and 4> as was

found previously for isotropic shells- 2 wherein the slopes of the lines are dependent
upon values of number of buckles producing minimum loads. The lowest of these lines
are shown in figures 6, 7, and 8 for chosen values of Y, These figures were then used as
a basis for plotting figures 9, 10, 11, 13, 14, 16, and 17, which clarify the effect of the
interaction of the loads by presenting them in terms of ratios,

The effect of special cases such as the hydrostatic case can be seen most clearly on
figures 6, 7, and 8 by the use of a load ratio line where the slope of the line and the
desired load ratio are equivalent, The hydrostatic case, for example, has a load ratio of
one~fourth or

%279
Discussion of Results
2 h2
For illustrative purposes, the three valves of A™ = -—2'0f 0.0001, 0,00001, and 0.000001
4r

were chosen to represent the range of delta. For a given delta then, figures are presented
which show the effect on the critical loads of (1) varying the value of Y while holding the
values of Vrz and Vre a constant, and (2) varying the value of Vr7 and ‘)’r 0 while holding

v
the value of Y= -5 a constant,

6,7
The results of this analysis agree favorably with those previously presented—'— for
lateral pressure ard axial load acting separately. These values then represent the values
used for Q‘l and @2 in the figures,

For tae cuse of lateral load only, it was found that the expression for <:>1 is given by

2 2 -
8 2 n i, 2 2 2
22—9—E +Vr‘ U*A (n® - 1) 3+ [(—-——-—3-) (n" + v -!)-3-]
& = =

|

n 2 . !
_2‘ (n - ) + g
The value of ¢, can be deternum—d wi the use of figure 16, which was taken from
7 -
previous work,—

G+V

§Kuenzi, €. W., Bohannar, 8., and Stevens. G.H. Buckling Coefficients for Sandwich
Cylindars of Finite Length Under Uniform External lateral Pressurs, U.S. Forest
Service Research Note FPL-0104. 1965. Forest Prcd. Lab.

lZahn, John W., and Kuenzi, Edward W. Classizal Buckling of Cylinders of Sanduich
Construction in Axial Compression--Orthotropic Cores. U.,S. Forest Service Research
Note FPL-018, 1963. Forest Prod. lLab.
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B2 (COMPRESSIVE AXIAL LOAD PARAMETER)
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Figure 7.--Effect of combined loading for &

2

= 0.

000!,

R R

At bt as Oa0r?

SR ST

” .
Na&ﬁﬁw w o f




e PN PR .“&wvawﬂ
J i3

N §
.t o~ IR LY . . N

y 404 Buipeo| pauiquod 3O 1008443--"g @4nb14

*10000°0 = z
Z€9 €ET H
(YTLINVEVS QP07 TWYILY T FAISSIHINOI) '¢
v 0/%09 §s os [ o §F of (-4 oe s/ o/ 50 o
AN 1 TS 1 < X x 0
T T - r 1
(35U 211VLSOYOAH) Nm&x\ N /
~N
| S N AN A3 \
- - " - "
.\/ - - » ~

N

// / / v
//.

// //
"~ /////
/ /

0100000 = ¥ g \
074" X

w Z

1 : L — 0149

e
e

(43LIFWVEVS OVOT TVIXY FAISSIHINOI) °#




1.0

I
\ !
& V/‘O = Vrz =00
\ A% = 0.000/
0.8 A AN 7 = rr ]
~ L
N
N
- \
S 0.6
~
T
Q
S 0.4
~
~
I
X
<
0.2
0
7] 0.2 0.4 0.6 0.8 10
LATERAL LOAD RATIO, 8, /&,
M 133 639

Figure 9.~~Effect on critical loads of varying parameter Y.
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Figure 10.--Effect on critical loads of varying parameter Y.
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Figure |l.-~Effect on critical loads of varying parameter Y.
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Figure 12.--Effect on critical loads of varying parameters Vr
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Figure 13.--Effect on the critical loaas of varying parameter Y.
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Figure |4.--Effect on critical loads of varying parameter Y.

s

ey,

AT T SHRIAUER B R LASISE g Pt <




o8
N
R
‘N .
§ 0.6 - \
~ A2 =0.000/
x
Q y =0./0=7r
< L
Q 04
~
~
3
X
<
0.2
o
c 0.2 04 06 o8 1.0
LATERAL LOAD RATIO, 8, /@,
‘M 133 641
Figure 15.--Effect on critical loads of varying parameters Vr_6 and Vrz'
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Figure 16.~-Effect on critical loads of varying parameter Y.
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Figure 17.--Effect on critical loads of varying paramcter Y.
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Figure 18.--Effect on critical loads of varying parameters Vre and vrz'
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Figure 19.--Classical buckling coefficient for sandwich cylinders with isotropic facings
and orthotropic core.
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PUBLICATION LISTS ISSUED BY THE

FOREST PRODUCTS LABORATORY

The following lists of publications deal with investigative projects of the
Forest Products Laboratory or relate to special interest groups and are avail-

able upon request:

Architects, Builders, Engineers,
and Retail Lumbermen

Box and Crate Construction and
Packaging Data

Chemistry of Wood
Drying of Wood
Fire Performance

Fungus and Insect Defects in
Forest Products

Furniture Manufacturers,
Woedworkers, and Teachers
of Woodshop Practice

Glue and Plywood

Growth, Structure, and
Identification of Wood

Logging, Milling, and Utilization
of Timber Products

Mechanical Properties and Struc-
tural Uses of Wood ana Wood
Products

Modified Woods, Pape1-Base
Laminates, and Reinforced
Plastic Laminates

Sandwich Construction

Therma!l Properties of Wood

Wood Fiber Products

Wood Finishing Subjects

Wood Preservation

Note: Since Forest Products Laboratory publications are so varied in subject
matter, no single catalog of titles is issued. Instead, a listing is made for
each area of Laboratory research, Twice a year, January 1 and July 1,
a list is compiled showing new reports for the previous 6 months.
This is the only item sent regularly to the Laboratory’s maiiing roster,
and it serves to keep current the various subject matter listinga. Names
may be added to the mailing roster upon request.
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