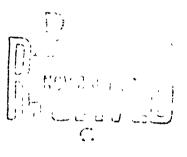
U.S. DEPARTMENT OF AGRICULTURE · FOREST SERVICE · FOREST PRODUCTS LABORATORY · MADISON, WIS. In Cooperation with the University of Wiscontin

AD661120

U. S. FOREST SERVICE RESEARCH NOTE FPL- 0173 OCTOBER 1967

ELASTIC STABILITY OF CYLINDRICAL SANDWICH SHELLS UNDER AXIAL AND LATERAL LOAD



34

This document hos been reproved for public color and public and a

CLEARINGHOUSE

CC SSLUA for	/
15511 10 10 0000 D 1 0000 D	W I E SLOTION () ED E SLOTION ()
, P BU 19*	AVAILABILITY CODES
DIST. *	VAIL and or SPECIAL

and the second second second

Summary

Presents a linear solution for determining the effect of combined axial and lateral loads under which a cylindrical sandwich shell will buckle. The facings of the sandwich cylinder are treated as homogeneous isotropic cylindrical shells and the core as an orthotropic elastic body. The characteristic determinant that represents the solution to the problem is solved numerically. Curves are given that show how the buckling load changes as the parameters of the problem change.

ELASTIC STABILITY OF CYLINDRICAL SANDWICH SHELLS

UNDER AXIAL AND LATERAL LOAD

By

A, CARL MAKI, Engineer

Forest Products Laboratory,² Forest Service U.S. Department of Agriculture

Introduction

Sandwich construction is a result of the search for a strong, stiff, and yet light weight material. It is usually made by gluing relatively thin sheets of a strong material to the faces of relatively thick but light weight, and often weak, material. The outer sheets are called facings and the inner layer is called the core.

Such a layered system presents difficult design problems. What is offered here is a straightforward method for dealing with some of these problems.

The problem to which the method is applied is that of the elastic stability of a sandwich cylinder under uniform external lateral load and uniform axial load.

Notation

r, θ, z
 radial, tangential, and longitudinal coordinates, respectively
 a radius to middle surface of outer facing
 b radius to middle surface of inner facing
 r mean radius
 t thickness of each facing

I-This Research Note is a revision, under the same title, of Forest Products Laboratory Report 1852, issued in 1955. It was originally prepared by Everett E. Haft, and issued as one of a series by the Forest Products Laboratory In cooperation with the U.S. Navy, Bureau of Aeronautics.

 $\frac{2}{Maintained}$ at Madison, Wis., in cooperation with the University of Wisconsin.

FPL-0173

length of cylinder \mathbf{L} Е modulus of elasticity of facings Poisson's ratio of facings μ G modulus of rigidity of facings Ec modulus of elasticity of core in direction normal to facings $G_{r\theta}$ modulus of rigidity of core in $\underline{r\theta}$ plane G_{rz} modulus of rigidity of core in rz plane intensity of uniform external lateral loading q $\frac{1}{1 + \frac{b}{a} - \frac{Et}{E_c a} \ln \frac{b}{a}}$ k

normal stress in core in radial direction $\sigma_{\mathbf{r}}$ transverse shear stresses in core τ rz ^τrθ' radial, tangential, and longitudinal displacements, respectively u, ν, w number of waves in circumference of buckled cylinder n number of half waves in length of buckled cylinder m $\frac{Eth}{2(1-\mu^2) r_m^2 G_{r\theta}}$ $v_{r\theta}$ $\frac{Eth}{2(1 - \mu^2) r_m^2 G_{rz}}$ v_{rz} mγ λ πr_m L γ $\frac{E_{c}}{2G_{r\theta}} - \frac{n^{2}}{2}$ δnθ

FPL-0173

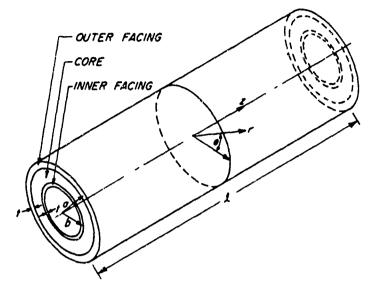
ŕ

-2-

 $\frac{E_{c}}{G_{rz}}$ δz N_{θ} , N_{z} , $N_{\theta z}$ normal forces and shear force per unit length of facing ବ_ଖ, ବ_z transverse shear forces per unit length of facing M₀, M_z bending moments per unit length of facing $M_{z\theta}, M_{\theta z}$ twisting moments per unit length of facing $\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}}$ surface forces per unit area of facing $\frac{E_{c}r_{m}(1-\mu^{2})}{E^{\dagger}}$ β $\frac{\operatorname{qr}_{m}(1-\mu^{2})}{E^{\dagger}}$ ^ф1 $\frac{P(1 - \mu^2)}{4\pi r_m Et}$ ¢2 (a - b) h ^ф1 the value of the lateral load parameter ϕ when the axial load parameter ϕ_{2} is equivalent to zero the value of the axial load parameter ϕ_2 when the lateral load para-¢2 meter ϕ_1 is equivalent to zero natural logarithm ln $\frac{h}{2r_m}$ Δ $\frac{b}{a}$ or $\left(\frac{1-\Delta}{1+\Delta}\right)$ R total axial load р A, B, C, D, K, L, A', B', A'', B'' arbitrary constants note -- any of the above terms that appear with a prime (as N_z^{i}) refer to the inner

FPL-0173

facing.



EBSWe - rationary

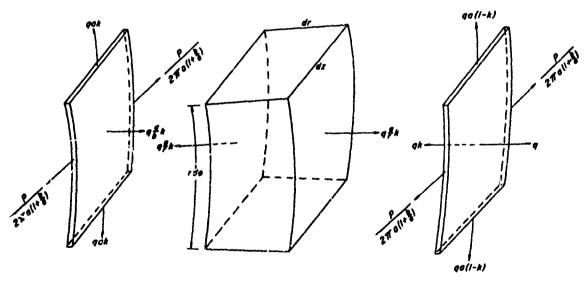
ALC: NO

and the second se

1

Z M 105 662

Figure I.--Sandwich cylinder.



¥ 133 627

Figure 2.--Differential elements of core and facings before buckling.

FPL-0173

ないためないというかくと

-4-

Mathematical Analysis

As previously stated, the core is relatively weak. Because of the high strength of the facings the core need carry little tension or compression except in a direction perpendicular to the facings. The facings are able to resist shearing deformation in their plane and it is necessary only that the core be able to resist shear in the radial direction in planes perpendicular to the facings. In this analysis, the core is considered to be an orthotropic elastic body. It is unable to resist deformations other than those just mentioned.

Interdependence of the core and the facings is gained by equating their displacements at the interfaces. To simplify the analysis, the core is assumed to extend to the middle surface of each facing.

Figure 1 shows the cylinder and the coordinates that are used.

Prebuckling Stresses

Before buckling occurs, the cylinder is in a state of uniform compression. The axial load is carried by the facings since the core material is assumed to be incapable of carrying load in this direction. With facings of like material, the stress is the same in both facings. Since the facings have the same thickness then the loading per unit length of facing, N or N', will be the same. This means that for a total load <u>P</u>

$$2\pi aN_{z} + 2\pi bN_{z}^{*} = P$$

The calculation of stresses due to the lateral pressure is a problem in rotational symmetry. Differential elements of the core and of the facings are shown in figure 2.

Summing forces in the radial direction gives for the core

$$\frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r}{r} = 0,$$

for the outer facing

$$aq - a (\sigma) - N_{\theta} = 0,$$

r = a

and for the inner facing

$$b(o_r) - N_{\theta}' = 0.$$

Since $\sigma_{\mathbf{r}} = \mathbf{E}_{\mathbf{c}} \frac{\partial \mathbf{u}}{\partial \mathbf{r}}$,

FPL-0173

-5-

ころのあるであい、小田のはの湯湯

and the state of the second state of the

$$N_{\theta} = E + \left(\frac{u}{a}\right)$$
, and $r = a$

30.046.0

「「「あまま」」

 $N_{\theta}^{\dagger} = E^{\dagger} \left(\frac{u}{a}\right)$, these equations can be solved for σ_{r} , N_{θ} , and N_{θ}^{\dagger} . The results are³

$$\sigma_{r} = q \frac{a}{r} k$$

$$N_{\theta} = qa(1 - k), \text{ and}$$

$$N_{\theta}^{*} = qak \quad \text{where}$$

$$k = \frac{1}{1 + \frac{b}{a} - \frac{Et \ln \frac{b}{a}}{E_{c}a}}$$

As <u>P</u> and <u>q</u> increase, <u>N</u>, <u>N</u>, <u>N</u>, <u>N</u>, <u>N</u>, <u>N</u>, <u>N</u>, <u>and</u> <u>o</u> also increase. Eventually a condition may be reached where a slight increase in load causes the cylinder to lose its state of uniform compression and buckle as a result of elastic instability. This buckling is assumed to cause only a small change in the stress distribution. These small changes will now be considered.

Buckling Stresses

The core,---A free body diagram of an element of the core is shown in figure 3.

Neglecting terms which are products of more than three differentials, a summation of forces in the <u>r</u>, $\underline{\theta}$ and <u>z</u> direction gives

$$\sigma_{r} + r \frac{\partial \sigma_{r}}{\partial r} + \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\partial \tau_{rz}}{\partial z} = 0$$
 (1)

$$r \frac{\partial \tau_{r\theta}}{\partial r} + 2\tau_{r\theta} = 0$$
 (2)

$$\tau_{rz} + r \frac{\partial \tau_{rz}}{\partial r} = 0$$
 (3)

Equation (2) may be integrated to give

$$\tau_{r\theta} = \frac{B}{r^2} f_1(\theta) f_1(z)$$
(4)

FPL-0173

³-Raville, M. E. Analysis of long cylinders of sandwich construction under uniform external lateral pressure, Forest Products Laboratory Report 1844, 1954.

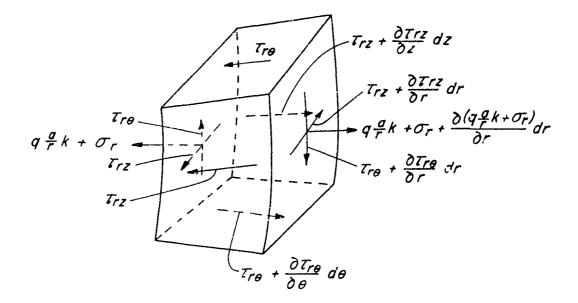


Figure 3.--Differential element of deformed core. Z M 105 664

Equation (3) may be integrated to give

 $\tau_{rz} = \frac{A}{r} f_2(\theta) f_2(z)$ (5)

$$\underline{\sigma_r}, \underline{\tau_{r\theta}}, \text{ and } \underline{\tau_z}$$
 as defined in terms of $\underline{u}, \underline{v}, \text{ and } \underline{w}$ are

$$\sigma_{\rm r} = {\rm E}_{\rm c} \, \frac{\partial {\rm u}}{\partial {\rm r}} \tag{6}$$

$$\tau_{r\theta} = G_{r\theta} \left[\frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r} \right]$$
(7)

$$\tau_{rz} = G_{rz} \left[\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right]$$
(8)

It is convenient to assume the displacements \underline{u} , \underline{v} , and \underline{w} in the form

$$u = f_1(r) \cos n\theta \cos \frac{\lambda}{a} z$$
(9)

$$\mathbf{v} = \mathbf{f}_2(\mathbf{r}) \sin n\theta \cos \frac{\lambda}{a} \mathbf{z}$$
(10)

$$w = f_3(r) \cos n\theta \sin \frac{\lambda}{a} z$$
 (11)

This form will permit a unique determination of $f_1(r)$, $f_2(r)$, and $f_3(r)$; assumes <u>n</u> circumferential waves and <u>m</u> longitudinal half waves upon buckling; results in zero displacements in the radial and circumierential directions at the ends; and imposes no moment upon the facings at the ends.

FPL-0173

From a consideration of equations (4), (5), (7), (8), (9), (10), and (11) it can be shown that

$$f_{1}(\theta)f_{1}(z) = \sin n\theta \cos \frac{\lambda}{a} z \quad \text{and}$$

$$f_{2}(\theta)f_{2}(z) = \cos n\theta \sin \frac{\lambda}{a} z, \quad \text{so that}$$

$$\tau_{r\theta} = \frac{B}{r^{2}} \sin n\theta \cos \frac{\lambda}{a} z \quad \text{and}$$
(12)

$$\tau_{rz} = \frac{A}{r} \cos n\theta \sin \frac{\lambda}{a} z.$$
 (13)

Substituting equation (9) into (6) and then equations (6), (12), and (13) into equation (1) gives

$$E_{c} \frac{\partial f_{i}(r)}{\partial r} + E_{c}r \frac{\partial^{2} f_{i}(r)}{\partial r^{2}} + \frac{nB}{r^{2}} + \frac{\lambda}{a}A = 0$$
(14)

which upon integration shows that

$$f_{1}(r) = C + D ! n r + A'r + B' \frac{1}{r}$$
 (15)

Equations (9), (10), and (12) are substituted into equation (7) to give

$$\frac{B}{r^2} = G_{r\theta} \left[\frac{n}{r} \left(C + D \ln r + A'r + \frac{B'}{r} \right) + \frac{\partial f_2(r)}{\partial r} - \frac{f_2(r)}{r} \right]$$
(16)

from which

いたぞうで

Ŗ

$$f_2(r) = Fr + Cn + Dn(1 + In r) + A'nr In r + \frac{B''n}{r}$$
 (17)

Equations (9), (11), and (13) are substituted into equation (8) to give

$$\frac{A}{r} = G_{rz} \left[C + D \ln r + A'r + B' \frac{1}{r} + \frac{\partial f_3(r)}{\partial r} \right]$$
(18)

from which

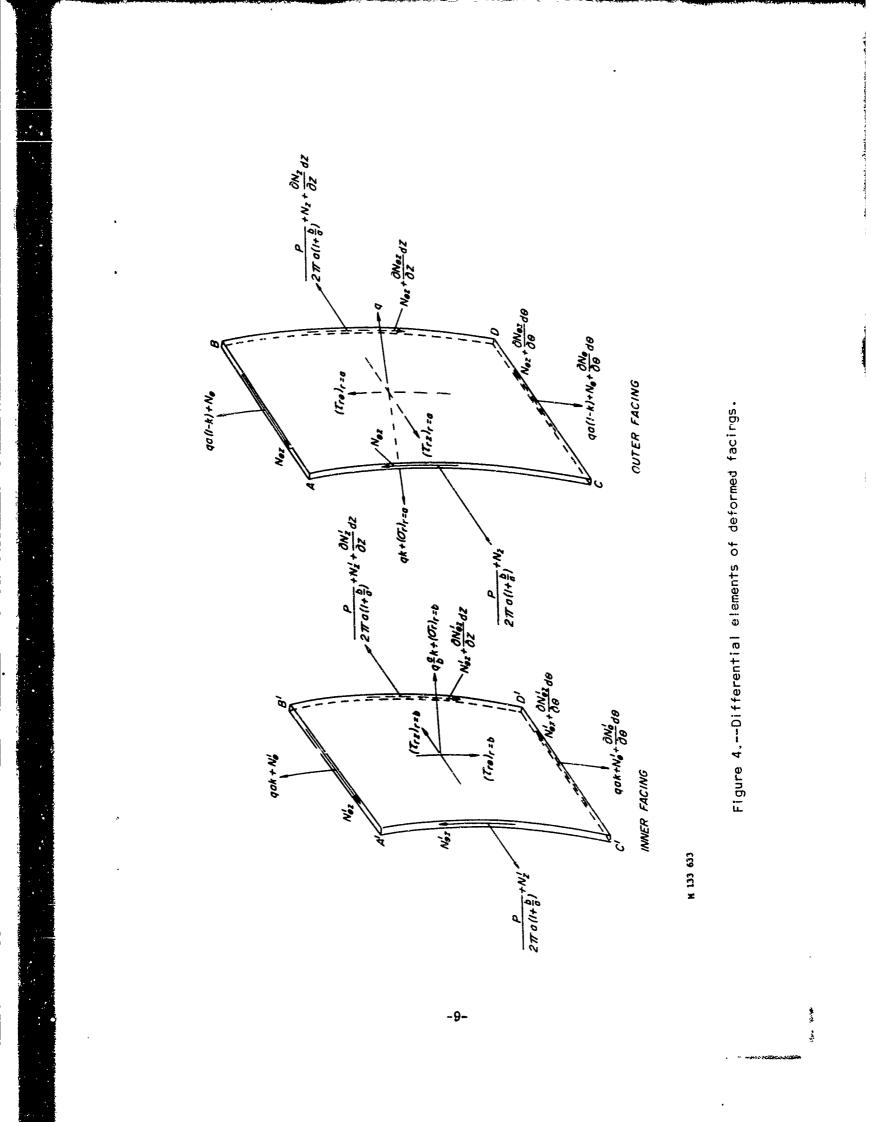
$$f_3(r) = K + A''(r^2 + ln r) + Cr + \Im r (ln r - l) + B ln r$$
 (19)

It is convenient to have the constants of $f_1(r)$, $f_2(r)$, and $f_3(r)$ in nondimensional form. Redefining the constants, the following form is obtained,

$$u = \left(Aa + Br + C\frac{a^2}{r} + Da \ln \frac{r}{a}\right) \cos n\theta \cos \frac{\lambda}{a} z$$
 (20)

FPL-0173

-8-



$$v = \left[-Ana + Bnr \ln \frac{r}{a} + C \frac{a^2}{nr} \delta_{n\theta} - Dan \left(\ln \frac{r}{a} + 1\right) + Fr\right] \sin n\theta \cos \frac{\lambda}{a} z \quad (21)$$

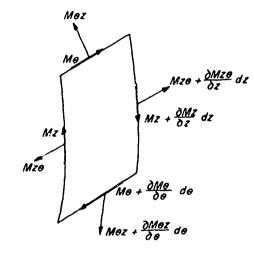
$$w = \left[A\lambda r + Ba\lambda \left(\frac{r^2}{2a^2} - \frac{\delta_z}{\lambda^2} \ln \frac{r}{a}\right) + C\lambda a \ln \frac{r}{a} + D\lambda r \left(\ln \frac{r}{a} - 1\right) + La\right] \cos n\theta \sin \frac{\lambda}{a} z (22)$$

and the state of the state of the second state of the state of the second state of the

3

The facings,--Since the problem of stability of homogeneous cylindrical shells has been solved by other authors, it is only necessary in the stability analysis of cylindrical sandwich shells to consider it as a composite of two homogeneous shells bonded together by an elastic core subject to the compatibility requirements of equal displacements at their interfaces, which, to simplify the analysis, is assumed to extend to the middle surface of each facing.

Free body diagrams of a facing element showing the sense of the forces and moments are found in figures 4 and 5.



Z M 106 302

Figure 5.--Differential element of facing showing moments and twists.

The equations of equilibrium for the facings can be obtained from a mathematical theory of thin shells. It is felt that for a small deflection analysis the theories presented by various authors differ principally in second-order effects, as is evidenced by comparing the work of $Flugge^4$ and Timoshenko⁵ on the buckling of cylindrical shells.

 $\frac{1}{-F}$ lugge, W. Stresses in Shells, Springer-Verlag, Berlin, 1962. $\frac{5}{-T}$ Timoshenko, S. Theory of Elastic Stability, McGraw-Hill, 1936.

FPL-0173

へいないないないないであるい

-10-

As a result, the equations of equilibrium as presented by Timoshenko and subject to the necessary transformations will be used here. Such theory, when applied to cylindrical shells of radius \underline{r} , yields the following differential equations:

$$0 - r \frac{\partial N_{z}}{\partial z} + \frac{\partial N_{\theta z}}{\partial \theta} - r Q_{z} \frac{\partial^{2} u}{\partial z^{2}} - r N_{z \theta} \frac{\partial^{2} v}{\partial z^{2}} - Q_{\theta} \left(\frac{\partial^{2} u}{\partial z \partial \theta} - \frac{\partial v}{\partial z} \right) - N_{\theta} \left(\frac{\partial^{2} v}{\partial z \partial \theta} + \frac{\partial u}{\partial z} \right) + r \overline{Z}$$

$$0 = \frac{\partial N_{\theta}}{\partial \theta} + r \frac{\partial N_{z \theta}}{\partial z} - r N_{z} \frac{\partial^{2} v}{\partial z^{2}} - Q_{z} \left(\frac{\partial^{2} u}{\partial z \partial \theta} - \frac{\partial v}{\partial z} \right) + N_{\theta z} \left(\frac{\partial^{2} v}{\partial z \partial \theta} + \frac{\partial u}{\partial z} \right)$$

$$+ Q_{\theta} \left(1 - \frac{1}{r} - \frac{\partial^{2} u}{\partial \theta^{2}} + \frac{1}{r} \frac{\partial v}{\partial \theta} \right) + r \overline{Y}$$

$$(23)$$

$$0 = + r \frac{\partial Q_z}{\partial z} + \frac{\partial Q_{\theta}}{\partial \theta} + N_{z\theta} \left(\frac{\partial^2 u}{\partial z \partial \theta} - \frac{\partial v}{\partial z} \right) + r N_z \frac{\partial^2 u}{\partial z^2} - N_{\theta} \left(1 - \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} \right)$$

$$+\frac{1}{r}\frac{\partial v}{\partial \theta}$$
 + $N_{\theta z}$ $\left(\frac{\partial^2 u}{\partial z \partial \theta} - \frac{\partial v}{\partial z}\right)$ + $r\overline{X}$

$$0 = r \frac{\partial M_{z\theta}}{\partial z} - \frac{\partial M_{\theta}}{\partial \theta} - r M_{z} \frac{\partial^{2} v}{\partial z^{2}} - M_{\theta z} \left(\frac{\partial^{2} v}{\partial z \partial \theta} + \frac{\partial u}{\partial z} \right) - r Q_{\theta}$$
(26)

(25)

1

「ある」というなななので、こことをすい

$$0 = \frac{\partial M_{\theta z}}{\partial \theta} + r \frac{\partial M_z}{\partial z} + r M_{z\theta} \frac{\partial^2 v}{\partial z^2} - M_{\theta} \left(\frac{\partial^2 v}{\partial z \partial \theta} + \frac{\partial u}{\partial z} \right) + r Q_z$$
(27)

$$0 = M_{z} \left(\frac{\partial^{2} u}{\partial z \partial \theta} - \frac{\partial v}{\partial z} \right) + rM_{z\theta} \frac{\partial^{2} u}{\partial z^{2}} - M_{\theta z} \left(1 - \frac{1}{r} \frac{\partial^{2} u}{\partial \theta^{2}} + \frac{1}{r} \frac{\partial v}{\partial \theta} \right)$$

$$-M_{\theta} \left(\frac{\partial^{2} u}{\partial z \partial \theta} - \frac{\partial v}{\partial z} \right) - r \left(N_{z\theta} - N_{\theta z} \right)$$
(28)

FPL-0173

Assuming that resultant forces other than N_{θ} and N_{z} are small and neglecting products of these forces and the displacements \underline{u} , \underline{v} , and \underline{w} which are also small, and assuming further a membrane analysis where the bending moments and transverse shear forces

in the individual facings are neglected, $\left(\frac{t^2}{12a^2} \approx 0\right)$, the equilibrium equations can be reduced to:

$$0 = r \frac{\partial N_z}{\partial z} + \frac{\partial N_{\theta z}}{\partial \theta} - N_{\theta} \left(\frac{\partial^2 v}{\partial z \partial \theta} + \frac{\partial u}{\partial z} \right) + r\overline{Z}$$
(29)

$$0 = \frac{\partial N}{\partial \theta} + r \frac{\partial N_z \theta}{\partial z} - r N_z \frac{\partial^2 v}{\partial z^2} + r \overline{Y}$$
(30)

$$0 = -N_{\theta} \left(I - \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r} \frac{\partial v}{\partial \theta} \right) + rN_z \frac{\partial^2 u}{\partial z^2} + r\overline{X}$$
(31)

Evaluating equations (29), (30), and (31) for each facing or when r = a and r = b and satisfying the compatibility requirements at these interfaces provide the six equations necessary for the determination of the six arbitrary constants found in expressions 20. 21, and 22.

Mathematical Analysis

 $\frac{N_z}{N_{\theta}} \text{ and } \frac{N_{\theta}}{N_{\theta}} \text{ of equations (29), (30), and (31) are replaced by } \left(\frac{P}{4\pi r_m} + \overline{N}_z\right) \text{ and } \left[qa(1 - k) + \overline{N}_{\theta}\right], \text{ respectively, for the outer facing and by } \left(\frac{P}{4\pi r_m} + \overline{N}_z\right)^2 \text{ and } \left[qak + \overline{N}_{\theta}\right], \text{ respectively, for the inner facing (primes denote inner facing). This } \text{ necessary because}$

pectively, for the inner facing (primes denote inter facing) the forces due to buckling. the forces in the buckled shell are the prebuckling forces plus the forces due to buckling. The N_{z} , N_{z} , N_{θ} , and N_{θ} are small forces due to buckling which are later to be expressed in terms of displacements, (which are assumed to have differed negligibly from the

prebuckled state), and the product of these small forces and the displacements are also neglected. Expressions (29), (30), and (31), as evaluated for the outer facing then become:

$$0 = a \frac{\partial(\overline{N}_z)}{\partial z} + \frac{\partial N_{\theta z}}{\partial \theta} - qa(1 - k) \left(\frac{\partial^2 v}{\partial z \partial \theta} + \frac{\partial u}{\partial z} \right) + a\overline{Z}$$
(32)

$$0 = \frac{\partial(\overline{N}_{\theta})}{\partial\theta} + a \frac{\partial N_{z\theta}}{\partial z} - \frac{aP}{4\pi r_{m}} \frac{\partial^{2} v}{\partial z^{2}} + a\overline{Y}$$
(33)

$$0 = \frac{aP}{4\pi r_m} \frac{\partial^2 u}{\partial z^2} - qa(1 - k) \left(1 - \frac{1}{a} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{a} \frac{\partial v}{\partial \theta} \right) - \overline{N}_{\theta} + a\overline{X}$$
(34)

FPL-0173

-12-

As is customary in such stability problems, the stretching of the middle surface is taken into account by assuming that the prebuckling stress resultants are very large in comparison with the other stress resultants; thus the terms

$$\frac{P}{4\pi r_{m}} (1 + \varepsilon_{\theta}) \qquad \text{and} \qquad qa(1 - k)(1 + \varepsilon_{z})$$
should be substituted for the quantities $\frac{P}{4\pi r_{m}}$ and $qa(1 - k)$, respectively, and the surface forces \overline{X} , \overline{Y} , and \overline{Z} should be multiplied by $(1 + \varepsilon_{\theta})(1 + \varepsilon_{z})$ in equations (32) to (34). In these expressions

$$\varepsilon_{\theta} = \frac{1}{a} \frac{\partial v}{\partial \theta} + \frac{u}{a}$$

$$\varepsilon_{z} = \frac{\partial w}{\partial z}$$
(35)

Finally, the expressions for the forces, moments, and twists along with the relationships for the surface faces:

$$\overline{Z} = -(\tau_{rZ})$$

$$\overline{Y} = -(\tau_{r\theta})$$

$$\overline{Y} = -(\tau_{r\theta})$$

$$r = a$$

$$\overline{X} = q - (q \frac{a}{r} k + \sigma_{r})$$

$$r = a$$
(36)

are expressed in terms of \underline{u} , \underline{v} , and \underline{w} and substituted in (32), (33), and (34). They lead to the following equations for the outer facing:

$$\Sigma F_{z} = 0 = a^{2} \frac{\partial^{2} w}{\partial z^{2}} + \frac{(1 + \mu)}{2} a \frac{\partial^{2} v}{\partial z \partial \theta} + a\mu \frac{\partial u}{\partial z} + \frac{(1 - \mu)}{2} \frac{\partial^{2} w}{\partial \theta^{2}}$$

$$= a\phi_{1}(1 - \kappa) \left(\frac{\partial^{2} v}{\partial z \partial \theta} + \frac{\partial u}{\partial z}\right) - \frac{a^{2}(1 - \mu^{2})}{E^{4}} G_{rz} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r}\right)$$

$$\Sigma F_{\theta} = 0 = \frac{(1 + \mu)}{2} a \frac{\partial^{2} w}{\partial z \partial \theta} + \frac{(1 - \mu)}{2} a^{2} \frac{\partial^{2} v}{\partial z^{2}} + \frac{\partial u}{\partial \theta} - a^{2} \phi_{2} \frac{\partial^{2} v}{\partial z^{2}} + \frac{\partial^{2} v}{\partial \theta^{2}}$$

$$= \frac{a^{2}(1 - \mu^{2})}{E^{4}} G_{r\theta} \left(\frac{1}{a} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{a}\right)$$

$$\Sigma F_{-} = 0 = -a\mu \frac{\partial w}{\partial x} - \frac{\partial v}{\partial x} - u + \phi_{1}(1 - \kappa) \left(u + \frac{\partial^{2} u}{\partial x}\right) + a^{2} \phi_{2} \frac{\partial^{2} u}{\partial x^{2}} - a\beta \frac{\partial u}{\partial x}$$
(39)

$$\Sigma F_{r} = 0 = -a\mu \frac{\partial w}{\partial z} - \frac{\partial v}{\partial \theta} - u + \phi_{1}(1 - k) \left(u + \frac{\partial^{2} u}{\partial \theta^{2}}\right) + a^{2}\phi_{2} \frac{\partial^{2} u}{\partial z^{2}} - a\beta \frac{\partial u}{\partial r}$$
(

where ϕ_1 and ϕ_2 are as defined under notations.

FPL-0173

į.

ì

-13-

ş

......

ş

The second s

To achieve proper interaction between the core and the facings, the displacements of the middle surfaces of the facing are set equal to the displacements of the core at r = a and r = b.

Thus, displacements \underline{u} , \underline{v} , and \underline{w} in equations (37), (38), and (39) are replaced by equations (20), (21), and (22) evaluated at $\underline{r} = \underline{a}$. In this manner, three equations in six arbitrary constants (<u>A</u>, <u>B</u>, <u>C</u>, <u>D</u>, <u>L</u>, and <u>F</u>) are written for the outer facing. In a like fashion, three equations are written for the inner facing. These equations can then be written in matrix form as:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \\ F \\ L \end{bmatrix}$$
(40)

where the $a_{\underline{i}}$'s are defined in terms of geometric, loading, and material parameters.

Equations (40) are satisfied if the constants <u>A</u>, <u>B</u>, <u>C</u>, <u>D</u>, <u>F</u>, and <u>L</u> are all equal to zero. This represents the uniformly compressed circular form of equilibrium of the cylinder. A buckled form of equilibrium is possible only if equations (40) yield nonzero solutions for the constants. This requires that the determinant of the coefficients of these constants be equal to zero.

It is possible to find simultaneous minimum values (absolute sense) of ϕ_1 and ϕ_2 for which these six equations will be satisfied for any values of the arbitrary constants. Mathematically this means that for such a combination of loads and material parameters the deflections are indeterminate. The shell becomes elastically unstable and the loads that bring about this condition are the desired critical loads.

Numerical Computations

A literal solution of the sixth order determinant for the eigenvalues (ϕ_1, ϕ_2) is not feasible. A numerical solution, from which curves may be drawn, is possible if a digital computer is used.

For sandwich construction, particularly for that utilizing honeycomb cores, the equations can be greatly simplified by assuming $E_c = \infty$. This substitution is common with this type of construction due to the small relative displacement occurring between the

FPL-0173

I S TO CHARGE

BAR BARREN BARRENET

なるたいたいとい

Ţ

4

sandwich facings. Indications are that analyses based on this assumption are sufficiently accurate in most ranges, but for relatively short cylinders having weak cores such an assumption may result in serious error.

Poisson's ratio for the facings can be taken as one-third and the value of <u>k</u> closely approximated by the fraction one-half for most cylinders where the radius is large compared to the sandwich thickness <u>h</u>.

Making these substitutions, the a_{ii} 's in equations (40) are found to be

$a_{11} = \left\{ -\lambda^{3}(1 + \Delta)^{3} + \lambda(n^{2} - 1)(1 + \Delta) \left[\frac{1}{3} - \frac{\phi_{1}}{2}(1 + \Delta) \right] \right\}$
$a_{12} = \{1\}$
$a_{12} = \left\{ 1 \right\}$ $a_{13} = \left\{ -\frac{V_r \theta^n \lambda}{2\Delta(1+\Delta)} \left[\frac{2}{3} - \frac{\phi_1}{2} (1+\Delta) \right] \right\}$
$a_{14} = \{0\}$
$a_{15} = \left\{ -n\lambda(1 + \Delta) \left[\frac{2}{3} - \frac{\phi_1}{2} (1 + \Delta) \right] \right\}$
$a_{16} = \left\{ -\left[\lambda^2 (1 + \Delta)^2 + \frac{n^2}{3} \right] \right\}$
$a_{21} = \left\{ -\lambda^{3}(1-\Delta)^{3} + \lambda(1-\Delta)(n^{2}-1)\left[\frac{1}{3} - \frac{\phi_{1}}{2}(1+\Delta)\right] \right\}$
$a_{22} = \left\{ + \frac{V_{rz}}{\Delta(1+\Delta)^2} \left[\lambda^2 (1-\Delta)^2 + \frac{n^2}{3} \right] \ln R - R \right\}$
$a_{23} = \left\{ -\frac{V_{r\theta}n\lambda}{2\Delta(1+\Delta)} \left[\frac{2}{3} - \frac{\phi_1}{2} (1+\Delta) \right] \right\}$
$a_{24} = \{0\}$
$a_{25} = \left\{ -\operatorname{Rn} \lambda (1 - \Delta) \left[\frac{2}{3} - \frac{\phi_1}{2} (1 + \Delta) \right] \right\}$
$a_{26} = \left\{ -\left[\lambda^2 (1 - \Delta)^2 + \frac{n^2}{3} \right] \right\}$
$a_{31} = \left\{ n(n^2 - 1) - n\lambda^2(1 + \Delta)^2(\frac{1}{3} + \phi_2) \right\}$
$a_{32} = \{0\}$
$a_{33} = \left\{ -\frac{V_{r\theta}}{2\Delta(1+\Delta)^2} \left[n^2 + \lambda^2(1+\Delta)^2(\frac{1}{3}-\phi_2) \right] + 1 \right\}$

FPL-0173

- 15-

ないますとうとうないないであるのである

a₃₄ = {0} $a_{35} = \left\{ - \left[n^2 + \lambda^2 (1 + \Delta)^2 \left(\frac{1}{3} + \phi_2 \right) \right] \right\}$ $a_{36} = \left\{ -\frac{2}{3} n\lambda(1 + \Delta) \right\}$ $a_{41} = \left\{ n(n^2 - 1) - n\lambda^2 (1 - \Delta)^2 (\frac{1}{3} + \phi_2) \right\}$ $a_{42} = \begin{cases} \frac{2Rn\lambda V}{rz} \\ \frac{3\Delta(1+\Delta)}{2} \ln R \end{cases}$ $a_{43} = \begin{cases} -\frac{v_{r\theta}}{2\Delta(1-\Delta^2)} \left[n^2 + \lambda^2 (1-\Delta)^2 (\frac{1}{3}-\phi_2) \right] - 1 \end{cases}$ $a_{44} = \{0\}$ $a_{45} = \left\{ -R \left[n^2 + \lambda^2 (1 - \Delta)^2 (\frac{1}{3} - \phi_2) \right] \right\}$ $a_{46} = \left\{ -\frac{2}{3}n(1-\Delta) \right\}$ $a_{51} = \left\{ (n^2 - 1) \left[1 - \frac{\phi_1}{2}(1+\Delta) \right] - \lambda^2 (1+\Delta)^2 (\frac{1}{3} + \phi_2) \right\}$ $a_{52} = \left\{ -\lambda(1+\Delta) \right\}$ $a_{53} = \left| n \left[1 - \frac{V_{r\theta}}{2\Delta (1 + \Delta)^2} \right] \right|$ $a_{54} = \{-1\}$ a₅₅ = {-n} $a_{56} = \left\{ -\frac{\lambda}{3} \left(1 + \Delta \right) \right\}$ $a_{61} = \left\{ (n^2 - 1) \left[1 - \frac{\phi_1}{2} (1 + \Delta) - \lambda^2 (1 - \Delta)^2 (\frac{1}{3} + \phi_2) \right] \right\}$ $a_{62} = \left| R \left[\frac{\lambda V_{rZ}}{3\Delta(1 + \Delta)} \ln R + \lambda(1 - \Delta) \right] \right|$ $a_{63} = \left[-n \left[1 + \frac{V_{r\theta}}{2\Delta(1 - \Delta^2)} \right] \right]$ $a_{64} = \{R\}$ $a_{65} = \{-Rn\}$ $a_{66} = \left\{ -\frac{\lambda}{3} \left(1 - \Delta \right) \right\}$

FPL-0173

このからないないないないないないします。 おうしょう

-16-

The problem is now reduced to developing a search technique whereby minimum values of ϕ_1 and ϕ_2 can be determined for given values of $V_{r\theta}$, V_{rz} , Δ , and $\underline{\gamma}$, such that the determinant goes to zero.

This problem was programed for the digital computer and results are presented in figures 6, 7, and 8. The solutions show a linear relationship between ϕ_1 and ϕ_2 as was found previously for isotropic shells^{5,6} wherein the slopes of the lines are dependent upon values of number of buckles producing minimum loads. The lowest of these lines are shown in figures 6, 7, and 8 for chosen values of $\underline{\gamma}$. These figures were then used as a basis for plotting figures 9, 10, 11, 13, 14, 16, and 17, which clarify the effect of the interaction of the loads by presenting them in terms of ratios.

The effect of special cases such as the hydrostatic case can be seen most clearly on figures 6, 7, and 8 by the use of a load ratio line where the slope of the line and the desired load ratio are equivalent. The hydrostatic case, for example, has a load ratio of one-fourth or

$$\phi_2 = \frac{1}{4} \phi_1$$

Discussion of Results

FPL-0173

For illustrative purposes, the three values of $\Delta^2 = \frac{\hbar^2}{4r^2}$ of 0.0001, 0.00001, and 0.000001

were chosen to represent the range of delta. For a given delta then, figures are presented which show the effect on the critical loads of (1) varying the value of \underline{Y} while holding the values of $\underline{V}_{\underline{rz}}$ and $\underline{V}_{\underline{r\theta}}$ a constant, and (2) varying the value of $\underline{V}_{\underline{rz}}$ and $\underline{V}_{\underline{r\theta}}$ while holding the value of $\underline{Y} = \frac{\pi \underline{r}}{L}$ a constant.

The results of this analysis agree favorably with those previously presented $\frac{\phi}{2}$ for lateral pressure and axial load acting separately. These values then represent the values used for ϕ and ϕ in the figures.

For the case of lateral load only, it was found that the expression for $\boldsymbol{\varphi}_1^{-}$ is given by

The value of ϕ_2 can be determined with the use of figure 16, which was taken from previous work.⁷

⁶-Kuenzi, E. W., Bohannar, B., and Stevens. G.H. Buckling Coefficients for Sandwich Cylinders of Finite Length Under Uniform External Lateral Pressure. U.S. Forest Service Research Note FPL-0104. 1965. Forest Prod. Lab.

⁷Zahn, John W., and Kuenzi, Edward W. Classical Buckling of Cylinders of Sandwich Construction in Axial Compression--Orthotropic Cores. U.S. Forest Service Research Note FPL-018, 1963. Forest Prod. Lab.

-17-

.67-30

A State of the second se

a server was the second se

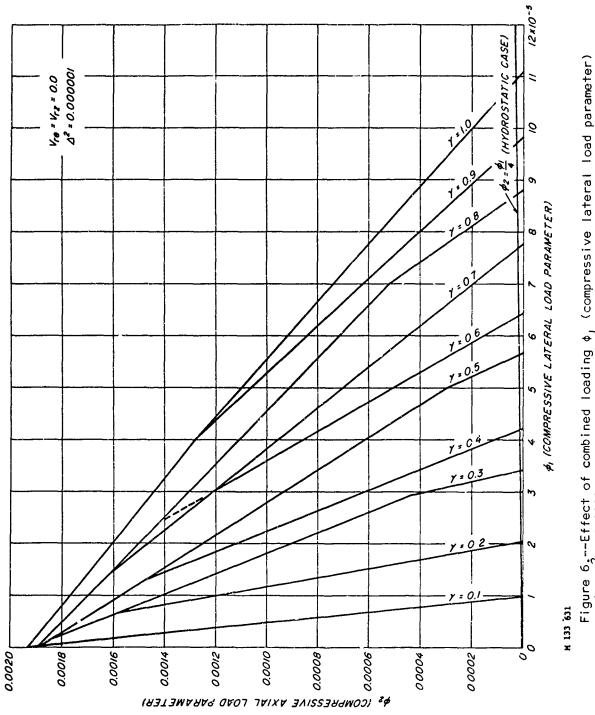
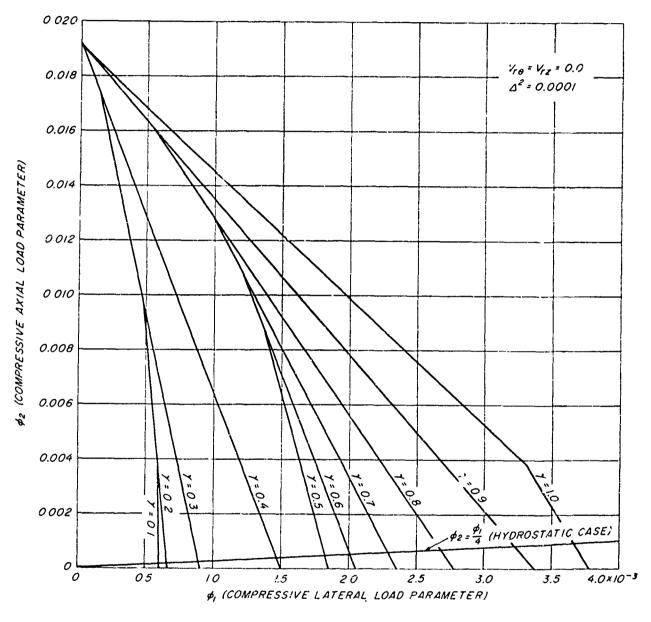
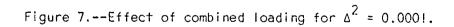


Figure 6.---Effect of combined loading ϕ_1 (compressive lateral load parameter) for Δ^2 = 0.000001.

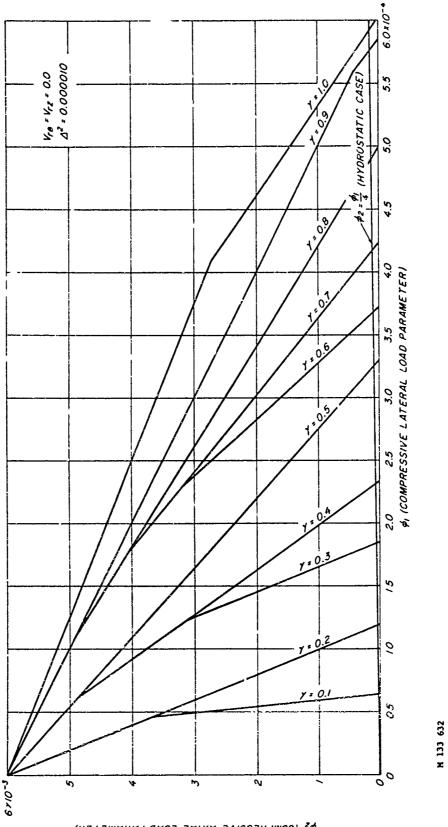


-~

M 133 630



* Martin Stranger



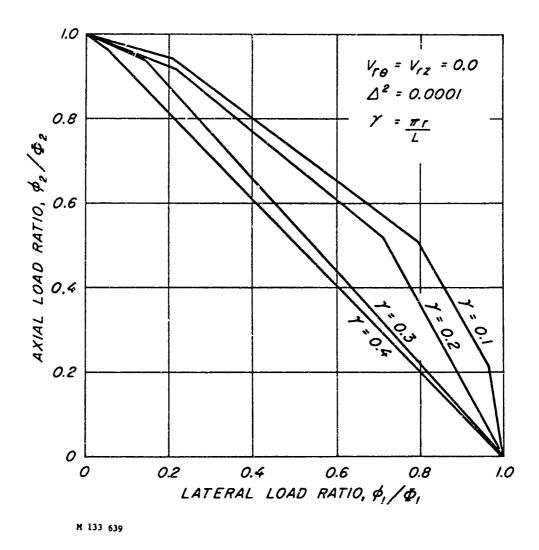
\$

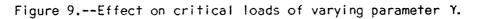
Figure 8.--Effect of combined loading for Δ^2 = 0.00001.

2

(ASTEMPRESSIVE AXIAL LOAD PARAMETER)

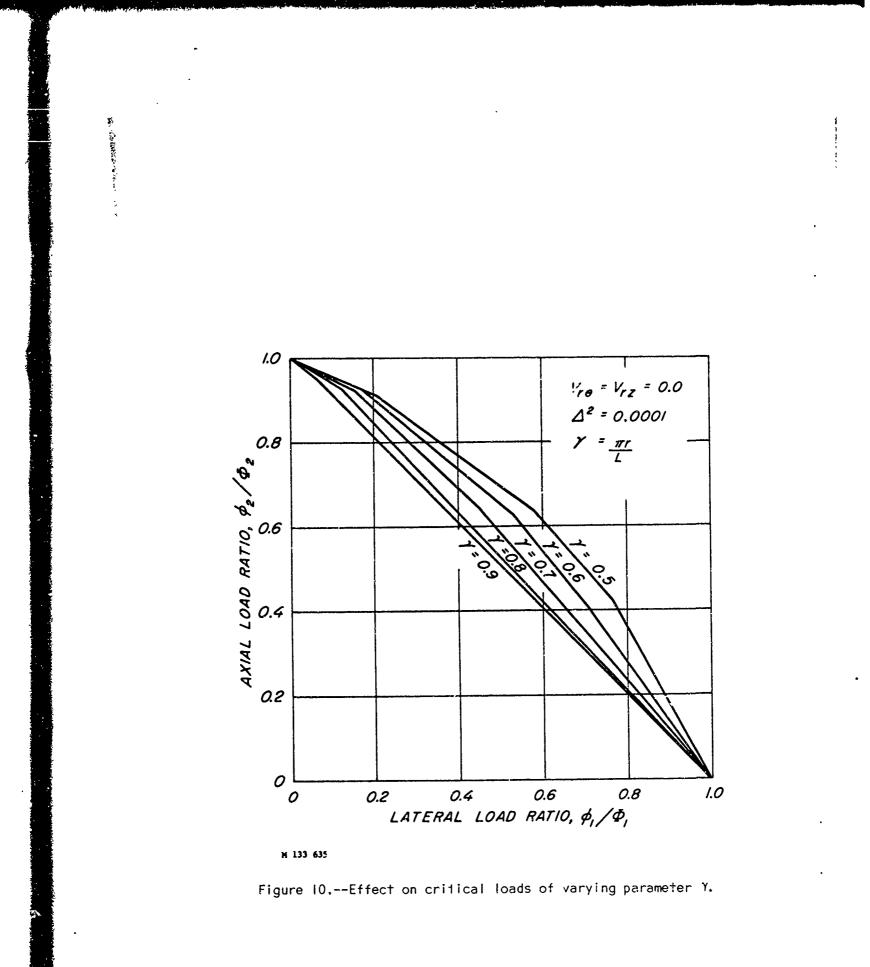
四日日のようない ちょうしん ちょうしょう しゅうしょう しょうしょう





and the second second

· -----



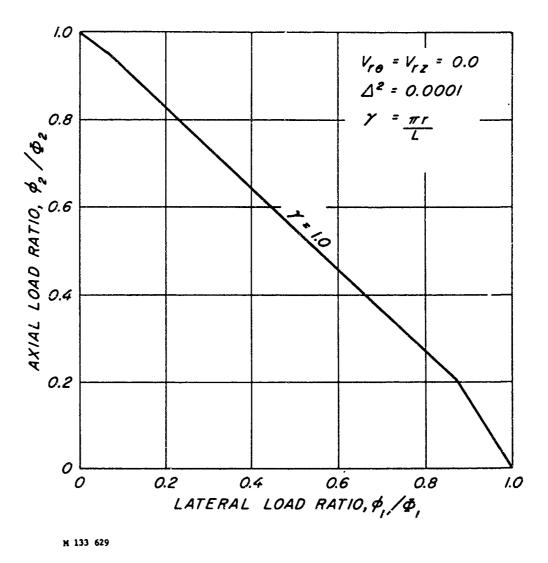
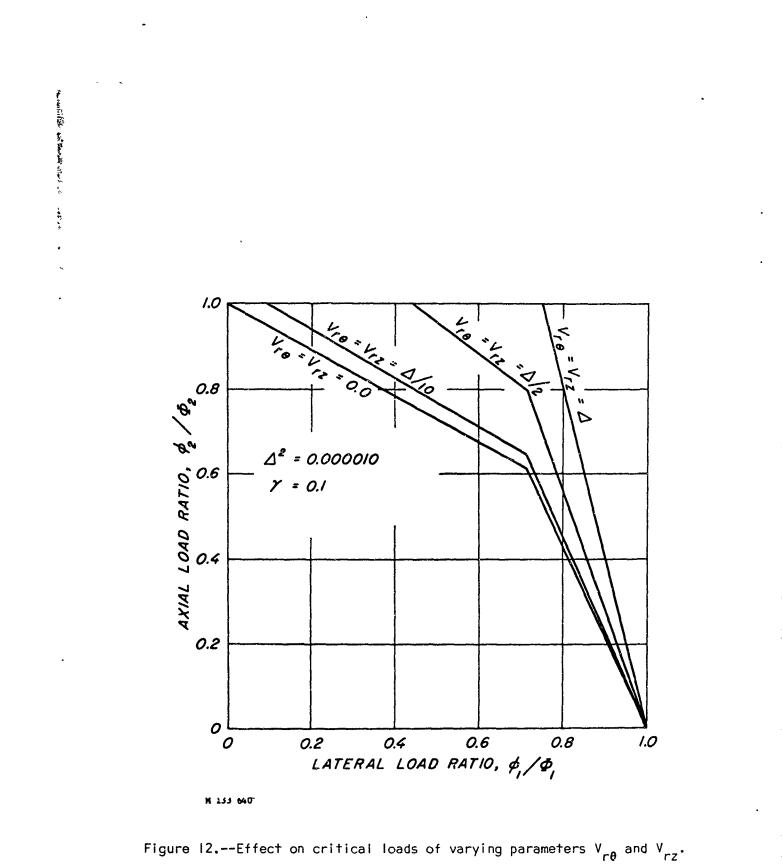
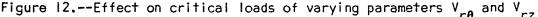
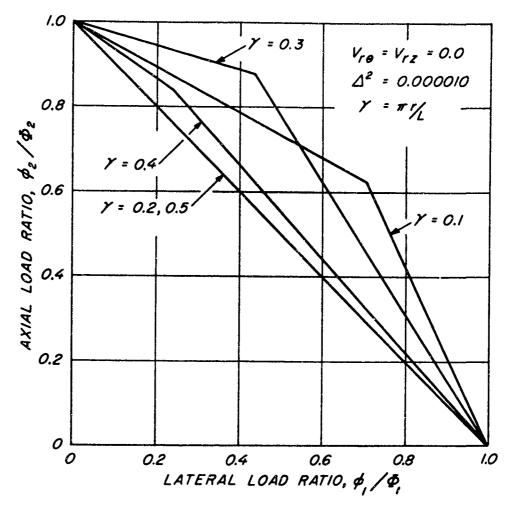


Figure 11.--Effect on critical loads of varying parameter $\boldsymbol{\gamma}_{\star}$







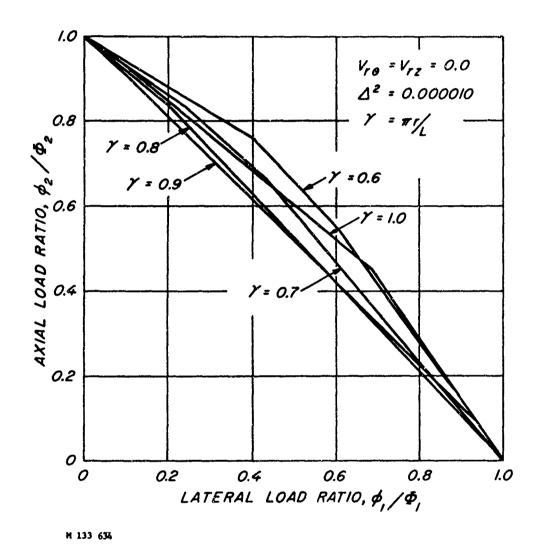


Figure 14.--Effect on critical loads of varying parameter γ .

Sarin Markan States and the second

- N. M.

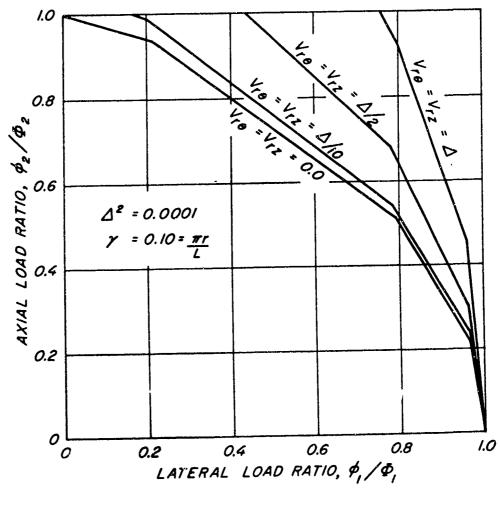
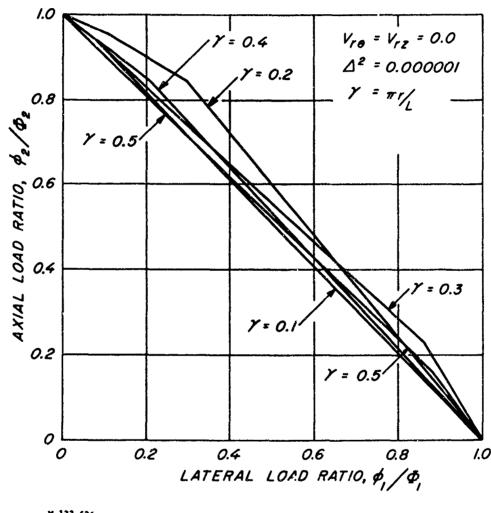


Figure 15.--Effect on critical loads of varying parameters V and V r.



4.120日の日本にあるとう いう

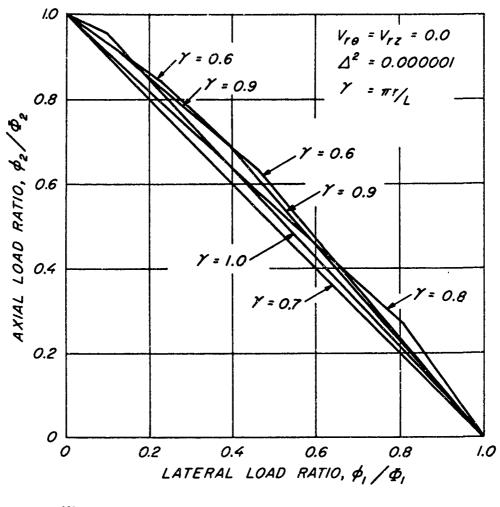
ţ

ė

м 133 636

1.0

Figure 16.--Effect on critical loads of varying parameter Y.



M 133 637

Figure 17.--Effect on critical loads of varying parameter $\boldsymbol{\gamma}.$

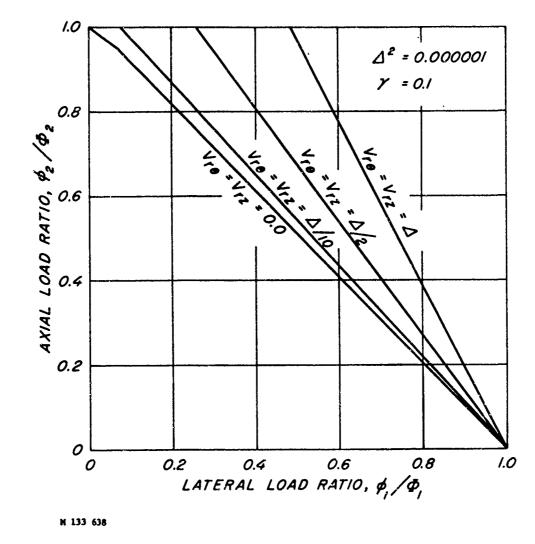
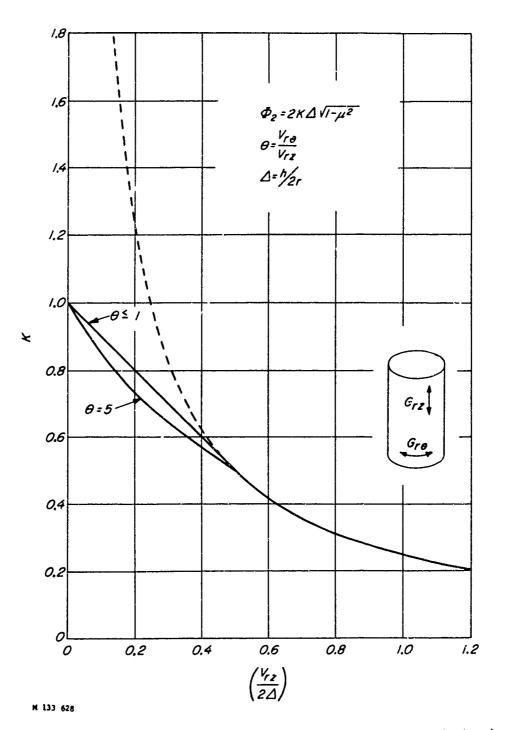


Figure 18.--Effect on critical loads of varying parameters V $_{\rm r\theta}$ and V $_{\rm rz}.$

ų

いい こういう こういうちょうかんないないないない



·

Figure 19.--Classical buckling coefficient for sandwich cylinders with isotropic facings and orthotropic core.

.

PUBLICATION LISTS ISSUED BY THE

FOREST PRODUCTS LABORATORY

The following lists of publications deal with investigative projects of the Forest Products Laboratory or relate to special interest groups and are available upon request:

Architects, Builders, Engineers, and Retail Lumbermen	Logging, Milling, and Utilization of Timber Products
Box and Crate Construction and Packaging Data	Mechanical Properties and Struc- tural Uses of Wood and Wood Products
Chemistry of Wood	
	Modified Woods, Paper-Base
Drying of Wood	Laminates, and Reinforced Plastic Laminates
Fire Performance	
	Sandwich Construction
Fungus and Insect Defects in	
Forest Products	Thermal Properties of Wood
Furniture Manufacturers, Woodworkers, and Teachers	Wood Fiber Products
of Woodshop Practice	Wood Finishing Subjects
Glue and Plywood	Wood Preservation

Growth, Structure, and Identification of Wood

<u>Note</u>: Since Forest Products Laboratory publications are so varied in subject matter, no single catalog of titles is issued. Instead, a listing is made for each area of Laboratory research. Twice a year, January 1 and July 1, a list is compiled showing new reports for the previous 6 months. This is the only item sent regularly to the Laboratory's mailing roster, and it serves to keep current the various subject matter listings. Names may be added to the mailing roster upon request.

ころういろうないないないないないないないないないないないないできょうとうとう