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S, .. Summary

Presents a linear solution for determining the effect of combined
axial and lateral loads under which a cylindrical sandwich shell

will buckle. The facings of the sandwich cylinder are treated as
homogeneous isotropic cylindrical shells and the core as an ortho-
tropic elastic body. The characteristic determinant that represents
the solution to the problem is solved numerically. Curves are given
that show how the buckling load changes as the parameters of the
problem change.
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2
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Introduction

Sandwich construction is a result of the search for a strong, stiff, and yet light weight
material. It is usually made by gluing i'elatively thin sheets of a strong material to the
faces of relatively thick but light weight, and often weak, material. The outer sheets are
called facings and the inner layer is called the core.

Such a layered system presents difficult design problems. What is offered here is a

straightforward method for dealing with some of these problems.

The problem to which the method is applied is that of the elastic stability of a sandwich
cylinder under uniform external lateral load and uniform axial load.

Notation

r, 0•, z radial, tangential, and longitudinal coordinates, respectively

a radius to middle surface of outer facing

b radius to middle surface of inner facing

r mean radius
m

t thickness of each facing

-This Research Note is a revision, under the same title, of Forest Products Laboratory
Report 1852, issued in 1955. It was originally prepared by Everett E. Haft, and
Issued as one of a series by the Forest Products Laboratory in cooperation with the
U.S. Navy, Bureau of AeronauTics.

2-Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
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L length of cylinder

E modulus of elasticity of facings

Poisson's ratio of facings

G modulus of rigidity of facings

E modulus of elasticity of core in direction normal to facingsc

Gr modulus of rigidity of core in r@ plane

Grz modulus of rigidity of core in rz plane

q intensity of uniform external lateral loading

k __ _ _kb Et Inb

a Ea aBC
iOr normal stress in core in radial direction

T r, T transverse shear stresses in core
re rz

u, v, w radial, tangential, and longitudinal displacements, respectively

n number of waves in circumference of buckled cylinder

m number of half waves in length of buckled cylinder

Eth

2( I - )r m GrO

V Eth

rz 2(1- i 2) r2 Gm rz

my

Trrr
Y L

E 2
6 nO 2G 2

rO
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6 EC6z G

rz

N0 , Nz, Noz normal forces and shear force per unit length of facing

Q6, Qz transverse shear forces per unit length of facing

0 Me, Mz bending moments per unit length of facing

Sze, Mez twisting moments per unit length of facing

X. Y, Z surface forces per unit area of facing

Er (I - J2 )

Et

qrm - 2)

Et

P(I - 2

042rr Et
M

h (a- b)

0 1 the value of the lateral load parameter ¢lwhen the axial load parameter
42 is equivalent to zero

S2 the value of the axial load parameter ¢2 when the lateral load para-
meter €1 is equivalent to zero

In natural logarithm

h
2r

m
I b I-___

R -or (1--J

P total axial load

A, B, C, D, K, L, A', B ', A", B" arbitrary constants

note -- any of the above terms that appear with a prime (as N ')refer to the inner
facing.
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Figure I.--Sandwich cylinder.
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U
Mathematical Analysis

As previously stated, the core is relatively weak. Because of the high strength of the
facings the core need carry little tension or compression except in a direction perpen-
dicular to the facings. The facings are able to resist shearing deformation in their plane
and it is necessary only that the core be able to resist shear in the radial direction in
planes perpendicular to the facings. In this analysis, the core is considered to be an
orthotropic elastic body. It is unable to resist deformations other than those just men-
tioned.

Interdependence of the core and the facings is gained by equating their displacements
at the interfaces. To simplify the analysis, the core is assumed to extend to the middle
surface of each facing.

Figure 1 shows the cylinder and the coordinates that are used.

Prebuckling Stresses

Before buckling occurs, the cylinder is in a state of uniform compression. The axial
load is carried by the facings since the core material is assumed to be incapable of
ctrrying load in this direction. With facings of like material, the stress is the same in
both facings. Since the facings have the same thicknesp then the loading per unit length
of facing, N or N ', will be the same. This means that for a total load P

.z ._z

2naN + 2wbN' = P
z z

The calculation of stresses due to the lateral pressure is a problem in rotational
symmetry. Differential elements of the core and of the facings are shown in figure 2.

Summing forces in the radial direction gives for the core

3r r

for the outer facing

aq - a (- N0  O,
ra

and for the inner facing

b(O r) - N; 0.
r=b

Sincea =E aur c ar'

FPL-0173 -5-
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N Et() and
a a

Et () , these equations can be solved for a, NV, and Ne.
a r =br

3
The results are-

a

a =q-k
r r

Ne qa(l - k), and

N' = qak where

b Et In
I + b _ . _

a E a

As P and _ increase, N , N', N0, N' and a also increase. Eventually a condition may
z z _ 0 r

be reached where a slight increase inloadcauses the cylinder to lose its state of uniform
compression and buckle as a result of elastic instability. This buckling is assumed to

cause only a small change In the stress distribution. These small changes will now be

considered.

Buckling Stresses

The core.--A free body diagram of an element of the core is shown in figure 3.

Neglecting terms which are products of more than three differentials, a summation

of forces in the r, 0 and z direction gives

or arO arz
a + r -+- + --"e0 (1)

r r ae az

a
r a--e + 2 -r =0 (2)

+ r re

Trz 3r r (3)

Equation (2) may be integrated to give

STrO = 1f (0) f (z) (4)
r2

-Raville, M. E. Analysis of long cylinders of sandwich construction under uniform
external lateral pressure, Forest Products Laboratory Report 1844, 1954.
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Figure 3.--Differential element of deformed core. Z M 105 664

Equation (3) may be integrated to give
A

T - - f (0) f (z)rz r 2 2(5

Ir, Tr, and Trz as defined in terms of u, v, and w are

r Ea 3r (6)

FIire au av v

TrI =au + Dr (7)
re e a) r r

trz rz + (8)

It is convenient to assume the displacements u, v, and w in the form

u fl(r) cos no cos z (9)1 a

v =f(r) sin nO cos z (10)
2a

w = f (r) cos no sin- z (11)
3 a

This form will permit a unique determination of f (r), f (r), and f (r); assumes n cir-.

1 2 3
cumferential waves and m longitudinal half waves upon buckling; results in zero dis-
placements in the radial and circumferential directions at the ends; and imposes no
moment upon the facings at the ends.
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From a consideration of equations (4), (5), (7), (8), (9), (10), and (11) it can be shown that

f (O)fl(z) = sin nO cos z and

f2(e)f (z) = cos nO sin - z, so that
2 2 a

nn cos z and (12)
rO 2 a

r

T cos n in X (13)rz- r a

Substituting equation (9) into (6) and then equations (6), (12), and (13) into equation (1) gives

2af (r) f (r) anB X
E + Er + - + - A =0 (14)C ar c 3r2 r2 a

which upon integration shows that.

f (r) = C + D !n r + A'r+B' + (15)r

Equations (9), (10), and (12) are substituted into equation (7) to give

B W% f 2(r) f 2(r)

B r6 n + D In r + A'r + + r r (16)

from which

?f (r) = Fr + Cn + Dn(I + In r) + A'nr In r + 9 (17)
r

Equations (9), (11), and (13) are substituted into equation (8) to give

A = G LC + D In r + A'r + B' I + a (18)r rz r ar

from which

f 3 (r) - K + A"(r 2 + In r) + Cr + 'r (In r - I) + B In r (19)

It is convenient to have the constants of f 1(r), f 2 (r), and f 3 (r) in nondirnensional form.

Redefining the constants, the following form is obtained.

( B -r (20U Aa + Br + C--- + Da In -[ Cos nO os C " x (20)

"FPL-0173 -8-
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2

Bnr In + C a 6 -Dan (Inr+ I)+ F sin nO Cos z (21)La V Ana+ no a- - a

r2 r + Ba( In + CXa In L + DXr In r + L Cos no sin a z(22)w -- r k a 2  72 a a a

The facings,--Since the problem of stability of homogeneous cylindrical shells has
been solved by other authors, it is only necessary in the stability analysis of cylindrical
sandwich shells to consider it as a composite of two homogeneous shells bonded together
by an elastic core subject to the compatibility requirements of equal displacements at
their interfaces, which, to simplify the analysis, is assumed to extend to the middle
surface of each facing.

Free body diagrams of a facing element showing the sense of the forces and moments
are found in figures 4 and 5.

Mez

Mze + zz di
MZ6 + a'f z

Iz O d2

÷ do "

Metdez

VZ ieMez ÷ w de

Z M 106 '>02

Figure 5.--[ifferent,al element of faring showinq moments and twists.

The equations of equilibrium for the facings can be obtained from a mathematical
theory of thin shells. It is felt that for a small deflection analysis the theories presented
by various authors differ principally in second-order effects, as is evidenced by com-
paring the work of FluggeA and Timoshenkcrs on the buckling of cylindrical shells.

,4-FiUgge, W. Stresses in Shells, Springer-Verlag, Berlin, 1962.
5-Timoshenko, S. Theory of Elastic Stability, McGraw-Hill, 1936.
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As a result, the equations of equilibrium as presented by Timoshenko and subject to

the necessary transformations will be used here. Such theory, when applied to cylindrical

shells of radius r, yields the following differential equations:

N aN 2 a2v 32u av

z Oz 2 rN- - Q -

0 -r +az 0 - z Z 7 3z 2

(23)3z0 a zae

0 I a u + r! + rU
ao a a aza 3z' aa az (4

(24

0 + Q - a + Iz L- + rN
6 r 30 2 r aO)

S, z + U N 32
0 + +N•+Nz zau rNaz 30 z O a)z 2 ro 2

(25)

+ I-+ N L r

r a 6o e~z az v { azv a

0 or rM V m +3 U- - rQ (26)
z ae z - Oz\3zae3Z) 0

3Me 3M +r a 2 1 a2v Q(
3 rM z 2 az 2 z0 az 7

u vu i 3 u + -z + 2 a30 (28)
0 z aza +z rzo -az 2 - Oz r 3e 2 r ae

- Me (v r (N z N 
(28N

FPL-0173 -1



Assuming that resultant forces other thanN, andN are small and neglecting products

of these forces and the displacements u, v, and w which are also small, and assuming

further a membrane analysis where the bending moments and transverse shear forces
S( ~t2 ) °

in the Individual facings are neglected, 2 0 the equilibrium equations can be

reduced tto( 2a

0( +rv +u ) (29)
az Do 3zae D

-- - Y 
(30)

m m=-N 0 (I aN rN +2 +rX (31)

r 0e 2• r a O- z az22

Evaluating equations (29), (30), and (31) for each facing or when r =ua and r b and

satisfying the compatibility requirements at these interfaces provide the six equations

necessary for the determination of the slx arbitrary constants found in expressions 20.

21, and 22.

Mathematical Analysis
Sffr

N and N0 of equations (29), (30), and(31) are replaced by + N7 and [a(1-k)

+ N respectively, for the outer facing and by [7N and +mk NJ, res-

pectively, for the inner facing (primes denote inner facing). This - necessary because

the forces inthe buckled shell are the prebuckling forces plus the forces due to buckling.

The N . and are small forces due to buckling which are later to be expressed

in terms of displacements, (which are assumed to have differed negligibly from the

prebuckled state), and the product of these small forces and the displacements are also

neglected. Expressions (29), (30), and (31). as evaluated for the outer facing then become:

a Jqz ) 3NOz (2 v au)

0 = a --- + -we - qa(I - k) _5-To + + az (32)

3-K 0 Z6 aPP v +a" 3

0 = + -va ( -) -- N4 - + a 
(3 4 )

aP Luu3 -12

W' -12-a ~ (4

FPL-017312



As is customary in such stability problems, the stretching of the middle surface is
taken into account by assuming that the prebuckling stress resultants are very large in
comparison with the other stress resultants; thus the terms

P (I + ) and qa(I - k)(W + cz

should be substituted for the quantities 4 and qa(l - k), respectively, and the surface
m

forces X, Y, and Z should be multiplied by (1 + COG + C z ) in equations (32) to (34). In
these expressions

- I av+ Ua 30 a

Saw (35)
•z az

Finally, the expressions for the forces, moments, and twists along with the relation-
ships for the surface faces:

rz r a

-(Tr) a (36)

q - (q 2 k + o )r rr a

ra

are expressed in terms of u, v, and w and substituted in (32), (33), and (34). They lead to
the following equations for the outer facing-

EF 0 = a2  2w + (I + P) a 2 + ali au +((I a2w
z T2 2 a za 36 2 2

z 36

(37)
- a[H- )a2v + u a 2 (1 _2

Et G Ui +3w
Eta Dz'z'z 3r

2 2 32v 2
EF (I + U) a a (I -lp a 2 v 3u 2 vEF a + 2 a 2 - + a

e2 3zae 2 .ý.2 3 0  4 2 ý2 23 8 3
2 2

a2(I - 2u (v (38)
Gw Iv auu + D2vu 19

Et az De az2 a

Er O-all L -- DIV U + (I -k) (U + iI~. + a2~f~ a (39)

where I and 02 are as defined under notations.

FPL-0173 -13-



To achieve proper interaction between the core and the facings, the displacements of
the middle surfaces of the facing are set equal to the displacements of the core at r =_a

Sand r = b.

Thus, displacements u, v, and w in equations (37), (38), and (39) are replaced by equa-
tions (20), (21), and (22) evaluated at r = a. In this manner, three equations in six arbitrary
constants (A, B, C, D, L, and Bl are written for the outer facing. In a like fashion, three
"equations are written for the inner facing. These equations can then be written in matrix
form as:

1 11 a12 a13 a14 a15 a 1 6  A

a a a a a 1L
21 22 23 24 25 26

a aa a C (031 a32 a33 a34 '35 '36 (40
m0

41 a42 43 a 45 a46 D

a 51 a 52 a 53 a 54 a 55 a 56 F•

a 1  a a a a aL

a 6 1 a62 63 64 65 66 _

where the a t's are defined in terms geometric, loading, and material parameters.

Equations (40) are satisfied if the constants A., B, , Fj F and L are all equal to zero.
This represents the uniformly compressed circular form of equilibrium of the cylinder.
A buckled form of equilibrium is possible only if equations (40) yield nonzero solutions
for the constants. This requires that the determinant of the coefficients of these constants
be equal to zero,

It is possible to find simultaneous minimum values (absolute sense) of 1 and 12 for

which these six equations will be satisfied for any values of the arbitrary constants.
Mathematically this means that for such a combination of loads and material parameters
the deflections are indeterminate. The shell becomes elastically unstable and the loads
that bring about this condition are the desired critical loads.

Numerical Computations

A literal solution of the sixth order determinant for the eigenvalues (0 1 2) is not

feasible. A numerical solution, from which curves may be drawn, is possible if a digital
computer is used.

For sandwich construction, particularly for that utilizing honeycomb cores, the equa-
tions can be greatly simplified by assuming E =o. This substitution is common with

mc

this type of construction due to the small relative displacement occurring between the

FPL-0173 -14-



sandwich facings. Indications are that analyses based on this assumption are sufficiently
accurate in most ranges, but for relatively short cylinders having weak cores such an
assumption may result in serious error.

Poisson's ratio for the facings can be taken as one-third and the value of k closely
approximated by the fraction one-half for most cylinders where the radius is large
compared to the sandwich thickness h.

Making these substitutions, the a i's in equations (40) are found to be

al x -X3(1 + A) 3 + Xn2 - A)(I + L )[ -- ,-(! +A

a12 = 1I2

a 13 = - I + A) (I +

°,4-)-*o*
a 14 i=

a = l-nX(I + A)[ (I + A)

[X2(1+A 2 n

a16 3- 2 ÷-A)2 
+

a2 1 = X3(l - A) 3 + W(I -A)(n
2 

- I) - - (I + A

a2 2 = + A) 2Ix - A) 2 + -3 In R -R

a( I 2 Aa2 3 = 2A(I + A)[3 !2-

a 2 4  i0"

a25  I-RnX(l -I A)2- - (+A

a2 5= 1 A 2  +

(I A)[• + E_ o•-- •]+a3 3 = 2 _) nX2(I 2 +
3P-17 3 - 21

a 32  10

= S rO ,2 + X2( +A 2  1 +I

a 3 3  ~2A(I +-A)2 L2

FPL-0173 -15-



34 1 ol

3'. ~ I2+ X2(I + )2 (+

36 3
:i a35 - n2 +x2( + 1 +

S8 36~ = - nk(l 2 21

a41 n(n2 - I) - nX (I - A)2 1. + 02}!4 3 2r•~
42RnXV

-42 In R

a 43 = Vr- 2 + X2 (I )2 ( - 02)] -

-- A 1[ 3,
a44= 0

S45= -R [n2 + X2 (I A) 2 ("-L 2

i. %~~84= •n (, - )1, A 4

So51~~~~~~~ (n2 - I) I--..(I + - 1+ (.+()2
45 3 2

5 2-2 + VI

2n + ++)

8a54= +-n*Ii

55

a56= (I + A4

(2 r0 + A) X2, &)2 (
861= 1(n-I)jI- 2 (A 2  - + *2)

xL

a rz In R + X(I -
62 +A) + A)

a63 = - , [ I + V)( &2 )

a64 = IR

a65 = [-Rni

ia

a66 3

FPL-0173 -16-



The problem is now reduced to developing a search technique whereby minimum values
Of ý 1 and 42 can be determined for given values of VrO, V , A, and ], such that the

determinant goes to zero.

This problem was programed for the digital computer and results are presented in

figures 6, 7, and 8. The solutions show a linear relationship between 4) and 4) as was
5- 6 1 2

found previously for isotropic shells-'- wherein the slopes of the lines are dependent
upon values of number of buckles producing minimum loads. The lowest of these lines
are shown In figures 6, 7, and 8 for chosen values of Y. These figures were then used as
a basis for plotting figures 9, 10, 11, 13, 14, 16, nid 17, which clarify the effect of the
interaction of the loads by presenting them in terms of ratios.

The effect of special cases such as the hydrostatic case can be seen most clearly on

figures 6, 7, and 8 by the use of a load ratio line where the slope of the line and the
desired load ratio are equivalent. The hydrostatic case, for example, has a load ratio of

one-fourth or

2 TI

Discussion of Results

For illustrative purposes, the three valves of a2 = h•of 0.0001, 0.00001, and 0.000001

4r

were chosen to represent the range of delta. For a given delta then, figures are presented
which show the effect on the critical loads of (1) varying the value of Y while holding the
values of V and V a constant, and (2) varying the value of V and Vre while holdingr.._z r__$ rz rO

the value of Y = a constant.
L

6 7
The results of this analysis agree favorably with those previously presented-- for

lateral pressure ard axial load acting separately. These values then represent the values

used for 41 and 0 in the figures.
1 2

For tie case of lateral load only, it was found that the expression for (D is given by
1

2~[+V(n2 ~ I)i 3  7)L7T - +y~, - I) - J-n j (n
9-V (2 + n2 n2- I

{ii + Vr + -- I + (n ) +

The value of 4,2 can be determined wihthe use of figure 16, which was taken from
7-

previous work.-

6-Kuenzl, E. W., Bohannar, B., and Stevens. G.H. Bucklin9 Coefficients for Sandwich
Cylinders of Finite Length Under Uniform Exterral Laleral Pressuro. U.S. Forest
Service Research Note FPL-0104. 1965. Forest Prcd. Lab.

ZZahn, Joh~i W.,and Kuenzi, Edward W. Classi'al Oucklin9 of Cylinders of Sand~sich
Construction In Axial Compression--Orihotropic Cores. U.S. Forest Service Reserrch
Note FPL-018. 1963. Forest Prod. Lab.
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Figure 14.--Effect on critical loads of varying parameter Y.
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Figure 19.--Classical buckling coefficient for sandwich cylinders with isotropic facings

and orthotropic core.



PUBLICATION LISTS ISSUED BY THE

FOREST PRODUCTS LABORATORY

The following lists of publications deal with investigative projects of the
Forest Products Laboratory or relate to special interest groups and are avail-
able upon request:

Architects, Builders, Engineers, Logging, Milling, and Utilization
and Retail Lumbermen of Timber Products

Box and Crate Construction and Mechanical Properties and Struc-
Packaging Data tural Uses of Wood ana Wood

Products
Chemistry of Wood

Modified Woods, Papei -Base
Drying of Wood Laminates, and Reinforced

Plastic Laminates
Fire Performance

Sandwich Construction
Fungus and Insect Defects in

Forest Products Thermal Properties of Wood

Furniture Manufacturers, Wood Fiber Products
Woodworkers, and Teachers

of Woodshop Practice Wood Finishing Subjects

Glue and Plywood Wood Preservation

Growth, Structure, and
Identification of Wood

Note: Since Forest Products Laboratory publications are so varied in subject
matter, no single catalog of titles is issued. Instead, a listing is made for

each area of Laboratory research. Twice a year, January 1 and July 1,
a list is compiled showing new reports for the previous 6 months.
This is the only item sent regularly to the Laboratory's mailing roster,

and it serves to keep current the various subject matter listinga. Names
may be added to the mailing roster upon request.


