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DESIGN AND IMPLEMENTATION OF FLIP,

A LISP FORMAT DIRECTED LIST PROCESSOR




SECTION I

INTRODUCTION

BACKGROUND AND MOTIVATION

LISP [1] 1s a function oriented language. Transformations of
symbolic structures are achleved by applying functions to 1lists

and using the values of these functions. Functions may be defined
using composition, conditionals,6 recursion, etc., all of which

makes LISP a very powerful symbol-manipulating language. However,
this explicit function oriented nature of LISP sometimes makes it
difficult to express operations and transformations necessary for
the solution of certain types of problems. Basically, these are
operations which require locating certain substructures in a larger
stru~ture, either to ascertain their presence, or as 1s more usual,
to use them in assembling other structures.

Consider the transformation given by the following instructilons:
find 1p a 1list the first three atoms immediately preceding the
first occurrence of the atom A, and find the atom just after

the first occurrence of the atom B which follows these three
atoms; 1f such elements exist, exchange the position of the

three atoms and the one atom, delete the A and replace the B by C.

The LISP formallism cannot easily express a transformatlion of this
type, altaough such transformations can be individually programmed.
However, for applications that require many such transformations,
this can be tedious and time consuming for the programmer.
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A notation for expressing such transformations is the basis for a
number of programming languages that exlst today, such as CIMIT,
SNOBOL, AXLE, and METEOR [2] which was an earlier embedding of
such a feature in LISP.[5] Each of these notations provides a
formal method for selecting substrings t'rom a string, and then
indicating the structure of the transformed string. For example,
the above transformation written in COMIT is:

$+$3+A+34B+$1+$ = 140+44C+247

This 1s much easier to write and understand than the corresponding
LISP code for this transformation. However, in COMIT and similar
languages, 1t is cumbersome to express some of the operations
which are expressed quite easily 1s LISP, especlally those which
depend strongly on the fact that 1lists can contalin sublists to
unlimited depth. An obvious solutlion to this difficulty is to
provide both types of .anguage capability within the same pro-
gramming system.[5] For example in LISP, a programme.' might use

(FLIP (REVERSE W) '($ $3 'A $'B $1 $) '(#1 #6 #4 'C #2 #7))

to transform the reversal of the list W according to the above rule.

The philosophy behind such an extension in the syntax of LIS? 1s
similar to the motivation for allowing ALCOL type statements

to augment the older LISP 1.5 notation. We do not extend the
semantics of the language, but rather provide a capability which
vastly simplifies the construction of certain types of programs.(5]

Some Preliminary Considerations

Let us consider an example of a transformation tnat is suitable
for FLIP and arises from actual usage: the expansion of a FOR-
statement for LISP,.




The FOR-statemert of ALGOL al'ows the programmer to specify a
considerable rangc of iterat.ve operations in a compact fcrm. It

would be a powerful syntactic extension to LISP. However, it would

not represent a semantic extension, hecause the corresponding

operations could be programmed directly using PROG statements

with appropriate control loops. For example, 1f a programmer

wished to form the sum of alil positive numbers in a list L, he
might write using the FOR-statement:

(FOR X (IN L) (UNLESS (LESSP X 0)) (SETQ SUM (PLUS sUM)))
or he could write

(PROG (Y) (SETQ Y L)
LOOP (COND ((NULL ¥) (RETURN NIL))
((LESSP (CAR Y) 0) NIL)
(T (SETQ SUM (PLUS SUM (CAR Y)))))
(SETQ Y (CDR Y))
(GO LOOP) )

which would perform the same opeiation.

FOR would be implemented as a function for a LISP interpreter.
However, when compiling a function containing a FOR-statement,
the function will run much more efficiently if the FOR-statement
is compiled "open", i.e. is transformed into an equivalent PROG
which Is then compiled.

There are two observatlons to be made concerning the FOR state-

ment. iirst, it 1llustrates a practical use for a facility sucn as

FLIP. Exparnding the FOR statement involves determining which of

-U-




several alternative patterns the statement matches, and constructing
the appropriate PROG. In other words, it involves a transformation
similar to, although more complicated than, the ones we have been
discussing. If it were possible to express such transformations

in straightforward way, perhaps by one rule, and - here 1is the
second observation - if this did not cause (significant) degradation
in the performance of the compller, from the standpoint of running
time or space, then a considerable amount of programming effort
would be saved in the ccnstruction of the LISP compiler itself.
However, such a facility would be orf 1llttle or nc use at all if it
involved a high overhead. The thing that makes the FCR statement
useful - and used by programmers 1is the fact that it does not cost
anything, and it simplifies programming, with the first consideration
outweighing the second. If the FOR statement were implemented in

a different, less efficlent way, or example interpretively via a
call to a function FOR at run time, then although this feature
would still simplify programming, most experierced programmers
would prefer to write thelr own iterative loops because of the

grea“er efficlency.

It has been my goal 1in developing FLIP to prodvce a facility that
not only would bte useful, but one which would be used. This has
entalled develoring a compact, yet fairly powerful notation for
describing transformatioas, and a very efficient imnlementation of
these transformations. One of the central considerations has bheen
that the user should not ftave to pay for options which he does not
use. In other words, simple transformations must nave a simple
notatlional representation, and run fast. Esoteric options which
slow down the operation of the pattern matching because of the
possibility of their being used are rnot d2sirable for our appli-
cations. With respect to efficliency, FLIP includes features which

sl
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allow the nrogrammer to exercise some degree of control over the
manne~ in which the matching portion of {he operation 1s carried
out. However, even where this control is nct exercised, a con-

siderable amount of buillt in optimization insures the programmer
of an efflcient cperation.

-6-




T e P RNy PRy W Py Ry e P ey Tocy el e Peel el BN B B W0

SECTICN II
THE FLIP FORMALISM

A transformation in FLIP consists of two independent processes.
The first 1s a parsing, ur segmentatlon of the input structure
according to some pattern. This is called the mat hing process.
The seconu 1s a construction of a structure utilizire this parsing
and some fcrmat This is called the construct!: > process. A
transformation is usually specified by a single pa.tern and format.
The value of the t{ransformation is NIL if the input list does not
match the pattern, otherwise it 1s the result of the construction.
It 1s possible to use the matching process as a pure predicate to
test the form of an input. In that case a format 1s not required.
One can also perfc—m several constructions using a single parsing.

In the discussion that follows, the matching and constructing
ocperatlions are treated separately because of thls independence.

A. Control Mechanisms

Since FLIP is embedded within LISP, 1t does not have its own
control mechanism., In COMIT, SNCBOL, etc., this is the section
of the language devoted to the flow of control between the trans-
formatlons or rules, and its dependence on the success or failure
of the matchling orocess used to find the parsing. Several
different useful executive programs have been written in LISP to
facilitate using sets of rules, for example,

L. Repeat use of each rule until it (the match) fails, and then
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go on to the next,

2. Every time a rule is successful go bacx to the top of the se%
of rules. On fallure go to the next rule,.

3. After a match, control goes to a specified labelled rule.
(This is very similar to the COMIT control mechanism.)

One control program, TRANSFORM, ls described in Section IV, Others
are easy to write since the user can call the matching and con-
structing functic:. Zirectly.

B. The Matching Process

The purpose of the matching process is to cdatermine whether or
not the input 1list 1is an ins%ance of a particular input pattern.
If it is, the matching process 1s designed to tell us this and
also to yleld a parsing of the 1list with respect to this pattern.
This parsing can then be used by the construct process to builld

new list structures.

The input pattern 1s a list of elementary patterns. Each of these
must match a portion of the input list, or else the entire pattern
will not match the list. Furthermore, there must be no gaps in
the 1list, i.e. these portions or segments as they will be called,
must together, and taken in order, make up the entire list. This
set of segments will then constitute the parsing of the list.

As an example, let us conslder a pattern composed of the following
three elementary patterns:

$ which matches anything

$n where n 1s a number, which matches a segment of length n
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X which matches x, 1.e. a segment of lengtn 1 consisting of
a single item equal to (the value of) x.

For the pattern

($ $3 'A $ 31 'B $)
and the 1list

(AWXYZABCDEBC!),

the parsing would be:

(Aw]l [xYy2z] [A] [BCD] [E] ([B] [C D]

where each segment ccrresponds to one elementary pattern. Note

that 'A did not match the first A, because the $3 pattern must

first find a scgment of length 3. The first $ matches the segment
up to “he beginning of that matched by the $3. Similarly, 'B does
not match with the first B after the second A because there must

be at least 1 item between them to satisfy the $1 pattern. Finally,
note that if the $ at the end of the pattern were not present, ituon
there would be no match because there 1is no way for the segments

of the match to make up the entire list.

Elementary Patterns

$, $n, and a variable are prototypes of three of the elementary
patterns available in FLIP. Each of these patterns, as well as
the ones we will encounter below, can be embellished considerably
with various options. For tutorial purposes, we have chosen first
to present each elementary pattern in its simplest form, as was
done above, and then to introduce gradually the extensions and
generalizations that are permitted. However, a complete summary

of both the FLIP syntax and semantics may be found in the appendices.
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The Variable Pattern

The variable pattern, or var for short, is so named because 1in 1it.
simplest form it matches wit. the value of some varliable. Actually,
var matches with the value of any LISP computation which includes
variables as well as other more complicated expressions. In the
above example, thls computation was 'A, which 1s short for

(QUOTE A). The value of this computation 1s simply A, and so this
elementary pattern matched with A. If the value of X were A, then
the pattern ($ $2 X $§ 'B $1 $) would match identically with the

one glven above.

If X 1s a variable which has as its value the 1ist (3 4 5), then
the pattern ($ X $) matches the 1list (1 2 3 4 5 6 (1) (2 3) (3 4 5)
(6)) with parsing

(123456 (1) (23)][(345)][(6)]

Suppose we wanted X to match with the segment [3 4 5] rather than
the item (3 4 5), which 1s a sublist of the original 1ist. We
indicate this 'y using the prefix operator "*" and write ($ *X $).

The parsing would then be
(1 2] [3 4 5] [6 (1) (2) (3 4 5) (6)]

Just as ($ X $) 1s identical to, in this case, ($ '(3 4 5) $),
($ *X $) 1s identical with ($ *#'(3 4 5) $). This latter pattern
also will match the same list as the pattern ($ 3 4 5 $). How-
ever, ($ 3 4 5 $) produces the slightly different parsing:

(1 2] [3] (4] (5] [6 (1) (2) (3 4 5) (6)].

pecause it contains 5 elementary patterns instead of 3.

-10-

[

-—

I .
BIrr ——d




Variables and quoted expressions are two types of LISP compu-
tations. To indicate that a match 1s to take place with some
other LISP computation, the prefix operator "=" is used.* For
example, one can write

($ =(CAR (GET (QUOTE NAME) (QUOTE PROPERTY}))) $)
or
(% =\PROG (X Y) ... (RETURN X)) $),

etc. 1In general, the elementary pattern =X matches a single
element equal to the value of X, which is computed during the
course of the match. To indicate that a match occurred with a
cegment of a list, we use the prefix operator "*", as before, and
write *=X, where X is a LISP computation.

To refer back to items or segments already matched in the parsing,
a special type of var called a mark is provided. For example, the
pattern

($ $1 ¢ #2 %)

will match a 1list with two 1identical elements. For the 1list
(ABCDETFGB X), the parsing would be

(Al [(B] [Cc D E F G] [B] [X]

Irn this example, #2 1s a mark; it refers to the second elementary
pattern, namely $1, and it matches with the identical item or
segment that the $1 elementary pattern matched. For the list

¥ Actually, the "=" operator may be used for all LISP computations

including variables and quoted expressions. However, since these

two types occur so frequently, special allowance 1is made for them
J the "=" operator can te omitted.

-11-




(ABC(BC)DE (BC)BCF) and the pattern ($ X $ #2 $),
where X has the value (B C), the parsing is:

(ABC]l [(BC)] [DE] [(BC)] [BCF]

A mark always matches identically with the elementary pattern
to which it refers. If for the same input list and value of X ']
as above, we use the pattern ($ *X $ #2 $), then the parsing
would be: l]

[A] (B C] [(BC)DE (BC)] [BC][F].

In this case, the mark matched with a segment [B C] instead of
an item, [(B C)].

A mark can also be used in a computation. In this case it has

the value of the segment matched by the elenentary pattern to

which it refers, or in the case that this pattern matches a single
item, its value 1s that item. For example, we can write

($ $3 $ =(CADR #2) $) which matches with (A B C D E C G) producing
the parsing [A] [B ¢ D] [E] [C] [G]. The pattern ($3 *=(REVERSE #1))
will match with the list (A B C C B A) producing the parsing

(A BC] [CBA]. Note that ($3 =(REVERSE #1)}), will not match

with (A B C C B A); 1t will match with (A B C (C B A4)).

Sometimes for long patterns such as ($ 'A $ 'B $§ $1 $ #6 $),

it is easier to read and write the patterns 1f we allow the mark

5> count backwards from its position, writing ($ 'A $ 'B $1 $ #-2 3).
Both of these patterns will "find" the first common elements
following the first B that follows the first A.

We can also write #X to denote the Xth element of the parsing,

where X is any LISP form that evaluates to a number. Similarly
we can write $X denote a segment of length X. Here it is

-12-
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important in order for the $ to be recognized as a prefix
operator that there be no space between 1t and the X. For

example, ($ X $§) 1is not the same as ($X $), nor 1is ($ .(CAR X) $)
the same as ($(CAR X) $).

Summar

The three elementary patterns discussed so far are:

$ which matches anything

$X where X is a computation whose value is a nonnegative
number N; matches a segment of length N

=X matches a single element equal to the value of X
X where X 1s atomic; same as =X
‘X same as =(QUOTE X)

¥=X matches a segment equal to the value of X

#X where X is atomic; same as #=X
#'X same as #=(QUOTE X)

#X where X 1s a computation whose value 1is a number N;
matches ith the same thing matched by the Nth elementary
pattern. If N 1s positive, numbering proceeds from the
front of the pattern, left to right. 1If negative,
numbering proceeds from position where #X appears,
right to left. (Note: IN|<position #X)

Predicates

Suppose we wanted to parse a list finding the last A before the
first B. The pattern ($ 'A $§ 'B $) is not sufficient, because

with the 1ist (A Z A Y A B C), for example, there are three
possible parsings,

-13-
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(] [A) [Z A Y A] [B) [C];
(A 2] [A] [Y A] [B] [C]; and
(A 2z A Y] [A) (] [B] [C]

corresponding to the three different occurrences of A. While the
last parsing 1s the one desired, FLIP and most other pattern
driven languages would produce the first parsing, simply because
it 1s the first one found.

One way to produce the last parsing 1is to restrict the segment
that tne first $ matches by requiring that it not contain an A.
This 1s done in FLIP by means of a LISP predicate.

We write for the above pattern
($ "A $[NOT (MEMBER 'A *)] 'B $)

By definition, $[X] matches anything for which the value of (X)
is T.

To reference in X the segment currently matched by the $, you can
use the variable "#" as 1., the above example.

Predicates can also be used with the $N pattern and the VAR
pattern. Consider

($ $1[MEMBER * '(AE I O U)y ¢ $1[NOT (MEMBER * #1)] $)

Given the 1list (X Y Z I X M N), the parsing produced is
(X vy 2] (1] [X] (M1 [N].

Let us consider another example using predicates. We can write $X

to match a segment of length X - suppose we wlish to match a
segment with a length between two bounds? Here we must use a predicate.

1l
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($ 'A $[AND (TESSP(LENGTH *) 5) (GREATERPF (LENGTH *) 1)] 'B $)

matches with (A B CDE A X B B )giving [A B C D E] [A] [X B] {B] [].

Subpatterns

Predicates provide a means for calling the matching procedure
recursively. For example, we could require that a 1list match with

a given pattern by using the elementary pattern: $1[MATCH * PATTERN].

However, a more direct way to achieve this 1is by means of a
subpattern. A sub»jattern 1s an elementary pattern that matches a
list in the samme way that the top level pattern matches the top
level 1ist. For example, given the list

(A {BC)D(BETF)G)
and the pattern

($ ($ 'F $) $),

a match will occur with the subpattern ($ 'F $) matching the
list (B E F). One of the advantages of using tne subpattern over
a predicate is that the parsing produced by the recursive call
to match is saved in the top level parsing. Thus the complete
parsing for the match above would be

(A (B C) D]

{ [BE]I[F]I]]

[G]

This sub-parsing can then be referred into by.other elementary
patterns. For example,

($ (3 'B $1) $ #[2,3] %)
matches with

((ABC) (ABD) (ABE) AETIOU)

-15-




producing the top level parsing

[((ABC) (ABD)] [(AaBE)] [A] [E] [I 0 Ul.

Here #[2,3] refers to the third elemen! in the second element

in the parsing. When this elementary pattern 1s encountered,
the second element in the parsing is found and, treating this as
a parsing, the third element in this lower parsing is fourd. A
match will then be made with the same item or segment matched by
this element.

Since the mark notation using brackets 1is treated similarly to

that without brackets, the numbers 2 and 3 in the example above
could have been replaced by arbitrary computations, and similarly
negative numbers could have been used. Tne notation #2 is
equivalent to #[2]. The former is merely a convenient abbreviation.
Similarly, marks using bracket notaticn can be employed in arbi-
trary LISP computations.

It 1s not necessary to refer into parsings produced by subpatterns;
items matched by subpatterns can be referred to by MARKS in the
same way as any other matched item. Thus the pattern
($ ($ 'B 'D) $ #2 $) will match with the list

((ABC) (ABD) (ABE) (XBD) (ABD) (ABC))
producing the top level parsing

((ABC)]J[(ABD)] [(ABE) (XBD)][(ABD)] [(ABC)]
Note that #2 did not match with (X B D) even though ($ 'B 'D)

could have matched with it originally. #2 matched with (A B D),
as did ($ 'B 'D) earlier.

-16-
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If a MARK is used inside of a subpattern, it 1is evaluated using
that subpattern's parsing. For example, in the pattern

($ ($1 $ #1) $), the #1 refers to the $1, not the first $, and
thlis pattern will match with

((ABC) (DEPF) (GHG) (I JK))
to produce

[(ABC) (DEF)] [(GHG)] [(TJK)IJ.
If 1t 1s necessary to refer to the parsing outside of the current
varsing, one uses the full MARK notation, with brackets, and
heads this with the special token "4". For example

($ $1 8 ($ #04,2] $) $)
matches with

(ABC(DEF) (GHI) (XYC)),

with the $1 matching C. The " 4" denotes that counting begins
with the top level parsing.

As with the case of VARs, a subpattern can be used to match a

segment as well as an item. This is also indicatecd by the prefix
operator "#", Thus we can write

($ $3 *('A $ 'B) $1 §)

as a pattern which matches with the same 1lists as those matched
by the pattern

-17-
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($ $3 'A 3 'B $1 %).

However, the first parsia, will contain orly rive elemen:s, since
thers are only five elementary patterns. The second parsing will
of course contain seven elements. Furthermoire, if #3 appears in
the first pattern (at the top level) it will refer to the entire
segment running from A through B, since this is what 1s matched
by the third elementary pattern in that paivtern. #3 appearing

i1 the second parsing would refer to the single item A.

Finally, a subpattern cen be computed. This is indicated by the SR
prefix operator ":". Thus we have for the subpattern:

e matches a single item, 2 list, that matches, in the
sense described above, the value of X treated as a
pattern.

X where X 1< a 1list, same as :'X

¥:X matches a segment that matches in tae sense described
above the value of X treated as a pattern

*X where X is a 1iist, same as *:'X

EITHLER Pattein

The EITHER eiementary pattern provides a means for defining a
match of one of several alternatives. The general form for the
EITHER pattern is

EITHER{El; E2; E3; ...; En]

-18-




Each EL 1 a sequence of elementary patterns. EITHER attempts to
find a match with a segment of the 1list using first El, and if
that falls, then it tries with E2, etc. For example, the pattern

($ EITHER[A' $1; 'B $2; 'C $3] 'D $)
matches with the 1list

(XYZABCDETFTDGQG)
procucing the parsing

(XY 2] [CcDEF] (D] [G].
The element corresponding to the segment [C D E F] matched by the
EITHER aiso contains the parsing [C] [D E F] corresponding to the
two elementary patterns in the third alternative, the one that
matched. This 1s similar to the treatment of subpatterns

described earlier.

As an example of the us2 of an EITHER pattern, consider the
following definition of an integer.

digit = EITHER[1;2;3;4;5;6;7;8;9;0]

integer = EITHER[*:digi*;*:digit ¥*:integer]
With these two varilatles deflned, we can use the pattern
%¥.4nteger to determine whether a 1list matches th2 Backus normal

form definition of integer given in the above two rules. For
example, the pattern
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($ 'A *:integer ‘B $)
matches with the 1list
(XYZA1WPA326BC)
produci g the parsing
[xYyzal1ws] ([A) [326] [B] [c]. -
(Admittedlyr this is not the most efficient way to find integers.)
If any of the Ei's are empty, then, the EITHER patitern can match |
with a null segment of the list. Thus the pattern - I
($ 'A EITHER ('B $1; 'C $2;] $)
matches with the 1list (X A Y) producing
(x]J (A [J [Y1.
Here, the third (empty) alternativ~ was used.
If a mark is used inside of an EITHER pattern, it 1s evaluated
using the EITHER pattern's parsing, much the same as with the
subpattern. For example, the pattern
($ EITHER[$1 'B #1; $1 #1] $)

will match with the 1list

(ABCDBDE)
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using the f{irsc alternative. To refer to elements outside of the
EITHER pattern's domain from inside of 1t, use the mark notation
with brackets and . Similarly, the EITHER pattern's parsing may
be referred into using the mark notation witbh brackets. For

example,

($ EITHER['B $1; 'C $1 $1] #[2,-1] $)
will match with the list

(ABCDEEG),
with the second alternative being used.

The REPEAT Pattern

The REPEAT pattern allows one tu match with a repetitive pattern.
The general form for this elementary pattern is REPEAT[E], where
E is a sequence of elementary patterns. REPEAT will match zero
or more occurrences of this sequence. Thus tne pattern

('A REPEAT['B $1])
will match with the lists

(A), (ABC), (ABC B D), etc., but not with

(ABCBCE), although

('A REPEAT['B $1] $)

would match with the latter list. As with the case of the
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subpattern and EITHER elementary pattern, the parsings obtained
by REPEAT as 1t matches are retalned and available during the

ccurse of the match and construct operation. Similarly, marks
used inside of the REPEAT pattern refer to the parsing of the

current repetition. For example, the pattern
(REPEAT{$1 $1 #1]) will match with the list

(ABACDCETFE).

To refer to elements outside of the REPEAT pattern, marks with
brackets and + must be used.

The REPEA. pattern may take two optional arguments, N1 and N2.

If N1 is present, the REPEAT pattern must match at least N1 times.
If N2 is present, the REPEAT will match at most N2 times. For
example, to match a segment containing from 1 to 6 letters (say

a representation of a FORTRAN variable) one can use:

REPEAT({$1[LETTER *] / 1 6]
where LETTER 1s a predicate which is true for letters.
The general form for REPEAT 1is thus:

REPEAT[E / N1 N2 where the value of N1 and the value

of N2 are both numbers, matches a
segment of a list which matches
repetitively the 1list of eiementary

patterns E at least N1 times and not
more than N2 times.
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REPEATIE / N1] same as REPEAT{E / N1 N2] where
N2 1s effectively infinite.

REPEAT[E] same as REPEAT(E / O]

The SET Pattern

The SET elementary pattern might more properly be called a
pseudo-pattern, because it does not affect tre match. The SET

pattern is used to assign a v..lue to a variable during the match.
There are two forms for the SET pattern. The first, (SET X Y),
where Y is some LISP form, asslgns the value of Y to X. The
second form is X« Y, where Y is some elementary pattern. 1In this
case X 1s set to whatever the elementary patiern matches. Thus

the effect 1s the same as writing in a pattern Y followed by

(SET X #-1). Note: Since this elementary pattern does not match

and does not affect the parsing, it should be ignored when com-

puting MARKs. Thus ($ (SET X Y) $1 $ #2 $) will match two common
elements, the #2 referring to the $1.

Example

We are now ready to try a more complicated example. In LISP

applications, one frequently wishes to locate a balanced pair of

brackets in a string of tokens. Let us consider a general FLIP

pattern which finds the first balanced string following the unique
token LABEL, where the bounding tokens are variables; e.g. they

could be BEGIN and END, or "[" and "]", etc. Let us refer to these
tokens by the variables OPEN ard CLOSE. The general idea is to
find the first OPEN after LABEL and increment a counter one for

each OPEN, and decrement the counter for each CLOSE until the
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count 1s zero. The pattern used 1is:

(S LABEL § OPEN (SET N 1)
REPEATLEITHERCOPEN (SET N (ADDI N))3
81 INOT CEQ * CLOSE))}

(SET N (SUB1 NJ) S$I1CNOT (ZEROP N)J1J]
$)

After the REPEAT pattern has matched, N will be zero, and the
segment matched will consist of the balanced string excluding the
initilal OPEN and final CLOSE. Suppose we wish, however, to bind

B
the variable FOO to this entire balanced string. Then we mighu
write

($ LABEL $ FOO~*(OPEN (SET N 1D
REPEATCEITHLRIOPEN (SET N (ADD1 NJ)i3
$1[NOT (FQ +~ CLOSE)>3
(SET N (SUB1 N)) S1INOT (ZEROP nN>113 CLOSE

—

After this pattern has been matched, the value of FOO will be the
segment from the first OPEN after LABEL to its matching CLOSE.
Note the use of the subpattern consisting of four elementary
patterns: a VAR, SET, REPEAT and another VAR.

C. The Construct Process

The purpose of the Construct Operation is to construct a new list
structure using a format and a parsing from a match. Since the
flavor of Construzt 1is similar to that of Match, and Construct
uses many of the same LI3SP functions as Match does, we will
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discuss it in less detail.

The inputs to Construct are a representation of the parsing found
by Match, and a format. This irormat 1s a list of elementary
formats, which are evaluated sequentially from left to right,
their values being attached to the 1list structure under con-
struction as specified below. For example, to perform the trans-
formation on page 3 we mauch with ($ $3 'A $ 'B $1 $) and
construct with (#1 #€ #4 'C #2 #7).

VAZR

TARF 1s the elementary format that corresponds to the elementary
pattern VAR. 1Its value is computed and attached at the end of
the 1list structure under construction as an ite., or, if the
prefix "*" is used, as a segment. A MARK is attached as an item
if the elementary pattern to which it refers matched as an item,
otherwise as a segment. Negative numbers are permissible in
MARK's used 1n the construct process; they refer to elements by

a count from the right end of the parsing moving to the left.
Thus the format (#1 #-2 #U4 'C #2 #-1) is equivalcnt to the format

above.

=X X 1s evaluated and attached as an item at the end
of the 1list velng constructed, i.e. effect is the
same as APPENDing (LIST X) tc this structure.

X where X is an atom, same as =X
'X same as ='X, or =(QUOTE X)
k=X X is evaluated and attached as a segment, i.e.

APPENDing X.

X where X 1s an atom, same as ¥*=X
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LD ¢ same as ¥='X or ¥=(QUOTE X)

#X,#(..] the elementary pattern referred to is located in
the same way as in the match and then the item or
segment 1t matched 1s attached appropriately to
the list being constructed.

Subformats

The subformat correspcnds to the subpattern elementary pattern.
It is a 1list of elementary formats which are ured to construct
a new list in exactly the same way as top level elementary
formats are used to construct a list. This gublist is then
attached to the 1ist being ¢ -~structed either as an iten or as
a segment, as specified. S..lormats may be computed; this 1is
indicated by the prefix operator ":". Subformats may be used
within subformats.

X X is evaluated and treated as a format. It is
uscd to construct a list which is then added to
the next higher level list as an item.

X where X is a 1list, same as :'X

. X X is evaluated and treated as a format. It 1is
used to construct a list which 1s then added to
the next higher level list as a segment.

Y where X is a list, same as *:'X
EITHERF

EITHERF is the elementary format corresponding to tn. FEITHER
pattern. It svecifies the selection of an alternat ve format
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to use for construction depending on which alternative in the
match was used. Its general form 1is

EITHER[El; E2; E3: ..: En / X]

where each Ei1 1s a sequence of elementary formats and
X is a computation, usually a MARK, whose value must
te a parsing corresponding to some EITHER elementary
pattern. The format Ei corresponding to the chosen
Ei in the EITHER pattern is used 1n construction.

Comments

1. E1i may be empty.
2. During the course of the construction using Ei1, the current
level parsing is that of the EITHER elementaryv pattern. This
means that any MARKs not employing 4 will be cvaluated with
respect to the EITHER parsing. Thus, 1f one matches the list
(VYACDETFG) with
(3 'A EITHER{'B %1: 'C &1 351] $)
and constructs with
(#1 #2 EITHER[#2; #3 / #3] #u)
the resuit 1is

(XY AEF G).

3. If X is not present, then the last EITHER (furthest right)
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at the current level parsing 1s used. Thus, in the above case,
"/ #3" could have been omitted. If no EITHER parsing is found,
an error occurs.

REPEATF

REPEATF is the elementary format corresponding to the elementa»y
pattern REPEAT. 1t specifies the iteration of a number of con-

struction operations, the exact number being the number of times
the corresponding REPEAT matched. Its general form 1is

REPEAT(E / XJ where E is a sequence of elementary formats
and X 1s a computation, usually a MARK,
which must produce a parsing corresponding
to a REPEAT elementary pattern.

Comments

1. X may be omitted. In this case, the last (furthest right)
REPEAT of the current level parsing is used. If none 1s found,

an error occurs.

2. Durinz the construction with E, the current level parsing is
that of the corresponding parsing in the REPEAT elementary pattern,
i.e. for the nth iteration of E, the nth match of the REPEAT

pattern. Thus to delete every third element in a 1list, match with

(REPEAT([$2 $1] $),
and construct with

(REPEAT([#1 / #1] #2)
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or simply
(REPEAT[#1] #2).

3. The value of X may be a number. In this case, the format E

is repeated that number of times, and the current level parsing

1s the same as that when the REPEATF was entered. Thus to convert
(ABCDE)into (AAABBBCCCDUVDEEE),

match with
(REPEAT[$1]),

construct with

(REPEAT[REPEAT[#1 / 31]).

The flirst REPEAT corresponds to the REPEATed pattern. The
second one 1s executed 3 times for each time the REPEAT pattern
matched, and #1 1s the corresponding $1, etc.

4y, It is possible to match with
(REPEAT[EITHER['A $1; 'B $1]])
and construct with

(REPEAT[EITHER[#2 #2; #2 #2 #2]1).

Hiere the alternative format 1s selected accordin, to which EITHER
matched on the corresponding iteration of the REPEATed format,
and the #2 1s evaluated against the parsing of EITHER. This
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transformaticr will produce

(XXYYY2Z2Z2Z2XX2Z222)

from

(AXBYAZAXB?").

In addition to these elementary formats, there is an assignment
statement available in ccnstruct similar to that in match. This
may be written either as (SET X Y) or X«elementary format. In
the latt~zr case, X 1s assigned the value of the elementary fcrmat.
In both cases, the assignment statement does not affect the list
being constructed.

Example

We are now in a position to write the transformation for the
FOR-statement expansion described earli»r. The general form of
the FOR-statement we are using is:

(FOFR. loopvar loopcontrul whilephrase wunlessphrase statement)

where

loopcontrol = (LOOP X)
or (RESET X Y)
or (IN X)
or (ON X)
or (STEP N I)
or (STEP NI FN M)

whilephrase = (WHILE X)
or empty
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unlessphrase = (UNLESS X)

or empty

where X and Y are artitruary forms, N, I, M are forms that
evaluate to numbers, and FN is a function.

If loopcontrol is (LOOP X), loopvar is initialized to X. TFor
RESET, 1t 1is initialized to X at the star! of the loop anc reset
to Y after each iteration. (ON X) indicates that the loopvar is
to be cycled through the 1ist X. It makes the FOR-statement :
work in a manner similar to the LISP function MAPLIST, setting

loopvar to successive tails of the 1list X. (IN X) sets loopvar

to successive elements of the 1list X. Finally, STEP specifies

a numerical loopcontrol. In the first case loopvar 1s initialized

to N and incremented by I after each iteration. ~No oprovision 1is
made for termination of the loop. .n the second case, the loop
terminates when {f#N X M) 1s true. For example,

(STEP 1 1 (GREATERP 10) will cause 10 iterations with locpvar be-
ginning at 1 and going to 10.

Regardless of which loopcontrol is used, the WHILE phrase, allows
the user to specify a termination cordition for the loop, and the

UNLESS phrase specifies exceptions for which the statement is not
to be executed.

The definitlon of FOR 1s glven below. No'e that the EITHER

pattern allows a compact treatment for the various loop control

cases. In partirular, the two STEP cases and the IN and ON cases

can be treated together, .

Following the derfinition are six examples of expansions produced
by FOR. The first two examples using LOOP and RESET both return
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T for lists of even length and NIL for lists of odd length. The
third example using IN prints all atomic elements 1n a list L,
and the fourth example using ON prints all but the last four
eiements in L. The last two examples, using STEP, compute the
sum of all odd integers less than N. The output was produced
using a special print program_  PRETTYFLIP, described on page U43.

-32-

g
1

.
(e

.




PRETTYFLIF (C(FOR))

(FOR
(LAMBDA (X) (FLIP
X
*C*'FOR LOOPVAR*~$1 (EITHERC'LOOP <13
'RESET $! 813
EITHERC'INS
'ON]) $13
'STEP $1 351
EITHERCSt $13
1D

EITHERCC*WHILE $1)3
]
EITHERC(*UNLESS 35t)3
]
$1)
'((SET LOOP (GENSYM)) (SET LOOP1 (GENSYM))
(S5ET EXIT (GENSYM))
*PROG
EITHERICNIL LOOP (°'SETQ LOOPVAR #2);
NIL ('SETQ LOORPVAR #2) LOOP;
(PROGVAR*~=(GENSYM)) ('SETQ PROGVAR #2) LOOP
(*COND ((C°'NULL PROGVAR) ('GO EXIT?))
('SETQ LOOPVAR EITHERC ('CAR PROGVAR)3
PROGYAR1)3
NIL ('SETQ LOOPVAR #2) LOOP
EITHERCC('COND ((#1 LOOPVAR #2) ('GO EXIT>))s
J 7 #035111 ’
ZITHER[C'COND (C'NULL #C1,21) ('GO EXIT)))s
/ #-3]
EITHERUC'COND (¢#(1,2] ('GO LOOP12))3
]
#-1
LOOP1
EITHERC3
('SETQ LOOPVAR #3)3
(*'SETQ PROGVAR ('COR PROGVAR))3
(*SETQ LOOPVAR (°'PLUS LOOPVAR #3)) /7 #(3,111]
(*'GO LOGP)
EXIT))))

(FOR)




(FOR X (L0OOP L)
(CONO
C(CNULL XD
(RETURN T3)
CCNULL (CDR X))

(RETURN NIL))
(T (SETQ@ X (CDDR X))

(PROG NIL
AQ17S (SETQ X L)
(COND
CINULL X)

(RETURN T
((NULL (CDR X))
(RETURN NIL)J)
(T (SETQ@ X (CDDR X))))
AQ176 (GO AQ175)
AG177 NIL
)

(FOR X (RESET L (CDDR X))
(COND
C(NULL X)
(RETURN T))
((NULL ¢CDR X))
(RETURN NIL))))

(PROG NIL
(SETO X L)
AQ20@ (COND
((NULL X)

(RETURN T))
CI(NULL (CDR X))
(RETURN NIL)J))
Ag231 (SETQ X (CDDR X))
(GO A2200)
Ag2p2 NIL
)
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(FOR X (IN L)
(UNLESS (NULL CATOM X))
(PRIN1 X))

(PROG (AQ2836)
(SETQ AQ206 L)
AD203 (COND
C((NULL ARN206)
(GO AN205)3))
(SETQ@ X (CAR A0206))
(COND
CC(NULL (ATOM X))
(GO AQ204)))
(PRIN1:X)
AD284 (SETQ A020é (CDR AD0206))
(GO AQ203)
AB205 NIL
)

(FOR X (ON L)
(WHILE (GREATERP (LENGTH X3
43)
(PRINT (CAR X))

(PROG (€AQ212)
(SETQ Af212 L)
AB207 (COND
C((NULL AG212)
(GO AN2113))
(SETQ X AN212)
(COND
((NULL (GREATERP (LENGTH X)
43)
(GO AB2113))
(PRINT (CAR X))
AP216 (SETQ AQ212 (CCR AB212))
(GO AQ207)
AB211 NIL
)
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(FOR X (STEP 1 2)
(WHILE (LESSP X N))
(SETQ SUM (PLUS SUM X))

(PROG NIL
(SETQ X 1)
AB213 (COND
C(NULL (LESSP X NJ)
(GO AQ215)))
(SETQ SUM (PLUS SuM X))
AB214 (SET@ X (FLUS X 2))
(GO AR213)
AB215 NIL
)

(FOR X (STEP 1 2 GREATERP.N)
(SETQ@ SUM (PLUS SUM X))@

(PROG NIL
(SETQ@ X 1D
AB216 (COND
((GREATERP X N)
(GO AB220)))
(SETQ@ SUM (PLUS sSuM X))
AD217 (SETQ X (PLUS X 2))
(GO AB216)
AB220 NIL
INIL
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SECTION III

IMPLEMENTATION

This section discusses FLIP as a larpe systems orosram, It may
help users to write more efficient FLIP prorramns bv explaininn
the way FLIP works, but it contains no rew information on the
lanmuare. It has been included for comnleteness, and beccause we
feel that much of the experience rained in ecxperimentins with and
using FLIP has been in the area of implementation, and mav be
transferrable to the desipn and construction of other large LISP

systems.

The section is divided into three marts. The first part discusses
the techniaue of translation. The second nart cdiscusses technlquces
for reducing the number of CONSes reauired. The third vart de-
scribes the oneration of the $ f.. ., which is responsible for
most of the search strateesy in the matching operatiorn. Thus the
first mart talks about ways of speedinsg up MATCIi and CONSTRUCT
before they are run. The second part talks about wavs of speedinrs
up MATCH and CONSTRUCT indirectly by reducing garbarme collection
time, and tih: third nart talks about ways of speeding un MATCH
while %t i< running, by a more efficient search.

A. Translation

Each of the elementary patterns and formats in FLIP have been
implemented by a sirpgle LISP function. There is a functlon called
3, and another function called VAR, etc. Althoursh there are a
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number of opntions with which each elementary pattern or format
can be embellished, for example, VAR can be made to match a seg~
ment or an item, and may or may not include a predicate, there is
still sufficient similarity in the tasks performed to permit only
one function.

However, gziven any input pattern or format, there i1s still the
problem of determininp, which functions are to be called, and with
what arruments. Since each of the seven elementary ratterns dis-
cussed earlier come in a variety of forms, a certain amount of
computation must be done to decide exactly which elementary pat-
terns, and elementary formats, are represented in a given pattern
or format. This i1s the task of the translators.

The purpose of translation is to do as much of the wcrk of inter-
preting FLIP entities as possible, before the programs are run,
and to do this work only once. This is similar to the philosophy
of compilation. However, unlike compilers, the FLIP translators
do not produce machine instructions, but a sequence of LISP forms,
i.e., LISP functions with arguments. These forms correspond to
the individual functions which carry out the operations specified
by each elementary pattern or format. The arguments to these
functions indicate the options utilized. Since each of these
functions are themselves compiled, there is a minimum amcunt of

internretation at run time.

As an example, consider the nattern

($ 'A $1[NOT (MEMBER * #1)] *=(REVERSE #1)).
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The translation of this pattern is

( (%)
(VAR (QUOTE A))
($N 1 (NOT (MEMBER * (MARK (1)))))
(VAR (REVERSE (MARK (1))) SEGMENT) )

The translation of the first elementary pattern indicates that $
must match with any segment, and no predicates are used. The
translation of 'A tells VAR that it is to match an item and that
this item must be equal to the value of (QUOTE A). This is
evaluated and VAR compares the first (next) element in the 1ist
belng matched with A. The translation of the next elementary
pattern informs the $N function that it must match a segment of
length 1, and that the predicate (NOT (MEMBER * (MARK (1)))) must
be true for this segment. $¢N calls the LISP function EVAL on this
predicate after first binding the variable "¥" to the segment in
question. MARK 1is a LISP function whose value, in this case, is
segment matched by the first elementary pattern, i.e., the $.

The translation of the fourth elementary pattern indicates to VAR
(the same function that handled the second elemertary pattern),
that it must match with the segment equal to the value of
(REVERSE (MARK (1))).

¥ VAR 1s really a function of three arguments: the form to be
matched, a segment-item flap,, and a predicate. However,

BBN LISP [6] automatically supnlies NIL for arguments not trans-
mitted to a function so that (VAR (QUOTE A) NIL NIL) is equivalent

to (VAR (QUOTE A)), as translated above.
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There are four different translation functions in FLIP. These

functions translate respectively, a pattern, a format, an LEITHER
elementary pattern, and a dictionary. (The last feature is dis-
cussed in a later section.) Each of these translation functions

are called at the appropriate point in the computation and return

the translated version of their input. Furthermerc, they also
rphysically alter the 1list structure of the input. Thic avoilds
the necessity for multiple translations.

For example, consider the pattern

($ :(GET X 'PATTERN) 3).

The translation of this pattern 1is
(($) (PATTERN (GET X (QUOTE PATTERN))) ($)).

When the function PATTERN 1s entered, it evaluates

(GET X (QUOTE PATTERN)),
and since this value 1s then to be trez'.ed as a pattern, PATTERN
calls PATTRAN, the translating function for patterns. If X were
an atom and the vattern stored on its property list under the
property PATTERN were

($ $3 'A $ 'B $1 %),

the value of PATTRAN would be

(($) ($N 3) (VAR (QUOTE A)) ($) (VAR (QUOTE B)) ($N 1) ($)).
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Furthermore, the proprerty list of X woula have been changed to

(... PATTERN ($PATTRAN (($) ($N 2) ... (3N 1) ($))) ...)

after PATTRAN was finlshed operating. Should the same top level
pattern ever be used again, or should any other pattern also
refer to (GET X (QUOTE PATTERN)), no translation would occur be-
cause the pattern has already been translated, as indicated by
the special flag $PATTRAN. Similar techniques are used formats,
EITHER patterns, and dictionaries. Appendix 3 contains a summary
of translation conventions.

The FLIP Read Program

Even before patterns, formats, et al, are translated to their final
internal representation, some degree of procesing is done on them
by the FLIP read program. This »rogram performs tne same task as
the normal LISP read program: that of transforming a sequence of
characters into LISP atoms and more complicated S-expressions.
However, the LISP read program only distingul-~nes the characters
e, "), ", "J", """, comna, period, space, line feed and
carriage return whereas the FLIP read program 1s sensitive to these
as well as

v $% = e 4,5,/,4,2,4,8,and \.

s

The pattern ($ 'A $3 $ 'B $1 $) is read into LIsp
by the FLIP read program as

(($) (QUOTE A) ($N 3) (3$) (QUOTE B) ($N 1) (8)).

The only reason why translation is not carried out completely at
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re/u time is that the read prorram cannot know whether a glven
list will be used as a paltern, a tormat, in an EITHER pattern,
et~., and therefera cannot set up tie correct function calls.
Instead, the read program separates out the individual entities
thereby simplifying the task of translation.

For example:

($ X+Y+*=(REVERSE #1)[EQ (CAR *) (CAR #1)1])

is read in as

(($)

(SET X)

(SET Y)

(# = (REVERSE (MARK (1))) (EQ (CAR *) {CAR (MARK (1))))))

and then traansleted to

((3$)
(VAR (REVERSE (MARK (1))) SEGMENT
(EQ (CAR *) (CAR (MARK (1)))))
(SET1 X X)
(SET1 Y Y) ).

Note that the functinn SET1 must operate after the elementarv
pattern VAR has matched, even though 1t is read in first The
translator »erftrms this reversal.

A complete 1list of the transformations performed by tpe read
program and the various transiation programs may be found in the
appendix. The read program itself is discussed in greater detail
in Section IV, page 5f.
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PRETTYFLIP

In order that the us<r not concern himself about internal repre-
seitation, a special printing program for FLIP has been written.
This program, PRETTYFLIP 1is responsible for the output shown
here. PRETTYFLIP will accent translated or intranslated data and
produce a pleasing and readable output.

No editing faclilities designed specifically for FLIP datc have
been implemented, but it is possible to suppress in translation
physical alteration of the input data. This will cause data to
be translated anew ez<h time it is used, but will force the data
to remain in a more workable form than the translated version -
which 1is designed orimarily for efficient FLIP oneration rather
than readability.

The REJECT Mechanism

Ir. additica to eliminating unnecessary interpretation at run time,
the trar~latcr h~lps to speed up the operation of the match by
providing a quick way of rejecting certain lists. For example,
consider the pattern ($ $1 $ #2 'B $). No 1list can match this
pattern which does not contain a B.

During translation of a glven pattern, that translator detects
and saves any occurrence of the elementary pattern VAR, (except
for MARKS) and then stores this information with the translated
represeiitation. This information is than used by MATCH, and ty
the elementary rattern functions for EITHER, REPEAT, and PATTERN
tc reject lists that obviously will not match. A considerable
saving: in time is achieved by this simple pattern recognition
heuristic.

-3

1




|
|
|
|
|

If the VAR occurs as the first elementary pattern in the pattern,
the REJEZT mechanism can be even moi striet and use the LISP
predicate EG''AL on the first element in the input 1list instead of
MEMBER on the whole list. If the flrst elementary pattern 1is not
a VAR, the translator detects the VAR that 1s furthest right in
the pattern, since thlis will save the most time. Thus for the
pattern ($ $1 'A $ $3 'B %), matches will be attempted only with
lists trat contain a B.

If the VAR selected by the translator 1s to match a segment, CAR
of 1its value 1s used for rejection, unless the value is NIL.

The translator 1s also sufficiently clever to note that X, in the
pattern (§ X+%1 3 X $), cannot be used for rejection. However,
the pattern ($ ($ X«$1 $) $ X $)

W' . cause difficulties since X is set in
the match, and rejection (using X) is done before the matech is

tried. For tnese cases, the special orefix onerator "?" 1s used
to indicate to the translator not to use a VAR for rejection pur-

poses. In other words, write

($ ($ Xe$1 $) $ 2X )

If ©iie user wishes to use a different VAP for rejection than the

one normally selectecd, he can similarly write

This would be useful, for examnle, 1f Ii's were more frequent than
A's !n the 1lists to be matchea by this pattecn.

=4y
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Rejection information is stored at the beginning of the transla-

tion of the pattern. Thus the complete translation for the pattern

(¢ 'A$ 'B 3$) 1is

( (NIL NIL QUOTE B)
(%)
(VAR (QUOTE A))
($)
(VAR (QUOTE B))
(%))

and for the pattern ($ 'A $ #X 3)

((NIL T . X)

($)

(VAR (QUOTE A))
($)

(VAR X 3EGMENT)
(%))

Notice in the rejection information of the latter example,

(NIL T . X), the second element is T whereas it is NIL in the
first example. This indicates that X is a segment, whereas 'B in
the first example is an item. If either 'B or ¥X had appeared as
the first elementary pattern in their respective patterns, the
first element in the rejection information information would have
been T, e.g. (T T . X) or (T NIL QUOTE B). CDDR of the rejection
information is always the form to be matched.

~45-




ST I, W

s

TR B R

Other Advantages of Translation

The fact that there exists an S-expression representation of the
pattern to he matched, as ooposed to compiled ~ode, allows the
individusal elementary pattern functions themselves to take advan-
tage of this information and tc perform a rudimentary look-ahead.
The most significant use of this information is made by $ and is
discvssed separately below. Illowever, PATTERN, for example, will
not attemnt to match with an item if it is not the last item in

the 1list but the PATTERN {ig. For examnle, in the pattern

($ $) (3 $2 'A 3)) no match will even be attempted using the ele-
mentary pattern ($ $1 'A $) with any list that is not the last
element in the input list, regardless of whether or not it contains
an A. Similar checks are made by other elementary patterns when-
ever a savings of time would result.

The translation is also used by CONSTRUCT to reduce CONSes by

enablinpg it to decide when it is necessary to COPY a list and when
this can be avoided. For example, in the format (#1 #1 #1), the
value of the MARK must be copnied at least the first two times.
However, since the third elementary format is the last onc, it is
not necessary tc copy its value before attachinr it to the list

being construvcted.

3. CONS Reduction Techniques

The CONS operation in LISP constructs a new word of list structure
by takingz a cell from the free storage list. The true cost in
time for performing a CONS is therefore not only the execution
time for the CONS itself, but must include a proportionate amount
of the garbage collection time necessary to reconstruct the free
storage list when available space is exhausted. Therefore, in
situations in which garbage collection is expensive relative to
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the total processing involved, eliminating superflucus CONSes

can drastica.ly reduce computation time. Furthermore, in a LISP
system utilizing secondary storage, such as the BBN LISP system,
the actual execution time for the CONS may be large, even
excluding garbage collectiun, 1.e., because it may involve reading
in drum pages. Thus saving CONSes 1s almost aiways worth the
effort.

Thls section describes briefly some of the ways in which CONSes
are saved in the FLIP system. While they may or may not be
directly applicable to another type of program, an awareness of
the 1ssues presented here should help all LISP programmers to
write more efficient programs.

One can distinguish two cases in attempting CONS reduction. In
the first, a CONS can be immediately eliminated by alternate
coding. Programs may have a great number of such superfluous
CONSes, if only because the straightforward way of writing a pro-
gram 1s not always the most efficient.

The second case lnvolves postponing performing a CONS because
conditions to be determined later may make 1s unnecessary. This
technique 1is less obvious and more program dependent than simply
eliminating CONSes, but, at least with the FLIF system, often

results 1n far greater savings. Both techniques are discussed
below,

Eliminating CONSes

The theme central to techniques for eliminating CONSes 1s the
rather trivial question "Do I really neea a CONS?" This question
1s not trivial when one stops to consider the meaning of CONS.
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CONS means construct, i.e., create, a new plece of list structure.

If the program does noi. need a new plece ol 1list structure, it
does not require a CONS.

A typical case 1s the decision between using APPLEND or NCONC, the
standard LISP functions for joinirg two lists, e.g., the result
of Joining (A B C) and (D E F) i35 the list (A B C D E F). APPEND
operates by first CONSing C onto (D E F), and then CONSing B onto
(CDE F), and finally CONSing A onto (B C D E F). It thus copies
the first list entirely, performing three CONSes. NCONC on the
other hand does no CONSes, but physically alters the first 1list so
that the end of 1t points to the second list.
cases is a list which looks the same.

The result in both

The choice between APPEND and NCONC is really a choice between
creating new list structure, and using old list structure. If the
first 1list will be needed subsequently, for example, to be joined
to a third 1list, just an NCONC cannot be used since it will destroy
it. However, this does nut mean that APPEND must be used. A
situation occurred frequently in FLIP where it was necessary to
create and process the join of list X with a list Y, and then the
Join of X with Z and process this, and so forth. By saving a
pointer to the end of X, we were able to perform an NCONC on X
with Y, and later recover by locating the point in X-joln-Y at
which Z was to be attached. Thus, if X had the value (A B C) and
Y had the value (D E F), X was physically changed to (A BC D E F),
but a pointer was saved whose value was (C D E F). Subsequencly,
X could be joined to Z, which might be (G H I), by performing
RPLACD on (C D E ¥), giving (A B C G H I). Of course, this
destroyed the joln of X to Y, but then we were finlshed with this
list. (A by-product of this technique 1s that the joining can be

performed without searching for the end of the first list, since
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the pointer immediately gives this location.) The convention

used in FLIP 1s to represent a list to be joined in this fashion
as a palr of pointers, the first polnting to the head of the 1ist,
and the second to the point where the joln 1s to be made. Thus
X-join-Y would be ((ABCDETF) CDETF), and to join X to 2
would simply require (RPLACD (CDR X) Z).

X T

Postponing CONSes

O R i i,

The technique of postroning CONSes is based on the supposition

that the CONS may never be necessary. For example, suppose that
initlallizatlicn of a process requires construction of several 1ilsts,
and furthermore that the process may 1n fact terminate wilthout
using these lists. In thils case, the programmer wlll save CONSes
by not constructing these lists until they are needed, rather

than perfcrming all of the initializatlion at one time at the
beginning of the program. Obviously, thls will require more

effort on the part of the programmer since he must 1nstall checks
at the polnts that he wilshes to use the lists to determine whether

or not they have been constructed.

The most significant savings achlieved in FLIP by use of postpone-
ment techniques occurs in the treatment of the $ pattern. If

the segment matched by the $ is not of interest, the list struc-
ture corresponding to thls segment need never be constructed.

For example, 1n the transformation specified by

(FLIP X "($ 'A $ 'B $) '"(#5 #1))

the segment matched by the middle $ is not needea. However, there
is no way of determining, in advance, which segments will be needed,
if only because many different formats can be used with a single
parsing.
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The solution adopted in FLIP is to retaln enough information to
allow the construction of this segment without actually performing
all of the CONSes required to create it. by postponir. thesa
CONSes until they are actually needed, a considerable savings is
realized without any sacrifice in the generality of the $ pattern.
This is done by representing the segment matched by the $ as two
pointers into the list being matched. The actual form is

((P2 P1). POINTERS), where Pl is the 1list before the $ matched,
and P2 is the list after $ has matched. In other words, the seg-
ment matched by $ is the "difference" between the two lists Pl
and P2. The tag "POINTERS" is used to distinguish this data type
from conventional list structure.

Once this structure is created, the segment it represents can be
"lengthened" by simply changing P2, using RPLACA. This will
correspond to adding new elements to the end of the segment
although no CONSes are performed. This 1s extremely useful slnce
the $ pattern will often search, attempt a match, fail, and resume
the search many times before a complete match ultimately 1s found.

If the segment matched is referenced by a MARK, the difference
between Pl and P2 is computed and stored with a changed repre-
sentation so that upon subsequent references, no additional CONSes
will be performed. If in the interim the segment 1s lengthened,
only those CONSes necessary to lengthen the list structure already
created will be performed. At each stage, additlional CONSes are
performed only 1f they are required. This, of course, 1s the

essence of the postponement technique.
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C. Search Strategy and the $ Function

Consider the pattern ($ $1 'A $) and an input 1list, or workspace,
(ABCDAETPF). The translation of this pattern 1is

(($) ($N 1) (VAR (QUOTE A)) (%))

indicating that four elementary pattern functions are to be called.
Each of these individual functions decide whether or not the ele-
mentary pattern embodied in thelr arguments will match with the
current beginning of the workspace. It 1s necessary that all of
them match in order for the pattern to match the list.

The $ function is entered first and it initially matches the null
segment. $N then matches with A, as this is the first item in
the workspace at that point. VAR 1s entered, evaluates its argu-
ment (QUOTE A), and compares the value, A, to the first item on
the workspace. Since the workspace at this point is
(BCDAETF), VAR fails, which causes $N to fail.

The $ function now continues searching and extends the segment it
matches from NIL to (A). $N matches with B and again VAR faills.

This process continues until $ matches with the segment (A B C),

$N matches with D, and VAR successfully matches with A. The last
$ 1s entered and matches with the rest of the workspace, which 1is
then (E F). Note that the entire process required four calls to

$N, and four calls to VAR.

Now let us consider the pattern ($ 'A $), and the list
(BCDEATFG). If the match were carried out in the manner
described above, VAR would be entered five times before it matched
with A. This would be an extremely slow execution of a very simple
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search problem. Actually, the match is not carried out in this
way. Instead the $§ functfon uses a number of strategies to make
a more efficient search.

Instead of expanding incrementally only one item at a time, the

$ function looks at the elementary pattern following the $ in the
pattern, and expands what the $ will match to include all items
in the workspare which could not possibly match the next element.
In the above e: .e, the $ looks ahead and sees that the next
elementary patt is a VAR. It evaluates (QUOTE A), and then
calls a subfunction which performs successive CDRs on the work-
space looking for A. Only when it finds an A does 1t allow VAR
to be entered and the match to proceed. This mode of operation
is more efficient than calling VAR a number of times since the
interpretation of the next element to be matched is performec
only once, inside the $ function, instead of each time the next
elementary pattern function is called.

The same technique 1s used when the next elementary pattern 15:

1. a VAR that matches a segment;

2. a VAR that matches a MARK;

3. a PATTERN that matches an item, provided the translation
contains rejection information;

L, a PATTERN that matches a segment, provided the translation
contains rejection information indicating that the first ele-
mentary pattern function in the PATTERN is a V.R;

5. a REPEAT provided the translation contains rejection informa-

tion indicating that the repeated pattern begins with a VAR; or

6. an EITHER provided the translation contains rejection infor-
mation indicating that each of the alternatives begins with
a VAR.
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In each case, tihe $ function determines once what to search for
and then calls a special functlon which does nothing but perform
that search. Predicates used in conjunction with $II or VAR

p .terns are taken into account in the search. In addition, $ 1is
sensitive to the presence ¢f predicates modifying its own segment,
but does not apply them until after it finds a sultable point 1n
the workspace to attempt a match for the foliowing elementary

pattern.

As an indication of the time saved by these techniques, results
of some test cases are presenced below. Computation time 1is
given in seconds, * and each computation was run ten times and
the average time reported. The column labeled WITH corresponds
to a match executed with the fast $ search strategy in effect.
The column labeled WITHOUT corresponds to a match in which the
next e.iementary pattern function was called each time the $
extended its segment. Note that the elementary pattern followlng
the $ matches the fourth element of the workspace in examples 1,
3, and 5, and the twentieth element in examples 2, 4, and 6.
Going from 4 to 20 with the fast §$ involved only a 25% increase
in computation time, whereas going from 4 to 20 using no search
strategy required a 40C% increase. In other words, without fast
search techniques the time required to match is directly propor-
tional to the length of the segment matched by $.

¥ The actual computation time is not significant, since these
particular examples were run with an uncompiled FLIP in a highly
competitive time-shared environment on the SDS 94g.
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WORKSPACE

. {ABCD)

. (ABCNEF

GHIJKL
MNOPQRST)

. ((ABCD)

(E F G H)
(IJKL
(MNOP))

. ((ABCD)

(BCDE)
(CDEF)
etc.

(T UV W))

< (XYZDABZC)

.(FGHIJKLM

NOPQRSTUYV
WXDABDZC)

PATTERN WITH WITHOUT
($ 'D $) 1.4 1.9
(3 'T $) 1.7 9.0
($ ("M $) $) 1.6 3.4
($ ('T $) $) 2.1 16.1

(¢ EITHER['C $1; 'D $2; 'E] $)

3.9 5.

same 4,9 25.
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Consider the pattern ($ EITHER['C $; 'D $1] 'E $). If a C is
found in the worksrace, the $ inside of the EITHER is entered.
However, at this point, the next elementary pattern functlion call
is not to VAR, but to a special housekeeping fuiaction inserted by
EITHER into the 1list of function calls ‘mmediately following the
$. This function has the task of taking the images c¢f the ele-
mentary patterns inside of the EITHER and grouping them together
into a single parsing. It is important that this function operate
before any other pattern functions are called so that patterns
such as ($ EITHER['C $1; 'D $2] #[2,2] $), or

($ EITHERL 'C $1; 'D $2] #2 $) will operate correctly.

Note in our original example, ($ EITHER[ 'C $; 'D $1] 'E $)

that in order for the match to succeed, the $ must match every-
thing up to an E. Therefore, $ looks through the housekeeping
function call to the VAR, searches for an E exactly as before,
and upon finding it, allows the match to proceed normally, i.e.,
calls the housekeebing function. However, .he workspace 1is now
positioned correctly so that the VAR will match on the first call.
A similar situation occurs with the pattern (X+$ 'A $), which
translates to (($) (SET1 X X) (VAR (QUOTE A)) (%)). The function
SET1, which performs the assignment of the variable X to tne seg-
ment that $ matches, must be called after $ matches, and before
VAR. However, $ looks through SET1, finds the VAR, searches for
A, and upon firding it, calls SET1 in the normal way.

$ will look thnrough an indefinite number of calls to SET1 or
housekeeping functions until it finds an elementary pattern func-
tion call specifying something that it can search for in the work-
space. It then searches the workspace for the desired item or
segment until it finds it; if the $ runs out of workspace, the
next pattern cannot match and therefore the $ fails. Once $
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locates the correct point in the workspace, it calls the next
elementary pattern function and proceeds as btefore. In the
speclal case that the next elementary pattern function was a VAR
or $N, $ performs the addition of this pattern image to the par-
sing as well as its own image and bypasses the call to the func-
tion ertirely.

If a fallure occurs subsequently, $ continues the search by again
looking for sultable place in the workspace. No additional inter-
pretation or searching through the list of elementary pactern
function calls is necessary. For example, in the pattern

($ 'A $1 'C $) and the 1ist (X Y Z AMNO T ABC D), $ finds
that the next elementary pattern is a VAR, and searches for A.
After matching [X Y Z] and passing control to the thirc elementary
pattern function which 1s $N, a fsilure occurs in the match with
'C. At that point, control reverts to $. $ takes up the search
with the woikspace (WM N ¢ A 8 C) and looks for an A as before.
It finds the second A, and this time a match occurs with $ matching
(XYZAWMNO).

If $§ finds an elementary pattern function call which matches some-
thing that it cannot search for specifically, such as another $,
or the subpa%tern ($ $3), before it finds something that it can
search for, it does a slow search, i1.e., it initially matches the
null segment, and calls the next elementary pattern function, etc.
The $ -hus assumes that any vosition in the workspace 1is as likely
to produce a match as any other.

If § exhausts the list of elementary patterns before encountering

a pattern that it carn search for, or one that it definitely cannot
search for, it automatically matches with the remainder of the
workspace, and calls the next elementary pattern function (if there

s g e o
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1s none, $ returns immediately with the successful parsing). For
example. in the pattern ($ 'A X«$), which translates to

(($) (VAR (QUOTE A)) ($) (SET1 X X)), the second $ matches with
the rest of the workspace and calls 3ET1 to periurm the assignment.

Another st ‘Zegy of the $ function uses information about the
posicion of an elementary pattern in the pattern. If the elemen-
tary pattern following $ is the last elementary pattern, and 1s to
match an item, $ will immediately go to the end of the workspace,
less one, before attempting a match. Thus in the pattern

($ 'A $ (3 'B $)), the second $ will exp~nd its segment through
ali elements except th2 last one, ignoring any intervening lists.

A similar technique 1s employed for $N where N¥1. Thus in the
pattern ($ 'A $ $3) the second $ will immediately match a segment
consisting of the rest of the workspace less 3.

$$

The fast $ can cause difficulty in patterns where a MARK follows
the $ which refers to either the $ itself, such as in the pattern
($ #1), or a portion of the match not yet completec, such as in
the pattern ($ *('A $1 $) #[2,2] $). A speclial elementary pattern,

$$, 1s available for this contingency. $$ acts exactly like $ in
It never looks ahead or utilizes any of the

slow search mode.
The elementary pattern function

fast search techniques deccribed.
SLOW$ does the work for $$.
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SECTION IV

USING FLIP

This section discusses FLIP as a working system. It describes
those functions that may be useful to a prospective user, and
discusses some additions and extensions to FLIP. It assumes that
the reader has read section II, describing the FLIP formalism,
and has at least skimmed Section III, describing the implementa-
tion.

A. Functions

REED

Section II did not discuss the representation of FLIP elements as
LISP S-expressions, ¢.g., how the pattern ($ 'A X«$1[NUMBERP *] §$)
1s represented internally as an S-expresslon consisting of atoms
and dottcd pairs. However, thls representation need not concern

the user, because a speclal read program has been written for

FLIP which accepts FLIP formalism as well as standard S-expressions.

The name of this program is REED, and 1its value 1is one S-expression
reaad rrom the indicated input file.

REED is a function of one argument, which determines the CONTROL
setting. If this argument Is NIL, CONTROL is set to NIL, the nor-
mal setting with LISP READ, and the REED program must wait until a

carriage return before receiving any characters from the line buffer.

However, REED will respond to Control A and Control Q in the usual
‘A.ay .
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If REED's arpgument 1s T, the characters are delivered to REED as
they are typed. Used in this way, REED counts parentheses ond per-
forms a carriage return and line feed, and returns its value when
the count reaches zero. Control W and Control Q correspond to Con-
trol A and Control Q for READ, although their interpretation is

somewhat different.

The character cuntrol W is used to delete the last element read,
whether 1t be an atom or a list. REED echoes the element on the
same line and performs a carriage return. Control W canaot be used

beyond the beginning of a iist.

Example: (Control W is underlined)

REED(T)
($ 'BW(QUOTE B)

W($)
WW$ 'A X $WWIW(SN 1) (1)

$1[NURERPWNUBERP
WWNUMBERP *JW($N 1 (NUMBERP %)) (2)

($ (QUOTE A) X)

(3) Initial Contrcl W's ignored because every element in the
list has already been deleted. The two control W's are
ignored following the second $ because REED has been called
recursively, therefore, there iIs nothing to erase. After
"1" is typed completing the FLIP token, control W may erase

it, as in the example.

(2) Initial control W's are ignored because REED has been called
recursively for predicates. Ag2in, it Is necessary to
complete the expres~'- Jefore 1t can be erased.

Control Q 1s used to delete all elements back to the last open

left parentheses or bracket. There 1s no line deletion. REED
does a carriage return-line feed and echoes what has been deleted.
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(1)

Note:

Note.

WWQ (1)

REED(T)
($ 'QQxQ r2)
($) TQUOTE x°

v L

pll Y

Control W is ignored as everything in the 1list has bee=n de-
leted. Control Q deletes through tre left narenthesis. .

the situation is the same
typing X causes REED to return X.

when REE[L was fi "+t entered, and

The first two control Q's are ignored because REED has ' =°en

called recursively. After this token has been ccmplete. by

typing X, 1t is possible to delcte everything.

"." 1s not a break or separator character fer REED.
"A.B" i1s a legitimate atom. To write (A

Thus

. B), be sure to

space between A, ".", and B. To write atoms unusually

’

spelled as far as REED is concerned, use double quotes the
same as with the LISP READ, e.g., "[($]J(()" is a legitimate

atom.

If REED 1s given a second argument, it wilill treat this
as a flle name. Otherwise 1t reads from the standard

input file.
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PILOT

A convenient way to use REED is via PILOT. PILOT is a function

of one argument, that argumen® belng used to determine the control
setting for REED. PILOT reads and executes doublets for
evalquote, using REED instead of READ. PILOT is buffered using
ERRORSET, and prints "PROCEED": following and error. To exit
from PILOT, type STOP, at which point PILOT return. NIL.

MATCH

MATCH is a function of four arguments. The first arzument 1is the
list to be matched. The seccnd argument is the input pattern,
which MATCH gives to PATTRAN (see below) to be translated. The
third argument 1s optional and is a dictionary for use during
t* * match. The dictionary feature 1s described later in thils
section. MATCH assumes the dictionary, if any, is already
translated. The fourth argument is also opcional and 1is an
A-l1st. MATCH initializes the variables in this A-1list before
beginning the matching operation. The effect 1s identical to
performing the bindings via the elementary pattern SET. For
example:

{(MATCH X Y NIL '((FOO . 1) (FTE . 2)))
is the same as (MATCH X Z), where the first two elementary

patterns in Z are (SET FOO 1) and (SET FIE 2). In the current
implementation, variables are bourd by performing the LISP
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function SET. This means that the programmer should use
distinctive names for these variables.

The value of MATCH is either a parsing, in the event of a
successful match, or NIL 1n case of a failure.

PATTRAN

PATTRAN is a function of one argument, a pattern to be translated.
The value of PATTRAN is the translated version of this pattern.

If the variable $TRAN is set to T, its normal setting, PATTRAN
¢lso physicially changes its input pattern so that CAR of the lnput
is the atom $PATTRAN, and CDR of the input is the translated
version of the pattern. Whenever PATTRAN is called with a pattern
already translated, it immediately returns the translated version
without further processing. The same technique is used by the
other translating functions, ORTRAN, FORMTRAN, and DICTRAN, all

of which are sensitive to the setting of $TRAN.

PDEFAULT

The function TDEFAULT allows the user to introduc2 new translating
conventlons and notational schiemes to PATTRAN. PDEFAULT is

callec whenever an element 1s encountered in a pattern that

does nov correspond to a recognizable elementary pattern, 1i.e.

it does not correspond to notation utilizing EITHER, REPEAT, %,

=, QUOTE, #, etc. PDEFAULT is a function of one argument, the
element in question. The vaiue of PDEFAULT, if not NIL, 1is
translated instcad of the unkown element. For example, one might
define PDEFAULT so that the element 'N<3<M) translated the same
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as $[AND (GREATERP (LENGTH *) N) (LESSP (LENGTH *) M)], and could
therefore be used to match with segments of length between N and M.

When the value of PDEFAULT 1s NIL and the unknown eliement 1is a list,
it is translated as a subpattern. This corresponds to the defi-
nitions given earlier on page 1€. When the unknown element is an
atom (with the exception of the atoms .. and ... , which are trans-
lated as $ and $$ respectively) the value of (LIST DEFAULT

ATOM) 1is used; thus settingy DEFAULT to QUOTE will cause &all

atoms that appear in a pattern to be quoted.

The normal setting for DEFAULT 1s = and PDEFAULT is initially
defined as (LAMBDA (X) NIL). Thus, if the user does not change
either the variable DEFAULT, or the function PDL.’AULT, the trans-
lation conventlions are identical to those specified earlier, on
pages 13 and 18, for VAR and subpattern.

MATCH2

MATCH2 1s the function that does the work in matching. It is a
function of three arguments: the current wcrkspace, the current
pattern, (already translated) and the current match. Whenever an
elementary pattern function determines that its elementary pattern
matches, 1t calls MATCH2 with the new workspace pattern and match

R ——— i

to perform the matching for the rest of the workspace and puttern.
In the event of a successful match, the value of MATCH2 is a par-
sing. In the event of fallure, CDR of the value of MATCHZ2 1s NIL

e enr

Lk TS

(CDR of a parsing is never WIL). Thus except for some initialization,
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| ITATCH 1is essentially defined as

(PROG (%)
(SET™Q X {(MATCH2 WS (PATTRAN PATT) NIL))
(ConND
({CDR X) (REIURN X))
(T (KETURN NIL))))

Variabies used inside of MATCH

The following variables may be of interest to the user:

WS current workspace
PATT current pattern 1list
| MATCH current lcvel match
i $MATCH push down list of higher level parsings,

used by subpatterns, EITHER, and REPEAT
elementary p/: “erns

$A current A-1lis-
$D current dictionary

i Thus the ele.ientary pattern $1[EQ {(CAR WS) FOO] nas the same effect
as the elementary pattern =F00.

In addition to tnese variables, the variable TRAC controls a
tracing option in MATCH2. When TRAC 1is set to T,the workspace,
parsing, and A-1list, i1f any, are printed each time MATCH2 is
cailec, or equiv lertly, for every elementary pattern. If the

| value of TRAC 15 a 1list, printing occurs whenever an elementco-y
pattern function 1s a member of this 1llst, or if its position,
from the right end of the pattern 1list, iIs a member of this 1list.
Thus 1f TRAC is set to (1 $N), tracing will occur in the pattern
($ FOO«$1 'A $) whenever either the function $N or the final $
is entered. This option is useful for debugging.
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NOCONS

It is possible to use MATCH as a pure predicate to produce a
value T or NIL but no parsing. When used in this mode, no CONSes
are performed to construct the parsing, which means that for most
cases, no CONSes are required for the entire operation.

This has been achieved by using calls to a function KONS, instead
of CONS throughout MATCH. Executing (NOCONS T) will cause the
definition of KONS tc be altered so that it merely returns an
appropriate quoted S-expression. Executing (NOCONS) will cause
the definition of KONS to be restored to CONS.

Since no parsing is being saved, MARKs cannot be used. However,
it 1s still permissible to use the assignment elementary pattern.
Thus while the pattern ($ ¢$1 $ #2 $) will not work with NOCONS
turned on, the pattern ($ FOO«$1 $ FOO $) will. 1In the latter
case, no CONSes will be performed. Of ccourse the pattern

($ FOO«$2 $ *FOO $) will require two CONSes each time the
assignment 1is made in order to create the 1list structure corres-
ponding to the segment mat. :d by $2.
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NOCONS During a Match

It 1s dangerous for the user to execute a NOCONS while inside of

a match because of certain initialization problems. Therefore,

the special elementary pattern'\ is provided for “urning off

CONSes for certain portions of the match. When\ appears as the
first element in the PATTERN, EITHER, or REPEAT elementary patterns,
it means that the parsing is not saved for this elementary pattern
only. NOCONS will be restored after this pattern 1s executed.

Fur example:
MATCH((A B ¢ DE F G) ($ EITHERI\ 'C $2: 'D $1] $))

will yield the parsing [A B} [C D ] [F G], but no subparsing for
the EITHER elementary pattern.

Similarly, MATCH ((A B C D E F G) (\ $ 'D $)) will yield a parsing
indicating that (A B C D E F G) was matched, but no information
about the componenv parts. Thils technique 1s also useful for
turning off CONSes for certain selected rules in a rule set.

MATCHP
MATCHP is a pure predicate. It performs (NOCONS T), calls MATCH,

restores NOCONS, and returns with the value of MATCH, which 1is
either T or NIL.
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MAPMATCH

MAPMATCH 1s a function of five “rguments. The first argument is
a list and the second a pattern as with MATCE. Similarly, the
fourth argument is the optional dictionary and the fifth argument
the optional 1list. The third argument is a functional argument.
The effect of MAPMATCH is to apply this function to all possible
matches using the given pat.ern and workspace. For example, the
value of MAPMATCH given

(ABCDE),($ $2 $), and (LAMBDA (X) (CONST-uCT X '(#2)))
is

((A B) (B C) (c D) (D E))
It is best to process the parsing immedliately as done above,
instead of saving it because many of the elementary pattern

functions, e.g., $, EITHER, REPEAT, etc., will physically alter
the parsing.
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CONSTRUCT

CONSTRUCT 1s a function of four arguments. The first argument is

a parsing, and the second argument 1s a format, which CONSTRUCT
gives to FORMTRAN to be translated. The third and fourth argu-
ments are exactly ¢the same as for MATCH, l.e., a dictlonary and
an A-1list. CONSTRUCT can be used with no parsing, provided the
format does not contaln any MARKS, or EITHER or REPEAT formats
which require a parsing. For example:

(CONSTRUCT NIL '(X ¥*=(GET Y Z) Y))

1s the same as

(CONS X (APPEND (GET Y Z) (LIST Y)))

During the operation of CONSTRUCT, the atom "#" is bound to the
entire top level list which was matched. For example, matching
(ABCDE)with ($ $1 'C $) and constructing with (#2 %) will
yleld (B (A B C D E)). The alternative 1is of course

(#2 (#1 #2 #3 #14)).
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FCRMTRAN

FORMTRAN is the CONSTRUCT counterpart of PATTRAN. It is a function
of one argument, a format to be translated. 1Its value is the trans-
lated version of the format. If the variable $TRAN is set to T,
FORMTRAN physically changes its input format so that CAR of the
input 1s the atom $FORMTRAN, and CDR of the input is the trans-

lated version.
FDEFAULT

PDEFAULT is thr counterpart of PDEFAULT. If the value of FDEFAULT
for an atom is NIL, © (LIST CEFAULT atom) is trans.ated

instead. If the value of FDEFAULT for a list is NIL, the 1Ist

is translated as a subformat. FDEFAULT is initially deflned as

(LAMBDA (X) NIL).
CONSTRUCT?2
CONSTRUCT2 corresponds to MATCh2. The variables used by CONSTRUCTZ2

are MATCH, FPORMAT, $A, and $D. There is no tracing option. NOCONS
does not affect the operation of CONSTRUCT or CONSTRUCTZ2.

* The atcm .. 1s translated the same as #1 except where it is the
last elementary format in a format, in which case it translates
the #-1. Thus matching with (.. 'D ..) and constructing with

(.. "€ ..) is the same as matching with ($ 'D $) and constructing
with (#1 'E #-1).
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FLIP

FLIP 1s a function of five arguments. The first argument is a
list to be matched, the second is a pattern, and the third argu-
ment is a format. The fourth argument 1s an optional dictionary
and the fifth an optional Alist. FLIP calls MATCH with arzuments
1, 2, 4, and 5, and returns NIL if MATCH falls, or else returns
the value given by cailing CONSTRUCT with the value of MATCH and
arguments 3, 4, and 5.

TRANSFORM

TRANSFORM 1s a function of four arguments. The first argumen: 1is
a list to be transforraed, and the second is a set of rules. The
third and fourth arguments are optional dictionaries.

A rule set i1s a 1list of rules and optional (atomic) labels. Each
rule consists of a pattern, a format, and an optional GOTO 1label.

TRANSFORM evaluates a rule set by starting with the first rule and
calling match with its pattern and TRANSFORM's first argument as
workspace. If a match succeeds, the parsing is given to CONSTRUCT
with the format. The value of TRANSFORM 1ir the value of CONSTRUCT.
If the match fails, control passes to the next rule.
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Special Cases:

1.

If an atomlc GOTO occurs in a rule, and the match is
successful, control transfer to that labelled rule after

performing the indicated CONSTRUCT operation. The result of
CONSTRUCT is used as the new workspace. Note: do not use
NMIL as a label.

If a GOTIO0 label is listed, control goes t¢ that labelled rule
if, and only 1ir, the match fails. In this case, no CONSTRUCT
operation is performed, and the workspace is unchanged.

The special GOTO label, TOP, is the label for the first rule
of the rule set.

The special label ¥ is the label for the very next rule.
The speclal label + is the label for the current rule.

The special lavels EXIT and BOITOM are labels for the end of
the rule set. For example: the rule

(pattern format (EXIT))

means EXIT from TRANSFORM if this match fails. Otherwise,
CONSTRUCT 1s called and control passes to the next rule.
No label is treated the same as EXIT.

The user may effect a computed GOTO by setting the variable
LABEL to the label he wishes control to transfer. If LABEL
is set cduring the match, transfer will occur regardless of
whether or not the match was successful. If LABEL is set

during the construct, control will only occur if the match
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was successful, since otherwlse CONSTRUCT would not have been
entered. LABEL 1s autoinatically reset to NIL before each
rule.

RTRAC

RTRAC controls a tracing option for rules. When RTRAC is set to
T, TRANSFORM prints out the label of each rule entered, and the

value of the list being processed. If RTRAC 1s a 1list, tracing

occurs only for rules whose label 1s in the list.

ADDRULE

ADDRULE 1s a function designed to facllitate adding rules to rule
sets at arbitrary locations. It 1s a function of four arguuents.
The first argument is the rule set to be modified, ¥ and the
second argument 1s the rule or label to be added. The third
argument specifies where the change is to take place, with T0OP,
EXIT, and BOTTOM specifying locations conslistent with TRANS-
FORM. Numbers specify the corresponding numbered entry with
numbering proceeding from the top of the rule set and both rules
and labels belng counted. Other atoms are treated as ordinary
labels and specify the location of that label.

% For functions of the form

(LAMBDA & (TRANSFORM & 'ruleset &)), the name of the

function may be used as the first argument to ADDRULE. ADDRULE
will obtain the rule set from the definition.
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There are three different modifications allowed at the specified
location: insertion before, iisertion after, or replacement. The
normal operation 1s insertion after. To speciiy insertion before,
the label or number must be listed. Fo. replacement, the fourth
argument to ADDRULE must be T. Replacement takes precedence over
insertion. 1In all cases, the changes are destructive.

Example: (ADDRULE RULES RULE (3)) will insert RULE before the
third entry in RULES.

Example: (ADDRULE RULES RULE 3 T) will replace the third entry
in RULES with RULE.

Example: (ADDRULE RULES RULE FOO) will insert RULE just after
the label FOO.

Example: (ADDRULE RULES RULE TOP) will insert RULE just after
the label TOP, in other words before the first entry

in RULES.

PRETTYFLIP

PRETTYFLIP 1s a function of three arguments. If the second and
third arguments are NIL, PRETTYFLIP acts Jjust like PRETTYPRINT.
If the second argument is present, PRETTYFLIP acts like PRETTYDEF,
i1.e., it can be used to write a file complete with DEFINEQ and

STOP.
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Th. output produced by PRETTYFLIP is identical with the original !
sequence of characters typed in to REED except for the fact that
carriage returns and spacirg are introduced to produce an aesthetic
fcrmat. In some cases, t:2 output may differ slightly between
translated and untranslated versions, but in either case, the

output produced, if read back in again, would result in the exact
same funclion definition. The differences cccur beciuse PRETTYFLIP
cannot tell that a 1list will be used as a rule set, or a dictionary,
until afte: it has been translated, and therefore cannot use a
format designed especially for these types.

PF {

The function PF rlays the role of SUPERPRINT for PRETTYFLIP.
PRETTYFLIP callse PF with the deinition of a function. However,
PF can be used to print output that is not a function definition,

for example, a property list, or a portion of a function definition
being edited.
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B. THY DICTIONARY FEATLRE

The use of the dictlonary is one of the more interesting
aspects of CONVERT, another pattern-driven programming language
embedded in LISP [7]. The CONVERT dictionary offers an
alternate way of specifyling operations that can alre~dy ke
speclfied in FLIP using a comewhat different notatilon.

However, some operations that can be written very sinply using
the dictionary avre rauch harder to write in FLIP without 1it.

The dictionary feature described below has been addea to FLIP
in order to provide it with this increased notatlonal flexibility.
Wherever possible, the CONVERT notation has been transferred
intact to FLIP, and the interpretation of dictionary oprerations

within the FLIP environment is consistent with the corresponding
operations in CONVERT.

The CONVERT Dictionary

The CONVERT dictionary is a 1i<t which contains the "definitions"
for some or all of the elements aprearing in a pattern or
skeleton, the CONVERT counterpart of a format. Whenever an

atom 1s encountered auring the operation of RESEMBLE or REPLACE,
the CONVERT counterparts of MATCH and CONSTRUCT, the definition
of the atom i ob*ained from the dictionary, and the appropriate
action is taken. This extra level of interpretatlon costs the
program in efficienry, but in return the ability to modify defi-
nitions dynamically can be an extremely powerful asset.
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Each definition consists of three parts: the variable being ’
defined, its MODE, and a third parameter containing additional
informatior required by the mode. The dictiorary itself 1is

2 list o™ il 2 form

(VAR1 MODEl PAR1 VAR2 MODEZ2 PAk2 etc.)

consisting of the definitions strung out at the top level. For !
example, the mode PAT indicates that a variable represents an ﬂ
entire pattern. Tnus using the dictionary (X PAT ($ $1 $ #2 3)), 4 §
the FLIP pattern ($ X $ X $) wculd be equivalent to the pattern

($ ($ $1 % #2 $) $ (8 $1 8 #2 $) 3).

Note that 1f the value of X is ($ 31 § #2 $), the latter pattern
could also be written as ($ :X $ :X $). i

The following is a list of some of the MODEs in CONVERT:

X VAR the variable mode. The letter X 1s used
to represent an expression however

complicated.

[%5]

X UAR * the undefined variable mode. X will
match anything, but the entry in the
dintionary 1s cnhanged to read X VAR E,
so that as a consequence if X appears as
part of a more compllicated pattern it will

have to match the same quantity each
time 1t occurs.

X PAT P the pattern mode. The letter X represents
an entire pattern.

.
)




X PAV P the pattern variable mcde, which is a
combination of the modes PAT and UAR.
Not only must the pattern P match E, but
the dictionary is altered to read X VAR E
SO that if X occurs several times it will
always match the same expression E.

A o o o

X BUV (P ...) the bucket variable mode. This mode is
simiiar to the PAV mode, but rather than
requirine that the same expression match
eévery occurrence of X, we simply make a
list of these expressions. Thus X in the
BUV mode will match any expression matched
by P, and the dictionary is mocified to
read X BUV (P E ...).

X CUV (P K) the counting variable mode. This mode is
similar to BUV, but r.iher than listing
the matching expressions, we simply count
them. The2 dictionary is modified to read
X CU\ (P K+1) after each match.

If a variable in the dictionary is enclosed in parenthesis, it is
called a fragment variable, ana matches with a fragment, i.e., a
segment of a li<t. This corresponds tb using the prefix

operator "¥" jin FLIP.

el bmd fd  bwd el Owed e

The FLIP Dictionary

The basic differences in the FLIP and CONVERT versions of the
dictionary feature arise fro:. the difference in philosophy between
the two languages. CONVERT 1is a richer, more recursive language
than FLIP, and quite complicated operations can be specified very
conclsely. This is partly because nearly every cexpression is
interpreted, broken down into its composite subexpressions, until
atomic elements are encountered, and each of these are looked up
in the dictionary. This means that definitions can be built upon
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definitions in a very sophisticated way.

FLIP on the other hand 1s oriented more towards efficiency of
operation, occasionally at the expense of elegance. Consistent
with these goals, the dictiona"y has been implemented in such a
way that its presence does not penalize a program that did ::ot
utilize it. As an example, the translating functions determire
which atoms are dictionary entries, and only these are looked up
at run tim=2. “'.23 if Y is a dictionary entry, the pattern (X Y Z)
might translate to ((VAR X) (DICVAR Y) (VAR Z)), and only Y would
then be looked up at run time. This places the burden on the

programmer of declaring which elements are dictionary variables,
but eliminates much of the interpretive aspects of the dictionary.

The dictionary is given to the functions TRANSFORM, FLIP, MATCH
anc CONSTRUCT as an optional argument. For MATCH and CONSTRUCT,
the dictionary 1s the third argument. It 1s assumed to be pre-~
viously translated. For FLIP and TRANSFORM, the dictionary is

the fourth argument. Both of these functions will first trans-
late it using the function DICTRAN, which modifies its input in

a manner analagous to PATTRAN and FORMTRAN discussed earlier. 1In
addition, TRANSFORM wilil accept as its third argument a dictionary
consisting of just a list of variables. Each of these variables

is automatically given the MODE UAR. Thus (TRANSFORM X Y '(A B C))

is equivalent to (TRANSFORM X ¢ NIL '(A UAR -- B UAR -=- C UAR --).
#*

¥ It is unimportant what follcws UAR in th. dictionary, merely
that something does follow it to preserve the periodicity of the

dictionary.
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The dictionary is avallable throughout the course of matching and
construction, and the value of dictionary variables can be
referenced by means of the prefix operator "@". The value of a
dictionary variable 1s usually the parameter which coiprises the
third part of its definition. However, for variables of mode BUV,
the value is the 1list, in reversed order, of the expressions
matched by the bucket variable, and for variables of mode CUV, the
value is the count. Thus, if X has mode BUV, =(CADR €X) will
match with the second element in the bucket cirresponding to X.
"@" is read by REED as a call t. a function which looks up the
value of X. Thus the form (CADR €X) can ve evaluated directly
without further interpretation, and any requescs for dictionary
variables will still be handled correctly. This 1s similar to the
treatment of # for marks.

It is unnecessary to use the prefix operator @ for a dictionary
variable that 1s being used as an e.ementary pattern or format,
because the translators check the dictionary before applylng the
default declaration. Thus the pattern ($ X $) is equivalent to
($ 6X $), provided X is defined in the dictionary at the time of
translation. Ncte that if X has CUV mode, the elementary pattern X
differs from the elementary rattern =€X. The former will match
with the pattern specified in the definition of X, and index the
count. The latter will match with a single number which 1s equal
in value to the current count, and will not make any changes 1n
the dictionary.

The translation of the dictionary consists of converting dictionary
entries into their corresponding function calls, which can then be
inserted into the pattern or format at the zppropriate point. For
example, the trarslation of (X) UAR --, which specifies that X 1is
to match a segment of the list, consists of calls to two functions:
$ and SETD. When the elementary pattern X is first encountered,
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its (current) definiticn is obtained from the dictionaiy, and
attached to the front of the pattern list. Then the match
continues and the function $ is entered. $ uses the fast search
strategy described earlier. It looks through the SETD function,
and any housekeeping or assignment functions it may encounter
until it finds something upon which it can concentrate its search.
After $ finishes operating, SETD is entered. The arguments to
SETD, which were determined at translation time, indicate that a
new definition must be entered in the dictionary. This entry will
define the variable X as having mode VAR and value whatever the $
matched. The actual function call generated for this entry is simply
(VAR (QUOTE s) SEGMENT), where s is the segment matched by $. If
X is subsequently encountered, it will be treated the same as
though it were i..itially defined as a fragment variable with VAR.

Whenever a failure occurs in the matech. the dictionary is restored
before the match continues operating. This involves restoring
all variables having MODE VAR, BUV, CUV and PAV to the valuer

they had at the point the match Js to be resumned. For example,
if X and Y have VAR MODLE, then Y will be restored in the pattern

($ X $ EITHERLY -- ; ==] §)

if the first alternative of SZITHER fails, but X will not be
affected.

If the match is successful, the varjable NEWDIC is set to the rew
dictionary before exiting from MATCH. NEWDIC is already in
translated form since any changes made to the old dictionary

were performed by SETD. FLIP and TRANSFORM both automatically
transmit NEWDIC to CONSTRUCT as its third argument. Thus changes
made in the dictionary during matching can be used in constructing.
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Example: the following FLIP expression embod!2s a standard
trigonmetric formula.
(FLIP W '(COS X COS Y - SIN X SIN Y)
'(COS =(PLUS €X €Y)) *
'(X UAR - Y UAR -))
If Wis (COS 23 COS 19 - SIN 23 SIN 29) the value of the FLIP
expression will be (COS 42).

Modes Available in the FLIP Dictionary

There are currently ten modes available in the FLIP dictionary:

VAR, UAR, PAT, PAV, BUV, CuV, EXPR, SKEL, RLPT, and CONT. Variables
defined with modes VAR, UAR, PAT, PAV, BUV, and CUV may be used as
elementary patterns, and variables defined using modes EXPR, SKEL,
REPT, and CONT inay be used as elementary formats. The interpreta-
tion for each mode is given below, along with the value of diction-
ary variables defined with that mode. Note that =¢X is always a
legitimate elementary pattern or format, regardless of the mode of X.
However, if a variable is defined using modes EXPR, SKEL, REPT, or
CONT, it cannot be used as an elementary patfern directly. Because
of the implementation, iIf X is defined using modes VAR, UAR, PAT,

PAV, BUV, and CUV, it may be used as an elementary format. The € 'fect

is the same as =@X, or ¥=@X. FEssentially, each of the modes VAR,

UAR, PAT, PAV, BUV, and CUV are interpreted as EXPR when in CONSTRUCT.

The segment-item distinction for dictionary variables used as ele-
mentary patterns or elemertary formats 1s based on whether or not the
variable was enclosed in parenthes2s in its dictionary definition, as
in the CONVERT dictionary. The prefix operator * has no effect on
dictionary variables.

* This assumes that DEFAULT is set to (QUOTE -). Otherwise, it
would be necessary to substitute 'COS, 'SIN, and '~ for COS, JIN,
an.' -, respectively.
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VAR G

UAR *

PAT P

PAV P

BUV P

cuv p

value 1s G itself (not the value of G).
and X matches G. Using X is thus exactly
the same as using the expression (QUOTE G).

value of X is NIL. X matches the same

as $1 (or $ if X is enclosed in parenthe-
ses), and then a new entry is added to
the dictionary corresponding to X VAR S,
where S is the item matched by $1 (or

(x) ¥AR S, where S is the segment matched
by $).

value of X is P. X matches the same as
the elementsry pattern P,

value of X 1s NIL. X matches the same as
the elementary pattern P and then a new
entry is added to the dictionary corres-
ponding to X VAR S, where S 1s the item
matched by P (or (X) VAR S, where S is
the segment match by P).

value of X is initially NIL. X matches

the same as the elementary pattern P. Each
time P matches, a new entry is aaded to the
dictionary corresponding to a BUV mode
variable whose value is the result of CONS-
ing the item or segment matched by P to the
previous value. Thus at each point, the
value of X 1s a 1list, in reversed order,

of the expressions that were matcied by P.

value of X is initially zero. X matches
the same as the elementary pattern P. Each
time P matches, a new entry 1is added to the
dictionary corresponding to a CUV mode
variable whose value 1s one more than the
previous value. Thus at each point, the
value of X is the number of times that P
matched.
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X EXPR G format counterpart for VAR mode. Value
of X is G.

X SKEL F analogue of PAT. The value of constructing
with F as an elementary format 1s added to
the 1ist being constructe: The value of

X, 1.e., i, 1s F.

X REPT R When used as an elementary format, X
should not appear by itself but in the
form (X Al A2 ... An). The value of this
entire expression is computed by first
constructing with the format (Al A2 .. An),
and then transforming this result using
the rule set R. (If R is either atomic
or an expression of the form
((LAMBDA ..) ..)5 the value of R is used
as the rule set. The original dictionary
is used. Basically, the REPT mode is a
mechanism for defining functions internal
to a particular transformation. The value
of X, 1.e., @X, is R.

X CONT R Same as REPT except modified dictionary
is used during ¢transformation.

Example

The following is a FLIP program to perform symbolic differentiation
and simplification. It 1s a straightforward adaptation of the
CONVERT program appearing on page 613 in [7], except that only some
of the simplification rules are shown. The basic idea of DERIV is
that the connective, +, -, ¥, /, or ¢+ is identified in the rule set
and then the appropriate simplification rules are called by means
of the dictionary variables SPLUS, SMINUS, STIMES, SDIV, SEXPT.
<BEGN> 1is explained below in section on CONVERT prim.tives.
Essentially, it means apply entire process to what follows <BEGN>.
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(DER1IV
(LAMBLCA (EXPR VARBLE) (TRANSFORM
EXPR
*((=VARBLE 1)
(S1CATOM 2] @)
(Cee + o) (SPLUS DL DR))
(Cee = oo) (SMINUS DL DR))
CCee * o0n) (SPLUS (STIMES LL DR) (STIMES
DL
PRI Y)
(Cee /7 oo) (SDIV (SMINUS (STIMES RR DL)
(STIMES LL DR)Y) (SEXPT RR 2)))
CCee t o) (STIMES RR (STIMES (SEXPT
‘LL .
(SMINUS RR 1)) DL

NIL
(K PAV 51 CNUMBERP *)
L PAV $1 ENUMBERP *1]
LL SKEL =(UNLIST #1)
RR SKEL =(UNLIST #3)
DL SKEL (<BEGN> =(UNLIST #1))
DR SKEL (<BEGN> =(UNLIST #3))
SPLUS REPT (CCK L) =(PLUS @K eL))
((s1 2> #1>
(<2 81) #2)

(CE1 #1) (2 * #1))

(8] S1) (21 + #2)))
SMINUS REPT (C($] @) #1)

((K L) =(PLUS @K (MINUS @L)))

(C3 $1) (- #2))

(C(s1 #1) @)

((S1 81) (SPLUS #1 (- #2))))
STIMES REPT (((se B oo B)

CCBL 1) #1)

3 s1) #2)

((xk L) =(TIMES 8K eL))

((s1 #1) (#1 t 2))

(81 S1) (#1 * #2)))

SDIV REPT (CCs1 1) #1)
(<2 81> @)
(¢s1 #1) 1)
((S] S1) (#1 /7 #2)))

SEXPT REPT (CCs1 1) #1)
((s1 @) 1)
(1 s1) 1)
((S1 $1) (#1 * #2)))

)M

CUNLIST
(LAMBDA (X) {(COND
(C(CDR X) X)

(T (CAR X3))))
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Segments and Items

Consider the dictionary (X PAT $3 (Y) PAT $1). According to the
dictionary, X is to match the same as the elementary pattern

$3 and Y is to match the same as the elementary pattern $1.
According to the CONVERT conventions, however, X is to matech an
item and Y a segment. However, the elementary pattern $3 always
matches a segment, and the elementary pattern $1 always matches
an item. This ambiguity is resolved by adopting the convention
that when the dictinnary variable is enclosed in parentheses,
{he translation of the accompanying pattern indicates it is to
match a segment, if possible. Thus elementary patterns that
always match segments do so regardless of whether the correspondin~
dictionary variable is listed. Elementary patterns that always
match items are similarly unaffected by the form of the corres-

ponding dictionary variable.

However, it 1s best if the user follow the convention of erslosing
variables in parentheses in the dictionary whe¢never they are to
match segments, and not enclosing them in parentheses when they
are to match items, even where it seems unnecessary to make the
distinction, i.e., where the corresponding FLIP pattern always
matches the same way. One case where difficulty might occur,
otherwise, is with the mode PAV. PAV uses the original form of
the dictionary variable to determine the form for the new entry
that it adds to the dictionary. Thus, with the dictionary

X PAV $3, X will match the same as the elementary pattern $3.
However, the new entry added to the dictlonary after $3 matches
the segment S, will be X VAR S. This means that the pattewn

(X X) will not match with the list (A B C A B C). (It will match
with the 1list (A B C (A B C)).) Hcwever, If the corresponaing
dictionary entry had been (X) PAV $3, then (X X) would match with
(ABCABZC),
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<BEGN>, <REPT>, and <CONT>

In addition to the dictionary, three elementary formats have Yeecn
borrowed from CONVERT and added to FLIP. These are <BEGN>,

<REPT>, and <CONT>, #* They complement and are similar
to the CONT and REPT modes of the dictionary.

(<BEGN> S) this form can only be used while inside
of TRANSFORM. 1Its value 1s computed by
first constructing using the format S,
and then transforming this using the ori-
ginal rule set and original dictionary.
l.e., starting the TRANSFORM program all
over again.

"<RFPT> S R) value 1s the result of first constructing
using the format S, and then transforming
thls using the rule set R and the original
dictionary. If R 1s an atom or an
expression of the form ((LAMBDA ...) ..)
the value of R 1s used for the rule set.

(<CONT> S R) same as REPT except mod!fled dictionary
is usea.

Each ot these forms may take an extra argument whose value 1is
treated as a starting label for the accompanylng rule set. Thus
(<BEGN> S 'TOP) 1s the same as (<BEGN> S), and {<REPT> S R 'EXIT)
has the same vaiue as constructing with the elementary format S.

¥ 7The CONVLRT notation is =BEGN=, =CONT=, anc¢ =REPT= for items,
and *BEGN¥*, ¥CONT#*, *REPT* for fragments. Since =X and ¥Xx have

a special meaning in FLIP, we usc a different notation.
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The value of each of these three elementary formats is added to

the 1ist being constructed as an item, unless the entire elementary
format is preceded by the prefix operator "#", in which case it

is added as a segment.

Example: the following FLIP function can be used to merge two
lists.

(MERGE (LAMBDA (X Y) (TRANSFORM (LIST X Y)
YOS LL) (%1 ..))
(#({1,1] #[2,1] *(<BEGN> ((#[1,2]) (#[2,2]1)))))
((NIL NIL) NIL) ))))

DICTIONARY FUNCTIONS

DICTRAN

DICTRAN is a function of one argument, the dictionary. 1Its value
is the translated version of this dicticnary. If $TRAN is T,
its normal setting_ DICTRAN also physically modifies its input.

ettt I e e T

b dadat gl

TRANSFORM1

TRANSFOIM1 is the function that does the work for TRANSFORM. 1Its
first argument 1s the 1list to be transformed. Its second argument

0, S A HUARI

is the rule set to be used in this transformatior.. Its third
argument 1s a dictionary. 1Its fourth argument is an optional
starting latel in the rule set. TRANSFORM1l is useful in conjunc- 5
tion with the dictionary because it assumes that its dicticnary

is alreaay translated, and therefore can be used to perform trans-
formations from inside of TRANSFOURM, using the modified dictionary.
TRANSFORM1 is used by <BEGN>, <REPT>, and <CONT>.

2

SR b Y
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ADDIGY

ADDICT 1s a function designed for modifying clctionaries elther
before or after they have been translated. Tt can be used elther
tc add a new entry to the dictionary, or to modify a rule set for
ann entry defined in mode CONT or REPT. Used in the first way, it
cakes two arguments. The first is the dictionary Co bhe modified,
or the name of a function whose definition contains the dictionary.
(In the latter case, the function definition must be of the form
(LLAMBDA & (TRANSFORM % & &)) ). The second argument is the entry
to be add.d, which 1s thun placed at the end of the dictionary.
Example: (ADDICT 'FOO - (X PAV $1))

When ADDICT is used to modify rule sets in the dictionary, it may
take up to five arguments. The first argument 1s the dictionary

as described abcve, and the second is the modification. The third
argument 1s the dictionary varlable whose rule set is to be changed.

This rule seft is lacated and 1s given t~ ADDRULE as 1its first argu-
ment, with the ori;i..al second argument of ADDICT as the second
argument to ADDRULE. The last two arguments of . _ICT are the

last two arguments of ADDRULE. Thus to add the simplification rule
corresponding to ((X 4+ 2) 4+ 3) = (X ¢+ 6) to SEXPT, perform

(ADDICT 'DERIV '((($1 ¢+ K) L) (#[1,1] ¢+ =(TiMES &K €L)))
'"SEXPT 3)
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Variables
RULES

ORIGDIC

$D

the complete rule set given to TRANSFORM1
as its second argument.

the original dictionary, 1.e., originaily
given to the last call tc TRANSFURM1.

the current rule set, e.g., if three rules
have already been processed, R would be
(CDDDR RULES).

the current dictionary - always in
translated form.

+OCONS and the Dictionary

The dictionary feature itself does not require the parsing to be
saved. Therefore, the user can set NOCONS to T provided he does
not use any marks in hils patterns or formats.
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C. OTHER FEATURES

Aborting the Search

The predicate on the $ elementary pattern alsc allows the user to
indicate to the $ function when to abandon searching. Consider
the pa‘tern

($(LESSP (LENGTH *) 5] $1 'A $).

This pattern requires that an A be found 1n the first six elements
of the input 1list. If no A 1s found, there will be much wasted
searching before the end of the 1list 1is encounterec., because $
will keep extending its segment and evaluating its predicate.

Thus for the 1list (Z X YW V U ... C B A), $ will attempt 26 un-
successful matches before quitting. This can be avoided by
changing the first elementary pattern to

$[COND ((GREATERP (LENGTH *) 5) (QUOTE FAIL)) (T T)]

Whenever the value of the predicate on the $ 1s FAIL, $ immediately

abandons 1ts searcnh and reports a fallure to the previous elemen-
tary pattern. If the value of ithe predicate 1s NIL, $ continues
searching as before. If the value i1s T, or some value other than
FAIL or NIL, the match succeeds, at least as far as $ 1s concerned.
Note that for patterns such as ($[pred] 'A $), the predicate will
not be applied until an A 1is found, because of the fast search
techniques. For cases such 4s this, the abort feature also works
for $$, the slow $ elementary pattern.
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Fallure Predicate

b

The fallure predicate extension to the 3§ elementary pattern allows
the user additional control of the search. Basically, the failure
predicate allows the user to specify under what conditions $ is

to resume searching following a fallure. It aiffers from the
abort predicate in that the abtort predicate operates before the

$ matches, whereas the fallure predicate operates after the $ has
matched, passed control to the next elementary pattern function,
and then been given back control due to a fallure later in the
match., The fallure predicate is written as another predicate, in
square brackets, immediately following the first one,

e.g., $[predl[failure predl. If the value of the fallure predi-
cate is T, the search continues, exactly the same as though there
had been no fallure predicate.

MARKSE are handled in a special way when the failure predicate 1is
being evaluated. Normally, a reference to a nonexistent portion
of a parsing produces an error. However, the value of a MARK

that refers tc an elementary pattern that did not match is FAILED,
if that MARK is evaluated from a failure predicate. Furthermore,
the parsing that is used contains the matches of all successful
elementary patterns, not just those that precede the $. Thus

in the elementary pattern

(${J(EQ #4 'FAILED] 'A $1 'B $1 'C 4)
the search will continue if and only 1f the reason for failure
was that a B was not found following the A. The above pattern

will not match the 1list (1 2 3 A4 B56 T7TAU8B9 C), even though
the same pattern without the failure predicate would match it.
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If the $ appears inside of an EITHER, RFPEAT, or SUBPATTERN,
MAKRKs can be used in the failure predicate to re.crence segments
or ltems matched at higher levels, by using the full bracket no-
tation with 4. If the corresponding elementary pattern d!d not
match, the value of the MARK will again be FAILED.

Because of the fast search strategles, the $ does not pass on
control until 1t finds a suitable point in the workspace. This
means that the elementary pattern

($CJINILL) 'A $ 'B $) *

will fail if a B is not found following the first A. However,
the firs’ $ will search for and find an A before passing control
to the rest of the match. The failure predicate 1s evaluated
only when a failure occurs at some point after the second ele-

mentary pattern. Compare this with the elementary pattern
($CJINILL] $1 'A $ 'B §)

This latter pattern will succeed only if an A Is the second ele-
ment in the workspace.

# NILL is a function of no arguments whose value 1s NIL.
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SIDE Coynditions

The SIDE elementary pattern allows the user to exerclse the same
controls over the matchling process as that offered by the abort

and fallure predicates of the $ elementary pattern. However, SIDE
does not match, and aside from controlling the matching process,
does not affect the final parsing. The form of the SiDE elementary
pattern Is

(SIDE predl pred?2)

The first argument to SIDE, if present, acts exactly as the abort
predicate for $. It 1is evaluated when the SIDE elementary pattern
is entered. If 1ts value 1s NIL, the SIDE elementary pattern
reports a fallure. Otherwise, SIDE allows the match to continue.
If a fallure occurs subsequently, the second argument to SIDE,

if present, 1s evaluated. MARKS are treated the same way as for
the fallvre predicate on the $. If its value 1s NIL, SIDE reports
failure. Otherwise, a match 1s agaln attempted.

$ will took through SIDE in the same way as it does to assignment
and housekeeping functions. After $ finds a suitable point in the
workspace, the SIDE ~lementary pattern will be entered as before.

NOT

The elementary pattern (NOT form) matches a single item provided

that item 1s not equal to the value of form. (NOT form) is thus

equivalent to $1[NOT (EQUAL * form)], but (NOT form) will operate
faster.
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Reentrant Subpattern

Normally, a subpattern which matches an item is not reentrant.
Thus, in the pattern ($ ($ $2 $) $ #[2,2] $), if no match is
found for #[2,2), control will return to the very first elemertary
pattern. Using the normal subpattern, there is no way to cycle
through the list matched by the subpattern before continuing to
the next list, because once a subpattern successfully matches as
an item, it 1s finished operating. However, a subpattern-item
can be made reentrant by me:ans of the prefix operator "+". Thus
using the pattern ($ +($ $1 $) $ #(2,2,] $), a match would occur
with tne 1list ((A B C) (DE F) (G H I) XY H). Similarly, the
pattern (+($ $1 $) ($ #[2,2] $)) could be used to match a list of
two lists whenever the two lists have a common element.

Reentrant REPEAT

REPEAT 1is similar to the subpattern-item with respect :¢ the re-
entrant question: once REPEAT has finished matching, 1t is never
reentered after a failure. *

* Of course, if control reverts back to an elementary pattern

previous to the REPEAT, which then continues the match, such as §$,
REPEAT will be entered again, the same as subpattern-item. However,
it 1s not reentered, i.e., allowed to continue on a match that it
had started previously.
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Since REPEAT also attempts to matcn as many times as 1t can,
wlthout regara to elementary patterns that follow it, 1¢ may have
a different effect than intended. For example, the pattern
(REPEAT[EITHER [A3;B]] A #) cau uever wmatcu because the final A
would alvays be included in the segment matched by REPEAT,
Similarly, (REPEAT[$1] $1) will never match.

However, REPEAT (E] can be made reentrant by writing instead

REPEAT(E / T]

This REPEAT will match repetitively using the sequence of ele-
mentary patterns E. However, 1f a failure occurs subsequently,

it will delete the last repetition, reset the workspace to the
value it had before the last repetition, and try again.
Essentic?'v, REPEAT operates as before, except that after a
failure, it backs up. Using this notéticn, the elementary patterns
(REPEAT[$1 / T] $1) and (REPEAT[EITHERLA;B] / T] A $) will work
correctly.

The full form for the reentrant REPEAT is

REPEAT[E / N1 N2 P]

where N1 and N2 proscribe bounds on the number of times REPEAT is
to match, and P 1s evaluated after a fallure to determine whether
REPEAT is to back up. REPEAT will continue to back up until
elther the lower bound N1 has been reached, or until the value

of P becomes NIL. MARKs that appear in P can refer foiward in
the parsing and are evaluated in the same way as those appearing
in the failure predicates for $ and SIDE.




Variadle Patterns and Foruuc..

The elementary pattern :X was defined to mean that X 1s evaluated
and then treated «.s a subpattern, l1.e. a list of elementary
patterns. ‘''hls definition is extended to allow the valu. of

X to be an arbitrary elementary pattern. Thus it 1s permissible
for X to evaluate to $1, or EITHER [$1 'A;], as well as a list of
elementary patterns, which is itsell an elementary pa%tern,
namely the subpattern. T'e : operator simply evaluates '*s
argument, translates it, and then attaches the resulting functions
to the list of elementary pattern function calls. It is thus
exactly the same as the PAT mode in the dictionary, and in

fact, the translation of the two are indistinguishable.

As in the case of the PAT mnd~, $ 1is "smart" enought to evaiuate

the argument of the : operat , translate it, and continue searching
whenever it encounters this type of elementary pattern. Thus

the pattern ($ :X $), where X has the value A, will match
essentially as fast as ($ 'A $).

In the case of the elementary pattern *:X, X may also be an
arbitrary elementary pattern, which then matches a segment.
'lowever, since EITHER, REPEAT, and § always match segments, the
presence or absence of "#*" will not affect their operation.
Similarly, if X evaluates to $1, :X and *:X have the exact

same effect, because $1 must match an item. The prefix operator
"#" only makes a difference when the elementary pattern can
match elther a segment on an item, 1.e., for the two elementary
patterns VAR and SUBPATTLERN. GSince this determination is made at
translation time, i.e., the firsv: time the pattern is used, one

cannot use both :X and #*:X.

An analogous extension has been made for varlable for..ats.
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Atomic Patterns and Formats

MATCH has been extended to accept single elementary patterns of
the VAR, 3N, $, and NOT types, as well as a list of elementary
patterns. No parsing is produced, but * will be bound to

the correct expression when CONSTRUCT is called witnh this parsing.

As a result of this extension, it is alsc possible to use MATCH
on atomic workspaces, for example, MATCH(1 $1(NUMBERP #]).
A similar extension is allowed for formats.
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APPENDICES

The three appendices below describe and summarize the three levels
of FLIP expressions. The first apnendix treats the external syn-
tax of FLIP exprecsions, sometimes called source languare. This

represents the cutermost level. The second appendix describes
the operation of REED which converts source language to inter-
mediate language, which is the form of FLIP expressions before
they are translated. The third appendix discusses the represen-
tation of FLIP entlties after translation, the innermost level.
PRETTYFLIP converts (by printing) expressions of level two or
level three to level one. Thus, we have the following relation-
ship:

SOURCE — 5 INTERMEDIATE |5 INTERNAL
LANGUAGE RERD LANGUAGE EEANGE RIS LANGUAGE

l

PRETTY FLIP |4
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Appendix 1: Source Language

This appendix summarizes the FLIP syntax. Individual FLIP
expressions should be separated by at least one space or a
carriage return. Althougn the syntax 1s divided into expressions
used i1n MATCH and CONSTRUCT, the RELD program makes no distinction.
The expression #([1,2] is read the same whether it is to be used

in a pattern or format, although the two interpretations are
differe..t.

The followling conventlons are used below:

A is an atom; L is a 1list; X, Y, Z, X1 ... XN a.e
arbitrary LISP rforms;

[x] and [y] mean that (x) and (y) are LISP forms;

E, E1 ... EN are sequences of elementary patterns;
F is an elementary format, R is a ruleset.

MATCH

$

0 0 same as $, no predicates allowed
$$ $ without search strategies

cee same as $$, no predicates allowed
$(x] $ with predicate

$$(x] $$ with predicate

${x1(y] $ with failure predicate
$${x1ly] $$ with failure predicate

$X matches segment of length X
$x(y] $X with predicate
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=X

v
N

=X[y]
*x )
*'x

b\

*=X[{y}

#X
#(X1,X2,..%n]
“[4,X1,X2,..xn]
#Xlyl
#LX1,X2..Xn]{y]
#[4,X2,X2,..Xn
@x

VAR, 1tem type

same as =(QUOTE X); X can be an arbitrary
LISP expression, i.e., (A . B) is allowed.

if A is in dicticrary, same as 8A; other-
wise same as 'A, =A, or @A de,ending on
setting of DEFAULYT and definition of
PDEFAULT.

VAR with predicate

VAR, segment type

same as *=(QUOTE X)

if A is in dicticnary, same as @A; other-
wise same as ¥#'p or *=A, depending on
setting of DEFAULT and definition of
PDEFAULT.

VAR with predicate

MARY

MARK

MARK, from top level

MARK with predicate

MARK wit!i predicate

MARK from tcp level with predicate
Dictionary variable

Subpattern-item

Subpattern-segment

reentrant subpattern

variable pattern-item

variable pattern-segment
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EITHER[E1l,EZ,..En]
REPEAT[E]

REPEAT(E / T ]
REPEAT([F / X]
REPEAT([E / X Y]
REPEAT(E / X Y 2]
(SFT A Y)

A«Y

(NOT X)

(SIDE X ¥)

EITHER

REPEAT

Reentrant REPEAT

match at least X times

but not more than Y times
Reentrant REPEAT

assigns A to value of Y

where Y is an elementary pattern,
same as Y fiollowed by

(SET A #-1). U«VeX+Y ‘s allowed,
$1[NOT (EQUAL * X)]

Side condition
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CONSTRUCT

=X

'X

.gx
LA ¢

*p

#X
#[X1,X2..%n]

#[4+ X1,X2,..Xn]

*L

X

*:X

EITHER[E1;E2..En / X]
EITHER[E1;E2;..En]

REPEAT(E / X]

VARF, Item type

same as =(QUOTE X), X can be an
arbitrary expression

if A is in dictionary same as @A,
otherwise same as 'A,=A, or @A,
depending on DEFAULT and derinitton
of PDEFAULT.

VAR, segment type

same as ¥=(QUOTE X)

if A is in dictionary same as €A,
otherwise same as #'A, #=A, or @A
depending on setting of DEFAULT and
definition of PDEFAULT.

MARK

MARK

MARK, from top level

same as #1 unless it is last in a format,
subformat, EITHERF, o.> REFEATF format,
in which case it 1s same as #-1
Subformat-item

Subformat-segment

variable format-item

variable format-segment

EITHER elementary format

EITHER elementary format, search for

corresponding EITHER parsing automatically

performed

REPEAT elementary format
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REPEAT([E

(SET A Y

A+Y

ex

(<BEGN>
( <BEGN>
(<CONT>
(<CONT>
(<REPT>

(<REPT>

% (<BEGN>
% (<BEGN>
*(<CONT>
*(<CONT>
*(<REPT>
*(<REPT>

]

)

F)

F X)
F R)

F R X)
F R)
F R X)

F)

F X)

F R)

F R X)
F R)

F R X)

REPEAT elementary format, search for

corresponding REPEAT parsing
automatically performed

assigns A to value of Y

where Y is an elementary format,

assigns A to the value of Y.
Dictionary variable

<BEGN> elementary format
<BEGN> with GOTO label
<CONT> elementary format
CONT with GOTO label

REPT elementary format

REPT with GOTO label

<BEGN>-segment
~LnGui>o~-segment with GOTO label
<CONT>-segment
<CONT>-segment with GOTO label
<REPT>-segment

<REPT>-segment with GOTO label

The dictiona-y syntax 1s summarized on pages 82-83.
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Appendix 2: Intermediate Language

This appendix describes the intermediate language, the form of

FLIP expressions before they are translated. The transformation
from source language to intermediate language is performed by the
FLIP read function, REED. The intermediate language representation
is designed for convenier~e of translation: separate FLIP expressions
correspond to separate LISP expressions, with prefix operators
attached at the front of the corresponding LISP expressions, and
predicates attached at the back. For example, the intermediate
language representation for $[{GREATERP (LENGTH *) 5] is

($ (GREATERP (LENGTH ¥*) 5)); the representation of

¥a(CAR X) 1is (¥ = CAR X). The intermediate language is presented
by describing the operation of REED.

REED operates in the same way as READ (except for control charac-
ters, see pages 58-60), until it encounters one of the characters
YL, ,4,=,8,#,8,+,[, or either of the two atoms REPEAT or

EITHER. The action taken for each of these cases 1s described
below. X, X1 ... Xn denotes an expression read by REED. Thus

'X is read as (QUOTE X) means that '''FOO is read as

(QUO'E (QUOTE (QUOTE F09))). however, if a space carriage return,
) [, ], ; or / follows the character in question, no special action

is taken, e.g.,'' is read as (QUOTE ').

'X (QUOTE X)
*y (* . X), 1.e., (CONS (QUOTE *) (REED))
2X (2 . X)
: X (: . X)
+X (+ . X)
=X (= Y)
ex (DICTIONARY X)
-104-
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#X
#{X1,X2,... Xn]

$
$X

X1+X2

(MARK (X)), e.g., #1 1is (MARK (1)) i

(MARK (X1 X2 ... Xnr)), e.;., #[4,1,2] 1is
(MARK (4 1 2)) i

($)

($N X), e.g., $1 1s (3N 1); $$ 1s (3N $)
but the translators make a speclal check
for this

read as two LISP expressions, (SET X1)
and X2. Spaces between X1, «, and X2 are
ignored. i.e., X+Y 1s the same as X +« Y.

treated the same as with READ, i.e., REED
continues reading until it finds a matching
) or J. After REED completes reading

this expression, it attaches the expression
at the end of the previously read
expression. Thus,EgiLMEMB #2] is read

as two expressions ($N 1) and

(MEMB * (MARK (2))), and then the second
expression 1s attached at the end of the
first giving ($N 1 (MEMB * (MARV (2)))).
Spaces before "[" are ignored. If there

is no place to attach the expression, no
action 1s taken. For exauple, '[A B C]

is r-ad as (QUOTE (A B C)), because there
is no place to put (A B C).

If the previous expression is atomic, the
setting of DEFAULT 1s used. For example,
if DEFAULT 1is =, A[EQUAL #2 #3] 1s read as
(= A (EQUAL (MARK (2)) (MARK (3)))).

Using a predicate with an atom, however,
is very rarely necessary.
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EITHER, REPEAT If the next character read, excluding
spaces and carriage returns, is [, it is
treated as ((( and an expression is read
using REED. During the reading of this
expression, ; 1s interpreted as )(, and
/ as )). EITHER or REPEAT is then CONSed
onto the resulting expression.

Examples:
EITHER[A; B] (EITHER ((A) (B)))
REPEAT([$1 / 3 4] (REPEAT (($N 1)) 3 4)

Spaces before or after ; or / are
optional. If next character is not {,
EITHER or REPEAT 1s read as any other
atom.

For all other FLIP expressions, the intermediate representation

is the same as the LISP representation, e.g.,

(SIDE NIL (EQUAL #3 'FAILED)) is read and represented as

(SIDE NIL (EQUAL (MARK (3)) (QUOTE FAILED))).
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Appendlix 3: Internal Language

The translated form of patterns, formats, and dictlionaries con-
sists of sequences of function calls which are evaluated at the
proper time. The task of the translating functions, PATTRAN,
EITHERTRAN, FORMTRAN, and DICTRAN, 1is to convert FLIP expressions
to their corresponding function calls. Rather than describe
these transformations by listing again all of the FLIP entitles
of Appendix 1 and their translated forms, the corresponding FLIP

functions are listed below with an explanation of thelr arguments.

From this, the individual translations may be inferred. For
example, given that the funstion $ has two arguments, an abort
predicate and a fallure predicate, then the translation of $ is ($),
of $[x] is ($ (x)), and the translation of $[x]J[y] is ($ (x) (y)).

Translations are made permanent by altering the 1input list struc-
ture whenever variable $TRAN 1is set to 7T, its normal setting.

PATTRAN

The basic difference between the translation of elementary patterns
and el~mentary formats 1s that the arguments of elementary format
functions are always evaluated, while the declsion as to when and
if an argument 1s to be evaluated for an elementary pattern func-
tion 1s left to the function itself. (This is necessary because
predicates cannot be evaluated untll an elementary pattern has
tentatively matched. Also, fallure predicates cannot be evaluated
until the rest of the match is tried.)
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There are twelve elementary pattern functions: $N, VAR, NOTT,
SIDE, PATTERN, PAT, SET1, $, SLOW$, EITHER, REPEAT, and DICVAR.
The arguments to the elementary pattern functlons specify how 1t
is to match. PATTERN, EITHER, and REPEAT all require speclal
housekeeping functions after they match. Every other elementary
pattern translates into one, and only one, function call.

§§ 1s a function of two arguments, N and PRED. The value of N 1is
the length of segment matched by $N. PRED is the predicate, if
any.

VAR 1is a function of three arguments, V, SEG, and NPRED. The
value of V 1s matched by VAR as an item i1f SEG is NIL, otherwise
as a segment. (SEG 1s T 1f V is a MARK.) NPRED 1is the predicate.

NOTT is a functlion of one argument, X. NOTT matches provided
(CAR WS) 1s not equal to the value of X.

SIDE 1s a function of two arguments, PRED1 and PRED2. The flrst
predicate, if present, 1s applied before matching. The secona
predicate, if present, 1s applied after a fallure.

(SIDE NIL NIL) is effectively a NOP.

PATTERN 1s a function of two arpuments, PATTLIST and SEG.
PATTLIST 1s given to PATTRAN to be translated and 1s matched as
an item if SEG 1s NIL, as a reentrant 1item if SEG 1s T, and as a
segment if SEG 1s any other valiue.

PAT 1s a function of two arguments XPAT and *. The value of

XPAT is translated as an elementary pattern. ¥ 1s used by PATTRAN
for the translatlion. PAT 1s the function corresponding to ele-
mentary pvatterns that use the : operator. It differs from PATTERN

in tnat XPAT can be any elementary pattern, lncluding a subpattern.

SET1 1s a function of two arguments, NAME and V. NAME 1s set to
the value of V. If V 1s 1ldentical to NAME, the segment-item last
matched is used for V, as 1n the case of elementary patterns such
as F0O+«$1, which translates as (($N 1) (SET1 FOO F00)).

$ 1s a functlon of two arguments, PRED1 and PRED2, the two
predicates on the § elementary pattern.

SLOW$ 1s a function of two arguments, PRED1 and PRED2, the two
predicates on the $$ elementary pattern.
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EITHER 1s a function of one argument, $OR. $OR consists of a
Ilqg of' patterns, and 1s translated by EITHERTRAN, as described
below.

REPEAT 1s a function of four arguments, $RPT, N1, N2, and PRED.
$RPT is a 1list of elementary patterns, and 1s translated by
PATTRAN. A call to a speclal function REPEAT1 1s attached at the

end of the translation. The value of N1, 1f present, is the lower

bound on the number of repetitions. The value of N2,1if present,
1s the upper bound. PRED 1s a predicate used to decide whether
or not the REP&AT 1s to be reentered.

DICVAR 1s a function of one argument, X, the name of a dictlonary
variatle.

The translation of a pattern conslsts of the 1list of functlion
calls corresponding to the elementary patterns, and is headed by
the rejection information, described on pages 43-45.

Example: The translation of
($ $2 A ($ $1) $[IINILL] *=(GET 'FOO #[4,2])$) 1s

{((NIL NIL . A)

($)

($N 2)

(VAR A NIL NIL)

(PATTERN ($ $1))

(PATTERN1 NIL NIL NIL NIL)

($ NIL (NILL))

Ev?§ (GET (QUOTE FOO) (MARK (4 2))) SEGMENT NIL)
$

PATTERN1 1s the housekeepling function assoclated with PATTERN and
EITHER. Its arguments are set by PATTERN, or EITHER, by actually
changing the expression (PATTERN1 NIL NIL NIL NIL) in the trans-
lation. Since the arguments to PATTERN1 contain the complete
parsling, the translation of a pattern may appear very complicated
after 1t has been run a few times.
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The translation is kept 1in pointer-pailr format: CAR of the
translation 1s the 1list of function calls and rejection information;
CDR 1s a pointer to the tall of this 1list.

EITHERTRAN

The argument of EITHERTRAN 1s a 1i1st of patterns corresponding to
the alternatives for an EITHER elementary pattern. EITHERTRAN
translates this 1list for subsequent use by the elementary pattern
function EITHER. Tr's translation consists of translating in
turn each of the pat.erns, making a list of all of thelr trans-
lations, and heading this list by special rejection information
for EITHER. This rejection information consists of a list of the
rejection information for each individual pattern, provided the
rejection information indicated that the corresponding pattern
began with a VAR. If each of the 1ndividual patterns fell into
this category, the EITHER treJection information 1s headed by T,
otherwise by NIL. This rejection information 1s primarily for
use by the fast $. (see page 52)

Example: the translation of the elementary pattern
EITHER['A $2 ; 'C $] 1is

(EITHER (((QUOTE A) ($N 2))
(QUOTE C) (3)))

The translation of the argument to EITHER 1is

((T (NIL QUOTE A) (NIL QUOTE C))
((T NIL QUOTE A) (VAR (QUOTE A) NIL NIL) ($N 2))
((T NIL QUOTE C) (VAR (QUOTE C) NIL NIL) ($)))
except that the translatlon of the two patterns is in pointer-pair

format.
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There are nine elementary format functions: vARF, FORMAT, SETF,
EITHERF, REPEATF, <BEGN>, <CONT>, <REPT>, and DICVARF. Fach
elementary format translates into one and o.aly one function call.

VARF 1s a function of two arguments, X and SEG. X is attached to
the 1list teing constructed as an item if SEG is NIL or if X 1s an
atom. Otherwise, X 1s attached as a segment.

FORMAT is a function of two arguments, X and SEG. X Js used to
construct a list which is then attached as an item 1f SEG is NIL,
otherwise as a segment. Both subformat and varliable format trans-
late as calls to FORMAT. '

SETF is a function of two arguments, NAME snd V. NAME is set to

V. If V 1s 1dentical to NAME, NAME 1s set to the value of the
next elementary format function, e.g., the translation of FO0O+#3 1s

((SETF (QUOTE FOO) (QRUOTE F00)) (VARF (MARK (3)) T)).

EITHERF 1is a function of two arguments, X and Y. Y specifies the
corresponding EITHER elementary pattern. If Y 1s NIL, EITHERF
searches the parsing as described in the text. X is & list of
formats used for constructing.

REPEATF is a function of two argument, X and Y. Y specifies the
corresponding REPEAT elementary format, or a "wm.er. X 1is the
format used in constructing.

<BEGN> 1s a function of three arguments, X, SEG, and W. X is a
format for cecnstructing, SEG specifies whether the result is to
be attached as item or segment, and W is an optional GOTO label.
<REPT> and <CONT> are similar except their third argument is -
rule set and W is the fourth argument,

DICVARF is a function of one argument, X, the name of a ulctionary
variable.
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The translation of a dictionary it of a 1list of dotted pairs, con-
sisting of tne name of a dictionary variable and the form which

is its translation. The translation of moaes VAR, PAT, E{PR, and
SKEL I1s straightforward into the corresponding functions VAR, PAT,
VART', and FORMAT. Modes CONT and REPT translate to tunctions of
the same name that are very similar to <CONT> and <REPT>. The
transiation of modes UAR, PAV, BUV, and CUV involves a special
funetion DICVARL.

DICVAR]1 is a function of three arguments, X, Y, and Z. X is the
value of the dictionary variable. This 1s the argument that 1is
changed when dictionary variables with these modes ziatch as
:lementary patterns. The sezond ar ;ument »f DICVAR1l is (T) if
thc dictionary variable was enclosed in parentheses, otherwise
it 4s NIL. The third argument 1s the list of function calls for
matching. For TAV, BUV, and CUV, this list consists of a call
to PAT followea by a call to the function SETD. For VAR, it

consists of a call to either $N or $, followed by a cail to SETD.
SE.N is the function that modifies the dictionary.

s ST s

The first argument to SETD !s the mode of the variable. The
senond a pointer to its trzauslated definition so that SETD does
not have to look it up again. Thus, the translation of any
dictionary contalning mode, VAR, PAV, BUV, or CUV is always

circular.
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