PROPER EFFICIENCY AND

THE THEORY OF VECTOR MAXIMIZATION

by

ARTHUR M. GEOFFRION

August, 1967

WESTERN MANAGEMENT SCIENCE INSTITUTE

University of California, Los Angeles




University of California
Los Angeles

Western Management Science Institute

Working Paper No. 123

PROPER EFFICIENCY AND THE THEORY OF VECTOR MAXIMIZATION
by

Arthur M. Geoffrion

August 1967

This working paper should be regarded as preliminary in nature, and
subject to change before publication in the open literature. [t
should not be quoted without prior consent of the author. Comments
are cordially invited.

This work was jointly sponsored by the United States Air Force under
Project RAND, and by the Western Management Science [nstitute under
grants from the National Science Foundation and the Office of Naval
Research., It is a pleasure to acknowledge the helpful comments of
Allen Klinger.




SUMMARY

The concept of efficiency in problems with multiple criterion
functions--sometimes under an alias such as "admissibility" or "Pareto
optimality"--has long played an important role in econamics, game
theory, statistical decision theory, and in all optimal decision prodb-
lems with noncamparable criteria. Here we propose a slightly restricted
definition of efficiency that eliminates efficient points of a certain
anamalous nature. This new definition, which we call proper efficiency,
is related in spirit to the notion of "proper" efficiency introduced
by Kuhn and Tucker in their celebrated paper of 1950; but the present
definition avoids certain drawbacks inherent in the earlier one. A
camprehensive theosry of vector maximization is constructed using the
new definition, with and without various constraint qualification, con-
vexity, and differentiability assumptions. The theory includes as a

special case the standard theory of nonlinear programming.




1. INTRODUCTION

Given a vector-valued criterion function f(x) = (fl(x). ok fP(x))-

and a set X E_Rn of feasible points, the Vector Maximum Problem
(VMP) V-MAX f(x) subject to x ¢ X

is the problem of finding all points that are efficient: x° 1s said to
be efficient if x°¢ X and there exists no other feasible point x such
that £(x) > f(xo) but £(x) # f(xo). The concept of efficiency--sometimes
under an alias such as "admissibility," "maximality," noninferiority,'

or "Pareto optimality''--has long played an important role in economics,
game theory, statistical decision theory, and in all optimal decision
problems with noncomparable criteria.

In this study we propose a slightly restricted definition of
efficiency that (a) eliminates efficient points of a certain anomalous
type; and (b) lends itself to more satisfactory characterization (see
Theorem 2 below, and Sec. 11). We shall call this new definition proper
efficiency, although Kuhn and Tucker [7] have previously used the sawe
term. Their intent appears to h;ve been much the same as ours but, as
we shall see, the present definition is of greater generality and seems
to be somewhat more natural,

PROPER EFFICIENCY

Definition: x° is said to be a proper efficient solution
of (VMP) if it {is efficient and {f there Sxtlts a scalar
M > 0 such that, for each {, £l(x) > fi(x ) and x ¢ X ilmplies

£,(x) - fi(xo)

F,00) - £,00) ¢

M

]

for some j such that fj(x) < fj(xo).




An efficient point that is not properly efficient is saild to be
improperly efficient. Thus for x° to be improperly efficient means
that to every scalar M > 0 (no matter how large) there is a point

x ¢ X and an 1 such that £ (x) > fi(xo) and

£,(x) - fi(xo)

fj(x°) - f.(x)

> M

]

for all j such that fj(x) < f (xo). 1f we take a sequence <M’> ~ =

]

and remember that there is but 4 finite number of criteria, we see that

for some criterion io‘ the marginal gain in fi can be made arbitrarily
o
large relative to each of the margimal losses incurred by other cri-

teria. Assuming that the decisionmaker's desire for [1 is not sati-
(o]

ated, x° certainly seems undesirable. An example of improper efficiency

is given in Sec. III.

CHARACTERIZATION

A matter of great interest, both computationally and theoretically,
is the relation of the Vector Maximum Problem tou the following scalar
maximums problem:

(PX) MAX :i: Xifi(x) subject to x ¢ X,
i=]
where the Xi are nonnegative parameters often normalized according to
;i; ki = 1. The fundamental results characterizing proper vector max-
ima in terms of the solutions of (Px) are given in Theorems | and 2.
Theorem l. Let Xt >0(i =1, ..., p) be fixed. 1If

X0 is optimal in (Py), then x° is properly efficient
in (VMP) .
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Proof: It is easy to show by contradietion that x° is efficient. Let

£ = Max {X
i, o
with M = pX; that is, we shall show that for each 1|, fi(x) > fl(x ) and

0
J/\1}. We shall show that x 1is properly efficient in (VMP)

x ¢ X implies £ (x) - fi(xo) s pk (£,(x%) - £,(x)) for some je J,

J
where Jx 4 {1 j s p:fJ(x) < fj(xo)]. Suppose to the contrary that,

for some 1 and x ¢ X, we have fi(x) > fi(xo) and

£,(x) - fi(xo) > pk (£,(x°) - £,(x)), V] ¢ A

J ]

Summing the latter inequalities and dividing the result by the number q

of elements of Jx' we obtain
- 351 OV
(£,(x) - £,0x)) quu: Rt %) - £,00).

Using p/q > 1 and the definitions of A and J, .+ in that order, it

follows that

(£, - £,062) > 250

(x°) - f
iig! )

/ki)(f (x))

] b

Multiplying through by xl and rearranging, we see that this contradicts
the optimality of x° in (Pk)' Hence x° must be properly efficient,

Theorem 2. Let X be a convex set, and let the f
be concave on X. Then x° is properly efficient i
in (VMP) 1if and only 1f x© {s optimal in (Py) for
some A with strictly positive components.

Proof: The "if'" part of the theorem is provided by Theorem 1. 1If x°
1s properly efficient, then there exists a scalar M > 0 guch that for

each 1 ({ =1, .,, p) the system
o
>
fi(x) fi(x )

£(x) + M £,(x) > fi(xo) +M£,(x°), all § # 1

3 ]




admits no solution in X. By a fundamental property of comcave functions

[2, p. 62, for the ith system there exist \1 >0 =1, ..., p) with

P y-
£ Al = 1 such that
=1
Moo+ T b o) ruE)) At ®) ¢ w5 +n g
L fy y ) ! AR 1

(121

for all x ¢ X. Summing over i yields, after some simplification and

rearrangement,
f:u + M Z/\j)fJ(x) < tﬂ + M EXjn (x%)
=1 T4 =1 iy
for all x ¢ X. This completes the proof.
Thus from a computational viewpoint, finding proper efficient

solutions is reduced to a parametric programming problem; (PX) yields

only properly efficient solutions as X varies over

+ p P
AN eR :all A >0andE i

i=]

= 1h
and if concavity holds then this approach yields all properly efficient
*
‘polints.
A more complete characterization theory for the Proper Vector
Maximum Problem is developed in the next section. [t provides, for
example , necessary conditions for a proper vector maximum in the absence

of concavity.

*In this regard see, for example, Charnes and Cooper (3, cn. 91,
Markowitz (87, and Geoffrion [47.

(x%))




We shall pive the theory of the Proper Vector Miaximum Problem in r
terms of the relationships between the following six problems. 1In
problems 3, 4, and », X is taken to be o1 the form X = ixigix) 2 Ui,
where g(x) = (gl(x) s h gm(x)). In problems 3 and «, the differen-
tiability of all functions is presumed.

Problem 1 - tind a point x that is a proper efficient
solution ot (VMP),

- *
Problem 2 - Find a point x that is a4 locilly prover
efticient solution of (VMP).

Problem 3 - Find a feasible puint X such that none
of the p syalems** (i=1, ..., p)

x)eu >
Y;fi(x) u> 0
vx:i(i)-u <0, all j#i

ngi(;‘)'“ >0, all § 3 "‘Ai(;) = 1)
has a solution u {n l".

Froblem 4 - Pind a geasigle point x, a point v =y
in R, and a point X € A" such that y p(X) = 0 and

vxL\T.f(i) +y g(x)) =0

Problem 5 - Find a feasible point §, a point § 2y
in Rm, and a point £ ¢ A% such that yeg(x) =0 and x
achieves the unconstrained maximum of A.f(x) + y.g(x).

Problem 6 - Find a point x and a point Ae A+ such

that X is optimal in (P7).

* -
x is safd to be a locally proper efficient solution of (VMP) if
it is properly efficient in N- I X, where N- is some (open convex)
) - X X
neighborhood of x.
*k =
Vkv(x) represents the gradient vector of the function ¥ evaluated

at x = x.




Problem 1 is the central problem of interest. Problem 2 is its
"local" equivalent, and problem 3 is the local problem in terms of
directional derivatives. Problem 4 represents the generalized Lagrange
multiplier or Kuhn-Tucker conditions in differential form associated
with problem 1. Problem 5 is precisely equivalent to the following
saddle-point problem:

Find a point x, a point y 20 in Rm, and a point X ¢ A+
such that the pair (x,y) is a saddle-point subject to
y @ U of the function F(x,y) = K. f(x) + y-g(x); i.e.,
such that F(x,y) S F(x,y) S F(x,y) for all x ¢ R® and
y 3 0 in R®
Problem 5 18 also of interest for its own sake. Problem 6 {s just (PX)

In stating the relations between these problema, we shall use the
notation j-——:l:-;;;—-k, which 1is to be undarstood as follows. Let
(u,v) be the unknowns of problem j and (u,w) the unknowns of problem
k. Then this notation i{s to be read. "If (u,v) solves problem j,
and Lf assumptions A, ... hold, then there exista v such that (u,w)
solves problem k." Or, somewhat more loosely, 'Under assumptions Al

., every solution of problem j is also a solution of problem k."
The assumptions which will be used at one time or another are:

Assumption C: All functions are concave on !“.

Assumption D: All functions are continuously
differentiable on ER,

Assumption Q3: The following constraint qualifica-
tion holds: there exists a feasible point x such
that gj(i) > 0 for gj nonlinear.

Assumption Qp: The Kuhn-Tucker constraint qualifica-
tion holds (7, p. 483).
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We are now in a position to state the relationships between the
six problems.

Theorem (Comprehensive)

C

,/\\2

D1 e
Q,

1
' 3
c ‘##”’#,aﬂﬂf
4

S

c
Q

For example, the Comprehensive Theorem asserts (1 = 2) that every
proper efficient solution of (VMP) is a locally proper efficient
solution of (VMP), and (1 ¢ 2) that the converse is true under Assumption
C. It also asserts (5 — b) that 1f (;,;,X) solves problem 5, then
(x,k) solves problem 6; and (5<—'Q—1- 6) that if (x,X) soives problem
6, then there exists a point § ¢ R" such that (x,y,X) solves problem 5.
Because of its length, we give the proof in Appendix A. k
The Comprehensive Theorem is ‘actually many theorems in one. Its
significance is that it gives, under various assumptions, necessary

and/or sufficient conditions for proper efficiency. In order to be

explicit, we state the most important of these conditions as three

simple corollaries of the Comprehensive Theorem. Corollary 1l asserts ;
that under Assumptions D and Q2' the conditions of problem 4 are neces-
sary first order conditions for proper efficiency. Corollary 2 charac-
terizes problem 1 as being equivalent (in the appropriate sense) to ,'

problems 2, 5, and 6 under Assumptions C and Ql' Corollary 3 asserts




that all six problems are equivalent under C, D, and either Q1 or QZ'

COR 1 - 1f Assumptions D and Q’ hold, then problem
2 = problem 4.

COR 2 - If Assumptions C and Q, hold, thee problem
1 = problem 2 = problem 5 * problem 6.

COR 3 - If Assumptions C, D, and either Q, or Q
hold, then problem I “ problem j for j = }, ...% 6.

The Comprehensive Theorem subsumes, of course, the cases in which
there are no constraints or only equality constraints. Again for the
sake of explicitness, we shall state the main results for these car:z:s
in Appendix B.

It i{s of interest to note that in the special case all of the
fl are identical or p = 1, the notion of proper efficiency coincides
with the notion of a constrained maximum, sc that the results of the

Comprehensive Theorem reduce to well-known counterparts in the theory

of nonlinear programming.
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LII. DISCUSSION

We turn now to further discussion of the notion of proper
efficlency.

Just how slight a restriction proper efficiency is over efficiency
can perhaps be better appreciated in the light of the following. Denote
the set of all efficlient (properly efficient) points by x’ (szr.).

and the image in RP of X under £ by £[x2]. If the f are continuous

and concave on the closed convex set X, then f[x’pr. = f[x‘] c f[til_' ],
where the bar denotes closure. This result is a consequence of Theorem

2 and a reault* due to Arrow, Barankin and Blackwell [1]. Thus under

the given conditions, which are almost always satisfied {n concave
programming, the outcome of any improperly efficient point is always

the limit of the outcomes of some sequence of properly efficlient points.

COMPARISON WITH THE DEFINITION OF KUHN AND TUCKER

The notion of '"proper" efficiency introduced by Kuhn and Tucker
applies only when assumptions D and Q2 hold. Under these assumptions,
x° is said to be "properly" efficient {f it is efficient and {f it
solves problem 3. Let us denote the problem of finding such a 'properly"”
efficient point as (x’, 3). Then the results obtained by Kuhn and

ke
Tucker are (in the presence of D and Qz):

*If S is a closed convex set in Rn. then the set of efficlent
points of S contains the subset of points of S for which there is a
supporting hyperplane whose normal has all positive components, and
i{s contained in the closure of the last mentioned set.

i
Each of these assertions can be obtained as an immediate
corollary of the Comprehensive Theorem.
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(1) X2, 3ye———e 4 [7, Theorem 4)

e %, 3) [7, Theorem 5]
, Yl 5 (7, Theorem 6.

To justify exeluding efficient solutions that are not "proper,"

(i1) (4
i) o
Kuhn and Tucker give an example with p = 2 in which such a solution
admits a first-order gain in one criterion at the expense of hoi e
second-order loss in the other. Indeed, every "improperly" efficient
solution poses an equally objectionable anomalyft The converse, however,
is not true--not every anomalous efficient point is '"improper" in the
sense of Kuhn and Tucker, as the following example shows. Put n = 1,

° a 0. Assumptions

m=1,p=2, 80 =x, £, =%, 00 =, x
D and Q2 hold, and < 1s "properly" efficient, but for x positive and
sufficiently small the gain in fl can be made arbitrarily large with
respect to the loss in f2 (the gain-to-loss ratio is 1/x for x > Q).

Since 1-—-2522-.-3 (see Comprehensive Theorem), the set of points
“properly" efficient in the sense of Kuhn and Tucker contains all those
properly efficient in the present sense. The sbove example (in which
x° 1 improperly efficient in the sense of Sec. 1) shows that the con-
tainment caa be strict.

To summarize, the advantages of the present definition of proper
efficiency over that of Kuhn and Tucker seem to be that it excludes all

of a precise class of anomalies, and that it applies even in the absence

of Assumption D or Q2’

*For an explicit proof see Kliagey [6]; his proof seems to require
the locus of .(t) in the definition of Q2 to be linear, but this restric-

tion can be removed (cf. the proof of 2 3 in Appendix A).
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CONCLUSION

We began with the premise that, in optimization problems with
multiple criteria, it i{s natural to restrict attention to efficient
decisions that are properly so--in the sense that at least one poten-
tial marginal gain-to-loss ratio must be bounded. We then obtained,
in Theorems 1 and 2, basic characterization results for proper efficiency
in terms of the scalar parametric problem (PX). These results were
extended in the Comprehensive Theorem to include the relationships with
four other intimately related problem formulations, with and without
various constraint qualifications, differentiability and convexity
assumptions. The result is a coherent theory of the Proper Vector
Maximum Problem which generalizes the well-known Kuhn-Tucker theury for
nonlinear programming. This theory seems more satisfactory than that
possible using either the usual definition of efficiency or the closely

related definition of "proper' efficiency proposed by Kuhn and Tucker.
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Appendix A
PROOF OF THE COMPREHENSIVE THEOREM

Ai 1 6. This is a restatement of Theorems 1 and 2

(with A normalized).

C,Q; D
B, 6 5 4. These assertions are all known
o —C
results from the theory of nonlinear programming applied to (P)‘).
C'QI

6 =t 5 {8 & consequence of a slightly more general form of
the Farkas-Jiiahoweki Theorem [2, p. 67].

5 ————e——a 6 18 easily verified directly.

5-—D——>4 occurs because the gradient of & continuously
differentiable function must vanish at an unconstrained extremum.

A—C—-—S occurs because a concave functien (which

K+£(x) + yeg(x) must be, since X > 0 and y 2 0) achieves an unconstrained

supremum at any point for which its gradient vanishes.
C. l‘__C_Z. ] ————t-2 18 trivial.
Let x be a locally proper efficient solution in the neighborhood
N;. Under Assumption C, Theorem 2 tells us that x maximizes X:f(x) on
N; N X for some X ¢ A+. Again from Assumption C, x mus*t maximize

X’f(x) over ¥, and so by Theorem 1 X must be properly efficient. Thus
C

2 ———,
D. 3}e—————s/{, This result can essentially be found in (7%
Theorems 4 and 5].
} e 4 can be shown as follows. 1If ().(, ;, X) is a solution
to problem 4 then iglxi foi(i) + ij;j ngj()-t) = 0, where ‘
[j:gj(;() - 0]. for the complementary slackness condition §'g(§) =0

implies ;j e« 0 when gj(;) # 0. Upon postmultiplication of the vector
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equation by u, we readlly see by contradiction that X must be a
solution of Problem 3.

To see } =————=4, let X be a solution of Problem 3 and apply
the Farkas-Minkowski Theorem Lin turn to each of the p systems. As a
result, there must ex{st numbers vL 2 0 and IL 2 0, such that, for

J b
(=R SN G fxe PR DT

- i - i ) e 0
V;fi(x) + Lw V£ (x)+ L lj ngj(x) .

i 4 2 jeJ

Summing over [ ylelds

P { i} Py .

Z(l+ Tw )V;fj(X) + Z(Z zj)vxgj(x) = 0.

y=1 i#) ] jeJ i=1

N L2 P i
Put XL=(1+£H),yJ-(£ zj)forjc.!
vy 1 Lel

~

- - a p a
and yj =0 for j € J. Clearly x, A\, = X /{ L )‘L)'

a P 'S
and Yy, =y, / (L X,) solves Problem 4.
] J ] @
D, Q2

Be 2= =©B8.

C
- 5 6 1l - 2: hence B—C——> 2. To

We have previously shown 3 e 4

complete the proof of the Comprehensive Theorem [t remalns only to
show ZM-.B.

Let x be a locally proper efflcient solution of (VMP), and let
Assumptions D and Q2 hold. Suppose, contrary to what we desire to

show, that X Ls not a solutlon of Problem 3. Then one of the p systems,

say the first, has a solution: there exists u such that




v, fi (x) ru>0
v, tj (x) 'vz20,3=2,...,p

ngj x) °Ezo,a.lljagj (x) = 0.

By Assumption Q2 there exists a continuously differentiable arc

x(t), 0 £t £ 1, contained in the feasible region, with x(0) = x and

d &,(0) d % _(0)
some positive scalar o such thnt(—?&—" 3 Grils -—g-t— - au.

Consider the functions fl(i(t)). From Taylor's Theorem we have*

. d ft(g(tt))
fl (x(t)) = fL (x(0)) + ¢t TE

n o f (x) d x, (t)
=f )+l '_a'x;' 'i{— ,
=1 1| () £

wvuere tl {s some scalar between 0 and t. Denote the summation {n

the last term by 'L(t)' so that fl(i(t)) - fl(;) +t lL(t).

Evidently .L(O) - q vx fl(;) * u and IL(C) {s continuous (from the
right) at t = 0. Now for t sufficiently near 0, ®(t) is in the
neighborhood within which x Ls properly efflcient. Conslder a sequence
<tV> = 0, where ¥ > 0. By taking a subsequence, Lf necessary,

we may assume that the set [j:fj (x(t%) < fj (x) } is constant for all
v -~ cn'lhl' it J°. We know that < sj(tv)> - Vx fj(;b'ﬁ 20, all

je J. Buts (tv) < 0 by definition for all v and j ¢ J™, and so

J
< 'j (tv) > =0 for all j ¢ J°. PFurthermore, < ll(tv) >-‘avx fl(D-

u > 0. Therefore the sequences
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£, (x(t%y) - £ %
£, (D - £ (R(e™))

Y L3¢l

which can be written

Y s, (tV)
4 ——.-]'——>, J¢J

-t lj(tv)

all diverge to + ®. But thls contradicts the local proper efficiency

of X, and 80 x must Lndeed be a solution of Problem 3.




Appendlx B
NO CONSTRAINTS AND PQUALITY CONSTRAINTS

NO_CONSTRAINTS

Here we conslider the case Ln which X Ls an open set in R" (perhaps
the wvhole of Rn). Corollary 4 gives necessary, and Cor. 5 sufficient
conditions for a locally proper efficient (l.p.e.) solution.

COR 4 - Let the f, be contlnuously differentiable on X.

If x° is L.p.e.. then Vx[k'f(x")] = 0 for som A ¢ A'.
Iroof: Withw = 0 and x* ex, Q, becomes superfluous, and the

Conptehensive Theervem yields 2 2 3 ——dy

COR 5 - Let the f, be twice continuously differentliable

on an open set X C Rt If x;’ ¢ X satlafles V‘r)\'f(x Y] =0

for some A ¢ A+, and the Hesslan Vi M\-f(x )] Ls negative

definlte, then x° Ls l.p.e.
Proof: The assumptions imply that 3-f(x) is strictly concave on some
(convex) open neighborhood Nxo of x°. Hence x° maximizes this function
on N:o, and so by Theorem 1 x° must be l.p.e.

It is clear from the proof of Cor. 5 that the hypothesis "f1 twice
contlnuously differentiable and V:rk'f(x )] regative definite" can be
weakened to"fi continuously differentiable and A'f(x) concave on some

nelghborhood of x°."

EQUALITY CONSTRAINTS

Here we conslder the case X = {x:gj(x) =0, =1, ..., n}.

The Comprehensive Theorem subsumes this case if we write X ase
m

{x:gj(x) 20, =1, ..., m nnd.jzlgl(x) 2 0}. Assumption Ql ls
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satisfled if and only Lf all constralnts are linear; and the directions

u of concern in Q2 are those for which V‘g (;)'u =0, §j=1, ..., m.

p)
Corollary 6 is a Lagrange Multiplier Theorem, and Cor. 7 examines

the linear constraints case.

COR 6 - Let the fL and gJ b2 continuously differentlable on some

————

o

neighborhood of x°. and let QZ hold at x . 1If x° is !.p.e., then

T M) + u-g(x’)1 =0
X
for some )\ ¢ A+ and u ¢ R,

D,Q
Proof: The Comprehensive Theoream ssserts l——-z—-o-fo. Put

COR 7 - Let the 8] be linear, and the fl concave. Then each
of the following conditions (s necessary and sufficlent for

x° to be properly efflcient:

(1) x° maximizes A f(x) subject to g(x) = 0
for some )\ ¢ A+;
(11) x° Ls feasible, and maximizes > f(x) + u'g(x) over
all x for some ) ¢ A+ and 4 ¢ Rm;

(111) there exists u° ¢ R" such that (x°, u°) is a
saddlepoint of the function F(x, u) = MO f(x) + weg(x)
for some \° ¢ A+; t.e., F(x°, u) < F(x°, ") < F(x, u°)
for all x ¢ R" and b e R".

1f, in addition, th; f1 are continuously differentiable, then
a fourth equivalent conditioa fs:

(1v) x° satisfies
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vx[k'f(x°) +ug(x®>)=0
g(x°) = 0,

fotlomeX¢A+anducRm.

Proof : Directly from the Comprehensive Theorea.
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theory, statistical decision theory, and in all optimal d=cision prob-
lems with noncomparabhle criteria. Here we propose a slightly restrict
definition of efficiency that elininates efficient pnints of a certain
anomalous nature. This new definition, which we cal' proper efticienc
is related in spirit to the notion of "proper" efficienzy introdaced
by Kuhn and Tucker in their celebrated papar of 1950; but the presant
definition avoids certain drawbacks inherent in the =arlier one. A
comprehensive theory of vector maximization is constructed using the
new Jdefinition, with and without variosus constraint qualification,
convexkity, and differentiability assumptions. The theosry includes as
a sp2cial case the standard theory of nonlinear programming.
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