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summ 

The concept of efficiency In problems with multiple criterion 

functions—sometimes under an alias such as "admissibility" or "Pareto 

optimality"—has long played an important role in economics, game 

theory, statistical decision theory, and in all optimal decision prob- 

lems with noncomparable criteria. Here we propose a slightly restricted 

definition of efficiency that eliminates efficient points of a certain 

anomalous nature. This new definition, which we call proper efficiency, 

is related in spirit to the notion of "proper" efficiency introduced 

by Kuhn and Tucker in their celebrated paper of 1950; but the present 

definition avoids certain drawbacks inherent in the earlier one. A 

comprehensive theory of vector maximization is constructed using the 

new definition, with and without various constraint qualification, con- 

vexity, and differentiability assumptions. The theory includes as a 

special case the standard theory of nonlinear programning. 
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I.     INTRODUCTION 

Given a vector-valued  criterion  function  f(x)   -  (f. (x),   ...,  f  (x)) 
l P 

and a set Xc R of feasible points, the Vector Maximum Problem 

(VHP) V-MAX f(x) subject to x € X 

o Is  the  problem of  finding all  points  that are efficient;     x    is  said  to 

be efficient  if x c X and  there exists no oth^r  feasible point x such 

that  f(x)  > f(x )   but  f(x)   i- f(x ).    The concept of efficiency-sonütiiaee 

under an   alias  such as  "admissibility,"  "maximallty,"  noninferiority," 

or "Fareto optimalIty"--has  long played an important  role  In economics, 

game  theory,  statistical decision  theory,  and  in all  optimal  decision 

problems   with noncomparable  criteria. 

In  this study wt propose a slightly restricted definition of 

efficiency  that  (a)  eliminates  efficient points of a certain  anomalous 

type;   and   (b)   lends  itself  to more  satisfactory  characterization  (see 

Theorem 2  below,  and Sec.  II).    We  shall call  this new definition proper 

efficiency,  although Kuhn and Tucker  [7] have previously  used  the same 

term.    Their intent appears  to have  been much the same as  ours  but,  as 

we  shall  see,   the present definition is  of greater generality  and seems 

to be sonewhat more natural. 

PROPER EFFICIENCY 

Definition;    x    is said  to be s proper efficient  solution 
of   (VMP)  if  it is efficient and  if  there exists a scalar 
M > 0 such that, for each i, f (x) > f^x ) and x c X implies 

f^x)   -  f^x0) 

fjUo)   -   f^x)  *M 

for some J such chat f.(x) < f.(x0). 

wmm 



An efficient   point   th«t   is  not   properly  efficient   ia  said  to  be 

improperly efficient.     Thue   for x     to  be   improperlv efficient means 

that  to every scalar M > 0 (no matter how large)   there  is a  point 

x e X and an  i  such  that   f (x) >  f (x )  and 

f.(x)   -   f^x") 

fjU0)   -  fjU) 
>  M 

o v 
for all   j  such   that   f .(x)  < f  (x  ).     I f we   take a sequence <M   > -• « 

and   remember   that   there   in  but  a   finite   number of  criteria,   we   set    that 

for borne  criterion  i   ,   the marginal   gain   in   f      can be made arbitrarily 
o 

large   relative   to  each  of  the marginal   losses   incurred  by other  cri- 

teria.    Assuming  that  the dacisionaAkar*s dasire for   f       it  rut  satl- 
o 

ated,  x    certainly seems undesirable.     An example of improper efficiency 

is  given  in Sec.   III. 

CHARACTERIZATION 

A matter  of   great   interest,  both computationally and   theoretically, 

is   the   relation of the Vector Maximum Problem  to  the   following scalar 

maximum problem: 

(IV MAX 7 , X  f  (x)   Subject   to x C X, 
1-1     1  l 

where   the  X     are  nonnegative  parameters often normalized according  to 

t \    m  I.     The   fundamental  results characterising proper vector max- 

ima   in  terms  of   the  solutions of (P.)   are   given in Theorems   I  and   2. 

Theorem  1.     Let X,  > 0 (1  -  I p)  be  fixed.    If 
x0   Is  optimal   in  (P^) , then  x0   is   properly efficient 
in  (VMP) 
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Proof:     It it taay to show by contradiction that x    ia  efficient.    Let 

^ - Max  {X A   1.    We aha 11 ahow that x0 ia properly efficient in (VHP) 

with M - p^;  that  la, we ahall ahow that for each  i,  f1(x) > f (x ) and 

x e  X  implies  f^x)   -  f^x0)   « p^  (f (x0)   -  f .(x))   for some  J t J^, 

where J    A {l < j < p:f (x) <  f  (x )}.    Suppoae  to  the contrary that, x  ■ j j 

for some  i and x c X, we  have   f.(x) > f.(x )  and 

f^x)   -  f^x0)  > p^   (fjCx0)  -  fjCx)),  VJ c Jx. 

Summing  the   latter   inequalities  and dividing  the   result   by  the number  q 

of elements of J   ,  we obtain x 

( f^x)   -  f^x0))  > ^UfjCx0)   -  fjCx)) 

^x 

Using p/q > I and  the definitions  of X and Jx, in  that order,  it 

follows  that 

(f (x)   -   f.(x0)) >  £(X  A  )(f  (x0)   -   f.(x)) 
1 J#i    J    1       J * 

Multiplying through by X.   and  rearranging,  we saa  that  this contradicts 

the optlmality of x    in  (P») •     Hence x   oust be properly efficient. 

Theorem 2.    Let X be  a convex set,   and  let  the  f. 
be concave on X.    Then x0 is properly efficient 
in  (VMP)   if and  only  if xo is optimal  in  (Px)   for 
sooie X with strictly  positive components. 

Proof:     The  "if" part of  the  theorem is provided by Theorem  1.    If x 

is  properly efficient,  then  there  exists a scalar M > 0 auch that   for 

each  i   (i - 1,   ...,  p)   the system 

f^x) > f^x0) 

f^x)  + M f (x) >  f1(x0)  + M f (x0) , all  J  ^ 1 



•dnltt no solution In X.    By «  fund—af 1 property of concav« function! 

[2, p.  62],  for the i1    •yatem there exlet X^ > 0 vJ  - 1,   ..., p) with 
P      i 
T.    ^.  ■ 1 euch that 

J-l     J 

\J   f.(x)   +    Z    \J (fAx) +M f  (x))   < k1 fA*0)  +    I    X1  (f.(x0)  +M f.(x0): 
1    1 Jf^i    J J Jf'i     J       * J 

for all x c X.    Sunning over i yields,  after some simplification and 

rearrangement, 

£(1 + M ]C^)f,(x)   « 2^(1  + M L^)f ,(x0) 
J-l 17.1 J    J J-l i^j  J    J 

for all  x « X.    This completes   the proof. 

Thus   from a computational  viewpoint,  finding proper efficient 

solutions   is   reduced to a parametric  programming problem;   (P.)  yields 

only properly efficient solutions as  \ varies over 

P 
A+ ^ {X « RP   : all  X    > 0 and I    X    - ll. 

i-1 

and  if  concavity holds  then  this  approach yields all properly efficient 

* 
■points . 

A more complete characterization theory for the Proper Vector 

Maximum Probleo is developed  in  the next section.     It  provides, for 

example , necessary conditions for a proper vector maximum In  the absence 

of  concavity. 

In  this  regard see, for example, Charnes and Cooper  [3, Ch.  9], 
Harkovltx [81, and Geoffrlon [4"I. 



II.    THEORY 

UV  shall   ^ive   f\w   theory of  rhe   Proper  Vector Maximum Problem  in 

lorrih   ui   the   re lat i uriöh i ps   iietween   tlie   f. llowln^ six   problems.     In 

pnihlems  3,  A,  ami   '• ,  X   is   taken  to  be  oi   t ht-   forn;  \   = ixcgix)  >  0;, 

where  t?Cx)   ■    (m^x),    ..    ,   «  (x)j.     In problems   .3  and  H,   ih(>   differen- 

tiability of all   functions   ie  presumed. 

Problem   1    -   Kind  a  point   x   thfll   is   a   proper efficient 
solution  ot   (VMP). 

ProbK-m  ?   -   Find  a  point   x   that   is   a   locillv    pro pi'r 
efticient   solution  of  (VMP). 

Frtjblem J   -   Find  a   feasible  point   x  such   : hat   nom 
** of  tl>e  p  systems^  (i  ■ 1,   ...,  p) 

V f.Cx)^ > 0 
x  i 

V   t .f x)«u  ^ I),  all   j   ^   i 
^        1 

^K^x)^  :•  0, all J  5  A  (*)   = i) 

haa a lolutlen u In I . 

Frobler; '*   -  Find a feasible point x, a poinl y > 0 
in Rm,  and a  point \  € A+ such that y  nix)   «  d and 

V Siü)  + y g(x)] - 0 

Problem 5   -  Kind  a   feasible poinl   x,  a  point   v > U 
in R   ,  and  a  point  \ e A    such  that   vg(x)   ■ i' and  x 
achieves   the  unconstrained maxim 

hat   vg^xji   ■ u and   x 
urn  of   \- f(x)  + y*g(x) 

Problem  ()   -  Find  a  point  x and  a  point  A  «  A    such 
that   x   is   optimal   in  (Vr) 

x   is   said   to  be  a   locally proper efficient   solution of   (VMP»   if 
it   Is  properly  efficient   in  N- 1    X,   where  N-   is   some   (open convex) 
neighborhood  of   x. 

** 
r ?(x)   represents   the   Kr*ditmt   vector  of   the   function T evaluated 
a 

at  x ■ x. 
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Problem  I  ii  the central problem of Interest.     Problem 2  Is  its 

"local" equivalent, and problem  3  is  the  local  problem  in terms of 

directional derivatives.     Problem 4 represents  the  generalized Lagrange 

multiplier or Kuhn-Tucker conditions   in differential   form associated 

with problem 1.    Problem 5  is  precisely equivalent  tu  the  following 

saddle-point  problem: 

Find a  point   x, a   point   y > 0 in R   , and a   point  ^  c A 
such  that   the  pair   (x.y)   is a saddle-point   subject   to 
y i U of  the   function  F(x,y)   - ^-f(x)   + y  g(x);   i.e., 
such  'hat  F(x,y)   « Fü.y)   s F(x,y)   for «11  x « R0 and 
y ^ 0 in  Rm 

Problem 3   is also of  Interest   for  Its own sake.     Problem 6  is   Just  (P.) 

In stating the relations between these problems, we shall use the 

notation J. 
V -»-k, which  is  to be understood as  follows.    Let 

(u ,v)  be  the unknowns of problem J  and (u ,w)   the unknowns of problem 

k.    Then this  notation  is  to be  read.    "If (u ,v)  solves problem J, 

and  if assumptions  A.,   •••  hold,  then there exists w such  that  (u,w) 

solves problem k."    Or, somewhat more loosely, "Under assumptions A. , 

..., every solution of problem j   is also a solution of problem k." 

The assumptions which will b« usad at one time or another are: 

Assumption C;     All   functions are  concsve on E  - 

Assumption D:    All   functions are continuously 
differentiable on En. 

Assumption Qi:    The  following constraint  qualifica- 
tion holds:     there  exists a  feasible  point  x. such 
that gj(i) > 0 for gj  nonlinear. 

Assumption Q?:     The Kuhn-Tucker constraint   qualifica- 
tion holds"T7.  p.   ^83]. 



mtm 

Wc arc now in a poiitlon to state  th« rtlationahipa bttwacn the 

six problana. 

Thaoram (Compr^hanatva) 

I 

C 

Ql 

D 

For example,  the Coop rehenaive Theorem aaaerta  (1 "• 2)  that every 

proper efficient  aolution of  (VHP)  la a   locally proper efficient 

C 
solution of  (VMP) , and  (1 " 2)   that  the  converae  ia  true under Aaauaiption 

C.    It also aaaerta  (5 ~* 6)  that  if (x,y,\)  aolvea problem 5,   then 
C.Q, 

(x,X)  iolvea  problem 6; and  (5 * 6)   that  if (x,*) aolvea  problem 

6,  then there exlata a point  y c R    auch that  (x,y,£)  aolvea problem 5. 

Becauae of  ita  length, we  give  the  proof in Appendix A. 

The Comprehensive Theorem ia'actually many theorena  in one.     Ita 

significance ia   that  it  glvea, under various assumptions, neceaaary 

and/or sufficient conditiona  for proper efficiency.    In order  to ba 

explicit, we atate  the most  important of   theae conditiona aa  three 

aimple corollarlaa of  the Comprehensive Theorem.    Corollary  1 aaaerta 

that  under Assumptions D and Q.,  the conditiona of problem 4 are  necea- 

aary first order conditions  foi' proper effieiancy.    Corollary 2 charac- 

terises  problem  1 aa being equivalent   (in  the appropriate senae)   to 

Probleme 2,3, and 6 under Assumptions C and Q..    Corollary 3 aaaerta 

MHHMIH mam mmm 
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that  all  six problem» arc equivalent under C,  D, and either Q.  or Q.. 

COR 1  • If Aatumptlons D and Q^ hold,  then prob I 
2 "• problem 4. 

em 

COR 2 
1 - probl 

If Aaaumptlon» C and Q.  hold,  tha« problem 
lern 2 ~ problem 5 * problem  fc. 

COR 3 - If Aaauaptlona C, D, and cither Q    or Q- 
hold,  then problem  1 *• problem  J for  J  - 2,   ...,  6. 

The Comprehensive Theorem aubaumes, of course,  the  caaea in which 

there are  no conatrainta or only equality conatrainta.     Again for the 

sake of explicitnesa,  we ahall  state  the main results   for  these canc-s 

in Appendix B. 

It   ia of interest  to note  that  In  the special caae  all of the 

f    are  identical or p ■  1,   the  notion of proper efficiency coincides 

wich tha notion of a conatrained naxinuB, so that the rasults of the 

Comprehensive Theorem reduce to well-known countarparta  in the theory 

of nonlinaar programing. 



III. DISCUSSION 

We turn now to further discussion of the notion of proper 

efficiency. 

Just how slight *  restriction proper efficiency Is over efficiency 

can perhaps be better appreciated In the light of the following.  Denote 

the set of all efficient (properly efficient) points by X (x   ), pr. 

and  the  Image  In  R    of X    under f by f[X "].     If  the  f    are continuous 

and concave on  the  closed convex set X,  then f[X        1 c f[x ]c f[x ] '  pr. J -    J -    pr, ■" 
where the bar denotes closure. This result Is a consequence of Theorem 

* r    i - 2 and a result    due  to Arrow, Barankln and Blackwell  Ul-     Thus under 

the given conditions, which are almost always  satisfied In concave 

programming,  the outcome of any Improperly efficient  point  Is always 

the  limit of  the outcomes of some sequence of  properly efficient  points. 

COMPARISON WITH THE DEFINITIOW OF KUHN AND TUCKER 

The  notion of  "proper" efficiency Introduced by Kuhn and Tucker 

applies only when assumptions D and Q.  hold.     Under these assumptions, 

x0  is said  to be "properly" efficient  if   it  is  efficient and  If  It 

bulves problem 3.     Let  us denote  the problem of  finding such a "properly" 

efficient  point as   (X   ,3).    Then the results obtained by Kuhn and 

Tucker are      (in  the presence of D and Q»): 

* n 
If S is  a closed  convex set   In R   ,  then  the set of efficient 

points of  S contains  the subset of points of  S  for which there  is  a 
supporting hyperplane whose normal has all  positive components, and 
is contained  in  the closure of the last mentioned sat. 

** 
Each of  these assertions can be obtained as an inmedlate 

corollary of  the Comprehensive Theorem. 

mmm 
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(1)    (x^,  3) ■   4 [7, Thtorem 4] 

(U)    4 £—» QL*t  3) [7, Thtor« 5] 

(Hi)    (X*, 3)« ■   3 [7, n—rm 6]. 

To Justify ««eluding efficient lolutlont that «re not "proper," 

Kuhn and Tucker give an example with p ■ 2 In which such a solution 

admita a first-order gain in one criterion at the expense mi feiC • 

second-order loss  in the other.    Indeed, every "Improperly" efficient 

solution poses an equally objectionable anomaly.      The converse, however, 

Is not  true--not every anomalous efficient point  Is  "Improper" In the 

sense of Kuhn and Tucker, as  the following example shows.    Put n - 1, 

m -  I,  p ■ 2, g(x)   ■ x,  fj(x)   ■ x  ,  f2(x)   ■ -x   , x    - 0.    Aseumptlons 

D and Q. hold, and x    la  "properly" efficient, but  for x positive and 

sufficiently snail  the  gain  in  f.  can be made arbitrarily large with 

reapect to the lose In f. (the galn-to-loaa  ratio Is  1/x for x > 0). 

D.Qo 
Since 1 ■ * 3 (see Cooprehensive Theorem),   the set of points 

"properly" efficient In the sense of Kuhn and Tucker contains all  those 

properly efficiMt la the prMeot sense.    The above example  (in which 

x0  la  Improperly efficient  in the sense of Sec. I)  shows  that the con- 

tainment caa be strict. 

To sunmarlse, the advantages of the present definition of proper 

efficiency over that of Kuhn and Tucker seem to be that it excludes all 

of a precise class of anoatallea, and that  it applies even in the absence 

of Assumption D or Q». 

For an explicit proof see KIl^gMT [6];  his  proof so«» to require 
the   locus of jkt)   In the definition of Q2  to be  linear, but  this  restric- 
tion  can be removed  (cf.   the  proof of 2 l"e  m 3 in Appendix A). 
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CONCLUSIOW 

We began with the prenlte that,   In optimization problena with 

multiple criteria,  It Is natural  to reatrlct attention to efficient 

declslone  that are properly •o--ln the sense that at  least one poten- 

tial marginal  galn-to-loss ratio aust be  bounded.    We  then obtained, 

in Theorems  1 and  2,  basic characterization results  for proper efficiency 

in terns of  the  scalar parametric problem   (P^)•     These  results were 

extended in the Comprehensive Theorem to  include the relationships with 

four other intimately related problem  fornulatlons,  with and without 

various constraint qualifications,  differentiability and convexity 

assumptions.    The  result is a coherent  theory of  the Proper Vector 

Maximum Problem which generalizes  the well-known Kuhn-Tucker  theory  for 

nonlinear programing.    This  theory seems more  satisfactory   than  that 

possible using either the usual definition of efficiency or  the closely 

related definition of "proper" efficiency  proposed by Kuhn and Tucker. 
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Apptndix A 

PROOF OF THE COKWIHIWSIVI THEOREM 

C -^ 
A. 1  , f>.     Thlt  it a  rtttat«ffl«nt of Theorem«  1 and  2 

(with \ normalized). 

B. 6 ' ~^5 * 4.    Theae aasertlona are all  known 
"     -—t  

reaults  from the   theory of nonlinear programming applied  to  (P*). 

C.Qi 
6     ■ »5  ia a  consequence of a  slightly more general  form of 

the Farkaa lillwtM Theorem [2,  p.  67]. 

5 > 6  is  easily verified directly. 

5 »A occurs bacauM  cha gradient of a continuously 

diffcrentiablc   function must  vanish at  an unconstrained extremum. 

4 »5 occurs because a concave function  (which 

^■f(x) + yg(x)  must be, since X > 0 and y > 0)  achieves an unconatrained 

suprcouRi at any point   for which its  gradient  vanishes. 
C 

C. 1 J ~2.     1 ■■    * 2  is  trivial. 

Let x be a  locally proper efficient  solution in the neighborhood 

N-.    Under Assumption C, Theorem 2 tells us  that x maximizes ^'f(x}  on 

N- H X for 'some £ c A  .    Again   fro«  Assumption C,  x mus)- maximise 

£'f(x} over Jf, and ao by Theorem  1 x must  be  properly efficient.    Thua 

2 £—1. 

D. 3 ■ »4.     This  result can essentially be  found in  [?, 

Theoreme  4 and 3]. 

3 «-. ,       -.-4 can be shown as   follows.     If  (x, y, ^)  is a solution 

to problem 4 then    E X    V  f  (x)  +    Z y. V g.(x)   - 0, where M 
1-1  1    x J«J  J    X  J _ 

{j!gi(x)   " oL   for  the  complementary slackness  condition ygCx)  ■ 0 

implies y.■ 0 when  g.(x)  ^ 0.    Upon postmultiplication of  the vector 
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equatlon by u, we readily aee by conCradlctLon  that x muat  be a 

•olutlon of Problem 3. 

To  see 3 »4,   let x be a  «olutlon of Probler. 3  end apply 

the Farkas-Mtnkowiki  Theorea  In  turn  to  each of  the p •yetcms.     As a 

result,   there must exist numbers w    2 0 and i    2 0,  such  that,  for 

I ■  I,   ....  p, 

VfAx)  +    E «^ VI Ax)   ♦    Z z\ V g.Cx)   - 0. 
x  1 jfil J    x  J JtJ J    x  J 

Summing over  I yields 

p I - P    1 - Z (1 +   E w^r f,(x)  +    Z ( E r;)r g,(x)   - Ü. 
J-l i^J   J    X •) J«J  1-1  J    X J 

Put X    =  (I +    E   wj), y    -  (  E    zL)   for J   c J 
iyj    J        ■,        t-1    J 

and y    - 0  for J  < J.     Clearly x, \    - X   /(  Z    X ) 
J L        l     l-l 

and y,  - y,   / ( E X.)   solves Problem 4. 
J J l-l l 

D. Q2 
E.     2 * 3. We have previously shown 3- 

C                    C C 
 ».5                .6                 ■  1                 »2;  hence 3  ■  2.     To 

complete  the proof of  the Comprehensive Theorem  It  remains only to 

show 2    D'  Q2   . 3. 

Let x be a  locally proper efficient solution of  (VHP) ,   and let 

Assumptions  D and Q. hold.     Suppose,  contrary  to what we  desire to 

show,   that x Is not a solution of Problem 3.    Then one of  the p systems, 

say  the  first, has a solution:     there exists u  such  that 
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rx «!  (^   '  « > 0 

Vx f.   (x)   • u » 0, J - 2, 

^ g    (x)   • TT a 0, «11 J  3 gj   (x) - 0. 

By AtsuapCLon Q    there exists a continuously dlfferentLsble arc 

x(t) , 0 < t < I,  contained Ln the  feasible  region, with x(0)  - x and 
(i ^(0)                 d xn(0)^ 

some positive scalar or such  thatl     ." ,   ....  "-—)- a u. 

Consider  the  functions f.(x(t)).     Fron Taylor's Theorem ve have' 

d f,(x(t.» 
fl  (5(0)  -  tL (J(0)) +  t  l

dt 

n     b  f.(x) 
f,  Q ■»■ t E r*- 

1 J-l       d "j Ä(tL) 

d x^t) 

dt 

vtiere t.   Is some scalar between 0 and t.     Denote the summation In 

the last  term by  s^t) , so that f1(x(t))   -  f^x) +  t s^t). 

Evidently s,(0)  - a V    t.(*)   ' ü and s (t)   Is continuous (from the 

right)  at t - 0.     Now for t sufficiently  near 0, 5(t)   Is  In the 

neighborhood within which x  Is properly efficient.    Consider a sequence 

< t    >    - 0, where  t    > 0.     By  taking a subsequence,  If necessary, 

we may assume  that  the set  {j:f.   (x(t ))   < f    (x)   ]   Is constant  for all 

v -- call  It j'.     We know that < s (tV)>   -   or V    f.(xW i 0, all 
J *    J 

J c J*.     But s.(tV)  < 0 by definition for all v and J  c j', and so 

< s.   (tV)  > -• 0  for all J • J*.    Furthermore, < s.^)  > - or y    f^x) • 

u > 0.     Therefore  the sequences 
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f.   (J(tV))   -  f.   (5) 

fj   (x)   -  fj   (^(t^) 

which can be written 

t
V.,(tV) 

<       J > . J  «J". 
-tV ^(t^) 

all   diverge to + •.     But thla contradict! the local proper efficiency 

of x,  and so x muat Indeed be a solution of Problem 3. 
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AppcndLx B 

NO OONSTRAIKTS AHD EQUALITY OOHSTRAIWTS 

NO CONSTRAINTS 

Here w« consider the case  In which X La an open set  In Rn  (perhaps 

the whole of  R ).    Corollary 4 glvaa  necassary,  and Cor.   5 aufflciant 

conditions  for a locally proper «fflclent  (I.p.e.) solution. 

COR 4  -    Let  the  fL be continuously dlfferentlable on X. 

If K0 La   I.p.e. ,  then   V  IVf(x0)] - 0 for aoni'   X c A"1". 

Froof;    With « - 0 aad x* « X, Q2 totcom» auporfluou«, and ch« 

C««pc*^MaU« •Ommftm ylcUa 2 £—->»3 »4. 

COR 5 -    Let  the  f    be  twlca contlnuoualy dlfferentlable 

on an open set Xc Rn.     If x0  e X satisfies   V TXfCx )1 - 0 

for some X c A  , and the Heaalan   V     rx-f(x )1  la negative 

definite,   then xe   Is  l.p.e. 

Proof;     The  assumptions Imply that  x*f(x)   Is strictly concave on some 

(convex)   open  neighborhood N o of  x   .     Hence x    maximizes   this  function 

on N o,   and  so  by Theorem 1  x    oust   be   l.p.e. 

It  Is clear  from  the proof of Cor.   3  that  the hypothesis "f    twice 

continuously  dlfferentlable and  y   fX'f(x )] relative definite" can be 

weakened  to"f.   continuously  dlfferentlable and \'f(x)  concave on some 

neighborhood of x   . " 

EQUALITlf  CONSTRAINTS 

Here we consider the case X -   (x: g (x)  - 0,  J «  I ,   . . . , tn]. 

The Comprehensive Theorem subsumes   this case  if we write X aa 
m 

(x:g.(x)   2 0,   J  -   I ,   ..., m and   -£ g.(x)  * O].     Assumption Q.   Is 
J • j«I   *■ 
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satLsfLed if and only if all conatraints are linear; and the directions 

u of concern in Q- are thoae for which V g.(x) 'u =■ 0, j - I , . . . , m. 

Corollary 6 is a Lagrange Hiltlpller Theorem, and Cor. 7 examines 

the linear constraints caae. 

COR 6 - Let the f. and g be continuously dlfferentiable on some 

neighborhood of x , and let Q. hold at x .  If x is l.p.e., then 

V rW(x0) + ng(x0)l - 0 
x 

for some X c  A    and ^ c  R  . 

Proof:    The Coaprehonslve Theorem assarts  I > 4.    Put 

^ - yj - Vi- 

COR 7 -    Let  the g    be  linear, and the  f.   concave.    Then each 

of the  following conditions  is necessary and sufficient  for 

x    to  be properly efficient: 

(1)    x0 maxlmites X,f(x)   subject   to  g(x)  - 0 

for some X c A  i 

(11)     x0   is  feasible, and maxlmites  X-ffx) + u'g(x)  over 

+ m 
all   x  for some X c A    and u c  R  { 

(HI)     there  exists \i0 c Rm  such  that  (xc ,  u0)   l» « 

saddlepoint of  the  function  F(x, u)  ■  Xe-f(x)  + ^'g(x) 

for some X0  c  A*;   i.e.,  F(xc> . u)   « F(x0 , ^)   s P(x, ^0) 

for all  x c  R    and M> <  R  • 

If,  In addition,  the f    arc continuously dlfferentiable,  then 

a fourth äquivalent condition is: 

(iv)     x     satisfies 
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r rxf(x0) + ^-»(x0)] - o 
X 

8<« )  - 0. 

for some X c A    and \k t x . 

Proof ;    Directly from th« Coaprahanfllv« Th«er«a. 
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