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SUMIARY

Prediction of dermal injury resulting from exposure to thermal energy

of any given intensity and duration depends entirely upon the resultant

skin temperature-time history. Means are now available for assessing heat

transfer by low temperature radiation, convection and conduction to the bare
skin and through thin protective coverings of known physical properties.
However, thermal effects of nuclear detonations constitute a special problem

because much of the radiation lies in the visible range where the optical

properties of the skin and its coverings, if any, greatly influence the

heating pattern. Blackening of the skin eliminates e:fects due to its optic-
al properties but enhances the ever-present variations in the thermal "con-

stants" of the skin. The present report describes the utilization of a

mathematical equation and computer techniques for extracting these varia-

tions from empirical data obtained at relatively low levels of radiation

(<0.5 Cal /cm 2 sec ), and applying extrapolations of these values in calcu-

lations of temperature-time histories at higher levels of irradiance where

empirical data are lacking. This procedure is subject to validation by ex-

perimentation within a limited range of exposures. If validation is achieved

in the blackened skin then the entire system may be utilized in the determin-

ation of optical properties of unblackened skin.
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INTRODUCTION

The basic principles underlying tissue injury by heating, as we under-

stand them today, were enunciated by Henriques and Moritz in a series of

papers based on studies of tissue properties and burns produced by conduct-

ion heating. They fitted their data to an equation expressing tissue

damage as a temporal integral of rates of tissue injury depending upon the

tissue temperature, and increasing logarithmically with this temperature (1).

For this purpose the symbol 0 was chosen to represent damage and a value of

n a 1.0 was chosen arbitrarily to represent complete transepidermal necrosis.

The resultant equation was of the rate process type as shown in Eq. 1:

t t

a - 1.0 -1 dt J Pe E/RTX t (Eq. 1)
0o

where dQ/dt - rate of damage

t - time in seconds

P - constant of integration

R - gas constant

AE - energy of inactivation

Tx a tissue temperature in *K at time t

Subsequent studies in this laboratory using thermal radiation heating showed

that for short-term, high intensity exposure, the damage done during cooling

became significant and increasingly important as the heating episodes short-

ened, so that as much as 35 per cent of the total damage produced with an ir-

radiance of 0.4 Cal/cm2 sec occurred during cooling, after cessation of the

exposure (2). Thus, it became evident that the damage rates derived from the
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relatively long-term conduction heating studies required modification in

order to correlate accurately with tissue temperature. This adjustment was

made as shown in Figure 1 and using these rates it was possible to apply

the original equation as a composite of damage during heating and cooling

to yield a sum equal to unity at the point of threshold blistering (3).

The procedurez developed in these st.dies were satisfactory for their

purpose but required direct measurements of skin temperatures during the

irradiation, a difficult task at best and extremely so with very high-inten-

sity energy. It was desired, therefore, to devise a procedure for the pre-

diction of injury from a knowledge of the heating intensity and time alone

which could be used for estimating first the effects of square-wave pulses

and, finally, the effects of variable pulses of known patterns. The problem

is complicated not only by the need for considering damage during cooling

but also by the fact that the thermal conductiity changes with temperature

and vasomotion in the skin itself (2, 4). For this reason the mathematical

model developed in the present study was designed to provide for changes in

the conductivity which would reflect the temperature-time heating patterns

observed in the blackened skin of the earlier studies. It is understood that

* the blackening even though it is only 10p thick must contribute to the value

of the skin conductivity. However, for the present purpose this effect has

been ignored and the average cnnductivity is treated as though it were that

of the skin alone.

THEORY

The heating and cooling pattern of the skin exposed to a square-%,ve

pulse of radiant energy is the familiar exponential rise and fall shown in

2
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Figure 2. It is characterized by a rise in temperature from some initial

temperature, T0 , at time t a 0 when irradiation at a flux of magnitude Q

begins. The temperature continues to rise to some peak temperature TPK at

time t a T, the time at which the radiation ceases. The temperature then

drops, rapidly at first, then more slowly, toward the initial value, To.

The literature contains no single equation to describe both the heating

phase and the cooling phase continuously, although there are separate equa-

tions to describe either the heating phase or the cooling phase (5). The

real part of the following equation suggested by Buettner (6) accomplishes

the desired end:

T fa/jýTe - x2 /4a 2 t -- x 1- e +aTo

(Eq. 2)

where Tx a tissue temperature at depth x below the surface (°C)

Q - effective radiation on the surface of skin (Cal/cm2 sec)

k - heat conductivity (Cal/cm sec "C)
SCm3

p - density (g/cm

c - specific heat (Cal/g *C)

2 2a - k/pc u temperature diffusivity (cm /sec)

t - time (sec)

4
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x a depth below the surface (cc)

T w initial surface temperature (C)
0 

2
e(u) a integral of the probability curve - (Y dy Error Function

Y a time at which thermal radiation ceases (exposure time) (sec)

The equation can be derived directly from the general differential equation for

heat conduction in one dimension

T 2 2
LT a a2 (Eq. 3)
8t 6x

assuming a constant heat flow and an initial isothermal condition (vertical

temperature gradient equals zero), with the heat absorbed at the surface of

the skin transferred inward by conduction. The equation is obviously a two-

part solution; first the solution during the heating phase t < T made up of

the first two terms, the third term being imaginary or zero; second, the solu-

tion during the cooling phase t > T for which all three terms are real.

As time t approaches infinity, the first and third terms approach zero and

thus Tx approaches T0 . The third term is a Laplace solution for a negative Q

input in the interval T < t < w so that the effective heat input is zero, as

required during the cooling phase; thus Q = 0 for t < 0 and t > T while Q is

a positive quantity when t > 0 and t < T.

Equation 2 cannot be solved explicitly for either the thermal diffusivity
2

a or the thermal conductivity k. However, for any given experimental time-

. temperature history all other terms are known or can be assumed reliably and

a simplification may be made in order to provide for solutions for k. Since

6



the product of the density (p) and the specific heat (c) of human skin is

Very nearly one (oc = 1) (2) this approximation may be used to relate the

conductivity to the diffusivity:

2
a - k/pc (Eq. 4)

2substituting pc 1 a 2 k

Hence for any given experimental time-temperature history at any particular

time-temperature point we know the values of temperature (Tx), time Ct),

intensity of radiation CQ), initial surrounding temperature (T0), time to

peak temperature (T), at the given depth (x). Using this information and

a computer program, we are able to solve for a value of the thermal conduct-

ivity (k) of the skin at each time-temperature point in the experimental

curve.

The method of measuring and obtaining the experimental time-temperature

histories used in this analysis has been described (2). In the present anal-

ysis, the measured surface temperatures (x = 0) were used as raw data and from

each time-temperature point the value of thermal conductivity (k) of the skin

at the surface was computed. Then assuming that the value of conductivity

(k) of the skin remains constant from the surface inward, we found the value

of the tissue temperature (T x) at the depth of 80p, the commonly assumed

depth of the basal layer, the interface between the dermis and epidermis.

CALCULATIONS AND DATA

Nine experimental time-temperature histories were analyzed. Three were

7
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for a level of radiation of 0.10 Cal/cm2 sec, three for a level of 0.15

Cal/ca2 sac, one history for 0.30 Cal/cm2 sec, and two for a level of 0.40

2Cal/cu sec. Table I summarizes the main characteristics of the histories.

The first column in the table is the level of the effective radiation, Q,
2in Cal/ca sec where an absorptivity of 0.94 is assumed; column 2 is the

time at which thermal radiation ceases (exposure time), T, in sec; Column 3

is the total time of the episode, the time in sec at which the temperature

at depth x, T , falls below the level of the injurious temperature, 44"C;

Column 4 is the time interval between temperature points in sec; and Column

S is the peak temperature attained at depth x, in SC.

Some examples of the results of these analyses are shown in the plots

of Figure 3, where thermal conductivity of the skin (k) is plotted versus

tissue temperature. It is seen that the greatest variations occur at temp-

eratures below 440C. Since little variation occurs at temperatures abnve

44*C, it was possible to average the values of conductivity in this range.

The square root of this average value of conductivity during the heating

phase for temperatures equal to or greater than 44*C and equal to or less

than the peak Tx was found for each history and is listed in column 6 of

Table I under the heading of Al. Similarly the average value of conductivity

during the cooling phase for temperatures greater than the peak Tx was found

for each history and the square root of this average value is listed in Column

7 of Table I under the heading of A2. Care should be taken to distinguish

between the values Al and A2, the square roots of the average values of con-

ductivity during the heating and cooling phases respectively, and k, the

conductivity. The first two values, Al and A2, are computer variables and

8
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the variable k is the actual physiological parameter. The relationship be-

tween the three is expressed by Equation 4 where Al and A2 were chosen to
2

represent the diffusivity, a , during heating and cooling respectively.

It is important to note that using a constant value of thermal conduct-

ivity of the skin during the heating phase, Al 2 gave a satisfactory repre-

sentation of the temperature rise at all levels of radiation; however using

a constant value of thermal conductivity of the skin durint the cooling phase,

A2 2, did not give a satisfactory representation of the temperature drop at

2 2the higher levels of radiation(O.30 Cal/cm sec and 0.40 Cal/cm sec), as it

was first expected to do. Thus for all levels of radiation to achieve an

empirical fit, the value of A2 was incremented by -10-4 after the calculation

of the first time-tcmperature point during the temperature drop and was con-

tinually incremented by -10"4 after the calculation of each successive time-

temperature point on the temperature drop. Figure 4 is a plot of thermal

conductivity of the skin (k) versus tis5u," temperature, where some of the

experimental conductivity curves from Figure 3 are plotted along with the

theoretical conductivity curves used to approximate the experimental curves.

The theoretical curve is a straight line (k - constant value) during the heat-

ing phase and is a curved line 'I- 4_ -_0"4) during the cooling phase.

This theo.etical function of conductivity gave a satisfactory representation

of tine-temperature histories for all experimental data considered at various

levels of radiation. Figure 5 shows a plot of an experimental time-temper-

ature history tc;ether with the calculated theoretical time-temperature

history for a level of radiation 0.40 Cal/cm2 sec.

Column 9 of Tabl I shows the mount of tissue damage done during the

11
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heating phase designated f.; Column 9 shows the mount of tissue damage done

during the cooling phase designated a c and Column 10 shows the total tissue

damage done during the entire episode, designated OT, Notice that a larger

portion of the tissue dmage is done during the cooling phase at the higher

levels of radiation as mentioned earlier. Also, it should be noted that for

all nine histories, PT = 1.0, which represents a threshold exposure or damage

Just sufficient to cause complete transepidermal necrosis. The values of P,

the constant of integration, and AE/R, the energy of inactivation divided by

the gas constant, used in Equation 1 to compute the value of PC, 0,C and OT

listed in Table I where

P a 2. 1850 x 10 124

for 440t: < T < 50C
&E/R 3 93,534.9 -x

and

P - 1. 8230 x 10÷51

for T > 50°C
AE/R - 39,109.8 x

These values were determined by use of the plot of damage rates versus tem-

perature shown in Figure 1. Values of dQ/dt and T were read from the plot

and substituted into the following equation:

dQ2 p- E/RT

(3.q.e )

which yielded solutions for P and ýE/R.

Theoretical time-temperature histories were adjudged satisfactory repre-

sentation of experimental time-temierature hitoric, if the characteristic-

14



of the theoretical history (T, Total Time, Peak Tx, Al, A2, 1QC and f1T)

at a given level of radiation were within a reasonable range of the character-

istics of the experimental histories for the given level. What constituted

"a reasonable range" was not statistically defined since in some cases each

experimental characteristic at any given level of radiation contained con-

siderable variation due to the experimental nature of the data. However,

final criterion for any given theoretical history generated was considered

to be a value of 'IT very nearly equal to 1.0 (*5%).

After suitable theoretical time-temperature histories had been generated

to match the experimental time-temperature histories at various levels of

2radiation the values of the thermal conductivity during heating, Al , the

2thermal conductivity during cooling, A2 , the peak temperature attained, TPK,

and the length of time the skin is exposed to the radiation, T, were plotted

versus their levels of radiation. Figures 6 through 8 are these plots with

extrapolations to the higher levels of radiation (Q > 0.40 Cal/cm2 sec). It

should be understood that the value of thermal conductivity during cooling

read from Figure 6 for any given level of radiation is the value used to com-

pute only the first time-temperature point after the pev-. temperature. This

value is then decremented as mentioned above. However, the value of thermal

conductivity during heating read from Figure 6 for any given level of radia-

tion is the constant value used to compute every time-temperature point during

the temperature rise.

Using these extrapolated values of Al, A2, TPK, and T, theoretical time-

temperature histories of skin exposed to high levels of thermal radiation

were calculated. An example of these appear in Figure 9 where both the

Is
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, 'I
surface time-temperature history (the curve with the larger peak) and the

corresponding time-temperature history at a depth of 80p (the curve with the

smaller peak) are plotted. In comparison with Figure 2, the heatin and

cooling pattern of skin exposed to radiant energy, Figure 9, has two imuediate

differences. First, in Figure 9 after the peak temperature is attained and

the radiation ceases, the surface temperature does not drop below the-tempz

erature at depth as time continues. Secondly, the peak of the temperature

at depth curve is not followed by as sharp a drop off as is shown in Figure

2. Possible reasons for these differences are:

(1) possible error in extrapolation to these much higher levels of radia-

tion,

(2) differences in the mathematica ation used to calculate tissue

temperatures in Figure 2 (2) and uation used to calculate tissue

temperatures in Figure 9 (Equation 2) or

(3) the sensitivity of Equation 2 to the values of thermal conductivity

used during calculations of temperatures during the cooling phase.

The values of Q, RC, and fT were computed for each theoretical history

and it will be noted that each theoretical history calculated is a threshold

exposure, that is, for any given level of radiation an exposure such as shown

would be just sufficient to cause complete transepidermal necrosis. Table IY

is similar to Table I in that it summarizes the main characteristics of the

time-temperature history of skin exposed to thermal radiation except that

Table TI is for higher levels of radiation for which no experimental data

exists. Table I summarizes experimental data; Table II sumarizes theoretical

calculations. The values indicated, considered in comparison with the sparse

i20
S~20
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experimental data reported for various high intensity radiation burn studies

(7, 8) appear to be entirely feasible. Some of these are shown in Figure 10.

Discrepancies, particularly those noted for very short exposure tines, may

well be due to differences in experimental techniques.

CONCLUSIONS

It is concluded that it is quite possible to develop a mathematical model

that faithfully reflects the heating and cooling pattern of skin exposed to a

square wave pulse. Whether or not application of this model in extrapola-

tions to higher levels of intensity yields accurate results remains to be veri-

fied. Such indications as can be gleaned from existing data tend to support

the validity of this procedure.

HOTE: The mathematics and computer program involved in generating the theor-

etical time-temperature histories are reported elsewhere (9).

22
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prediction of dermal injury resulting from exposure to thermal energy of
any given intensity and duration depends entirely upon the resultant skin
temperature-tine history. Means are now available for assessing heat transfer
by low temperature radiation, convection and conduction to the bare skin and
through thin protective coverings of known physical properties. However,
thermal effects of nuclear detonations constitute a special problem because
much of the radiation lies in the visible range where the optical properties
of the skin and its coverings, if any, greatly influence the heating pattern.
Blackening of the skin eliminates effects due to its optical properties but
enhances the ever-present variations in the thermal "constants" of the skin.
The present report describes the utilization of a mathematical equation and
couter techniques for extracting these variations from empirical data ob-
tained at relatively low levels of radiation ((0o.5 Cal/cu2 sec.). and apply-
ing extrapolations of these values in calculations of temperature-time histories
at higher levels of irradiance where empirical data are lacking. This procedure
is subject to validation by experimentation within a limited range of exposures.
If validation is achieved in the blackened skin then the entire system may be
utilized in the determination of optical properties of unblackened skin.
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