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Abstract

Assuming a one-dimensional rate independent theory of combined

longitudinal and torsional plastic wave propagation in a thin-walled

tube, it is shown that the velocity of unloading waves, cu, must sat-

isfy either cs < cu < c 2 or cf < cu < c where cs and cf are respect-

ively the velocities of slow and fast plastic waves of combined stress.

c2 and c are respectively the elastic shear wave speed and the elastic

bar velocity. It is also shown that the velocity of loading waves

(moving elastic-plastic boundaries across which loading takes place),

cz, must satisfy c£ < cs or c 2 < c < cf orc < c . The general

features of the discontinuities associated with each type of loading

and unloading wave are established, and examples are presented of un-

loading waves overtaking simple waves.

iThe research reported here was supported by the Advanced Research Projects
Agency of the Department of Defense under Contract SD 86 with Brown
University.

2Assistant Professor of Engineering, Brown University.



Introduction

Several investigators involved with one dimensional longitudinal

plastic wave propagation have considered the problem of moving boundaries

separating regions in which the material response is elastic from regions

in which the material response is plastic. These moving elastic-plastic

boundaries are called unloading waves if the material at a section changes

from a plastic state to an elastic state as the wave passes the section.

Similarly, a moving elastic-plastic boundary for which the material in

front of the moving boundary is in an elastic state and behind is in a

plastic state is called a loading wave. Lee [1] showed that on the basis

of a strain-rate independent theory, the velocity, cu, of an unloading

wave across which stress, velocity, and strain are continuous must satisfy

c < c < c where c is the elastic bar velocity and c is the plastic waveu o o

speed for the stress state at the unloading wave. He also showed that the

velocity of a loading wave, c£, must satisfy either c£ < c or c < c

These results have proved to be very helpful in understanding the essential

features of plastic wave propagation when unloading is involved, as in the

case of pulse loading of a slender rod [2,3].

The previously mentioned investigations of unloading waves are for

the case when only one stress component is non-zero. In this paper we

consider unloading waves for the case of combined longitudinal and tor-

sional plastic wave propagation in thin-walled tubes. For this case, if

lateral inertia effects are neglected, there are two non-zero stress com-

ponents; namely, the axial stress a and the torsional shear stress T.

The governing equations, as well as solutions for step-loading cases,

for an isotropic work-hardening material have been given in an earlier

Numbers in brackets refer to references listed at the end of this paper.
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paper by the author [4]. In vector form the equations are

Aw + Bw 0 (1)
t x

where

u p 0 0 0 -1 0 0"

a 0 M 0 N -1 0 0 0
W A B=

v 0 0 p 0 0 0 0 -1

T 0 N 0 P 0 0 -1 0

The subscripts t and x in Eq. (1) denote respectively, partial differentiation

with respect to time and with respect to distance along the tube axis; u and

v are respectively the longitudinal and circumferential particle velocities;

p is the material density. In elastic regions the coefficients M, N, P are

constants
M = I/E

N= 0

P = l/i

where E is Young's modulus and p is the modulus of rigidity. In plastic

regions these coefficients depend on the stress state (o,T) and the stress-

strain behavior of the material. Thus, in plastic regions,

M = I/E + G(o/e) 2

N = GoT

P = I/P + Ge 2 T2

where G is the positive scalar function which appears in the equation

relating the plastic strain rate to the normal to the yield surface f.

P _f f

..ja kk (2 )•i] •ij •k2 k

For the case of isotropic work-hardening considered here, G is a function

only of the yield stress k
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k = [(a/e)2 + -2 ]1/2 (3)

where, for the Tresca yield condition, e = 2, and for the von Mises yield

condition, e =

Unloading Waves

Consider an unloading wave *(x,t) = 0 as shown in Fig. 1 to be a

wave across which stress and particle velocity are continuous. Let w(x,t)

be a solution of Eqs. (1) in both the elastic and the plastic regions.

Thus,

A (w ) + B(wx) = 0; elastic region (4a)
e t e x e

A p(wt)p + B(wx ) = 0; plastic region (4b)

where the subscripts e and p indicate that the associated quantity is evaluated

in the elastic and plastic regions respectively. Since w is assumed to be

continuous across the unloading wave, the total derivative of w along the

wave front,

dw
cw- = CuWx + wt (5)

where c = -t/O x is the speed of the unloading wave, must also be con-

tinuous across the wave front. Thus, at a point P on the wave front

Cu(wx)e + (wt)e = Cu(W)x p + (wt)p (6)

Making use of Eqs. (4) we can write Eq. (6) as either
(c A - B)((wt ) - (w) )= c (A - A e)(wt)e (7a)

up ttp up e t

or
(c uA - B)((w t) - (w t) )c (A - A )(w t) (7b)

Eqs. (7) constitute a system of inhomogeneous linear equations for the

jump in the time derivative of w, [(w)e - (W ) p]. In contrast to the
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problem of determining characteristic wave speeds, the unloading wave

speed is not determined by the algebraic equations governing the jump in

the time derivative of w acrbss the wave front. On the other hand, if

the unloading wave speed cu is known, the jump in the time derivative of

w can be computed from the solution on either side of the wave front pro-

vided that neither the determinant of (c A - B) nor the determininat of
up

(c A - B) vanishes. The latter provision is simply the condition thatue

the unloading wave speed not be equal to either of the two plastic wave

speeds or either of the two elastic wave speeds.

Although Eqs. (7) do not determine the unloading wave speed they do

place restrictions on permissible wave speeds for which unloading can

occur. In order to exhibit these restrictions it is convenient to eliminate

velocities from Eq. (7b) to obtain
2 2 o (a

(pcu /E - 1)[(a ) - (tp) lpcu Gk(k )p (8a)
u t e t p u t p

(pc2 /P - 1)[(T ) - (t) PCu2 Gk(k )pe2T (8b)
ut e t p u t p

where (kt)p denotes the time derivative of the expression in Eq. (3). In

the plastic region (kt)p is non-negative. The condition for unloading to

take place at the wave front is the condition that (kt)e be negative there.

That is, for an unloading wave

(o/S2)(ot)e + T(Tt)e < 0 (9)

Substituting (a t)e and (Tt )e from Eqs. (8) in (9) and simplifying gives

L(pc -) (M + P)(PC )+ 1
U 2 2 < 0 (10)

(pc /E- 1)(pc /u - 1)

where
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1 1G )2 1 22
L E p + O Ge T

The roots of the denominator of Eq. (10) are the elastic bar velocity

c = (E/p)I/2 and the elastic shear wave speed c2 = (M/P)I/2. Comparison

of Eq. (10) with Eq. (18) of [4] reveals that the roots of the numerator

of Eq. (10) are the slow and fast plastic wave speeds denoted by c ands

cf in [4]. These plastic wave speeds satisfy the inequalities

0 < cs • c2  (lla)

c2 $ cf 0C (llb)

From inequalities (11), inequality (10) is satisfied only if c satisfiesu

either

Cs 1u c c2 (12a)

or

cf $ c < c (12b)

Thus there are two, in general, distinct ranges of unloading wave speeds.

Unloading waves with wave speeds satisfying (12a) will be referred to as

slow unloading waves and those satisfying (12b) as fast unloading waves.

For a loading wave (k t) must be positive on both sides of the wave

front. This condition is equivalent to reversing the sign of the inequal-

ity in (10). Then, from inequalities (11) the speed of loading waves, c

must satisfy

c $ c (13a)

or

c2 $ c i cf (13b)

or

c ( c (13c)
90
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Analogous results for loading waves have been obtained for a very general

elastic-plastic continuum by Green [5].

Discontinuities at Unloading Waves

If the plastic region in front of the unloading wave is a constant

state region, then (kt)p is zero and, from Eqs. (8), the velocity of un-

loading waves must be equal to one of the elastic wave speeds and a dis-

continuity occurs in the time derivative of only one of the stresses. If

the discontinuity is in Tt then the unloading wave speed is equal to c2

whereas if the discontinuity is in at the unloading wave speed is equal

to C
0

If the plastic region in front of the unloading wave is not a constant

state region, then jumps in both a t and Tt generally occur. In order to

understand the nature of the unloading behavior for the two types of un-

loading waves as well as the behavior for the three types of loading waves,

it is helpful to investigate the directions in stress space of the jump

in the time derivative of the stress vector associated with each of these

waves. That is, we shall consider the jump in a t where a is the vector

with components a and T and the subscript t again denotes partial differen-

tiation with respect to time. We shall refer to [(at)e - (t ) p] as the

jump for unloading waves and [( t) - (at ) eI as the jump for loading waves,

where subscripts e and p again denote respectively, evaluation on the elastic

and plastic sides of the wave.

From Eqs. (8) the slope of the jump vector for unloading waves is

Itt] (pc /2 - 1)
[_tt - T (14)

t (PC /P~ 1) WeO
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where [ ] denotes the jump in the enclosed quantity. Since c is alwaysu

less than co, Eq. (8a) shows that ((a t)e - (at ) p) has the same sign as a.

Using the latter requirement to determine the sense of the jump vector

and Eq. (14) to determine the slope, the range of directions for unload-

ing from a stress state (a,T) for both fast and slow unloading waves is

as shown in Fig. 2a. The jump vector is directed from the point (0,T)

as origin. The limiting slopes from Eq. (14) as cu -cs and as c -cf

are respectively the slopes associated with slow and fast plastic acceler-

ation waves. The latter directions, which are determined by the stress

state (a,T) and the stress-strain behavior of the material, are indicated

as [a t]s and [a t]f in Fig. 2. In [4] it is shown that [a t]s- and [a t]f

are mutually orthogonal and that the direction of [a I lies between the

direction of the positive T-axis and the normal to the yield surface n.

Eqs. (8) can be made applicable for the case of loading waves simply

by replacing the unloading wave speed cu by the loading wave speed cV.

Then, the slope of the jump vector for loading waves is also given by

Eq. (14) with c replaced by c£. The range of directions of the jumps

for the three types of loading waves are shown in Fig. 2b.

Examples

The two types of unloading waves can be illustrated by considering

unloading of simple wave regions. As a first example we consider the un-

loading situation in Fig. 3a where an unloading wave, resulting from a

decrease in T at the boundary, overtakes a slow simple wave. We shall

show that the interaction results in a transmitted fast plastic wave, a

transmitted slow unloading wave, a reflected elastic shear wave and a

TECERICAL LIBRARY

BLDG 313
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reflected elastic longitudinal wave as shown in Fig. 3a. Here as pre-

viously in the case of loading waves and unloading waves, a 'wave' is

a curve in the t - x plane across which stress and particle velocity

are continuous, but discontinuities occur in their derivatives (i.e. an

"acceleration wave"). The regions between the various waves which inter-

sect at P are numbered as regions 1 thru 6. The derivatives of stress

and velocity at P can be discontinuous only across the six waves which

intersect at P. Since the sum of the jumps taken along a closed curve

surrounding P must be equal to zero we have

[wt 2-1 + [wt]3-2 - [wt]3-4 wt ]4-5 t: [wt6-1 + [wt]5-6 (15)

where, for example, [wt] = (wt) - (wt)I. The right side of Eq. (15)
t 2-1 ( t 2 (wti1

is determined by the solution in the plastic region and the magnitude of

the discontinuity in Tt at the boundary. The left side can be written in

terms of four unknown quantities. For this it is convenient to eliminate

jumps in the time derivatives of the velocities by the relations

[u PC [(16a)

[vt] - [,t (16b)
t PC t

where c is the wave velocity of the wave under consideration. Also, [a t]21

and [a ]6-1 can be eliminated by the relations

[a2= dI o [T (17a)

[a (do)[]
ct ]6-1 dt s [Tt ]6-1 (17b)

where (da/dT)f and (dl/dT) are slopes of the stress trajectories for fast
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and slow simple waves respectively at the stress state corresponding to

point P in Fig. 5a. Substituting for [a ]3-2 amd [T t]32 from Eqs. (8) and

using Eqs. (16) and (17), Eq. (15) can be written as

2.2

c Gk(kt ) 2 T[Tt]21 P~u t2 -[Tt]3_ =[t]6_ +[t]_ (1a

(pcu /• - 1)

do. pTCk(k)2d
-)f t] + 2 - [a](d)TdPt u /E - 1) t 4-5 T s t 6-1 (18b)

c uGk(kt )22T (18c)
1 T u t 1 1 [Tt]6 1
PCf t]2-1 2 pC tt3-4 pc t6-1 PC2  t 5-6(Pc~u /• - 1) 2s - 2

1 do cuGk(kt)2 1 1 do
--) [ T + + t 1 1 - Ttd- (18d)

PCfdTf t2-1 (pc 2u/E -1) PC t4-5 PC s t6-1

where

(kt)2 =(kt)1 + [kt]2-1 =-[kt]6-1 + [k t2-1

Eqs. (18) constitute four equations in the four unknowns [T ]2 [T 4t 2-1, t3-

[o t4-5 and c . Eliminating the first three unknowns and simplifying wet4-5 u

obtain the following equation for determining the unloading wave speed cu

(QR- ST)[Tt] 6 -1 + 2Q[Tt]5-6 = 0 (19)

where

(pc2 /E - 1)02 T(Cuc - 1)(C /Cf + 1 + cu/c° + Co/cf)
Q =p- s u f u f u i)

a(pc u /E - )(pc 2 1 - 1)
u 5
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(c ulC - 1)(c uCs + 1 + c uC2 + c 2c )

(pC 2 /l _ 1)

S (cU/Cf - 1)(cu/Cf + 1 + culC 2 + C2/Cf)

(pc2 /V. 1)
US=

(pc /V -)G(/Cul 1)(CulC + 1 + C2/C + C

S2T(pc2 /E - 1)(pc2 /E - 1)
u s

For a slow unloading wave, cs k cu c c 2, the coefficient Q is negative and

the expression (QR - ST) is positive. The expression (QR - ST)/Q is a

monotonically decreasing function of c which decreases from 0 at c = c tou u s

-• at c = c2 . Hence, the unloading wave speed c is uniquely determined
u u

for arbitrary negative values of [Tt ]6- and Tt ] 5-. For strong unloading

Ui. e. large values of [T t]56/[Tt]6I) c u approaches c2 whereas for weak

unloading cu approaches c . Once cu is determined from Eq. (19), the jumps

[Tt]2-1, [T t]3- and [a t]45 can be determined from any three of Eqs. (18).

The sign of [t I is easily shown to be negative as required by Fig. 2.
t 2-1

Thus, the general features of the interaction shown in Fig. 3a have been

verified for arbitrary values of the unloading jump [Tt] 5 - 6, construction

of the complete unloading boundary requires the use of numerical techniques.

If, at the boundary, the normal stress a decreases while the shear

stress T remains constant, the resulting wave interaction is as shown in

Fig. 3b. The analysis is the same as for Fig. 3a except that [T ] is
t 5-6

now zero and the unloading is produced by the jump [at] 5 _6. The governing

equation for the unloading wave speed cu is the same as Eq. (19) with 2Q[t ]5-6

replaced by -2S[ct]5-6. Again cu varies from cs to c2 as the ratio [a t] 56/[T t6-

varies from 0 to + •.
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An example in which a fast unloading wave is generated is shown in

Fig. 4. In this figure, unloading of a fast simple wave is shown to result

in transmitted and reflected elastic shear waves, a reflected elastic

longitudinal wave, and a transmitted fast unloading wave. The jumps

across the waves must again satisfy Eq. (15). Proceeding as in the pre-

vious cases the following equation is obtained for determining the unload-

ing wave speed c
u

Q[Tt]6-1 + 2[ t]5_6 = 0 (20)

where Q is the same as in Eq. (19). For cf < Cu < co, Q is a positive,

monotonically increasing function of c . From Eq. (20), c varies from
u u

cf to c as the ratio [o t] 56/[Tt]6-1, varies from 0 to --.

Concluding Remarks

The results presented here were obtained under what would appear

to be quite restrictive assumptions. Actually, the main conclusions

of the analysis are valid under considerably less restrictive conditions.

For example, the plastic wave speeds and the range of permissible wave

speeds for both loading and unloading waves do not depend on the assump-

tion of isotropic work-hardening, but depend only on the value of the

scalar function G and the direction of the normal to the yield surface

for the stress state at the wave. Also, the direction of the jump in

the time derivative of the stress-vector across either a loading or an

unloading wave does not depend on the assumption of isotropic work-

hardening. The latter assumption was made in order to obtain explicit

results that would provide insight into the essential features of un-
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loading waves of combined stress.

The examples illustrate typical unloading wave behavior for unload-

ing waves overtaking plastic waves. In the more general case where the

plastic region in front of the unloading wave (region 1 in Figs. 3 and 4)

is not a simple wave region and the boundary between regions 1 and 6 is

itself an unloading wave, the qualitative features of the interaction are

the same as shown in Figs. 3 and 4. That is, if the elastic wave of un-

loading overtakes an unloading wave with speed less than c2 the reflected

and transmitted waves will be as shown in Fig. 3 whereas if it overtakes

an unloading wave with speed greater than c2 the reflected and trans-

mitted waves will be as shown in Fig. 4.

The case of an unloading wave meeting a simple wave has not been

discussed. In this case the qualitative features of the wave interaction

depend on the relative strengths of the waves tending to produce loading

and unloading.

Finally, many qualitative features of the behavior along the unload-

ing wave and in the elastic region (analogous to the results in References

2 and 3) could be obtained for the case shown in Fig. 4. However, it

would be much more difficult, if not impossible, to obtain analogous re-

sults for the case shown in Fig. 3 because beyond point P the plastic

region adjacent to the unloading wave is not a simple wave region.
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