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ABSTRACT 

The distribution of performance errors in bipropellant rockets is 
determined as a function of engine and propellant loading parameters and 
contributing errors.    The distribution is found to be highly skewed,   so that 
the probability of exceeding three sigma can be significantly greater 
than it would be if the distribution were normal.     Thus,   three sigma as 
a minimum performance limit is not justified.    A detailed analysis is 
required in each case to determine the relationship between performance 
margin and probability of mission success.    Also,  a realistic method of 
optimizing the propellant loading bias is developed.    The methods pre- 
viously used have resulted in fuel biases that are usually much lower 
than the optimum.     Computer programs have been developed to perform 
the analyses described in this report,  both for the single-stage and the 
multistage case. 
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SYMBOLS 

Roman Uppercaae Lettera 

A the deviation of S from "5 in multiples of <rs 

C the deviation of shutdown performance from mean performance 

K the error scaling factor for each stage 

N the number of bipropellant stages 

S X -  1 

W the sum of non-outage performance errors in one stage 

X the total performance error caused by one stage 
W 

Z the fractional outage equal to   m— 
L 

Roman Uppercase Letters With Superscripts 

F*() the discrete probability that ()  = 5 

Roman Uppercase  Letters With Subscripts 

F   (Z) the discrete probability that the fractional outage has the value Z 

P the cumulative probability that X > 3? + a<rx or that T > T + »o",-!^ 

R, the oxidizer-to-fuel burning ratio 
b w 

R the loaded ratio of usable oxidizer to usable fuel equal to -_*— 
L f 



L 

R the nominal value of R. n b 

T. the total performance error caused by the first i stages 

W. the weight of usable fuel 

WT the total weight of usable propellant equal to W- + W 

W the weight of usable oxidizer o 

W the outage weight 

Z the maximum allowable outage 

Roman Lowercase Letters With Superscripts 

f  ( ) a probability density function truncated by command shutdown 

Roman Lowercase Letters With Subscripts 

f,( ) the contribution to f  ( ) from fuel outage 

f   ( ) the contribution to f  ( ) from oxidizer outage 

fr   -|( ) the probability density function for C  ] unless otherwise defined 

a 

Greek Lowercase Letters 

the deviation of X from If or of T from T in multiples of tr   or a,. r x t 
ß the propellant loading bias and the mean value of S 

6 the limiting magnitude of S for which zero outage occurs 
RL \ equal to -5— 
Rb 

u a dummy variable for integration 

£ the total error corresponding to the command shutdown perfor- 
mance level equal to T" + Ccr 
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Greek Lowercase  Letters With Subscripts 

ß the optimum propellant loading bias 

<rr -i the variance of [ ] 

Superscripts and Subscripts 

( ), refers to the situation in which fuel outage occurs unless other- 
wise defined 

( ). (or numerical subscript) refers to the i      or numbered stage 

( ) refers to the situation in which oxidizer outage occurs unless 
o otherwise defined 



SECTION I 

INTRODUCTION 

This  study primarily aims  to determine the  effects of outage  on the 
distribution of errors in the performance  of bipropellant-staged  rockets, 
and to develop a method to optimize propellant loading bias. 

In computing performance errors for  rockets,   three basic assumptons 

have been standard: 

a. All contributing errors are normally distributed. 
b. All contributing errors are independent of each other. 

c. Except in one special case,   all of the transfer functions ■which 
relate the contributing errors to the performance parameters are 
linear over the ranges of the errors.    The special case is asso- 
ciated with the outage effect,   characteristic  of a liquid bipropel- 
lant system. 

While investigation into the validity of all the preceding assumptions is 
desirable,   this  study deals only with the special case in Assumption c above. 

Therefore all the other assumptions are considered valid in this report. 
The special case combines three of the contributing errors  to form a highly 
skewed distribution.    This distribution often contributes more to the total 
performance error of a stage than all of the other contributing errors com- 
bined.     Thus the distribution of all of the combined errors can be  considerably 
skewed.     Until now,   this combined distribution has not been investigated 
adequately.     The specific objective of this  study is to determine certain 
distribution characteristics of combined performance errors.    The important 
characteristics determine the probability of exceeding a certain maximum 
allowable adverse  error or the adverse error which will not be exceeded 
with a particular allowable probability.    Also for this purpose,   the variances 
given for the  contributing errors are assumed to be population variances 

estimated with sufficient confidence  so that the probabilities computed from 
them are conservative. 
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SECTION 11 

THE OUTAGE FUNCTION 

Outage is defined only in reference to a bipropellant.    It is the 

usable weight of one propellant component (fuel or oxidizer) left in the 

tank when the usable portion of the other component is completely con- 

sumed.     Outage degrades the stage performance by increasing the burnout 

weight and decreasing the consumed propellant.     Errors in the amounts   of 

fuel and oxidizer loaded,  and in the predicted oxidizer/fuel burning ratio 

cause outage. 

The basic  outage function has been described in previous reports  (e.g., 

Refs.   1,   2,   3,   and 5).     However,   to derive the function here should aid  in 

explanation.    All quantities will be defined as the derivation progresses. 

Definitions are also given in the  symbols  section in the report front matter. 

The loaded  ratio R.    (or mixture ratio loaded) is the ratio of the weight 

of oxidizer W     to weight of fuel W, loaded  on the  stage and usable.     The 

term "usable"  excludes propellant trapped in the tanks or lines or  otherwise 

wasted,   even when no outage exists.    A useful intermediate parameter in 

this analysis is  \,  whi<;h is the ratio of R ,   to R,  ,  where R,   is the oxidizer/ 
J_i o b 

fuel burning ratio averaged over the burning time.     R,   is often called the 

mixture ratio burned. 

R. W 
X   =    R^    =R-W- <1) Rb Kb     f 

It is further useful to define a parameter S so that S   =  \ -   1.     Then 

W 

Rb f f (2) 

W     = R^ Wr + R.   W JS o b       f b       f 

-3- 



The actual amount of outage must be  specified differently in two dif- 

ferent regions.    When the loaded ratio equals the burning ratio,   no outage 

exists.    At this point,  X = 1 and S = 0.     When the loaded ratio is less than 

the burning ratio,   an excess of fuel (a deficiency of oxidizer) is loaded and 

a fuel outage occurs.    From Eq.   (1) observe that X <  1 and S is negative 

for this fuel outage situation.     Similarly,  when S is positive (X >  I) an oxi- 

dizer outage  occurs.    Separate expressions are required for fuel outage 

and oxidizer outage.    Fuel outage is equal to the usable fuel minus the fuel 

consumed by combining with the  usable oxidizer.     Similarly,   oxidizer 

outage is equal to the usable oxidizer minus the oxidizer ■which combines with 

the usable fuel.     Hence,   if one uses Eq.   (2) 

W 
W   -.  ■= W, -  =-i zf f        R, =   - WfS when S s 0 (3a) 

W        =   W     - R.   W,   =  R.   \V .S    when S ^ 0 zo o b      f b      1 (3b) 

where W   , is the fuel outage and W       is the oxidizer outaee. zf B zo 6 

The outage may be more conveniently expressed as a fraction of Wj. , 

the total usable propellant.     Z, and  Z    are the fractional outages for the 

two cases 

WL   =   Wf + Wo   =   Wf(i   + RbX)   =   Wf(l  + RL) 

W 
Zf   =   "W 

zf 
TT-R- when 3^0 

(4) 

(5a) 

W z 
IT 

Rbs 

1  + R, when S a 0 (5b) 



Although this outage function of S is nonlinear because of its discon- 

tinuous  slope at S  =0,   the two parts of it are assumed  (Assumption c, 

Section 1) to be individually linear within the ranges of the errors.    The 

slopes at S = 0 are chosen as the  slopes of the linear  segments  of the 

function.     These segments are obtained by assuming the loaded ratio R. 

and the burning ratio R,   are both constants in Eq.   (5) and that they are 

equal.     They are also assumed to be equal to the nominal value of the 

burning ratio,  which is denoted by R   .     Actually,   both RT   and R,    vary 

statistically,   and their average values are functions of S.     However,   their 

variations from R    are small and result in correspondingly small errors 

in outage.     Thus the fractional outage function may be written 

Zf   =   -    i £ S when SSO (6a) 
n 

R 
Z      =    .      "       S when S s 0 (6b) o 1  + R 

A plot of a typical outage function is  shown in Figure   1,   represented by the 

solid lines. 

In the exhaustion shutdown of a  stage  using pump-fed engines ,   an addi- 

tional effect may be encountered as described in detail in Ref.   6.     As one 

component of the propellant is exhausted ,   the other component is pumped to 

the engine at an increased rate,   so that an extra quantity of the excess 

component is consumed.    Thus the outage is reduced by an amount equal to 

this extra quantity.    An outage that would  be less  than the extra quantity if 

the effect were not present,   then becomes  zero.     A compensation is intro- 

duced into the analysis to allow for the burning ratio being so far  off during 

the  shutdown transient that the  specific impulse is  significantly reduced. 

An approximation to the over-all result is  shown by the dashed lines of 

Ficure   1.     In Ref.   6,   for a Titan III core  stage   i,   6, and 6     ■were found to be 6 e f o 
equal,   bat in the present study they are  treated as  separate quantities to 

accommodate  situations in which they are unequal. 
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The analytical expression in exhaustion shutdown is a modification of 

Eq.   (6) as 

Z£   =   -   ^  | ^     (S + 6f) when S S - 6f (7a) 
n 

Zo   =  T+^-(S-6o> whenS^6o (7b) 

Zf  =  Zo   =  0 when - 6f s s s 6o (7c) 

For convenience,  Eq.   (7) will be used for all stages whether the exhaustion 
effect occurs or not.    When the pump-fed exhaustion phenomenon does not 
occur,   6, and 6     will simply be set equal to zero,  which will make the 
equation the  same as Eq.   (6). 

■7- 



SECTION III 

THE OUTAGE DISTRIBUTION 

If S is characterized by a probability distribution which has a density 

function f   (S),   then the quantity Z which is a monotone   function of S in a 

given interval will be characterized by a density function in that interval 

wherever the derivative exists according to (see   Figure 2) 

fz(Z)   |dz|    =  fa(S)   |ds| (8a) 

fz<z) =  lall fs<S) <8b) 

Multiplication by the differentials  simply compensates for the change in 

scale so that the integral of f  (Z) over any subinterval in Z will be equal to 

the integral of f   (S) over the corresponding subinterval in S.    Thus,   from 

Eqs.   (7) and  (8) 

ff(Z)   =   (1 + Rn) f8(S) when S <   -6f (9a) 

1 + R 
f0(Z)   =        R   -   fs(S) when S >  6o (9b) 

n 

where f, and f represent the contributions to the density function from fuel 

outage and oxidizer outage. A density function does not exist for Z corres- 

ponding to the region between -6, and 6 for S. Instead, there is a discrete 

probability that Z = 0. It is equal to the probability that S lies between -6, 

and 6   .     Solving Eq.    (7) for S and  substituting into Eq.   (9) gives 

IJZ)   =   (1  + R   ) f    i-S    -   (1  + R   )  z,]      when Zr > 0 (10a) f n     s f n'      f f *        ' 

1  + R 
fo<z)  =   -TT-^'s 

1  + R 1 
5     +   —=    Z when Z    > 0 (lOb) o R o I o ' ' 

The restrictions on Z correspond to the  restrictions on S in Eq.   (9). 

-9- 
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Figure 2.    Transformation of Density Function 
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Now it is possible to write an analytical expression for the density 
function of Z in terms of the density function of S.    It is a hybrid continuous 
and discrete density function. 

f2(Z)   = ff(Z) + fo(Z) when Z  > 0 (11a) 

6 

f  (S) dS when Z   =  0 (lib) 

f   (Z)   =  0 when Z  <   0 (lie) 

where the functions f, and f    are given in Eq.   (10).    Since both these expres- 
sions cover the same region of Z,   their probability densities are additive in 
that region.     F    is the discrete probability that  Z   =  0.    Eq.   (lie) is consistent 
with negative outage being meaningless. 

The density function f   (S) is  obtained by assuming that the errors in 
W   .  W-,   and R.   are all normally distributed.    If the .logarithms of both 
sides of Eq.   (1) are differentiated at specific values of the variables,   the 
result is 

„ dW dR. dW, 
IT =  Iff RT " "W— t12' o b f 

Since the fractional errors are thus additive,   and since they are independent 
according to Assumption b,   the means and  variances of the fractional errors 
are also additive (Ref.   7).    And since X   =   1 at zero error,   the absolute error 
in X is the same as the fractional error in X.    This means that S,  which is 
equal to the absolute error in X,   is also equal to the fractional error in X. 
Therefore,   the variance of S is equal to the  sum of the  variances of the 
fractional contributing errors. 

2 2 2 2 ,.,. 
■"s   =   ''W      +   "K   +   ^W, (,3' 

o b f 
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Also,  the distributions of the contributing errors are normal according to 

Assumption a.    Since the sum of independent normally distributed variables 
is normally distributed,  S is normally distributed. 

.  (S-ß)2 

fa(S)   =   —i— e 2<rf (14) 
sv 

Above,  p is an intentional bias on the quantity S to make one type of outage 
more likely than the other.    Normally the weight of one component of the 
propellant is much less than the corresponding weight of the other component 
with which it combines.    Thus an outage in one direction causes more 
penalty to the system than an outage in the other direction caused by the 
same magnitude of error.     The error is intentionally biased to favor an 
outage of one of the components,   usually the fuel,   according to some criterion. 
If possible this criterion will minimize outage effects.     Methods of arriving 
at a desirable bias are discussed in Section VI. 

If the expression in Eq.   (14) is substituted into Kqs.   (10) and  (11),   an 
analytical expression is obtained for the distribution of outage.    It is a 

highly skewed distribution which looks something like that shown in Figure 3. 
Its mean and variance may be computed by taking the first and second 
moments  of the density function as 

CD 

"Z   =    y     Z fz(Z) dZ (15) 
0 

2        -s-Z =   Z2 Fz(0)   +  y    (Z - Z)2 fz(Z) dZ (16) 

12- 
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SECTION IV 

THE COMBINED DISTRIBUTION FOR ONE STAGE 

The effects of contributing errors on rocket performance are deter- 

mined as perturbations in a trajectory simulation.     The results are a 

variation in some performance parameter caused by each contributing 

error.     The performance parameters most commonly chosen are  (1) pro- 

pellant margin,  which is the excess propellant at burnout of the last stage 

when the mission conditions have been met,   and (2) velocity margin,  which 

is the excess velocity over the mission conditions,  which could be attained 

if all of the propellant were burned.     Since the transfer functions used in 

the trajectory simulation are assumed to be linear within the ranges of 

the errors  (Assumption c),   the performance parameter variations have 

distributions that are the same,   except in scale,   as the distributions of 

the errors which caused them.     If outage is treated as a contributing error 

in place of the three errors which contribute to it,   this  situation then holds 

for all contributing errors.     Since the errors other than outage are inde- 

pendent and normally distributed ,   their combined effect on the performance 

parameter is also normally distributed with a variance that is the sum of 

the variances of the contributing effects on the performance parameter. 

The means  of the contributing effects may be considered zero relative to 

nominal performance.    If the effect on the performanca parameter by the 

other errors is called W,   then tha frequency function of W is 

W2 

f    (W)    =    i-==re      2 a2 (17) w /Z w '     ' o-    v2n 

-15- 



If X is the total effect of all the errors in a single  stage on the perfor- 

mance parameter of that stage,   then the frequency function of X is 

CD 

fx(X)   =     /"  fw(X-u) fz(u)dv (18a) 

-oo 

oo 

fx(X)  = FZ(0) fw(x) +   /    fw{x-ü) fz(y) du (i8b) 

■where u is a dumnny variable.    The first form of this equation corresponds 

to Eq.   (15. 12.4) of Ref.   7.    The second form breaks f    into its three compo- 

nent parts.    The first term on the right hand  side accounts for part of the 

distribution of Z being discrete.    It is  simply the probability that 2.-0 

multiplied by the distribution of X when Z   = 0,   which is the distribution of 

W.    The lower limit of zero in the integral accounts for the f    function 

being zero when the argument is negative. 

Since the outage effect is independent of the other effects i   and  since 

the mean of the other effects is taken as zero 

X   = "Z (19) 

2 2 2 
o-     =   a     +   (r„ (20) X z w '       ' 

The important characteristics of the distribution of X are those which 

determine the probability of not exceeding a certain adverse error or the 

adverse error which will not be exceeded with a certain probability.     Only 

the regions of high probability,   in which the errors are several times the 

standard deviation of the distribution,   are of interest.    A plot of the entire 

density curve would provide little useful information.    Another function, 

P   ,   is defined as 
oo 

'-/ 
f   (X) dX (21) 

*+a^x  X 

-16- 



In other words,   P    shows  the probability that the error differs from the 

mean error by more than Of times the  standard deviation.     A computer 

program has been written to compute P    as a function of R   ,   o-   ,   3,  6,, r      a ^ a nsf 
6    ,   <r    ,   and or.    An example of a set of curves  of P     versus a is  shown o       w a 
in Figure 5. 

Although it is possible to integrate Eq.   (18) analytically,   as  shown in 

Refs.   5 and 8,   the integrand  must be split into several parts and the limits 

become very complicated functions of the parameters.    If hand computation 

is necessary,   this method  may be easier because  the resulting functions 

are of the form of the normal distribution function and can be found in tables. 

However,   for a machine,   numerical integration is easier.     Even Eq.   (lib), 

■which can be evaluated simply by looking up the limits in the tables of the 

normal distribution function,   can be evaluated more easily by numerical 

integration when a machine is used.     In the computer program,   each value 

of the integrand in the numerical integration of Eq.   (21) is evaluated by 

numerically integrating Eq.   (18).   and each value of the integrand in that 

numerical integration is evaluated by using Eqs.   (17),   (11) and  (10). 

The  values of R     and  <r    are available from the  error  analysis of the n s ' 
vehicle,   such as in Ref.   9.     In this case,   the criterion for choosing ß has 

already been selected,   so that ß is also available from the report.    Thus 

far,   values of 6    and 6    have been determined only for Titan III Stage  1 as 

given in Ref.   6.    The information is not included in the official error 

analysis  of any of the Titan III series vehicles,   and  so the figures given in 

Ref.   6 are just assumed to be representative of all Titan III first stages. 

For Titan III,   the value of a     may be found as a multiple of o-    by noting 

the relative effects of the two types of errors on the final performance of 

the vehicle.     This information may be obtained from the error perturbations 

in a trajectory analysis such as those presented in Ref.   10,   Table III. 

Thus ,   the value of the ratio of cr     too-    ■will normally be entered into the w z 
computer program to determine  the error distribution when trajectory 

analysis  is available.       Once the  value  of   <r      has been determined, 7 w 

17- 



the values of the other parameters may then be varied with o-     held constant. 
The remaining parameter a is used as the independent variable for plotting 
P   .     Usually values of ot from   1.5 to 5 will cover the useful range. 

Notice that the above analysis for a single stage is useful only when a 
particular stage has a requirement to meet certain performance standards 
independently.     Otherwise,   the stages in a multistage vehicle must be 
considered together as shown in Section V. 

18- 



SECTION V 

THE MULTISTAGE CASE 

When more than one bipropellant stage  is used in a rocket,   each such 
stage has its own outage distribution which affects  the performance para- 
meter.     In addition for range safety,   it is  sometimes necessary to command 
a stage  shutdown at a certain maximum level of performance.     Therefore, 
the distribution of performance errors  caused by each stage must be deter- 
mined  separately and  then combined with those caused by the previous 
stages. 

To combine the distributions of errors from the different stages,   the 
error variables must be converted to a common scale in the final-stage 
performance parameter which they affect.     Eq.   (18) must be modified 
accordingly as 

oo 
f   .(X.)   =   F   .(O)K.f    .(K.X.)+K2     /      f   .   [K.(X.-u)]f  .(K.v)dv       (22) 
XI       1 Zl'    '      l  Wl'     I     l' I       / Wl l'     I        '      zi       I    ' 

where X.  is the contribution to the performance error by the i      stage.     This 
modification simply scales the f    .  and f   . functions  so that their forms 
remain the same except the  scaling;  their standard deviations become 
<r   ./K.  and a  ./K.;   and the mean of the f  . function becomes ^i/K..     The wi      i zi      i zi i 
mean of the f   . function remains zero.    K.  is obtained by dividing cr  .  by 

wi i ■' 0    zi     ■' 
the standard deviation of the final-stage performance error caused by outage 
in the i       stage.     This figure is available from the trajectory perturbation 
analysis.     If any stage is preceded by stages not subject to outage,   the per- 
formance errors caused by these preceding stages may simply be combined 
with those caused by non-outage effects in the bipropellant stage,   for they 
are assumed to be normally distributed. 

-19- 



First,   Eq.   (22) determines the distribution of errors caused by the 

first bipropellant stage.     If this stage is to have a command  shutdown,   the 

distribution of performance errors caused by this stage is truncated at a 

point which corresponds to the level of performance    5i      at which the stage 

is shut down.     The density function beyond that point in performance is 

integrated to determine the probability that the  shutdown performance or 

better could be achieved if shutdown did not occur.    This number then 

represents  the discrete probability of occurrence of 5j   when shutdown does 

occur.     It is combined with the portion of the density function on the low 

performance side of 5,   to form a new hybrid continuous and discrete density 
* 

function,   f   , (X,). xl      1 

CllXl>   =   fxl ^l' When Xl  >   51 (23a, 

? 
F^Xj)   =   f      fxl(Xx) dXj when Xj   =   Ij (23b) 

-oo 

Ci^i' = 0 when Xl < ?1 (23c, 

v/here f , (X,) is given by Eq. (22) and F , is the discrete probability that 

X, = ?,. The shutdown performance may be conveniently expressed as a 

deviation C,  from the mean of X.  in multiples  of the standard deviation of X,. 

h   =  3S+ Cl -xl <24' 

where lC.  and  tr   ,  are found  by modifyinfj; Eqs.    (19) and  (20) as 

Xl = KT" <25) 

2 2 
2 zl wl , 

<r        =   —2-   +    —r (26) 

-20- 



The deviation of shutdown performance from mean performance is given as a 
multiple of the standard deviation for convenience if the information is 
available in that form and also to provide an indication of how much of the 
density curve is being cut off.   Usually,   the available information is in the 
form of the actud deviation,  which is  the full quantity C.<r  .. 

The next function that must be defined is the distribution of combined 
performance errors  caused by the first i stages.     It is called f . (T.),   where 

ti      i        ,. 
T.  is the total performance error caused by the first i stages.     If the i 
stage is to have a command  shutdown,   the f .  function is truncated as the f   . ti „, xl 
function was truncated so that a new hybrid function T. is formed.     Notice 7 ti 
that 

ft*i(Ti) ' Ci&O      for a11 Ti H Xl (27) 

Eq.   (23) may now be ■written as a form that applies  to the sum of the errors 
caused by the first i stages. 

f* (T.)   =  f . (T.) when T.   >   5- (28a) ti      i' ti      i' ii * ' 

F.;(T:)   =    /     ff.(T.)dT. when T.    =§. (28b) \(T)   =    f    f^(T.)dT. when T.    =   ?. ti      i /        ti'   i'        i ii 

f*i (Ti'   =   0 when Ti   <   ?. (28c) 

The expression f . (T.) is  obtained by combining the error distribution for the 
i       stage with the truncated distribution for the sum of the previous  stages. 

oo 

f.(T.)   =   F*      ,.(§.    .)£ .{T.  -§..)+     /       f   .(T.-i')f*.   ..(u) du 
tl*     l' t (l-l)'   l-l'   XI       1 l-l' / XI       1       '    t (i-l) 

5i-l 
(29) 
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This equation has the same form as Eq.   (18), which was used to combine 

the two distributions of errors within a stage.    As before,   the lower limit of 
* 

integration simply accounts for the f . function being zero when the argument 

is less than £..    Also,   since the distributions are independent 
i 

T.    =   T*.! + 3f. (30) 

2 *2 ...      2 i*i\ 
^ti   =   ,rt(i-l) + <rxl (31) 

and,   as in Eqs.   (15) and  (16) 

CO 

T*   =   I. F* (I.)   +     f    T. f,.(T.) dT. i i    ti '   i' I i    ti     i i 
(32) 

\ 

^TZ  - (Tf * -  l/ F* (?.) +   f    (T.-T*)2 fti(T.) dT. (33) 

h 

If the rocket has N stages,   ft»j(TN) is  the distribution of all the combined 

>cket.    As  in single  stages 

oo 

P*   =X ftN(TN)dTN 

errors for the entire rocket.    As  in single  stages,   P    is defined as 

(34) 

•'N        tN 

The truncated form of the error distribution is  used  in the general case 

for  every stage,   and when a command  shutdown is not used,   § is  simply set 

at -oo or the computer is told to ignore the truncation process.     Note that 

the  exhaustion shutdown effect described  in the latter part of Section II still 

applies  to the  case of a command  shutdown.     Exha--«tion occurs whenever 
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shutdown performance is not achieved,   and the performance obtained in 
this situation can be significantly affected by the exhaustion effect occurring 
in some engines.    However,  data on the exhaustion effect may sometimes 
not be available for engines shut down by command. 

In the multistage case,   the only feasible method of computation is 
numerical integration.     The process is  similar to that of the single stage 
except there are many more levels of numerical integration.     For example, 
in evaluating the expression for f . (T.),   each value of the integrand is 
evaluated by numerically integrating the f  . function for the same  stage 
and the f .  function for  the previous  stage. 

With two additions, the multistage parameters are the same for each 
stage as those used in the single stage.     The  scale factors K.  are included 
by entering the   ratio of <r . to K.  into the program.    This ratio is obtained 
from the trajectory perturbation analysis.        The shutdown performance 
level is also included in the trajectory analysis,   so that the difference 
between nominal performance and  shutdown performance is easily determined. 
Now that the multistage computer program is available,   it may be used for 
the single  stage by setting N =1. 
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SECTION VI 

THE CHOICE OF BIAS 

Bias is an intentional deviation of the loaded ratio from the nominal 
value of the burning ratio,   so that the mean value of X is different from 1 
and the mean value of S is different from zero.    A desirable bias increases 
the expected outage of the lighter component of propellant and diminishes 
the expected outage of the heavier component. 

The following criteria for optimizing bias have been suggested in 
previous  studies,  and methods for using them to optimize bias have been 
formulated: 

a. Minimum mean outage 
b. Minimum mean square outage  (minimum variance about Z  = 0) 
c. Maximum probability that outage is less than a given value 
d. Minimum value of outage which is not exceeded with a given 

probability 
e. Maximum probability that performance is greater than a given 

value 
f. Maximum value of performance which is exceeded with a given 

probability 

Criterion a was used only for comparison with other criteria in Refs. 
2 and 4.     Criterion b has had the widest use thus far.     It is described in 
Refs.    1,   2,  and 6.     Both of these criteria have the advantage that they carry 
over from the outage variable to the performance variable in a single sta^e. 
Eq.   (19) shows that minimum mean outage is equivalent to minimum mean 
performance degradation or maximum mean performance.    Also,  the 
variance of X about zero is equal to the square of the mean plus the variance 
about the mean. 

X2   = If2   +   o-2 (35) x '     ' 
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Thus,   from Eqs.   (19) and  (20) 

P   =   Z2 + «^ + <r^   =   Z2 + <r^ (36) 

Since the variance of W is independent of the bias,   <r     is a constant in 

Eq.   (36) when the bias is varied.     Therefore,  when Z^ is minimized,   X^ 

is minimized, and the mean square of the performance variable is maximized. 

In spite of this advantage,   Criterion b is not a desirable criterion because 

it does not necessarily maximize the probability of mission success. 

Criteria c and d are related only to outage and do not consider perfor- 

mance to optimize bias.    They may be used where the outage error alone must 

be held below a certain level.     They are also useful as bounds in Criteria e 

and f as shown below. 

Since the assurance of mission success is why errors and penalties are 

investigated in the first place,   the only really meaningful criteria are e and 

f.     Usually,   and especially in a man-rated mission,   an acceptable probability 

of success is chosen,   and the payload and mission requirements are tailored 

to fit that probability.     In this case,   if we use the  specified probability of 

success.   Criterion f ■would optimize the bias.     However,   sometimes perfor- 

mance for a  specific mission may be  critical and the decision may be to 

maximize the probability of achieving the required performance.    In this 

case,   we employ Criterion e to optimize the bias and use the assigned per- 

formance level.    Note that if the probability obtained by Criterion e is equal 

to that assigned for Criterion f,   the  two criteria are equivalent,   and the 

optimum bias  is  the  same.     However,   if these probabilities differ significantly, 

then the optimum biases may also considerably differ. 

Criteria c and d are similar to e and f but concern themselves only 

with outage.     However,   they do have a useful application,   and they have 

the advantage that the  optimum bias  is  very easy to compute.     Formulas 

are derived  in Ref.   5,     but the exhaustion effects    (6 terms)    are not 
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included.     For an alternate derivation,   note in Figure 4 that when the outage 
ia less  than sonne specific value  Z      the value of S lies within a corresponding 
interval from Sj to S, .     The probability that the outage is less than the 
indicated value is equal to the integral of f  (S) from S.   to S2-     Since fs (S) 
is a normal density function,   this  integral is a maximum when the mean 
lies halfway between S,   and S?.     This  situation must hold for either Criterion 
c,  when the value of Z      is specified,   or for Criterion d,   when the value of 
the integral is  specified.     Thus,   if one uses values of Sj  and S-,  obtained 
from Eq.   (7) 

1  + Rn 

"R       "" Zm n 
(37) 

P      =   4- (S.+S,)   =   T I - 6, -  (1+R   ) Z      + 6     + 'o 2       12' 2   1 f      ' n'     m o 

P     » 4 /B-- R  )Z     + 4- (6    - 6J ^o 21R n/m       2o i' 

where P     is the  optimum bias.     If Criterion c is used,   so that Z      is specified, ■o ^ m r 

the final expression of Eq.   (37) is all that is needed to find the optimum bias. 
When 5     and 6, are equal,   the last term of the expression is zero. 

If Criterion d is used,   so that the probability of success is  specified, 
the length of the interval from S.   to S-, will be determined as a function of 
the probability of success.     From the tables of the normal distribution,  a 
multiple A of the standard deviation of f   (S) can be found  such that the 
integral of the function from -Acr    to +Acr    will be equal to the required s 
probability.     Thus the probability is specified by specifying A.     Then 

1  + R 
2A<r      =  S, - S.    =  6      +   —=  Z      + 6    + (1  + R   ) Z (38) s 21 o R mf' nm n 

Solving for Z B m 

2A(r    - 6     - 6 
Z        = 2^ -R (39) 

m (1 +R   )2 
n 
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Figure 4.     Distribution of S 
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and  substituting into Eq.    (37) 

Po = -rnr (A<r
s-

6) + r (6o-6f)      when A(r
s 

a 6 
n 

(40) 

P0   =   j (60-6
f) whe" Ao-s  ^ 6 

where 6 is the average of 6     and 6   .     Once again,   when the deltas are equal 

the last term is zero.     When A is  specified,    this expression determines 

the optimum bias. 

One useful application of Criteria c and d is the location of bounds for 

determining the bias by Criteria e and f.     First we note the  two extremes 

of the  shape  of the probability density function of the  total error     f   (X) 

[determined  by Eq.   (18)].     One extreme  occurs when  cr      =0,   and  the entire 

error  is just the outage error.     In this case,   the density function is highly 

skewed,   looking like the example  in Figure  3,   and Criteria c and d are the 

same as Criteria e and f for optimizing the bias.    At the other extreme, 

the outage makes a negligible contribution toward the total error and the 

density function is  characterized  by a normal distribution with zero mean. 

As this  limit is approached,   the  contribution of outage  to the  variance  of the 

total error approaches the  mean of the  square  of outage  (from Eqs.    (35) and 

(36) with X     approaching  zero).     Thus minimizing  the  mean  square outage 

(Criterion b) approaches equivalence with minimizing the  variance  (and 

thus  the standard deviation)  of a normally distributed  total error.     This 

situation is  exactly equivalent to minimizing any given multiple of the 

standard deviation of this  same total error and thus  minimizing the allowable 

error which is not exceeded with any given probability (as  long as the proba- 

bility exceeds 0.5).     Therefore,   in this extreme.   Criterion b approaches 

equivalence with Criterion f ,   and  thus also with Criterion e,   for any 

assigned probability or performance  level. 
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Actually,   the  shape of the total error density function lies somewhere 

between the extremes mentioned above.     For example,   the P    curves in 

Figure 5 show a gradual variation as  tr     is varied for a constant <r   .     Thus 

the optimum bias according to Criterion e or f lies  somewhere between 

that obtained by Criterion b and that obtained by Criterion c or d.      The 

probability used for Criterion d must of course be the same as that to be 

used for Criterion f.     If Criterion e is to be used,   an assigned value of 

outage for Criterion c is more difficult to choose.     The value should  be one 

which results in about the  same probability of success as that expected 

from Criterion e.     Since accuracy is not important for these bounds,   a 

guess should be adequate.     If the probability of success involved in these 

criteria is greater than about 0.7,   Criterion b ■will provide the lower bound 

and Criterion c or d will furnish the upper bound for the optimum bias. 

Criterion e has been discussed in Ref.   5 for a single stage,   including 

the derivation of an implicit expression for determining the optimum bias. 

However,   the expression is very complex and must be solved by trial and 

error for each assigned value of the total error.     Also,  it does not include 

exhaustion effects and is useful only in a single stage.    The straightforward 

approach to bias  optimization is to try different values of the bias  and  see 

which value  best meets  the desired  criterion.     The  computer program ■which 

calculates  PQ has  been modified so that it can be used for this purpose. 

Only the multistage program has  been modified because it is  more  convenient 

even for the  single  stage  case  (N =  1).     In the  form used for the multistage 

analysis,   scale factors are  introduced which make  the total error X + Qfcr 7 x 
equal to the actual decrement in the  chosen measure  of performance.     The 

original single-stage  program did not provide  for  these scale factors. 

To optimize  the  bias  in a single  stage,   a  set of possible bias  values 

spanning the  region between the bounds determined as described above,   is 

set into the program.     Additional inputs are a set of levels of the performance 
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decrement X -I- eta-   ,or a set of values of a    which will generate a set of 
__ x' B 

values  of X + o/a    if the first value of ß in the  set is used.    In either case, x 
the performance decrement is held fixed at each value and used as the 

lower limit of integration in Eq.   (34) to compute P    for all values of ß. 

Thus a set of curves  of P    versus ß may be plotted for  the different values 

of the performance decrement.     An example is  shown in Figure 7.    On each 

curve,   the minimum P     represents the maximum probability of achieving 

the performance represented by that curve.    If the optimum ß for each curve 

is plotted against the performance decrement for that curve,   as in Figure  8, 

the optimum bias for any assigned level of performance  (Criterion e) can be 

found by simply reading it off the curve. 

Criterion f minimizes the performance decrement that is exceeded 

with the probability Pa,   for P    is the probability of being beyond a certain 

level of adverse error.     If one  observes the curves of Figure 7,  he can see 

for a given P    the minimum performance decrement is  the one whose curve 

is just tangent to the horizontal line representing that P   .    For a lesser 

performance decrement,   the given P    cannot be achieved.    Since the point 

of tangency is the minimum point,   the ß at the minimum point minimizes the 

performance decrement for the Pa at the same minimum point.    Therefore, 

the P    at the mininnum points are plotted against the ß at the same minimum 

points as shown by the broken line in Figure  7.     The optimum bias for any 

assigned probability (Criterion f) can be found by simply reading it off this 

curve.     At the time  of the  analysis,   if it is not known whether Criterion e 

or Criterion f is to be used,   both curves  (Figure 8 and the broken line in 

Figure   7) may be plotted. 

In multistage  rockets the problem is more complex.     The optimum bias for 

each stage is not independent of the other stages.     An optimum set of biases 

must be found by comparing how different sets  of biases  affect rocket per^ 

formance.     Two versions  of this  approach have  been used in the two-stage 

Gemini  Launch Vehicle.     In the earlier method   (Ref.   4),   the means and 
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variances of the nonnormal outage distributions are computed and then 

simply combined with those of the normal distribution of other errors. 
The combined distribution is assumed to be normal.    The bias is optimized 
by minimizing the value of the mean plus three sigma with no knowledge of 
the actual probability of success.    In the later method,  effectively the same 
thing is done,  but the actual probability is found by combining the distribu- 
tions.     The combination is done by a method similar to that described in 
this report,  but the numerical integrations are done by hand,  and the   results 
are not very accurate.    Also,  the criterion thus far is not a valid one, for 

neither the probability nor the performance is set at a desired level.    The 
result is still three si'rma,   but the probability of success is not that 
associated with three sigma for a normal distribution (0. 99865).    Minimum 
performance and the probability associated with it are both accepted at 
whatever values they turn out to be.    The process would have to be repeated 
for different multiples of sigma to use Criterion e or f.    Also,  how 
exhaustion shutdown affects the outage distribution has not been considered 
in the Gemini Launch Vehicle.    Since the first stage is essentially the same 
as that of Titan III series,   the effects described in Ref.   6 should still be 
present. 

In the solution of the multistage problem,   the bounds computed for the 
individual stages will still be applicable if none of the stages uses a command 
shutdown.     The bound generated by Criterion b still holds because it maxi- 
mizes the mean square perforTi-rnce for the entire vehicle when applied to 
each stage,   so that the effects c,    ihe individual biases are independent in 
this case.     This fact can be seen from Eqs.   (30) and (31),   with the asterisks 
not being applicable because there is no command shutdown.    As the number 
of stages increases,   the combined distribution becomes more like a normal 
distribution according to the central limit theorem.     Therefore,   the optimum 
biases become closer to those obtained by Criterion b than they were for the 
single stages.     This puts them even further inside the bounds generated by 
Criterion c or d than for the single stages.    But a command shutdowndistorts the 
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combined distribution of all stages up to the shutdown.    Because of this 

distortion,   the generalizations from a single stage do not hold.     However, 

the "bounds" computed for the single stages will still provide a rough 

indication of the  regions within which the biases  should be investigated. 

The procedure for optimizing the multistage  biases is  simply an extension 

of that used in the single stage.    A set of biases  spanning the region of 

interest is  inserted into the program for each stage,   and P    is computed 

for all combinations  of the biases at each level of performance decrement. 

The results are plotted in whatever way is most convenient to find the over- 

all minimum P   ,   and the combination of biases that resulted in the minimum or 
P    for each level of performance decrement.     An example for a two-stage 

vehicle at a single level of performance decrement is shown in Figure 9. 

A curve of P    versus p.   is plotted for each p?.     Then the minimum values of 

P    lor these curves are plotted versus fl,  in Figure  10.     The minimum P or r ^2 s a 
in this curve is  the over-all minimum,   and the corresponding abcissa is 

the optimum ß,.     As  shown,   the optimum ß.   is apparent from Figure 9. 

for it is almost independent of ß, within the region of values considered. 

Where the dependence is greater,   a curve through the minimum points  of 

the curves of Figure  9 could be drawn.     Its minimum point would occur at 

an abcissa equal to the optimum ß..     As an aid in drawing this curve, 

notice that its minimum value is the same as that of the curve of Figure   10. 

In a three-stage vehicle,  this procedure would be carried out for each 

P,.    Thus a set of sets of curves like those in Figure 9 and a set of curves 

like the one in Figure   10 would be plotted.     The minimum values of P    for 

the Figure   10 curves would then be plotted versus ß, on a separate page. 

The minimum point of this new plot would be at the optimum ß,.     The optimum 

P, would be found from the Figure  10 curves, as the optimum p.  ■was 

found from the Figure 9 curves in the two-stage case.    If the optimum 

p.   is sensitive to p, and p,,   a curve through the minimum points of each 

set of Figure 9 curves  could he drawn,   and  the minimum points  of the 
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resulting curves could then be connected by a single curve.     The abcissa of 
the minimum point of the single curve would be the optimum p..     The method 
may similarly be extended to more than three stages. 

If more than one level of performance decrement is considered in the 
bias optimization,   as it frequently will be,   the procedure described above is 
carried out for each of a set of levels covering the region of interest.    The 

optimum bias for each stage may then be plotted versus the performance 
decrement as was done in the single stage.     From these curves,   if one uses 
Criterion e,   all of the optimum biases may be found for any desired level of 
performance.    Also,  the over-all minimum value of P    for each performance 

level,   obtained most accurately from the  single curve used  to optimize the 
bias of the  last stage,   may be plotted against the optimum bias for each 
stage.     From this  set of curves,   if one uses Criterion f,   all of the optimum 
biases may be found for any desired  probability of success. 
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SECTION VII 

EXAMPLES OF RESULTS 

A.     SINGLE STAGE CASE 

The  -jrror distribution in a single  stage is investigated for a Titan III 

first stage.     A nominal set of parameters is taken from Ref.   9,   except the 

deltas are taken from Ref.   6.     The bias in Ref.   9 was chosen on the basis of 

minimum mean square outage  (Criterion b of Section VI).     The effects of a 

more realistic bias will be shown in later examples of results.     Plots of P 

versus a are  shown in Figure 5 for a number of values of o-    .     The curve e w 
labeled  o-    =00 represents a pure normal distribution.     The points  on the 

curve are taken from the tables of the normal distribution function.     The 

computer program described in Section IV was used to compute the points on 

the other curves.     The curve labeled  a     =0 represents a pure outage distri- 

bution with no other contributing errors.     The value of cr    turns out to be 

0.002127.     The value of a     will be different for different versions  of Titan III, w 
but will generally be about the same as  o-    w'.thin a factor of two.     Thus,   the 

curve labeled  o-     = 0.002 is a typical example. 

The  curves  of Figure  5 can be interpreted two ways.     The error distri- 

butions may be compared with a normal distribution either by choosing a 

fixed multiple of the standard deviation and comparing the corresponding 

probabilities  of failure or by choosing a fixed probability of failure and com- 

paring the multiples of the standard deviation that correspond to that proba- 

bility.     Since the error analyses to date have almost always  used  3<r(a = 3) 

as the maximum allowable error under the assumption that the distribution 

is normal,   comparisons with this point on the normal distribution curve are 

taken as a useful example.     Note  that for the normal distribution,   the proba- 

bility P     that the error will exceed  the  mean plus   3cr in the adverse direction 

is 0.00135 (0. 135 percent chance).    This value appears to be the probability 

counted on when a normal distribution is assumed.   However,   for a nonnormal 
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Figure 5.     Probability  (P  )  Versus  Deviation From 
Mean Error;   Titan III,   Stage   1 
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distribution,   the probability is different.    For example,   if <r     were equal to 

0. 002,   the probability of exceeding the  3o- level would actually be 0. 0059 

(0.59 percent chance).     By our  looking at it another way,  we see that if the 

probability usually identified with a Scr error is required,   then the allowable 

error which corresponds to that probability is actually 3. Sa.     The situation 

may be better or worse than this example depending on the actual value of 

O"    .     In any event,   the  use of 3(r as  a  specified  minimum performance  level w ^ 
is not justified.    A detailed analysis  is required in each case to determine 

the maximum allowable error as a function of probability of failure. 

B.      MULTISTAGE CASE 

The multistage analysis  has been used for Titan IIIC,   Vehicle  11. 

Some  of the parameters were obtained from the Titan III program office, 

and the others were taken from Ref.   10.     The plot of P     versus * is shown 
r Of 

in Figure 6.     Because the second  stage is shut down by command at a level 

of performance far below the  nominal level so that the probability of 

achieving the  shutdown level of performance  is  very high,   a  single-stage 

computation for the  third  stage  only was  made for  comparison with the 

multistage  case.     The resulting curve  is  indistinguishable from that repre- 

senting the multistage case,   which shows that the  shape  of the distribution 

of total performance error  is  the  same.     Also,   the  means  and  variances  of 

the two distributions  turn out  to be  equal within a little  more  than one-tenth 

of one percent.     Therefore,   the performance of the over-all vehicle may be 

assumed  to be  independent of the performance  of the first two stages when 

the  second  stage is  shut down at the chosen level of performance. 

Since the  errors  in stage three can be considered  independently,   the 

bias for  this   stage  may be optimized  separately using the  single-stage  opti- 

mization procedure.     Then a two-stage  optimization may be  used for  the 

first two stages.     Also,   the criterion for bias  optimization of the first two 

stages  is  not a matter  of choice.     One  simply maximizes  the probability of 

achieving the  shutdown level of performance  (Criterion e). 
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Figure 6.     Probability  (P   )  Versus  Deviation From 
Mean Error;   Titan IIIC,   Vehicle   11 
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For the third-stage bias optimization,   the single-stage procedure 

outlined in Section VI is used.     For the lower bound of the magnitude of ß, 

-0.00726 is used.    It is the value computed by the contractor using Criterion 

b.     For the upper bound,   if we assume a maximum allowable outage of 

1.59 percent (taken from the figures  of Ref.   10).   Criterion c  [Eq.   (37)] 

yields a bias of about -0.0113.     If we assume A  = 3.2 in order to correspond 

approximately to the 0.00135 probability of being outside the interval of S, 

Criterion d  [Eq.   (40)] yields a bias of about -0.0137.     On the basis of these 

estimates,   the biases chosen for  the  optimization procedure are  -0.00726, 

-0.009,   -0.011,   -0.012,   -0.013,   and  -0.014.    The performance decrements 

chosen are 400,   500,  600,   and  700 fps ,  which correspond to values of a 

from less than 2 to almost 4.     Curves  of P    versus ß for the different per- 

formance decrements are shown in Figure  7.    A curve of optimum bias 

versus performance decrement,   plotted from the minimum points of 

Figure  7,   is  shown in Figure 8.     From this curve,   the maximum probability 

of achieving any specified level of performance (minimum P     -- Criterion e) 

can be found.     The  broken line  in Figure  7  shows  a curve  of minimum  P 

versus  bias,   also plotted through the  minimum points.     From this  curve, 

the maximum performance  (minimum performance decrement) that can 

be achieved with any specified probability of success  (1  -  P   ) can be found. 

The following examples of the uses of Criteria e and f with reference to 

Figures  7 and 8 are illustrative,   though not necessarily realistic.     Sup- 

pose  first that a critical performance  level  550 fps  less  than nominal must 

be achieved with maximum probability of success  (Criterion e).     From 

Figure 8,   the optimum bias is seen for this situation to be about -0.01085. 

Now suppose instead that a certain probability of success is  required and 

that  the performance to be achieved with that probability is  to be maximized 

(Criterion f).     By our referring to the dashed line in Figure  7,  we see if 

the required probability is to be 99.865 percent (P     = 0.00135,   corres- 

ponding to three  sigma for a normal distribution),   then the  optimum bias is 

about  -0.0132.     On the other hand,   if only 99 percent confidence is  required 

(P     = 0,01),   the  optimum bias  is  about -0.0107. 
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Figure  7.     Probability  (P   ) Versus  Bias;   Titan IIIC,   Stage  3 
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Figure 8.    Optimum Bias Versus Performance Decrement; 
Titan I1IC,   Stage  3 
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In general,   as a higher probability of success is needed, a larger negative 

bias is required.    However,   the maximum performance achievable with the 

required probability is lower.    Where hard requirennents for either perfor- 

mance or probability are not present,  a tradeoff may be conducted to 

determine the best compromise between performance and probability. 

Figures 7 and 8 provide all the information needed for such a tradeoff. 

Remember that none of these optima is  critical in either performance or 

probability.     Although the optima may be found to the fifth decimal place in 

this problem,   they are not accurate beyond the fourth because of the graphical 

solution.    Only the first three decimal places are important,   as  can be 

seen by the flatness  of the  curves in Figure  7 near the minima. 

Optimization of the biases in the firf t two stages is less important 

than for the third stage because of the high probability of achieving  shutdown 

velocity at the end of second-stage burning.     However,   the pr^    ibility of 

achieving this  shutdown velocity can be maximized by choosing the best 

combination of biases.     The  shutdown velocity represents a performance 

decrement of 294. 118 fps with respect to nominal performance at stage-two 

burnout.     This  value  is  the  only one  used.     The  lower and upper  bounds for 

the  bias,   based  on the  same  criteria as  in the  third  stage are the following: 

-0.00314 and -0.00750 for the first stage,   and -0.00393 and  -0. 00759 for 

the  second  stage.     From these figures,   the  values  chosen for ß.   are  -0.00314, 

-0.0045,   -0.006,   and -0.0075.    Those chosen for ß2 are -0.00392,   -0.005, 

-0.0065,  and -0.008.     Curves of Pa versus ß,   for the four values of ß? are 

shown in Figure 9.     The minimum points of these curves,  which are essen- 

tially the values at ß.   = -0.0045,  are plotted versus ß2 in Figure   10.     The 

optimum value  of ß?  corresponds  to the  minimum point of this curve,  which 

is about -0.0049.     The optimum value of ß.  is  seen from Figure 9 to be 

almost independent of ß     in the region of interest.     Since all the  minima occur 

at approximately -0.0045,   it is the  optimum value. 
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By our using the  optimum values for the biases  in the first two stages,   a 
P    about 0.0141,   or a probability of success about  98. 59 percent,   can be 

achieved.     If we use the biases chosen by the contractor according to 

Criterion b,   P    is 0.0150,   or the probability of success is about 98. 50 

percent.     Therefore,   in this particular case,   the more sophisticated bias 

optimization is not very helpful.    However,   where higher probabilities are 

involved,   significant improvement over Criterion b can be achieved. 

Notice how bias affects  the form of the error distribution.     As  the magni- 

tude of the bias  increases,   the distribution becomes more like a normal 

distribution because a greater portion of the f   (S) function lies completely to 

the left of the nonlinear portion of the outage function (see Figure 4).     Figure 

11   repeats  the  curve  of Figure 6,   wMch shows  the  error distribution for 

Titan II1C,   Vehicle   11,   with a third-stage  bias  of - 0 . 00726 .      This 
value  used  by the  contractor  is based on Criterion b.     For comparison,   two 

additional curves are plotted using different third-stage biases.     As dis- 

cussed previously in this  section,   the bias  of -0.0107 represents  an  optimi- 

zation based on a required probability of success  of 99 percent and the bias 

of -0.0132 represents an optimization based on a required probability of 

99. 865 percent.     This probability is associated with the three-sigma level of 

a normal distribution. 

The most significant fact to be  learned  from  Figure   11  is  that when the 

bias  is optimized for a high probability of success  so that a large  (negative) 

bias  is used,   the combined  error distribution is closer  to a normal distribu- 

tion than when less  bias  is  used.     The distribution is  still significantly non- 

normal,   having a probability of exceeding  three  sigma about 0.0045 as 

compared with 0.00135 for  the normal distribution.     But when the  bias  based 

on minimum mean square  outage is  usi_d,   the  probability of exceeding three 

sigma is about 0.0086.     If we  look at it the  other way,   with the high-probability 

bias  it takes  about  3. 55  sigma to give  the  same probability of failure  that 

three  sigma gives for  a normal distribution;   however,   with the  minimum 

mean square outage bias it takes about 4.23 sigma to give that probability. 
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SECTION   VIII 

CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The following three conclusions are reached from this investigation of 
the effects  of outage on performance  statistics for bipropellant rockets: 

a. The  over-all distribution of performance errors of a bipropellant 
rocket can be  significantly nonnormal. 

b. The probability associated with the achievement of a given per- 
formance for a bipropellant rocket can be significantly less than 
that obtained by assuming the distribution to be normal. 

c. If a high probability of success is required,   similar to that asso- 
ciated with three sigma for a normal distribution, a propellant 
loading bias  significantly greater than that based on maximum 
mean square outage may be needed. 

B. RECOMMENDATIONS 

After consideration of the report text and conclusions,   these three 
recommendations are  suggested: 

a. Performance requirements for bipropellant rockets  should be 
specified in actual probability of success rather than as a multiple 
of sigma. 

b. For each nominal vehicle,   an analysis of the total error distribu- 
tion should be made using the multistage computer program 
described in the Appendix or its equivalent. 

c. Propellant loading bias should be chosen according to procedures 
similar to those described  in this report to insure maximum per- 
formance for a required probability of success or maximum proba- 
bility of success for a required performance. 
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APPENDIX 
MULTISTAGE COMPUTER PROGRAM 

by 
Philip H.   Young 

Computing and  Data Processing Center 
Aerospace Corporatior. 

A. GENERAL DESCRIPTION 

The computer program carries out the numerical implementation of 
the analysis in the preceding sections.     The main task is  to perform 
accurately and efficiently the numerical integrations necessary to obtain 
P   .     To do this,   the   Legendre-Gauss numerical integration -was determined 
to be the most appropriate method  (see Ref.   11).     To do an N-stage analysis 
an (N +1) level multiple integration must be done  (together with several 
integrals of lower level).    The time required increases an order of magni- 
tude for each level of integration.     It was therefore thought best to vary 
the number of points in the integration technique at each level of integration. 
This enables the us« " to select the order of approximation that gives the 
accuracy needed commensurate with the number of stages and the amount 
of computer time available. 

B. NUMERICAL INTEGRATION 

Since the  Legendre-Gauss numerical integration method requires that 
the limits of integration be finite and that the upper limit be +1  and the 
lower limit be - 1 ,  all the infinite integrals involved had to be truncated at 
some finite value,  and all the integrals transformed to the interval (-1,   1). 
Because the integrands involved were probability frequency functions they 
could be truncated at some positive or negative multiple of cr from the mean, 
where the area outside that point could be assumed to be negligible.    The 
multiple was determined quickly by trial and error to be about nine for the 
functions that have been tried. 
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At each level in the numerical integration process a different order of 

approximation can be used.    The order here is  the number of integrand 

values used in the numerical integration.    The choices of the order are 2, 

4,   8,   16,   20,  24,   32, 40,  and 48 and the values of the abscissas and weights 

for all these orders were obtained from Ref.   11. 

A convenient check on the choice of the multiples of tr and the order of 

approximation is to calculate P    for a = -  oo which should be  1,  because 

P    is a probability function.     This calculation also gives a rather loose but 

useful check on the accuracy that can be expected for finite values  of a. 

Clearly,   the area under  the total curve can be no more accurate than the 

area under some subset of the curve for the functions involved and for a 

given order of approximation.     The program automatically calculates P_      , 

and prints the value obtained. 

C.     RESULTS 

The greatest number of stages attempted with the program was three. 

Therefore a quadruple integral was the most complicated evaluation to be 

done.    Satisfactory results were obtained using a multiple of nine for all infinite 

limits.     The order of approximation at each level of integration was the 

following: 

Level Integral 

1 48   (innermost) 

2 24 

3 24 

P 16   (outermost) 

These orders  of approximation gave P accurate  to two significant 

figures.     They gave P.    - P^ accurate to no worse than four significant 

figures.     This accuracy was determined by performing the following 

approximation: 
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Level 

1 
2 
3 

Integral 

48 (innermost) 
48 

48 

48 (outermost) 

The two results are then compared for or = 1.5.     The accuracy of P    for 
5 will be no worse than the accuracy of P    for or = 1.5. a = 2,   . . 

D.      DESCRIPTION OF DATA 

Table I describes the inputs to the control card. 

Table I.     Control Card,   Data Set  1 

Program 
Symbol 

Mathematical 
Symbol Definition 

NZ Nz Number of stages £ 8 
NA N

a 
Number of entries in  ALPHA vector 

s 20 
10 I0 Order of approximation to first level 

integrals 
11 li Order of approximation to second level 

integrals 
12 I2 Order of approximation to third level 

integrals 
13 I3 Order of approximation to fourth level 

integrals 
14 h Order of approximation to fifth level 

integrals 
15 I5 Order of approximation to sixth level 

integrals 
16 h Order of approximation to seventh level 

integrals 
17 I7 Order of approximation to eighth level 

integrals 
18 I8 Order of approximation to P    level 

integral 
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Specific values of IJ from 1 to 9 in the order given in Table I are 
furnished in Table II. 

Table II.    Values of IJ (J =0, ,   8),   Data Set 1 

IJ Order       | 

1 2 

2 4            ] 
3 8 

4 16 

5 20 

6 24 

7 32 

8 40 

9 48             | 

The information in Table 111 shows the case to be run has three  stages , 
10 ALPHA'S;   the order of integration of level one integrals is 48,   of level 
two integrals is 24,   of level three integrals is  24,   and of the P    level inte- 
gral is  16. 

Table III.     Format of Card,   Data Set 1 

Column Item Example 

1-3 NZ 003 

4-6 NA 010 

6-7 10 09 

8 - 9 11 08                                   j 
10-11 12 08 
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Table III.     Format of Card,   Data Set  1  (Continued) 

Column Item Example 

12 -  13 13 ^ 
14 -  15 14 

16 -  17 15 not used when 
18 -  19 16 NZ  = 3 

20 - 21 17 • 
22 - 23 18 04 

Table IV.     Vector Data,   Data Set 2 

i  = 1, ,  N   and j = 1, z .  N. 

Program 
Symbol 

Mathematical 
Symbol Definition 

NT 
^ 

Multiple of o-'p.  for computing infinite limits 
for T.  integrals.     If NT.  SO,  ci  = Ciin«^. 
If NT| < 0,  Ci  = ct input1/a-r,.     1 NT  f fs 
always used in the calculations. 

NX ■s Multiple of cr      for computing infinite limit for 
x.  integrals,    i 

BETA Pi Bias on a random variable. 

SIGL 
'\ 

Standard deviation of s. 

DEL0 6 o. 
i 

Oxidizer outage  limit on  s. 

DELF 6F. 
i 

Fuel outage  limit on s. 

RB V Burning ratio. 
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Table IV.     Vector Data,   Data Set 2  (Continued) 

Program Mathematical 
Symbol Symbol Definition 

NL 
N\ 

Multiple of (rj^.  for computing infinite limit 
for  Z.  integrals. 

sw X Standard deviation of w..     If a^.   ^ 0,   o-w.   = 
o-                   ifcr       <0,o-l = |o-|l.(r.      l 

w. .         t          w.                w.          w.             z. 
iinput             i                   ii               i 

c ci Multiple  of o-'p-  for computing cutoff point for 
T.   integrals. 

SCAL1 kl. 
i 

Input scale factor.    Ifki.>0,   k?    =ki./o-w.; 
Ifkt.   =0,   k2.   =  1;  ifkt.^0,   k2i

l=  ik^i.   l 

ALPHA Of    or   L If ALPHA a 0,   magnitude of ALPHA  = a.;   if 
J             ^j ALPHA < 0.   magnitude of ALPHA = L^ J. 

j 

The card format for each of the quantities  in Table IV is as follows   (each 

vector  may be  continued  on more than one card): 

Table  V.    Format of Card ,   Data Set 2 

Card  Column Entry {all quantities are right justified) 

1  -  20 

21-40 

41-60 

61-80 

±   .XXXXXXXXE±XX 

±   .XXXXXXXXE±XX 

±   .XXXXXXXXE±XX 

±   .XXXXXXXXE±XX 

The order of the deck of vectors  shown in Table VI is the  same as  the order 

of the defining    table   (Table IV). 
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Table VI.     Data Deck Setup (one case) 

Number Data Item 

1 Control Card 
2 NT Vector 
3 Nz   Vector 
4 BETA Vector 
5 SIGL Vector 
6 DEL«!) Vector 
7 DELF Vector 
8 RB Vector 
9 NL Vector 

10 SW Vector 
11 C Vector 
12 SCAL1  Vector 
13 ALPHA Vector 

For the CDC 6600 Chippewa version 1. 1  FORTRAN IV Compiler the 
deck setup is shown in Table VII. 

Table VII.    Production Deck Setup 

Number Item 

1 

2 
3 
4 

System accounting cards 
(Aerospace only) 
RUN(S) Card 
(0TAN2.   Card 
7 
8   Card 
9 
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Table VII.    Production Deck Setup (Continued) 

Number Item 

5 

6 

7 

8 

FORTRAN Source Psck 
7 
8   Card 
9 
Data deck 

6 
7 
8    Card 
9 

As many cases as desired can be  run with one pass  on the computer. 

E.     DFSCRIPTION OF OUTPUTS  (see Table IX for sample outputs) 

All vector quantities rü r- printed in the order left to right,   top to 
bottom along the page. 

Output set  1   - Inputs 

All the input cards are printed directly under the work INPUTS on the 
first output page. The order and format of these quantities is the same as 
the card order and format. 

The output quantities in Table VIII are printed directly under the word 
OUTPUTS on the second output page. 
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Ttble VIII.    Outputs ,   Output Set 2 

,   N    and j = 1. z . KL 

Mathematical 
Data Item Symbol Definition 

1 
\ 

Mean of z. 
i 

2 
^ 

Standard deviation of z. 

3 k. 
i 

Scale factor for z. 

4 X« Area  under total f    (z) curve + F     (0) 
Zi                                Zi 

5 
I 

Standard deviation of Wj 

6 Ti Mean of T. 

7 
^ 

Standard deviation of Tj 

8 Infinite upper limit for T.  integrals 

9 -"T. Infinite lower limit for T.  integrals 

10 Ti + ci -T. Cutoff point for T.  integrals 

11 P -oo Area under f_(T) 

12 
J 

Lower limit for evaluating P 

13 
J 

P(TN * TN    + '"T        NT   > 

Each data item is ordered from left to right,   top to bottom.     When the item 
consists of a vector it has the same number of entries as the order of the 
vector.     The first item (item number one) is the z.  vector,   etc. 

Table IX illustrates the output format. 
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