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ABSTRACT 

The pseudopotential formalism which has been developed to cal- 

culate the properties of periodic crystals is extended to treat the 

case of a binary alloy with an arbitrary degree of order. A self- 

consistent screening potential which includes the effect of the total 

conduction electron charge is derived to first order in a perturba- 

tion theory expansion in the pseudopotential. The conduction tlec- 

tron contribution to the total energy of the crystal is expressed 

to second order in the pseudopotential. The applicability of these 

perturbation theory expansions is discussed extensively. Expressions 

for that part of the conduction electron energy which contributes to 

the ordering energy and for the effective pairwisc interactions 

between the ions in the alloy are derived from the expression for the 

total energy. 

If the conduction electron energy may be expressed accurately 

to second order in the pseudopotential, we demonstrate that this 

energy depends only upon correlations between pairs of ions. Other- . 

wise, accurate individual electron energies near band gaps are shovn 

to depend upon correlations between three or more ions for an alloy 

below its critical temperature. 

The procedure for selecting an optimal form for the pseudopotential 

is examined in detail. A Hermitian pseudopotential is chosen and its 
i 

advantages are discussed. Our calculations on a 50-50 alloy of lithium 

—and magnesium indicate that the selection of an appropriate pseudo- 

potentisl is quite important. 

IX 

--■-_-- ~--^^-- 



Further^ the calculations reveal that this formalism may he 

expected to yield accurate estinater only for those quantities 

vhich depend upon the difference between two evaluations at the 

same ionic volume of a given conduction electron property in the 

alloy, such as the ordering energy. Therefore, we might calculate 

with accuracy the differences in cohesive energy between two struc- 

tures with the same volume per ion, or the alloy resistivity, hut 

not the cohesive energy itself. In addition, the effective pair- 

wise interactions are shown to represent well those Interactions 

in the alley which contribute significantly to the formation of 

the superlattice." 



CHAPTER ONE 

INTRODUCTICN 

A number of methods have teen developed in recent years for the 

calculation of properties of periodic metallic crystals from funda- 

mental considerations, usually in some version of ths Hartree-Fock 

approximation. The augmented plane wave method, the Green's function 

method, and the pseudopotential method have been used with remarkable 

success to treat these periodic crystals. The research described in 

this thesis has been directed toward the extension of this work to 

calculate the properties of a metallic binary alloy with an arbitrary 

degree of order. We might expect that significant changes in the 

crystalline potential during the formation of a superlattice would 

occur in the region between the ions where the ionic core potentials 

overlap considerably. Accordingly, we have not used either the aug- 

mented plane wave method or the Green's function method in this work. 

Both of these procedures traditionally require the replacement of the 

actual crystalline potential due to the ions with an array of spherical- 

ly symmetric non-overlapping potentialö located at each ion cite. This 

approximation is worst in that very region between ths ionic cores \Ailch 

may contribute substantial^ to the formation of the superlattice. 

On the other hand, the pseudopotential method allows us to replace the 

actual potential due to the ions with an array of spherically symmetric 
i 

potentials which may overlap. This approximation should be fairly good 

in the region between the cores. Our use of the pseudopotential method 

dSsSaggl 



has restricted us to the calculation of the properties of alloys 

formed of simple metals. Simple metals are those in v^'^h the core 

electrons are much more tightly bound than the valence electrons and 

in which the charge densities associated with adjacent ionic cores 

msy be realistically assumed not to overlap. 

In particular, our development of a formalism based on the 

pseudopotential method has been directed toward obtaining in expres- 

sion for the ordering energy of a metallic Mnary alloy. In this 

context, the ordering energy of the alloy will mean the difference 

in internal energy between the completely order.?* state and the com- 

pletely disordered state. We have calculated the electronic contri- 

bution to this quantity when the ions are rearranged on the lattice 

at constant volume and at the absolute zero of temperature. We have 

also calculated -he effective pairwlse interactions between the ions 

in the alloy according to the procedure of W. Harrison [l]. These 

interactions are a central force approximation for the actual inter- 

actions between the ions in the al'.oy. Therefore, the effective pair- 

wise interactions cannot account for contributiond to the total energy 

of the crystal vhich depend upon the arrangement of the ions only 

through tne volume per ion. If this central fore^ approximation is 

reasonable, we havo a simple physical representation of a complex 

interaction. The effective pairwise interactions may accordingly be 

•» very couvenient prope- zy from which to discuss the formation of the 

superlattice in an alloy. We shall discuss the validity of represent- 

ing the actual interaction by such a central force interactioc 



Th'i effective pairwise interactions may be contlderecl as a 

polar Interaction between the charges contained In the cells around 

each Ion In the alloy plus a term which accounts for the detailed 

distribution of the electronic charge in those cells, "nils first 

contribution to the effective pairwise interactions forms the basis 

for the poler model which was developed by N.F. Mott [2]. This model 

of a binary alloy added gredtly to our understanding of the ordering 

energy of such alloys. Mott assumed that the fundamental ource of 

the ordering energy in beta brass Is a polar interact!^n between the 

charges contained in each atomic cell. In his model, thlt contribution 

to the ordering energy of the crystal is given by a Madelung sum of 

the Interactions between certain effective charges considered as 

point charges at the ion sites. The effective charge associated with 

a particular cell consisted of the ionic charge, the electronic charge 

included in the cell due to an average density of conduction electrons, 

and the electronic charge included in the cell due to screening. 

Mott calculated this last contribution to the effective charge using 

a linearized form of the Tnomas-Fermi screening formalism. He esti- 

mated the value of the screening constant from the increase in the 

resistivity of pure copper when small amounts of zinc are added. 

This procedure yielded an effective charge in each cell of + 0.075 

electronic charges. The Madelung exptession for the energy of such 

a body-centered cubic system of point charges yields a polar contri- 

bution to the ordering energy of -0.0020 rydbergs per ion. Fitting 



an exponential exchange interaction between the copper ions to the ob- 

served elastic constants of copper, Mott estimated that the exchange 

interaction contributed -0.0009 rydbergs per Ion to the ordering 

energy. He was able to estimate the ordering energy from the theory 

of Bragg and Williams [3] using the observed critical temperature. 

This estimate agreed rather well with Mott's calculated value of 

-0.0023 rydbergs per Ion. While this agreement Is noteworthy con- 

sidering th* eimplii ity of the model, we should note that this energy 

calculation Is extremely sensitive to several adjustable parameters, 

such as the screening constant. This sensitivity lessens appreciably 

the significance of the final result. . 

R. J. Harrison and A. Faskin [4] extended the polar model of 

Mott by using the more realistic screening model of V. Kohn and S. 

H. Vosko [5]. In this model, the screening charge density has been 

shown to equal that predicted by the linearized Thomas-Fermi model 

plus a term which varies as co6(?k_r)/r . This more sophisticated 

model leads us to expect a cellular charge of + 0.12 electronic 

charges. If we assume that these charges are located at the ionic 

sites and may be treated as point charges, we can perform the Madelung 

sum to obtain a contribution to the ordering energy of -0.0051 rydbergs 

per ion. This would be somewhat large for the ordering energy, even if 

we allowed for a reasonable uncertainty in the screening constant 

which wa* used. However, we have not considered th? contribution to 

the ordering energy of either the interaction between overlapping 



core charge densities on adjacent ions or the volume change during 

ordering. Accordingly, we are unable to Judge the accuracy of this 

result. Harrison and Faskin noted that the Madelung procedure ignored 

the information which we have regarding the distribution of the elec- 

trons within the atomic cells. Therefore, they added the potential 

due to the ions, considered as point charges, to the potential due to 

the screening charge to obtain an effec' ive pairwise interaction 

between the ions. This interaction was that of central forces «ince 

they neglected the van der Waals forces between the ions and since 

the screening density which they associated with each ion was spherical- 

ly symmetric. Harrison and Paskin summed this interaction over several 

sets of neighbors and obtained a contribution to the ordering energy 

of -0.0029 sin(q) -0.?8) rydbergs per ion. The arbitrary phase factor, 

9, was Introduced to account for the inaccuracy in finding the proper 

phase in the expression for the charge distribution using this screen- 

ing model. While this result is certainly consistent with the result 

of Mott, it is clearly also consifctent with any other result less than 

or equal to -0.0029 rydbergs per ion. Further, we note that the energy 

due to the interaction between overlapping core charge densities on ad- 

jacent ions may account for one-third of the cohesive energy in noble 

metals [6]. Therefore, we might expect that this core overlap inter- 

action would be significant In beta brass. Our inability to assess the 

contribution of this core overlap interaction to the ordering energy 

in a system such as beta brass prevents a realistic discussion of the 
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accuracy of a calculation of the conduction electron contribution 

to the ordering energy« 

However, the conduction electron contribution and the point 

Ion contribution should dominate the ordering energy of a binary 

alloy of simple metals. We might hope that a first-principles 

calculation of the electronic contribution to the effective pair- 

vise Interactions and to the ordering energy of such a system can 

be meaningfully compared with the results of Harrison and Paskin and 

with experimental evidence of the ordering energy. All of the well- 

docvunented transitlonc from a completely disordered state to a com- 

pletely ordered state occur in systems in which the overlap of the 

core charge densities associated with adjacent ions may contribute 

fcignificantly to the energy of the system. However, the system of 

50-50 lithium-magnesium exhibits a reasonable degree of short range 

order at room temperatures [7]. Thus lithium-magnesium is an alloy 

of simple metals which shows a tendency to form a superlattice. 

Accordingly, we have chosen this system for our numerical calculations. 

In Chapter Two, we have extended the work of W. Harrison [8] 

on the pseudopotential in metals to a complete formalism for calculat- 

ing the matrix elements of the pseudopotential in a binary alloy with 

an arbitrary degree of order. We t'ave used the form of the pseudo- 

potential to deduce effective pairwise interactiocs according to the 

prescription of Harrison [1]. In Chapter Three, we rave discussed 

the foim in Which the distribution of tl» ions on the ionic sites in 



the crystal enters Into expressions for the electronic band energies, 

the total electronic energy, and the electronic contribution to the 

ordering energy. We shall see in this connection that a consistent 

use of a perturbation expansion of the energy to second order In the 

pseudopotentlal yields expressions for these quantities which depend 

upon the distribution of Ions in the crystal only through tuo-particle 

correlations. In Chapter Four, we have discussed the validity and 

effectiveness of various forms of the pseudopotentlal and chosen a 

suitable form for a calculation. We have discussed In Chapter Five 

the procedure we have followed in performing an actual calculation 

using our formalism. Finally, we have calculated the electronic con- 

tributions to the effective pairwlse interactions and the ordering 

energy of a 50-50 alloy of lithium and magnesium. The validity of 

the concept of effective pairwlse interactions has been discussed. 

The effective pairwlse interactions which we have'obtained do not 

have the simple form predicted by Harrison and Paskln. The ordering 

energy is found to h* compatible wit!' the experimental data on the 

system. 
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Chapter Two 

THE EFFECTIVE PAIRWISE INTERACTIONS 

AND THE FORMULATION OF THE ALLOY PROBLEM 

Our ability to discuss fruitfully the ordering of a metallic alloy 

in terms of effective pairvise interactions depends upon the accuracy 

with which we may approximate the significant interactions In the order- 

ing process with central forces between the ions. The elastic properties 

of metallic crystals fail to satisfy the Cauchy relations, which establish 

a connection between the compressibility and the shear constants. The 

Cauchy relations may be shown to be satisfied for any crystal with In- 

version symmetry if the interactions among the conduction electrons and 

ions may be expressed exactly in terms of effective central forces between 

the ions [1]. Accordingly, we may interpret the failure of the elastic 

properties of a metallic crystal to satisfy the Cauchy relations as a 

measure of the general insufficiency of central force expressions for the 

interactions in the crystal. However, this failure in a metallic crystal 

is largely attributed to the significant contribution of the free elec- 
• 

tron  energy to the cohesive energy. The free electron energy 

is the total energy of a gas of free electrons, the density of which is 

equal to the average density of conduction electrons in the metallic crys- 

tal. Since this energy is invariant during changes in the structure 

carried out at constant volume, it will affect the compressibility and 

other volume-dependent properties, but not the shear constants and other 

properties dependent upon structure changes at constant volume. Accordingly, 
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the interactions in metallic crystals may be such that the effective 

central force interactions might approximate well those properties 

which depend upon structure changes at constant volume, such as the 

shear constants or the ordering energy. Yet there may be non-central 

force interactions, such as that arising from the free electron 

energy, which prevent an effective central force approximation from 

accurately predicting volume-dependent properties. These same non- 

central force interactions would also prevent the Cauchy relations 

from being satisfied. We may now proceed with our discussion of the 

effective pairwlse interactions in a metallic binary alloy, having 

reason to believe that such a central force approximation might yield 
i 

A fruitful discussion of the formation of the superlattlce. 

The effective pairwlse interactions between the ions may be con- ; 

veniently divided into two contributions. The first contribution ■■■ 

arises through the direct Coulomb interaction between the ions, con- i; 

siderod as point charges. This treatment specifically neglects the Van 

der Waals interactions between the cores «M the interactions due to 

any overlap of the charge densities associated with adjacent cores. 

This last approximation is consistent with our use of the pseudo- 

potential method. The second contribution arises through the indirect 

interaction between the ion cores by means of the conduction electron 

gas. The contribution to the ordering process due to this interaction 

may be derived from that part of the total conduction electron energy 

which varies when the Ions in the crystal are rearranged at constant 
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volume. In his extensive exploration of the ntiure of pseudc""tentiali, 

W. Harrison [2] was able to express the structure-dependent part of the 

total conduction electron energy in the case of a single-element crys- 

tal as 

2' S(3) S*(S) E(a) (2.1) 
ig) 

where 

-  (2Tr)3Jl 
E(q)5-^    dök 

3  (k|w|k + ^><k+a|w|k) 

Fermi   |k|2 - |k+q|2 

Volume 

-^Isl2 Kil^lo)!2 (2.2) 
and 

S(q)»i Z e-ift,B (2.3) 
*   " (?) 

The sum over the set (R) which occurs in Equation (2.3) is a sum over 

all of the ionic sites in the crystal. We should emphasize that ex- 

pressions (2.1) and (2.2) are the result of a consistent perturbation 

theory expansion of the toted conduction electron energy to second or- 

der in the pseudopotential. The inclusion of higher order terms in the 

pseudopotential would add other structure dependent contributions to 

the energy. The essential features of Equation (2.1) are that the 

structure factor, denoted by 8(3), is dependent only upon the positions 

of the ions and not their nature, while the energy-wavenumber character- 

istic, denoted by £(3), is dependent only upon the ionic potentials and 

the average conduction electron density. Ely comparison between Equation 

(2.1) and the form of the energy of the direct interaction between the 
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ions, Harrison was able to deduce that the contribution of the indirect 

interaction to the effective pairwise interaction 1B 

Thus the indirect interaction follows directly from a knowledge of the 

energy-wavenumber characteristic given by Equation (2.2). We must 

emphasize that the derivation of a structure-independent expression for 

V. .(r) is contingent upon neglecting all terms in the total electron 

energy of third order or higher in the pseudopotential. If we were to 

include term«! in the energy of order higher than second in the pseudo- 

potential and to express the energy as in Equation (2.1), then E(g) and 

V. .(r) would both be structure dependent. This would not yield a cen- 

tral force approximation to the interactions in the crystal during order- 

ing since central forces must depend only upon the distances separating 

the ions. This close relationship between the use of perturbation theory 

■md the derivation of central force interactions will be of importance 

later in this chapter. 

We shall now proceed in an analogous fashion to derive expressions 

for the structure dependent part of the electronic energy and for the 

effective pairwise interactions which are appropriate to the alloy problem. 

The derivation is similar in many ways to the treatment in reference [2] 

by W. Harrison for a single-element crystal, but there are important 

differences which bear examination. We acknowledge here the overriding 

influence of Harrison's work and will reference only major points here- 

after. 
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introduction of the Pseudopotentlal 

We wish to determine the conduction electrcu eigenstates of a 

crystalline Hamiltonian, 

H(r,^,) ■ T(r) S^-r') + ^(r^') + ^(r,^) . (2.5) 

Wti shall generally refer to non-local operators merely by the appro» 

prlate symbol, such as H for the Hamlltonian. The non-locality of 

the operator In r-space will be understood. In compliance with con- 

ventions regarding Dirac bra and ket notation, we shall denote the 

eigenstates of H by n, the eigenvalues of F by E . and the eigenfunctions 

of H by (r|n). The significance of the notation is best sunmarized by 

the following equivalences: 

xr|Hlr'>» H(r,r') ; (2.6) 

<rlH|n> ■ /dr« H(r,r')(r'|n> . (2.7) 

(n'lHln) « Jar /dr^n'lr) H(^,r,)<r• |n) . ^2.8) 

The relationship between H and its eigenstates is such that 

H|n) - Ejn) . (2.9) 

Returning to Equation (2.5), we may denote the non-local potential due 

to all of the ions and electrons in the crystal by V. Thi? potential 

may be separated according to 

V - ^L + V
1 + V21 . (2.10) 

IT  ii the sum of all of the Hartree-Fock potentials of the ions in the 
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crystal less the spatial iverage of the Hartree potentials of the 

ions. We have neglected the influence of correlation hetween the 

electrons .of the ion cores and the conduction electrons. Since the 

motiors of the core electrons are much more rapid than these of the 

conduction electrons, the influence of the core electronc on the con- 

duction electrons may he very well represented in terms of an average 

potential due to the core electrons, such as a Hartree-Fock potential. 

Tims V^ should well represent the potential due to the ionic cores as 

seen hy the conduction electrons, v  is the non-local potential due 

to the conduction electrons in the crystal less the spatial average 

of the Hartree potential due to these conduction electrons. We must 

later make an approximation for the many-particle potential denoted 

by v* which will enable :z  to reduce the many-body oroblem of solv- 

ing for the eigenstates of depression (2.5) to a one-electron problem. 

The potential denoted by V_ is the average over the crystb.1 of the 

potentials due to the nucleii' and the Hartree potentials of the core 

and conduction electrons. In accordance with these definition; . wt may 

write T as 

T 3 .7 .V + vT . • (2.11) 
-r -T   L . 

in atoicic units, which we shall use throughout this work. One set of 

eigenvalues of the operatcr T is the complete set of plane waves. If 

the volume of the crystal ij ft, we may write the eigenfunction associ- 

ated with the plane wave k as 

(rjk) = e^/ft* . (2.32) 



15 

9 

The eigenvalue öf T associated with this plane wave is (|k| + V_) 

in  atomic units. 

In order to apply the pseudopotential method, which may be re- 

garded as a generalisation of the orthogonalized plane wave method, 

to the determination of the eigenstates of H, we must assume that 

each e^genstate of H may be classified into one of the two following 

categories. The wavefunctions of those states in the tint  category 

must be sufficiently localized about their respective nucleii that 

they may be very closely approximated by the corresponding atomic 

wavefunction. The eigenvalues of those states in the second category 

must be sufficiently free-electron like that they may be readily de- 

termined using the pseudopotential method. If there exist some eigen- 

states of H which may not be placed in the first category, and yet 

wt?ose properties are not amenable to a pseudopotential method treat- 

ment, we may not ust the pseudopotential method for this problem. As 

a specific example, we might consider those crystalline states which 

arise from the 3d shell states of a copper atom when metallic copper 

is formed. These states have eigenfunctions which sire not sufficiently 

well localized about the nucleii to be approximated well by the 3d shell 
• 

vavefunctions. These eigenstates interact too strongly with other states 

in the crj-^wal. On the other nand, the sums which must be evaluated to 

determine either the eigenfunctions or the eigenvalues of such states 

using the pseudopotential method converge very slowly. Accordingly, we 

should not use the pseudopotential method to treat such a problem. The 
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necessity of classifying the eigenstates into these categories is the 

most serious restriction on the use of the pseudopctential method. 

Once we have made the classification of the eigen»tates, ve •jhall 

refer to those states of H which fall into the first category as core 

states, denoted by c, and assume that the eigenfunctions of these states 

are idenv cal with the corresponding atomic vavefunctions. Those states 

which fall into the second category will be referred to as valenc» states, 

denoted by v. In their discussion of the general theory of pseudo- 

potentials, Austin, Keine, and Sham [2] established the properties of 

a general pseudo-Hamiltonian of the form 

Hp(r,r') « T(r) B(r-r') + W(r,r') , (2.13) 

where 

W(r,r') « V^r«) + V^r') + 2c<r|c>fc(r') , (2.14) 

and f (r*) is a completely arbitrary function of r1 and the parameter 

"c". The sum over c in Equation (2.14) extends over all of the core 

states of H as given in Equation (2.5). The essential properties of 

H result from the absence of valence- states fron the sum in Equation 

(2.14) and may h» summarized as follows: the "core" eigenstates of H , 

denoted by c, are linear combinations of the core eigenstates of Hj the 

"valence" eigenvalues of H are identical with the valence eigenvalues 

of Hj the "valence" eigenfunctions of H , denoted by v, are related to 

v. valence eigenfunctions of H by 

|v> = |v> -2 |c)<c|v) . (2.15) 
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When applied to the eigenstates of H , the terms "cor«" and "valence" 

mean no more than is implied in the relationships ahove. The parti- 

, ular functional dependence which we choose for f (r1) in a given cal- 

culation is determined by the requirements of that calculation. In 

general, f (r1) will be chosen to optimize in some sense the convergence 

of a procedure for determining the eigenstates. We will now proceed 

with our derivation using the general form of the pseudopotential, W, 

iiven by Expression (2.14). 

Separation of the Unscreened Pseudopotential 

Ihe unscreened pseudopotenti.il is that part of the crystalline 

pseudopotential which does not ar^ce directly from the conduction 

electron gas. Accordingly, if we denote the unscreened pseudopotential 

by W , we may define it formally by W = W0 + v . The unscreened 

pseudopotential depends on T",  which consists of the Hartree-Fock 

potentials of all of Lhe ion co-'es less the average of the Hartree 

potential of the cores. In accordance with our discussion of the 

core states of H, we shall consider the ion cores as consisting of 

the nucleii and those electrons which are denoted as cere electrons. 

The Hartree-Fock potential associated with a single ion of t; ye i 

located a* the origin may be written as 

„ (c|r">(r"!c> 
v^r') . ^ 5(r. r«) - ^ for"      ^       6(r- r') 

<r|c)<c|r'> 
+ 22c^i—rr~ ' (2-16) c        r- r' , 
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where the sum over c extends only over the core ita^ei associated 

with this particular ion. We recall that ve have assumed that the 

core eigenfunctions may he very closely approximated hy the corres- 

ponding atonic wavefunctions. In general, of course, ve would ex- 

pect that the core eigenfunctions on an ion would depend upon the 

local configuration of ions. If the potential seen hy the core state 

on the isolated neutral atom is denoted hy V . then the additional 

potential which the core state sees in the crystal is (V-V ). This 

additional potential should he quite slowly varying in the vicinity 

of the core. If the core wavefunctions are very localized ahout the 

nucleus, then this additional potential may he considered essentially 

constant over the region of the core. This approximation is often 

called the small core approximation. Under these conditions, the 

core wavefunction will not he changed In the crystal hut the core 

eigenvalue will he shifted hy an amount equal to (V-V ) evaluated 

at the nucleus. Accordingly, we may use atomic eigenfunctions at all 

times for the core states. Then the ionic Hartree-Fock potential for 

an A ion, for instance, in an AB alloy will he the seme for every A 

ion in the tystes, since it depends only upon the nuclear charge and 

the core eigenfunctions through Equation (2.16). We must introduce 

some appropriate notation to describe the effect of this property upon 

v . The set (R) will describe the entire set of ionic sites in the 

crystal from some convenient site chosen *s origin. The function <r(R) 

is defined as follows; 
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cr(R) » +1 if the site R contains an A icn; 

cr(R) ■ -1 if the site R contains a B ion. (2.17) 

All of the information regarding the configuration of ions on the 

sites (?) is contained in O^R). The invaria ce of the ;' onic po- 

tentials allows us to use these definitions tc write 

\J{r,r')  + ^ = |2{R)[(l+(r(R))vA(r-R,r' -R) 

+ (l.(r(R))v (r-R,r' -R)] ,        (2.18) 

where VT is the spatial average of the sum of fie potentials of all 

the nucleii and the Hartree potentials of the core electrons. 

Having found a suitable expression for v-, we may turn our at- 

tention to the other component of VT, the sum over core states in 

Expression (2.14). This sum over the core states consist« of a sum 

over the set (R) as well as the sum over all of the core states as- 

sociated with the ion at each point R. Displaying these sums ex- 

plicitly, vo may write the sum as 

Z(R) W^ ^I"1^ fn^r - ?) • (2-19) 

The invariance which ve  assumed in the ionic potentials is typical 

of the invariance which must be assumed in other terms of the pseudo- 

potential in order to separate W in analogy wiw the treatment of the 

single-element crystal by Harrison. The Separation of each matrix 

element of the pseudopotential into a structure-dependent factor and 

a structure-independent factor is central to the results of pseudo- 
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potential theory, in particular to the derivation of an effective 

pairwise interaction. To enable the separation of W, we wish to 

place Expression (2.19) into a form similar to that of the right- 

hand side of Bcpression (2.18). The core eigenfunctions have already 

been assumed to depend only upon the type of ion with which they are 

associated. We will wish to choose a functional form for f (r) which 

will optimize the pseudopotcntial in some sense. Accordingly, we will 

impose the least restricting condition upon f (r) and require only 

that, for a given arrangement of ions in the crystal, f (r) be in- 

dependent cf the position which that type of ion might occupy. In 

general, the f (r) which truly optimizes the pseudopotential might 

depend in detail upon the position of the ion core in the lattice. 

We have therefore restricted the freedom which we have in choosing 

f (r). This is not to be confused with the assumption that the core 

states are invariant, and is not an assumption in any sense. We may 

later find it convenient to further restrict f (r) so bhat it is in- 

variant with respect to rearrangement of ions at constant volume. The 

lesser restriction upon f (r) is sufficient to allow us to write 

Expression (2.19) as 

is{?)[(l+a(R)) S^r-R|nl.s;A> fnljns.A(r'- R) 

Equations (2.18) and (2.20) allow us to write VT as 
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+ (l-cr(R))^(r-R,r'- R)] - V^ , (2.21) 

vhere 

wj(r.r')» v.Cr^') ^Z^.^rlnlms;!) fnlffla}i(r') .        (2.22) 

Equation (2.22) defines an unscreened ionic pseudopoteniial associated 

with an ion of type i. 

Since we will eventually attempt to express the valence eigen- 

fui.-'tion of H in terms of plane waves, we will need the matrix ele- 
P 

ments of the total pseudopotential between plane waves. As may be 

seen from Equation (2.21), the unscreened part of these matrix ele- 

ments will involve integrals of the type 

| ;o*r ^dr' e-^D'S w°(r. R,r'. R)«
1^ . (2.23) 

Such integralj are common in band theory. Translating the origins in 

the spaces r and r' to the point R, we introduce a factor exp(-ij'R) 

before the integral. Since the volume of the crystal may be allowed 

to become arbitrarily large at our convenience, we may neglect any 

boundary effects which arise from the translations. In practice, the 

integrals of the ionic potentials will be performed over all space. 

If the crystal volume, Q, contains N ions, the ionic volume, denoted 

by fl , is equal to 0/N. Expression (2.23) may be written now as 

| e-1.^ (k+qlwJ|k)flo , (2.24) 

vhere 
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Wc are now able to write the matrix elements of Vr a« 

+ (i- a(R))e-
i^ (k+ql^nj-^ V '  (2-26) 

The outstanding feature of Expression (2.26) is that the R dependence 

of the terms in the brackets is explicitly displayed in terms of the 

exponential and a(R), in analogy with the case of a single-element 

crystal. For the alloy problem, it is logical to consider some suit- 

able average and difference potentials. Harrison [l] has reached the 

same conclusion independently. Ace .singly, if the total number of A 

ions in the alloy is xN, we may define an average unscreened pseudo- 

potential, 

(k + ä|«r0|k) * x<k+£|w^|k)n + (1-x)(k+^|w°|k>fl , <2.27) 

and a difference unscreened pseudopotential, 

<k+ SUw0|k) s i <k+ gJwJIjOfl - i (k+ a|^|k>n (2.28) 

Introducing (o)^, the average of o(R) over the crystal, 

<o>R s 2{R} -jj- = (+i)x + (-i)(l. x) , 2x -1 , (2.29) 

we can rewrite Equation (2.26) as 

(k.^lk) = (k + iIw0|k)[2{?} £^!]. ^53>0 

(cr(R) - (ä)?)e-ii-?l 
+ <k+q|Aw0|k) 2{R)  « I ' (2 •ä0) 
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In order to discuss the sums over (R) which occur in Equation 

(2.30), we must introduce certain concepts of reciprocal space [5]. 

In general, reciprocal space vectors such as q or k may he any of 

those wavevectors which satisfy the periodic boundary conditions of 

Born and von Karman. The set (K) is a subset of these reciprocal 

space wavevectors to which we will refer as the set of reciprocal 

lattice vectors associated with (R). We recall that the set (R) was 

defined as describing the set of sites in the crystal which contain 

ions, and is not related to the symmetry of the filled sites. The set 

(K) consists of all those vectors k such that exp(-ik*R) = 1 for all 

members of the set (R), and corresponds to those vectors associated 

with Bragg reflections in a single-element crystal. The sum of 

expC-ik'R) over the set {R) is just N if k is a member of (K). Other- 

wise, the phases of the exponentials are such that the sum cancels. 

Therefore the first sum in Equation (2.30) is just the well-known 

Kronecker delta, 

2(R) "IT"' Ba,{K) • (2-31 

We shall now define F(q) by 

(a(R) - (CT>R) e"
1!'? 

F(3) s 2{R) r1  • t*'* 

We nay note immediately that Expression (2.31) is just the structure 

factor of Harrison's formalism, as defined by Equation (2.3). Sine« 

the exponential factor in Equation (2.32) is unity for all members of 

[R]  if q is a member of (K), we may further observe that F(<j) vanishes 
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for all 3 Which belong to (K). Accordingly, either Expression (2.31) 

or depression (2.32) will vanish for a given value of g. A given 

matrix element of the unscreened pseudopotential will depend upon, 

either the average or the difference unscreened pseudopotential, and 

never hoth. Further, if we associate the constant potential VT with 

the diagonal matrix element of the average unscreened pseudopotential, 

we observe that a given matrix element of the unscreened pseudo- 

potential is always the product of a structure-dependent factor, such 

as F(g) or the Kronecker delta, with a structure-independent factor, 

such as a matrix element of V or ^»r . In addition, the structure- 

dependent factor never depends upon the form of the ionic potentials. 

It is this separability of the matrix elements into these two factors 

which is so central to the results of pseudopotential theory and this 

work in particular. This separability, when demonstrated for the 

screened pseudopotential, will lead directly to a structure-independent 

energy-wfvenumber characteristic and to structure-indfcpendent effective 

pairwise interactions. From Equations (2.31) and (2.32), we may write 

the matrix elements of the unscreened pseudopotential as 

(k + q|^lk) » 6 ^K)<k + a|w
0ik) + F(q)<k+ q}*?^) - V^ 6^ . (2.33) 

The virtual crystal approximation has been widely used to treat 

the case of a disordered binary alloy. In this approximation, the ac- 

tual potential due to the ions in the crystal is replaced by a peri >dic 

array of ionic potentials vhich are the weighted average of the two 
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different ionic potentials in the alloy. This approximate potential 

differs from the potential represented by the fi.-st term in Equation 

(2.33) by only the orthogonalizing terms which have been added to the 

ionic potentials to obtain the unscreened pseudopotential. Thus the 

first term in Equation (2.33) re)resents the potential of a virtual 

crystal of pseudo-ions. As we vauld expect, the difference unscreened 

pseudopotential vanishes in the limit as the two types of ions in the 

allov become identical and we obtain the appropriate unscreened pseudo- 

potential for a single-element crystal. Thus  the effect of alloying 

is to split the matrix elements of the unscreened pseudopotential into 

two parts. The first part is a virtual crystal approximation for the 

potential of the pseudo-ions, and depends upon only the configuration 

of the ionic sites in the crystal. The second part is a correction to 

the virtual crystal approximation which accounts for the difference 

between the ionic pseudopotentials and depends in detail upon the ar- 

rangement of the ions on the ionic sites. We should note at this point 

that the average and difference unscreened pseudopotentials, as we have 

defined them, are not strictly independent of the order of the system 

since we have not restricted f (r) so that it may not vary from con- 

figuration to configuration. We may find it convenient at some later 

time to restrict f (r) to being invariant during rearrangements or the 

ions at constant volume. Under that restriction, the average and 

difference unscreened pseudopotentials would be truly constant during 

variations in the configuration of the ions at constant ionic vol- 

ume. In any case, we expect that the ordering process will affect 
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the pseudopotential most strongly through variations in ?{%),  not 

f (r). Let us now tur.. to the calculation of the natrix elements of 

the icrcening potential. 

Derivation of the Screening Potential 

The remaining contrihution to the pseudopotential, W, is the 

potential due to the conduction electrons. As we indicated earlier, 

an exact evaluation of this potential would require the solution of 

a difficult many-body problen. In fact, the energy of a homogeneous 

electron gas at metallic densities is still a problem o' ^reat theo- 

3tical interest. Accordingly, we must make an approximation which 

will enable us to estimate the potential due to the conduction electrons, 

which we denote by v . The greatest contribution to V^ is the Kartree 

potential of the conduction electrons. This is the Coulomb potential 

of that charge density which results from a statistical average over 

th proba'iilicy distrib-'.tion of the electrons. The electrons are 

treated as being statistically independent in this potential, neglect- 

ing the many-body effects. The introduction of the Fock exchange po- 

tcntir" accounts for the antisymmetry of the conduction electron many- 

bcdy wav function by raising the energy rf  those states in which elec- 

trons of th2  same spin are close together. This potential tends to 

exclude half of the local charge density from the immediate region of 

a given electron. The correlation effect accounts for the Coulcnb re- 

pulsion of the individual electrons and is a true nany-^ody correction 
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to the Hartree-Fock potential. These three contributions completely 

determine v '. 

An analysis of the effects of exchange and v relation hy Harrison 

[6] suggests that these many-body effects may make a significant con- 

tribution to cohesive energies and ordering energies in a pseudopotential 

calculation, even though thej may not affect the total electronic energy 

greatly. Further, we cannot neglect the correlatiun potential relative 

to the exchange potential as we could when we were considering the- ef- 

fect of the core electrons on the conduction electrons. I'he work of 

P. Nozieres and D. Pines [7] has indicated that the contribution of the 

correlations among electrons to the energy of a free electron gas at 

metallic densities is roughly one-fourth of the contribution due to ex- 

change, ^rrrelrtinn effects might be relatively more significant in 

determining the cohesive energy of a real metal, or the ordering energy 

of an alloy. Formally, the simplest procedure would be to approximate 

v " with the Hartree-Fock potential of the conduction electrons and 

neglect the effect of correlations. The derivation of the self- 

consistent electron potential would proceed in direct analogy with the 

treatment of the Hartree potential which follows. However, an actual 

calculation of the electron potential in the Hartr.e-Fock approximation 

would be greatly complicated by the non-locality of that potential. Due 

to the uncertainty in the relative significance of the exchange and cor- 

relation effects, we could not be confident that the additional work 

would produce significantly better results. Further, the inclusion 

of the effects of exchange without those of correlation is well known to 
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yield poor results for a free electron gas. Since the emphasis of this 

work is on the special properties of alloys relative to single-element 

crystalsj we have decided not to include the non-local Foek exchange 

potential without a similar expression for the correlation potential. 

A more promising approach to the problem of the exchange and cor- 

relation potentials has been suggested by the work of W. Kohn and 

L.J. Sham [8]. They have developed a. formalism for expressing the ef- 

fects of exchange and correlation in terms of the local density of the 

conduction electron gas, denoted by n. Their expressions may then be 

expanded in powers of grad (n).Kohn and Sham have given a local ex- 

pression for the potentials due to exchange and correlation which they 

claim neglects only the effects of the fourth and higher powers of 

grad (n). As we shall demonstrate, we must linearize our expression 

for the electronic potential in order to obtain a self-consistent so- 

lution. In a linear formalism, each Fourier component of the charge 

density is screened separately. Accordingly, we migUt expect that the 

local expression given by Kohn and Sham will not give the proper matrix 

element of the potential for large 3 components of n since their ex- 

pression results from an approximation of slowly varying electron 

density. A linearization of the local expression in terms of the 

pseudopotential confirms this expectation. The matrix elements of the 

exchange and correlation potentials do not tend to cancel the matrix 

elements of the Hartree potential ES  g becomes very large, but continue 

to grow in influence. Unfortunately, this deviation from the expected 

asymptotic behavior appears to extend well into the region in g space 
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where we would expect the correlation and exchange effects to con- 

tribute significantly to the ordering process. Rather than guess 

at a proper interpolation procedure to predict the effects of ex- 

change and correlation in the crucial regior., we have decided to 

neglect the influence of many-body effects on the ordering of our 

system. This decision was largely the result of our desire to con- 

centrate upon the peculiar properties of an alloy system. Accord- 

ingly, we wish to avoid mailing a questionable approximation of many- 

body effects when such an approximation might dominate our results. 

Although the work of Kohn and Sham may eventually lead to a useful 

approximation of the effects of exchange and correlation, we will 

limit our treatment to an approximation of v  in terms of the Hartree 

potential. 

In our derivation of the Hartree potential, denoted by v , we 

shall introduce several approximatiors. In each case, we shall empha- 

size the aim of the approximation and the restrictions which it im- 

poses upon the accuracy and validity of the final result. We may begin 

by writing Poisson's equation for the screening potential in terms of 

the conduction electron charge density as 

-r*-r VSC = 87rnCE= -8Tr2{v)(r|v)<v|r> . (2.3.) 

The sura over {v) in Equation (2.34) is over all of the occupied electronic 

eigenstates of H. Tne contribution to the potential due to the average 

conduction electron charge density has already been included in T as 

part of V . In order to find the effect if the spatially varying part 
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of the conduction electron charge density, we shall take the matrix 

elements of Equation (2.34) between plane waves It-fq and k. Since 

v is manifestly local, its matrix elements are a function only of 

the (.iifference between the wave vectors. Accordingly, we may write 

the off-diagonal matrix elements of v  as 

(qiv^lo) - -^X(v)(ä|((rlv><v|r>)|()> . (2.35) 
kl 

Using Equation (2.15), we may express (r|v)(v|r) in terms of the pseudo- 

valence state v as 

<r|v){v|r) = <r|v>(v|r> - Zc(r|c><c|v>«Hr) 

- 2c(r|v)<vlc)<c|r) 

+ 2C 2c.<r|c>Hv><v|c'><c»lr> , (2.36) 

wnere v satisfies the pseudo-Hamiltonian equation, 

Hp|v) = Tjv) + W|v) = Ev|v)   . (2.37) 

We wish to obtain a self-consistent expression for the matrix 

elements of V80. The most obvious method for obtaining this expression 

is an iterative procedure. We begin by assuming a set of matrix ele- 

ments of v , which may be combined with W^ to yield an exj ession for 

the screened pseudopotential. Equation (2.37) then allows us to cal- 

culate a set of v, which may be substituted into Equation (2.36) and 

^^bined with Equation (2.35) to yield a new se'- of matrix elements 

v . Hopefully, each iteration of this procedure will bring us closer 

to the actual self-consistent set of matrix elements of v . But let 
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us examine the size of the secular matrix which must be solved to 

yield the v. In a crystal which can be described in terms of a 

small repeating cell, such as a single-element crystal or an ordered 

alloy, we may describe the locations of the repeating cells by a set 

of vectors, (R ), which is a subset of (R). AS in the case of (R), 

we can construct a set of vectors (K } in reciprocal space such that 

{K ) contains all those vectors such that exp(-iK »R ) = 1 for all 
— S "S "S 

members of {R ). The symmetry described by {R ) in real space is 

manifested in reciprocal space by the vanishing of all the matrix 

elements of the pseudopotential between two plane waves unless their 

wave vectors differ by a member of {K ). This result is well-known 

for the actual crystalline potential and has been demonstrated [2] 

for a single-element pseudopotential. The generalization to the case 

of an ordered alloy follows readily and we shall not dwell upon i* 

here. In practical applications of the iterative procedure we dis- 

cussed above, we can truncate the set of {K ) vectors which we choose 

to consider in a given secular matrix to a manageable set since the 

interaction between plane waves k and k+ Ks decreases rapidly for 

large values of |K |. In the case of an alloy which is not in an 

ordered state, however, we must consider the matrix elements of the 

pseudopotential between all members of the set (k), since none of 

them vanish through symmetry. The dimension of our secular matrix 

must then be large: than in the ordered case by roughly a factor of N. 

N is the number of ions in the alloy and is arbitrarily large. The 
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secular matrix would be unmanageable for this general case and we 

could not use the method described above. 

One other problem arises when we attempt to arrive at a self- 

consistent expression for the matrix elements of v  using a method 

which requires the direct solution of a secular matrix equation. 

The energy of the state v obtained from the diagonalization associ- 

ated with such a solution depends in general upon the products of 

many matrix elements of the pseudopotential. As we shall demonstrate 

in the next chapter, these products will involve factors like 

FC^1) F(92) ... F(3M) where q1 + q2 + • • • ^ qM is a member of 00. We 

shall further demonstrate that even a combination of perturbation 

theory and the solution of a small secular matrix will still leave 

the energy of v dependent upon at least the product FCg'^(-JJ* ) for 

all values of q' in the set (k). Since this energy enters into the 

coefficients of the plane waves in the expansion of (r|v), the least 

dependence upon FCq') which the matrix element (q|v  |o) will de- 

monstrate will involve F^'^(-q*) for all q'. Therefore, we could 

never place the matrix elements of v  in the form of Expression (2.33) 

unless we were willing to let the average and difference pseudopotentials 

depend indirectly upon FCq'). This dependence would destroy all the 

important properties of the separated form. Recall that we may require 

the average and difference unscreened pseudopotentials to be completely 

independent of configuration at constant volume within the assumptions 

which we made in deriving Expression (2.33). In order to preserve this 

property in the screened pseudopotential, we must limit our expression 

for V80 to that which may be obtained from perturbation theory. We nay 
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furth.'r note that the general expression for v  obtained from a 

method which involves a direct solution of a secular matrix equation 

would involve products of M FCq^'s, where M > 2. We shall later 

show that these products involve K-particle correlation functions. 

This would further complicate the solution of the secular equation, 

and the procedure for obtaining v . 

Turning to perturbation theory, we can hope that our pseudo- 

states will be more amenable to a perturbation treatment than the 

actual valence eigenstates. If we expand the pseudo-valence state 

v using plane waves as a basis, and then express the coefficients of 

the plane waves as a perturbation expansion in the pseudopotential, 

O    JSC 
W - W + v , we may write one of the mt^iy terms which occur on the 

right-hand side of Equation (2.35) as 

(k + q + q1|w|k + q2){k + q"|wIk + q3>..-(k + qM|w|k + q1> .        (2.38) 

We may regard the matrix elements oJ ri M ..lelng known. A term of 

M'th order in the pseudopotential, such as the one above, will have 

many products of the matrix elements of v .    The largest such product 

which will occur is 

'oJ qW^V0 k3> ••• (qVV) , (2.39) 

where the vectors q , q ,...,q will assume all of the values in (k). 

Thus all terms occurring on the right-hand side of Equation (2.35) 

which are higher than ^irst order in the pseudopotential will give 

rise to products of two or more matrix elements of V^ . ^ ese pro- 

ducts will transform the set of equations suggested by Equation (2.35) 
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into a non-linear set of equations of order N to be solved for the 

matrix elements of v    .    In order to avoid such an Insolvahle set 

of equations we must restrict the right-hand side of Equation (2.35) 

to consist only of first order terms in a perturbation theory ex- 

pansion in the pseudopotential. This restriction is also necessary 

to avoid obtaining a (<j|v |o) which depends upon F^') for all values 

of q', since products like Expression (2.38) involve factors of F^') 

for SL. 1 values of q*. 

We have concluded that we must express the right-hand side of 

Equation (2.35) to first order in a perturbation expansion in the 

pseudopotential. We were led to this conclusion by the necessity of 

obtaining a finite set of equations to solve for the matrix elements 

of v  and the desire to obtain an expression for {q|v |o) which de- 

pended upon F^') only for q" =» q. We should now ask how seriously 

we will limit the results of our theory by being able to calculate 

v  only to first order in the pseudopotential, W. This question is 

best answered after obtaining the form ir. which the matrix elements 

of the pseudopotential enter into the screening potential matrix ele- 

ments- Proceeding with the calculation of the screening, we will as- 

sociate the state v with the point k in reciprocal space. In other 

words, we will associate the zero'th ordtir wavefunction , a (k) |k), 

with v and calculate the perturbing effect of the pseudopotential on 

that initial state. This implies no more than a one-to-one corres- 

pondence between a listing of states according to v or v and a listing 
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according to k. Specifically, it does not imply that k is a good 

quantum number in our system. If we expand the wave function v in 

terms of plane waves and neglect all terms higher than first order 

in the pseudopotential in a perturbation expansion of the coefficients 

of the plane waves, we can write 

|v> = a (k) |k> +Z'f , a (k) |k+q> , (2.40) 
'(q) V 

where 

a (k) (k + q|wlk> 

^)-     |K>.W  '    ^0' t^■41, 

The primed sum in Equation (2.40) is over all the members of (k) except 

q s 0. The first order Expression (2.41) results from a standard per- 

turbation theory expansion in the pseudopotential [2] once we recall 

that the eigenvalue of T operating on the plane wave k+ q is (|k_+q| + V-). 

In writing Expression (2.41), we have neglected the vanishing of the 

denominator for certain values of q ^ 0. As we mentioned previously, 

a matrix element of the pseudopotential of a periodic crystal between 

two plane waves vanishes unless the wave vectors of the plane waves 

differ by a member of the set {K ). Then for those values of k such 

p p 
that |k| = jk + Ksl , Expression (2.41) diverges for a periodic crys- 

tal. The effect of the higher orders of perturbation theory is no 

longer small and we say that perturbation theory breaks down. This 

corresponds to a Bragg reflection of the plane wave k and the occur- 

rence of a band gap in the energy spectrum. For an alloy which is 
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not in an ordered state, none of the matrix elements of the pseudo- 

potential vanish identically. Therefore, for each value of k, 

Equation (2.41) will diverge for a set of values of q lying on a 
m 

sphere in reciprocal space. 

Since the pseudopotential enters into the screening only through 

Equation (2.40), and ve are going to drop all terns on the right-hrtid 

side of Equation (2.35) which are higher than first-order in the pseudo- 

potential, the screening will only depend upon the sum of terms like 

repression (2.41) over all values of k within the Fermi sphere, 

(k+3|w|k) g(k) 

2
WF |k|2. Ik + q|

2 (2*42) 
mm •    ^p 

The function g(k) has been inserted Into the above sum to account for 

any k dependent factor which might be multiplied by Expression (2.41). 

As the size of crystal increases arbitrarily at constant ionic volume, 

the values of k become arbitrarily close together and the sum in Bcpres- 

-ion (2.42) becomes arbitrarily close to an integral. Since the numer- 

ator in Expression (2.42) is going to be slowly varying in the vicinity 

of the divergence associated with the denominator, the integrand be- 

haves like l/x through the divergence. The principal value of such an 

' nt.egral is perfectly well-defined as long as the boundary of the in- 

j^gration is not arbitrarily close to x = 0 [5]. Therefore, the value 

of Expression (2.42) may be a small number even though there are values 

of k for which the integrand diverges. If this is indeed the case, per- 

tiirVation theory to first order in the pseudopotential does suffice to 
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express the screening potential fairly accurately, even though it 

does not express individual terms in Expression (2.42) accurately. 

However, the divergence of the integrand in Expression (2.42) can 

give rise to a band gap. Thus, a system might certainly exist wher* 

the screening potential might be quite well approximated by first- 

order perturbation theory, yet we might be forced to solve a secular 

matrix equation to calculate the electronic energy at particular point« 

in reciprocal space. This would not be inconsistent in any way. The 

approximation of first-order screening does not restrict us in any 

direct way to a consistent treatment of electron energies to some 

particular order in perturbation theory. We must consider ascertain- 

ing the validity of first-order screening as a problem separate from 

ascertaining the validity of using second-order perturbation theory to 

approximate the electron energies. 

We might note that there are certain interesting physical cases 

where the calculation of the screening potential to first-order in the 

pseudopotential is a poor approximation, and where integrals like Ex- 

pression (2.42) might even diverge. Let us consider the case where the 

Fermi surface is tangent^ or nearly tangent, to a plane in reciprocal 

space where one might expect a band gap. Then an integral over the 

Fermi sphere, such as Expression (2.42), will have large contributions 

from points on the low energy side of the band gap with no compensating 

contributions of opposite sign from points on the high energy side of 

the band gap. Under these conditions, Expression (2.42) will have a 
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xarge, if not arMtrarily large, value and first-order perturbation 

theory wil1 not suffice to express the matrix elements of VBC.    The 

stability of certain long period sup.r-latticeb in alloy systems is 

believed to depend upon the Fermi surface being tangent to such a 

plane in reciprocal space. Such systems are therefore not amenable 

to the treatment of the 8cr?ening which was described above. Accord- 

ing?  ws could not separate the matrix elements of the pseudopotential 

in such systems as we wish to do. As we shall see in the next chapter, 

this woulü prevent us from expressing the total electronic energy of 

tha system in terms of a two-particle correlation function. The ability 

to well approximate the screening using first-order perturbation theory 

is therefore central to the results of this work. We shall proceed fci- 

mally ^s though there were no divergence in Expressioi (2.41), but we 

mast ascertain the validity of thia treatment in particular cases. 

If we substitute Eijuiitions (2.40) and (2.41) into Equation (2.36), 

we may write the wave aensity, (rlv)(v|r), to first order in the pseudo- 

potential a3 

(rjvXvlr) = |ao(k)|
2[{r|k)(k|r)-2RE2c(ric)(c|k)(klr) 

+ Zc2cl(r|c>(c|k)(k|c')(c'|r)] 

(k + q[W|k) 
+ 2 a (k) r RE Z- -,  — r 0 -       UJ lvl2_IV4.„l2 *' 1*1 -|k+q| 

X (rlk+q)(klr)-2c<r|c)(c|k+3)(k|r) 

-2c(r|k+q>0;.lc>(c|r) 

2n „.(rlcXclk+qXklc'Xc'lr)  .    (2.43) .,c -    - - -      -J 

c 

+ ' 
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The integral of depressions (2.43) over ihe entire crystal should be 

unity since the stvte v contains just one electron. This yields an 

expression for |a (k)] as follows: 

laftU)|2Jl-Z<k|c>(c|k> 
O -   ' \ c 

('■ (k+q|w|k> 1   . 
" 2RE2IQ1 TV; 'S Kc^lcXclk+q)]}"1 ,      (2.44) W   |kr-lk+q|2  c        " J 

•mere we have used the orthogonality of the core states of H. We 

are also interested in the matrix elements of Equation (2.43) between 

p.'ane waves JJ and 0, which we will wish to insert into the right-hand 

side of Equation (2.35). To first order in the pseudopotential, the 

matrix elements of the charge density associated with the state v are 

given by 

la (k)!2 r 
<q|[<rlv>(v|r>]|0> =-2H^-   -2c[(k+qic><c|k>-f <k|c><clk-q)] 

^^.(klcXcle-^^lc'Xc'lol 

lao(k)|2  r<k+qlw|k> <k-qlw|kr 
+ ""nE ||k|2-|k+q|2+  |k!2-|k.q|2 

+ 
a(k)l2 (k+3'|w|k> (k) - U+q'  W U    r .    w 

2 [<k+q|c><c|k+q'>+ (k|c)(c!k+q c k+q'-q)]| 

|an(k)r <k*q'|w|k>*r .    ^ 

^[(k-sq" |c>(cIk-3)+ (k+ä'+älcXcjk)]    .      (2.45) 
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In order to more fully understud the inpllcationa of Equation« 

(2.4A) and (2.45), we must investigate the nature of the sums over e 

which are involved. Let us first consider the s«.. which occurs in 

Equation (2.44) 

2cU+q|c><c|k) . (2.46) 

We may fully express the sums involved in Expression (2.46) as 

2JRJ 3^üjn8<k+q|nlmsjR)<alms;R|k> . (2.47) 

Since the core wavefunctions aspociated with a particular element 

have been assumed to he independent of the local envirorraent of the 

core in the crystal, we may separate Expression (2.47) in a manner 

analogous to the separation of Expression (2.19). In order to simpli- 

fy our  „ation, lee us define a projection operator associated with 

the core states of an ion of type i located at R hy 

pi^-?'£'- 5) " 2nlIM<^-Rlnlms;i)<nlmsJi|r
,- H> . (2.48) 

From the invariance of the core states, we may use this definition to 

write Expression (2.46) as 

ic(*+q|c>(clk> - g-2(Hj(k + q|{(l+(T(R)) P^r-^r'-R) 

+ (1-<T(R)) P^r-R,^- R))|k>.(2.49) 

In computing the matrix elements of P. and P. in Equation (2.49), we 

may translate- the origins of our integrations to the points R and re- 

write as 
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o 

where 

2c<k + q|c><clk> » J2{?J ^-e-1**? <k+3|PA|k>nt 

+  j^ e-^'S <k + q|PB|k)noL (2.50) 

o 

X <nlms;i|r'> e1-*-'      (2.51) 

In ar.alogy with our previous separation of Vr, we may define an aver- 

age projection operator, 

(k + Q|p|k> s x<k + q|PA|k)r + (l-x)(k + q|P_ik>n , (2.52) 

and a difference projection operator 

(k + q|ap|k> 2 i<k + q|pA|k)n  - i<fc + q!PBi5>n   • (2-53) 

These definitions nay be coupled with our definition of F(q) and our 

discussion of the Kronecker delta to writ« Expression (2.46) in the 

form of Equation (2.33), 

2 (k+q|c>(c|k> = b    , .(k+qlplk) + F(q)(k hq|Ap|k) .       (2.54) 
c--     -    q, if.j~-~     »--    - 

If we substitute from Equations (2.33) and (2.54) into that part of 

the last term of Equation (2.44) which is associated with V», we ob- 

tain a product of which one of the factors is 

,  (k+K!wc|k)('kIP|k+K>       |F(3)|2(k+q|A.:0|k)^|Ap|k+q) 

{-} Ikl2-  It+Kl2 {- |k|2-|.+q|2 

(2.55) 

Note that no cross products occur in Expression (2.55) because 6 fKl^S^ 
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Is Identically zero for all values of £ as we observed in our dis- 

cussion of Expressions (2.31) and (2.32). We may see from Expres- 

sion (2.55) that an expression for |a (lt)| which is strictly first 

order in the pseudopotential would depend on F(q') for all values 

of j'. As we discussed in deciding on the order in perturbation 

theory to which we could calculate AT , the presence of such a de- 

pendence on -t-^e right-hand side of Equation (2.35) would prevent us 

from separating the pseudopotential. We wish an expression for 

(qlv^lo) which involves F^') only for q' = q. Accordingly, we would 

like to drop the last part of Equation (2.44^ from our expression for 

fa (k)| . Fortunately, calculations by Harrison [2] and others have 
o — 

shown that the sum in Expression (2.46) is usually on the order of 

0.10, varying between rough limits of 0.05 and 0.22, for g = 0. For 

a given k, the sum is a slowly varying function of q which reaches 

its maximum in the vicinity of q = 0. While we are reluctant to call 

such a sum a first-order expression in the pseudopotential, it is 

reasonable to compare its magnitude with that of an expression like 

(k+ 3|w|k> 

|K|2-lk+ql2 * 

A typical value for this factor might be that for k * 0 and for q 

set equal to one-half of that reciprocal space vector of (K) which 

has the  smallest magnitude. A survey of the pseudopotentials of the 

various single-element crystals which were listed by Harrison [2] in- 

dicates that a typical magnitude for Expression (2.56) might be 0.2, 

(2.56) 
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with rough limits of 0.0 and 0.4. Expression (2.56) may be zero for 

particular values of k and q depending upon the pseudopotential used, 

but we feel that 0.2 is truly representative of its magnitude. Accord- 

ingly, we shall generalize and consider the sum in Expression (2.46) 

£.s being roughly comparable with a first order term in the pseudo- 

potential. This approximation must be verified for particular syst TIS. 

With that approximation, we can write the expression for |a (k)| 

zo "first-order" in the pseudopotential as 

|ao(k)|2 = [1 - Z^klcXclk)]"1 (2.57) 

Similp ly, we may write Equation (2.45) to first order in the pseudo- 

potential as 

la (k)l2 r 
(ql[(t|v)(v|r)]|c) = \' -Zc[<k + q|c)(c|k) + (k|C>(c|k-3>] 

^^.(klcXcle^S^lc'Xc'lk)] 

|a (k)|2 f (k + alw|k)    (k-q|w|k)H 

|2 i,   |2 (2.58) 
1^1-l^qr    1*1-I*-ql* 

once we observe that terms like 

^^^(k + q'IcXcle-^^lc'Xc'Ik) , (2.59) 

may b*? considered as comparable with Equation (2.46). For q = 0 in 

Expression (2.59), the orthogonality of the core states of H allows 

us to reduce that expression to Expression (2.46). The presence of 

exp(-iq'r) in the middle integral merely serves to spread out the 

sharp orthogonality condition and should not increase the magnitude 



44 

of Expression (2.59) above tnat of Expression (2.46). Expression 

(2.54) demonstrates that Expression (2.57) for |a (k)| does not in- 

volve F(q), since q = 0 is a member of the set (K). Thus the de- 

pendence of the matrix elements of v  upon F(q) must come from the 

two factors in braces in Equation (2.58). Let us define a function 

B(k,q) as 

B(k,q) * -2c[(k+q|c)(c|k) + (k|c><c|k - q>] 

+2c2c,(klc>(cie-
i^|c'><c'|k> . (2.60) 

With this definition, we may rewrite Equation (2.58) and substitute it 

into the right-hand side of Equation (2.35) to obtain 

BTT 

^^'^w^'l' 
(k + qiw|k) <k- 

■+■ 
yk|2-lk+q|2   |k|2 

q|w|k>*      1 

(2.61) 

The sum over {k)_ is over all the values of k within the Fermi volume. 

If we recall that W = W0 + V80 and that (k+qjv80^) is independent of 

k, we may solve for the matrix elements of the screening potential, v , 

in terms of the unscreened pseudopotential. The expression for these 

matrix elements is 

fhr .[(k+qlw0^)  (k-ql^lk)* 
(q|V*>> aTi| 2   KWfi   'I'      -2+   'o    VB(M) 

n|ql2D(q)  ^F 0- ' [Ikl2-!^!2  |kl2-|k-q|2   "^ 
(2.62) 

where 

Sir D(q)s 1 -_22!_2 . |a(k)(^_J: =• + —=~^ -V .  (2.63) 
nisi2  H- 0-    l|ki2.|k+3|

2   |k!2H^|2r 
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It is apparent from the form of Equation (2.62) and the separability 

a —. Q J5C 
of the matrix elements of W that the separahility of ^ , as dis- 

cussed in connection with W0, vri.ll follow directly from the separabil- 

ity of B(k,4). Equation (2.54) demonstrates the separability of the 

first sum in Expression (2.60) for B(k,q). We have already assumed 

that the core state wavefunctions may be well approximated in the 

solid by the corresponding atomic wavefunctions. This is a reasona- 

ble approximation only if the overlap of core wavafunctions on ad- 

jacent iom, in the solid is negligible. Accordingly, the middle inte- 

gral in the last term in Equation (2.60) must vanish unless c and c* 

are on the same ion. We may use this property and the definition of 

the core projection operator to write this last sum as 

ZZ.frlcHcle-^lc'Kc'Ik) 

+(l-(r(R)) /dr'PB(r~R,r'-R) e^S^'p^r'-R^'-R) ||k> . 

(2,64) 

We may now follow the customary procedure of translating the origin» 

of the integration coordinates to the point R and defining an average 

function, 

b(k,q) = x bA(k,q) + (l-x)bB(k,q) , (2.65) 

and a difference function, 

M*,$)  = ibA(k,q) - ibB(k,q) , (2.66) 
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where 

bi(k,3)=-<k+a|Pilk)no - {klpjk-j)^ 

+ N 2nlma<k|nlmsjiKdr<nlms;i|r>e'i3'S 

n'l'm's» L 

x {rln'lVs'jOKn'rm's'jilk)    . (2.67) 

We may now express B(k,q) in separated form as 

B(M)  a VOO^-'O  ^F(q)Ab(k,q)   . (2.68) 

Returning to Equation (2.62), we observe that, for q equal to some member 

of the set {K}, the matrix element of v involves only the average quan- 

tities. Similarly, for all other values of j, the matrix element of 

v  involves only the difference quantities. Therefore, we may quite 

sc 
naturally separate the matrix elements of V" as we did the matrix ele- 

ments of w. If we define an average screening potential, 

^P^)'l5V""',"/ 

(2.69) 

and a difference screening potential, 

, ,  sc. v    STT       ,    .zlVäi*^ ^iAv0ik) 
(q|Avsclo) =—1— 2(k}Jao(k) f<-r4— ä+T~tr   .2 ^(M) 

cw .■(k + qlw^k)     (k-qlw0|k)* 1 

n|sn>(3) IkMk+qr     ikr-|k-q| 
• 

(2.70) 

we can write the matrix elements of the screening potential as, 

(^i^lo) = ^{K)(3|v
SCl0) + F(3)(3lAv8C|0> . (2.71) 
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We might stop at this point and compare the results of this 

theory with the results of Harrison [6] for a single element crystal. 

As we noted before, the difference potential would vanish for a single- 

element crystal. We would expect that the single-element screening 

potential would be given essentially by Equation (2.69) in the limit 

as the two types of ionic potentials become equal. However, we can 

obtain Harrison's expression for the screening from Equation (2.69) 

only if we set |a (k)| = 1 and b(k,q) = 0. In agreement with our 

approximation the "order" of Expression (2.46), we might argue that 

setting |a (lt)| = 1 does not drop any terms from Equation (2.69) which 

are not second or higher order in the pseudopotential. However, b(k,q) 

should be considered as comparable with a truly first-order contribu- 

tion to the pseudopotential. For the system which we have chosen as 

an example, the factor |a (k)| increases the matrix elements of the 

screening potential by six to eight per cent for important values of q. 

Similarly, the terms b(k,':) and Ab (k,q) decrease the screening potential 

matrix elements by about one per cent for q = 0.25 atomic units"(a.u.) 

and b:r about forty per cent for q = 1.50 a.u. Thus, the combined ef- 

fect of the two corrections tends to redistribute the screening effects 

in q-space. The effects tend to cancel to a certain extent and'we have 

accordingly included both of them in our formalism. The effect of these 

corrections on the screened pseudopoteiitial is much more dramatic for 

small values of q since the screening potential and the unscreened 

 pseudopotential cancel to a large extent in this region. We conclude 

_ .__ 

Harrison has included some of the effects of these terms in his con- 
cept of effective valence. 
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that these effects should he included in an accurate screening cal- 

culation for either a single-elemt-nt crystal or an alloy. Proceeding 

accordingly, we wish to add our V30 to \r to ohtain the screened 

pseudopotential. Equations (2.33) and (2.71) allow us to write the 

matrix elements of the total screened pseudopotential as 

(k + qlw|k) - • {K)^
+q!w|^ + FtjKk+jlAwlk) , (2.72) 

-   -O . -SC A O . A 80 
where w = w + v   ana uw « Aw + Av . 

Since we have succeeded in our aim of separating the full pseudo- 

potential in the sense discussed in connection with Expressions (2.31) 

and (2.32), we shall review the assumptions which were required to 

achieve this separation. Starting with the Austin, Heine, and Sham 

form of the pseudopotential, we first assumed that the core eigen- 

functions did not depend upon the local environment of the ion and 

that we could use the corresponding atomic wavefunctions in their 

places. Later we made vise of the .mplication of this invariance that 

the core eigenfunctions on adjacent ions in the solid did not overlap. 

We assumed that a Hartree-Fock one-electron Hamiltonian was sufficient 

to descrihe the interaction of the conduction electron eigenstates with 

the core electron eigenstates. These assumptions are common to all GPU 

and pseudopotential approaches. Then we restricted the form which we 

might finally choose for f (r) to one which did not vary among the ions 

of one type throughout the alloy, for a particular configuration of ions. 
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Thee assumptions and the restriction on f (r) allowed us to separate 

the unscreened pseudopotential into the form of Equation (2.33). The 

matrix elements of w and Aw , however, depend upon the configuration 

of the ions to the extent that we allow the chosen form of f (r) to 

depend on the configuration. Approximating the electronic potential 

with a Hartree potential, we found that we could not separate v 

unless we calculated the screening potential matrix elements only to 

first order in the pseudopotential using a perturbation expansion. 

This approximation was also necessitated to a large extent hy our in- 

ability to solve a set of N dependent equations. As we discussed at 

the time, this approximation for V^^ does not restrict us to calculat- 

ing the electron energies to some particular order in the pseudopotential. 

At points corresponding to band gaps, the approximation we have used to 

obtain v  should not stop us from diagonalizing some limited matrix to 

obtain the eigenvalues. This is because the accuracy of the matrix ele- 

ments of v  depends upon some average over the Fermi sphere of the error 

in a first order perturbation theory treatment of the electronic eigen- 

functions, and consequently may not be greatly affected by the band gaps 

in particular instances. Further, we found it necessary for the separa- 

tion of v  to consider terms like Expression (2.46) as first order in 

the pseudopotential. An examination of typical magnitudes demonstrated 

the validity of this assumption. Finally, we were able to separate the 

screened pseudopotential into the form shown in Equation (2.72). 
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The Ordering. Energy and the P&lrwlse Interactlona 

Our derivation of the form of the screened pseudopotential was 

motivated hy a desire to calculate the total conduction electron energy 

and the electronic contribution to the ordering energy of an alloy. We 

also wish to vie the form of the ordering energy to deduce an expression 

for the effective pairwise interactions. In order to facilitate jur 

discussion of the total energy of the system, we will distinguish two 

separate groups of charges in the crystal. One group consists of the 

ionic cores, composed of the nucleii and the core electrons on all the 

sites in the crystal. The second group consists of all that charge as- 

sociated with the occupied valence states of K, including the uniform 

charge distribution, the screening charge density, and that charge which 

has been associated with the cores through the action of projection oper- 

ators such as Z (r|c)(c]r) in Equation (2.15). In other treatments [6], 

the uniform distribution and the screening charge density are associated 

with the charge density of the occupied stetes of v. The conduction 

electron charge which has been associated with the cores by the pro- 

jection operator is then combined with the charge on the ionic cores to 

yield an effective valence. For our purposes, however, the division of 

charges mentioned earlier is more convenient. 

We have assumed that the wavefunctions of the core electrons may 

be approximated well by the corresponding atomic wavefunctions. There- 

fore, we are neglecting the van der Waal's interactions among the cores. 
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We are also neglecting any ir/reractions vhich may arise due to a 

slight overlap of the charge densities associated with adjacent 

cores. Accordingly, the energy rf the first group of charges is 

simply that of a collection of point charges. If there are Z. posi- 

tive charges associated with each ion of type i, then we may use the 

the function ff(R) to write the self energy per ion of the 'irst group 

of charges as 

"(l+a(R))    (l-o(R)) 

SN^R^R') IR-R1 
ZA + h 

(l+oCP'))   (l-o(R')) 

V 2    "A     2     B 

The total energy of the crystal includes the contribution of Expres- 

sion (2.73), the self-energy of the second group of charges, and the 

energy of interaction between the two groups. If we sum the electronic 

eigenvalues, E , over all of the occupied valence states of H, we will 

obtain the total kinetic energy of the electrons plus the energy ©X 

interaction of the second group of charges with both the first and 

the second groups of charges. This sum correctly accour.ts for the 

energy cf interaction between the two groups, but counts the  Hartree 

self-energy of the second group of charges twice. Therefore, the con- 

tribution of the conduction electrons to the total energy of the crys- 

tal is given by the sum of E over all of the occupied states less the 

self-energy of the conduction electron charge density in the Hartree 

approximation. We may let E be denoted by E. and perform the sum over 

all the points in the Fermi volume. If we let the conduction electron 

(2.73) 
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Charge density be denoted by nc_(r), we may write the conduction 

electron contribution to the total energy per ion as 

N V V N te & ,    ,   ' (2-74) w
  15'F -   a Ij-r'I 

In order to discuss the second term in Expression (2.74), we 

will expand the density of the conduction electrons in terms of its 

Fourier components using 

Now let us examine the contribution to Expression (2.74) of the con- 

stant part of nCE(r) interacting with the spatially varying part of 

n__(r). We may write this contribution as 

-±2, , n fdr fdr' -2  . (2.76) 
S Iq] q ^ - J - j^ rl j 

Performing the integral over r', we may write Expression (2.76) as 

- is', , n   n   -~/dr e^T    . (2.77) N    (q)    3   o  |a|2 J - 

This expression vanishes since the integral over r is zero unless 

q a 0, and we are excluding the term corresponding to q = 0 from our 

sua over (q). Accordingly, there is no energy of interaction between, 

the uniform and the spatially varying parts of the conduction electron 

charge densiJ./. We may repeat the above procedure to calculate the 

energy of interaction between the spatially varying part of nc_(r) and 

the spatially varying part of ^-(r1)« Performing the integrations 

ever r and r', wu may express this energy as 
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N {r*UI  5 '? 

But we may express Poisson's equation as given by Equation (2.34) in 

terras of n by 
q 

<q|^ rf'-rk^    ' (2-^ 
kl - 

We may substitute Expressions (2.78) and (2.79) into Expressions (2.74) 

to write the contribution of the conduction electrons to the total 

e..ergy per ion of the crystal as 

lswp V^? VJI'KSI^IO)!
2

- »/dI ;d£' 1^1 •    (^•8Ö, 

The total energy of the crj stal consists of the contributions which 

we have included in Expressions (2.73) and (2.80) added to the in- 

ternal energy of the ions. 

We should note at this point that some of the expressions which 

we have written down are  divergent. The Coulomb sum and integrals 

which occur in Expressions (2.73) and (2.80) cannot be evaliated 

unless they are taken together. Accordingly, we will gi up the con- 

tributions to the total energy per ion so that each group has a finite 

energy. In the first group, we will include most of those terms which 

do not change when the ions are rearranged at constant volume. The 

first contribution to this group is the energy of an an ay of charges 

Z on each of the ionic sites in the crystal. If x is the fraction of 

ions of element A in the crystal, we may define Z 3 x Z.+(1- x)Z_ in 
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analogy with our definition of the average pseudopotential. To this 

we will add the interaotiou of the uniform conduction electron density, 

n , with the potential due to the ions and electrons in the crystal. 

An average charge density interacts only '•dth an average potential. 

For convenience, we will consider in the first group of energy contri- 

butions only the interaction of n with VT, which ve have already de- o      It 

fi?ed as the spatial average of the potential due to the nucleii plus 

the spatial average of the Hartree potentials due to the core and con- 

duction electrors. The interaction of n with the exchange potential 

of the cores will be included in the second group. Finally, since we 

have counted the self-energy of the uniform electron distribution twice, 

we must subtract it from the above contributions to obtain 

1 T2 (nJ2 1       TT 
i Zr-U^fT,. i — n VTfi —- /dr fdr«  ^— + V11 . (2.81) N W f?'} |R.R.|   oLo   N   ■  " |r-r'| 

We have included V*! , which is the internal energy of t-he ions. We 

vould not expect v  to change during changes in the configuration 

of the ions at constant volume since we have assumed that the core 

electron wavefunctions are always the corresponding atomic wave- 

functions. With the exception of v , Expression (2.81) is essenti- 

ally the Madelung energy of an array of equal positive charges in a 

uniform compensating density of electrons, and is accordingly a finite 

energy. We shall now turn to the remaining part of the total energy 

per ion. 
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In order to display the dependence of this second group of 

energy contributions on the pseudopotential, we must obtain an ex- 

plicit expret-ioa for the electronic eigenvalues which occur in the 

first sum in E::pression (2.80). When we first introduced the use of 

perturbation theory in connection with the calculation of the screen- 

ing potential, we noted that certain terms in the expressions for the 

electronic energies and wavefunctions are undefined in the breakdown 

of perturbation theory associated with band gaps. Later, we noted 

that, in many instances, the integration of these expressions over 

the regions of divergence yields a well-defined result if one takes 

the principal part of the integral. We would accordingly like to use 

perturbation theory to second order in the pseudopotential to express 

the electronic eigenvalues. Since the integrands involved in the 

second-order perturbation theory expression for the total electronic 

energy are very similar to those involved in the first-order expres- 

sion for the screening potential, we would expect that the ac.jracy of 

oue approximation would be very closely related to the accuracy ot the 

other. Therefore, if we may reasonably make the first approxiration, 

regarding first-order screening, we nay have some confidence that the 

total electronic energy may be approximated well by second-order per- 

turbation theory. "As we shall see shortly, both our expressions for 

the effective pairwise interactions and our ability to express the totaJ 

electronic energy of the system Ai  terras of a two-particle correlation 

function depend directly on the ability to make these two approximations. 

On the other hand, if we cannot make these approximations for some sys- 

tem, as we discussed in connection with the screening potential, then 
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neither ca these reaults follow for this system. We cannot over« 

enphasiiLe the central nature of these approximations to the results 

of this work. We might mention in this connection the work of W. 

Xohn and C. Majundar [9]. They have examined the behavior of a gas 

cf independent 'ermions in the presence of an attractive localizad 

potential. If the strength of the potential is gradually increased 

from a vary small value, a fermion state yti'\ eventually undergo a 

tran^xtion to a hound state in the potential well. Kohn and Majumdar 

have shown that this transition produces no discontinuities in the 

properties of the system as a whole. By analogy, we would not ex- 

pect that the band gaps introduced by the periodicity of * ciyst-O. 

would produce a discontinuous change in the properties of that crystal. 

Accordingly, we have reason to believe that the perturbation theory 

approximations regarding the screening and the total electronic 

energy will be good approximations except in special cases such as 

those we dis« ossed in connection with the screening. 

In light of this discussion, we shall express the electronic 

eigenvalues appearing in Expression (2.80) using second-order per- 

turbation theory in the pseudopotentied. We shall treat the terms 

involved as being well-defined everywhere since they appear only in 

integrations over the Fermi sphere, as in the case of the screeiiug 

potential. We must remember that this is merely a formal result and 

that the accuracy of the total electronic energy must be verified in 

particular instances. To second-order in the pseudopotential, the 

electronic energies are given by 
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y 2 ,  (k|w|k+q>\V+q|w|k> 
\ - jkr +%  + (k|wik> +2, -, -: J : ' " ^- .       (2.82) 

The sum of the second term An Equation (2.82) over all points within 

the Feral volume is just the energy of interaction of n with ^_ and 

has already been included in Expression (2.81). We may now write 

that part of the total energy per ion of the crystal which was not 

included in Expression (2.81J as 

1 1   1-2  r(1+0''?^    (I-Ot?))  "I 

«z(*&5') iTTTT i    +12     ZA + *     ^J 

[ 
(l+a(R'))    (l-otR')) 

Z«+ 2 h 

,        {k|w|k+qXk+qlwIk)  n  .    _        . 

r.e ordering energy of the crystal is now the difference hetween 

Expression (2.83) evaluated in the ordered state and evaluated In the 

disordered state. Harrison [5] has shown that the contribution of the 

sum E. over all points within the Fermi volume is given to second or- 

der in the pseudopotential by a sum of Expression (2.82) over all points 

in the Fermi sphere. Therefore, the last sum in Expression (2.83) changes 

during rearrangements of the ions at constant volume only through the 

dependence of W on f (r). The electronic contribution to the ordering 

energy may be best expressed by defining energy-wavenumber characteristics 

appropriate to the alloy problem. Accordingly, we will define E. .(q) by 
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(k|w. lk+a>(.t+q|w.|k>  njq|2 

ij ~   N lkjp     lk!
2-!k+qlw      16ir     1 - - J 

(2.84) 

where 1 and J may take on the values 1 and 2 >    In this notation, we 

shall let w, « w, w, «Aw, v^^ » v , and v, *Av . From Expression 

(2.83), we may write that part of the conduction electronic energy 

which might contribute to the ordering process as 

|2{k) (klwlk) 

,   f       (k|w|k+3><k+q|w|k>    nl^l2 ,. . «Cl ,,2! 

We may now insert the expressions for the matrix elements of W and 

VSC given hy Equations (2.71) and (2.72). Since either P(q) or the 

Kronecker delta will always vanish for a given value of q, there will 

be no terms in Expression (2.85) arising from products of average 

and difference potentials. Accordingly, we may write Expression 

(2.85) as 

IVi ^Iw|k> +2^(^00 E11(q) + |F(q)|
2 E^cj))  .       (2.86) Klw|K; +i^-1lo^ fir] ^^q; + i^q;' 

The change of Expression (2.86) between the ordered and the disordered 

states accounts for the conduction electron contribution to the order- 

ing energy. We have retained the terms involving the average potentials 

since these will vary if f (r) is allowed to vary between the ordered 

and disordered states. If we restrict f (r) so that it is invariant c - 

-loring rearrangements of the ions at constant volume, then the conduction 
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electron contribution to the ordering energy will depend upon those 

terms involving the difference potentials, as one might expect. 

Having derived an expression for the conduction electron (?on- 

tribution to the ordering energy, we turn now to the effective pair- 

wise interactions. Re+urnxng to Expression (2.85), we will again 

substitute Equations (2.71) and (2.72) for the matrix elements of W 

and v . Instead of using the special properties of T{q)  sind the 

Kronecker delta, we will express them in terms of their sums in real 

space, as in Eqi'P.bions (2.31) and (2.32). We may take these two sums 

outside of the sums over (k]., and (q) in Expression (2.85) to obtain m     t m 

l2(k)<*H*> 
" r 

+ ^2{R).V)l2,(q) ^'^^ [^S)+W)-^Ä(3) 

+ (a(R) - <cr)R)E21(ä) 

+ (a(R) - <4)(C7(R') - Mp)E22(q)l .   (2.87) 

By analogy with the form of Expression (2.73), we see that the energy 

of interaction by means of the conduction electrons between an ion of 

element A at R and another ion cf element A at R' is just given by 

substituting (T(R) = O^R1) = 1 into the appropriate term in Expres- 

sion (2.87) to obtain 

|2;<i)e
iä-(?-r){Eii(,)+(1.(cr)?)(Ei2(s) +E2i(?)) 

+ (l-(a)R)2 E22(q)) (2.88) 

-    ,.■.      ' ,:.~ 
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Hecell that the energy-wavenumber characteristics depend on tAT) 

through the pseudopotential. Therefore, we fiM thaX we aiust restrict 

f (r) so that it does not vari *> ing rearrangements of the ions at 

constant volume in order to obtain «in indirect interaction which does 

not depend upon the state of order. With this restriction, we may 

add the point ion energy of i .teracticn to the indirect interactions 

obtained from Expression (2.87) to obtain the effective pairwise 

interactions between the ions. If we denote the total effective 

pairwise interaction between an ion of type i and an ion of typ* i 

separated by a distance R by V.-dRJ), then we may write 

■f U-(o-)B)2K„(.s)| (2.89) 

ziz/ 
Visu - ^ * I^U) ei?'? [^S' -U^EKVS) -^I'S» 

* (l + ((r>R)J ^(j)! (2.30) 

lud 

" <aVE12(^+E21^)) 

- (l-<or>|)^2(q)|. (2 91) 

By a procedure directly analogous to that followed for a single- 

•leroent crystal, we have derived expressions for the electronic 
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contribution to the ordering energy of a binary alloy and for the 

effective pairwise interactions between the ions in the alloy. The 

separation of the ordering energy into terms dependent upon the aver- 

age and the difference pseudopotentials, as in Expression (2.86), was 

possible only because we expressed the total electronic energy using 

second order perturbation theory. In addition, the derivation of 

the effective pairwise interactions necessitated our restricting 

f (r) to being invariant during changes in the configuration of ion« 

in the crystal at constant volume. 
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Chapter Three 

EVALUATION OF THE ORDER-DEPENDENT PART 

OF THE PSEUDOPOTENTJ'^ 

In Chapter Two, we derived an expression for the matrix ele- 

ments between plane waves of the screened pseudopotential of a 

metallic binary alloy. We approximated that part of the pseudo- 

potential which arises through the screening of the ionic charges 

by the conduction electrons with a self-consistent expression which 

is linear in the unscreened pseudopotential. This approxim. - .on was 

partially motivated by the necessity of avoiding aa infinite set of 

equation., which would have had to be solved to obtain the matrix ele- 

ments of the screening potential. In addition, the approximation was 

necessary if we were to separate the matrix elements of the screened 

pseudopotential into the product of a structure-dependent factor and 

a factor dependent upon the structure for a given volume only through 

f (r). Apart from this possible dependence through f (r), the entire 

dependence of the resulting matrix elements of the screened pseudo- 

potential on the poj Ltions of the ions during rearringements of the 

ions at constant volmie is mo,n-i fest in ehe two factors. 5 fvi ^d 
q, IKJ 

F(q).  Since {K) is the set of reciprocal lattice vectors cor- 

responding to the set of ionic sites in the crystal, the Kronecker 

delta contains only information regarding the points in the crystal 

which are occupied by ions. If wc restrict the final form which we may 

choose for f (r) to be independent of the configuration of the ions for 

a given ionic volume, F(q) contains all the information in the screened 
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pseudopotential regarding the distribution of the two types of ions 

on these sites. 

We used our expression for the screened pseudopotential to de- 

rive perturbation theory expressions for the energy of an individual 

electronic state, the total conduction electron energy, and the con- 

duction electron contribution to the ordering energy of the alloy. 

We also derived an expression for the effective pairwise interactions 

between the ions in the alloy. Since our derivation was directed 

toward obtaining effective interactions which were invariant during 

rearrangements of the ions in the crystal at constant volume, we do 

not need to evaluate a function of F(q) in order to calculate the ef- 

fective pairwise interactions. On the other hand, we may wish to cal- 

culate a quantity which does depend upon the state of order in the 

crystal, such as one of the energies which we mentioned above. In 

this situation, we must evaluate certain functions involving F(q). 

We will examine in this chapter the forms in which F(q) night appear 

and the information about the crystal which is required to evaluate 

the order dependence in these cases. 

Electron Energies to Second Order ia Perturbation Theory 

Let us consider a point k in reciprocal space such that the 

wavefunctions of the pseudo-Hamiltonian may be approximated well using 

a first order perturbation expansion in the pseudopotential and the 

energy of that state using a second order perturbation expansion in 
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the pseudopotential. By this we mean that the contributions of 

higher order terms in the pseudopotential are quite small. As we 

noted in the previous chapter, standard perturbation theory yields 

the following expressions for the wavefunction v and the energy E : 

r. v    .   iwOHwik) 
v>. = a (k) k) + Z ,  =5 '—T- 

*- 0'V (S}     |k|2-|k+q|2 

E = |k|2 + V. + (k|w|K) 

+ 2 
(k|w|k+q)<k+q|w|k> 

•'3'   |K|
2
.|H|

2
  ' 

where the primed sura over {3) includes all reciprocal space vectors 

but q = 0. The form which we derived previously for the matrix ele- 

ments of the pseudopotential is 

(k+q|w|k> = 6 , ,{k+q|w|k> + F(q)(k+qiAw jk) , 
- -  -    q, iR.j - -  -     - - _ 

where F(q) is given by 

-iq-R 
F(q) s S{R) (cr(R). (o->R) e £ 

N 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

If we substitute Equation (5.3) into Equations (3.1) and (3.2), and 

note that 5 , , F(q) is identically zero, we may express the wave- 

function as 

|v>. = a (k) j|k) + ?' (K) 

|k+K>(k+K|w|k) 

|k|2-lk+K|2 

+ 2 
|k+q>(k+q[Aw|k)  F(q) 

{5)    iki2- i-^r 
'   > (3.5) 
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and the energy as 

v   -    JJ  -  ■ ■• 

<k|w!^K)<k+K|w|k> 

+ Z{-)   |k|2- |k+K|
2 

_ (k|Aw|k+q><k+3|Awlk> 

Now F(q) is just the Fourier transform of the deviation of (T(R) from 

its average value. Since F((j + K) = F{%)  for all K belonging to {K), 

there sire just N distinct arguments of F(q), where N is the total 

number of ions in the crystal. There is a one-to-one correspondence 

between these values of F(q"/ and the N distinct parameters in (j(R). 

Since Equation (3.5) depends on F(q) alone, the wavefunction clearly 

depends in a detailed way upon the precise configuration of ions in 

the crystal, as one would expect in the exact wavefunction. 

In comparison, the energy of the state depends upon F(q) only 

through the product, |F(q)| = F(q)F(-q). If we expand this product 

uoing the definition of F(q), we find that 

F(q)F(-q) = 2 , j S{Rt)(a(R)- <(T)R) 

-iq'R  +iq•R, 

x ((r(R') -<a>R) ^-j— Hr~ '      (3-7) 

In this expression, the «urns over the sets {R} and {R*) are described 

from the same origin. Let us replace the sum over R' with a sum over 

R", where R' = R+R". As before, we note th.it the crystal may become 
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arbitrarily large at our discretion and neglect the boundary ef- 

fects arising from such a translation of origin. The sura over {R) 

in Equation (3.7) is now independent of q. Accordingly, let us de- 

fine a new average by 

(a(R")-(cr>R)((r(R"+R') - <(r>R) 
(or(0)(T(R'))RS £{R.,} ~-^ Ä- .       (3.8) 

This average allows us to write |F(q)| as 

|F(q)|2 -2{R,)(a(0)a(R
,))R
£ir- '• (3.9) 

Tliis sfjne result can be shown to follow directly from the convolution 

theorem [l]. Since the function ar(R) has been defined such that it has 

a value of +1 if R contains an A ion and a *alue of -1 if R contains a 

B ion, Equation (3.8) defines a two-particle correlation function. 

Thus, while perturbation theory as outlined above yields a wavefunction 

which depends in detail upon the arrangement of ions in the crystal, it 

yields an electron energy which may be expressed to second order in the 

pseudopotential simply in terms of a two-particle correlation function. 

In conjunction with our discussion of the screening contribution 

in the previous chapter, and later in conjunction with our discussion 

of the total conduction electron energy, we noted that the sum of an 

Expi-ession like (3.1) or (3.2) over all the values of (k) within the 

Fermi sphere is often well-defined despite the divergence of certain 

terms in the sum. We noted also that the sum could have such a magni- 

tude that perturbation theory to some order suffices to describe the 
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value of the sum despite its inability to approximate well the values 

of many of the terms. Therefore, we may be able to express the total 

energy of all the electronic states in the Fermi volume accurately 

using second-order perturbation theory in the pseudopotentiai even 

though we are unable to express the energy of each individual electron 

in this mcnner. Accordingly, Expression (3.6) may allow an accurate 

determination of the total conduction election energy in many cases. 

It would follow in these cases that the complete effect of the state 

of order upon the total conduction electron energy is expressed through 

only a two-particle correlation function. In addition, the abilities 

to approximate well the screening potential to first order in the pseudo- 

potential and the total conduction electron energy to second order in 

the pseudopotentiai are so closely related that the accuracy of one ap- 

proximation is most likely similar to the accuracy of the other. As 

we have emphasized in Chapter Two, the ability to approximate the 

screening potential to first order in the pseudopotentiai is central 

to the results of this work. We must therefore conclude that Expression 

(3.6) will most likely allow an accurate determination of the total con- 

duction electron energy in those systems which are amenable to the treat- 

ment described in this work. There may, of course, be exceptions to 

this statement. The accuracy of using the perturbation theory procedure 

ilescribed above must be investigated carefully for each particular 

system. 
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Electron Energies Arising from a Matrix Diagonalizatlon 

If the j sudopotential of an alloy may be separated in the 

manner of Equation (3.3), we .iave demonstrated that the order de- 

pendence of the total conduction electron energy may most likely 

be expressed using a two-particle correlation function. However, 

there may be certain exceptional cases in which we can express the 

screening potential accurately using first-order perturbation theory, 

leading to a separation of the pseudopotential, and yet cannot ap- 

proximate well the total conduction electron energy using second- 

order perturbation theory. In these cases, we would wish to diagonal- 

ize a limited secular matrix to obtain accurate energies for certain 

conduction electron states in the vicinity of band gaps. These 

energies would then be used to find the total conduction electron 

energy. We might also wish to know with accuracy the eigenvalues 

of electron states in the region of a band gap in some system where 

perturbation theory may or may not approximate the total conduction 

electron energy. In either case, we would diagonalize some limited 

secular matrix. Accordingly, let us consider now the solution of a 

general secular equation to obtain the eigenvalues. We will express 

the matrix elements of H using a basis set of plane waves which we 

will label with the indices a, b, c,... . We have already evaluated 

the matrix elements of the screening potential which occur in the 

secular equation using first-order perturbation theory. The con- 

duction electron eigenvalues of H must then satisfy a doterminantal 
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equation which we may indicate by 

(H )  - E  (H ) , v p aa    ^ p ab 

(«p^ba ("p^bb 

(«p^cb 

(«p^bc ' 

(HpWE- 
= 0 (3.10) 

If we multiply out the elements of this determinant, we see 

that the coefficient of some power of E in the resulting equation 

has a general form given by 

(K ) JH )v ^ p ab' p'bc (Vda (3.11) 

We may always arrange the subscripts in such a product s^ that they 

form what might be called a circular array, such as ac-cb-be-ed-da. 

In other words, each plane wave which appears on the left-hand side 

of one matrix element in a product of matrix elements must also ap- 

pear somewhere in the product on the right-hand side cf a matrix 

element. If all of the matrix elements involved iw a given product 

are Vsetween plane waves such that the difference between the wave 

vectors is not a member of the set fK), then th3 matrix elements of 

T vanish and F(q) would appear only in products of the following form: 

F(q.)F(q.) ••• F(a ), where q. + q. + ••• + q^ = 0. If there were one 

matrix elemen'., in the product such that the difference between the 

wave vectors were a member of (K), then the products of FCqVs would 

have t-he same form as above where q. +q. + ••• + a = (K). One can 

generalize from this to state that the equation for the eigenvalues 
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of H will depe-nd upon F(q) only through products like 

F(3i)F(Sj) "* ^Sn5 ' (5-12) 

where q, +q. + ••• + q^ is a member of the set {K). We may use the 

definition of F(q) to write 

F(qi)F(qj) ••• F(qn) 

••• (<x(Rn)-<a>R) S-^  .        (3.13) 

Proceeding as before, we may substitute for the parameters involved 

in the sum as follows: R. = R.+ R'; P^ = R.+ R"; ••• Rn = K^ R^. 

We will neglect the boundary effects associated with the change in 

the origins in these sums. The coefficient of R. which occurs, in 

the exponential factor in this new sum is just q. + q^ + ••• + <ln> 

which has been demonstrated above to be a member of (K). " Since 

oxp(-iK'R) = 1 for all members of {Ri, we see that the sum over {R.) 

is independent of any value of q. Accordingly, the product of F(q)'8 

may be expressed as 

FCq^FUj) ••• H^) 

^fi^y''*^0^ '" ^^R— N 

where we have defined a new average by 

(3.14) 
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((r(o)ar(Rj) ••• (T(R;)>R 

3 2{?i) " ^ "   '' -j N " =^—^ .     (3.15) 

If we start with a general product of PCqVs, we may, in many instances, 

separate this product into two or more smaller products such that the 

sum of the arguments in each of the smaller products is a member of 

{K}. When we have separ^ted the product in this manner into the smallest 

possible sub-products and we find that the sub-products have 

VL,  ^,...,M factors of F(q) in each, respectively, then the above 

discussion demonstrates that the large predict depends upon 

Mj-, VL-,...,H -particle correlation functions. A diafonalization of 

the full secular matrix would involve a basis consisting of all plane 

waves of the set (k). Accordingly, we might expect that we will have 

one product of F(q)'s ia the equation for the energy eigenvalues which 

will depend upon an N-particle correlatiou function. Therefore, the 

energy eigenvalues will depend upon 2-, 3-,..., N-particle correlation 

functions as we would expect for an exact solution. 

With this general result in mind, let us be more specific in our 

consideration of the form in which F(q) might be expected to occur in 

a final expression. We have examined two extreme situations. If ve 

may use perturbation theory to express the quantity which we require, 

whether it be the energy of an individual electron or the total con- 

duction electron nergy, then we have seen that the wavefunctipn de- 

_pends upon the detailed arrangement of the ions in the crystal, while 
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the energies depend upon this arrangement only through a two-particle 

correlation function. In the other extreme of having tD diagonalize 

a full secular matrix, we found that hoth the energies and the wivo- 

functions depend in detail upon the arrangement of ions in the crys- 

tal. We will turn now to the cases where we may use a perturbation 

expansion in the pseudopotential coupled with a limited diagonaliz- 

ation to obtain the eigenvalues. 

Electro-: Energies Arising from a Selective Mixture of Pe. turbation 

Theory and Matrix Piagonalization 

In the totally disordered crystal, the conduction electrons see 

no regular arrangement of ions as they travel throughout the crystal. 

These electrons might be reasonably expected to react esrentially as 

though they were in a lattice of the "average" ions. Therefore, one 

would expect to find band gaps at values of k such that jk| = |k+ K| , 

where K is any member of the set (K). In a completely ordered crystal, 

the periodic array is described by a subset of {Rl which we have do- 

noted by (R }. We can now construct a set of reciprocal vectors in 

analogy to the set (K) such tha>,, for each member of the set, K , 
" —s 

exp(-iK "R ) = 1 for all members of {R }. The set {K }, which con- 
-s -s -s -s 

tains all the vectors satisfying the above condition, contains {K} as 

a subset. Now we rigorously expect band gaps to occur at all points 

k such that jk]' = |k + K | , where K may be any member of fK ). Ar. 

the temperature of the crystal increases, we would then expec^ that 
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the band gaps associated with those members of (K ) not included in 

(K) would gradually disappear, in correspondence to the disappearance 

of long-ranga order in the crystal.. We would not expect hand gaps to 

occur at values of k which are not suggested hy the set (K ). We 

should then likt to conclude that we could always treat the matrix 

elements of the pseudopotential between plane waves whose wave vec- 

tors differ "by q as a perturbation for temperatures outside the cri- 

tical region, providing that q is not a member of {K 1. 

We have mathematical support for such a conclusion. We may re- 

write Equation (3.6) to remove explicitly the sum over {K ) from the 
""S 

sum over {q).    We may then express E   by 

,2    -      /  !-!  v <k|w|k+K>(k+K|w|k> 

'  '   '  V     ^ Ik!2- lk+K|2 
Eva 1*1 + VL + <klw|k> +2/ 

,  <k|Aw|k+K ><k+K lAwlk) 

2 (y|Awlk+3><k+3|Aw|k> 

{q)^K I"     -" |k|2-  Ik+qf 
+A .. .>(q)r-:— "2 . " .g—=- •      (3.16) 

•s 

We should now examine the expected behavior of |F(q)| as a function 

of temperature. For an alloy which is above its critical region of 

temperature, |F(q)| is of order N* for all q which are not members 

of {Kl. As the temperature of the alloy decreases, we expect that 

|F(K)| will increase for those members of {K ) vhicn are not members 

of (K). In the completely ordered state, |F(K„)| is of order N for 
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all members of {K ) which are not members of (K). Except in the 

limiting case of a completely ordered crystal, there will always 

be at least a small range of values of q about each member of (K ) 
- -s 

o 
which is not a member of {K) such that |F(q)| is similar in magni- 

tude to |F(K )| . Returning to Equation (3.16), we shall examine 

the behavior of the sums in that equation for the case of an alloy 

below its critical region of temperxture. In the completely ordered 

alloy, |F(q)| is of order N* for all q which are not members of {K ). 
— » "S 

The number of values of q included in the last sum in Equation (3.16) 

is cf order N . Therefore, this sum approaches an integral as N 

becomes arbitrarily large, while the nature of the other sums does 

not change. The type of singularity caused by the denominators in 

Equation (3.16) gives rise to a singularity in a sum but may be 

treated when it occurs in an  integral by taking the principal part. 

This was discussed in connection with the derivations of both the 

screening potential and the tot"! conduction electron energy. Ac- 

cordingly, a singularity in one of the first two sums in Equation 

(3.16) is undefined for the ordered crystal and signifies a break- 

down of perturbation theory leading to a band gap. Howe/er, the 

principal part of the integral represented by the last sura in 

Equation (3.16) is well defined and we have no reason to expect a 

breakdown in the perturbation formalism or a band gap. As we in- 

crease the temperature of the alloy, |F(K )| wjll begin to decrease 

and we will find a slight range of q values about each K such that 
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|F(q)| is similar in magnitude to |F(K )| . Ar the alloy approaches 
■• ""S 

the critical temperature, it will eventually reach a temperature at 

which we may no longer treat those matrix elements for q similar to 

a member of {K ) using perturbation theory. At this point, our pro- 

cedure for avoiding tne problem of solving a large secular matrix 

breaks down. We will discuss this region about the critical temper- 

ature in greater detail at the end of this section. For those tem- 

peratures below this region about the critical temperature, we shall 

use perturbation theory to treat all those matrix elements involving 

F(q) where q is not a member of {K ). If the alloy is above this 
•      — —s 

region, we have noted that |F(q)| is of order N- for all values 

of q which are not members of {K). Accordingly, for an alloy above 

this region about the critical temperature, we shall treat all those 

matrix elements involving F(q) for g not a member of (K) using per- 

turbation theory. An alloy at a temperature in the immediate vicinity 

of the critical, temperature may not be treated in this manner. 

On the basis of this discussion, let us consider the problem OA 

n ■ 
. finding the eigenvalue of H in the state v using the formalism de- 

scribed by Pratt and Zeiger [2]. We can expand v in a basis of the 

set of plane waves (k). We shall denote by {q"} that set of plane 

waves, k+ q", whose interaction with v may be treated by perturbation 

theory. The set (q") includes those ^xane waves which we discussed 

above as being amenable to a perturbation treatment plus those other 

plane waves which are sufficiently removed in energy from the state v 
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to allow a perturbation treatment of their interaction with v. All 

other plane waves in (k) are placed in the set (q'). Accordingly, 

we may write v as 

|v> »S^.j aq,(k)|k + q'> +5:{(i„j »^.(k) |k+q"> .      (3.17) 

If we operate on this expression for v with -W = T- H and recall 
P 

that the eigenvalue of T in the state    k + q is (|k + q|   +VT). we 

obtain 

.1 I2  .Tr -W|v> =Z{(i,}(|k + q'|   +VL-Ev) a^OOlk + q«) 

+ Z{q")(^ + f |2+VL.Ev) a^C^lk + q!')     . (3.18) 

Now let us operate on Equation (3.18) from the left with a plane 

wave k+g" of the set {q"), obtaining 

-(k + g"|w|v) = (!k + Sn|2+\-Ev) a „(k) . (3.19) 

We have assumed that perturbation theokv suffices to describe the 

interaction between v and the members of the set (q"). Therefore, 

we may divide by the energy difference in Equation (3.19), and have 

confidence that the net contribution of all the members of {q") will 

be well approximated even though this particular energy difference 

may vanish. If we  expand v according to Equation (3.17), we may 

write Equation (3.19) as 

(k + g"|w|k + q'> a ,(k)       (k+Q"|w|k+q"> a^k) 
a „(k) = 2f , ^  z-ö~  —— +2, »i  =-s—=  
3 "    tq')   Ev.|k + 3"|2-VL      tq)  Ev.lk^|

2.VL 

(3.20) 
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We may now substitute for a „(k) on the right-hand side of Equation 

(3.20) using the value established for the left-hand side. Iterating 

this procedure, we obtain 

V(^*SU') 
<k-t-g"|w|k+q') ag.Qc) 

" Ev-|k+g"|2-vIj 

<k+g"Iwlk+q") (k+j"Iwlk+q'>a ,(k) 
+ 2{q')Z(q")v l^..^.^  Ev-|kn

Ml2-\   ■'" 

Keeping terms only to second-order in the pseudopotential, we can 

extract the sum over {q') from the series to write 

<k+g"|w|k + q') 

V^ =2tq') V^' 

+ 2, ., 
^+3" Iwlk+q")    <k+q"|w|k+q«> 

(SW)    E^jk+S"!2-^        E^jk+q"!2^ 

We can use Equation (3.22) to write v to second-order in the pseudo- 

potential. Expression (3.17) becomes 

f (k+q"|w|k+q') 
K> = 2{ , a W^lk+q') + Z{ „Jk+q") -=~ ~f- 

^ j S   1  "     lS j  "   E^jk+q"!-^ 

(k+q" | Wj k-^" ) (k+g" | WJk+q») 

If we operate on Equation (3.18) from the left with a plane wave 

k >g1 of the set (q1), we obtain an equation analogous to Equation 

(3.19), 

(3.21) 

(3.22) 

(3.23) 
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We may substitute for v using Equation (3.23) to obtain the follow- 

ing secular equation from Equation (3.24): 

2{(1.)(^ + S'|Heff|k+q
,)-Ev5ql^I) = 0 , (3.25) 

where the matrix elements of H ff are given to second-order in the 

pseudopotential by 

^+S,lHeffl!j
+5,> a (lU+S'l2* VL)6qSQ, +<k + S,|w|k + q,> 

(k+g*|WIk+q")(k+q"IW|k+q« > 
+ S/ HI 0 .    (3.26) 

H] E^lk+q"!2-^ 

We should note that this secular equation involves only matrix ele- 

ments of.H _- between plane waves of the type k+q* where q' is a 

member of the set (q1). We have expressed the interaction between 

the state v and the plane waves of the set Cq") in terms of perturba- 

tion theory. The presence of the final energy, E , in the ma,trix 

elements of H «_ underscores the fact that the secular matrix equation 

indicated by Equation (3.25) is appropriate only for finding the energy 

and wavefunction associated with the single state v. In other words, 

the diagonalization of the matrix will yield only one actual eigen- 

state, not several as is usually the case. We also note tVat the 

solution of the secular equation would involve an iterative procedure 

in E . For these reasons, the procedure which we have outlined here 

is not particularly convenient for actual calculations involving the 
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pseudopotential. On the other hand, the form of the matrix elements 

of H _- given in Equation (3.26) allows us to make some general state- 

ments regarding the form in which F(q) occurs in expressions for the 

energy. 

If we are considering an alloy at a temperature above the region 

immediately about the critical temperature, as discussed previously, 

then we may consider the set {q") as consisting of all the vectors 

cf the set (k) which are not of the form k+ K, where K is a member 

of the set (K). In addition, most of the vectors in the set {K} may 

also he included in {q"). The set {q1) contains only certain members 

of the set (K). Therefore, we would expect that all of the matrix 

elements of H -- would have a form indicated by 

(k+K|Heff|k+K'> = (|k+K|
2+ VL)5K Kl +<k+K|w|k+K

,> 

(k+Klwjk+K">(k+K"jwlk+K'> 
+ Z 

{5,,J     E - Ik+K"!2-V v '— '   L 

(k+KlAwlk+q-Kk+q" |Aw|k+K' > |F(q) |2 

+ 2,M-— '  '      ' '  =-^ =  ,  (3.27) 
^' Ev-|k+q"l

2-VL 

where the eums include only members of {q"). For the case of an alloy 

above its critical temperature, Equation (3.27) demonstrates that F(q) 

appears in the secular equation only in the form |F(q)| , which may be 

evaluated In terms of two-particle correlations. Therefore, the indi- 

vidual eigenfunctions and eigenvalues of H have been shown to depend 

upon the arrangements of ions in the alloy crystal only through a two- 
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particle correlation function if the alloy is above itt     -itical 

temperature. Thir result depends upon our ability to treat the 

interaction between a given state k and all those states k+q, 

for q not a member of (K), using perturbation theory. 

If we are considering an alloy at a temperature below the region 

immediately about its critical temperature, the set {q") contains all 

members of the set (k) except for certain members of {K ). Therefore, 

the set {q'} will contain only certain members of {K ). We would 

expect that the secular Equation (3.25) would contain three types 

of matrix elements of H ff. One of these types is just Expression 

(3.27). If we let K . K. , and K be members of (K ) but not members -a -D    -c -s 

of {Kl, then we may write the other two types of matrix elements as 

(k + K |H -Jk+K) = <k+K |Aw|k+K> F(K ) m      "oL      cli   •      • «      "fit —      *• —& 

<k+K  JAwlk+rXk+K'^wlk+K) F(K ) 
+ Z 

^") E-|k+K"|2-VT v  '- -   '      L 

+ Z(K")(BK -K",{K)(^a^l^> + F(5a-K)<^alÄWl^> 

• a -c 

(k+K"|AwIk+K> F(K") 

E -Ik+K"!2-^ v  '- -c1      L 

(k+K  |Aw|k+q")<k+q"|Aw|k+K> F(q")F(K -q") 
+ z -^-^ä 1^. Z^: Z^. = "a ' ■     ,    (3.28) 

and 

■■■■ ■■ - "■ .: 
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(k + K |Aw|k + K">(k + K"|Aw|k+K.> F(K ) F(-K.) 
(5") E.|v+r|2.vT v  '- -   '      L 

+ 2{K")(5K -K"  [Kj^a'^'-'S^ +F(-a"K,^+-a'Aw'-+S^ -c      -a -j' - 

x     -c -b* - 

(k+Ka|Aiii)ttq"><k+q"|Ä>'l»+Kb> F(Ka-q") Ffq"-!^) 
+ 2r   MI /ryitl     T = =    , (3.29) 

where the sums include only members of {q"}. It is clear that at least 

Equation (3.28) contains factors, like F(K ) and F(K - q)F(q), which 
" ■" Ä "fit   —     » 

cannot satisfy the condition that the sum of the arguments is a member 

of (K) . Accordingly, not all of the matrix elements of the secular 

matrix may be evaluated in terms of few-particle correlation functions. 

Some of the terms depend upon the exact configuration of ions in the 

crystal, as discussed earlier. Therefore, the electronic eigenfunctions 

which arise from the solution of the secular equation depend upon the 

precise configuration of the ions. We know, however, from our previous 

analysis of a matrix diagonalization, that the products which occur in 

the equation which we solve for the energy will be such that the sum of 

the arguments is a member of (K). Let us proceed to examine the types 
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of products which will occur when we multiply out a determinant/ the 

elements of which are like Equations (3.27), (3.28), and (3.29). In 

order to be consistent in our perturbation expansion, we will drop 

all those terms which involve more than one factor of the ratio of a 

matrix element of the pseudopotential to an energy difference, such 

as 

(k +^'1 Aw|k+K) 

Ev-ik + q"|-VL 

We must pause to investigate the nature of the ; et of vectors 

(K ), which is that subset of {K ) which is not included in (K). We 
-a -s 

are interested in the maximum number of different values of K which 
-a 

might have to be considered before the sum of them oeccmes a member 

of the set IK). This determines the maximum number of F(q),8 needed 

to obtain a product such that the sum of the arguments is a member of 

{K), and thus the maximum number of particles whose correlations we 

must know in order to evaluate the electronic eigenvalues as we out- 

lined above. Let us consider a 50-50 alloy which orders in the cesium 

chloride structure. The set {K] consists of those reciprocal lattice 

vectors associated with the body-centered cubic arrangement of ionic 

sites, while the set (K ) consists of those reciprocal lattice vectors 

associated with the simple cubic lattice points of the ordered system. 

In this system, the sum of any two members of the set {K ), as defined 

above, is a member of {K). This is a special property of such a system 

(3.30) 
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which we shall need* in our discussion of the products of the mtrlx 

elements of H ff. By way of comparison, let us consider a 25-75 

alloy which orders on a lattice- sf ionic sites having face-centered 

cubic symmetry. The set {K) consists of the reciprocal lattice 

vectors associated with the face-centered cvibit  array of ionic sites, 

while the set {K ) consists of those reciprocal lattice vectors as- 
-s 

sociated with the simple cubic symmetry of the ordered system. In 

this case, w? mav add two vectors of (K ) and obtain either a member 
-a 

of (K) or another member of {\l  }. If we are considering a large pro- 

duct of F'qVs such that the sum of the arguments is a member of {K), 

we wish i o break the large product up into the smallest sub-products 

such that the sum of the arguments in each sub-product is also a 

member of {K}. The number of factors in the largest of these sub- 

prodocts will tell "', the highest number of particles whose correlations 

we must consider to evaluate the large product. In each o^"  ;se  large 

products, the nature of (K ) for this fee system is such that we should 

never ne^d the sura of more than three vectors of {K ) to obta" i a r.omber 
-a 

of (K). With these properties in mind, let us return to cu' ;on',ider- 

ation jf the secular equation. 

As we noted in our discussion of an alloy at a temperature a'^ove 

its critical temperature, matrix elerrents like Expression (3.27) may 

be evaluated in terms of two-particle correlations. Turning to the 

other matrix elements, let us consider first the case of a 50-50 alloy 

which orders in the cesium chloride structure. Since all the members 
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of {K } in this system are related to one member of {K ) by vectors 

of the set (K), we never need the sum of more than two members of 

{K ] to obtain a member of the set (K). Accordingly, all the factors 

like F(K - K ) in Equations (3.28) and (3.29) are zero, and F(K ) = 

F(K") for all K". Thus, Equation (3.?9) may be evaluated and depends 

on the arrangement of ions for a given ionic volume only through the 

two-particle correlation function dependence of |F(K )|' and |F(K -q")| . 

Since we have dropped from the product of matrix elements of H «„ all 

those terms which involve more than one factor like (3.30), Expressions 

like (3.28) give rise only to products like |F(K )\Z  and F(K -q") X 

F(q")F(-K ). The former product requires a knowledge of two-partirle 

correlations, while the latter requires a limited knowledge of three- 

particle correlations. 

In conclusion, a 50-50 alloy ordering in the cesium chloride 

structure will possess electronic eigenvalues which require a knowledge 

of at least two- and three-particle correlations»for their evaluation 

below the critical temperature of the alloy. This result depends upon 

our perturbation treatment of certain matrix elements as we discussed 

above. 

If we now turn to the c^::?ideration of the 25-75 alloy which we 

described earlier, an analysis similar to the preceding discussion 

reveals that we must evaluate products of F(q) like '-.hose above. In 

addition, even if we drop all terms involving more than one factor 

like Equation (3.30), we must evaluate products like F(K )F(K,-K )F(-1C ) 



86 

and F(Ka- q")r(q")P(Kb- Ka)F(-Kb). Therefore, it is clear that a 

25-75 alloy such as this wll possess electrons whose eigenvalues 

require a knowledge of at least two-, three-, and four-particle cor- 

relations for their evaluation below the critical temperature of the 

alloy. It is apparent that more complicated structures will require 

a knowledge of the correlations among larger numbers of particles. 

We have been discussing the likely form of expressions for the 

individual electron eigenvalues which arise from treating the electron 

states using a selective mixture of perturbation theory and matrix 

diagonalization. As we noted previously, the total conduction electron 

energy may most likely be evaluated in terms of two-particle correlations 

in those systems in which the pseudopotential may be placed to a good 

approximation in the form of Equation (3.3). In these instances, the 

influence of those correlations among more than two particles which 

appear in the expressions for some of the eigenvalues of individual 

electrons must cancel in some way when the eigenvalues of all the con- 

duction electrons are added together to yield the total conduction 

electron energy. Otherwise, the total conduction electron energy must 

also depend on these correlations. There is a correspondence between 

the accuracy of a perturbation expansion of the total conduction elec- 

tron energy to second-order in the pseudopotential and the cancellation 

of the affects of these higher order correlations. Of course, per- 

turbation theory results may also be Inaccurate due to the nature of 

the structure-independent part of the pseudopotential. In the region 



about the critical temperature which we discussed before, we cannot 

use perturbation theory to avoid the solution cf a large secular 

matrix since |r(q)|6 is of order N for a continuous range of value« 

about each member of (K ). Therefore, we expect that the eigenvalues 

of individual electrons will depei»d in general upon correlations among 

large numbers of particles. To the extent that the influence of these 

correlations fails to cancel when we sum over the individual electron 

energies to obtain the total conduction electron energy, we will find 

that the total conduction electron energy depends upon N-particle cor- 

relations in this region. This corresponds to the appearance of critical 

scattering phenomena at temperatures in. the vicinity of the critical 

temperature. 

In summary, we showed that we may express the total conduction 

electron energy of the crystal in terms of two-particle correlation« 

if this energy may be approximated well through a second-order pertur- 

bation expansion in the pseudopotential given by Equation (3.3). Then 

we demonstrated that the eigenvalues of individual electrons obtained 

.from the solution of a secular equation of dimension M might be expected 

to depend upon correlations between as many as M particles.  We dis- 

cussed the approximation that the matrix elements of the - jeudopotential 

between plane waves whose wave vectors differ by some q may always be 

treated in a perturbation expansion, where q could be any vector but a 

member of (K) in an alloy above the region about the critical temper- 

ature, and any vector but a member of {K ) in an alloy below thi« 
»3 
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critical region. Using this approximation, we demonstrated that a 

solution of a secular equation for ein alloy at a temperature above 

this critical region yields individual electron eigenvalues which 

depend upon the arrangement of the ions only through a two-particle 

correlation function. Below this critical region, the electronic 

eigenvalues depend upon the arrangement of the ions through cor- 

relation functions among two, three, and even greater numbers of 

particles. The total conduction electron energy will also depend 

upon these correlations unless their influence cancels in some way 

when the elf '^ron eigenvalues are summed over the Fermi volume, as 

we discussed previously. Apart from this possible cancellation, the 

total conduction electron energy will therefore depend upon two- 

particle correlations above the critical region and upon at least 

two- and three-particle correlations below the critical region. 

There is also a region about the critical temperature in which both 

the energies of individual electrons and the total conduction electron 

energy may depend upon correlations among N-particles. In the ab- 

sence of information regarding correlations among greater numbers 

of particles than two, we are accordingly restricted to the evalu- 

ation of either those energies for which perturbation theory is com- 

pletely applicable, or energies in an alloy which is either completely 

ordered or in the temperature region above the critical region. 
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The Expression of |F(q)l in Terms of Cowley Order Parameters 

We wish to express |F(q)| in terms of well established two- 

particle correlation parameters. The Cowley order parameters [3], 

a(R)J are a convenient set to use for thi.' purpose. Let us define 

pA(R) and ptJ(R) as the probabilities of finding an A ion located at 

the site R if jbhe origin contains an A ion or a B ion, respectively. 

If x is the fraction of ions in the crystal which are of type A, then 

we may define the Cowley order parameters by 

PB(R) 
a(R) ^ 1 - -L . (3.31) 

Since the probability of finding an A ion at the origin simultaneously 

with a B ion at R must always equal the probability of finding a B ion 

at the origin simultaneously with em A ion at R, we cart establish the 

following relationship between pA(R) and p^R): 
A —       O  ~ 

x(l-PA(R)) = (1-x) pB(R)  . (3.32) 

This relationship allows us to define a(R) in an equivalent way in 

terms of PA(R) by 

PA(R)-x 
a(R) = -^— • (3.33) 

We may note two properties of 0((R). First, ^(O) is unity. The second 

property follows from the summation of Equation (3.33) over the com- 

plete set of {R}. The sum of PA(R) over all values of R in (R; must 

yield xN, which is just the number of A ions in the crystal. There- 

fore, a(R) has the property that 
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If we turn to the average over the crystal defined in Equation 

(3.8), we may use the definition of {cr)R in (2.28) to write Equation 

(3.6) as 

a(R) C^R+R')    9 

<(T(0)a(R')>R = S{Rj —^^ ^-^ <0->3 . (3.35) 

But the product of (J^R^R + R1) is +1 if both sites R and R+R' con- 

tain the same type of ion and is -1 if the sites contain different 

types of ions. Accordingly, the average of this product over the set 

(R) may he expressed as 

c(R) CKR+R') 
2{R) -^—r~~ = x[(+1) PA(?,)+("I)(I-PA^,)!] 

+ (l-x)[(+l)(l-pB(R')) + (-l)pB(R')] 

= 2x p^R')-2(l-x)pB(R
l)+l-2x .      (3.36) 

We may now substitute for pÄ(R) and pQ(R) from the definitions for 

a(R) to obtain 

a(R) C^R + R«) „ 
£{R) ~ N" "  = f2^1"31^ «(R') +2x': 

+ [2(l-x)x3 a(R') -2(l-x)x+l-2x 

=   [4x(l-x)3a(R') +4x2 -4x+l     . (3.37) 

We may use the definition of (OV- to write Equation (3.37) as 

cr(a) a(R+ R') 2 
Z{R] "^ N"     "      = 4x(l-x) a(R')-l-(g)R    . (3.38) 
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This expression enables us to relate the average in Equation (3.35) 

to the Cowley order parameters by 

{0-(0)cr(R')>R = 4x(l-x) cnR')  . (3.39) 

Therefore, |F(q)| may be expressed in terms of the Cowley order param- 

eters as 

a(R ) e""1?*? 
|F(q)r = Ml- x) 2{Rj —"—u  . (3.40) 

Phe above result may also be obtained through analogy with the expres- 

sion for the intensity of a diffracted x-ray beam derived by J.M. Cowley [4]. 

In the case of a completely disordered crystal, o(R) must be con- 

stant for all R ^ 0. Since 0((o) = 1 and the sum of a(R) over all mem- 

bers of {R) must equal zero, we see that a(R) must equal -l/(N-l) for 

P. 4  0. In this case, |P(q)| is given by 

The case of a completely ordered crystal is not as easily discussed 

since the exact form of lF(q)| depends upon the particular structure 

involved. As a simple illustration, let us consider a 50-50 alloy 

which orders in the cesium chloride structure. The lattice of ionic 

sites is body-centered cubic. In the ordered state, we may consider 

that A ions occupy all of the body-centers and B ions occupy all of 

the corner sites. Accordingly, a(R) = 1 for all members of {R? which 

correspond to the 5>et of repeating vectors for the ordered state. 
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(R ). For all other sites in (R), a(R) is equal to 1 - (l/x), or -1 

in this case. Therefore, |F(q)| is given by 

|F(q)l2 = 4x(l-x) 
eiq.R H'h 

■Z{R) ^i^ + 2{Rfi) TN/ZT 
• ""8 

(3.42) 

If q is any member of the set {Kl, then both sums in Equation (3.42) 

are unity and |F(q)| vanishes. This is in agreement with the pre- 

viously discussed property that F(K) =0. If q is not a member of 

{K ), the set of reciprocal lattice vectors corresponding to (R ), 
"S ' —s 

then both sums are zero and |F(q)| vanishes. If q is a member of 

{K }, which consists of those meml T of {K ) which are not members 
-a -s 

of (K), then the first sum is zero and the second is unity. Accord- 

P 
ingly, for the ordered case, we may wr::te |F(q)| as 

lF(q)|2 = 4x(l-x) 6q^K j  . (3.43) 

One may generalize to sttte that |F(q)| is zero in the completely 

ordered state of the alloy except for q equal to certain discrete 

vectois describing the symmetry of the ordered state. 

We have expressed |F(q)j in terms of Cowley order parauneters 

as we desired. In addition we have examined the behavior of lF(q)| 

in the limiting cases of complete order and complete disorder, and 

found that, for specific structures, we can  find simple functional 

forms for it in both limits. In complete disorder, |F(q)| is a 

constant except that it vanishes for q a member of (K). In a co"- 

p 
pletely ordered state, !F(q)| is non-vanishing only for certain 

discrete values of q. 
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Chapter Four 

THE'SELECTION OF THE PSEUDOPOTENTIAL • 

In Chapter Two, we discussed the properties of a pseudo-Hamiltonian, 

H , which has the general form suggested by Austin, Heine, and Sham [1], 

Hp(r,r') - T(r)6(r-r
,)+W(r,r') , (4.1) 

where 

W^r') =» vV,^) +VEL(r,r') +2c(r|c> ^(r«) . (4.2) 

In this expression, T(r) is the sura of the kinetic energy operator and 

the potential VT. V. is the spatial average over the entire crystal of 

the Coulomb potential of the nucleii and the Hartree potential of the 

core and. conduction electrons, ^^■(r,r,) is the Hartree-Fock potential 

of the ion cores lesj that part which is included in VT. v (r.r*) is 

the many-body potential of the conduction electrons less that part which 

is included in V,. In Chapter Two, we approximated this potential with 

a linea-ized form of the Hartree potential of the conduction electrons. 

\r|c) is the wavefunction of a cors state of the actual crystalline 

Hamiltonian, H -  T+v + v . The core state wavefunctions have been • 

assumed to be independent of local environment in the crystal. We shall 

approximate them with the corresponding atomic wavefunctions in an ac- 

tual calculation. The sura over "c" in Equation (4.2) extends over all 

of the core states in the crystal. In the pseudo-Hamiltonian of Austin, 

Hoine, and Sham, f (r') is an arbitrary function of r" and the parameter 

"c". We found in Chapter Two that the separation of the alloy pseudo- 

potential was possible only when we restricted f (r*) to be independent 
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of the local environment of the ion xith which it is associated, 

within a particular configuration of ions in the crystal. We em- 

phasized then that this restriction on the final form of f (r) is 

not an approximation. 

In any application of the pseudopotential method, we wish to 

choose f (r') in such a way as to obtain the most accurate electronic 

eigenvalues from the pseudo-Harailtonian in Equation (4.1). If we 

could solve the general secular equation exactly, the work of Austin, 

Heine, and Sham [1] has shown that this psendc-Hamiltonian would yield 

the exact electronic eigenvalues. However, as we discussed at length 

in Chapter Two, the solution of the general secular equation for the 

alloy problem would involve the solution of a set of at least N linear 

equations, where N is the number of ions in the crystal. The necessity 

of avoiding the general solution of such a set of equations and our 

desire to separate the pseudopotential led us to the necessity of using 

a linear approximation for the self-consistent screening potential. 

Linearizing the screening involves using first order perturbation theory 

to calculate the valence electron eigenfunclions of H . Further, as 

we noted in Chapter Three, the electron energies for a general configur- 

ation of ions in the crystal may be calculated using no more than two- 

particle correlations only if we may represent the total conduction 

electron energy using second order perturbation theory. Accordingly, 
i 

we must use perturbation theory in this instance if we have at our 

disposal no more than two-particle correlation functions. Since our 



96 

foi'malism demar's the use of perturbation theory in at least one 

step in any calculation., we should select that set of /unctions, 

f (r')* which optimizes in some way the convergence of a perturbation 

expansion in the pseudopotential. 

Optimi^s.cion through the Minimization of th^ Kinetic Energy 

Several euthors [1,2,3] have decided that this optimization 

procedure could he accomplished most directly by min^jaizing the ex- 

pectation value of the kinetic energy operator in t.^ valence state, 

denoted by v, of the pseudo-Hamiltoiian, H . This minimization con- 

dition may be written as 

6T =■• 0 , (4»3) 

where 

T-^i^ . (4.4) 
(v|v> 

Oae of the properties of the pseudo-Hamiltonian of Austin, .'leine, and 

h'nam is that the wavefunction of the valence state, (r|v), of K  dif- 

1'fcj.d from that of the valence state, (rjv), of H by no more than a 

lin- ir combination of the core stat- ^avefunctions of H [1]. Accord- 

ingly, Expression (4.4) may vary only by a change in the coefficients 

of ons or more of the (r|c) which combine with {r|v; to yield (r|v). 

We may vary the coefficient of each {T\C)  separately since the.e is 

no constraining relation among these coefficients. Further, rfe may 

vary either the bras or ehe kets in Expression (4.4) independently 
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since the variation i,i the coefficient of each core state may be any 

smh.ll complfcx number. These two variations yield two equations for 

each core state, both of which must be satisfiec1 by the optimised 

pseudopotential, 

(c|Tlv) = T(clv> , (4.5) 

and 

(v|T|c> = T(V1C) . (4.6) 

One of these relations may also be deduced from the other thrr^n the 

Hermiticity of T in the set of p ane waves. In order to convert these 

relations into an equivalent set involving the paeudopotential, we sub- 

stitute H -W for T. If we further note that H Iv) = E |v> and that 
p p1    v1 

E    = f+ W. where v ' 

w^iiMii , (4.7) 
<v|v)   • 

we may write Equations  (4.5) and (4.6)  as 

(c|w|v) = W^'v) (4.8) 

and 

(vlWJc) = W(v|c) . (4.9) 

These two equations, taken together, imply a limited kind of Hermiticity 

for W. In other words, the matrix elements of W between the state v 

and tha set of core states display the Hermitian property. One may now 

substitute for W on the left-hand sides of Equations (4.8) and (4.9) 

using Equation (4.2). If we rearrange the terms, we can obtain the fol- 

lowing two relations: 
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/dr fc(r)(r|v> » (cK-V^V^+W)!*) , (4.10) 

and 

Sc,(v|c'> /dr fc,(r)(r|c> = (vK-V
1-^t ft) |c> . (4.11) 

At this joint in the optimization pTOcedure, Equation (4.10) has 

commonly been used to suggest a form for the pseudopotential, while 

Equation (4.11) bar been ignored. Since \r+ V^ = H- T and H|c)= E |c), 

we may write Equation (4.10) as 

/dr fc(r)(rlv) = (cl(T+^-Ec)|v) . (4.12) 

In performing a calculation with the pseudopotential, we will want to 

.xpand v in a set of plane waves. Then we will use perturbati-m theory 

to calculate the energy and wavefunction of v. Therefore, we will need 

the projection of f (r) on the set of plane waves. Since the set of 

plane waves is complete, we must know fc(r) completely in order to 

evaluate all of these projections. But Equation (4.12) yields only 

the projection of f (r) on the single state v. Accordingly, we must 

make an assumption regarding that part of f (r) which is left undeter- 

mined. The assumption which is most obvious and most commonly made is 

that f (r) may be given in operator form by 

fc(r) = (cjr> (T(r) + W - Ec) . (4.13) 

We may note that Expression (4.13) is indeed a local operator, as we 

imply when we write f (r) as a function of one spatial variable. We 

may substitute Equation (4.13) into Equation (4.2) to obtain 

W(r,r') = VI(r,r,)+VEL(r,r') + 2c(rlc)(c|r')(T(r
,)+W-Ec) .  (4.14) 
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This pseudcpotential is the optimal pjeudopotential most often 

discussed in calculations involving the pseudopotential method, 

although approximate forms of Expression (4.14) are often used to 

simplify calculations [2,3], 

If we take the matrix element of Expression (4.14) between 

two plane waves, k and k1, we may write 

<k|wlk'> = <k|v:C+VEL|k,>+2c<k|c>(c|k
,>(lk'l2+VL+W-Ec) .   (4.15) 

Expression (4.15) demonstrates that the presence of the operator T 

in Expression (4.13) makes the pseudopotential non-Hermitian. The 

non-Hermiticity of Expression (4.14) leads us to question whether 

or not Expression (4.13) satisfies Equation (4.11) as well as Equa- 

tion (4.10). If Expression (4.13) does not satisfy Equation (4.11), 

then it certainly does not specify that f (r) which minimizes f. If 

we substitute Expression (4.13) into Equation (4.11), we find that 

Expression (4.13) cannot possibly minimize f unless the following 

equality is satisfied: 

2c,(vix:,>(c'|T|c> = (vlT|c) . (4.16) 

In order to facilitate our discussion of Expression (4.16), let us 

expand the right-hand side in terms of the complete set of eigen- 

values of H to obtain 

^.(VICO^'ITIC) ' 2cI(v|c,)(c1|T|c)+2v,(vlv
,)(v1lT|c) .   (4.17) 

We may cancel the sums over core states which occur on both sides 

of Expression (4.17). Since v may be constructed such that it is 

■ i ,, 
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orthogonal to all of the valence states of H except v [1], we 

may drop all of £He remaining terms in Expression (4.17) excejt | 

one to yield , 

(^IVXVITIC) I  0 . (4.18) 

Since it will not generally be true that all of the matrix elements 

of T between v and the set of core states vanish, we may conclude 

that Expression (4.13) does not yield a useful form for f (r) which j 

minimizes f. The failure of Expression (4.13) to satisfy Equation i 
I 
i 

(4.11) stems directly from its inability to predict accurately the j 

projections of f (r) on the set of core states. Since the core states ! 
c" i 

may be expected to have a much greater proportion of high frequency j 

components than v, we might expect that the failure of Expression (4.13) 

to minimize T will be demonstrated most strongly in the high frequency 

components of f (r). As we shall demonstrate later, the high frequency j 

behavior of the f (r) given by Expression (4.13) is indeed unsatisfactory. 

.   . i 
In any case, Expression (4.14) is certainly a valid pseudopotential j 

i 

in the form of Austin, Heine, and Sham. This expression for the pseudo- J 

potential must be evaluated self-consistently since it involves the ex- i 

I 

pectation value of the pseudopotential in the state v  Accordingly, ' 

i 
for calculations on the pseudopotential, it is customary to use various 

approximations to Expression (4.14). If the state v is associated with ! 

the point K in reciprocal space, Harrison [3] has suggested that the re- j 

placement of W in Expression (4.14) by (kjwlk) would be a reasonable ap- 

proxiiTKttion. The Harrison pseudopotential may then be written as 
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W^r') = VI(r,r,)+VEL(r,r,) + 2c(r|c)(c|r,)(T(r,) +(k|w|k)-Ec)  . 

— (4.19) 

This step greatly simplifies the dependence of W on the state v.  It 

also allows for the self-consistent determination of the pseudo- 

potential through taking the matrix elements of Equation (4.19) between 

the plane waves k and k.  We may solve for (k|w|k), obtaining 

(klvW^k) + Z (k|c)(c|k)(|k|2+ VT - E ) 
(k|w|k) - ^ = ' ^ S_  .       (4.20) 

1 - Z (k|c){c|k) c -    - 

The Harrison pseudopotential, given by Equations (4.19) and (4.20), will 

be the one used to compare the matrix elements of W derived from Ex- 

pression (4.14) with those derived by the method we are about to discuss. 

Two other commonly used pseudopctentials may be obtained from Expression 

(4.19) by replacing (k|w|k) by either (klv1 + V^jk) or 0. 

optimization through the Minimization of (kj (W- (k|w|k)) |k) 

Since the only obvious assumption of a simple form for f (r) from 

Equation (4.10) docs not truly minimize f, the examination of another 

uptimization procedure might prove more fruitful than an analysis of 

other possible assumptions. Concerned with optimizing the perturbation 

expansion in W for the sta^e associated with the point k in reciprocal 

space, Eassani and Celli [4] suggested the minimization of 

Z'(k|w|k + q)(k+ q|w|k)  . (4.21) 

The prime on the sum indicates Lhat the term lor q - 0 has. been excepted. 
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We may taute advantage of the orthogonality and completeness of the 

set of plane waves to rewrite Expression (4.21) as 
i 

<kl (W- (k|w|k>)2 |k> . (4.22) i 

Therefore, in minimizing Expression (4.21), we are actually minimiz- i 

ing the m^an square deviation of W from the expectation value of the 

pseudopotential in the state k. This procedure might be expected to 
I 

produce a smooth function with a narrow Fourier distribution about j 
i 

q = 0, which is directly related to the convergence of a perturbation 

expansion in W. Let us substitute the form of W from Equation (4.2) I 

into Expression (4.21), obtaining I 

^ Kkl^+V^lk+q) +2cl(k|cV) /dr fc. (r)(r|k+q> 1 

X (k+ql^+^lk) + 2c,<k+q|c
,> Jdr fcl(r)(r|k)  .      (4.23) 

If we have placed no restrictions upon the form of f (r), we may vary 

the projection of f (r) on each plane wave independently.' Varying the 
c 

projection of f (r) on the plane wave k, we obtain 

Z,(klwlk + q)(k+qlc) = 0 . (4.24) 

The completeness of the set of plane waves allows us to rewrite Equation 

(4.24) as 

(kiw|c) = (k|wik){k!c)  . (4.25) 

There is an equation like (4.25) for each core state.  Similarly, we 

may vary the projection of f (r) on each plane wave K-i-q. Setting the 
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coefficient of each variation equal to zero, we obtain an  equation 

for each q ^ 0, 

<k + q!w|k) = 0 . (4.26) 

We may insert the form of W into Equations (4.25) and (4.26) to ob- 

tain the following equations for the projections of f (r): 

Sc,(k|c') /dr fcl(r)(r|c) = (kK-V1- VEL+ (k|w|k»|c>        (4.27) 

and 

2cl(k + q|c,) /ax fc,(r)(r|k) = (k + qi-V1- ^jk) . (4.28) 

We may note immediately that these equations do not involve the 

projections of f (r) on the set of plane waves k+ q, where q ^ 0. 

Therefore, the minimization of Expression (4.23) for a general f (r) 

does not yield the information which we need to express f (r) in 

terms of its projections or the set of plane wavet. As we noted in 

connection with our discussion of t1-'- .-^h«»- optimization procedure, 

the use of perturbation theory with a general pseudopotential requires 

a knowledge of the projections of f (r) on the complete set of plane 

waves. Farther, Expression (4.27) does not appear to contain enough 

information to determine the projections of the f (r) on the set of 

core -Gates. Each time a new value of "c" is selected to yield a new 

equation like Expression (4.27), we introduce a complete new set of 

projections of the f (r) on the new core state. Accordingly, we will 

always have more variables than constraining equations. Thus the 
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minimization of Expression (4.23) for a general f (r) does not yield 

the projections tJf" f (r) either on the set of core states or on the 

set of plane waves k + q, where q ^ 0. We shall now demonstrate through 

contradiction that Equation (4.28) over-constrains the projection of 

f (r) on the plane wave k. If we assume that Equation (4.26) holds 

for each value of q j^ 0, we may multiply it by (v|k+ q) and sum over 

all values of q ^ 0, yielding 

£'(v|k+q><k+q|w|k) = 0 . (4.29) 

Taking advantage of the completeness of the set of plane waves, we can 

rewrite (4.29) as 

(v|w|k) = <v|k){k|w|k) . (4.30) 

Since v is an eigenstate of H, it is orthogonal to all members of the 

set of core states. Accordingly, we may insert the form of W into 

the left-hand side of Equation (4.30) to obtain 

HV^ V^lk) = (vlk)(k|w|k> . (4.31) 

By definition, each state v has an eigenvalue E such that 

(v| (H- Ev) |k> = 0 . (4.32) 

We may now let H = T + V + v  and substitute from Equation (4.31) 

ir.to the resulting equation to obtain 

(|k|2f VT +<k|w|k>-E ){v|k> = 0 . (4.33) 
-     L   -   -    V    - 

Even in an ordered alloy, there will be many valence states for which 

(v]k) does not vanish. According to Equation (4.33), all of these 
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states must have the same eigenvalues. But the Austin, Heine, and 

Sham form of the pseudopotential has teen shown to yield the correct 

eigenvalues for all valence states [1]. Since these eigenvalues can 

not all be identical, the Austin, Heine, and Sham form of the pseudo- 

potential must not be able to satisfy Equation (4.26) for all values 

of q / 0. Thus we have demonstrated through contradiction that Equa- 

tion (4.28) over-constrains the projection of f (r) on the plane wave 

k, if it is taken to hold for all q / 0. Since we are seeking a well- 

defined procedure for selecting an optimal pseudopotential, we do not 

want to select certain arbitrary values of q for which Equation (4.28) 

must hold. In summary, we have found that the minimization of Expres- 

sion (4.21) for a general pseudopotential does not yield the projections 

of f (r) on plane waves which we need for a perturbation expansion. 

Let us apply some logical constraint upon the form of W in an at- 

tempt to obtain an optimal pseudopotential from the minimization of 

Expression (4.21). We will seek that Hermitian pseudopotential which 

minimizes Expression (4.21), relative to other Hermitian pseudcpotentials. 

We may now write Expression (4.21) so that it involves only the projection 

of f (r) of the plane wave k to obtain 

2j(k+q|vWL|k) + Zc,(k+q|c') /dr f,. (r) (r |k> |2  . (4.34) 

We will vary independently the projection of f (r) on the plane wave 

k and the complex conjugate of that projection. Proceeding as before, 

we obtain the following two conditions: 
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(klw|c> = (k|wlk)(k!c>  , (4.35) 

and 

(c|w|k) = (clk)<k|wlk> . (4.36) 

We may note the marked similarity tetween this pair of equations and 

the pair, (4.8) and (4.9). In the earlier case, however, we were ahle 

to deduce one member of the pai r from the other using the Hermiticity 

of T. This time we had to restrict W to being Hermitian to obtain 

both members of the pp-'r. If we substitute the form of W into the 

left-hand sides of these two equations, we may write 

2c,(klc') /dr fc.(r)<rlc> = (k|(-V
I-VEL+ (kjwlk))|c) ,      (4.37) 

and 

/dr f,(r)(r|k) = (c| (-VI-VEL+ (k'.wlk)) |k> . (4.38) 

There are two obvious forms for f (r) which we may deduce from Equation 

(4.38). Using the property that the plane wave« are eigenfunctions of 

T, we may write the two possibilities as 

fc(r) = <clr)(T(r) + (klw|k)- Ec) , (4.39) 

and 

fc(r) = (cir)(lkl
2+VL+(klw|k)- Ec)  . (4.40) 

The first possibility is similar to Expression (4.13). As we noted 

in this earlier case, the presence of the operator T makes the result- 

ing pseudopotential non-Hermitian. Since we have restricted W to be 

Hermitian in this treatment, Expression (4.3S) is clearly rot a suitable 

solution. HüA-ever, we may substitute Expression (4.40) into the form 

of W to obtain 
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W(r,r') - V^r^rM+V^r') + 2c(r|c)( |k|2+VL+(kIw|k>-Ec)(c|r'>  . 

(4.*1) 

This pseudopotential is obviously Herraitian. Accordingly, we know 

that Equation (4.40) must satisfy Equation (4.35) as well as Equation 

(4.36). We should not state that Expression (4.41) is the Hermitian 

pseudopotential which minimizes Expression (4.21), but rather that 

the projection of Expression (4.41) on the state k is equal to the 

projection on k of that Hermitian pseudopotential which minimizes 

Expression (4.21). In order to find the optimal projections of f (r) 

on the set of plane waves k+q, for q 4 0, ^e must leave these pro- 

jections in our form of Expression (4.21). But now we cannot vary 

the projections of f (r) on each plane wave independently since we 

have constrained the resulting W to be Hermitian. There does not 

appear to be any well-defined procedure for obtaining these optimal 

projections for the Hermitian pseudopotential which minimizes Ex- 

pression (4.21). However, if we are interested in using no more than 

second order in perturbation theory to find the electronic energies, 

we do not need the projection of f (r) on any plane wave other than k. 

In summary, we have established a well-defined procedure for 

finding the projection on the plene wave   k of that Hermitian pseudo- 

potential which minimizes Expression (4.21). To second order in a 

perturbation expansion in W, that optimal pseudopotential will have 

the same conduction electron eigenvalues as the pseudopotential given 
i 

by Equation (4.41). Since the optimal pseudopotential and the 

♦ 
Harrison has shown that the eigenfunctions of this pseudopotential 
are the eigenfunctions of the actual crystalline potential. 
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pseudopotential of Equation (4.41) are both valid pseudopotentials 

In the *;astin, Heine, and Sham form, we also know that they must 

yield the same conduction dectron energies when solved exactly. 

Expression (4.41) maj be evaluated self-consistently by taking its 

matrix element between the plane waves, k and k. We may then ex- 

press (klwlj) by 

(kjV1* V^lk) + 2 <k|c>(c|k)( |k|
2
+ 7. - E . 

(k|w|k)a-: = ^ =—= i^-c- .    (4.42) 
1 - 2c(k|c)(c|k> 

We xay now substitute Equation (4.42) into Elation (4.41) to obtain a 

self-consistent expression for the pseudopotential. 

Compar:son Between the Two Pseudopotentials 

On the preceding pages, we have derived two different pseudo- 

potentials, given by Equations (4.19) and (4.41). Both of these 

roms are valid pseudopotentials in that thsy satisfy the Austin, 

Heine,  ■'d Sh-vn form. The ferner pseudopotential has not been shown 

to satisfy exactly the condition of minimizing f,  but is conwionly 

used in calctla+^ons. The latter pseuiopctentiai has been shown to 

yield the same eigenvalues to second order in perturbation theory 

&s that Kermitian pseudopotentii^l uhich minimizes Expression (4.21). 

The fjn.il test of a pseudopotencial is its performance in augmenting 

the convergence of a perturbfion expansion. In Figures 4.'. through 

4.6, we have gr.iphed the matrix elements of the average and difference 
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screened pseudopotentials, as discussed in Chapter Two, between the 

plane waves k and k+T for the 50-50 alloy of lithium-magnesium. 

We have labeled the matrix elements of Equation (4.41) as the present 

pseudopotential (P.P ) and those of Equation (4.19) as the Harrison 

pseudopotential (P.P.). N^t only does the present pseudopotential 

have the advantage of being Hermitian, but its matrix elements go 

more smoothly to zero as q becomes l^.rge than do the matrix elements 

of the Harrison pseudopotential. Since the radius of the Fermi sphere 

corresponds to about 0.67 atomic units in reciprocal space, we would 

like to cut off the sum over q which occurs in perturbation theory 

once the magritude of q exceeds five or six atomic units. If we do 

not cut off t. e sum in this way, the summation becomes very tedious. 

We might have confidence that the error introduced by this cut-oxf in 

a summation using the present pseudopotential is less than in the case 

■of the Harrison pseudopotential. In addition, the smaller width of the 

present pseudopotential in reciprocal space suggests that the error 

introduced by neglecting higher order terms in perturbation theory will 

be smaller than in the case of the Harrison pseudopotential. The greater 

magnitude of the Harrison pseudopotential for large q results directly 

from the presence of T m the pseudopotential. As we noted previously, 

chis unfortunate behwior f...r large q might have been expected from the 

inability of this pseudopotential to satisfy Equation (4.9). In any 

case, the behavior of the matrix elements suggests that the pseudo- 

potential of Equation (4.41) would be more suitable for calculations 

than the pseudopotential of Lquation (4.19). 
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Comparison with the Phillips and Kleinman Pseudopotential 

While not central to the purpose of this work, it might "be in- 

teresting to compare the pseudopotential of Equation (4.41) vith the 

well-known Hermitian pseudopotential of Phillips and Kleinman [5,6]. 

They rearranged the terms in the OPW secular equation to place it in 

a form similar to that of the Austin, Heine and Sham pseudopotential. 

f (r) is then given by 

fc(r) = <c|r>(Ev-Ec) . (4.43^ 

Since this expression involves the energy, E , of the state in which 

we are interested, we must use some self-consistent procedure to cal- 

culate eigenvalues from the Phillips and Kleinman pseudopotential. 

However, if we are to form a valid comparison between this pseudo- 

potential and that of Equation (4.41), we should calculate the energies 

from Equation (4.43) under the conditions for vhirh Equation (4.41) is 

rigorously optimal. Therefore, we shall evaluate the electronic eigen- 

values from Equation (4.43) to second order in the pseudopotential. 

To second order in the pseudopotential, we may write the energy 

of the electronic state v associated with the point k in reciprocal 

space   in terms of a Hermitian pseudopotential as 

i0clw!k + q)|2 
E = Ikf + VT + (k|w|k) + Z'f 1  ''    ' . (4.44; 
V   -     u [V     |k|2-|k+ql

2 

When we are considering the order of the various terms in Equation 

(4.44) which arise from the insertion of the Phillips and Kleinman 
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pseudopotential, we may choose whether to regard 2 (k|c)(c|li) as 

being actually of zero'th order in the pseudopotential or ns being 

effectively of first order. As we noted in connection with our 

discussion of the screening potential in Chapter Two, this sum over 

the core states is usually of order 0.1. Accordingly, it is reason- 

able to consider it as being comparable with a first order expression 

in W. Let us do so, and expand E in powers of "h,  where "K  is the 

strength of the pseudopotential. We may nov/ write the Phillips and 

Kleinman pseudopotential as 

w = MvI+vEL + 2c |C)(E|
0)
-EC){C|) 

•f X2 E^  2c|c)(c| + X
3 E^ 2c|c>(c| + ••• .       (4.45) 

We may now insert Equation (4.45) into Equation (4.44) and expand the 

left-hand side of Equation (4.44) in powers of X. If we then demand 

that the equality hold for coefficients of each power of X, we may 

write 

E^0) = |kl2 + VL , (4.46) 

E^l) - (klvW1!*) +Zc<k|c)(c|k)(^
0)-Ec) (4.47) 

and 

E^=E^Sc<k|c)(c!k) 

Kklv^ VSL!k+q)+2c{k|c)(c|k+q>(E(
0)- EJ 2 

+ 2} . —1- -^^ ~- ^-^ 2— . (4.48) 

Considering now the pseudopotential of Equation (4.41), we may 

again consider that 2 (k|c)(c|k) is of first-order in the pseudopotential. 
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Hence, the diagonal matrix exenent of   W in Equation (4.42) may te 

written in powers-of ^ as 

(kjwlk) = M<k|VI+VEL|k>-2c<k|c><c|k)(|k|2+VL-Ec)) 

+ X%(k|c>(clk>((k|vI
+VELlk)-2c<klc>(c|k>(lkl2+VL-Ec)) 

v •••     . (4.49) 

If we substit- ' ■ this expression into Equation (4.41) and substitute 

Equation (4.4:   to Equation (4.44), we may follow the procedure out- 

lined above to obtain a set of three equations identical, to Equations 

(4.46), (4.47), and (4.48). Accordingly, the Phillips and Kleinman 

pseudopotential yields the same eigenvalues to second order in the 

pseudopotential as Equation (4.41) if we may consider 2 (k|c)(c|k) as 

being of first order in W. If we may not consider this sum over core 

states as being of first-order in the pseudopotential, then the elec- 

tronic eigenvalues obtained to second order through the two methods 

differ by about 10^ in the second order term. Accordingly, we may 

state that the second-order perturbation theory electronic energies 

obtained through the Phillips and Kleinman pseudopotential and through 

Equation (4.41) differ by no more than about 10^ in th.-> second order 

term. 
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Chapter Five 

AN ALLOY CAIÄÜIATION USING THE PSEUDOPOTENTIAL METHOD 

Having completed our formal discussion of the application of 

the pseudopotential method to the alloy problem, we will now describe 

the procedure to be followed in performing an actual calculation. For 

this purpose, we will use the Herraitian pseudopotential which we dis- 

cussed in Chapter Four.    We will calculate the total conduction 

electron contribution to the ordering energy and the effective pair- 

wise interaction between the ions. In both instances, we will evalu- 

ate the electronic energies only to second order in perturbation theory. 

Accordingly, we may write the matrix elements of that pseudopotential 

which are appropriate for this calculation of the properties of the 

electronic state associated with k as 

<k+q|w|k> = (k + ql^+V^jk) 

+ 2c(k + q|c><c|k>(|k|2+VL+(k|wik>-Ec) (5.1) 

where 

(kl^^lk) +2c<klc)(c|k>(lk|2+VL.Ec) 
<k W k> = — .       (5.2) 
"  " 1 - Zc(k|c)<c|k) 

We must evaluate these matrix elements for all values of k within 

the Fermi sphere and, in principle, for all values of q. We have 

assumed that the wavefunctions of the core states involved in the 

sum over "c" are independent of the crystalline environment of the 

ion with which they are associated. For calculational pirposes, we 
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shall further assume that these coi-e wavefunctions may be closely 

approximated witfTthe wavexunctions of the corresponding states of 

the neutral atom. We have chosen the neutral atom for this cc^res- 

pondence since we expect that the conduction electron density in the 

region of the core is best approximated by the valence states of the 

neutral atom. The analytic atomic Hartree-Fock wavefunctions cal- 

culated by E. Clementi [1] will be used for this purpose. 

As we discussed in Chapter Two, the screening contribution to 

the matrix elements of W depends upon a knowledge of the unscreened 

pseudopotential. Accordingly, we must calculate the matrix elements 

of the unscreened pseudopotential before we can calculate the screen- 

ing potential. The unscreened pseudopotential consists of the crystal- 

line ionic potential, denoted by v , plus the sura over cc s states as 

in Equation (5.1). We shall first consider the matrix elements of v . 

Matrix Elements of the Ionic Potentiell 

As we demonstrated in Chapter Two, the matrix elements of the 

pseudopotential may be separated, with certain approximations, into 

a structure-deindent factor and a second factor which depends upon 

the structure for a given ionic volume only through f_(r). The 

structure-dep'mdent factor is either a Kronecker delta or F(q), the 

properties of which we discussed in Chapter Three. Accordingly, we 

shall consider in this chapter the evaluation of the second factor 

in the pseudopotential. The contribution of tWs factor to V^ depends 
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upon the matrix elements of the Hartree-Fock potentials of the indi- 

vidual ions. ThTT ionic potential may he written for an ion of type 

i as 

(r" IcXclr") 
v U,r') - M 5(r-r') - 2 2C /dr" -^ ^— 5(r-r') 

It I '      |r - r"| 

(r|c><c|r'> 
+ f? 2„ — z—   , (5.3) 

c   Ir-r'l 

where the sums over "c" extend over ell the core states associated 

with the ion in question. We wish to multiply this potential hy 

^"•"^l^) an^  (j1 l]j)» and then integrate the product over all values 

of r and r* within the crystal. This integral is then multiplied 

by the total number of ions in the crystal, denoted by N, to obtain 

(k + qjvjk)^. 

Our discussion of the matrix elements of Equation (5.3) will 

be facilitated by an expression for l/|r| expanded in the set of 

plane waves. We may write l/|r| as 

-i- * Z, , A e1^ . (5.4) 
|r|   ^ * . 

We may multiply both sides of Equation (5.4) by exp(-iq,'r) and 

integrate over all values of r to obtain 

-iq'-r 

Vn^nfr • <5-5) 

In order to evaluate this integral, we must limit the reuige of the 



123 

function l/|r| "by multiplying by exp(-a|r|). We may then evaluate 

the integral as •V approaches zero to obtain the following expansion 

for l/|r|: 

—— = — Et}   5- • (5.6) 
|r|   *    W    lq|2 

Using this expansion for l/Ir|, we may write the matrix element of 

the first term in Equation (5.3) as 

The orthonormality of the set of plane waves allows us to write the 

matrix element of the first term in Equation (5.3) as 

6-nz     l 
IT 772 • 

(5.7) 

(5.8) . 
0  I?' 

Considering the matrix element of thi second term in Equation 

(5.3), we may expand l/|r-r"| using Equation (5.6). We may again use 

the orthonormality of the set ot. plane waves to write this matrix 

element as 

-2 2c/dr"<r"|c)(Clr")^ ^i|_ . (5.9) 

Now we must consider the sum over the core states which occurs in 

this integrand. The analytic core wavefunctions are given by Clementi 

in the form 

(rlnejns) = R^drj) Y^(0r,<Pr)g(8) (5.10) 

where 

i 
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For a given element, all of the atomic wavefunctions with given 

values of "n" and "i" have the same radial distribution of char^ 

density. We wciud then expect that the set of core states for that 

element will include states with all values of "m" and "s" for each 

pertinent value of "n" and "i".    In other words, each shell, as 

specified by "n" and "i", is filled. Therefore, we may write Ex- 

pression (5.9) as 

o iq| 

But., we may take advantage of the relation. 

¥ rz*»! ^"i^dr-Di2 C-iW***' v)i2 *-*■"■ <*•*; 

t-t ^er' 'r' ^er. 'V' ' ^ ^(=0. 9^,,) ,      (5.13) 

to note that the core wavefunctions contribute only a spherically 

symmetric factor to the integrand. We may expand the bAponential 

fciotor in Expression (5.12) in terms of spherical Bessel functions 

and spherical harmonics using 

^'- = ^ hj^ v i?1 w i-i ^(V V ^ei'V ' (5,14) 

If we substitute Equations (5.13) and (5.14) into Expression (5.12), 

we may perform the angular integrations and use the orthonormality 

of the set of spherical harmonicö to write the matrix element of the 

second term in Equation (5.3) as 
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.M 1 z^si+D/^j,"! |r"|2 !Rni(|r"|)i
2J0(|qi !r"|) . (5.15) 

o kd     0 

This integral may oe evaluated readily once we note that 

sindql   |r"|) 
d0(kl   |r"|) .;  ,    ,        • (5.16) 
0   ■ Id   |r"| 

From the form of R « given in Equation (5.11), we see that all of 

the integrals represented in (5.15) fall into the general class whose 

values are given by 

r*  n -Ax , _   ni IMr(A+ iB)P+1] /,. ,_. f dx x e   sin Bx = s^—, '.,—*■   . (5.17) 
o .(A2+ ^)n+1 

Equations (5.16) and (5.17) allow us to readily evaluate Expression 

(5.15). Accordingly, we have obtained closed forms for the matrix 

elements between plane waves of both the first and second terms in 

Equation (5.3). 

An examination of the third term in Equation (5.3) reveals that 

the matrix elements of the Fock exchange potential may not be expi^ssed 

simply in closed form. We shall seek a form for these matrix eleraeats 

which may be treated in a direct manner using standard progranmin? 

techniques. The integrals over real space, as given by 

<k+a|r><r|c)<c|r')<r'lk> 
2N 2 /dr /dr1 -= =—= = ::—=- , (5.18) 

would be difficult to evaluate using a computer due to the vanishing 

of the denominator at infinitel" ^   points in the double integral. 

As an alternative, we might consider expanding the denominator in 

Expression (5.18) using 

— ^ ^rä. ■■^^^g 
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We may now express the exponentials and the core states in Expression 

(5.18) in terms of spherical harmonics. The angular integrals of pro- 

ducts of three spherical harmonics may be treated using the formalism 

described by Condon and Shortley [2]. The final form of the matrix 

element involves two coupled integrations over re-l space and an in- 

finite sum over values of the angular momentum quantum number. This 

form is also not easily evaluated usrng a computer. 

A simple form for the matrix elements of the Fock potential nay 

be obtained by expanding l/lr-r1] in terms of plane waves. Sin  - we 

may not take advantage of the orthonorroality of the plane waves to 

select one plane wave from this expansion, we will find it convenient 

to express Equation (5.6) in terms of an integral. The density of 
x 

.points in reciprocal space is 8/(2T) . Accordingly, we may write 

Equation (5.6) as 

M'r 

|r|  2/  "  |q|2 

If we express the denominator in Expression (5.18) using Equation 

(5.20), we have separated the two integrals over real space. This 

step greatly simplifies the integration by computer. We may now 

writs Expression (5.18) as 

^•/dq' —^ <k+q+q'|c)<c|k+q')  . (5.21) 
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We need only evaluate the projection of a core state on each member 

of the set of plane waves. This projection may te written using 

Equation (5.10) as 

^-iq.r 
( q|nibs> = /dr ?-=-=■ Rn/|r|) ^(6^ <Pr) . (5.22) 

where both the plane wave and tin core Ftate must have the same spin 

quantum numbers. We may expand the plane wave using Equation (5.14) 

and perform the angular integration to obtain 

(q|nAns) = M|L y* (0^ cp^) /d|r| |r|2 Rn/ir|)j/|q| |r|). (5.23) 

The spherical Bessel functions may be expressed ^.n terms of the fol- 

lowing recursion formula: 

Therefore, the integrals ovei' |r| in Equation (5.23) are of a form 

to be evaluated using either Equation (5.17) or 

/dx x* e-^ cos Bx = nl miX^gh    . (5.25) 
(AZ+ BZ)n+1 

We may now perform the sum over "m" and "s" in Expression (5.21). 

Since the spins of the plane wave states and the core states must 

be the same in each term in this case, we do not get a factor of 

two from the spin summation as we did in obtaining Expression (5.12). 

We may use Equation (5.13) to write the matrix element of the third 

term in Equation (5.3) as 
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-~2 «(2i + l) /dq' P/cos ft   . .  ,) 

x/d|r| |r!2Rni(|r|) j/lk^q" | |r|) 

x/d|r'l Ir'l^n/lr'DJ/l^q'i Ir'D  • (s.as) 

Thus we have obtained an expression for the matrix element of the 

Fock potential which may he evaluated in a direct manner. 

We have all the information which we need to evaluate 

(k+qjv. |k)jj from the analytic atomic wavefunctions of Clementi. 

The matrix elements of the second and third terms in Equation (5.3) 

are expressed in terms of a summation over the values of "n" and " £' 

which represent occupied shells in the core of the element in question. 

In addition, the evaluation of the matrix elements of the Fock po- 

tential requires an integration over all of reciprocal space. We 

have been able to program the calculation of (k + q|v.|k)o such 

that the integration over reciprocal space, with a maximum error of 

one part in ten thousand, takes less than thirty seconds for each 

element for given values of k and q. In Table 5.1, we have presented 

these matrix elements of the Hartree-Fock ionic potentials of lithium 

and magnesium in rydbergs for three values of k and several valuss of 

q. These matrix elements depend upon the nature of the crystal only 

to the extent of a multiplicative factor of l/no. We are considering 

a 50-50 alloy of lithium and magnesium in which the ionic sites form 

a hody-centered cubic lattice with a cube edge of 3.5 A. Accordingly, 
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Table 5.1 

MATRIX ELEMENTS OF IONIC HARTREE-FOCK POTENTIALS 

Ik' 

(kjvjk')    for If&O.O x 

Lithium Magnesium 

0.25 -2.936161 -5.944271 

0.5 -0.84584^ -1.763288 

1.0 -0.305571 -0.680483 

1.5 -0.185479 -0.434633 

2.0 -0.129164 -0.313642 

2.5 -0.094584 -0.235121 

3.0 -0.071176 -0.179453 

4.0 -0.042772 -0.103171 

5.0 -0.027501 -0.070728 

6.0 -0.018740 -0.049906 

7.0 -0.013411 -0.035877 

8.0 -0.009995 -0.027644 

9.0 -0.007704 -0.022136 

10.0 -0.006104 -0.018250 

11.0 -0.004950 -0.015379 

12.0 -0.004092 -0.013175 



löO 

1  ' 
1 

k' 
y 1*- £' 1 

(klvjw) for k- 0.5 3C 

1    k'      ! 
X 

Lithium MagneEiuir 

1 0.75 
0.50 

1 0.25 

0.0 
0.25 
0.0 

0.^50 
0.250 1 
0.250 

-2.i>l-3494 
-2.924553 
-2.930i4Si 

-5.936771 
-5.939447 
-5.942026 

1.0 
1 0.5 
1 0.0      1 

0.0 
0.5 
0.0 

0.500 1 
0.500 1 
0.500 

-0.B25925 
-0.834976 
•0.345849 

-1.753819 
-1.758822 
-1.763288 

1 1-5 
0.911 

-0.5 

0.0 
0.911 
0.0 

1.000 
1.000 
I.JOO 

-0.283729 
-0.291015 
-0.314680 

-0.669665 
-0.674109 
-0.681946 

0.0 1.0 1.118 ! -0.264790 -0.598504 

2.0 
-1.0 

0.0 
0.0 

1.500 
1.500 

-0.166120 
-0.108268 

-0 426015 
-0.^34738 

1 0.0      ' 1.5 1.581 -0.173081 -0.409453     | 

2.5      | 
-1.5 

0.0 
0.0 

2.000 
2.000 

-0.113922 
-0.141422 

-0.30871 
-0.31106.. 

0.0 2.0 2.062 -0.123168 -0.301404 

3.C 
-2.0 

0.0 
0.0 

2.500 
2.500 

-0.083323 
-0.104503 

-0.233776 
-0.230132 

0.0 2.5 2.550 -0.091045 -0.227995 

3.5 
-2.5 

0.0 
0.0 

3.000 
i.000 

-0.063110 
-0.078549 

-0.130736 
-0.1V2980 

0.0 3.0 3.041 -0.068897 -0.175029 

4.5 
-3.5 

0.0 
0.0 

4.000 
4.000 

-0.038728 
-0.046461 

-0.112860 
-0.102233 

0.0 4.0 - .03i -0.041701 -0.107387 

5.5 
-4.5 

0.0 
0.0 

b.000 
5.000 

-0.025425 
-0.029312 

-0.074537 
-0.065015 

0.0 5.0 5.025 -0.026945 -0.070023 

S.5 
-5.5 

0.0 
0.0 

6.000 
6.000 

-0.017623 
-0.019556 

-0.052052 
-0.044693 

0.0 6.0 6.021 -0.01842? -0.048656 
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X 
k' 
y 

Ik- k' 

,(k v. k')    for k = 1.0 5c 

Lithium Magnes-i-jm 

1.25 
1.00 
0.75 

0.0 
0.25 
0.0 

0.250 
0.250 
0.250 

-2.891948 
-2.398507 
-2.906145 

-5.913778 
-5.920518 
-5.927^44 

1.5 
1.0 
0.5 

0.0 
0.5 
0.0 

0.500 
0.500 
0.500 

-0.798769 
-0.81C358 
-0.825925 

-1.728808 
-1.741082 
-1.753819 

2.0 
1.0 
0.0 

0.0 
1.0 
0.0 

1.000 
1.000 
1.000 

-0.260159 
-0.276797 
-0.305571 

-0.645446 
-0.663013 
-0.680483 

0.0 1.0 1.414 -0.197519 -0.461632 

^.5 
1.435 

-0.5 

0.0 
1.435 
0.0 

1.500 
1.500 
1.500 

-0.147593 
-0.158350 
-0.198268 

-0.406580 
-0.418001 
-0.434738 

0.0 1.5 1.603 -0.145245 -0.351773 

3.0 
1.823 

-1.0 

0.0 
1.823 
0.0 

2.000 
2.000 
2.000 

-0.100149 
-0.107368 
-0.146166 

-0.295152 
-0.302085 
-0.308819 

0.0 2.0 2.236 -0.108296 -0.270265 

3.5 
-1.5 

0.0 
0.0 

2.500 
2.500 

-0.073369 
-0 "1.10316 

-0.225361 
-0.225044 

0.0 2.5 2.693 -c, 81972 -0.209153 

4.0 
-2.0 

0.0 
0.0 

3.000 
3.000 

-0.055995 
-0.083627 

-0.176244 
-0.166052 

0.0 3.0 3.162 -0.062975 -0.163117 

5.0 
-3.0 

0.0 
0.0 

4.000 
4.000 

-0.035073 
-0.049214 

-0.112721 
-0.094847 

0.0 4.0 4.123 -0.038893 -0.102471 

6.0 
-4.0 

0.0 
0.0 

5.000 
5.000 

-0.023477 
-0.05G609 

-0.075871 
-0.059164 

0.0 5.0 5.099 -0.025481 -0.068027 

7.0 
-5.0 

0.0 
0.0 

6.000 
6.000 

-0.01653.? 
-0.020209 

-0.053626 
-0.040581 

0.0 6.0 6.083 -0.01760S -0.047911 
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we set the ionic volume, no, equal to 144.67.1 (a.u.) . The values 

of k and q are given in atomic units and may he compared directly 

with the radius of the Fermi sphere, which is roughly 0.67 a.u. The 

maximum error in the matrix elements of the potentials is one part 

in ten thousand or + 0.000001 rydbergs, whichever is the larger. 

Matrix Elements of the Unscreened Pseudopotential 

Referring to Equations (2.22) and (2.25), we may write the 

matrix elements of the unscreened pseudopotential for an individual 

ion as 

(k+qlw^lk)^ = (k+qWJk)^ 

+ N Zniffls
(^ninis'i> te^nims;^'^' ^ ' (5-27) 

The stun extends over all the occupied core states associate 1 with 

that ion. For .he pseudopoten*ial of Equation (5.1), we may write 

Wilmas 

f^g.^r«) = (nimsjilr'XIkl2 + VL + (k|w|k) - Ec) ,       (5.28) 

where (k|w|k) is given by Equation (5.2). Referring to that ex- 

pression, we may note that (k|v |k) is just the average of the 

diagonal matrix elements of the Fock potentials of the two ions, 

weighted to account for their possibly different concentrations in 

the alley. In our example, we have equal concentrations of the ele- 

ments. Note that the spatial averages of the potential of the nucleii, the 

Hartree potential of the r^re electrons, and the Hartree potential 
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of the conduction electrons have been included in VT. Accordingly, 

the average of the first two contributions to v. do not contribute 

to {k|w|fc). Further, we have approximated v  in our formalism with 

a linearized Hartree potential, ir . This potential has no diagonal 

matrix elements between plane waves since the spatial average of this 

conduction electron potential has b«,en included in %. In order to 

evaluate the diagonal matrix elements of the screened pseudopot^ntial, 

W, we need only the diagonal matrix elements of the Fock exch ;n^e po- 

tentials of the ions, the projections of the core states on the set 

of plane i« »res, and the values of the quantity ($. -E ). We have 
Xi   c 

already calculated the first two quantities and need only evaluate 

(VT - E ). Since we have a direct expression for the diagonal matrix 
ii  c 

elements of W, we are only interested in the evaluation of the right- 

hand side of Equation (5.27) for q j^ 0. TMs quantity depends upon 

■{k|w|k), the off-diagonal matrix elements of v., the projections of 

the core states of the set of plane waves, and the values of (\L - E ). 

Therefore, we may readily evaluate the off-diagonal matrix elements 

of w. once we have calculated the values of (V. -E ). 
1 L  C 

As we discussed in Chapter Two, we have restricted the form of 

f (r') which we might choose from our optimization procedure to one 

which is independent of the local environment of the ion with which 

it is associated, even though f (r1) may vary as the ions are re- 

arranged at constant volume. For the pseudopotential of Equation 

(5.1), this restriction constrains the value which we use for E to 
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being a function of only tne type of ion with which it is associated 

and of the configuration of ions in the crystal. Since E, is an 

eigenvalue of the crystalline Hamiltoni'an, H, we would expect that 

it would formally depend upon the local environment of the core 

state. However, we shall approximate E such that it is independent 

of local configuration. Thus, we are approximating the optimal 

pseudepotential which we discussed in Chapter Four. 

In our assumption that the core eigenfunctions are essentially 

those of the corresponding atomic eigenstates, we have neglected the 

spatial variation over the core region of the crystalline potential 

less the atonic potential. While this approximation may be reasonable, 

we must account tor the influence of the non-zero value of this cor- 

rection potential at the site of the core on the eigenvalues of the 

core states. The atomic Hartree-Fock eigenvalues of the core states 

of lithium and magnesium as given by Clewenti [1] are presented in 

rydbergs in Table 5.2. A precise calculation of the corrections to 

Table 5.2 

HARTREE-FOCK ATOMIC EIGENVALUES 

Lithium Magnesium 

Is -2.47775 Is -49.03165 

2s  -3.73048 

2p  -2.28219 

these eigenvalues would begin by subtracting the influence of the 

valence states of the atom. Then we would add the influence of an 
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.\rray of effective ionic potentials with a compensating uniform 

electronic charge distribution. This correction includes the ef- 

fects of both the core charge and that charge which is orthogonal- 

ized out of the conduction electron gas by the operation of the 

pseudopotential. Finally, we would account for the influence of 

the screening distribution of conduction electrons. This final 

step would require a knowledge of the screening distribution and, 

hence, the use of a self-consistent procedure. In this instance, 

we nay use an approximation to avoid such a procedure since any 

values for E will constitute a valid pseudopotential. Accordingly, 

we shall assume that the influence of the valence states on the core 

states approximates fairly well the influence of near conduction 

electrons. Acting on that assumption, we will not subtract the in- 

fluence of the atomic valence states from the energies of the core 

electrons. After adding the influence of the array of effective 

ionic charges and the compensating uniform distribution of charges 

we shall subtract the interaction of the core charges with a sphere 

of this uniform charge density centered at the nucleus and contain- 

ing the tl'fective valence number of electrons. This procedure is 

probably at least as accurate as neglecting the influence of the 

screening in the procedure we described above, especially for an 

alloy. We should emphasize at this point that this procedure for 

determining the crystalline core eigenvalues yields a valid pseudo- 

potential in -"-he ssnse that the electron energies to all orders in 

_ _ :.... . -j:^-^-^ 
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perturbation theory will be the actual crystalline energies. However, 

our approximation for the core eigenvalues makes the resulting pseudo- 

potential an approximation to the optimal pseudopotential of Equation 

(5.1), and might accordingly lessen the accuracy of a second-order 

perturbation theory calculation of the energies. 

We mast first estimate the effective ionic charges. The core 

states associated with an ion of type i will interact with a plane 

wave k to add an amount of positive charge to the effective core 

charge equal to 

2nims ^MmsjiXniinsjilk) • (5.29) 

We have already evaluated the projection of the core states on the set 

of plane waves. In order to preserve charge neutrality, an equal 

amount of compensating negative charge is added to the charge density 

associated with the valence states of H . We will treat terms like 
P 

Expression (5.29) as being related to a first-order expression in the 

pseudopotential, as we discussed in connection with the screening 

potential derivation in Chapter Two. We may then obtain a first 

order estinate of t'vj total amount of positive charge added to the effec- 

tive core charge by the interactions of the core states with all of 

the pseudovalence states by using a zero'th order approximation for 

the pseudovalence state aöaociated with k, 

|v> = ao(k) lk> . (5.30) 
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If Z. is the core charge of an ion of type i, we may write the ef- 

*— eff 
fective core charge, denoted by Z. , as 

Z*ff . Zi + 2^Ja0(k)|
2 Snims|(niras;i|k>|

2 , (5.31) 

where the sum in reciprocal space extends over all points within the 

Fermi sphere. As we demonstrate in OUJ* derivation of the screening 

potential, |a (k)| depends upon a sum over all of the core states 2 

in the crystal and is given hy 

|a fk)|2 = [1 - 2 (kjcXclk)]*1    . (5.32) 

If xN is the fraction of ions of type A in the alloy, we nay use our 

previous discussion of the average and difference projection operator« 

to write Exp- ession (5.32) simply as 

-1 

(5.33) 

lao(k)|
2 - |l- xN 2niins|(n/ms;A|k>|

2- (l-x)N 2ni]J(nlm8;B|k>| 

Thus we may evaluate each of the terms in the sum in Expression 

(5.31). If we now note that the density of electron states in recip- 

rocal space is just 2n/(2Tr) , where the extra factor of two account» 

for spin, we may write Equation (5.31) as 

Zff = Zi -V/^M^I2 ZnlmSl
<nAMji^>l2 * t5'34* 

We may now evaluate this expression readily. For the 50-50 alloy 

of lithium and magnesium which we discussed before, we have vsed 

eff 
Equation (5.34) to calculate the following: 7.   » 1.11657 and 

Li 
eff 

Z   =s 2.14834. These effective ionic charges lead to an average 
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effective conduction »lectron density of 0.011284 electrons per 

(a.u.) . 

Let us now calculate the potential at the core due to the 

array of effective ionic charges with a compensating unifom 

charge density. For the completely di-sordered crystal, we will 
aftf>       af*^*      A'ft^k 

consider an array of average charges, Z  = (2.  + Z_ )/2» lo- 

cated on the set of hody-centered cubic sites. We will consider 

them to be point charges in a uniform compensating distribution 

of electrons. The energy per ion for such a system has been found 

[3] to be 

-1.79186 ^ L-    , (5.35) 
o 

in rydbergs, where r is the radius of a sphere of volume JJQ. The 

effect of the potential ^T is to add an amount ^T to the value of 
L It 

E . Since E occurs in our pseudopotential only in the form 

^V- -E ), we may just set V.  equsü. to zero for the purpose of this 

calculation. Since we are considering only the Hartree potential 

of the ions and the uniform compensating electron density in this 

calculation, VT is just the spatial average of the crystalline po- ll 

tential. If the average potential is zero, the uniform electron 

charge distribution will not contribute to the energy of the crystal. 

Therefore, the value of the potential at a site due to all the other 

ions in the crystal and the uniform compensating charge density must 

be 
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seff 
-2(1.79136) -=— . (5.36) 

The core states WJ.11 also see a potential due to the uniform charge 

density which goes as |r| . Therefore, we may write the potential 

in the core region of an ion in the disordered crystal as 

seff  ._ seff -eff    -eff 
Vjis(r) = -2(1.79186) Z-- + |: Z^- |r|2 . (5.37) 

For the ordered crystal, we must add to Equation (5.37) the in- 

fluence of an array of difference charges, ± AZeff = ±(Z®ff- ^t)/Z, 

distributed on a cesium chlciide lattice. The energy of such a sys- 

tem has "been shown [4] to be 

-1.002153 ^AZ  ' , (5.38) • 
o 

in rydbergs, where r is the radius of a sphere of volume, HQ.    There 

is no energy of interaction between these arrays. At a site contain- 

ing an A ion. Expression (5.38) contributes a potential in the core 

region of 

Azeff 
-2(1.002153) ~  . . (5.39) 

o 

This potential changes sign at a site containing a B ion. If we 

add this potential to that for the disordered crystal, we obtain 

the following expression for the potential at a site in the ordered 

alloy containing an A ion: 

/ (r) = - j-  {2.79401 Z®ff + 0.78971 z|ff) 
0W) o 

^(Z- + Z^)|rr. (5.40) 
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In order to obtain the potential at a site containing a B ion, we 

need only interchange A and B wherever aey occur in Expression 

(5.40). The correction to the energy of a core state due to these 

potentials is now given by 

AEnimsji = ^ (nims}i^> V^0RD1^
)^'nims;i> * (5-41) 

The spatially varying parts of Equations (5.37) and (5.40) may be 

readily evaluated in terms of the expectation value of |r| in the 

core state. Thus we have obtained the first correction to the core 

eigenvalues. 

Now we wish to evaluate the energy of interaction of a sphere of 

the uniform compensating charge density with a core charge. The radius 

of the sphere is determined by the requirement that it contain the 

effective number of valence electrons associated with the ion in 

question. This radius for an ion of type i, R . is given by 
8 

{eff     Y 

If we use the formula for the interaction energy between two charge 

distributions, 

n (r) rUr«) ,        . 
2 /dr /dr' — ^-z—    ' ^5    5; 

Ir-r'l 
we may write the interaction between the core state and the sphere 

of charge as 
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AE ,a ,< 
nims; 

,|2_* 
eff 

s . ^/drKnimsjM^r ;8d|r'|   |r'1" -^   !^x, T^-T   - 

(5.44) 

We may further expand the last factor in Equation (5.44) nsing 

Equation (5.19) and perform the angular integrations associated 

with r' to obtain 

U.I2 

AE! Sir Zeff W = ^r/* Kn^ilr^ rdk'l^ .       (5.45) 

We may insert the form of the Clementi core wavefunctions into 

Equation (4.45) and perform the angular integration readily. We 

may then evaluate the second correction to the energy of the core 

state once we perform integrals like 

I^n^a) =» /  dx x e n .-ax for  n » 2,3,... 

and 

n -ax 
IgU^a) = / . dx x e     for  n - 1,2,3,... . 

R 

In connection with the svaluation of these integrals, we may note 

immediately that 

Ljj^a) + I2(n,a) » —~- , 
a 

and that 

-aR. 
I^^a) =-|- (1 - e  S(aRj + l)}  . 

a 

We may integrate I1(n,a) by parts to obtain 

.   -aR1 

(R^e  S 

I^nja) = - I^n-l^)  

(5.f6) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

m &ti&iSm&sil03/i 
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Thus we are in a position to evaluate all the integrals given "by 

Equations (5.46) and (5.47), and thereby obtain the second cor- 

rection to the eigenvalues of the core states. 

We have calculated the total correction to the core eigen- 

values suggested by Equations (5.41) and (5.45) for the alloy of 

lithium and magnesivm? xliich we are considering. These corrections 

are listed in rydbergs in Table 5.3. The values in this table should be added 

to the appropriate values in Table 5.2 to obtain values of (E - V-). 

Table 5.3 

CRYSTALLINE CORE ENERGY CORRECTICrS 

I. Ordered Crystal II. Disordered Crystal 

Lithium    Magnesium 

Is +0.31148  Is +O.037Ü4 

2s +0.03720 

2p +0.O37t3 

Lithium     Magnesium 

Is +0.62898  Is -0.00951 

2s -0.00955 

2p -0.00952 

The corrections which we found for magnesium are mall due to the 

close cancellation of the two different energy corrections. 

We ere now in a position to calculate the off-diagonal matrix 

elc-ients of the unscreened pseudopotential and the diagonal matrix 

elements of the screened pseudopotential. We shall calculate both 

of these quantities for <-hree different sets of eigenvalues: atomicj 

ordered crystalline; and disordered crystalline. In this manner, we 
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may determine the influence upon our final results of the choice of 

core eigenvalues. We will also he able to estimate the sensitivity 

of our results to the approximations involved in our procedure for 

estimating th» crystalline core eigenvalues. The diagonal matrix 

elements of the screened pseudopotential as defined by Equation (5.2) 

have been tabulated in rydbergs in Table 5.4. These matrix elements 

have been evaluated for three values of k in atomic units and the 

three sets of core eigenvalues as shown. We have used fi  se matrix 

Table 5.4 

DIAGONAL MATRIX EliEMENTS OP 

THE SCREENED PSI.ÜDOP0TENTIA1 

1*! 
(k w|k> 

Atomic 
Core 

Energies 

Ordered 
Crystalline 

Core Energies 

Disordered 
Crystalline 
Core Energies 

0.0 

0.5 

1.0 

0.115084 

0.119322 

0.130186 

0.098642 

0.105251 

0.120762 

0.086029 

0.095103  1 

0.115050 

elements to calculate the off-diagonal matrix elements of the un- 

screened pseudopotential as given by Equation (5.27). We then found 

the unscreened average and difference pseudopotentials for our 50-50 

of lithium and nugnesium as defined in Equations (2.27) and (2.26). 

These potentials are tabulated in rydbergs in Tables 5.5 and 5.«. 

As in the case of the matrix elements of the ionic potentials, the 

-. ^JV—-__.-.. 
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Table 5.5 

MATRIX ELEMENTS OF UNSCREENED AVERAGE PSEUDOPOTENTJALS 

l*'l 

(klw'lk'} for ; t = 0.0 x           | 

Atomic Core 
Energies 

Ordered Crystalliie 
Core Energies 

Disordered Crystalline 
Core Energies 

,0.25 -4 13S430 -4.155507 -4.167834 

0.5 -1.019360 -1.034472 -1.046027 

1.0 -0.256443 -0.E68602 -0.277821 

1.5 -0.130289 -0.139183 -0.145894 

2.0 -0.091363 -0.097532 -0.102201 

2,5 -0.072556 -0.076740 -0.079952 

3.0 -0.059659 -0.062486 -0.064717 

4.0 -0.040637 -0.041963 -0.043103 

|5.0 -0.027.628 -0.028285 -0.028920 

16.0 -0.019117 -0.019462 -0.019842 

7.0 -0.013663 -0.013855 -0.014095 

18.0 -0.010161 -0.010272 -0.010432 

9.0 -0.007876 -0.007943 -0.008053 

CLO.O -0.006348 -0.006390 -0.006468 

tLl.O -0.005294 -0.005321 -0.005378 

p.2.0 -0.004540 -0.004558 -0.004600 
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X 
k" 
y 

k- k' | (k w0 k« > for k = 0. 
• 

5 $ 
i 

Atomic 
Core Energies 

Ordered 
Crystalline 
Core Energies 

Disordered 
Crystalline 
Core Energies 

0.75 
0.50 
0.25 

0.0 
0.25 
0.0 . 

0.250 
0.250 
0.250 

-4.141143 
-4.132298 
-4.126459 

-4.154103 
-4.14ol38 
-4.141241 

-4.163187 
-4.156052 
-4.132202 

1.0 
0.5 
0.0 

0.0 
0.5 
0.0 

0.500 
0.500 
0.500 

-1.025602 
-1.006657 
-0.998821 

1.037188 
1.019830 
-1.013741 

-1.045089 
-1.029108 
-1.025098 

1.5 
0.911 
-0.5 

0.0 
0.911 
0.0 

1.000 
1.000 
1.000 

-0.267662 
-0.249625 
-0.195654 

-0.276311 
-0.259499 
-0.209725 

-0.281935 
-0.266042 
-0.219873 

0.0 1.0 1.118 -0.167377 -0.178962 -0.186864 

2.0 
-1.0 

0.0 
0.0 

1.500 
1.500 

-0.139918 
-0.052232 

-0.146029 
-0.063818 

-0.149863 
-0.071720 

0.0 1.5 1.581 -0.082232 -0.090881 -0.096505 

2.5 
-1.5 

0.0 
0.0 

2.000 
2.000 

•0.097578 
-0.017207 

-0.101796 
-0.025856 

-0.104388 
-0.031480 

0.0 2.0 2.062 -0.056137 -0.062248 -0.066082 

3.0 
-2.0 

0.0 
0.0 

2.500 
2.500 

-0.075933 
-0.011168 

-0.078831 
-0.017280 

-0.080606 
-0.021114 

0.0 2.5 2.550 -0.045762 -0.049980 -0.052572 

3.5 
-2.5 

0.0 
0.3 

3.000 
3.000 

-0.061220 
-0.012007 

-0.063224 
-0.016225 

-0.064466 
-0.018817 

0.0 3.0 3.041 -0.039347 -0.042245 -0.044019 

4.5 
-3.5 

0.0 
0.0 

4.000 
4.000 

-0.040768 
-0.013644 

-0.041765 
-0.015648 

-0.042419 
-0.016890 

0.0 4.0 4.031 -0.029009 -0.030412 -0.031303 

5.5 
-4.5 

0.0 
0.0 

5.000 
5.000 

-0.027590 
-0.D12138 

-0.028115 
-0.013134 

-0.028493 
-0.013789 

0.0 5.0 5.025 -0.020828 -0.021546 -0.022038 

6.5 
.-5-5 

0.0 
0.0 

6.000 
6.000 

-0.019183 
-0.009784 

-0.019475 
-0.010309 

-0.019708 
-0.010686 

0.0 6.0 6.021 -0.015002 -0.015391 -0.015686 

■''fi!!- ■   -Jl 
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1      x k' 
y 

Ik-k'j (k|we jk')    for    k - 1.0 x 

Atomic 
Core Energies 

Ordered 
Crvstalline 

Core Energies 

Disordered 
Crystalline 

Core Energies 

1.25 
1.00 
0.75 

* 
0.0 
0.25 
0.0 

0.250 
0.250 
0.250 

-4.137472 
-4.12175S 
-4.107435 

-4.145754 
-4.131045 
-4.117890 

-4.150533 
-4.136639 
-4.124567 

1.5 
1.0 
0.5 

0.0 
0.5 
0.0 

0.500 
0.500 
0.500 

-1.026612 
-0.996449 
-0.971214. 

-1.033751 
-1.005341 
-0.982468 

-1.037687 
-1.010604 
-0.990052 

2.0 
1.0 
0.0 

0.0 
1.0 
0.0 

1.000 
1.000 
1.000 

-0.271377 
-0.222891 
-0.189702 

-0.276488 
-0.230417 
-0.201400 

-0.279089 
-0.234630 
-0.210165 

0 0 1.0 1.414 -0.038994 -0.048419 -0.054131 

2.5 
1.435 

-0.5 

0.0 
1.435 
0.0 

1.500 
r.500 
1.500 

-0.142440 
-0.10&862 
0.002156 

-0.146009 
-0.114866 
-0.009097 

-0.147720 
-0,11^402 
-0.016692     1 

0.0 1.5 1.803 -0.011333 -0.018472 -0.022407 

3.0 
1.923 

-1.0 

0.0 
1.823 
0.0 

2.000 
2.000 
2.000 

-0.098445 
-0.076338 
0.063069 

-0.100926 
-0.079711 
0.053665 

-0.102071 
-0.081316 
0.047952 

0.0 2.0 2.236 -0.007855 -0.012965 -0.015567 

3.5 
-1.5 

0.0 
0.0 

2.500 
2.500 

-0.075707 
0.069497 

-0.077442 
0.062358 

-0.078230 
0.058422 

0.0 2.5 2.693 -0.010916 -0.014486 -0.016197   , 

4.0 
-2.0 

0.0 
0.0 

3.000 
3.000 

-0.060513 
0.056586 

-0.061741 
0.051475 

-0.062500 
0.048674 

0.0 3.0 3.162 -0.013840 -0.016321 -0.017466 

5.0 
-3.0 

0.0 
0.0 

1  4.000 
4.000 

-0.040095 
0.027175 

-0.040736 
0.024694 

-0.041042 
0.023549   ' 

0.0 4.0 4.123 -0.015076 -0.016304 -0.016862 

6.0 
-4.0 

0.0 
0.0 

5.000 
5.000 

-0.027281 
0.010720 

-0.02,-36 
0.009492 

-0.027819 
0.008933, 

0.0 5.0 5.099 -0.012952 -0.013594 -0.013899 1 

7.0 
[-5.0 

0.0 
0.0 

6.000 
6.000 

-0.019158 
0.003383 

-0.019365 
0.002741 

-0.019482! 

0.002436 

1  CO 
1 - 

6.0 6.083 -0.010367 -0.010722 -0.010905 
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Table 5.6 

MATRIX ELEMENTS OF UNSCREENED DIFFERENCE PSEUDOPOTENTIALS 

l^' 1 

(kl^'lk") for k = 0.0 X 

Atomic Core 
Energies 

Ordered Crystalline 
Core Energies 

Disordered Crystalline 
Core Energies 

0.25 1. .20381 1.409000 1.393684 

0.5 0.377289 0.366628 0.352240 

1.0 0.114076 0.105594 0.094035 

1.5 0.063874 0.057710 0.049262 

2.0 0.044917 0.040524 0.034762 

2.5 0.034514 0.031546 0.027560 

3.0 0.027267 0.025189 0.022482 

4.0 0.016963 0.C15873 0.014582 

5.0 0.010265 0.009640 0.008985 

6.0 0.006150 0.005766 0.005411 

7.0 0.003742 0.003492 0.003288 

8.0 0.002382 0.002213 0.002090 

9.0 0.001640 0.001522 0.001445 

10.0 0.001251 0.001165 0.00111.5 

11.0 0.001C58 0.000993 0.000959 

12.0 0.000965 0.000918 0.000894 

- 
i 
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K y 
jk-k' (k to"  k'} for k « 0.5 x 

Ordered Disordered 
Atomic Crystalline Crystalline 

Core Energies Core Energies Core Energies 

0.75 0.0 0.250 1.408066 1.399710 1.387340 
0.50 0.25 0.250 1.408996 1.399824 1.386577 
0.25 0.0 0.250 1.415052 1.404822 1.390611 

1.0 0.0 0.500 0.364102 0.356886 0.345867 
0.5 0.5 0.500 0.361627 0.353081 0.340500 
0.0 0.0 0.500 0.376729 0.366064 0.351669 

1.5 0.0 1.000 0.103888 0.098821 0.090640 
0.911 0.911 1.000 0.096791 0.090864 0.081504 
-0.5 0.0 1.000 0.086276 0.076872 0.063393 

0.0 1.0 1.118 0.067012 0.059796 0.048776 

2.0 0.0 1.500 0.057135 0.053717 0.047961 
-1.0 0.0 1.500 0.018390 0.011174 0.000154 

0.0 1.5 1.581 0.029106 0.024039 0.015858 

2.5 0.0 2.000 0.040622 0.038326 0.034362 
-1.5 0.0 2.000 -Ü.004260 -0.009327 -0.017508 

0.0 2.0 2.062 0.016306 0.012888 0.007132 

3.0 0.0 2.500 0.031685 0.030115 0.027393 
-2.0 0.0 2.500 -0.009998 -0.013416 -0.019172 

0.0 2.5 2.550 0.011682 0.009386 0.005422 

3.5 0.0 3.000 0.025283 0.024180 0.022295 
-2.5 0.0 3.000 -0.009578 -0.011874 -0.015837 

0.0 3.0 3.041 0.009525 0.007955 0.005232 

4.5 0.0 4.000 0.015928 0.015337 0.014393 
-3.5 0.0 4.000 -0.005644 -0.006747 -0.008632 

0.0 4.0 4.031 0.006549 0.005752 0.004428 

5.5 0.0 5.000 0.009810 0.009462 0.008959 
-4.5 0.0 5.000 -0.003286 -0.003878 -0.004821 

0.0 3.0 5.025 0.004097 0.003647 0.002964 

6.5 0.0 6.000 0.006052 0.005830 0.005546 
-5.5 0.0 6.000 -0.002226 -0.002576 -0.003078 

0.0 S.O 6.-'l 0.002390 0.002114 0.001739 
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k' 
X 

k' 
y 

Ik-k" | (kl&w'Ik')    for    k - 1.0 x 

Atomic 
Core Energies 

Ordered 
Crystalline 

Core Energies 

|   Disordered  j 
Crystalline 

Core Energies 

1.25 
1.00 
0.75 

0.0 
0.25 
0.0 

0.250 
0.250 
0.250 

1.389307 
1.387285 
1.390488 

1.384801 
1.381983 
1.384117 

1.376699 
1.372882 
1.373845 

1.5 
1.0 
0.5 

0.0 
0.5 
0.0 

0.500 
0.500 
0.500 

0.349589 
0.342035 
0.353655 

0.345900 
0.337056 
0.346376 

0.338929 
0.326349 
0.335295 

2.0 
1.0 
0.0 

0.0 
1.0 
0.0 

1.000 
1.000 
1.000 

0.095799 
0.075200 
0.111230 

0.093386 
0.071243 
0.102728 

0.088411 
0.063890 
0.091150 

0.0 1.0 1.414 0.008355 0.002936 -0.006301 

2.5 
1.435 

-0.5 

0.0 
1.435 
0.0 

.1.500 
1.500 
1.500 

0.052662 
0.034202 
0.007944 

0.051090 
0.031851 
0.000664 

0.047621 
0.026980 

-0.010417 

0.0 1.5 1.803 -0.012167 -0.015856 -0.022827 

3.0 
1.823 

-1.0 

0.0 
1.823 
0.0 

'.COO 
2.000 
2.000 

0.037954 
0.023454 

-0.042375 

0.036908 
0.021981 

-0.047794 

0.C34500 
0.018705 

-0.057031 

0.0 2.0 2.236 -0.015861 -0.018273 -0.023249 

3.5 
-1.5 

0.0 
0.0 

2.500 
2.500 

0.029916 
-0.058067 

0.029199 
-0.061756 

0.027516 
-0.068727 

CO 2.5 2.693 -0.013241 -0.014813 -0.018282 

4.0 
-2.0 

0.0 
0.0 

3.000 
3.000 

0.024046 
-0.055632 

0.023537 
-0.053044 

0.022346 
-0.063020 

0.0 3.0 3.162 -0.009477 -0.010523 -0.012931 

5.0 
-3.0 

0.0 
0.0 

4.000 
4.000 

0.015389 
-0.036732 

0.015108 
-0.037779 

0.014485 
-0.040186 

0.0 4.0 4.123 -0.004289 -0.004799 -0.005989 

6.0 
-4.0 

0.0 
0.0 

5.000 
5.000 

0.009708 
-0.021801 

0.009538 
-0.022310 

0.009192 
-0.023501 

0.0 5.0 5.099 -0.002163 -0.002443 -0.003066 

7.0 
-5.0 

6.0 
0.0 

6.000 
6.000 

0.006195 
-0.013275 

0.006084 
-0.013555 

0.005882 
-0.014178 

0.0 6.0 6.083 -0.001338 -0.001508 -0.001854 



150 

maximum error in these figuies is one part in ten thousand or 

0.000001 rydbergs, whichever is the greater. 

Matrix Elements of the Screening Potential 

Let us turn now to the matrix elements of the average and dif- 

ference screening potentials as defined in Equations (2.69) and 

(2.70). Since we are seeking a first-order expression for the 

pseudopotential, we may replace the sum over the states contained 

in the Fermi volume with an integral over the free-electron Fermi 

sphere. We must remember a factor of two to account for the spins 

of the plane waves. The matrix elements of the unscreened pseudo- 

potential obtained from dementi's wavefunctions are real, and are 

intrinsically Hermitian due to the form of the pseudopotential which 

we selected. Further, these matrix elements depend only upon the 

magnitudes of the two plane waves and the angle between them. Ac- 

cordingly, we may rewrite the formula for the average screening 

potential to obtain 

. .^(k+qlw0!*) 
(q|vSCl0) = -?-%  /dklaJlOf <-^- ~ + S(k,q)V ,  (5.51) 

^knu) jy 0"    mr-lfc+s ,q)l 

where 

la (k)'2 

D(q) = 1 - -yf~?    J  dk ■ _ ""  |?   . (5.52) 
_2i i2 

The difference screening potential is given by an analogous expres- 

sion. We have already discussed the evaluation of all components 
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in these integrands except S(k,q) andAt(k,q).- In Chapter Two, we 

defined these in*"£enns of an ionic quantity, b.(k,q), using Lv itions 

(2.65) and (2.66). We n._y write this ionic quantity as 

^(^q) » -N Sn/ms{(k+q]nimsii){nimsii|k) 

+ (k|niinsji)(niinsii|k-q)) 

+N Zniins(k|n/msji> /dr(niinsji|r> e'^'-^jn'i'm's'ji) 
n'i'm's1 

X (n'X'm's'ilk)    . (5.55) 

Aside from the projections of core states on the set of plane waves, 

which we have already discussed, we need only evaluate the matrix 

elements of exp(-iq,r) between two core states on the same ion. We 

may simplify the evaluation of this factor by considering the inte- 

gral of the product of Expression (5.53) and ja (k)| over the Fermi 

sphere. This is the form in which Expression (5.53) will contribute 

to the screening. We iuay insert the form of the projection of the 

core states on plane waves given by Equation (5.23) into this integral 

and perform the angular integration to obtain 

if^/Fd|k|   |k|2|ao(k)|22niinA|r|   Irl^dkllrD^drl) 
"o     o n*    0 

*/d|r'!   Ir'lVlkllr'D^./lr'l) 
o 

X/dr" e"i3,?"(nims;i|r")(r,,|n'ims;i>    . (5.54) 

We have used the spherical symmetry of |a (k)| and the orthonormality 

of the set of spherical harmonics to achieve this form. We may now 
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perform the summation over "in" and use Equation (5.13) to demonstrate 

the spherical symmetry of the core state contribution to the last 

integral over real space. Accordingly, if we expand the plane wave 

using Equation (5.14), the angular integration over real space singles 

out that component of the plane wave with 1=0. Therefore, we may 

write Expression (5.54) as 

^/d|k| |k|2|aoU):22nnIi(2i+l)A|r| kl^ 1*1 kl)Rni( I'D 
^  o o 

x/dlr'Hr'l^dkllr'l^.^tr'l) 

x/<ilr"l Ir"!2^!?! IrDR^dr-l) Rn1i(|r"|)  . (5.55) I]!- I If"1 ■ 
o 

We have already discussed the evaluation of this l:st integral in 

connection with the matrix elements of the second term in v.. We 

have now established a procedure for the evaluation of the integrals 

of b(k,a) and Ab(k,q) rver the Fermi sphere. Hence, we can calculate 

the screening potential matrix elements once we have a procedure for 

performing the integral of the first term in the integrand over the 

Fermi sphere. 

For values of |g| larger than twice the radius of the Fermi 

sphere, the denominator in the integrands of Equations (5.51) and 

(5.52) dees no*  vanish for any points k in the Fermi sphere. In 

these instances, the integration may be performed directly using a 

computer. For values of |q! less than twice the radius of the Fermi 

sphere, we may note that the denominator in these integrands vanishes 
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for values of k I'/ing on a plane which intersects the Fermi sphere. 

The evaluation of this integral is similar to the evaluation of 

J^^dx , (5.56) 
-a 

where f(x) is a slowly varying function in the immediate vicinity 

of x = 0, and a and "b are "both positive. The analytic procedure 

of finding the principal part is equivalent to replaci»- ••; x in the 

denominator by (x + ie) and finding the limit of the integral as € 

apprciches zero. In a computer calculation, we may let l/x 'becoine 

x 
2    * xSe 

and then calculate Expression (5.56) for several values of 5 approach- 

ing zero. We found that this procedure converged quite slowly toward 

the limiting value and that the selection of small values of .5 greatly 

increased the computation time. The slow convergence of the procedure 

is most likely due to the difference between l/x and Expression (5.57) 

at the boundaries of the integral. Accordingly, we let l/x become 

x 

(5.57) 

x2+&exp(-x2/5) 
(5.58) 

This expression approaches l/x much more rapidly than Expression (5.57) 

as x deviates from x = 0. But, the variation of Expression (5.58) as 

a function of x is not much more rapid than the variation of Expression 

(5.57), Therefore, we were able to achieve far greater accuracy using 

the latter form with little Increase in computation time. This pro- 

cedure is suitable for calculating the matrix elements of the screening 

* 
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potentia".  * small values of \q.\  to within one part in one or two 

hundred of the screened pseudopotential. For small values of |q|, 

this often means a maximum error- of one part in one thousar.i of the 

screening potential. 

We have calculated the matrix elements of the average and dif- 

ference screening potentials for the 50-50 alloy of lithium and mpg- 

nesium using the above procedure. We have tabulated the values of 

these mmt^ix elements in rydbergs for the three sets of core energies 

in Tables 5.7 and 5.8. The values of |q| are given in atomic units. 

The maximum error in the matrix elements is 0.1^ for jq| * 0.25, 0.3^ 

for |q| = 0.50, and l.O^t for |q| * 1.00. For the other valuss of iq|, 

there is no singularity in the screening integration. The maximum error 

in these matrix elements is one part per hundred or 0.000001 rydbergs, 

whichever is the greater. 

We now have all the information which we need to calculate the 

off-diagonal matrix elements of th.- screened pseudopotentisl. W have 

not tabulatad these results dae to the much greater accuracy of the 

matrix element of the unscreened pseur'opotential relative to tlv ■ of 

^he matrix elements of the screening potential. We have already dle- 

played the behavior of certain matrix elements of the screened pseudo- 

potential in Figures 4.1 through 4.6. Both the pseudopotential denoted 

by "Present P.P." and that denoted by "Harrison P.P." were calculated 

according to the previous discussion in this chapter. The pseudo- 

potential which we have chosen to use, denoted by "Present P.P.", 
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Table 5.7 

MATR1 I ELEMENTS OF AVERAGE SCREENING POTENTIAL 

4 

(q v8C 0> 

Atomic Core 
Energies 

Ordered Crystalline 
Core Energies 

Disordered Crystalline 
Core Energies 

0.25 3.846227 3.853054 3.866265 

0.5 0.770964 0.780587 0.787352 

1.0 0.090946 0.095662 0.099141 

T.5 0.009699 0.010772 0.011583 

2.0 0.001900 0.002124 0.002294 

2.5 0.001120 0.001180 0.001227 

3.0 0.000926 0.00094C 0.000960 

4.0 0.000664 0.000667 0.000669 

5.0 0.000470 0.000470 0.000471 

6.0 0.000339 0.000340 0.000340 



IwV 

Tabl_ 5.8 

MATRIX ELEMENTS OF DIFFERENCE SCREENING POTENTIAL 

kl 
(qUvSC|0>                    | 

Atonuc Core 
Energies 

Ordered Crystalline 
Core Energies 

Disordered Crystalline 
Core Energies 

0.25 -1.296334 -1.288873 -1.277672 

0.5 -0.273529 -0.267340    ' -0.258193 

1.0 -0.039776 -0.036535 -0.032006     1 

1.5 -0.003984 -0.003222    I -0.002186 

2.0 0.000533 0.000692 0.000908 

2.5 0.000803 0.000847 0.000905 

3.0 0.000663 0.000678 0.000696 

4.0 0.000409 0.000412 0.000414 

5.0 0.000273 0.000275 0.000274 

6.0 
| 

0.000196 0.000196 0.000196     | 
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demonstrates a marked improvement over the actual crystalline po- 

tential, which is a sum of the contributions of the ionic potentials 

and the screening potential. 

The Energy-Wavenumber Characteristics 

As we demonstrated in Chapter Two, tha energy-wavenumber charac- 

teristics are central quantities if we are interested in the changes 

in the total conduction electron energy when the ions in the solid are 

rearranged at constant ionir  volume. The energy-wavenumber character- 

istics are defined by Equation (2.84). We have evaluated the matrix 

elements of the screened pseudopotential and of the screening potential 

which occur in this expression. Tne integral over the Fermi sphere 

may be evaluated using the procedure which we discussed in the screen- 

ing potential integration, we may noi-«* that E^q) * E2l^^ 8ince ^^ 

pseudopotential w.iich we have used is Hermitian and the matrix elements 

of the potentials involved are real. Therefore, we ha^e three distinct 

energy-wavenumber characteristics, E.-Cq) with the average-average po- 

tentials,    Ei2^ vith *he avera6e-,iifference potentials, and E_2(q) 

with the difference-difference potentials. Each of these energy-wave- 

number characteristics has been evaluated for each of the sets of core 

eigenvalues which we discussed before. These values are pre. --nted In 

rydbergs in Tables 5.9, 5.10, and 5.11.   As we noted in the tables, 

we have actually tabulated the product of |q| and the appropriate 

energy-vn.venumber characteristic associated with that value of q, as 
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Table 5.9 

ENERGY-WAVENUMBER CHARACTERISTIC: 

AVERAGE-AVERAGE POTENTIAL 

kl •kfE^lql) 

Atomic Core 
Energies 

Ordered Crystalline 
Core Energies 

Disordered Crystalline 
Core Energies 

0.0 -0 35439 -0.195439 -0.195439 

0.25 -0.180312 -0.181419 -0.182193 

0.5 -0.14433 -0.14784 -0.15035 

1.0 -0.07093 -0.07743 -0.08241 

1.5 -0.02467 -0.02820 -0.03103 

2.0 -0.0U79 -0.01344 -0.01476 

2.5 -0.00749 -0.00837 -o.oo^a 
3.0 -0.005*0 -0.00569 -0.00609 

4.0 -0.00269 -0.00283 -0.00296 

5.0 -0.00150 -0.00155 -0.00160 

6.0 -0.00097 -0.00097 -0.00101 
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Table 5.10 

ENERGY-WAVENUMBER CHARACTERISTIC: 

AVERAGE-DIFFERENCE POTENTIAL 

1? 32 Vial) 
Atomic Core 
Energies 

Ordered CryKtalline 
Core Energies 

Disordered Crystalline 
Core Energies 

0.0 0.065146 0.065146 0.065146 

0.25 0.061165 0.061000 0.060602 

0.5 0.05165 0.05113 0.04987 

1.0 0.03182 0.03098 0.02867 

1.5 0.01327 0.01293 0.01172 

2.0 0.00635 0.00619 0.00563 

2.5 0.00380 0.00570 0.00340 

3.0 0.00239 0.00232 0.00216 

4.0 0.00088 0.00085 0.00080 

5.0 0.00023 0.00020 0.00018 

6.0 -0.00007 -0.00007 -0.00007 
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Table 5.11 

ENEKGY-WAVENUMBER CHARACTERISTIC: 

DIFFERENCE-DIFFERENCE POTENTIAL 

13 U|2E22(k|) 

Atomic Core 
Energies 

Ordered Crystalline 
Core Energies 

Disordered Crystalline 
Core Energies 

0.0 -0.021715 -0.021715 »0.021715 

0.25 -0.020746 -0.020511 -0.020161 

0.5 -0.01846 -0.01766 -0.01653 

1.0 -0.01436 -0.01244 -0.01001 

1.5 -0.00744 -0.00613 -0.00459 

2.0 -0.00366 -0.00305 -0.00233 

2.5 -0.00219 -0.00188 -0.00151 

3.0 -0.00140 -0.00123 -0.00104                 | 

4.0 -0.00062 -0.00056 -0.00051 

5.0 -0.00033 -0.00030 -0.00028 

6.0 -0.00022 -0.00022 -0.00018   . 
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given in atomic units. Since we will be interested only in inte- 

grals or sums of these functions over reciprocal space, the factor 

oflq| has "been added to account for the large number of points 

associated with a given magnitude of q for large |q|. The values 

of the energy-wavenumber characteristics for q = 0.0 were obtained 

through a limiting procedure suggested by Harrison [5]. 

The Ordering Energy and the Effective Pairwise Interaction 

Referring to Chapter Two, we note that Expression (2.86) gives 

than; part of the total conduction electron energy which might vary 

as the ions are rearranged at constant volume. We are now in a 

position to evaluate this expression. Harrison [6] has demonstrated 

that the influence on the total energy of the sum of the diagonal 

matrix el<.../mts of W over the Fermi volume can be represented in 

this context to second order in the pseudopotential by performing 

an integration over the Fermi sphere. We may evaluate this term 

using the values given in Table 5.4. From our discussion of P(q) 

in Chapter Three, we observe that |F(q}] is equal to l/N in the 

completely disordered crystal, except in that it vanishes for those 

values of q which are members of (K). In the completely ordered 

state of the alloy which we are discussing, lF(q)| is uiity for 

all q which belong to {K ) and is zero elsewhere. Recall that the 

set {K ) consists of all those reciprocal lattice vectors Associated 

with the superlattice which have not already been included in {K). 

■ '-^-- ~-■.-"—:—J;^: 
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We may now evaluate the remainder of Expression (2.86) for the 

states of complete order and complete disorder. In the ordered 

state, we merely sum E,.(q) over all members of (K) and E22(g) 

over all members of {K ). In the completely disordered state, 

we sum over the values of E.-Cq) as in the ordered state, but 

the contribution from E22(q) be mes. 

M ^(q) . (5.59) 
(27r)3 J -H ^ 

We have evaluated these contributions to Expression (2.86) for each 

set of core energies and placed the results in rydbergs in Table 

5.12. Under these contributions, ••  ave placed the total values 

of Expression (2.86) for the ordered and for the disordered states, 

calculated using each set of core energies. 

The pseudopotentials calculated using these three sets of 

core energies are essentially three different pseudopotentials. 

However, each of these three pseudopotentials is in the Austin, 

Heine, and Sham form, and accordingly should yield the exact elec- 

tronic eigenvalues if all orders in perturbation theory are in- 

cluded in the calculation. Therefore, we would expect that the 

total energies in Table 5.12 would be identical from column to 

column if second order perturbation theory, as we have applied it, 

suffices to determine these energies exactly. The differences 

between these values for Expression (2.86) is at least three tit:."" 

the differences which might have been introduced by our numerical 

procedures. The discrepancy between the results of these different 
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Table 5.12 

STRUCTUBE-DEPENDENT CONDUCTION EUECTRON ENERGY 

Atomic 
Core 

Energies 

Ordered 
Crystalline 

Core 
Energies 

Disordered 
Crystalline 

Core 
Energies 

2U)5q,{K)Ell(^ 

2,(q)Bq,(Ka)
E
22

(?) 

.,  0   frln F (n) 

0.179493 

-0.363915 

-0.150621 

-0.223425 

0.158613 

-0.405407 

-0.130291 

-0.204080 

0.143611 

-0.438789 

-0.105480 

-0.180210 ,„,3 M W 

Total for Ordered 
Crystal 

Total for Disordered 
Crystal 

-0.335043 

-0.407847 

-0.377085 

-0.450874 

-0.400658 

-0.475388 

Conduction Electron Con- 
txibution to the Order- 
ing Energy 

0.072 804 0.073789 0.074730 
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pseudopotentials is then a measure of our laability to evaluate 

the total conduction electron energy in our system using second 

order perturbation theory. Our hest estimates of the core eigen- 

values for this system should be either the ordered crystalline or 

the disordered crystalline core energies. Therefore, the minimum 

possible error in our evaluation of Expression (2.86) using one 

or the other of these sets is + 0.013 rydbergs. We should emphasize 

that this is a minimum error. 

If we now subtract the disordered total energy from the ordered 

total energy in each column, we obtain an estimate from each pseudo- 

potential of the total conduction electron contribution to the order- 

ing energy. These estimates appear in the last row of Table 5.12. 

The difference in these values is no larger than the difference which 

might have been introduced by our numerical procedures. We are led 

to expect that the values obtained from either the ordered crystal- 

line or the disordered crystalline core energies would have a minimum error 

of + 0.0C05 rydbergs. The actual error introduced by our nunerical 

procedures could be as large as + 0.001 rydbergs. In any case, the 

minimum error which we might expect in our estimate of the conduction 

electron contribution to the ordering energy is much smaller than 

that in our estimate of the total conduction electron energy. The 

total conduction electron contribution to the ordering energy is re- 

presented by the difference between a sum of EggCq) over a discrete set of 

reciprocal space vectors and an integral of ^„(q) over all values of 
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q below the cut-off in reciprocal space. The above analysis sug- 

gests that our formalism is better suited to the determination of 

the shape of the energy-wavenumber characteristics than the actual 

magnitudes. Formally, one might expect that the best estimate of 

the electron contribution to the ordering energy would be the dif- 

ference between the disordered total energy calculated using the 

disordered crystalline core energies and the ordered total energy 

calculatev" using the ordered crystalline core energies. This would 

lead to a conduction electron contribution to the ordering energy 

of 0.098303 rydbergs. However, our previous discussion suggests 

that the lack of convergence of our perturbation theory expansion 

would enter strongly into this estimate of the conduction electron 

contribution,yielding a minimum error of + 0.025 rydbergs. Thus we 

expect that a much better estimate would be obtained by averaging 

the values for this quantity calculated from the ordered crystalline 

and disordered crystalline core energies. This leads to an estimate 

of 0.0743 rydbergs with a minimum error of + 0.0005 rydbergs. 

Similarly, we may evaluate the effective pairwise interactions 

between the ions as defined in Equations (2.89), (2,90), and (2.91). 

We observed large variations in the contributions to the total con- 

duction electron energy which we listed in Table 5.12, depending 

upon which set of core energies were used in calculating the matrix 

elements of the pseudopotential. Accordingly, we have selected a 

particular set of values for use in calculating the effective pairwise 
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intTactions. We have taken the average of the energy-wavfemaniber 

character!sticJ. derived from the ordered crystalline and.from the 

disordered crystalline core energies. These averaged energy-wave- 

number characteristics yield the effective pairwise interactions 

which we have displayed in Figure 5.1. These quantities are essenti- 

ally energies per bond as a funt. "Ion of the length of the bond. Con- 

sidering nearest neighbors, the alloy which we are considering loses 

two A-B bonds per ion and gains one A-A bond and one B-B bond when 

the crystal changes from a completely ordered state to a completely 

disordered state. For nearest neighbors, V-. -. = ü.31 millirydberga 

(mry.), VT. „ » 5.47 mry., and V„ „ «12.04 mry. Therefore, the 
lA -Mg Mg-Mg■ 

nearest neighbors contribute about -3.41 mry. per ion to the ordering 

energy of the crystal. If we include nsxt nearest neighbors, this 

alloy gains 3/2 A-B bonds per ion and loses 3/4 A-A bonds and 3/4 B-B 

■bonds during the  transition freu the ordered to the disordered state. 

For next nearest neighbors, V-. .. = 0.86 mry., V-, .. = 1.58 mry., 

end V„ „ = 2.64 mry- Therefore, the next nearest neighbors contribute 
Mg-t. 1 

aloüt +0.34 to the ordering energy. The  contributions of these two 

sea* of neighbors to the ordering energy is about -3.07 mry. per ion. 

"te may now compare the form of nar effective pairwise inter- 

actions with the form derived by Harrison and Paskin [7]. They sug- 

gested that a form of cos(2k_r)/r was appropriate for even nearest 

neighbor interactions. We have noted the distances associated with 

nearest and next nearest neighhjrs for orr alloy on th". graph of the 

effective pt\irwlse interactions. Thr shape of our expressions for 
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FIG. 5-1   EFFECTIVE  PAIRWISE  INTERACTIONS BETWEEN 
THE  IONS   IN  ui-Mg. 
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these interactions is certainly not cos(2kJ0/R for values of R 

including many sets of neighbors. Since the error in our calcul- 

ation becomes larger with large R, we are unable to predict just 

•when the effective pairwise interactions might attain this asymptotic 

form. 

Ve may also compare our estimate of the ordering energy using 

Mott's calcination and experimental observations regarding the be- 

havior of 50-50 lithium-magnesium. For a system with nearest 

neighbor interactions only, Mott [8] found that the ordering energy 

should be greater than -kT ln(2), where T is the critical temperature. 

The critical temperature of 50-50 lithium-magnesium could be no higher 

than about STO'K, or more pronounced short range order would have 

been observed in the system [9]. This reasoning would indicate that 

the magnitude of the ordering energy should be less than 0.0017 rydberg» 

per ion.  Our estimate of the order—ig energy on the basis of 

nearest and next nearest neighbors is -0.0031 rydbergs. Part of 

this discrepancy might be due to the dependence of the ordering in 

our system upon interactions with many sets of neighbors. The thenno- 

dynamic arguments which led to the Mott expression for the upper limit 

on the ordering energy are not valid for a system in which there art 

interactions which are other than nearest neighbor. In addition, we 

have not conside.ed the effect of the change in ionic volume yhen 

the system orders. Thi? effect might be expected to lessen tl^e 

.difference in energy between the ordered and disordered states, and 

would therefore be a correction in the right direction. 
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We may obtain an expression for the ordering energy which takes 

into account the interactions between all sets of neighbors by adding 

the total conduction electron contribution and the ionic contribution 

to the ordering energy. Our expression for the conduction electron 

contribution includes the effect of the full conduction electron 

charge distribution, vA therefore includes the effect of the charge 

orthogonalized to the ions. Thus the ionic contribution to the order- 

ing energy consists of a Madelung interaction of actual ionic charges, 

not effective charges. The Madelung energy is roughly -0.0769 rydbergs 

for an arrey of charges of magnitude ^1/2 in the cesium chloride struc- 

ture with a lattice constant of 3.5 A- When the lattice disorders, the 

Madelung anergy of this array vanishes. Accordingly, we may combine 

the above energy with the more accurate estimate of the conduction 

electron contribution which we discussed previously to obtain an order- 

ing energy of -0.0026 rydbergs. We may note that the larger estimate 

of the conduction electron contribution to the ordering energy, which 

we found by taking the difference between the energies in two separate 

columns in Table 5.1?, leads to our expecting the disordered state to 

be the ground state, ihis underscores our discussion regarding the 

unreliability of this procedure for estimating the conduction electron 

contribution to the ordering energy. In conclusion, a reasonable inter- 

pretation of our results has led to an estimate of the ordering energy 

which is consistent with experimental observations on the system if one 

allows for the neglect of volume changes and the inapplicability of the 

thermodynamic relation between T and the ordering energy. 
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Chapter Six 

CONCLUSIONS 

The results of the calculations which we described in Chapter 

Five demonstrate that our expression for the structure-dependent 

part of the total conduction electron energy is quite sensitive to 

the choice of core eigenvalues in the alloy. This behavior is at- 

tributed to the inaccuracy of our perturbation expansion of the 

total conduction electron energy to second order in the pseudo- 

potential. We might expect that this expression for the energy 

will be sensitive in a similar manner to the particular choice of 

a form for the pseudopotential, as discussed in Chapter Four. Ac- 

cordingly, we must stress the importance of choosing the optimal 

form for the pseudopov.ential with care. 

The estimate of the total conduction electron energy is so 

sensitive to the choice of pseudopotential that we must expect an 

error of at least + 0.013 rydbergs for a given set of core energies. 

This minimum error is somewhat too large for an accurate determina- 

tion of the cohesive energy. However, our estimate of the conduction 

electron contribution to the ordering energy is much less sensitive 

to the choice of pseudopotential. The minimum error in this quantity 

is only + 0.0005 rydbergs, which is small enough to allow a reasonable 

estimate of the ordering energy. Therefore, our formalism appears to 

yield reasonably accurate values for those quantities which depend 

upon the difference between two evaluations at the same inic volume 
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of a given conduction electron property, such as the ordering energy. 

We might also expect that our formalism would be suitable for a cal- 

culation of the difference in cohesive energy between two crystalline 

structures with the same ionic volume, or for a calculation of the 

increase in alloy resistivity upon disordering. 

Ox'"  estimate of the ordering energy may be considered as a sum 

over the effective pairwise interactions between «ill the ions. There- 

fore, we must conclude that these central force interactions represent 

quite well those interactions wl.ich lead to the formation of the super- 

lattice in a 50-50 alloy of lithium and magnesium. However, the effec- 

tive pairwise interactions which we have calculated do not attain the 

simple form suggested by Harrison and Paskin until well beyond first 

sind second nearest neighbor distances. 

We might note that our evaluation of the results of this formalism 

is based on the reasonable assumptior. that this alloy of lithium and 

magnesium would actually attain an ordered state if its critical temper- 

ature were not so low that the disordered state is "frozen" in the crystal 

as the temperature is lowered. Our theoretical results have definitely 

indicated that the ordered state is the ground state at the absolute 

zero of temperature. Accordingly it would be instructive to artificially 

increase the movement of the ions in the alloy by subjecting it to ap- 

propriate radiation while at temperatures below its e cpected critical 

temperature. The ions may then reach equilibrium distributions,at these 

low temperatures. This  experiment should allow a determination of the 
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critical temperature and thereby provide a comparison with our 

theoretictj. results. 

The essential limitation of our formalism appears to he as- 

sociated with the use of perturbation theory. It does not appear 

that Buy other approximation which we have made affects our re- 

sults as strongly as our use of perturbation theory. While the ap- 

proximation of the screening potential in terms of a first order 

expression is central to most of the pseudopotential formalism, we 

might improve our results by using the hybrid mixture of perturbation 

theory and matrix diagonalization which we discussed in Chapter Three. 

This procedure would yield accurate energies for the individual elec- 

trons in the region of the lowest energy band gap which appears as 

the system orders. These energies might then be used to obtain a 

more accurate estimate of the total conduction electron energy. This 

use of first order perturbation theoiy to find the screening potential 

followed by a limited matrix diagonalizht--'       .?  similar to a 

limited self-consistent procedure. In any case, any significant in.- 

provement in ~he results of this formalism will most likely be brought 

about through an improvement, in the accuracy of our perturbation 

expansions. 
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