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AESTRACT

The pseudopotential formulism which has been dr-veloped to.cal-
culate the properties of pericdic crystals is extended to treat the
case of a binary alloy with an arbitrary degree of order. A self-
consistent soreening potential which includes the effect of the total
conduction electron gharge is derived to first order in a perturba-
tion theory expan§ion in the pseudopotential. The conduction elec-
tron contribution to tﬁe total energy of the crystal is expressed
.to second order in the pseuvdopotential. The applicability of these
perturbation theory expansions is diééussed extensively. Expressions
for that part of'the conducfion eleétrpn energy which contributes to
the cfdering energy and for the effective pairwise interactions
between the ions in the alloy are derived from the expression for the
total energy.

If the conduction electron energy may be expressed accurately
to second order in the pseudopotential, we demonstrate.that this
energy depends only upon correlations between pairs of ions. Oéher-
wise, accurate individual electron cnergies near band gaps are shova
to depend upon correlations'betwe;n three or more ions for an alloy
below its critical temperature. ‘ .

The proéedure for selecting an optimal form for the pseudopotential
is examined in detail. A Hermitian pseﬁdopotential 1s chosen and its
advantages are discussed. Our calculations on a 50-50 alloy of lithium

—and magnesium indiéate that the selection of an appropriate pseudo-

potentiel is quite important.
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Further, the calculaticns reveal that this formalism may be
expected to yield accurate estimater only for those quantities
which depend upon the difference between two evaluations at the
same ionic volume of a given conduction electron ;rdperty in the

alloy, such ns the ordering en.rgy. Therefore, we might calculate

with accuracy the differences in cohesive energy between two struc-

turss with the same volume per jon, or the alloy resistivity, but
not the cohesive energy itself. In addition, the effective pair-
wise irnteractions are shown to represent well those interactions
in the allcy which contribute significantly to the formatiog of

the superlattice.

L e e e va v o b
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CHAFTER ONE

INTRGDUCTICN

A number of methods have been developed in recent years for the

~calculation of properties of perlodic metallic crystals from funda-

metital consideraticas, usually in some version of the Hartree-Fock
approximation. The augmented plane wave method, the Green's function

method, and the pseudopotential mecthod have been used with remarkable

. success to treat these periodic ecrystais. The ressarch described in

this thesis has been directed toward.the extension of this work to
calculate the properties of a metellic binary alloy with an arbitrary
degre= of order; We might expect that significant changes in the
crystalline poterntial during the °~ formation of a superlattice would
occur in the region between the ions where the ionic core potentials
overlap consideradly. Accordingly, we have not used either the aug-
mented plane wave method or the Green's function method in this work.
Both of these procedures treditlionally require the replacerent of the
actual crystalline pot:ntizl due to the ions with an erray of spherical-
ly symmetric non-overlappirg potentials located at each ion cite. This
approximation 1ls worst in that very reglion between ‘%.? ionic cores vwhich
may contribute substantially to the formation of the superlattice.

On the other hand, the pseudopotential method allcws us to rﬁplace the
actusl potential due to the ions with an arrsy of sphericall% symetric

potentials which mey overlap. This approximation should be fairly good

in the region befween the cores. Our use of the pseudopotential method




has restricted us to the calculation of the properties of alloys
formed of simpi2 metals. Simple metais are those in wr’'~h the core
electrons are much more tightly bound than the valerce electrons and
in which the charge densities asesociated with adjacent i1onic cores
may be realistically assumed not to overlap.

In particular, our development of a formnli#m based on the
pseudopotential method has been directed toward obtaining an cxpres-
sion for the ordering energy of a metallic hinary alloy. In this
context, the orderinyg energy of the alloy will mean the difference
in internal energy between the completely order-d state aﬁd the com-
Fiete.y disordered state. We have calculated the electronic contri-
bution to this quantity when the ions are rearranged on the lattice
at constant volume and at the absolute zero of temperature. Vb.have
also calculated the effectiv. pairwise interactions between the ions
in the alloy according to the procedure of W. Harrison [1]. These
interactions are a central force approximaticn for the actual inter-
actions between the ions in the al.oy. Therefore, the effective pair-
wise interactions cannot account for contributions to the total energy
of the crystal vhich depend upon the arrangerent of the ions only
through the volume per ion. If this centrﬁl force approximation 1is
reasonable, we have a simple physical representation of a complex
interaction. The effective pairwlise interactions may ac<ordingly be
» very couavenient prope  ty from which to discuss the formation of the
superlaptice in an alloy. We shall discuss the velidity of reprer-nt-

ing the actual interaction by such a central force interactior.




T T T ————

Th: effective pairwise interactions may be con.idered as a
polar interaction between the charges contained in the cells around
each ion in the alloy plus a term which accounts for the dstailed
distribution of' the electronic charge in those cells. This first
contribution to the effective pairwise interactions forms the bdbasis
for the poler model which was developed by N.F. Mott [2]. This model.
of a binary alloy added greatly to our understanding of the ordering
energy of such alloys. Mott assumed thet the fundamental ource of
the'ordering energy in beta brass is a polar interacti betheep the
charges contained in each atomic cell. In his model, thic contribution
to the ordering energy of the crystal is given by a Madelung sum of
the interactions between certain effective charges considered as
point charges at the ion sites. The effective charge associated with
a particular cell consisted of the ionic charge, the electronic charge
included in the cell due to an average density of conduction 2lectrons,
and the electronic charge included in the cell due to screening.
Mott calculated this last contribution to the effective charge using
a linearized form of the Tnomas-Fermi screening formalism. He esti-
mated the value of the screening constant from tﬁe increese in the
resistivity of pure copper when small amounts of zinc are added.
This procedure ylelded an effective charge in each cell of + 0.075
electronic charges. The Madelung expression for the energy of such
a body-centered cubic system of point charges yields a polar contri-

bution to the ordering energy of -0.0020 rydbergs per ion. Fitting

=i
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an exponential exchange interaction between the coppe. ions to the ob-
served elastic :;;stants of ccpper, Mott estimated that -the exchange .
interaction contributed -0.0009 rydbergs per ion to the ordering
energy. He was sble to estimate tre ordering energy from the theory
of Bragg and Williams [3] using the ob:erved critical temperature.
This estimate agreed rather well with Mott's calculsted value of
=0.0023 rydbergs per ion. While this agreement is noteworthy con-
sidering th: simplicity of the model, we should note that this energy
calculation is extremely sensitive to several adjustable parameters,
such as the screening constant. . This sensitivity lessens appreciably
the significance of the final result. . |

R. J. Herrison and A. Paskin [4] extended the poler model of
Mott by using the more realistic scireening model of W. Kohn snd S.

H. Vosko [S). In this model, the screening charge density hss been

- ghown to equal that predicted by the linearized Thomas-Fermi model

plus a term which varies as cos(?kFr)/fs. This more sophisticated
mcdel leads us to expect a cellular churge of + 0.12 electronic
charges. If we assume that these charges are located at the ionic
sites and msy be treated as point charges, we can perform the Madelung
sum to obtain ; contribution ko the ordering energy of -0.0051 rydbergs
per ion. This would be somewbat large for the ordering energy, even if
ve allowed for a reasonable uncertainty in the screening constant
vhich wa. used. However, we have not considered th: contribution to

the ordering energy of either the interaction between overlapping



core charge densities on adjacent ions or the volume change during
ordering. Accordingly, we are unable to judge the accuracy of this
result. Harrison and Paskin noted that the Madelung procedure igrored
the information which we have regarding the distribution of the elec-
trons within the stomic cells. Therefcre, they added the potential

due to the ions, considered as point charges, to the potential due to
the screening charge to obtain an effec’ ive pairwise interaction
between the ions. This interaction was that of central forces since
they neglected the van der Waals forces between the ions and since

the screening density which they associated with esch ion was spherical-
ly symmetric. Harrison and Paskin summed this interaction over several
sets of neighbors and obtained a contribution to the ordering energy

of -0.0029 sin(p -0.78) rrdbergs per ion. The arbitrary phase factor,
¢, was introduced to account for the inaccuracy in finding the proper
phase in the expression for the charge distribution using this screen-
ing model. While this result is certainly consistent with the result
of Mott, it is clearly alsc consiscent with any other result less than
6r equal to -0.0029 rydbergs per ion. Further, we note that the energy
due to the interaction between overlapping core charge densities on 8d-
Jacent ions may account for one-third of the cohesive energy in noble
metals [6]. Therefore, we might expect that this core overlap inter-
action would be significant in beta brass. Our inability to assess the
contribution of this core overlap interaction to the ordering energy

in a system such as beta bress prevents a realistic discussion of the




accuracy of a calculation of the conducticn electron contribution
to the orderingL;;ergy-

However, the cénduction electron contribution and the point
ion contribution should dominate the ordering energy of a binary
alloy of simple metals. We miznht hope that a first-principles
caiculation of the electronic contribution to the effective paix-
wise interactions and to the ordering energy of such a system can
be meaningfully compared with the results of Harrison and Paskin and
with experimental evidence of the ordering energy. All of the well-
documented transitions from a completely disordered state t§ a com-
pletely ordered state occur in systems in which the overlab of the
core charge densities associated with adjacent ions may contribute

significantly to the energy of the system. However, the system of

50-50 Jithium-magnesium exhibits a reasonable degree of short range

" order at room temperatures [7]. Thus lithium-magnesium is an alloy

of simple metals winich shows a tendency ¢to form a superlattice.
Accordingly, we have chosen this system for our numericul calculations.
" In Chapter Two, we have extended the work of W. Harrison [8]
on the pseudopotential in metals to a complete formalism for calculat-
ing the matrix elements of the pseudopotential in s binary alloy with
an arbitrary dégree of order. We have used the form of the pseudo-
potential to deduce effective pairwise inveractions according to the
prescription of Harrison [1]. In Chapter Three, we iave discucsed

the foim in which the distribution of the ions on the ionic sites in




the crycstal enters into expressions for. the electronic band anergies,
the total electronic energy, and the electronic contribution to the
ordering energy. We shall see in this connection that a consistent
nse of a perturbation expansion of the energy to second order in the

pseudopotential yields expressions for these quantities which depend

upon the distribution of ions in the crystal only through two-particle .

correlati ns. In Chapter Four, we have discussed the validity and
effectiveness o{ various forms of the pseudopotential and chosen a
suitable form for a calculation. We have discussed in Chapter Five
the procedure we have followed in performing an actual caiculation
using our formalism. Finally, we have calculated the electronic comn-
tributions to the effective pairwise interactions and the ordering
energy of a 50-50 alloy of lithium end magnazsium. The validity of
the concep’. of effective pairwise interactions has been discussed.
The effective pairwise interactions which we have obtained do not
have the simple form predicted by Harrison and Paskin. The ordering
energy is found to be compatible wit!: the experimental data on the

system.

|
i
K

i

T e mema




1]

(2]
(3]

(4]
(5]
(6]
(7]

(8]

REFERENCES FOR CHAPTER ONE

W. Harrison, Pseudopotentials in the Theo Metals,
Benjamin, Inc. New York (1966), Chapter 2.
N.F. Mott, Proc. Phys. Soc. (London) 48, 258 (1937).

W.L. Bragg and E.J. Williams, Proc. Foy. Soc. Al4S,
699 (1934); A151, 540 (1985).

R.J. Harrison and A. Faskin, J. Phys. Radium 23, 613 (1962).
W. Kohn and S.H. Vosko, Phys. Rev. 119, 912 (1960).
H. Brooks, Nuovo Cimento Suppl. 7, 165 (1958).

F.H. Herbstein and B.L. Averbach, Acta Met. 4, 407 (1956);
4, 414 (1956). '

Reference (1], Chapters 2 and 8. -




Chapter Two

THE. EFFECTIVE PAIRWISE INTERACTIONS
AND THE FORMULATION OF THE ALLOY FROBLEM

Our abi;ity to discuss fruitfully the ordering of a metellic alloy
in terms of effective pairwise interactions depends upon the accuracy
with which we may approximate the significant interactions in the order-
ing prncess with central forces between the ions. The elastic properties
of metallic crystals fail to satisfy the Cauchy relations, which establish
a connection betue;n the compressibility and the shear constants. The
Cauchy relations may be shown to be satisfied for any crystal with ine
version symmetry if the interactions among the conduction electrons and
ions may be expressed exactly in.terms of effective central forces between
the ions [1]. Accordingly, we may interpret the failure of the elastic
properties of a metallic crystal to satisfy the Cauchy relations as a
measure of the general insufficiéncy of central force expressions for the .
interactions in the crystal. However, this failure in a metallic crystal
is largely attributed to the significant contridbution of the free elece.
trbn energy to the cohesive energy. The free electron energy
is the total energy of a gas of free electrons, the density of which is
equal to “he everage density of conduction electrons in the metallic crys-
tal. Since this energy is invariant during changes in the strucfure
carried out at constant volume, it will affect the compressibility and

other volume-depend=nt properties, but not the shear constants and other

properties dependent upon structure changes at constant volume. Accordingly,
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the interactions in metallic crystals may be such that the effective
central force interactions might approximate well those properties
which depend upon structure changes at constant volumé, such as the
shear consfants or the ordering energy. Yet there may be non-central
force interactions, such as that arising.frém the free electron
energy, which prevent an.effective central force approximation from
accurately predicting volume-dependent properties. These same non-
central force interactions would also prevent the Cauchy relations
from being satisfied. We may now proceed with our discussion of the
effective pajirwise interactions in a metallic binary alloy, having |
reason to believe that such ; central force approximation might yleld
a fruitful discussion of the formation of the superlattice.

The effective pairwise interactions between the ions may be con-
veniently divided into two contributions. The first contribution

arises through the direct Coulomd interaction between the ions, con-

sider2d as point charges. This treatment specifically neglects the van

der Waals interactions between the cores =14 the interactions due to
any overlap of the charge densities associated with adjacent cores.
This last approximation is consistent with our use of the pseudo-
potential method. The second contribution arises through the indireét
interaction between the ion cores by means of the conduction electron
gas. The contribution to the ordering process due to this interact;on
may be derived from that part of the total conduction electron energy

vhich varies when the ions in the crystal are rearranged at constant




~volume. In his extensive exploration of the nilure of pseudor~tentials,
[
W. Harrison [2] was able to'express the structure-&apendeht part of the.

total conduction electron energy in the case of a single-element crys-

tal as _ o
2' s(g) s*(g) E(g) : | (2.1)
(q) ' '
where ( | | )(k lwlx)
k|W|k + +ql
E(q) = 200 3 x = > S 22 -
=  (2m)° |Fermi |k|® - |x+q]
Volume
- 12 lalf KghvFlo P (2.2)
and
S(q)z 3 = ook _ 2.3)
V=5 ® ¢ (

The sum over the set (R} which occurs in Equation (2.3) is a sum over
all of the ionic sites in the crystal. We should emphasize that ex-
pressions.(Z.l) and (é.é) are the result of a consistent perturbation
theory expansion of the total conduction electron energy to second or-
der in the pseudopotential. The inclusion of higher order terms in the
'pséudopotential would add other structure dependent contributions to
the eriergy. The esseatial features of Equation (2.1) are that the .
struétﬁre factor, denoted by S(g), is dependent only upon the positions
of the ions and ﬂot their nature, while the energy-wavenumber character-
igtic, denoted by E(g), is dependent only upon the ionic potentials and
the average conduction electron density. By comparison between Equation

(2.1) and the form of the energy of the direct interaction between the



ions, Harrison was able to deduce that the contridbution of the indirect

interaction to the effective pairwise interaction 1s
R ». 2 sin(qr :
Vipals) = ;f £ dq g  E(q) —55:9—)- . (2.4)

Thus the indirect interaction follows directly from a knowledge of the
energy-wavenumber characteristic given by Equation (2.2);' We must
emphasize that the derivation of a structﬁre-independent expression for
vind(f) is contingent upon neglecting all terms in the total electron
energy of third order or higher in the pseudopotential. If we were to
include terms in the energy of order higher than second in'ihe pseudo-~
potential and to express the energy as in Equation (2.1), then E(q) and
' Vind(g) would both be structure dependent. This would not yield a cen-
tral force approximation to the interactions in the cr&étal during order-
ing since central forces must depend énly ufon the distances separating
the ions. This close relationship between the use of perturbation theory
and the derivation of central force interactions will be‘of importance |
later in this chapter. |

We shall now proceed in an analogous fashion to derive eipressions
for the structure dependent part of the electronic energy and for the.
effective pairwise interactions which are appropriate to the alloy problem.
The derivation is similaf in many ways to the treatment in reference [2]
by W. Harrison for a single-elemeat crystal, but there are.important
differences which béar ex;mination. We acknowledge here the overriding

influence of Harrison's work and will reference only major points here-

after.
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introduction of the Pseudopotential

~We wish to determine the conduction electrcu eigenstates of a

crystalline Hamiltonian,

H(pr') ® 2(x) 8(z-2') + Vi(z,r') + Vi(r,r') . (2.5)
We shall generally refer to non-local opg'rators mescly by the appro-
priate symbol, such as H for the Hamiltonian. The non-locality of
t'.e operator in r-space will be understood. In compliance with con-
ventions regarding Dirac bra and ket notation, we shall denote the
cigenstates of H by n, the eigenvalues of F by En’ and the eigenfunctions

of H by (gln). The significance of the notation is best summarized by

the following equivalences:

lBz') = B(z,r') 5 (2.6)
(zi|n) ® far' H(r,r'){z'|n) ; (2.7)
(o' [Hln) = far far'(n'|r) H{z,r'){z'|n) . ‘ (2.9)

The rela.tionsixip between H and its eigenstates is such that

Hin) = Enln) . (2.9)

Returning to Equation (2.5), we may denote the non-local potential due
to all of the ions and electrons in the crystal by V. Thir potential

may be s‘epa.rated according to
V=vL+VI+VEL. ’ (2-10)

V'I is the sum of all cof the Hartree-Fock potentials of the 1on§ ir. the

[TIEITSIUPH I
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crystal less the spatial aiverage of the Hartree potentialg of the
ions. We have neglected the influence of correlation between the
electrons of the ion cores and the conduction electrons. Since the
motiors ot the core electrons are much more rapid tﬁan thcee of the
condaction électrons, the influence of the core'electronc on the -on-
ductior electrons may be very well represented in terms of an average
potuatial due to the core elec‘rons, such as a Hartree-Fock potential.
Taus VI should well represent the potential due to the ionic cores as
seen by the condvntion electrons. VEL is the non-local potential due
to the conduction electrons in the.crystal_less the spatiai avers;e
of the Hartiree potential due to these conduction electrogé. We must
later make an approximation for the many-parficle potential denoted
by VEL which will enable -z to reduce the many-hody oroblem of solv-
ing for the eigenstates of Expression (2.5) to a one-electron problem.
The potential denoted by Vi ig the average over the crystul of the
notentials due to the nucleii’ ard the Hartree potentials of the core
and conduction electrons. In accordance with these definition: we may

write T as
T = -v .v + vL ,. o .(2011)

in atoric units, which we shall use thrcughout this work. One set of
eigenvalues of the operatcr T is the complete set of plane waves. If
the volume of the crystal is (I, we may write the eigenfunction associ-

ated with the plane wave k as

(rix) = X&' Z/qt . (2.12)
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The eigenvalue of T associated with this plane wave is (|§|2+-Vi)
i:n atomic uniis.

In order'to apply the pseudopotential method, which may be re-
garded as a generalization of the orthogonalized plane wave method,
to the determination of the eigenstates of H, we must assume that
each eigenstate of H may be classified into one of the two following
categories. The wavefunctions of those.states in the first ca‘*egory
must be sufficiently localized about their respentive ucleii that
tiiey may be very closely approximated by the corresponding atomic
wavefunction. The eigenvalues of those states in the second category
must he sufficiently free-electron like that they may be readily de-
termined using the pseudopotential method. If there exist some eigen-
states of H which may not be placed in the first category; and yet
whose properties are not amenable to a pseudopotential method treat-
ment, we may not use the pseudopotential metl>d for this problem. As
a specific example, we might consider those crystalline states whicin
arise from the 3d shell states of a copper atom when metallic copper
is formed. These states have eigenfunctions which are not sufficiently
well localized about the nucleii to be approximated well by the 3d shﬁ}l
vavefunctions. These eigenstates interact too strongly with other states
in the cry..al. On the other rand, the sums which must be evaluated to
determine either the eigenfunctions or the eigenvalues of such states
using the pseudopotential method converge very slowly. Accordingly, we

should not use the pseudopotential method to treat such a problem. The
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necessity of classifying the eigenstates into tha2se categories is the
most serious res€;;ction on the use of the pseudopotential method.

Once we have made the classification of the eigenntates, we chall
refer to those states of H which fall into the first category as core
states, denoted by ¢, and assume that ;he eigenfunctions of these states
are idenv. cal with the corresponding atomic wavefunctions. Those states
which fall into the second category will be referred to as valence states,
denoted by v. In their discussion of the general theory of pseudo-
potentials, Avstin, ﬁeine, and Sham [3] established the properties of

a general pseudo-Hamiltonian of the form

Ho(zr,z') ® 2(z) 8(z-z') +W(r,x') , (2.13)
where .

Wr,r') = Vi(r,rt) + Vi(z,r') + S (rlo)e (') (2.14)

and fc(r') is a completely arbitrary function of r' and the parameter
"c". The sum over c in Equation (2.14) extends over all.of-the core
states of H as given in Equation (2.5). The essential properties of
Hp result from the absence of valencz states from the sum in Equation
(¢2.14) and may be summarized as follows: the "core" eigenstates of Hp,
denoted by E, are linear combinations of the core eigenstates of H; the
“valence" eigenvalues of Hp are identical with the valence eigenvalues
of H; the "valence"” eigenfunctions of Hp, denoted §y v, are related to

‘e valence eigenfunctions of H by

) = [9) - 5 JeXel®) . (2.15)




When applied to the eigenstates of Hp, the terms "core" and "valence"
mean no more than is implied in the relationshizs above. The partie-
+ular functional depencdence which we choose for fc(g') in a given cal-
culation is determined by the requirements of that calculation. In
general, fc(g') will be chosen to optimize in some sense the convergence
of & procedure for determining the eigenstates. We will now proceed
with our derivation using the generel form of the pseudopotential, W,

ziven by Expression (2.14).

Separation of the Unscreened Pseudopotential

The unscreened pseudopotential is that part of the crystalline
pseudopotential which does not ar.se directly from the cunduction
electron gas. Accordingly, if we denote the unscreened pseudopotential
by Wo, we may define it formally by W = W+ VEL. The unscreened
pseudopotential depends on VI, which consists of the Haritree-Fock
potentials of all of the ion cures less the average of the Hartree
potential of the cores. 1In accordance with our discussion of the
core states of H, we shall consider the ion cores as consisting of
the rucleii and those electrons which are denoted as ccre electrons.
The Hartree-Fock potentiai associated with a single ion of t; e i

located s+ the origin may be written as

22 2 " (C|z">(!"|c> '
v, (z,r') = E'INE-z ) - ez, Jar T &(z-z")
(r]eXelz")
¥ 25— (2.18)

¢ lr-r| .
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where the sum over c extends only over the core sta‘*ess associated
with this particular ion. We recall that we have assumed that the
core eigenfunctions may be very closely approximated by the corres-
ponding atomic wavefunctions. In general, of course, we would ex-
pect that the core eigenfunctions on an ion would deperd upon the
local configuration of ions. If the potantial seen by the core state:
on the isolated neutral atom is denoted Sy Vi, then the additional
potential which the core state se2s in the crystal is (V-V‘). This
additional potential shculd be gquite slowly varying in the vicinity
of the core. If the core wavefunctions are very localizéd about the
nucleus, then this additiona} potential may be considered essentially
constant over the region of the core. This approximation is often
called the small core approximation. Under these conditions, the
core wavefunction will not be changed in the crystal but the core
eigenvalue will be shifted by an amount equal to (V-V‘) evaluated

at the nucleus. Accordingly, we may use atomic eigenfunctions at all
times for the core states. Then the ionic Hartree-Fock potential for
an A ion, for instance, in an AB alloy will be the seme for evéry A
ion in the cyste=, since it depends only upon the nuclear charge and
the core eigenfunctions‘through Equation (2.16). We mst introduce
some appropriate notation to describe the effect of this property upon
V. ‘The set {R} will describe the entire set of ionic sites in the
crystal from some convenient site chosen as origin. The function 0(3)

is defined as follows:
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o(R) = +1 if the site R contains an A icn;

o(R) = -1 if the site R contains a B ion. (2.17)

All of the information regarding the configuration of ions on the
sites {g] is contained in o(g). The invaria.ce of the onic po-

tentials allows us to use these definitions tc write

r,r') + T %z@)[(l +0(R))v, (r -R,r* -B)

Q- R B, (2.18)

where ?i

the nucleii and the Hartree potentials of the core electrons.

is the spatial average of the sum of t'ie potentials of all

Having found.a suitable expression for VI, we may turn our at-
tention to the ofher component of Wp, the sum over core states in
Expression (2.14). This sum over the core states consists of a sum
over the set [B] as well as the sum over all of the core states as-
sociated with the ion at each point R. Dicplaying these sums ex-

plicitly, =2 may write the sum as
Z[B] 2 1T - Rlnlms;R) fnlms;l}(;"- R) . : (2.19)

The invariance which we assumed in the ionic potentials is typical
of tre invariance which must be assumed in other terms of the pséudo-
potential in order to separate W in analogy wiua the treatment of the
single-elemé;t crystal by Harrison. The separatirn of each matrix
element of the pseudvpotential into a structure-dependent factor and

a structure-independent factor is central to the results of pseudo-
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potential theory, in particular to the derivation of an effective
pairwise interaction. To enable the separation of W, we wish to
place Expression (2.19) into a form similar to that of the right-
hand side of Expression (2.18). The core eigenfunctions have already
been assumed to depend only upon the type of ion with which they are
associated. We wili wish to choose a functional form for fc(g) which
will optimiie the pseudopotential in some sense. Accordingly, we will
impose the least restricting condition upon fc(g) and require only
that, for a given arrangement of ions in the crystal, fc(g) b in-
dependent cf the position which that type of ion might occupy. 1In
general, the fé(f) which truly optimizes the pseudopotential ﬁight
depend in detail upon the position of the ion core in the lattice.

We have therefore restricted the freedom which we have in choosing
fc(g). This is not to be confused with the assumption that the core
states are invariant, and is not an assumption in any sense. We may
later find it convenient to further restrict fc(g) so that it is in-
variant with respect to rearrangement of icns at constant volume. The
lesser restrictior. upon fc(g) is sufficient to allow us to write

E xpression (2.19) as
%z@][(h O(R)) %, (r- Rlnlns;a) £ (51 B)

+ (1-0(R)) 2, (r- P|nlms;B) fnlms;B(g'-lj)] 8 (2.20)

Equations (2.18) and (2.20) allow us to write W° as
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Ller) = § 2 [0+ o®GE- B - B)
+ (1- O'(B))w;(l_" R,r'- 13)] - \"i )

vhere
wg(g.g‘) = vi(g,g‘) + Ehlm;s(glnlms;i) fhlms;i({') .

Equation (2.22) defines an unscreened fonic pseudopoteniial associated
with an ion of type i. |

Since we will eventually attempt to express the valence eigen-
fu.~tion of Hp in terms of plane waves, we will need the matrix ele-
ments of the total pseudopotential between plane waves. As may be
seen from Equation (2.21), the unscreened part of these matrix ele-

ments will involve integrals of the type

1 -i{k+gq)‘r .o ik.r
3iorper BT LG pp gt BT

Such integrals: are common in band theory. Translating the origins in
the spaces r and g' to the point B, we introduce a factor exp(-ig°§)
before the integral. Since the volume of the crystal may be allowed
to become arbitr;rily large at our convenience, we may neglect any
'boundary effects which arise from the translations. In practice, the
integfals of the ionic potentials will be performed over all space.
If the crystal volume, @, contains N ions, the ionic volume, denoted

by no, is equal to Q/N. Expression (2.23) may be written now as

e~1a°R (5+ g|w§|§>n° ’

=2

where

(2.21)

(2.22)

(2.23)

(2.24)
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o 1 -i(k+q) T ,© +ik-p'
(kralviikdg = q- far Szt 070 wi(r,pr) 750
We are now able to write the matrix elements of W° as

(x +q|W°|k) = zm[(n o(R)) e 1B (k+q|v |1:)n

+ (1- o(B)e R (s sI"§I§>n°]' AN

The ouvstanding feature of Expreision (2 26) is that the R dependence
of the terms in the brackets is explicitly displayed in terms of the
exponential and o(R), in analogy with the case of a single-element
crystal. For the alloy problem, it is.logical to consider some suit-
able average and difference potentials. Harrison [1] has reached the
same conclusion independently. Acc - .dngly, if the total number of A
ions in the alloy is xN, we may define an average unscreened pseudo-

potential,
(k+g|iv |k) = x(k+ glw Ik)n + (1- x)(k+ QI" Ik)n
and a difference unscreened pseudopotential,

(k+ glaw’ k) = 2 (k+ g alKg - 2 (k+ gleIk)n

Introducing <O)R, the average of o(g) over the crystal,

o(R)
{a ) Z{R] = (#1)x + (-1)(1-x) = 2x-1,

we can rewrite Equation (2.26) as
Zs

(ke gl = (k+ il [z, St
k+glWle) = (ke qlWl0) |2y 5] ¥, 5,0
(a(R) - (o)g)e iR

+ (k+ g|Aw°|l'_!) Z{R) N

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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In order t§ discuss the sums over (R) which oécur in Equation
(2.30), we must introduce certain concepts of reciprocal space [5].
In general, reciprocal space vectors such as qor k may be any of
those wavevectors which satisfy the periodic boundary conditions of
Born and von Karman. The set (5] is a subset of these reciprocal
space wavevectors to which we will refe;'as the set of reciprocal
lattice vectors associated with {R). We recall that the set (R} was
defined as describing the set of sites in the crystal which contain
ions, and is not reiated to the symmetry of the filled sites. The set
{K) consists of all those vectors k such that exp(-ik:R) = 1 for all
members of the set [gl, and corresponds to those vectors associated
with Bragg reflections in a single-element crystal. The sum of
exp(-ikR) over the set (R) is just N if k is a member of {K}. Other-
wise, the phases of the exponentials are such that the sum cancels.

Therefore the first sum in Equation (2.30) is just the well-known

Kronecker delta,

iR

Zu}} = b&, K ° : (2.31°

We shall now define F(g) by
(o(R) - {o)p) e7'9E .
F(g) = E{R} W = . (2.

8

4%

We may note immediately that Expression (2.31) is just the structure
factor of Harrison's formalism, as defined by Equation (2.3). Since
the exponential factor in Equation (2.32) is unity for all members of

{]) if q is a member of (K], we may further observe that F(g) vanishes




i
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for all g which belong to (K]. Accordingly, either Expression (2.31).
or kxpression (2:;;) will venish for a given value of g. ‘A given
matrix element of the unscreened pseudopotential will depend upon
either the average or the difference unscreened pseudopotential, and
never both. Further, if we associate the constant potential Vi with
the diagonal matrix element of the average unscreened pgeudopotentitl;
we observe that a given matrix element of the unscreened pseudo- |
potential is always the product of a structure-dependent factor, such
as F(g) or the Kronecker delta, with a structure-independent factor,
such as a matrix element of %° or &w°. In addition, the structure-
dependent factor never depends upon the form of fhe ionic potentials.

It is this separability of the matrix elements into these two factors

vhich is so central to the results of pseudopotential theory and this
work in particular. This separability, when demonstrated for fhe
screened pseudopotential, will lead directly to a structqre-independent
energy-wevenumber characteristic and to structure-independent effective
pairwise interactions. From Equations (2.31) and (2.22), we may write

- the matrix elements of the unscreened pseudopotential as

(x+q]W]x) = 5., [5}(1_:+g|i°|1_<) + F(g){(k+ q|aw’lx) - 7L 6 o (2.33)

q

The virtual crystal approximation has been widely used to treat
the case of a disordered binary alloy. In this approximation, the ac-
tual potential due to the ions in the crystal is replaced by a peridic

array of ionic potentials which are the weighted average of the two
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different ionic potentials in the alloy. This approximate potential
differs from the_gPtential répresented by the fi-st term in Equation
(2.33) by only the orthogonalizing terms which hafe been added to the
ionic potentials to obtain the unscrezened pseudopotential. Thus the
tirst term in Equation (2.33) rejresents the potential of a virtual
crystal of pseudo-ions. As we wculd expect, the differenée unscreened
pseudopotential vanishes in the limit as the two types of ions in the
allov t-come identical.and we obtain the appropriate unscreened pseudo-
potential for a single-element crystal. Thus the effect of alloying

is to split the matrix elements of the unscreened pseudopotential into
two parts. The first part is a vi;tual crystal approximation for the
potential of the pseudo-icns, and depends upon only the configuration
of the ionic sites in the crystal. Thé second part is a correction %o
the virtual crystal approximation which accounts for the difference
between the ionic pseudopotentials and depends in detail upon the ar-
rangement of the ions on the ionic sites. We should note.at this point
that the average and difference unscreened pseudopotentials, ;s we have

defined themn, are not strictly independent of the order of the system

"since we have not restricted fc(g) so that it may not vary from con-

figurdation to configuration. We may find it convenient at some later
time to restrict fc(g) to being invariant during rearrangements ol the
ions at constant.volume. Under that restriction, the average and
difference unscreened pseudopotentials would be truly constant during
variations in the configuration of the icns at constant ionic vol-

ume. In any case, we expect that the ordering process will affect
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the pseudopotential mest strongly through variations in F(g), not
fc(g). Let us ng;-turm to the calculation of the matrix elements of

the screening potential.

Derivation of the Screenirg Potential

The remainiﬁé contribution to the.pseudopotential, W, is the

p-tential due to the conduction electrons. As we indi~ated earlier,
an exact evaluation of this potential would require the solution of
a difficult many-body problen. In fact, the energy of a homogeneous
electron gas at metallic densities is still a problem of great theo-

2tical interest. Accordingly, we must make an approximation which
will enable us to estimate the potential due to the conduction electrcns,
which we denote by VEL. The greatest contribution to VEL is the lartree
potential of the conduction electrens. This is the Coulomb potantial
of that charge density which results from a statistical average over
th probahilicy distrib:tion of the eliectrons. The elecgrons are
ireated as being statisticalily independent in this potential, neglect-
ing the many-body effects. The introduction of the Fock exchange po-
Lentis ™ accounts for the antisymmetry of the conduction electron many-
bedy wav :function by raising the cnergy rf those states in which elec-
trens of th2 same cpin are clcse together. This pot~ntial tends to
exclude half of the Local charge density from the immediate region of
4 given electron. The correlation effect accounts for the Coulcmb r--

pulsion of the individuzl electrcns and is a true many-hody correc*ion
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to the Hartree-Fock potential. These three contributions comoletely
dete:mine V-

An analysis of the effects of exchange and -. ‘relation by Harrison
[6] suggests that these many-pvody effects may make a significant con-
tribution to cohesive energies and ordering energies in a pseudopotent.ial
celculation, even thouzh they may not affect the total electronic energy
greatly. Further, we cannot neglect the correlatiun potential relative
to the exchange potential as we could when we were considering thz ef-
fect of the core electrons on the ~onduction electrons. The work of
P. NoziAres and D. Pines [7] has irdicated that the coniribution of the
correlations among electrons to the energy of a free electron gas at
metallic densities is roughly one-fourth of the contribution due to ex-
change. Correlition :ffects might be relatively more significant in
determining the cohesive energy of a real metal, or the ordering energy
of an alloy. Formally, the simplest procedure would be to approximate
VEL with the Hartree-Fock potential of the conduction electrons and
neglect the effect of correlations. The derivation of the self-
consistent elcctron potential would proceed in direct analogy with the
treatment of the Hartree potential which follows. However, an actual
calculation of the elect;on potential in the Hartr.e-Fock approximation
would be greatly complicated by the non-locality of thatpotential. Due
to the uncertainty in the reliative significance of the exchange and cor-
relation effects, we could not be confident that the additional work
would produce significantly better results. Further, the inclusion

of the effects of exchange withcut those of correlation is well known to
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Yield poor results for a free electron gas. Since the emphasis of this
work is on the special properties of alloys relative to single-element
crystals, we have':ecided not to include the non-1local Fock exchange
potential without a similar expression for the correlation potential.
A more promising approach to the problem cf the exchange and cor-
relation potentials has been suggested_'by the work of W. Kohn and |
L.J. Sham [8]. They bave developed a formalism for expressing the ef-
fects of exchange and correlation in terms of the local density of the
conduntion electron gas, denoted by n. Their expressions may then be
expand2d in powers of grad (n).Kohn and Sham have given a local ex-
pressibn for the potentials due to exchange and correlation which they
claim neglects only the effects of the fourth and higher powers of
grad (n). As we shall demonstrate, we must linearize our expression
for the electronic potential in order to obtain a self-consistent so-
lution. In a linear formalism, each Fourier componcent of the éharge
density is screened separately. Accordin_gly, we might ex?ect that the
local expression given by Kohn and Sham will not give the proper matrix
element of the potential for large g components of n since their ex-
.pression resul.s from an approximation of slowly varying electron
density. A linearization of thne local expression in terms ot‘tl-m
pseudopotential-confirms this expectation. The matrix elements of the
exchange and correlation ‘poientials do not tend to cancel the matrix
elements of the Hartree potential a3 g becomes very large, but continue

to grow in influence. Uafortunately, this deviation from the e:pectied

asymptotic behavior appears to extend well iato the region in g space
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vwhere we would expect the correlation and exchange effects to con-
tribute significéﬁily to tbe ordering process. Rather than guess

at a proper interpolation procedure t¢ predict the effects of ex-
change and correlation in the crucial region, we have decided to
neglect the influence of many-body effects on the ordering of our
system. This decision was largely the result of our desire to con-
centrate upon the peculiar properties of an alloy systeﬁ. Accord-
ingly, we wish to avoid making & questionable approximation of many-
body effects when such an approximation might dominate our results.
Although the work of Kohn and Sham may eventually lead to a useful
approximation of the effects of exchange and correlation, we will
limit our treatment to an approximation of VEL in terms of the Hartree
potantial.

In our derivation of the Hartree potential, denoted by Vsc, we
shall introduce several approximatiors. 1In each case, we shall empha-
size the aim of the approximation and the restrictions which it im-
poses upon the accuracy and validity of the final result. We may begin

by writing Poisson's equation fcr the screening potent’al in terms of

the conduction electron charge density as

Y%.Y% Ve - &nnCE= -Bﬂ'Z(v)(Elv)(vlg) : (2.32)

The sum over {v]) in Equation (2.34) is over all of the occupied electronic
eigenstates of H. Tne contribution to the potential due to the average
conduction electron charge density has already been included in T as

part of V_. In order to find the effact >f the spatially varying part

L
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of the conduction electron charge density, we shall take the matrix
elements of Equaé:;; (2.34) betueen.plane waves k+q and-g. Since
V3¢ is manifestly local, its matrix elements are a function only of
the (ifferernce between the wave vectors. Accordingly, we may write

the off-diagonal matrix elements of Vs? as
(q[v€lo) = TZ% ()¢l Urlviviz) [o) (2.35)

Using Equation (2.15), we may express {r|v){v|r) in terms of the pseudo-

valence state v as
(rfv)lviz) = W) - 2 (xle)e|v)(v]r)
- 2 (r[9)Fle) elr)
+Z, zc.(glc)(clf')(ﬂc‘)(c'I{) , (2.36)
wnere v satisfies the pseudo-Hamiltonian equation,
lew‘:) = T[¥) + W[¥) = E |¥) . . (2.37)

We wish to obtain a self-consistent expression for the matrix
elements of V°C. The most obvious method for uvbtaining this expression
is an iterative procedure. We begin by assuming a set of matrix ele-
ments-of vsc’ which may be combined with W to yileld an exy ession for
the screened pseudopotential. Equation (2.37) then allows us to cal-
culate a set of v, which may be substituted into Equation (2.36) and
~~mbined with Equation (2.35) to yield a new se” of matrix elements
Ve, Hopefully, cach iteration of this procedure will bring us closer

to the actual self-consistent set of matrix elements of vsc. But let




31

us examine the size of the secular matrix which must be solved to
yield the v. In :—Erystal which cah be Aescribed in terms cf a
small repeating cell, such as a =ingle-element crystal or an ordered
alloy, we may describe the locations of the repeating cells by a set
of vectors, [gs], vhich is a subset of {R). As in the case of (R},
we can construct a set of vectors (gs] in reciprocal space such that
{§s] contains all those vectors such that exp(-i§s-§s) = 1 for all
members of [gs]. The symmetry described by [Bs] in real space is
manifested in reciprocal space by the vanishing of all the matrix
elements of the pseudopotential hetween two plane waves unless their
wave vectors differ by a member of [55]. This result is well-known
for the actual crystalline potential‘and has been demonstrated [2]
for a single-element pseudopotential. The generalization to the case
of an ordered alloy follows readily and we shall not dwell upon i*
here. In practical applications of the iterative procedvre we dis-
cussed above, we can truncate the set of {gs] vectors waich we choose

to cconsider in a given secular matrix to a manageable set since the

-interaction between plane waves k and k+ Kg decreases rapidly for

large values cof |§s|. In the case of an alloy which is not in an
ordered state, however, we must consider the matrix elements of the
pseudopotential between all members of the set [5], since none of
them vanish through symmetry. The dimension of our secular matrix
must then be large: than in the ordered case by roughly a factor of N.

N is the number of ions in the alloy and is arbitrarily large. The



secular matrix would be unmanageable for this general case and we
could not use the method describediabove.

One other protlem arises when we attempt to arrive at a self-
consistent exp.ession for the matrix elements of Ve using a method
which requires the direct solution of a secular matrix equation.

The energy of the state v obtained from ﬁhe diagoralization associ-
at_d with such a solution depends in general upon the products of
many matrix elements of the pseudopotential. As we shall demonstrate
in the next chapter, these products will involve factors like

F(gl) F(gz) cee F(QM) where ql + q? + cee b gM is a member of{§]. We

shall further demonstrate that even a combination of perturbation

theory and the solution of a small secular matrix will still leave

the energy of v dependent upon at least the product F(q')F(-g') for

all values of g' in the set {5]. Since this energy enters into the
coefficients of the plane waves in the expansion cf (gl?), the least
dependence upon F(g') which the matrix element (SIVSCIO) will de-
menstrate will involve F(g')F(-g') for all q'. Therefore, we could
never piace the matrix elements of v°® in the form of Expression (2.33) .
.unless we Were willing to let the average and difference pseudopotentials
depend indirectly upon P(S'). This dependence would destroy all the
important properties of the separated form. Recall that we may require
the average and difference unscreened pseudopotentials to be completely
independent of configuration at constant volume within the assumptions
which we made in deriving Expression (2.33). 1In order to preéerve this
property in the screened pseudopotential, we must limit our expression

for V°C t~ that which may be obtained from perturbation theory. We may
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furth:r note that the general expression for V®¢ obtained from a
method which inv;E;es a direct solﬁtion of a secular matrix equation
would involve products of M F(g)'s, vhere M > 2. We shall later
show that these products invclve M-particle correlation functions.
This would further complicate the solution of the secular equation,
and the procedure for cobtaining Ve,

Turning to perturbation theory, we can hope that our pseudo-
states will be more amenable to a perturbation treatment than the
actual valence eigenstates. If we expand the pseudo-valence state
v using plane waves ac a basis, and then express the coefficients of
the plane waves as a perturbation expansion in the pseudopotential,
W= W o+ Vsc, we may write one of the meay terms which occur on the
right-hand side of Equation (2.35) as

(kv g+ g il + @) (k" Wi+ %) (i "Il + V)

We may regard the matrix elements oi # .. veing known. A term of
M'th order in the pseudopotential, such as the one above, will have
many products of the matrix elements of vsc. The largest such product
“which will occur is
1),Scy 2y¢7 21,5C 1.3 My, scy 1
{ov g |v® la" g |v® Ig®) ++- (q |v® la™) ,

where the vectors ql, q?,...,qM will assume all of the values in {E].

Thus all terms occurring on the right-hand side of Equation (2.35)
which are higher than €irst order in the pseudopotential will give
rise to products of two or more matrix elements of vsc. " ese pro-

ducts will transform the set of 2quations suggested by Equation (2.35)

(2.38)

'(2.39)
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into a non-linear set of equations of order N to be solved for the
matrix elements ;;Tvac. In order fo avoid such an insolvable set

of equations we must restrict the right-hand side of Equation (2.35)
to consist only of first order terms in a perturbation theory ex-
pansion in the pseudopotential. This restriction is also necessary
to avoid obtaining a (3|V8c|0) which depends upon F(g')_for all values
of q', since products like Expression (2.38) involve factors of F(g')
for a'l values of g'.

We have concluded that we must express the right-hand side of
Equation (2.35) to first order in a perturbation expansion in the
pseudopotential. We were led to this conclusion by the neéessity of
obtaining a fini%e set of equations to 'solve for the matrix elements
of V°C and thae desire to obtain an expression for (glvsclo) which de-
pended upon F(g') only for q' = q. We should now ask how seriously
we will limit the results of our theory by being able to calculate
e only to first order in the pseudopotential, W. This question is
best asrswered after obtaining the form ir. which the matrix elements
. of the pseudopotential enter into the screening potential matrix ele-
ments. Proceeding with the calculation of the screening, we will as-
sociate the state v with the point k in reciprocal space. In other
words, we will associate the zero'th order wavefunction. , ao(E) |§),
with v and calculate the perturbing effect of the pseudopotential on
that initial state. This implies no more than a one-to-one corres-

pondence between a listing of states according to v or v and a listing
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according to k. Specifically, it does not imply that k is a good
| .

quantum number in our system. If we expand the wave function v in

terms of plane waves and neglect all terms higher than first order

in the pseudopotential in a perturbation eipansion of the coefficients

of the plane waves, we can write
- 1
|¥) = a (k) k) + z[q] aq(l_() lk+q) , (2.40)

where

a (k) (k+q|wlx)

Eq(l_() = ) q 7‘ 0. (2-41)

2 z
lk]® - Jk+q]

The primed sum in Equation (2.40) is over all the members of (5] except
Q= 0. The first orderExpression(2.41) results from a standard pes-
turbation theory expansion in the pseudopotential [2] once we recall
that the eigenvalue of T operating on the rlane wave ‘_{_t_q_ is (I_l_:_tg_|2+ V.IL).
In writing Expression (2.41), we have neglected the vanishing of the
denominator for certain values of g # 0. As we mentioned previously,

a matrix element of the pseudopotential of a periodic crystal between
.two plane waves vanishes unless tne wave vectors of the plane waves
differ by a member of the set {gs]. Then for those values of k such
that Iglz = IE;tEEjZ’ Expression (2.41) diverges for a periodic crys-
tal. The effect of the higher orders of perturbation theory is no
longer small and we say that perturbation theory breaks down. This
corresponds to a Bragg reflection of the plane wave k and the occur-

rence of a band gap in the eneryy spectrum. For an alloy which is
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not in an ordered state, none of thre matrix elements of the pseudo-
potential vanish identicallyﬁ Therérore, for each value of X,
Fquation (2.41) will diverge for a set of values of q lying on a
sphere in reciprocal space.

Since the pseudopotential enters into the screening only through
Tquation (2.40), and we are going to drop all terms on the righ*-hshd
side of Equation (2.35) vhich are higher than first-order in the pseudo-
potential, the screening will only depend upon the sum of terms like
Fxpression (2.41) over all values of k within the Fermi sphere,

(k+ g|Wlkx) g(k)
(kg |15|2‘- I§+g|2

(2.42)

The function 3(5) has been ins:fted into the‘dbove sum to account for

any k dependent factur which might be multiplied by Expression (2.41).

As the size of crystal increases arbitrarily at constant ionic volume,
the values of k become arbitrarily close together and the sum in Expres-
sion (2.42) becomes arbitrarily close to an integral. Since the numer-
ator in Expression (2.42) is going to be slowly varying in the vicinity
of the divergence associated with the denominator, the integrand be- |
haves like 1/x through the divergence. The principal value of such an
‘ntegral is perfectly well-defined as long as the boundary of the in-
L-gration is not arbitrarily close to x = O [5]. Therefore, the value

57 Expression (2.42) may be a small number even though there are values
of k for which the integrand diverges. If this is indeed the case, per-

turtation theory to first order in the pseudopotehtill does suffice to
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express the screening potential fairly accurately, even though it

does not express individual terms in Expression (2.42) accurately.
However, the divergence of the integrand in Expression (2.42) can

give rise to a band gap. Thus, a system might certainly exist where
the screening potential might be quite well approximated by first-
order perturbation theory, yet we mighf be fcrced to solve a secular
matrix equation to calculate the electronic energy at particular points
in reciprocal space. This would not be inconsistent in any way. The
approximation of first-order screening does not restrict us in any
direct way to a consistent treatment of electron energies to some
particalar order in perturbation theory. We must consider ascertain~
ing the validity of first-order screening as a problem separate from
ascertaining the validity of using second-order perturbation theory to.
approximate the electron energies.

We might note that there are certain interesting physical cases
where the calculation of the screening potential to first-order in the
pseudopotential is a poor approximation, and where integrals like Ex-
fression (2.42) might even diverge. Let us consider the case where the
Fermi surface is tangent, or nearly tangent, to a plane in reciprocal
space where one might expect a tand gap. Then an integral over the
Fermi sphere, such as Expression (2.42), will have large contributiovus

from points on the low energy side of the band gap with no compensating

contributions of opposite sign from points on the high energy side of

the band gap. Under these conditions, Expression (2.42) will have a




iarge, if not ubiiruily large, value and first¢-order perturbation

theory wil' not suftice to express the matrix elements of V*¢. The
stability of certain long period sup.r-lattices in alloy systems is
believed to derend upon tle Fermi surface ﬁeing tangent to suchva
plane in reciprocal space. Such systems are therefore not amenable
to the treatment of the screening which_ﬁas described above. Accord-
ing? we could not separate the matrix elements of the pseudopotential
in such systems as we wish to do. As we shall see in the next chapter,
this would prevent us from exipressing the tutal electronic energy of
th2 system in terms of a two-particle corr2lat.on function. The ability
to well approximate the s~reening using first-order perturbation theory
is therefore central to thie resuits of this work. We shall proceed for-
mally 33 though there were no divergence in Expressioa (2.41), but we |
must asceriain the validity of this treatment in particular cases.

If we substitute Equations (2.40) and (2.41) into Eéuation {2.36),
we may write the wave aensity, (glv)(v|§), to first order in the pseudo-

potenti.l a3 '
(r|v){v|r) = s, (k) |2 [(gh_g)(!_dg)- 2RE Zc(gic)(cll_t)(lslg)
+Z Zc.(glc)(dl_t)(l_tIC')(C' Ig)]
- (k+ql$-'ik)
2le (k)| RE 5} | ————s
+ I&O(")I lg) |1_(|2-|l_£+¢_1|&
g [@mﬂ_i)(y;)- 5, (zle)e xsg) (kx)
- Ec(§|§+ 3)(¥|°)(°|I)
+ Zc,c,(_z:lc)(cll_u g} (kfe* ) (e lf):] . (2.43)
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The integral of @ressions (2.43) over vhe entire crystal should be
unity since the state v contains just one electron. This yields an
expression for la.c’(l_t)l2 as follows:

|2

la ()17 = J1 - _{kleXel)

. (ke glulk) . -1 :
- 2RE Z[q] - a— [Zc(l_tlc.'(cll_t+ g)] »  (2.44)
2’ Ik k+ g
‘imere we have used the orthogonality of the core states of H. We
are also interested in the matrix elements of Equation {2.43) between

-
]

piane waves q and O, which we will wish to insert into the right-hand
side of Equation (2.35). To first order in the pseudopotential, the
matrix elements of the charge density associated with the state v are

given by

(k) |°
(gl[(glv)(vl{)llo) = k‘_o_n_-__l_ [—Zc[(l_c+<_1|c)(c|l_t)+ (k|eXc|k- c_;)]

2.2 (ke Xe le"39°E e e Ils)]

la ()12 | (k+qlWlk) (k- qlW]K)*
a ) PR )
k|®-lx+ql®  |x|*-[x- ql

la ) |? | (k+ g W)

+

) [q|] |k|2 |k+ : |2 [+ zc’c,(l_d(:)(cle'ig-flc!)(clI§+S|)
7 Ixl*- e+ g

-Zc[(l_'.+g|c)(c|l_t+g' Y+ (l_KIC)(C!l_Hg'-g)]]
la ()2, (keg lW]w)* o
o e e el e

-Zc[(l_t--‘g' |c)(c|l_t-g)+ (l_t+g'+g}c)(c|l_()]] . (2.45)




In order to more fully understind the implications of Equations
(2.44) and (2.45), we must investigate the nature nf the sums over ¢

vhich are invol?ed. let us first ccnsider the s.. which occurs ir

Equation (2.44)

Zc(;x+ aje)cix) . : (2.48)
We may fully express the sums involved in Expression (2.46) as

2(g) % 1ms &+ @[n1ms;R) (nims;R|x) . | (2.47)

Since the core wavefunctions asericiated with a particular element
have been assumed to be independenf of the local environ'ne;xt of the
core in the crystal, we may separate Expression (2.47) in a manncr
analogous to the separation of Expression (2.19). In order to simpli-
fy our .ation, le:. us define a projection operator assoziated with

the core states of an ion of type i located at R by
P(r -R,r'- R) ® an(g -gl‘nlms;i)(nlms;ilg'- R) . (2..48)
From the invariance of the core states, we may use this definition to
write Expression (2.45) as
z(x +qleMelx) = %2[33(§+3|{(1+0(§)) P,(z-R,r'-B)
' + (1 -0(R)) Py(r -R,x'- '13)3|§)-(2-49)

In computing the matrix elements of P, and Py in Equation (2.49), we

may translate- the origins of our integrations to the po."mts R and re-

write as




(1 +0o(R))

-19.13
N e <5'+9|3A|§)n°

Z (k+qle)clk) = £ %(8)

(1-0(R))
+ — 19 (x +alpgldg s (2.50)

where

{k +g|1>i|1_:)no = 51— Zoams b & fpaz’ emilig)er (r|nims;i)
0 .

. O '
X {nlms;i|r') e¥'E (2.51)
In aralogy with our previous separation of Hp, we may define an aver-
age projection operator,
(k+q|B|x) = x(l_t+g|PA|l_5)Qo + (1-x)(15+g|PBil_:)no s (2.52)
and a difference projection bperator
(e +alaplk) = Hr+qlp kg - Hk+qlpgiedg (2.53)
These definitions may be coupled with our definition of F(q) and our
discussion of the Kronecker delta to write Expression {2.46) in the
form of Equation (2.33),
2 (k +gleXelk) = 63 )k +alBlK) + F(q){k +q|AP |K) . (2.54)
- ) -. - - - - 3
If we substitute from Equations (2.33) and (2.54) into that part of
the last term of Equation (2.44) which is assc.iated with Ho, we ob-
tain a product of which one of the factors is
(k+KIWIeXWBlk+ ) F(g)[*(k +q|a k) (s |oP]k +)
() 2 2 *t2g) 2 z
0T ek @ T kP laegl
(2.55)

Note that no cross products occur in Expression (2.55) because Bq {K]F(g)
’ -




is identically zero for all values of g as we observed in our dis-
cussion of Expres;I;ns (2.31) and (5.52). We may see from Expres-
sion (2.55) that an expression for |a°(§)|2 which is strictiy first
order in the pseudopotential would depend on F(S‘) for all values |
of g'. As we discusged in deciding on the order in perturbation
theory to which we could calculate Vs?, the presence of guch a de-
pendence on the right-hand side of Equation (2.35) would prevent us
from separating the pseudopotential. We wish an expression for
(glvsclo) which involvés F(S') only for q' = g. Accordingly, we would
like to drop the last part of Equation (2.44) from our expression for
|ao(l_t)|2. Fortunately, calculations by Harrison [2] and of;hers have
shown that the sum in £xpression (2.46)-is usually on the order of
0.10, varying between rough limits of 0.05 and 0.22, for g = 0. For
a given k, the sum is a slowly varying functien of q which reaches
tts maximum in the vicinity of g-= 0. While we are reluctant to call
such a sum a first-order expression in the pseudopotentiai, it is
reasonable to compare its magnitude with that of an expression like
(1_(+ 9|W|l_t)

—_——, (2.56)
2 2
k|- [x+ ql

A typical value for this factor might be that for k = O and for q
set equal to one-half of that reciprocal space vector of (g] which

has the smallest magnitude. A survey of the pseudopotentials of the
various single-element crystals which were listed by Harrison [2] in-

dicates that a typical magnitude for Expression (2.56) might be 0.2,
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with rough limits of 0.0 and 0.4. Expression (2.56) may be zero for

particular values of k and q depending upon the pseudopotential used,

but we feel that 0.2 is truly representative of its magnitude. Accord-

ingly, we shall generalize and consider the sum in Expression (2.46)

£s being roughly comparable with a first order term in the pseudo-

potential. This approximation must be verified for particular syst: ms.
With that approximation, we can write the expression for |ao(l_()|2

to "first-order” in the pseudopotential as
la (6)[Z = 11 - 2 (kleX(ex))

Simile ly, we may write Equation (2.45) to first order in the pseudo-

potential as
la (1) |°
{(q|{g[v){v])1]o) = — [—Zc[(l_t+g|c)(CIl_t)+(1_t|c)(<:|l_(-g)]

+1c”c,(Elc)(cle'ig'flc')(c'|§€]

la ()12 [ (k+glulk)  (k-qlulk)*
+ o
2 2 2 2 Z
8 lk*-lx+ql®  [6]°-]x-ql
F once we observe that terms like

5, S (k+a o) ele 9 Tler)er 1)
may b~ considered as comparable with Equation (2.46). For q = O in
Expression (2.59), the orthogonality of the core states of H allows
us to reduce that expression to Expression (2.46). The presence of
exp(-iq-r) in the middle integral merely serves to spread out the

sharp orthogonality condition and should not increase the magnitude

TR R

(2.57)

(2.58)

(2.59)




of Expression (2.59) above tnat of Expression (2.46). Expression

(2.54) demonstrates that Expression (2.57) for |a°(5)l2 does not in-
volve F(g), since g = 0 is a member of the set {g]. Thus the de-

pendence of the matrix elements of Vsc upon F(g) must come from the
two factors in braces in Equation (2.58). Let us define a function

B(l_{)g) as
B(k,q) ® -Z [{k +q|c){c]k) + (k|c}c]|k-q)]
+Z, Zc.(§|c)(c|e-ig°£|c')(c'|§) . (2.60)

With this definition, we may rewrite Equation (2.58) and substitute it

into the right-hand side of Equation (2.35) to obtain

(k+q|Wlk)  (k-g|wK)”

(q|V*|o) = ;ﬁ# (), |5 ®) |2 B(k,q) .

xlP-Tk+gl? IelP-l-al
(2.61)
The sum over {g]F is over all the values of k within the Fermivolume.
1 If we recall that W = W° + V°C and that (54-S|Vsc|§) is independent of
k, we may solve for the matrix elements of the screening poﬁential, Vsc,
in terms of the unscreened pseudopotential. The expression fér these

matrix elements is
"

(k+qlW°|k) (k- q|W°|k)

(qIV5°|o) . S b ' |a (k)|2 + +B(k,q)
< 2 = ) %9
alq|®n(g) g o k)% |xeal? k|- Jx-g|? ’
(2.62)
where
8T |2 1 1 . (2.63)

D(q)=1 - 2 la (k) - +
T alg® e 0T kP liegl® el li-g P
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It is apparent from the form of Equation (2.62) and the separability

of the matrix eléﬁgnts of W° that fhe separability. of vsc’ as dis-
cussed in connection with w°, will follow directly from the separabil-
ity of B(l_:,:;). Equation (2.54) demonstrates the separability of the
first sum in Expression (2.60) for B(g,g). We have already assumed
that the core state wavefunctions may'ﬁe well approximafed in the
solid by the corresponding atomic wavefunctions. This is a reasona-
ble approximation only if the overlap of core wavafunctions on ad-
Jjacent ions in the solid is negligible. Accordingly, the middle inte-
gral in the last term in Equation (2.60) must vanish unless ¢ and c'
are on the same ion. We may use this property and the definition of

the core projection operator to write this last sum as
ZQZQ.(glc)(c|e'19'2|c-)(c'|§)

= %—E(B](E![(l +0(8)) [ a&r'By(z-Rr'- B) e 9T R (r'-R,r"-B)

- L] ' -
+H1-0(R)) far'Py(r ~R,x'-B) ¢ FE R (xR, "B Ik} .
(2.64)

We may now follow the customary procedure of translating the origins
of the integration coordinates to the point R and defining an average
function,

b(k,q) = x by(k,q) + (1-x)by(k,q) , (2.65)
and a difference function,

o(k,q) = ib,(k,q) - dvy(k,q) , (2.66)
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vhere
b; (kyg)=-(k +glP [k)g - (k|P[k-g)g
+N anms(E|nlms;i12d{(nlms;i|g>e'19'£
n'l'm's'
X (gln‘l'm's‘;iﬂ(n'l'm's';ilg) . (2.67)

We may now express B(g,q) in separated form as

B(‘_(,(_;) = B‘_l) [5]%(5)3) * F((_;)A'b(l_(,g) . (2.68)

Returning to Equation (2.62), we observe that, for q equal to some member
of the set (K], the matrix element of v°¢ involves only the average quan-
tities. Similarly, for all other values of q, the matrix element of
v*¢ involves only the difference quantities. ‘Therefore, we may quite
naturally separate the matrix elements of V"¢ as we did the matrix ele-

ments of Wo. If we define an average screening potential,

(e +g|# k) (k-q|#°[)*

'B(k, q) )

(q|§s°|o)= 2 la_(x) + +
2 - 2 2 2 2 -’23
p(g) W O N kPt - Jimgl

8w
a|q|? |

(2.69)
and a difference screening potential,

2 (§+giAwP|§) (§-3|Am9|§)*

(q|lav®|o) =—Fee g, o Ja_(k)] 5+ +00(k,q) 9 5
y algln(g) B2 0T | k[P lerq P k[P heeg P :
(2.70)
we can write the matrix elements of the screening potential as
c =sc sc
(g|v®¢|o) = Bé,[gl(glv lo) + F(q){glav"|o) . (2.71)




We might stop at this point and cahpare the results of this

theory with the result§ of Harrison [6] for a single element crystal.
As we noted before, the difference potential would vanish for a single-
element crystal. We would expect that the single-element screening
potential would be given essentially by Equation (2.69) in the limit

as the-two types of-ionic potentials become equal. However, we can
obtain Harrison's expression fer the screening from Equation (2.69)
only if we set |a;(§)|2 = 1 and B(g,g) = 0.% In agreement with our
approximation the "order" of Expression (2.46), we might argue that
setting |ao(l_:)|2 = 1 does not drop any *erms from Equation (2.69) which
are not second or higher order in the pseudopotential. Howevér, S(g,g)
should be considered as comparable with a truly first-order contribu~
tion to the pseudopotential. For the system which we have chosen as

an example, the factor |ao(l_§)|2 increases the matrix elements of the
screening potential by six to eight per cent for important values of q.
Similarly, the terms 5(5,;) and Al)(g,g) decrease the screening potenti;l
matrix elements by about one per cent for g = 0.25 atomic units (a.u.)
and br- about forty per cent for q= 1.50 a.u. Thus, the combined ef-
fect of the two corrections terds to redistribute the screening effects
in g-space. The effects tend to cancel tc a certain extent and we have
accordingly included both of them in our formalism. The effect of these
corrections on the screened pseudopote.atial is much more dramapic fo;
small values of q since the screening potential and the unscreéned

-pseudopotential cancel to a large exteni in this region. We conclude

*Harrison has included some of the effects of these terms in ris con-
cept of effective valence.




pseudopotential. Equations (2.33) and (2.71) allow us to write the
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that these effects should be included in an accurate screening cal-
culation for either a single-element crystal or an alloy. Proceeding

accordingly, we wish to add our v*¢ +o0 W° to obtain the screened

matrix elements of the total screened pseudopotential as

(k+q|Wlk) - = (K](5+ qlw|k) + F(g)(k+ glawlk) , (2.72)

vhere w = W+ v°© ana ww = AW+ AV .

Since we have succeeded in our aim of separating the full pseudo-
potential in the sense discussed in connection with Expressions (2.31)
and (2.32), we shall review the assumptions which were required to
achieve this separation. Starting with the Austin, Heine, and Sham
form of the pseudopotential, we first assumed that the core eigen-
functions did not depend upon the local envifonment of the ion and
that we couid use the corresponding atomic wavefunctions in their
places. Later we made use of the _.mplication of this invariance that
the core eigenfunctions on adjacent ions in the solid did not overlap. -
We assumed that a Hartree-Fock one-electrcn Hamiltonian was sufficient
to describe the interaction of the conduction electron eigenstafes with
the core electron eigenstates. These assumptions are common to all OPW
and pseuduvpotential approaches. Then we restricted the form which we
might finally choose for fc(g) to one which did not vary among the ions

cf one type throughout the alloy, for a particular configuration of ions.
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The.e assumptions and the restriction on fc(g) allowed us to separate
the unscreened pseudopotential into the form of Equation (2.33). The
mairix elements of W° and AmP, however, depend upon the configuration
of the ions to the extent that we ellow the chcsen form of fc(g) to
depend on the configuration. Approximating the electronic potential
with a Hartree potential, we found that we eould not separate Ve
unless we calculated the screening noteﬁtial matrix elements only to
first order in the pseudopotential using a perturbation expansion.

This approximation was also necessitated to a large extent by our in-
ability to solve a set of N dependent equations. As we discussed at
the time, this approximation.for V®® does not restrict us to calculat-
ing the electron energies to some particular order in the pseudopotential.
At points corresponding to band gaps, the approximation we have used to
obtain V° should not stop us from diagonalizing some limited matrix to
obtain the eigenvalues. This is because the accuracy of the matrix ele-
ments of V°© depends upon some average over the Fermi sphere of the error
in a first order perturbation theory treatment of the electronic eigen-
functions, and consequently may not be greatly affected by the band gaps
in particular instances. Further, we found it necessary for the separa-
tion of V°¢ to consider terms like Expression (2.46) as first order in
the pseudopotential. An examination of typical magnitudes demonst.rated
the validity of this assumption. Finally, we were able to separate the

screened pseudopotential into the form shown in Equation (2.72).
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The Ordering Energy and the Pairwise Interactions

[ =

Our derivation of the form of the screened p;eudopoiential vas
motivated by a desire to calculate the total conduction slectron energy
and the elecironic contribution to the ordering energy of an alloy. We
also wish to vie the form of the ordering energy to deduce an expressicn
for the effective pairwise interactions. In order to facilitate .ur
discussion of the total energy of the system, we will distinguish two
separate groups of charges in the crystal. One group consists of the
ionic cores, composed of ‘the nucleii and the core electrons on all the
sites in the crystal. The second.group consists of all that charge as-
sociated with the occupied valence states of H, including th; uniform
charge aistribution, the screening charée density, and that charge which
has been associated with the cores through the action of projection oper-
ators such as'ZE(glc)(clg) in Equation (2.15). In other treatments [6],
£he uniform distribution and the screening charge density are associated
with the charge density of the occupied stetes of v. The conduction
electron charge which has been associated with the cores by the pro-
-jection operator is then combined with the charge on the ionic cores to
yield.an effective valence. For our ruryroses. however, the division of
charges mentione@ earlier is more converient.

We have assumed that the wavefunctions of the core electrons may
be approximated well by the corresponding atomic wavefunctions. There-

fore, we are neglecting the van der Waal's interactions among the cores.
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We are also neglecting any ic“*eractions which may arise due to &
slight overlap of the charge densities associated with adjacent
cores. Accordingly, the energy cf the first group of charges is
simply that of a collection of puint charges. If there are Zi posi-
tive charges associated with each ion of type i, then we may use the
the function a(g) to write the self energy per ion of the “irst group

of charges as

1 ; (1 +0(R)) (1 -0o(R))
EZ(B)F(B') IR-R'| 2 2yt 3
[(1+0('))  (Q-o(R')
X 5 Z,+ 5 Zy 0 (2.73)

The total energy of the crystal includes the contributicn of Exprese-
sion (2.73), the self-energy of the second grcup of charges, and the
energy of interaction between the two groups. If we sum the electronic
eigenvalues, Ev’ ovey all of the occupied valence states of H, we will
obtain the total kinetic energy of the electrons plus the eneréy of
interaction of the second group of charges with both the first and

the second groups of charges. This sum correctly accourts for the
energy ¢t interaction between the two groups, but counts the Hartree
self-energy of the second group of charges twice. Therefore, the con-
tribution of the conduction elecirons to the total energy of the crys-
tal is given by the sum of Ev over all of the occupied states less the
self-energy of the conduction electron charge density in the Hartree
approximation. We may let Ev be denoted by Ek and perform the sum over

all the points in the Fermi volume. If we let the conduction electron




charge density be denoted by nCE(g), we may write the conduction

electron contribution to the total energy per ion as

1 1. , Bep(z) neg(r')
¥ Z, B i Jar Ja e
-'F - lz- x|

In order to discuss the second term in Expression (2.74), we
will :xpand the density of the conduction.electrons in terms of its

Fourier components using
n..(r)=n +3 ,n e3T .
CE'= o “lq) "q

Now let us examine the contribution to Expression (2.74) of the con-
stant part of nCE(g) interacting with the spatially varying part of

nCE(f). We mway write this contribution as

)
e
. n ei- S
(o]

- § 2(q) B Jar far' :

Ir- r'|

Performing the integral over r', we may write Expression (2.76) as

1l o iq.r
N Z[S) ng % |3|2 Jar e .

This expression vanishes since the iategral over r is zero unless

q = 0, and we are excluding the term corresponding 10 q = O from our

sua over {q}. Accordingly, there is no energy of interaction between

the uniform and the spatially varying parts of the conduction electron

charge densi’y. We may repeat the above procedure to calculate the

energy of interaction between the spatially varying part of nCE(g) and

the spatially verying part of nCE(g'). beforming the integrations

cver r and r', we may express this energy as

(2.74)

(2.75)

(2.76)

(2.77)
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- = — . 2.78
N 2(3) |2 ng 1'1‘_S ( )

But we may express Poisscn's equation as given by Equation (2.34) in

terms of nq by

(g_lvI 0) = ST (2.7¢,

We may substitute Expressions (2.78) and (2.79) into Expressions (2.74)
to write the contribution <f the conduction electrons to the total

e.ergy per ion of the crystal as

' 5 (n )? .
1 ; 0 o 2 c 2 1 . o ,
N Ztl_ch £y - Tor Z[Sﬂgl [{alV¥[0) | § far far el (2.80)

The total energy of the cr)stal consisté of the contributions which
we have inzluded in Expressions (2.73) and (2.80) added to the in-
ternal energy of the ions.

We should note at this point that some of the expressions which
we have written down are divergent. The Coulomb sum and integrals
which occur in Expressions (2.73) and (2.80) cannot be evaliated
unless they are taken together. Accordingly, we will gr up the con-
'tributions to the total energy per ion so that each group has a finite
energy. In the first group, we will include most of those terms which
do not change when the ions are rearranged at constant volume. The
first contribution to this group is the energy of an ariay of charges
Z on each of the ionic sites in the crystal. If x is the fraction of

jons of element A in the crystal, we may define Z=x ZA-i-(l-~x)ZB in



analogy with our definition of the average pseudopotential. To this
we will add the interantion of the uniform conduction electron density,
n,; with the potential due té the ions and electrons in the crystal.
An average charge density interacts only "With an average potential.

For convenience, we will consider in the first group of energv contri-
butions only the interaction of ng with VL’ whiéh we have already de-
fired as the spatial average of the potential due £o tﬁe nucieii plus
tane spatial average of the Hartree potentlials due to the core and con-
duction electrors. The interaction of n, with the exchange potential
of the cores will be included in the second group. Finally, since we

have counted the self-energy of the uniform electron distribution twice,

we must subtract it from the above contributions to obtain

2
1 ———22 v (a,) 1 1 I
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We have included V;I, which is the internal energy of the ions. We
wvould not expect VII to change during changes in the configuration

of the ions at constant volume since we have assumed that the core
electron wavefunctions are always the corresponding atomic waQe-
functions. With the exception of VII, Expression (2.81) is essenti-
ally the Madelung energy of an array of equal positive charges in a
uniform compensating density of electrons, and is accordingly a finite
energy. We shall now turn to the remaining part of the total energy

per ion.
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In order to display the dependence of this seconé group of
energy contributiégé on the pseudopotential, we must chtain an ex-
plicit exprec.iou for the electronic eigenvalues which occur in the
first sum in E:pression (2.80). Vhen we first introduced the use o2
perturbation theory in connection with.the calculation of the screen-
ing potential, we noted that certain terms in the expressions for the
electronic energies and wavefunctions are undefined in the treakdown
of perturbation theory associated with band gaps. Later, we noted.
that, in many instances, the integration of these expressions over
the regions of divergence yields a well-defined result if one takes
ihe principal part of the integral. We would accordingly like to use
perturbation theory to second order in the pséudopotential fo express
the elecironic eigenvalﬁes. Since the integrands involved in thé
second-order perturbation theory expression for the total electronic
energy are very similar to those involved in the first-or@er expres-
sion for the screening potential, we would expect that the ac.uracy of
ci.e approximation would be very closely related to the accuracy ot the
other. Therefore, if we may reasonably make the first approxiration,
regarding first-order screening, we may have some confidence th;t the
total electronié energy may be approximsted well by second-order per=-
turbation theory. ' As we shall see shortly, both our expressions for
the effective pairwise interactions and our ability to express the total
electronic energy of the system *n terms of a two-particle correlation
function depend directly on the ability to make these two approximations.
On the other hand, if we cannot make these approximations for some sys-

tem, as we discussed in connection with the screening potential, then
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neither o. these results follow for this system. We cannot over-
emphasize the central nature cf these approximations to the results
of this work. We might mention in this connection the work of W.
Xohn and C. Majundar [9]. They lLave examined the behavicr of a gas
cf independent Zermions in the presence of an attractive localizzd
potential. If the strength of the potential is.grmdually increased
from a vary small value, a fermion state wi“1l eventually undergo a
tranc.tion to a bound state in the potential well. Kohn and Majumdar
have shown that this transition produces nc discontinuities in the
properties of the system as a whole. By analugy, we would not ex-
pect that the band gaps introduced by the periodicity of . crystad
would produce a 2iscontinuous change ic the properties of thai crysial.
Accoraingly, we have reason to believe that the perturbation theory
apprcximations regarding the screening and the total electronic
energy will be good approximations except in ;pecial cases such as
those we dis: ussed in connection with the screening.

In light of this discussion, we shall express the electronic
zigenvalues appearing in Expression (2.80) using second-order.per-
turbation theory in the pseudopotential. We shall treat the terms
involved as being well-defined everywhere since they appear only in
integrations over the Ferﬁi sphere, as in the case of the screeving
potential. We must remember that this is merely a formai result and
that the accuracy of the total electronic energy must be verified in
particular instances. To second-order in the pseudopotential, the

electronic energies are given by
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The sum of the second term in Equation (2.82) over all points within
the Fermi volume is just the energy of intersction of n, with Vi and
has already been included in Expression (2.81). We may now write
that part of the total energy per ion of,thé crystal which was not

included in Expression (2.81) as
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T-e ordering energy of the crystal is now the difference between
Exprussion (2.83) evaluated in the ordered state and evaluated in the
d;sordéred state. Harrison [5] has shown that the contribution. of the
sum Ek over all points within the Fermi volume is given to second or-
der i;‘the pseudopotential by a sum of Expression (2.82) over all points
in the Fermi sphere. Therefore, the last sum in Expression (2.83) changes
during rearrangements of the ions at constant volume only through the
dependence of W on fc(g). The electronic contr.bution to the ordering
energy may be best expressed by defining energy-wavenumber ch facteristics

appropriate to the alloy problem. Accordingly, we will define Eij(g) by
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where i and j may take on the values 1 and 2. In this notation, we

shall let w, = v, W, =AW, v = ¥°¢, and v, =Av®®. From Expression

(2.83), we may write that part of the conduction electronic erergy

whick might contribute to the ordering process as
= 2, (kW)
AU

(x|W]k+q) (k+q|W|k) n|g|2
IEIZ'IE‘SIZ lér

+ % z'{‘_‘}{z“-‘)r [{0]v*¢|q) 12} . (2.85)
We may now insert the expressions for the matrix elements ¢f W and

v3¥ given by Equations (2.71) and (2.72). Since either F(S) or the

Kronecker delta will always vanish for a given value of 9 there will

be no terms in Expression (2.85) arising from products of average

and difference potentials. Accordingiy, we may write Expression

(2.85) as

- ' 2 . .
%’ztglp(‘-"""ﬁ) + z(g)(ag’ ) P * F() | E,p(g)) . (2.86)

The change of Expression (2.86) betw:en the ordered and the disordered
states accounts for the cénduction electron contribution to the order-
ing energy. We heve retained the terms involving the average potentials
since these will vary if fc(g) is allowed to vary between the ordered
and disordered states. If we resirict fc(g) so that it 1s invariant

{aring rearrangements of the ions at constant volume, then thc conduction




electron contridbution to the ordering energy will depen” upon those .

terms involving the difference potentials, as one might expect.
Having derived an expression for the conduction electron ¢on-
tribution to the ordering energy, we turn now to the effective pair-
wise interactions. Return.ng to Expression (2.85), we will again
substitute Equations (2.71) and (2.72) for the matriz elements of W
and V°¢. Instead of using the special properties of F(g) and the
Kronecker delta, we will express them in terms of their sums in real
space, &s in Egvecions (2.31) and (2.32). We may take these two sums

outside of the sums over {E]F and {q) in Expression (2.85) to obtain

i g0 (6171
+ 5 2R Ew) & 2(y) o9 (R-R') [En( 2) +(0(8") - () )5, (g)
+ (o(R) - (G)B)EZI(S)

+ (o(R) - (cr_}3 Xo(R') - (O')R)Ezz(g)] . (2.87)
By analogy with the form of Expression (2.73), we sece that the energy
of interaction by means of the conducticn electrons between an ion of-
element A at R and another ion cf element A at R' is just given by
substituting o(R) = U(B') =1 iﬁto the appropriate term in Expres-
sion (2.87) to obtain

2 Z'[sleig'(g'gl){ﬁin(g) + (1= (D) (E, (2) + By ()

+ (1-(<7)R)2 Ezz(g)] (2.88)
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Recell that the energy-wavenumber characteristics depend on rc(g)

L
through the pseudopotential. Therzfore, we find *hat we mus® restrict

fc-f:_-) so that it does not var, 4 ‘ingz rearrangements of the ions at
constant volume in order to obtain sn indirect interaction which does
not depend upon the state of order. With this restriction, we may
add the point ion energy of i .teracticn to the indirect interactions
obtained from Expression (2.87) to obtain the effective pairwise
interactions between the ions. If we denote the total effertive
pairwlse'interaction between an ion of type i and an ion of typs J

separated by a distance R by V, IR]), then ve may write

2(z,) o
iy (lEh) « =2+ E 3y o197 [E;ﬂs (1- (o)) (£, (g) +E;,(9))
+ (1- (o) )F 322<3)J | (2.89)
2z 5, g
Vel IRl) = '.ZRBI + %Z{g] e'd't [En(g) -(1 +(G)§)(E]2_(g) -E,,(a))

v (1400 Ezz(ga

Vy-(IB]) = e 5 z'{q) ' [Ell(‘}) +E),(a) - By (g)
- <G>B(E12(g) +E,,(g))
-(1- (O’)f})Ezz(t_;)] .

By a procedure directly analogou; to that followed for a single-

clement crystal, we have derived expressions for the electrcnic

(2.30)

(2.91)
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contribution to the ordering energy of a binary alloy and for the
effective puirwise interactipns between the ions in the alloy. The
separation of the ordering energy into terms dependent upon the aver-
age and the difference pseudopotentials, as in Expression (2.86), was
possible only because we expressed the total electronic erergy using
second order perturbation theory. 1In addition, the derivation of
the effective pairwise interactions necessitated our restricting
fc(g) to being invariant during changes in the configuration of ions

in the crystal at constant volume.
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Chapter Three

EVALUATION OF THE ORDER-DEPENDENT PAR?P
OF THE PSEUDOPOTENTT’.

In Chapter Two, we derived an expression for the matrix ele-
ments between plane waves of the screened pseudopotential of a
metallic binary alloy. We approximated that part of the pseudo-
potential which arises through thc screening of the ionic charges
by the conduction electrons with a self-consistent expressior which
is linear in the unscreened pseudopotential. This approxim--.on was
partially motivated by the necessity of avoiding an infinite set of
egquation., which would have had to be solved to obtain the matrix ele-
rments of the screening potential. In addition, the approximation was
necessary if we were to separate the matrix elements of the screened
pseudopotential into the product of a struzture-dependent factor and
a factor dependent upen the structure for a given volume only through
fc(g). Apart from this possible dependence through fc(g), the entire
dependence of the reswlting matrix elements of the screened pseudo-
potential on the po:itions of the ions during rcarrangements of the

ions at constant volume is manifest in che two factors, ] and

bq,[§
F(q). Since [5] is the set of reciprocal lattice vectors cor-
responding to the set of ionic sites in the crystal, the Kronecker
delta conteins only information regarding the points in the crystal
which are occupied by ions. If wc restrict the final form which we may

choose for fc(g) to be independent of the configuration of the ions for

a given {onie vclume, F(q) contains all the information in the screcned
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pseudopotential regardi.g the distribution of the two types of ions
on these sites. -

We used our expression for the screened pseudopotential to de-
rive perturbation theory expressions for the energy of an individual
electronic state, the total conduction electron energy, and the con-
duction electron contribution to the ordering energy of the alloy.

We also derived an expression for the effective pairwise interactions
between the ions in the alloy. Since our derivation was directed
toward obtaining efféctive interactions which were invariant during
rearrangements of the ions in the crystal at constant volume, we 60
not need to evaluate a function of F(g)~in order to calculate the ef-
fective pairwise interactions. On the other hand, we may wish to cal-
culate a quantity which does depend upon the stale of order in the
crystal, such as one of the energies which we mentioned above.‘ In
this situation, we must evaluate certain functions irvolving F(g).

We will examine in this chapteir the forms in which F(g) night appear
and the information about the crystal which is required to evaluate

the order dependence in these cases.

Electron Energies to Second Order ia Perturbation Theory

Let us consider a point k in reciprocal space such that the
wavefunctions of the pseudo-Hamiltonian may be approximated well using
a first order perturbation expansion in the pseudopotential and the

energy of that state using a second order pefturbation expansion in




[o7]
(4]

the pseudopotential. By this we mean that the contributions of

—

higher order terms in the pseudopotential are quite small. As we
noted in the previous chapter, standard perturbation theory yields

the following expressions for the wavefunction v and the energy Ev:

K2 (k) {Ix) + = leraHesgl¥le) (3.1)
v K~ ke [ K) + 2{9] |E|2‘|E+3‘2 .1)
E = |1<|2 + ¥+ (k|W]k)
v - L - -
{x|W]k+q) {k+q|W|k)
U VAR -
where the primed sum over {3] includes all reciprocal space vectors
but q = 0. The form which we derived previously for the matrix ele-
ments of the pseudopotential is
(crqlulk) = & () (krqlilk) + P(g)Ckeglaw i) (3.3)
where F(g) is given by
-iq-R .
F(c_;) = Z{R] (o(R) - (O')R) 2 N- - . (3.4)
If we substitute Equation (3.3) into Equations (3.1) and (3.2), and
note fhat bq,[K) F(g) is identically zero, we may express the wave-
function as- )
i , o D) (g [ )
|v)§ = a (k) {|x) + 2“.(] Iklz-il_cﬂ_(lz
|k+q) (k+qjaw|k) F(g)
~ = - (3.5)

+
(W k)2 Jxeql?
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and the energy as
£, = |5|'°’IVL+(5|;|5)

G|l %) (ko | W )

z'
LU

o (k|aw|k+q) (keg|awlk)

+ 3 1) S (3.6)

e 2
|- |k+q]

Now F(g) is just the Fourier transform of the deviation of U(B) from
its average vaiue. Since F(g+K) = F(g) for all K belonging to (K],
there are just N distinct arguments of F(S)’ where N is the total
number of ions in the crystal. There is a one-to-one corresfondence
between these values of F(g} and the N distinct parameters in o(R).
Since Equation (3.5) depends on F(g) alone, the wavefunction clearly
depends in a detailed way upon the precise configuration of ions in
the crystal, as one would expect in the exact wavefunction.

In comparison, the energy of the state depends upon f(g).only
through the product, IF(S)|2 = F(S)F(‘S)' If we expand this product

using the definition of F{q), we find that

-iq'R _+iq-R' :
x (o(5') - (o)) Ein 3= (3.7)

In this expression, the <ums over the sets [B] and [B'] are described
from the same origin. Let us replace the sum over'g' with a sum over

R", where R' = R+R". As before, we note thit the crystal may become

L




arbitrarily large at our discretion and neglect the boundary ef-
fects arising from such a translation of origin. Th¢ sum over (R)
in Equation (3.7) is now independent of q. Accordingly, let us de-
fine a new average by

(o(R") - (0)g) (0(R"+ B') = {0)g)
(U(O)G(B' )>R = Z{R"] = N . (3-8)

This average allows us to write IF(q)I2 as

iq-R'
B0 1% = 5,y 0(0)o(B )y S5 (3.9)

This same result can be shown to follow directly from the convolution .
theorem [1]. Since the function O(R) has been defined such that it has
a value of +1 if R contains an A ion ané a valve of -1 if R contains a
B ion, Equation (3.8) defines a two-particle correlation function.
Thus, while perturbation theory as outlined above yields a wavefunction
which depends in detail upon the arrangement of ions in the crystal, it
yields an electron energy which may be expressed to second order in the
pseudopotential simply in terms of a two-particle correlation function.
In conjunction with ocur discussion of the screening contribution
in the previous chapter, and later in conjunction with our discussion
of the total conduction electron energy, we noted that the sum of an
Expression like (3.1) or (3.2) over all the values of (5] within the
Fermi sphere i3 often well-defined despite the divergence of certain
terms in the sum. We noted also that the sum could have such & magni-

tude that perturbation theory to some order suffices to describe the
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value of the sum despite its inability to approximate well the values
of many of the terms. Therefore, we may be able to express the total
energy of all the electronic states in the Fermi volume accurately
using second-order perturbation theory in the pseudopotential even
though we are unable to express the energy of each individual electron
in this menner. Accordingly, Expressipﬁ (3.6) may allow an accurate
determination of the total conduction electron energy in many cases.

It would follow in these cases that the complete effect of the state

of order upon the total conduction electron energy is expressed through
only a two-particle correlation function. In addition, the abilities

to approximate well the screening potential to first order in-the pseudo-
potential and the total conduction electron energy to second order in
the pseudopoteniial are so closely related that the accuracy of one ap-
proximation is most likely similar to the accuracy of the other. As

we have emphasized in Chapter Two, the ability to approximate the
screening potential to first order in the pseudopotential is central

to the results of this work. We must therefore conclude that Expression
(3.6) will most likely allow an accurate determinaticn of the total con-
duction electron energy in those systems which are amenable to tﬁe treat-
ment described in this work. There may, of course, be excepticns to
this statement. The accuracy of using the perturbation theory procedure
described above must be investigated carefully for each particular

system.
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Electron Enerpies Arising from a Matrix Diagonalization

e

If the f =udopotential of an allcy may de sepsrated in the
manner cf Equation (3.3), we aave demonstrated that the order de-
pendence of the tctal conduction eleciron energy may most likely
be axpressed using a two-particle correlation function. However,
there may be certain exceptional cases in which we can express the
screening potential acéurately using first-order perturbation theory,
leading to a separation of the pseudopotential, and yet cannot ap-
proximate well the tétal conduction electron energy using second-
order perturbation theory. In these cases, we would wish to diaéonal-
ize a limited secular matrix to cbtain accurate energies for certain
conduction electron states in the vicinity of band gaps. These
energies would then be used to find the tonél conduction electron
energy. We might also wish to know with accuracy the eigenvalﬁes
of electron states in the region of a band gap in some system where
perturbation theory may or may not approximate the total conduction
electron energy. In eitner case, we would diagonalize some limited
'éecular matrix. Accordingly, let us consider now the solution.of a
general secular equation to obtain the eigenvalues. We will express
the matrix elements of Hp using a basis set of plane waves which we
will label with the indices a, b, ¢,... . We have already evaluated
the matrix elements of the screening potential which occur in the
secular equation using first-order perturbation theory. The con-

duction electron eigenvalues of Hp must then satisfy a determinantal
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equatiun which we may indicate by

-(Hp)aa- E (Hp)ab (Hp)ac cer ]
(Hp)ba (Hp)bb"’ (Hp)bc 't =0 .
(Hp)ca (Hp)cb (Hp)cd'E..°

If we multiply out the elements of this determinant, we see
that the coefficient of some power of E in the resulting equation

has a general form given by

(Hp)ab(Hp)bc ses (Hp)da
We may always arrange the subscripts iﬁ such a product s> that they
form what might be called a circular array, such as ac-cb-be-ed-dsa.

In other words, each plane wave which appears on the left-hand side
of one matrix element in a product of matrix elements must also ap-

.pear somevhere in the product on the righ%-hand side cf & matrix
element. If all of the metrix elements involved i a given product
are tetween plané waves such that the difference between the wave

' vectors is not a member of the set fg}, then th2 matrix elements of
T vanish and F(g)'would appear only in products of the foliowing form:
F(gi)F(Qj) dog F(gn), where 314'3j oo 4 g = 0. "If the.e were one
matrix elemen’ in the product such that the difference between the
wave vectors were a member of (K}, then the products of F(q)'s would
have the same form as above where qi*'qj + f-- tq = (5]. One can

generalize from this to state that the equation for the eigenvalues

(3.10)

(3;11)

o e, wmeamert o . oe
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of Hp will depend upon F(q) only through products like

F(q;'F(q,) **- Flg,) » ' (3.12)
where 31'*33 +oees 4 Q) is & member of the set {51. We may use the

definition of F(q) to write

F(q;)F(qy) ** Flg,)

-ig By -19,R

= Z[Bilztgj}---Z{Bn](O'(Bi)-(O')B) Lﬁ_ (0,(133)_(0,)3) ‘e—"‘"ﬁ—"

-ign.R
("(Bn)'(“)l}) S . (3.13)

Proceeding as before, we may subsfitute for the parameters involved
in the sum as follows: BJ = §i+ 33; gk % §i+ Bﬁ; coe Bh = Bi; g&.

We will neglect the boundary effects associated with the change in
the origins in these sums. The coefficient of 51 vhich occurs. in

Fhe exponential factor in this new sum is Jjust g+ 33 toeee + g,
which has been demonstrated above to be a member of (g]. " Since
cxp(-ig'g) = ) for all members of (B), we see that the sum over (Bi]
is independent of any value of q. Accordingly, the product of F(g)'s

may be expressed as

(g )F(g,) *+* ¥(g,)

| B
=ztgs)z(w...z(g;l](c(o)o(gj) o)) S e

(3.14)

where we have defined a new average by

i



(o(0)atR}) *++ OBy

(o(R, )-{o)p) (0(R, +R})-{0)R)- - - (o(R +R! )-(a!p
)~ o N =

* 2, (3.15)

If we start with a general product of F(g)‘s, we may, in mary instances,
separate this product into two or more smaller products such that the
sum of the arguments ir each of the smaller products is a memher of
(x}. When we have séparated the product in this manner intc the smallest
possible sub-prodﬁcts and we find that the sub-products have
Ml’ Mé,...,%m factors of F(g) in each, respectively, then the above
discussion demonstrates tha£ the large prc.nct depends upon
M-, Me-,...,Mm-ISa.rticle correlation functions. A diagonalization of
the full secular matrix would involve a basis consisting of all plane
wvaves of the set {5]. Accordingly, we might expect that we will have
one product of F(g)'s ia the eguation for the energy eigenvalues which
will depend upon an N-particle correlatio. function. Therefore, the
energy eigenvalues will depend upon 2-, 3-,..., N-particle correlation
functions as we would expect for an exact sclution.

.With this general result in mind, let us be more specific in our
consideration of the form irn which F(g) might be expected to occur in
a final expression. We have examined two eitreme situations. If ‘e
may use pertﬁrbation theory to express the quantity which we require,
whether it be the energy of an individual electron or the total con-

i
duetion electron nergy, then we have seen that the wavefunction de-

—pends upon the detailed arrangemernt of the inns in the crystal, while
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the energies depend upon this arrangement only through 2 two-particle
corr:lation functlon. In the other extreme of having t> diagonalize
a full secular matrix, we found that both the energies andi the wave-
functions devend in detail upon the arrangement of ions in the crys-
tal. We will turn now to the cas2s where we may use a perturbation
expansion in the pseudopotential coupléd with a limited diagonaliz-

aticn to obtain the eigenvalues.

Electro. Energies Arising from a Selective Mixture of Pe. %urbation

Theory and Matrix Diagonalization

In the totally disordered cr&stal, the conduction electrons see
no regular arrangement of ions as they fravel throughout the crystal.
These electrons might be reasonably expected to react escentially as
though they were in a lattice of the "average" ions. Therefore, one
would expect to find band gaps at values of k such that h_gla = |k+ l_(lz,
wher2 K is any rember of the set [5]. In a completely ordereq crystal,
the periodic array is described by a subset of (g\ which we have de-
noted by {gs]. We can now construct a set of reciprocal vectors in
.analogy to the set (E] such that, for each member of the set, 55'
exp(-igs'gs) = 1 for all members of {gs). The set {gs], which con-
tains all the vecto;s satisfying the above condition, contains [E] as
a subset. Now we rigorously expect band gaps to occur at all poinis
k such that |1_(|2 = |§-+§s|2, where K may be any member of K J. As

the temperature of the crystal increases, we would then expec' that
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the band gaps associated with those members of {58] not included in
(§] would gradually disappear, in correspondence to the disappearance
of long-rang: order in the crystal. We would not expect band geps to
occur at values of k which are not suggested by the set (gs]. We
should then like to conclude that we could e2lways treat the matrix
elements of the pseudopotenfial between plane waves whose wave vec-
tors differ by qas 2 perturbation for temperatures outside the cri-
tical reglon, providing that q is not & member of (gs].

We have mathematical support for such a conclusion. We may re-
write Equation (3.8) to remove explicitly the sum ove; (§s] from the

sum over {q). We may then express E, by

(k|w]k+ £}k +K|w|x)

2 - -
E = k| V. +(x|w|k) += . =
v - L - - U_() ll-{!z_ |1_!+§|2

(clavls +K )i +K [Av]k)

2
+ 2 1 |F(K)]
U-(B] -8 |§|2 - |_}_H']_(s|2

g Celow |k +g){k + gawx)
+2 .F(g)l 3 IR
(q)AlK) lk|®- |x+ql
We should now examine the expected behavior of IF(q)I2 as a function
of temperature. For an alloy wﬁich is above its critical region of
temperature, |F(q)|2 is of order N» for all q vhich are not members
of (5]. As the temperature of the alloy decreases, we expect that
1

IF(I_()I2 will increase for those memders of (K ) whica are not members

of (k). 1In the completely ordered state, |F(l_(s)|2 is of order!No for

——

(3.16)
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all members of (gs] which are not members of {K}. Except in the
limiting case of a completely ordered crystal, there will always

be at least a small range of values of q about each member of [gs]
which is not a member of {5] such that |F(<_1)|2 is similar in magni-
tude to |F(§s)|2. Returning to Equation (3.18), we shall examine
the behavior of the sums in that equation for the case o:i an alloy
below its critical region of temper ture. In the completeiy ordered
alloy, |F(<_1)|2 is of order N-l for all g which are not members of {gs].
The number of values 6f q included in the last sum in Equation (3.16)
is c¢f order N+l. Therefore, this sum approaches an integral 2s N
becomes arbitrarily large, while the nature of the other sums does
not cliange. The type of singularity caused by the denominators in
Equation (3.16) gives rise to a singularity in a sum but may be
treated when it occurs in an integral by taking the principal éart.
This was discussed in connection with the derivations of both the
screening potential and the tot=l conduction electron energy. Ac-
cordingly, a singularity in one of the first two suvms in Equation
~(3.16) is undefined for the ordered crystal and signifies a break-
down of perturbation theory leading to a band gap. Iowever, the
principal part of the integral represented by the last sum in
Equation (3.16) is well defined and we have no reason to expect a
breakdown in the perturbation formalism or a band gap. As we in-

crease the temperature of the alloy, |F(}Es)|2 will begin to decrecase

and we will find a slight range of q values about each 53 such that
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|F(g)|2 is similar in magnitude to |F(§s)|2. At the alloy approaches
the critical tem;;;ature, it will eventually reach a temperature at
which we may no longer treat those matrix elements for q similar to
8 member of [gs] using perturbation theory. At this point, our pro-
cedure for avoiding the prcblem of solying a large secular matrix
breaks dowa. We will discuss this region about the critical temper-
ature in greater detail at the end of this section. For those tem-
peratures below this region aboﬁt the critical temperature, we shall
use perturbation theéry to treat all those matrix elements involving
F(g) where g is not a member of [gs]. If the alloy is above this
region, we have noted that |F(q)|2 1s of order N'1 for all values

of q which are not members of (K}. Accordingly, fcr an alloy above
this region about the critical tempevature, we shall treat all those
matrix elements involving F(q) for g not a member of () using'per-
turbation'theory. An alloy at a temperature in the immediate vicinity
of the critica’ temperature may not be treated in this manner.

'On the basis of this discussion, let us consider the problem o.

PN -
_finding the eigenvalue of Hp in the state v using the formalism de-

scrig;d by Pratt and Zeiger [2]. We can expand v in a basis of.the
set of plane wa&es (k). We shall denote by {9“} that set of plane
waves, 54-3", whose interaction with v may be treated by perturbation
theory. The set [g"] includes those ,.iane waves which we discussed
above as being amenable to a perturbation treatment ﬁlus those other

plane waves which are sufficiently removed in energy from the state v
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to allow a perturbation treatment of their interactio.. with v. All

other plane waves in (k) are placed in the set (q'). Accordingly,

we may write v as

|\.V) = Z[q,] ag.(}f)llf+g') + Z[gﬂ] agn(l_‘)l}_( +g") .. (3.17)

If we operate on this expression for v with -W = T- Hp and recall
that the eigenvalue of T in the state k+q is (|§ + q|2-+VL). ve

obtain
- L, 12 Lo
-W|v) = z[q,]\|!_c+c_1 | +VL-EV) ag.(lj)ll_""g')
" 2 Y, 1"
+Z(gny(lk+g" 1%+ 7, - ) agn () [+ . (320)

Now let us operate on Equation (3.18) from the left with a plane

wave k+#Q" of the set (q"), obtaining

~(x+Q" [W|¥) = (IE*Q"lz"‘.’L'Ev) ag"(l-‘) .  (3.19)

We have assumed that perturbation theo.vy suffices to deséribg the
interaction between v and the members of the set [3"]. Therefore,

we may divide by the energy difference in Equation (3.19), and have
| confidence that the net contribution of all the members of [3"} will
be wéll approximated>even though this particular energy difference
may vanish. If we expand v according to Equation (3.17), we may
write Equation (3.19) as

(e +g"[Wlk+q') a0 (x) (k+Q" [Wlk+q") aqn (k)

+ 2w
2 = 2 -
E, - |k +9"| -7 (q") Ev-lgfg"l -7

agn(}_() = Z[(_l']

(3.20)
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We may nov substitute for aq,,(lg) on the 1ight-hand side of Equation

(3.20) using the value established for the left-hand side. Iterating

this procedure, we obtain

(k +Q"[W|k +q') agr(k)

a u(k) = J ' ._
Q - (q ) Ev'hf"'g"lz.-VL

(ieeg” [Wlicra® (kg [Wlkq" Yo ()
g Wl (g lilegag )

+ 2 & R 5
(S ] (S ] Ev-ll-("'g"l _vL Ev-ll-""g"l -vL

Keeping terms only to second-order in the pseudopotential ; We can
extract the sum over {q') from the series to write

(k+Q" Wk +q")

a. '
- q q - --
3 T moleerly,

(l.(+g"|W|l.(+g") (l.(_‘_gnlwhs +gl)

(3.22)
( "] 2 a 2 - (
7 E-leeg" %V, E-lkeq"| -V,
We can use Equation (3.22) to write v to second-order in'the pseudo-
potential. Expression (3.17) becomes
(k +q"|W|k +q')
V) = 2 00) 80 (K) li+q') + 2y g lirg") ——=
R (@)= ket B
- v '= 2 L
(}_VfQ"lwh_("'Q") (1§+Q."|W|1_<+q')
= =0 - = . (3:23)

+'z w1Z(an h_("‘q") 2 2 =
(S ] [9 ] - Ev-|l£+g"| -VL Ev- |l.(+g"| _XIL

If we operate on Equation (3.18) from the left with a plane wave
k-Q' of the set {q'), we obtain an equation analogous to Equation

(3.19),
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We may substitute for v using Equation (3.23) to obtain the follow=

ing secular equation from Equation (3.24):

' 1N =
Zig) e +Q oo lkv a'd-E B, o) =0,

- -

where the matrix elements cof Heff are given to second-order in the
pseudopotential by
|2

(k+q'|H polk +q') = (| +Q']%+ VL)GS':S' +l+g lwll—”‘.i')

(k4" |W]k+q" M k+q" [W|k+q' )

+ %,
{q"] wl| &
- By~ g L

We should note that this secular equation involves only matrix ele-
ments of-Heff between plane waves of the type 54-9' where g"is a
member of the set {q'}. We have expressed the interaction befween
the state Vv and the plane waves of the set {q"} in terms of perturba-
tion theory. The presence of the final energy, Ev’ in the matrix

elements of He underscores the fact that the secular matrix equation

£f
. indicated by Equation (3.25) is appropriate only for finding the energy
and wavefunction associated with the single state v. In other words,
the diagonalization of the matrix will yield only one actual eigen-
state, not several as is usually the case. We also note trat the
solution of the secular equation would involve an iterative procedure

in Ev' For ttese reasons, the procedure which we have outlined here

is not particularly convenient for actual calculations involving the

(3.24)

(3;25)'

(.5..2'6)



pseudopotential. On tte other hand, the form of the matrix elements
of Heff given in?ciuation (3.26) allows us to make some general state-
ments regarding the form in which F(g) occurs in expressions for the
energy.

.If we are considering an alloy at a tempersture above the region
immediately about the critical temperature, as discussed rreviously,
then we may consider the set {9"] as consisting of all the vectors
of the set (k) which are not of the torm k+K, where K is a member
of the set {K}. In addition, most of the vectors in the set (K} may
also be included in {3"]. The set {3'] contains onl& certain members
of the set {K}. Therefore, we would expect that all of the matrix

elements of He woutlld have a form indicated by

ff

(k +K|H o |k +K') = (]k +1_(|2+ V) +(k +K|w|k +X')

%K

Gk 7]+ ) ik ] eic?)

i z 1"
K 2 =
{- ] E - |k+ " | - VI

(oK Jow g Miseq” a4 ) [B(q) |2
+ Z{q"1 - = = ~

— , (3.27)
Ev- |}_:+c_1 I - VL

where the <ums include only members of {g"}. For the case of an alloy
above its critical temperature, Equation (3.27) demonstrates that F(S)
appears in the secular equation only in the form |F(g)|2, which may be
evaluated in terms of two-particle correlations. Therefore, the indi-

vidual eigenfunctions and eigenvalues of Hp have been shown to depend

upon the arrangements of ions in the alloy crystal only through a two-
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particle correlation function if the alloy is above it:s -+itical
temperature. Th;:-result depends upon our ability to treat the
interaction between a given state k and all those states 54-3,
for q not a member of [g}, using perturbation theory.

- If we are considering an alloy at a temperature below the region
immediately about its critical temperature, the set (q")} contains all
members of the set [E}Iexcept for certain members of [gs}. Therefore,
the set {3'} will contain only certain members of [58}. We would -
expect that the secuiar Equation (3.25) would contain three types
of matrix elements of Heff' One of these types is just Expression
(3.27). If we let K, K, and K be members of {§s} but not members

of [5], then we may write the other two types of matrix elements as

(k4K B pplk+ k) = (k4K lav]k+K) F(K)

(oo v i) (o |w k) P(X )

+ 2
[K") " 2 37
= E,- |k+K" | -7,

. by ny " "
(e, [ |k +) POK)

X
2
|“-

V.

"
Ev-llfﬂ-(c L

(kek_[ow|ierg" Micrg"[Aw]kek) P(g")F(X -q")

+ % > 5 (3.28)-
(9")#{K7) E,-[k+q"[*-T

and




2 =
(ke Ky [Hopelk+By) = (lkak %+ 708

%

+ (6‘5a"5b’ [153“-{ +K ]k +K ) +F(K - K )k +K_ |avlk+K,))

(k+ K lav]k+ K" Mk +K" [aw]k + K ) F(K ) F(-K))

+2
(K"] o't 2 &
- E, - e |°-¥,

+ z[l_('c'} (61-{&_}-(.::, “.(} (1_{"‘}_(&]‘-"'1_{ 1_(2) + F(l_(a-}-(; ) ()_(+}-(a|Awh§+-2)) .

(652_5b,[§](§+§g|§|§+§b)-rF(§;-§b)(§+_:JAw|§+§b)) . ;
X ' ‘

1} 2 3
By~ I 79y

(i, 18w iieeg") e lawlieky ) FUK -g") Féa"-Ky)

+ 2 0 " K (3.29)
(a" A (K2) e T,

where the sums include only members of [9"). It is clear that at least
Equation (3.28) contains factors, like F(ga) and F(ga- E)F(S)’ which
cannot satisfy the condition that the sum of the arguments is a member
of [5). Accordingly, not all of the matrix elements of the secular
matrix may be evaluated in terms of few-particle correlaticn functions.
Some of the terms dependupon the exact configuration of ions in the
crystal, as discussed earlier. Therefore, the electronic eigenfunctions
which arise from the solution of the secular equation dcpend upon the
precise configuration of fhe ions. We know, however, from our previous
analysis of a matrix diagonalization, that the products which qccur in
the equation which we solve for the energy will be such that tge sum of

the arguments is a member of (5). Let us proceed to examine the types

-
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of products which will occur when wé multiply out a determinant, the
elcments of which are like Equations (3.27), (3.28), and (3.29). 1In
order to be consistent in our perturbation expansion, we will drop

all those terms which involve more than one factor of the ratio of a
matrix element of the pseudopotential to an energy difference, such

as

(l_( +g" | Aw|15+ ‘.()

. (3.30)

L} " -
Ey-lk+g |- L

We must pause to investigate the nature of the :et of vectors
(K.}, which is that subset of {z_cs'] which is not included in (K}. We
are interested in the macimum number of different values of fa which
might have to be considered btefore the'sum of them veccmes a member
of the set (K}. This determines the maximum number of F(q)'s needed
to obtain a product such that the sum of the arguments is a member of
tg], and thus the maximum number of particles whose correlations we
must know in order to evaluate the electronic eigenvalues as we out-
lined above. Lef us consider a 50-50 alloy which orders in the cesium
chloride structure. The set [g] consists of those reciprocal lattice
vectqfs associated with the body-centered cubic arrahgement of ionic
sites, while the‘set [gs] consists of those reciprocal lattice vectors
associated with the simple cubic lattice points of the ordered system.
In this system, the sum of any two members of the set [Ea], as defined

above, is a member of (K). This is a special property of such a system
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which we shall needé in our discussion of the products of the matrix

'

alloy which orders on a lattice >f ionic sites having face-centered

elements of He By way of comparison, let us consider a 25-75
cubic symmetry. The set [5] consists of the reciprocal lattice
ve:tors associated with the face-centered cubiz ar;ay of ionic sites,
while the set [gs] consists of those reciprocal lattice vectors as-
sociated with the simpie cubic symmetry of the ordered system. 1In
this case, ws may add two vectors of [ga] and obtain either a member
of {K) or another member of [;l]. If we are considering a large pro-
duct of F{g)'s such that the sum of the arguments is a merher of (K],
we wish ‘o break the large product up into the smallest sub-uroducts
such that the sum of the arguments in each sub-product is also a
member of (K}. The number of factors in the largest of these sub-
products will tel. ve the highest number of particles whose cofrelations
we must consider to evaluate the large product. In each of :se large
products, the nature of [ga] for this fcc system is such that we should
never need the sum of more than three vectors of [Ea] to obta' 1 a :-~ember
of (§]. With these properties in mind, let us return to cur zonwider-
ation  f the secular equation.

As we noted In our discussion of an alloy at a temperature a :ove
its ecritical temperature, matrix elerents like Expression (3.27) may
be evaluated in terms of two-particle correlations. Turning to the
other matrix elements, let us coasider first the case of a 50-50 alloy

which orders in the cesium chloride structure. Since all the members




85

of {§R] in this system are related to one member of {ga] by vectors

Q
et

" the set {5], We never need the sum of more than two members of

{ga] to obtain a member of the set (K)}. Accordingly, all the factors
like F(Ea- Ec) in Equations (3.28) and (3.29) are zero, and F(ga) =
F(g;) for all 52. Thus, Equation (3.79) may be evaluated and depends
on the arrangement of ions for a given ionic volume only through the
two-particle correlation function dependence of |F(§a)|? and |F(§a-9")|2.
Since we have dropped from the product of matrix elecaents of Heff all
those terms which involve more than one factor like (3.30), Expressions
like (3.28) give rise only to products like |F(l_(a)|2 and F(K_-q") X
F(g")F(-Ea). The former product requires a knowledge'of two-particle
correlations, while the latter requires a limited knowledge of three-
particle correlations.

In conclusion, a S0-50 alloy ordering in the cesium chloride
-structure will possess electronic eigenvalues which require a knowledge
of at least two- and three-particle correlations *for their evaluat®on
below the critical temperature of the alloy. This result depends upon
_our perturbation treatment of certain matrix elements as we discussed
above.

If we now turn to the cinsideration of the 25-75 alloy which we
describeu carlier, an analysis similar to the preceding discussion
reveals that we must evaluate products of F(g) like “hose above. In
addition, even if we drop all terms involving more than oae factor

like Equation (3.30), we must evaluate products like F(Ea)F(gb—§a)F(-§b)
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and F(ga- 9")F(g")F(§b- 5§)F(-§b)' Therefore, it is clear that a
25-75 alloy such as this w.ll possess electrons whose eigenvalues
require a knowledge of at least two-, three-, and four-particle cor-
relations for their evaluation below the critical temperature of the
alloy. It is apparent that more complicated structures will requi-e
a8 knowledse of the‘correlations among larger numbers of particles.

We have been discussing the likely form of expressions for the
individusal elect?on eigenvalues vhich arise from treeting the electron
states using a selective mixture ot perturbation theory and matrix
diagonalization. As we noted previously, the total conduction electron
energy may most likely be evaluated in terms of two-particle correlastions
in those systemé in which the pseudopotential may be placed to a good
approximation in the form of Equation (3.3). In these instances, the
influence of those correlations among more than two particles waich
appear in the expressions for some of the eigenvalues of individual
electrons must cancel in some way when the eigenvalues of all the con-
duction electrons are sdded together to yield the total conduction
electron energy. Otherwise, the tota’. conduction electron enefgy must
also depend on these correlations. There is a correspondence between
the accuracy of a perturbation expansicn of the total conduction elec-
tron energy to second-order in the pseudopotential andnthe can;ellation
of the =ffects of these higher order correlations. Jf course, per-
turbation theory results may also be inaccurate due to the nature of

the structure-independent part'of the pseudopotential. 1In the region



about the critical temperature whicﬁ we discussed before, we cannot
use perturbationhzieory to avoid the solution of a large secular
matrix since IP(q)Iz is of order No for a continuous range of values
about each member of {gs]. Therefore, we expect that the eigenvalues
of individual electrons will depeiia in general upon correlations among
large numbers of particles. To the extent that the influence of these
correlations fails to cancel when we sum over the individual electron
energies to obtain the total conduction electron energy, we will find
that the total conducticn electron energy depends upon N-particle cor-
relations in this region. This corresponds to the appearance of criticall'
scattering phenomena at temperatures in the vicinify of the critical
temperature.

Ir summary, we showed that we may express the total conduction
electron energy of the crystal in terms of two-particle correlétions
if this energy may be approximated well through a second-order pertur-
bation expansion in the pseudopotential given by Equation (3.3). Then
we demonstrated that the eigenvalues of individuél electrons obtained
.from the solution of a secular equation of dimension M might be expected
to depeni upon correlations between as many as M particles. We.dis-
cussed the approximation that the matrix elements of the - seudopotential
between plane waves whose wave vectors differ by some q may always be
treated in a perturbation expansion, where q could be any vector but a

member of {5] in an alloy above the region about the critical temper-

ature, and any vector but a member of {gs] in an alloy below this




critical region. Using this approximation, we der.onstrated that a
solution of a secular eﬁuation for an alloy at a temperature above
this critical region yields individual electron eigenvalues which
depend upon the arrangement of the icns only through a two-particle
correlation function. Below this critical region, the electronic
eigenvalues depend upon the arrangement of £he ions through cor-
relation functions among two, three, ané even greater numbers of
particles. The total conduction electrca energy will also depend
upon these correlations unless their influence cancels in some way
when the ele “ron eigenvalues are summed over the fermi voiume, as
we diccussed previously. Aggrt.from this possible cancellation, the
total conduction electron energy will therefore depend upon two-
particle correlations above the critical region and upon at least
two- and three-particle correlations below the critical region.

There is also a region about the critical temperature in which both
the energies of individual electrons and the total conduction electron
energy may depend upon correlations among N-particles. In the ab-
sence of information regarding correlations among greater numbers

of pariicles than two, we are accordingly restricted to the evalu-
ation of either those energies for which perturbation theory is com-
pletely applicable, or energies in an alloy which is either completely

ordered or in the temperature region above the critical region.
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The Expression of IF(Q)IZ in Terms of Cowley Order Parameiers

L

We wish to express |F(9)|2 in terms of well establisﬁed two-
particle correlation parameters. The Cowley order parameters [3],
a(g), are a convenient set to use for thi.: purpose. Let us define
pA(§> and pB(g) as the probabilities of finding an A ion iocated at
the site R if the origin contains an A ion or a B ion, reSpecfively.
If x is the fraction of ions in the 2rystal which ere of type A, then

we may define the Cowley order parameters by

(R)
a(R) = 1 - pr' .

Since the probability of finding an A ion at the origin simuitaneously
with a B ion at R must always equal the'probability of finding a B ion
at the origin simultaneously with an A ion at R, we can establish the

following relationship between pA(g) and pB(g):
x(1- py(R)) = (1-x) py(R) .

This relationship allows us to define @(R) in an equivalent way in

_terms of pA(g) by

P, (R) - x

a(}_}) E——T—- o

We may noté two properties of @(R). First, %(0) is unity. The second
property follows from the summation of Equation (3.33) over the com-
plcte set of {R). The sum of pA(B) over all values of R in {R) must
yield xN, which is just the numter of A ions in the crystal. There-

fore, a(R) has the property. that

(3.31)

(3.32)

(3.33)
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Zq) B = TI= (N -xN) = 0 .

e

If we turn to the averé.ge over the crystal defined in Equation
(3.8), we may use the definition of (O')R in (2.28) to write Equation

(3.8) as

o{R) o(R+R')
(o(0)0(R' )y = Z(q) ———— - (0% -

But the product of O{R)o(R+R') is +1 if both sites R and R+R' con-
tain the same type of ion and is -1 if the sites contain different
typgs of ions. Accor&ingly, the average of this product over the set
(R} may be expressed as

c(R) o(R+R")
Z(p) N

x[(+1) py(R') + (-1)(1-p, /)]
+ (1-x)[(+1)(1 - pg(R")) + (-1)py(R")]

2x pA(B') -2(l-x)pB(§') +1-2x .

We may now substitute for pA(B) and pB(}j) from the definitions for

a(R) to obtain

o(R) o(R+R') ,
B] N [2x(1-x)] a(g' ) +2x

&

+ [2(1 -x)x] a(R') -2(1 - x)x+1-2x

[4x(1 -x)]Ja(R') +4x2 -4x+1 .

We may use the definition of (O’)R to write Equation (3.37) as

o() o(R+R')
z(f_i] N

= 4x(1- x) o(R') + (U)g .

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

o e e e i e e,
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This expression enables us to relate the average in Equation (3.35)

to the Cowley oréé} parameters by
(o{0)o(R'))g = 4x(1-x) «(R') . (3.39)

Therefore, IF(q)|2 may be expressed in terms of the Cowley order param-

eteré as
P a(R ) FHE
IF(q) |© = 4x(1- x) Z{R] —5 - (3.40)
The above result may also be obtalned through analogy with the expres-
sion for the intensity of a diffracted x-ray beam derived by J.M. Cowley [4].
In the case of a completely disordered crystal, G(B) must be con-
stant for all R # 0. Since @(0) = 1 and the sum of G(R) over all mem-
bers of (R} must equal zero, we see that &(R) must equal -1/(N-1) for

R4 0. 1In this case, |F(q)|2 is given by

Ir(q)|? = 2{L=x) (1 .5

Qs [1_(]) '

(3.41)

The case of a completely ordered crystal is not as easily discussed -
since the exact form of IF(9)|2 depends upon the particular structure
.involved. As a simple illustration, let us consider a S0-50 elloy
which orders in the cesium chloride structure. The lattice of ionie
sites is body-centered cubic. 1In the ordered state, we may consider
that A ions occupy all of the body-centers and B ions occupy all of
the corner sites. Accordingly, &(R) = 1 for all members of {R? which

correspond to the set of repeating vectors for the ordered state,




{Bs]. For all other sites in {R), Q(R) is equal to 1-(1/x), or -1

in this case. Therefore, |F(q)|2 is given by

iq-R,
e
i B 7 I

If q is any member of the set {K¥1, then both sums in Equation (3.42)

iqR
|F(<_1)|2 = 4x(1- x) Z(5) ==

are unity and |F(c_1)|2 vanishes. This is in agreement with the pre-
viously discussed property that F(K) = 0. If q is not a member of
{Es]’ the set of reciprocal lattice vectors corresponding to {gs],
then both sums are zero and lF(c_;)l2 vanishes. If q is a member of
{Ea]’ which consists of those memt 'r of {Es] which ;re not members
of {K), then the first sum is zero and the second is unity. Accord-

ingly, for the ordered case, we may wr:te |F(q)|2 as

IF(9)|2 = 4x(1- x) sg:lﬁal

One may generalize to state that |F(g)i2 is zero in the completely
ordered state of the alloy except for q equal to certain'discrete
vectors describing the symmetry of the ordered state.

We have expressed |F(g)}2 in terms of Cowley order parameters
as we desired. In addition we have examined the behavior of lF(g)|2
in the limiting cases of complete order and complete disorder, and
found that, for specific structures, we can find simplé functional
forms for it in both limits. 1In complete disorder, |F(<_;)|2 is a
constant except that it vanishes for g a member of {K}. Ina co-
pletely ordered state, |F(c_1)|2 is non-vanishing only for certain

discrete values of q.

(3.42)

(3.43)




(1]

(2]

(3]
(4]
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Chapter Four

THE SELECTION OF THE PSEUDOPOTENTIAL -
In Chapter Two, we discussed the properties of a pseudo-Hamiltonian,
Hp, which has the general form suggested by Austin, Heine, ard Sham [1],

Ho(r,r') = T()8(r-r') +W(r,r') , (4.1)

where

W(r,r') = VI(g,g') +VEL(§,§') +Zc(§|c) fc(g') . (4.2)

In this expression, T(z) is ihe sum of the kinetic energy operator and
the potential VL. VL is the spatial average over ‘the entire crystal of
the Coulomb potential of the nucleii and the Hartree potential of the
core and conduction electrons. VI(E,E‘) is the Hartree-Fock potential
of the ion cores les: that part which is included in V. VF‘L(g,g') is
the many-body potential of the conduction electrons less that part which
‘is included in VL' In Chapter Two, we approximated this potential with
a linea~ized form of the Hartree potential of the conducfion electrons.
(§|c) is the wavefunction of a core state of the actual crystalline
Hamiltonian, H = Td-VI+ VEL. The core state wavefunctions have been .
assumed to be independent of local environment in the crystal.' We shall
approximate {hem with the corresponding atomic wavefunctions in an ac-
tual calculation. The sum over "c" in Equation (4.2) extends over all
of the core states in the crystal. In the pseudo-Hamiltonian of Austin,
Heiné, and Sham, fc(g') is an arbitrary function of r' and the parameter

"¢". We found in Chapter Two that the separation of the allcy pseudo-

potential was possible only when we restricted fc(g') to be independent
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of the local environment of the ion with which it is associated,
within a particular configuration of ions in the crystal. We em-
phasized then that this restriction on the final form of fc(g) is
not an approximation.

In any application of the pseudopotential method, we wish to
choose fc(g') in such a way as to obtain the most accurate electronic
eigenvalues from the pseudo-Hamiltonian in Equation (4.1). If we.
could solve the generazl secular equation exactly, the woik of Austin,
Heine, and Sham [1] has chown that this psendc-Hamiltonian would yield
the exact electronic eigenvalues. However, as we discussed at length
in Chapter Two, the solution of the general secular equation for the
alloy prcblem would involve the solution of a set of a% least N linear
equations, where N is the number of ions in the crystal. The necessity
of avciding the general solution of such a set of equations and our
desire to separate the pseudopotentiasl led us to the necessity of using
a linear approximation for the self-consistent screening poterntial.
Linearizing the screening involves using first order perturbation theory
to calculate the valence electron eigenfunctions of Hp. Further, as
we noted in Chapter Three, the glectron energies for a general configur-
ation of ions in the crystai may be calculated using no more than two-
particle correlations only if we may represent tre total conduction
electron energy using second order perturbation theory. Accorpingly,
ve must use perturbation thcory in this instance if we have atgour

disposal no more than two-particle correlation functions. Since our

i
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formalism demar 's the use of perturbation theory in at least one
step in any calculation, we should select that set of .unctions,
fc(g'), vwhich eptimizes in some way the convergence of a perturbation

expansion in the pseudopotential.

Optimic=ticn through the Minimization of the Kinetic Energy

Several euthors [1,2,3] have decided that this optimization
procedure could be accomplished most directly by minimizing the ex-
pectation value of the kiﬁetic energy operator in i.: valence state,
denoted by v, of the pseudo-Hamiltonian, Hp. This minimization con-

dition may be written as

8T = 0 , (4.3)
where
7= Tl ' (4.4)
(¥|+)

Oae of the properties of the pseudo-Hamiltonian of Austin, Jeine, and
Sham is that the waveanction of the valence state, (r|v), of Hp aif-
{ers from that of the valencestate, ({!v), cf H by no more than a |
lin<ar combination of the core stat: wavefunctions of H [1]. Accord-
ingly, Expression (4.4) éay vary only by a charge in the coefficients
of one or more of the (§|c) wﬁich combine with (EIV) to yigld (EI;)°
We may vary the coefficient of each (Elc) separately sincé the.e is
no constraining relation arong these ccetficients. Further, we may

vary eithe- the bras or the kets in Expression (4.4) independently
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since the variation ia the coefficient of each core state mey be any
small complex number. These two variations yield two equations for

each core state, both of which must be satisfied¢ %y the optimized

pseudopotential,
(c|T]¥) = T(c|¥v) , (4.5)
and |
(v|tle) = T(v]e) . (4.6)

One of these relations may also be deduced from the other through the
Hermiticity of T in the set of p ane waves. 1In order to convert these
relations into an equivalent set involving the pseudopotential, we sub-
stitute Hp-w for T. If we further note that le;) = EVIG) and that

E, = T +W, where

X

K4

(v]v)
we may write Equations (4.5) and (4.6) as

(c|w|v)

and

1)

(v|wle)
These two equations, taken together, imply a limited kind of Hermiticity
for W. 1In other words, the matrix elements of W between the state v
and the set of core states display the Hermitian property. One may now
substitute for W on the left-hand sides of Equations (4.8) and (4.9)
using Equation (4.2). If we rearrange the terms, we can obtain the fol-

lowing two relations:

= (vlwiey | (4.7)

(e'%) (4.8)

wlvle) . (4.9)
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Jar £ (2)(el) = (e|(-vE- VR [9) , (4.10)
. (Flet) far £,(r)rle) = F|(-vE- V*E+ D) fe) . (4.11)

At this pcint in the optimization procedure, Equation (4.10) has
commbnly beer used to suggest a form for the pseudopotential, while
Equation {4.11) has been ignored. Since VI+ VEL = H- T and ch)= Ec|c),

we may write kquation (4.10) as
Jar fc(f)(f!;) = (cI(T+-W-Ec)|§) . (4.12)

In performing a calculation with the pseudopotential, we will want to
.xpand Vv in a set of plane waves. Then.we will use perturbati-m theory
to calculate the energy and wavefunction of v. Therefore, we will need
the prcjection of fc(g) on the set of plane waves. Since the set of
plane waves is complete, we must know fc(g) completely in order tv
evaluate all of these projections. PBut Equation (4.12) yields only

the projection of fc(r) on the single state v. Accordingiy, we must
make an assumption regarding that part of fc(g) which is left undeter-
‘mined. The assumption which is most obvious and most commonly made is

that fc(g) may be given in operator form by

fc(g) = (Cif) (T(r) + W - Ec) . (4.13)

We may note that Expression (4.13) is indeed a local operator, as we
imply when we write fc(g) as a function of one spatial variable. We

may substitute Equation (4.13) into Equation (4.2) to obtain

W(r,r') = VI(E,I')+ VEL(E,E‘)+-EC(§|C><C|§')(T(§')+ W- Ec) . (4.14)

D0 OOmoo @ oo
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This pseudcpotential is the optimal poeudopotential most often
discussed in ca1:;iations involving the pseudopotential method,
although approximate forms of Expres<ion (4.14) are often used to
simplify calculations [2,3].

If we take the matrix element of Expression (4.14) between

two plane waves, k and k', we may write

]

(elwlk') = (e[vEe Vo[t ) + 3 CkeX ekt ) (k' P47, + 5= £ ) .

Expression (4.15) demonstrates that the presence of the operator T
in Expression (4.13) makes the pseudopotential non-Hermitian. The
non-Heramiticity of Expression (4;14) leads us to question whether
or not Expression (4.13) satisfies Equétion (4.11) as well as Equa-
tion (4.10). If Expression (4.13) doecs not satisfy Equation (4.11),
then it certainly does not specify that fc(g) which minimizes T. If
we substitute Expression (4.13) into Equation (4.11), we find that

Expression (4.13) cannot possibly minimize T unless the following
equaiity is satisfied:
°
3, (Fle) et Iz]e) £ (lz]e)
In order to facilitate our discussion of Expression (4.126), let us
expand the right-hand side in terms of the complete set of eigen-
values of H to obtain

Ze (Fle et T]e) 5, (e YerTle)+ 5. (7 lv ) vt Infe)

We may cancel the sums over core states which occur on both sides

of Expression (4.17). Since v may be cciastructed such that it is

(4.15)

(4.16)

(4.17)
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orthogonal to all of the valence states of H except v [1], we
may drop all of the remaining terms in Expression (4.17) excert

one to yield

(v]v){viT|e) 1o . (4.18)

Since it will not generaily be true that all of the matrix elements
of T between v and the set of core stafes vanish, we may conclude
that Expression (4.13) does not yield & useful form for fc(g) which
minimizes T. The failure of Expression (4.13) to satisfy Equation
(4.11) stems directly from its inability to predict accurately the
projections of fc(g) on the set of core states. Since the core states
may be expected to have a much greater proportion of high frequency
components than v, we might expect that the failure of Expression (4.13)
to minimize T will be demonstrated most strongly in the high frequency
components of fc(g). As we shall demonstrate later, the high frequency
behavior of the fc(g) given by Expression (4.13) is indeed unsatisfectory.
In any case, Expression (4.14) is certainly a valid ﬁseudopotential
in the form of Austin, Heine, and Sham. This expression for the pseudo- -
potential must bte evaluated self-consistently since it involves the ex-
pectapion value of the pseudopotential in the state v. Accordingly,
for calculations on the pseudopotential, it is customary to use various
approximations to Expression (4.14). If the state v is associated with
the point K in reciprocal space, Harrison [3] has suggested that the re-
placement of W in Expression (4.14) by (BIWIE) would be a reasonable ap-

proximation. The Harrison pseudopotential may then te written as

e S e e em e e e e — et ————————— —— - o © o
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W(r,r') = VI(E,E')-&VEL(E,E')+-Zc(§|c)<c|§')(T(§')-+(EIWIE)-EC) .
- . _ (4.19)
This step greatly simplifies the dependence of W on the state v. It
also allows for the self-consistent determination of the pseudo-
potential through taking the matrix elements of Equation {4.19) between

the plane waves k and k.  We may solve fer (k|w|k), obtaining

GeIVEVEE L) + 3 Gelede o (k[P T, - &)

(k|w|k) (4.20)

1 - 2 {klc)clk)
The Harrison pseudopotential, given by Equations (4.19) and (4.20), will
bte the cne used to compare the mairix elements of W derived from Ex-
pression (4.14) with those derived by the method we are about to discuss.

Two other commonly used psecudopctentials may be ottained from Expression

(4.19) by replacing (k|W|k) by either (EIVI + VEng) or 0.

Optimization through the Minimization of {kj (W- {k|Wi))? |x)

Since the only obvious assunption of a simple form for f;(g) from
Equation (4.10) does not truly m.nimize i, the examination of another
optimization procedure mignht prove more fruitful than an analysis of
other possible assumptions. Concerned with optimizing the perturbation
expansion in W for the stale associated with the peint k in reciprocal

space, Rassani and Celli [4] suggested the minimization of

z&(glwh_ug)(!_u qlwlk) . (4.21)

The prime on the sum indicates that the term for q = O has been excepted.
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We may take advantage of the orthogonality and completeness of the

e

set of plane waves to rewrite Expression (%.21) as
(k| (w- (k|w]x))Z k) . (4.22)

Therefore, in minimizing Expression (4.21), we are actually minimiz-
ing the mean square deviation of W from the expectation vélue of the
pseudopotential in the state k. This.procedure might be expected to
produce a smooth function with a narrow Fourier distribution about

q = 0, which is direzctly related to the convergence of a perturbation
expansion in W. Let us substitute the form of W from Equation (4.2)

into Expression (4.21), obtaining

Za[(lflvl +VEng +q) + EC,(l_ilc‘_.) [ar fc.(l_‘)(i'll.‘“})]

X [(15 +g|vI +VEL[K) 4 Z.(k+qlc') [far fc.(g)(glg)-l f {4.23)

If we have placed no restrictions upon the form of fc(g), we may vary
the projection of fc(g) on each plane wave independently.” Varying the

projection of fc(g) on the plane wave k, we obtain

Z(‘l(i'_clwl)_<+c_;)(l_(+ qle) =0 . («.24)

The ccrmpleteness of the set of plane waves allows us to rewrite Equation
(4.24) as

(xlwle) = (klwled(kle) . (4.25)

There is an equation like {4.25) for each core state. Similarly, we

may vary the projection of fc(g) on each plane wave k+q. Setting the
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coefficient of each variation equal to zero, we obtain an equation

o —

for each q # 0,

(k+qlWlk) =0 . (4.26)

We may insert the form of W into Equations (4.25) and (4.26) to ob-

tain the following equations for the projections of fc(g):

5. (kle') far £, (2)zle) = CGel(-vF- v*i+ (kW) |e) (4.27)
and

. (k+gle') far £, (x){rlk) = (k+q|-vi- VoK) . (4.28)

We may note immediately thaf these equations do not involve the
projections of fc(g) on the se* of plahe waves E:;ﬂ’ where q f 0.
Therefore, the minimization of Exprassion (4.23) for a general fc(g)
does not yield the information which we ne=d to express fc(g).in
terms of its projections or the set of plane wave:. As we noted in
connection with our discussion of t%= ~t+he: uptimization'proqedure,
the use of perturbation theory with a g:neral pseudopotential requires
a knowledge of the projections of fc(g) on the complete set of plane -
waves. Further, Expression (4.27) does not appear to contain enough
information to determine the projections of the fc(g) on the set of
core .cates. Each time a new value of "c" is selected to yield a new
equation like Expression (4.27), we introduce a complete new set of
projections of the fc(g) on the new core state. Accordingly, we will

always have-more variables than constraining equations. Thus the
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minimization of Expression (4.23) for a general fc({) does not. yield

the projections Ur'fc(g) either on the set of core state; or on the

set of plane waves k+q, where q # 0. We shall now demonstrate through

contradiction that Equation (4.28) over-constrains the projection of
fc(g) on the plane wave k. If we assume that Equation (4.26) holds
for each value of q } 0, ve may multiﬁly it by (v|§+ q) and sum over

all values of q # 0, yielding

Z(vlk+ g)lk+glwli) =0 .

Taking advantage of the completeness of the set of plane waves, we can

rewrite (4.29) as
(vlwlk) = (vle)(k|wlk) .

Since v is an eigenstate of H, it is orthogonal to all members of the
set of core states. Accordingly, we may insert the form of W into

the left-hand side of Equation (4.30) to obtain
(vlvie VEEIK) = (vlid(x]wlx) .

By definition, each state v has an‘eigenvalue Ev such that
(v (H-E)) |k} =0 .

We may now let H = T+—VI+ VEL and substitute from Equation (4.31)

into the resulting equation to obtain
(lx|2+ 7.+ (elulk) - £ ) (vlk) = 0 .

Even in an ordered alloy, there will be many valence states for which

(vlg) does noct vanish. According to Equation (4.33), all of these

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)




states must have the same eigenvalues. But the Austin, Heine, and

——

Sham form of the pseudopotential has been shown to yield the correct
eigenvalues for all valence states [1]. Since these eigenvalues can
not all be identical, the Austin, Heine, and Sham form of the pseudo-
potential must not be able to satisfy Equation (4.26) for all values
of q # 0. Thus we have demonstrated through contradiction that Equa-
tion (4.28) over-constrains the projection of fc(g) on the plane wave
k, if it is taken to hold for all q f 0. Since we are seeking a well-
defined procedure for selecting an optimal pseudopotential, we do not
want to select certain arbitrary .values of q for which Equation (4.28)
must hold. In summary, we have found that the minimization of Expres-
sion (4.21) for a general pseudopotential does not yield the projections
of fc(g) on plane waves which we need for a perturbation expansion.

Let us apply some logical constraint upon'the form of W in an at-
‘tempt to obtain an optimal pseudopotential from the minimization of
Expression (4.21). We will seek that Hermitian pseudopotential which
minimizes Expression (4.21), relative to other Hermitian pseudcpotentials.
. We may now write Expression (4.21) so that it involves only the projéction

of fc(g) of the plane wave X to obtain
z&l(l_:+q|vI+VEle_:)+zc,(x_:+q|c') far £, () el P (4.34)

We will vary independently the projection of fc(g) on the plane wave
k and the complex conjugate of that projection. Proceeding as before,

‘we obtain the following two conditions:
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(xwle) = (x[wlx){xle) (4.35)

and - |
(clwlk) = (c]x)(k|wik) . (4.36)

We may ncte the marked similarity between this pair of equations and
the pair, (4.8) and (4.9). In the earlier case, however, we were able
to deduce one memver of the pair from the other using the Hermiticity
of T. This time we had to restrict W to being Hermitian to ubtain
both members of the pe‘r. If we substitute the form of W into the
left-hand sides of these iwo equations, we may write
. {klen) far £ (x)ele) = (x| (-vF-V¥E4 Celulx))[e) (4.37)

and

Jar £ (e)(zlk) = (el (-vE-v"la (klulk)) [ . (4.38)

There are two obvious forms for fc(g) which we may deduce from Equation
(4.38). Using the property that the plane waves are eigenfunctions of

T, we may write the two possibdilities as

fc(g) = (clg)(T(g)-+(5|W|§)- Ec) , (4.39)
and
£.(x) = Seled(|k+ T, + Celulw)-E) . (4.40)

The first possibility is similar to Expression (4.13). As we noted

in this earlier case, the prescnce of the operator T makes the result-
ing pseudcpotential non-Hermitian. Since we have restricted W to be
Hermitian in this treatment, Expression (4.3S) is clearly rot a suitable
soluticn. However, we may substitute Expression (4.40) into the form

of W to obtain

LI
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W(r,r') = Vi(r,rt)+ VEl(r,r') + Zc(g|c>(|15|2+f'L+(l_c|w|l_t>- E J{elz') .
(4.41)

This pseudopotential is obviously Hermitian. Accordingly, we know
that Equation (4.40) must satisfy Equation (4.35) as well as Equation
(4.36)." We should not state that Expression (4.41) is the Hermitian
pseudopctential which minimizes Expression (4.21), but rather that
the projection of Expression (4.41) on the state k is equal to the
projection on k of that Hermitian pseudopotential which minimizes
Expression (4.21). In order to find the optimal projections of fc(g)

on the set of plane waves k+g, for q # 0, we must leave these pro-

jections in our form of Expression (4.21). But now we cannot vary
the projections of fc(g) on each plane wave independently since we
have constrained the resulting W to be Hermitian. There does not
appear tc be any well-defined procedure for obtﬁining these optimal
projections for the Hermitian pseudopotential which minimizes Ex-
pression (4.21). However, if we are interested in using no more than
secorid order in perturbation theory to find the electronic energies,
ﬁe do not need the projection of fc(E) on any plane wave other than k.
In summary, we have estab;ished a well-defined procedure far
finding the projection on tﬁe plene wave - . k of that Hermitian pseudo-
tential which minimizes Expression (4.21). To second order in a
perturbation expansion in W, that optimal pseudopotential wil% have
the same conduction electron eigenvalues as the pseudopotentiél giveﬁ

i
by Equation (4.41). Since the optimal pseudopctential and the

*Harrison has shown that the eigenfunctions of this pseudopotential
are the eigenfunctions of the actual ecrystalline potential.
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pseudopctential of Equation (4.41) are both valid pseudopotentials
in the Austin, H:I;e, and Sham form, we also know that they must
yield the same conduction (lectron energies when solved exactly.
Expression {4.41) may be evaluated self-consistently by taking its
matrix elcinent between the plane waves, k and k. We may then ex-
press (EIW|:) by
GelvEe VEEI) & 5 Ckle) e ekl 0 - 2

1 - 2 (k|e)c|x)

(k|wlk) = (4.42)

We may now substitute Equation (4.42) into E-uation (4.41) to obtain a

self-consistent expression for the pseudopotential.

Comparison Between the Two Pseudopotentials

On the preceding pages, we have derived two different pseudo-
potentials, given by Equations (4.19) and (4.41). Both of these
“orms are valid pseudopotentials in that thzy satisty the Austin,
Heine, .4 Sham form. The fcrmer pseudopotertial has not been shown
to satisfy exactly the condition of mirimizing T, tut is vommonly
used in calcilations. The latter pseviopctential has been shown to
yiela the same eigenvalues to second order in perturbation theory
as that Hermitian pseudopotenticl which minimizes Expression (4.21).
The finail test of a pseudopotencial is its performance in augmenting
the convergence of a perturbz .ion expansion. In Figures 4... through

4.6, we have graphed the matrix elements »f the average and difference

e W e Mk
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screened pseudopotentials, as discucssed in Chapter Two, between the

e

plane waves k and k+q for the 50-50 alloy of lithHium-magnesium.

We have labeled the matrix elements of Equation (4.41) as the present
pseudopotential (P.P.) and those of Equation (4.19) as the Harrison
pseudopotential (P.P.). Nnt only does'the present pseudopotential
have the advantage of being Hermitian, but its ma*rix elements go

more snoothly to zero as g becomes lorge than do the matrix elements
of the Harrison pseudopotential. Since the radius of the Fermi sphere
corresponds to atout 0.67 atomic units in reciprocal space, we would
like to cut off the sum over q which occurs in perturbation theory
once the magritude of q exceeds five or six atomic uni£s. If we do
not cut off t.e sum in this way, the summation becomes very tedious.
We might have confidence that the error introduced Ly this cut-osf in
a summation using the present pseudopotential ié less than in fhe case
of the Harrison pseudopotentia.. In ad&ition, the smaller width of the

present pseudopotential in reciprocal space suggests that the error

introduced by neglecting higher order terms in perturbation theory will

. be smaller than in the case of the Harrison pseudopotential. The greater

magnitude of the Harrison pseudopotential for large q results directly
from the presence of T in the pseudopotential. As we noted previously,
chis unfortunate behavior f.r large q might have been expected from the
inability of this pseudopotential to satisfy Fquation (4.9). 1Irn any
case, the behavior of the matrix elements suggests that the pseudo-
potential of Equation (4.41) would be more suitable for calculations

than the pseudopotential of Luation (4.19).
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Comparison with the Phillips and Kleinman Pseudopotential

e

While not central to the purpose of this work; it might be :n-
teresting to compare the pseudopotential of Equation (4.41) with the
well-known Hermitian psecudopotential of Phillips and Kleinman [5,6].
They rearranged the terms in the OPW secular equaticn to ﬁlace it in
a form similar to that of the Austin, Heine and Sham pse€udopotential.

fc(g) is then given by
= - . |
£.(r) = {elrtME _-E) . (4.43

Since this expression involves the energy, Ev’ of the state in which
we are interested, we must use some self-consistent procedure to cal-
culate eigenvalues from the Phillips and Kleinman pseudopotential.
However, if we are to form & valid comparison between this pseudo-
pctential and that of Equation {4.41), we should calculate the energies
frcm Equation (4.43) under the conditions for whirh Equation (4.41) is
rigorously optimai. Therefore, we shall evaluate the eleetronic eigen-
values from Equation (4.43) to seccnd order in the pseudopotential.

To seccnd order in the pséudopotential, we may write the energy
of the electronic state v associated with tne point k in reciprbcal
space in terms of a Hermitian pseudopotential as

(kI + @) |2

2 o . :
E, = lk|® + V. o+ (k|wlk) + ziq] (4.44)

2 2
%1%~ |k+q]
Yrhen we are considering the order of the various terms in Equation

(4.44) which arise from the insertion of the Phillips and Kleinman




pseudopotential, we may choose whether to regard ZC(E|C)(C|E) as

.

" being actually of zero'th order in the pseudopotential or as being

effectively of first order. As we noted in connection with our
discussion of the screening potential in Chapter Two, this sum over
the core states is usually of order 0.1: Accordingly, it is reason-
able to consider it as being comparable with a first order expression
in W. Let us do so, and expend Ev in powers of A, where A is the
strength of the pseudopotential. We may now write the Phillips and

Kleinman pseudopotential as
W= A s (o e e e
o 3 .
+ N Eil) 2 |eXe]| + A .Eig) Z fede| + -0 (4.45)

We may now insert Equation (4.45) into Equation (4.44) and expand the
left-hand side of Equation (4.44) in powers of A. If we then demand

that the equality hold for coefficients of each power of A, we may

write
Efro) = [kl v, (4.46)
£(M) < (V0 VEElR) + 3 (ke Xelin(ES) - &) )
and

£(8) - Eﬁl) £ (ko) (elx)

v
|(§|VI+ F‘Ll}_“’q)"' c<5|°)(°|§+q)(E$O)' Ec)|2 ’
Vo kq)+ 2 d . (4.48)

23 2 2
2 k% |x+q]

Considering now the pseudopotentfal of Equation (4.41), we may

again consider that Zc(§|c)(c|§) is of first-order in the pseudopotential. ;

L S e eaedama B B e N L ol
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Hence, the diagonal matrix eiement of W in Equation (4.42) may be

written in powers of A as
(kW) = ACCkvE+ V) - 5 (o) e (x4 7, - E))
+ W5 (kle) e i) (e [VE+vER ) - 2 (il e) (e ) (e 24T -E )

e L : (4.49)
If Qe substit' - this expression into Equation (4.41) and substitute
Equation (4.4 to Equation (4.44), we may follow the procedure out-
lined above to obtain a set of three equations identical to Equations
(4.46), (4.47), and (4.48). Accordingly, the Phillips and Kleinman
pseudopotential yields the same eigenvalues to second order in the
pseudopotential as Equation (4.41) if we may consider Zc(glé)(c|§> as
being »f first order in W. If we may not consider this sum over core
states as being of first-order in the pseudopoiential, then the elec-
tronic eigenvalues obtained to second order through the two methods
differ by about 10% in the second order term. Accordingly, we may
state that the second-order perturbation theory electronic energiss
obtained through the Phillips and Kleinman pseudopotential and through
Equation (4.41) differ by no more than about 10% in th» second order

term.




(1]
(2]

(3],

[4]
(sl
(6]
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Chapter Five

AN ALLOY CALGULATION USING THE PSEUDCPOTENTIAL METHOD

Having completed our formal discussion of the application of
the pseudopotential method to the alley problem, we will now describe
the procedure to be foliowed in performing an actual calculation. For
this purpose, we will use the Hermitian pseudopotential. which we dis- |
cussed in Chapt;r Four; We will calculate the total conduction
electron ccntribution to the ordering energy and the effective pair-
wise interaction betﬁeen the ions. In both instances, we will evalu-
ate tﬁe electronic eneréies only to second order in perturbation theory.
Accordingly, we may write the matrix elements of that pseudobotential
which are appropriate for this calculation of the properties of the

electronic state associated with § as
(k+ q|W]k) = (i +q|vEe vEX k)

+ £ (k+ale)lelx)(|k|®+ T, + (x|W]K)- E) (5.1)
where

el + 3 (ke e k) (k24 T, -E
(k|wik) = v + oEleH eIl + Ty - %) . (5.2)
1 - 2 {k|e)2]k) '

We must evaluaté these matrix elements for all values of k within

the Fermi sphere and, in principle, for all values of ¢. We have

assumed that the wevefunctions of the core =states involved in the
n.n

sum over "c" are independent of the crystalline environment of the

ion with which they are associated. For calculational purposes, we

e e o = =)



shall further assume that these core wavefunctions may be closely
approximated with the wave.unctions of the corresponding states of
the neutral atom. We have chosen the neutral atom for this cc.res-
pondence since we expect that the conduction electron density in the
region of the core is best approximated by the valence states of the
neutral atom. The analytic atomic Ha;£ree-Fock wavefunctions cal-
culated by E. Clementi [1] will be used for this purpese.

As we discussed in Chapter Two, the screening contribution to
the matrix elements of W depends upon a knowledge of the unscreened
pseudopotential. Accordingly, we must calcu;ate the matrix elements
of the unscreened pseudopotential before we can calculate the screen-
ing potential. The unscreened pseudopotential consists of the ciystal-
line ionic potential, denoted by VI, plus the sum over c¢ = states as

in Equation (5.1). We shall first consider the matrix elements of VI.

ﬂatrix Flements of the Ionic Potential

As we demonstrated in Chapter Two, the matrix elements of the
_pseudopotential may be separated, with certain approximations, into
a structure-derendent factor and a second factor which depends upon
the structure for a given ionic volume only through fc(g). The
structure-dep>ndent factor is either a Kronecker delta or F(g), the
properties of which we discussed in Chapter Three. Accordingly, we
shall consider in this chapter the evaluation of the second factor

in the pseudopotential. The contribution of this factor to VI depends

il

i i

Hihill,
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upon the matrix elements of the Hartree-Fock potentials of the indi-

vidual ions. ThIs ionic potential may be written for an ion of type
i as

(" |eMe ")

E - i.ul

Celedelz")
+ 2 Z% —_—ee

lr-x'|

viler) = T ') -2 3 far” 6(z-r')

. where the sums over "¢" extend over &ll the core states associated
with the ion in question. We wish to multiply this potential by

(k+3|r) and (r'|x), and then integrate the product over all values

of r and r' within the crystal. This integral is then multiplied

by the total number of ions in the cryétaL denoted by N, to obtein

(x + g'vill_t)no. |
Our discussion of the matrix elements of Equation (5.3) wiil

‘be facilitated by an expression for l/|g| expanded i1 the set of

plane waves. We may write 1/|£| as

L

||

We may multiply both sides of Equation (5.4) by exp(-ig'-r) and

=Z{]Ae .

IR

integrate over all values of r to obtain

-ig'-r
A y = }- fd{ ————e g =
5 W |z

In order to evalvate this integral, we must limit the range of the

(5.3)

(5.4)

(5.5)

Ut e
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function 1/|r| by multiplying by exp(-a|r|). We may then evaluate
the integral as *'a" apprcaches zero to obtain the following expansion

for 1/|rl:

"

32:2 eig-
0 “{q) ! |2 )

|-

Using this expansicn for l/lgl, we may write the matrix element of

"

5

the first term in Equation (5.3) as
-ige ',
iger g9 -T

2
gl

The orthonormality of the set of plane waves allowsus to write the

N

2z
nO

[
4T Z(g'] fdl_'

matrix element of the first term in Equaticn (5.3) as

em 1
Qo IS'Z

Considering the matrix element of th: second term in Equat.ion

(5.3), we may expand l/|£-§"| usirg Equation (5.6). We may again use

the orthonormality of the set uf plane waves to write this matrix

element as

AT e-iq.rn

273 fdr"(r"lc)(clr")——- s - .
c /- = -0 2
o lql

Now Qe must consider the sum over the core states which occurs in
this integrund. The analytic core wavefunctions are given by Clementi
in the form

(r|ntms) = an('fl) Y?(er:¢r)8(8)

where

(5.6)

(5.7)

(5.8) .

(5.9)

(5.10)
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2 ;H'i - )
R (l |) = Z-J E—Eglﬁl_y_ l{'n-l e cﬁjglfi .

— nJ [(en)!]

For a given element, all of the atomic wavefunctions with given
values of "n" and "1L" have the same radial distribution of charce
density. We wcu.d then expect that the set of core states for <het
elenent will include states with all values of "m" ang "s" for each

pertinent value of "n" and "2".

In other vcrds, each shell as
specified by "n" and "4", is filled. Therefore, we may write Ex-

pression (5.9) as

i D 2
(o}

2 ~iqr
zlY‘;(sz"’ Ppn) | 73
But, we may take advsrtage of the relation,

411 l r!) ’

) » 2!4-1
AR ACHLRR ACHUIE (co8 6,
_to note that the core wavefunctions contribute only a spherically
— symmetric factor to the integrand. We may expand the eaﬁonential
fortor in Expression (5.12) in terms of spherical Bessel functions

and spherical harmonics using

Jlar | .urz (1) 3pClal 12D zl -2

If we substitute Equations (5.13) and {5.14) into Expression (5.12),
we may perform ﬁhe angular integrations and use the orthonormality
of the set of spherical harmonicz to write the matrix element of the

second term in Equation (5.3) as

7 (6 3) Yj(0,9,) -

(5.11)

. (5.12;

(5.13)

(5.14)
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-.1.5'."._1...znz(21+ 1S aje| ian(Ig"I)IzJO(IgI i) .
o

g l%EL

This integral may pe evaluated readily once we note that
sin(lq| |£"])

lal 1z

Jo( Igl I!.‘" l) =

From the form of Rnl given in Equatiop (S.ll), ve gsee that all of

the integrals represented in (5.15) fall into the general class whose

values are given by

® - ) ' n+l
fdxxneAxsian=n' IM2 A+i:+'i' - .
0 (A" + 32)

Equations {5.16) and (5.17) allow us to readily evaluate Expression
(5.15). Acc;rdingly, we have obtained.closed forms for the matrix
elements between plane waves of both the first and second terms in
Equation (5.3).

An examination of the third term in Equation (5.3) reveals that

the matrix elements of the Fock éxchange potential may not be exp:-ssed

simply in closed form. We shall seek a form for these matrix elemecats

_which may be tréated in a direct manner using standard programming
techniques. The integrals over real spaca2, as given by

(x+ gleXr|ede]r X' |x)
o8 2, Jor Jar' — ;
: r-r'

would be difficult to evaluate using a computer due to the vanishing
of the denominator at infinitel -~  points in the double integral.
As an alternative, we might consider'expanding the denominator in

Expression (5.18) using

(5.16)

(5.17)

(s.18)

e

ereesiaatreehe
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We mey now express the exponentials and the core states in Expression
| {5.18) in terms of spherical harmonics. The angular integrals of pro-
ducts of three spherical harmonics msv be treated using the formalism
described by Condon and Shortley [2]. .The final form of the matrix
element involves two coupled integrations over re-1 spa;e and an in-
finite sum over values of the angular momentum quantum number. This
form is also not easily evaluated us‘ng a computer.

A simple form for the matrix elements of the Fock potential may
be obtained by expanding 1/|r-r'| in terms of plane waves. Sin .. we
may not take advantage of the orthonormality of the plane waves to
select one plane wave from this expansion, we will find it convenient
to express Equation (5.6) in terms of an integral. The density of
.points in reciprocal space.is ﬂ/(ZW)S. Accordingly, we may write

Equation (5.6) as

iger .

1 1 el =

I S qu . (5.20)
el 27 T qff

If we express the denominator in Expression (5.18) using Equation
(5.20), we have separated the two integrals over real space. This
step greatly simplifies the integration by computer. We may now
write Expression (5.18) as .

1

L Jagr =25 (k+ g+ q'|edlek+ o) . (5.21)
L lq*| -
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We need only evalua‘*e the projection of a core state on each member

of the set of plane waves. This projection may te written vusing

Equation (5.10) as

(a|nkas) = far =—=—R_,(|x l)ym(e ?) | (5.22) .

~/o

where both the plane wave and the core state must have the same spin -
quantum numbers. We méy expand the plane wave using Equation (5.14)

and perform the angular integration to obtain

- | |
(glotue) = $AL 13 (0., o) falzl Izf” 5 (lzDigllal Izh. (528

The spherical Bessel functions may>be expressed in terms of the fol-

lowing recursion formula:

*(x)=xl-l—lJ(X) : (5.24)
)4 x dx 0 ) ' ’
There.ore, the integrals ove: |r| in Equation (5.23) are of a form

to be evaluated using either Equation (5.17) or

n! RE[(A+ 1p)"*

fdx P e.-Ax cos Bx = o)
(A + B )

, (5.25)

We may now perform the sum over "m" and "s" in Expression (5.21).
Since the spins of the plane wave states and the core states must

be the same in each term in this case, we do not get a factor of

two from the spin sumation as we aid in obtaining Expression (5.12).
We may use Equation (5.13) to write the matrix element of the third

term in Equation (5.3) as
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4

™, nd

vrat?

(%f:-l) Jaq' Fl(cos 6%+ ) P

x falr| |r!? RogClzl) 3 (lk+asqt| |2])

x falz'] Jet R g0 Dagheti 121)

Thus.we have obtained an expression for the matrix elemenf of the
Fock potential which may be evaluated in a direct manner.

We have all the information which we rieed to evaluate
(k+ glvilg)go from the analytic atomic wavefunctions of Clementi.
The matrix elements of the second and third terms in Equation (5.3)
are expressed in terms of a summafion over the values of "n" and "{"
~which represent occupied shells in the core of the element iﬁ question.
In addition, the evaluation of the matrix elements of the Fock po-
tential requires an integration over ail of reciprocal space. We
have been able to program the calculation of (53-g|vi|§)no such
that the integration over reciprocal space, with a maximum error of
one part in ten thousand, takes less than thirty seconds for éach
element for giveﬂ values of k and q: In Table 5.1, we have presented
.these matrix elements of the Hartree-Fock ionic potentials of lithium
and mégnesium in rydbergs for three values of k and Several valuzs of
q: These matrix.elements depend upon the nature of the crystal only
to the extent of a multiplicative factor of 1/90. We are considering
a 50-50 alloy of lithium and magnesium in which the ionic sites form

a bvody-centered cubic lattice witn a cube edge of 3.5 A. Accordingly,

(5.26)
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Table 5.1

MATRIX ELEMENTS OF IONIC HARTREE-FOCK POTENTIALS

(klv,lx'} for E_a_\o.o X

| x'| Lithiwn Magnesium
0.25| -2.936161 -5.944271
0.5 | -0.845845 -1.763288
1.0 | -0.305571 -0.680483
1.5 | -0.185479 -0.434633
2.0 | -0.129164 -0.313642
2.5 | -0.094584 -0.235121
3.0 | -0.071176 -0.179453
4.0 | -0.042772 -0.109171
5.0 | -0.027501 -0.070728
6.0 | -0.018740 -0.048906
7.0 | -0.013411 -0.035877

8.0 | -0.009995 -0.027644
9.0 | -0.007704 -0.022136
10.0 | -0.006104 -0.018250
11.0 | -0.004550" | -0.015379
| 12.0 | -0.004092 | -0.013175

B o
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(klv,|¥') for k= 0.5 %

k! kS |k- k'|| Lithiux | Magnesiur
0.75 { 0.0 0.250 | -2.v10494! -5.936771
0.50 | 0.25 | 0.250 | -2.924%53| -5.939447
0.25 | 0.0 0.250 | -2.930is5! -5.942026
1.0 0.0 0.500 | -0.825%25| -1.753819
c.5 0.5 0.500 | -n.834976| -1.758822
0.0 0.0 ©.500 ! .0.8453948| -1.763288
1.5 0.0 1.000 | -0.283729| -0.669665
0.911 | 0.911 | 1.000 | -0.2910i5| -0.674109

-0.5 0.0 1.000 | -0.314680| -0.681946
.0 1.0 1.118 | -0.264790! -0.598504
2.0 0.0 1.500 { -0.166120| -0 426025
-1.0 0.0 1.500 | -0.108268| -0.434738
0.0 1.5 1.581 | -0.173081| -0.409453
2.5 | 0.0 2.000 | -0.113922] -0.3087:
-1.5 0.0 2.000 | -0.141422] -0.31106..
0.0 2.0 2.u62 | -0.123166| -0.301404
3.0 0.0 2.500 | -0.083323) -0.233776
-2.0 .0 2.500 | -0.104503 -0.230132
0.0 2.5 2.550 | -0.091045| -0.227995
3.5 0.0 3.000 | -0.063110| -0.180736
-2.5 0.0 1.000 | -0.078549| -0.172980
0.0 3.0 3.041 | -0.068897| -0.175029
4.5 0.0 4.000 | -0.038728| -0.112860
-3.5 0.0 4.500 | -0.046461) -0.102233
0.0 4.0 -.031 | -0.041701| -0.107387
5.5 0.0 5.000 | -0.025425| -0.074537
-4.5 0.0 5.000 | -0.029312| -0.065015
0.0 5.0 5.025 | -0.026945] -0.070023
.5 0.0 6.000 | -0.017623| -0.052052
-5.5 0.0 6.000 | -0.019556| -0.044693
0.0 6.0 6.021 | -0.018422| -0.048656
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{klv,[k') fer k=1.02%

lx- k'|| Lithium | Megnesi.m
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0.250 | -2.891948 | -5.913776
0.250 | -2.898507 | -5.920318
0.250 | -2.906145 | -5.927444

0.500 | -0.798769 | -1.728808
0.500 { -0.81C358 | -1.741082
0.500 | -0.825925 | -1.753819

1.000 | -0.260159 | -0.645446
1.000 | -0.305571 | -0.680483

1.414 | -0.197519 | -0.461632

1.500 | -0.147593 | -0.406580
1.500 | -0.158350 | -0.418001
1.500 | -0.198268 | -0.434738

1.803 | -0.145245 { -0.351773

2.000 | -0.100149 | -0.295152
2.000 | -0.107368 | -0.302085
2.000 | -0.14€166 | -0.308819

2.236 | -0.108296 | -0.270265

2.500 | -0.073369 | -0.225361
2.500 | -0 110316 | -0.225044

2.693 | -v..81972 | -0.209153

3.000 | -0.055995 | -0.176244
3.000 | -0.083627 | -0.166052

3.162 | -0.062975 | -0.163117

4.000 | -0.035073 | -0.112721
4.000 | -0.049214 | -0.094847

4.123 | -0.038893 | -0.102471

5.000 | -0.023477 | -0.075871
5.000 | -0.03C609 | -0.059164

5.099 | -0.025481 | -0.068027

6.000 | -0.016532% | -0.053626
6.000 | -0.02C259 | -0.040581

6.08% | -0.01760S% | -0.047911

= Smoae s
== S
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we set the ionic volume, ,, equal to 144.671 (a.u.)s. The values
of k and q are given in atomic units and may be compared directly
with the radius of the Fermi sphere, which is roughly 0.67 a.u. The

maximum error in the matrix elements of the potentials 1is one part

in ten thousand or + 0.000001 rydbergs, whichever is the larger.

Matrix Elements of the Unscreened Pseudopotential

Referring to Equations (2.22) and (2.25), we may write the
matrix elements of thé unscreened pseudopotential for an individual

ion as
(k +q|wllk)g = (k+ alv, I&)q

+N 2, (keglntms;i) far's (r')x'|x) . (5.27)

nfms;i
The sum extends over all the occupied core states associatei with
that iocn. For .he pseudopotential of Equation (5.1), we may write

]
fnlms;i(f ) as

. e . .
fnzms;i(s‘) = (nems;i]r'){]x|® + T+ (k|wlk} - E,) (5.28)

T (k|W|k) is given by Equation (5.2). Referring to that ex-
pressign, we may note that (glvllg) is just the averﬁge of the

diagonal matrix elements of the Fock potentials of the two ions,

weighted to account for their possibly different concentrations in

the allcy. In our example, we have equal concentrations of the ele-
ments. Mote that the spatial averages of the potential of the nucleii, the

Hariree potential of the r-re electrons, and the Hartree potential
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of the conduction electrons have beeﬁ included in Vi. Accordingly,
the average of tﬁz‘first two contributic.s to vy do not contribute
to (k|W|k). Further, we havea.pproximated.VEL in our formalism with
a linearized Hartree potential, v*¢. This potential has no diagonal
matrix elements between plane waves since the spatial a§erage of this
conduction electron potential has been included in Vr. _In order to
evaluate the diagonal matrix elements of the screened pseudopo-ntial,
W, we need only the diagonal matrix elements of the Fock exch. je po-
tentials of the ions, the projections of the core states on the set
of plane w» ves, and the values of the quantity (vi"Ec)' We have
already calculated the first two quantities and need oﬁly evaluate
(VL- Ec). Since we have & direct expression for the diagonal matrix
elements of W, we are only interested in the evaluation of the right-
hand side of Equaticn (5.27) for q # 0. This qﬁantity depends upon
{k|W|k), the off-diagonal matrix elements of v,, the projections of
the core states of the set of plaﬁe waves, and the value; of (Vi- Ec)'
Therefore, we may rea’ily evaluate the off-diagonal matrix elements
_of w: once we have calculated the values of (Vi-Ec). '

As we discussed in Chapter Two, we have restricted the form of
fc(g‘) which wé might choose from our optimization procedure to one
which is independent of the local environment of the ion with which
it is associated, even though fc(g') may vary as the ions are re-

arranged at constant volume. For the pseudopotential of Equation

(5.1), this restriction constrains the value which we use for Ec to

il
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being s function of only tne type of ion with which it is associated |
and of the confiEE}ation of ions ia the crystal. Since Ec is an
eigenvalue of the crystalline Hamiltoniwn, H, we would expect that

it would formally depend upon the local environment of the core

state. However, we shall approximate Ec such that it is independent
of local configuration. Thus, we are approximating the optimal
pseudcpotential which we discussed in Chapter Four.

In our assumption that the core eigenfunctions are essentially
those of the corresponding atomic eigenstates, we have neglected the
spatiél variation over the core region of the crystalline potential
less the atomic potential. While this approximation may be reasonable,
we must account for the influence of the non-zero value of this cor-
rection potential at the site of the core on the eigenvalues of the
core states. The atomic Hartree-Fock eigenvalues of the core states
of lithium and magnesium as given by Clementi [1] are presented in
rydbergs in Table 5.2. A precise calculation of the cor£ections to

Table 5.2

HARTREE-FOCK ATOMIC EIGENVALUES

Lithium Magnesium
1s -2.47775 1s -49.03165
' 2s -2.73048

2p -2.28219

these eigenvalues would begin by subtracting the influence of the

valence states of the atom. Then we would add the influence of an
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array of effective ionic potentials with a compensating uniform
electronic charge distribution. This correction includes the ef-
fects of both the core charge and that charge which is orthogonal-
ized out of the conduction electron gas by the operation of the
pseudopotential. Finally, we would account for the influence of
the screening distribution of conduction electrons. This final
step would require a khowledge of the screening distribution angd,
hence, the use of a self-consistent procedure. In this instance,
we may use an aJproximation to avoid such a procedure since any
value; for Ec will constitute a valid pseudopotential. Accordingly,
we shall assume that the influence of the valence statés on the core
states approximates fairly well the influence of near conduction
electrons. Acting on that assumption, we will not subtract the in-
fluence of the atomic valence states from the eéergies of the Eore
‘electrons. After adding the inf}uence of the array of effective
ionic charges and the compensating uniform distribution of charges
we shall subtract the interaction of the core charges with a sphere
- of this uniform charge density centered at the nucleus and contain-
ing the ¢{fective valence number of electrons. This procedure is
probﬁbly at least as accurate as neglecting the influence of the
screening in the'procedure we described above, especially for an
alloy. We should emphasize at this point that this procedure for
determining the crystalline core eigenvalues yieids a valid pseudo-

potential in *he s2nse that the electron energies to all orders in
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perturbation theory will be the actﬁal erystalline energies. However;
our approximatio;—}or the core ~igenvalues makes the resulting pseudo-
potential an approximetion to the optimal pseudopotential of Equation |
(S.1), and might accordingly lessen the accuracy'of a second-order
perturbatior theory calculation of the energies. |

We must first estimate the effective ionic charges. The ccre
states associated with an ion of type i will interact with a plane
wave k to add an amount of positive charge to the effective core

charge equal to

2 tms (}_tlnzms;i)(nlms;ill_(). . : (5.29)

We have already'evaluated the projectién of the core states.on the set
of plane waves. In order to preserve éharge neutrality, an equal

amount of compensating negative charge is added-to the charge density
associated with the valence states of Hp. We will treat terms like
Expression (5.29) as being related to a first-order expression in the
pseudopotential, as we discussed in connection with the screéning
potential derivafion in Chapter Two. We may then obtain a first

" order estimate of t'.: total amount of positive charge added to.the effec-
tive'corecharge'mythé interactions of the core states with all of

the pseudovalenqe states by using a zero'th order approximation for

the pseudovalence state associated with k,

I¥) = a (k) |x) . - (5.30)

it Lt
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Ir Zi is the core charge of an ion of type i, we may write the ef-
fective core charge, denoted by fof, as

eff

. 2 2
Tz =2, +2(1§}F|a°(1§)| Enzmsl(nlms;ill_t)l ’ (5.31)

where the sum in reciprocal space extends over all poinis within the

L
L

Fermi sphere. As we demonstrate in our derivation of the screening
potentisl, Iao(l_c)l2 depends upon a sum over all of the core states

in the crystal and is given by
2 o -1 .
la (6)[° = 13 - 2 (kleXel)]™ . (s.32)

Ir leis the fraction of ions of type A in the alloy, we may use our
" previous discussion of the average.and difference projection: operators

to write Exp ession (5.32) simply as

la (0) 7 = [1- AN Eh‘msl(nlms;Alg)lz- (1-x)¥ 3, | {ntms;B[x} | 1,
' | (5.33)
Thus we may evaluate each of the terms in the sum in Expression
(5.31). If we now note that the density of electron states in recip-
rocal space is just 20/(2#)3, where the extra factor of two accounts
 for spin, we may write Equation (5.31) as
25 < 2, L faxla (x)[? znzmsl(nzms;ilg)lz’ . (5.34)

! ar

We may now evaluate this expression readily. For the 50-50 alloy

of lithium and magnesium which we discussed before, we have rsed

Equation (5.34) to calculate the following: z:ff = 1.11657 and

Zeff = 2.14834. These effective ionic charges lead to an average

Mg
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effective conduction 2lectron density of 0.011284 electrons per
3
(a.u.) .

Iet us now calculate the potential at the core due to the

array of effective ionic charges with a compensating uniform
charge density. For the completely di.sordered crysﬁal, we will
consider an array of average charges, geff | (;:ff + z;ff)/a, lo-
cated on the set of body-centered cubic sites. We will consider
them to be point charges in a uniform compensating distribution
of electrons. The energy per ion for such a system has been found

[3] to be

=eff.2
-1.79186 15;—-1- , : (5.35)
[o]

in rydbergs, where r, 1s the radius of a sphere of voluﬁe fige The
effect of the potential vr is to add an amount Vi to the value of
. Ec' Since Ec occurs in our pseudopotential only in the fsrm
(VL'-EC), we may Just set VL equal to zero for the purpose of this
calculation. Sinée we are ccnsidering only the Hartree poteﬁfial
of the ions and the uniform compensating electron dersity in thiﬁ
calculation, Vr is just the spatial average of the crystalline po-
tential. If the average potential is zero, the uniform electron
charge distribution will not ‘contribute to the energy of phé cryst#l.
Therefore, the value of the potential at a site due to ali the other

ions in the crystal and the uniform compensating charge density must

be
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zeff :
-2(1.79186) —— . . (5.36)

— 0

The core states will also see a potential due to the uniform charge

density which goes as Iglz. Therefore, we may write the potential

in the core region of an ion in the disordered crystal as

seff seff '

Z aT 2 2
Vioo(r) = -2(1.79186) 2~ + ST Z__ |1|F | - (5.37)
DIS'- r, 3 I- . .

For the ordered crystal, we must add to Equation (5.37) the in-
fluence of an array of difference charges, 1 AZEff==i(Z:ff- z;ff)/z,
distributed on a cesium chleride lattice. The energy of such a sys-

tem has been shown [4] to be

eff 2 : '
-1.002153 f“—zr—)— , . (5.38) .
0

in rydbergs, where r, is the radius of a sphere of volume, fi,. There
is no energy of interaction between these arrays. At a site contain-

'ing an A ion, Expression (5.38) contributes a potential in the core

region of
eff
-2(1.002153) sz‘__ X . (5.39)
0

This potential changes sign at a site containing a B ion. If we
add this potential to that for the disordered crystal, we obtain
the following expression for the potential at a site in the ordered

alloy containing an A ion:

1 eff eff
V (r) = - L (2.70401 25T 4+ 0.78971 28TT)
ORD' = T A Zp
+EL T g 1l (5.40)
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In order to obtain the potential at a site containing a B ion, we
reed only interé;;hge A and B wherever .ey occur in Expression
{5.40). The correction to the energy of a core state due to these
potentials is now given by

1

AEnlms;i

= far {ntms;i|r) viORD (r){r|ntms;i) .- (5.41)1
DIS '

The spatially varying parts of Equations (5.37) and (5.40) may be

readily evaluated in terms of the expectation value of Igl2 in the

core state. Thus we have obtained the first correction to the core

eigenvalues.

Now we wish to evaluate the energy of interaction of a-sphere of
the uniform compensating charge density with a core charge. The radius
of the sphere is determined by the requirement that it contain the

effective number of valence electrons associated with the ion'in

‘question. This radius for aa ion of type i, Ri, is given by

W5 . $
R: = —j'—_;?f-. . (5-42)
4T 2

" If we use the formula for the interaction energy between two charge
distributions,

ny(r) mp(sr') (5.43)

-z’ |

we may write the interaction between the core state and the sphere

of charge as
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i

ag?

nims;i o -

P

We may further expand the last factor in Equation (5.44) nsing
Equation (5.19) and perform the angular integrations associated

with g' to obtain

i ,|2
2 8T Z

|z
AEnlms;i fdr I(nlms ilr)l f “alz'| T—'I"

We may insert the form of the Clementi core wavefunctions into
Equation (4.45) and perform the anguiar integration readily. We
may then evaluate the second correction tec the energy of the core

state once we perform integrals like
Ri

s n _-ax
Il(n,a) =£ ax x e

for n = 2,3;,...

and

-ax

0 ]
Iz(n,&) = f i dx xn e fO!‘ ns= 1’2,3,... .
R o

s
In connection with the 2valuation of these integrals, we may note

immediately that

() + Tynje) = iy

and fhat-
“Ri i
I (l,a) = {l -e (aRs+l)) .
a®

We may integrate Il(n,a) by parts to obtain

X i
i,n ~oRg
n 7 (RS) 5
Il(n,a,) =2 Il\n-l?a) -— -

1 '

z M 2 2°ff
w2 [ar|(ums; 3 10X |© [ "alet| |zt | —5— fcmr. —_———
| ° lr-z'|

.(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

SRR
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Thus we are in a position to evaluate all the integrals given by

Equations (5.46) and (5.47), and thereby obtain the second cor-

rection *o the eigenvalues of the core states.

We have calculated the total correction to tae core eigen-

values suggested by Equations (5.41) and (5.45) for the alloy of

lithium ani magnesiun waich we are considering.

are listed in rydbergs in Table 5.3.

These corrections

The values in this table should be added

to the appropriatc values in Table 5.2 to obtain values of (Ec- VL).

Table 5.3

CRYSTALLINE CORE ENERGY CORRECTICIS

I. Ordered Crystal

II. Disordered Crystal

Lithium
1s  +0.31148

Magnesium

1g +0.03724
28 +0.03720
2p +0.037¢3

Lithium
1s +0.62898

1s
2s

Zp

Magnesium

=0.00951
-0.00955
-0.00952

_The corrections which we found for magnesium are -mall due to the

close cancellzation of the two different energy corrections.

‘We t¢re now in a position to calculate the off-diagonal matrix

elziients of the unscreened pseudopotential and the diagonal matrix

elements of the screened pseudopotential.

We shall calculate both

or these ¢uantities for three different sets of eigenvalues: atomicy

ordered crystalline; and disordered crystalline.

In this manner, we
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il it

may determine the influence upon our final results of the choice of
core aigenvalﬁes:——ﬁb will also be able to estimate the censitivity
cf our results to the approximations involved in our procedure for
estimating the crystalline core eigenvalues. The diagonal matrix
elements of the screened pseudopotential as defined by Equation (S.2)
have been tabulated in rydbergs in Table S5.4. These matrix elements‘
have been evaluated for threa2 values of k in atomic units and the

three sets of core eigenvalues as shown. We have used t! 'se matrix

Table 5.4

DIAGONAL MATRIX ELEMENTS OF
THE SCREENED PSILUDCPCTENTIAL

(x|wx)

Ai~mic Ordered Disordered
Core Crystalline | Crystalline
'|Energies {Core Energies|Core Energies

0.0 |0.115084 C.098642 0.086029
0.5 ]0.119322 0.105251 0.095103
1.0 {0.130186 0.120762 0.115050

elemgﬁts to calculate the off-diagonal matrix elements of the un-
screenel psevdopotential as given by Equation (5.27). We then found
the unscreened avcrage and difference pseudopotentials for our 50-50
of lithium and mignesium as defined in Equations (2.27) and (2.28).
These potentials are tabulated in rydbergs in Tables 5.5 and S.%,

As in the case of the matrix elements of the ionic potentials, the

DO TR 1P
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Table 5.5

MATRIX ELEMENTS OF UNSCREENED AVERAGE PSEUDOPOTENTIALS

(k]w*|k') for £ =0.0x

-0.004540

|k | |Atomic Core|Ordered Crystalline|Disordered Crystalline
Energies Core Energies Core Energies
0.25] -4 135430 -4.155507 -4.167834
0.5 | -1.019360 -1.034472 -1.046027
1.0 | -0.256443 -0.2686%2 -0.277821
1.5 | -0.130289 -0.139183 -0.145894
2.0 | -C.091363 -0.097532 -0.202201
2.5 | -0.072556 -0.076740 -0.079952
3.0 | -0.059659 -0.062486 -0.064717
4.0 | -0.040837 -0.041963 -0.043103
5.0 | -0.027628 -0.028285 -0.028920
6.0 | -0.019117 -0.019462 -0.019842
7.0 } -0.013663 -0.013855 -0.014095
8.0 ) -0.010161 -0.010272 -0.010432
9.0 | -0.007876 -0.007943 -0.008053
10.0 { -0.006348 -0.006390 -0.006468
11.0| -0.005294 -0.005321 -C.005378
QZ.O _—0.004558 -0.004600




145

»

(k|w’|k') for k=0.5%

Atomic

Core Energies

Ordered

Crystalline
Core Energies

Disordered
Crystalline
Core Energies

i)
[3)]

N O
(4]

OOk C OO

WO Oowmo O

-
-
f

O)OOU"OO'FOOO!OONOONOOPOOHOOOO?OOP?

O hin O Lh O M O Mt O OO O M ©O OO O Enégcn owmo 0@

N O DL O PN O N O OO

©O OO0 O OO O OO O UC ?”h OO © ©O0 »n ©O0 © O

h

O UM O Wt O LWe O

0.250
0.250
0.250

0.3500
0.500
0.500

1.000
1.000
1.C00

1.118

1.500
1.500

1.581

2.000
2.000

2.062

2.500
2.500

2.550

3.000
3.000

3.041

4.000
4.000

- 4.031

S.000
5.000

5.025

6.000C
6.000

6.021

-4.141143
-4.132298
-4.126459

-1.025602
-1.006657
-0.998821

-0.267662
-0.249625
-0.135654

-0.167377

-0.139918
-0.052232

'0 0082232

-0.097578
-0.017207

-0.056137

-0.075933
-0.011168

-0.045762

-0.061220
'0 ‘012007

-0.039347

-0.040768
-0.013644

-0.029009

-0.027590
-0.012138

-0.020828

-0.019183
-0.009784

-0.015002

-4.154103
-4.140138
-4.141241

1.037188
1.019830
-1.013741

-0.276311
-0.259499
-0.209725

-0.178962

-0.146029
-0.063818

-0.090881

-0.101796
-0.£25856

-0.062248

-0.078831
-0.017280

-0.049980

-0.063224

-0.042245

-0.041765
-0.015648

-0.030412

-0.028115
-0.013134

-0.021546

-0.019475
-0.010309

-0.015391

-4.163187
-4.156052
-4.152202

-1.2345089
-1.029108
-1.025098

-0.281935
-0.266042
-0.219873

-0.186864

-0.071720

-O . 0965%

-0.104388
-0.031480

-0.066082

-0.080606
-0.021114

-0.052572

-0.064466
-0.018817

-0.044019

-0.042419
-0.016890

-0.031303

-0.028433
-0.013789

-0.022038

-0 ‘019708
-0.0106€5

-0 0015686

Chasbabntoront §ocsspsas s sl
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k-k'| (1_:]\?]1:') Tor k = 1.0 X

Ordered Disordered

Atomic Crystalline | Crystalline

Core Energies|{Core Energies|Core Energies
ll 25 O-O 0!250 -40137472 -4-145754 -4-150533
1.00 {0.25 | 0.250 -4.121758 -4.131045 -4.126639
0.75 0-0 0!250 -40107433 -4 -117890 -40124567
1.5 |0.0 0.500 -1.026612 -1.033751 -1.037687
1.0 0.5 0.500 -0.996449 -1.005341 ~-1.010604
0.5 (0.0 0.500 -0.971214 -0.982468 -0.990052
2.0 1}0.0 1.000 -0.271377 -0.276488 -0.279089
1.0 |1.0 1.000 -0.222891 -0.230417 -0.234630
0.0 |[0.0 1.000 -0.189702 -0.201400 -0.210165
00 |(1l.0 1.414 -0.0389%4 -0.048419 -0.054131
2.5 |0.0 1.500 -0.142440 -0.146009 -0.147720
1.435|1.435] 1.500 -0.105%862 -0.114866 -0,117402
-0-5 0-0 10&0 0-002156 -O 0009097 -O -016682
0.0 1.5 1.803 ~0.011333 -0.018472 -0.022407
3.0 [0.C 2.000 -0.098445 -0.100926 -0.102071
1.823}1.823] 2.000 -0.076338 -0.079711 -0.081316
0.0 (2.0 2.236 -0.007855 -0.012565 ~0.015567
3.5 0.0 2.500 -0.075707 -0.077442 -0.078230
0.0 2.5 2.693 -0.010916 -0.014486 -0.016197
4.0. |0.0 3.000 -0.060513 -0.061741 -0.062300
-2.0 (0.0 3.000 0.056586 0.051475 0.048874
0.0 |3.0 3.162 -0.013840 -0.016321 -0.017466
5.0 (0.0 | 4.000 | -0.040095 -0.040736 -0.041042

-3.0 |0.0 4.000 G.027175 0.024694 0.023549 -
O-O 4.0 40123 -00015076 -00016504 -0-016862
6.0 0.0 5.000 -0.027281 -0.02. .36 -0.027819
-4.0 (0.0 S.000 0.010720 0.009492 0.00893Z |
7-0 0-0 6 .000 -00019158 -O 0019365 -00019482 d
-5.0 0.0 6.000 ‘ 0.003383 0.002741 0.002436
.0 |6.0 6.083 -0.010367 -0.010722 -0.0109805

7
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Iable 5.6

MATRIX ELEMENTS OF UNSCREENED DIFFERENCE PSEUDOPOTENTIALS

(EIAH’lg') for

A

k =0.0x

|§'| Atomic Core|Ordered Crystalline|Disordered Crystalline
Energies Core Energies Core %Unergies

0.25| 1..20381 1.409000 1.393684
0.5 | 0.377289 0.366628 0.352240
1.0 | 0.114076 0.105594 0.094035
1.5 | 0.063874 0.057710 0.049262
2.0 | 0.044917 0.04C524 0.034762
2.5 | 0.034514 0.031546 0.027560
3.0 | 0.027267 0.025189 0.022482
4.0 | 0.016963 0.€15873 0.014582
5.0 | 0.010265 0.009640 0.008985
6.0 | 0.006150 0.005766 0.005411
7.0 | 0.003742 0.00349¢C 0.003288
8.0 | 0.0023€2 0.002213 0.002090
9.0 | 0.001640 0.001522 0.001445
10.0 | 0.001251 0.001165 0.001115
11.0 | 0.001¢S8 0.000993 0.000959
{12.0 | 0.000965 0.000918 0.000894
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|- x| (k|6 |K') for k= 0.5 2
Ordered Disordered
Atomic Crystalline | Crystalline

Core Energies|Core Energies|Core Energies

~J
wn

n
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2.000

3.041

4.000
4.000

4.031

5.000
5.000

5.025

6.000
6.000

6,771

1.408066
1.408996
1.415052

0.364102
0.361627
0.376729

0.103888
0.096791
0.086276

0.067012

0.057135
0.018390

0.029106
0.040622

~-0.004260
- 0.016306

0.031685

-0.009998

0.011682
0.025283

-=0.009578

0.009525

0.015928
-0.005644

0.006549

0.009810
-0.003286

0.004097

0.006052
-0.002226

0.002390

1.399710
1.399824
1.404822

0.356886
0.353081
0.366064

0.098821
0.090864
0.076872

0.059796

0.053717
0.011174

0.024039

0.038326
-0.009327

0.012888

0.030115
-0.013416

0.009386

0.024130
-0.011874

0.007955

0.015337
-0.006747

0.005752

0.009462
"'O . 003878

0.003647

0.005820
-0.002576

0.002114

1.387340
1.386577
1.390611

0.345867
0.340500
0.351669

0.090640
0.081504
0.063393

0.048776

0.047961
0.000154

0.015858

0.034362
“O . 017&8

0.007132

0.027393
-0.019172

0.005422

0.022295
‘O . 015.837

0.005232

0.014393
-0.008632

0.004428

0.008953
-0.004821

0.002964

0.005546
“O . 003078

0.001739
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' lk-x'| (lav k') for k = 1.0 £

Ordered Disordered

Atomic Crystalline | Crystalline

Core Energies)Core Energies|Core Energies
1.25 |0.0 0.250 1.389307 1.384801 1.376699
1.00 ]0.25 | 0.250 1.387285 1.381983 1.372882
©.75 |0.0 0.250 1.390488 1.384117 1.373845
1.5 (0.0 0.500 0.349589 0.345900 0.238929
1.0 |0.5 0.500 0.342035 0.337056 0.3268349
0.5 0.0 0.500 0.353655 0.346376 0.335295
2.0 |0.9 1.000 0.095799 0.093386 0.088411
1.0 }1.0 1.000 0.075200 0.071243 0.063890
0.0 J0.0 1.C00 0.111230 0.102728 0.091150
0.0 {1.0 1.414 0.008355 0.002936 -0.006301
2.5 1]0.0 1.500 0.052662 0.051090 0.047621
1.435|1.435] 1.500 0.034202 0.031851 0.026980
-0.5 |0.0 1.500 0.007944 0.000664 -0.010417
0.0 |1.5 1.803 -0.012167 -0.015856 -0.022827
3.0 }|o0.0 2.000 0.037954 0.036908 0.C34500
1.82311.823| 2.000 0.023454 0.021961 0.018705
-1.0 }0.0 2.000 -0.042375 -0.047794 =0.057031
o.o 2.0 20236 -00015861 -0-018273 -0-023249
3.5 0.0 2.500 0.029916 0.023199 0.027516
-1.5 }0.0 2.500 -0.058067 -0.061756 -0.068727
c.0 (2.5 2.693 { .-0.013241 -0.014813 -0.018282
4.0 10.0 3.000 0.024046 0.023537 0.022346
-2.0 ]0.0 3.000 -0.055632 -0.058044 -0.063020
0.0 (3.0 3.162 -0.009477 -0.010523 -0.012831
5.0 0.0 4.000 0.015389 0.015108 0.014485
-3.0 |0.0 4.000 -0.036732 -0.037778 -0.040186
0.0 |4.0 4.123 -0.004289 -0.004799 -0.005989
6.0 [0.0 5.000 0.009708 0.009538 0.009182
-4.0 ]0.0 5.000 -0.021801 -0.022310 -0.023501
0.0 |5.0 £€.099 -0.002163 -0.002443 -0.003066
7.0 |0.0 6.000 0.006185 0.006084 0.005882
-5.0 0.0 6.000 -0.013275 -0.013555 -0.014178
0.0 |6.0 6.083 -0.001338 -0.001508 -0.0018%4
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maximum error in these figuies is one part in ten thousand or

0.000001 rydbergs, whichever is the greater.

Matrix Elements of the Screening Potential

Let us turn now to the matrix elements of the average and dif-
ference screening potentials as defined in Equations (2,69) and
(2.70). Since we are seeking a first-order expression for the
pseudopotential, we may replace the sum over the states contained
in the Fermi volume with an integral over the free-electron Fermi
spheré. We must remember a factor of two to account for the spins
of the plane waves. The matrix elements of the unscreened pseudo-
potential obtained from Clementi's wavefunctions are real, and are
intrinsically Hermitian due to the form of the pseudopotential wﬁich
we selected. Further, these matrix elements depend only upon the
‘magnitudes of the two p.ane waves and the angle between them. Ac-
cordingly, we may rewrite the formula for the average screening

potential to obtain

2 Je terali®ln)

(q]7°°10) = 5—2— Jaxla (1] +Bk,q) Y

7 lal®n(q) g |12+ gl

where
“ . la_(k)
Dg)=1-—5—5 | &-———37
m1gl® 0 7 Ik|%-[k+q]

The difference screening potential is given by an analogous expres-

sion. We have already discussed the evaluation of all ccmponents

(5.51)

(s.szj
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in these integrands except b(k,q) and Ab(k,q)." In Chapter Two, we
defined these in Terms of an ionic quantity, b, (k,q), using L, ations

(2.65) and (2.66). We n._.y write this ionic quantity as
b, (k,q) = -N ans{(}_(+3|n£ms;i)(n1ms;i|l_:)
+ <§|nlms;i)(n1ms;i|§-q)]

+N anms(ganms;i) fd{(nlms;ilg) e'ig'f(gln'l'm's';i)
n'L'nm's'
X {n'2'm's'; |k) . (5.53)
Aside from the projeétions of core states on the set of plane waves, |
which'we have already discussed, we need only evaluate the matrix
elementscﬁ'exp(-ig*g) between two éore.states on the same ion. We
may simplify the evaluation of this factor by considering the inte-
gral of the product of Expression (5.53) and Iao(}_()l2 over the F?rmi
sphere. This is the form in which Expression (5.53) will contribute
‘to the scfeening. We nay insert the form of the préjecticn of the
core states on plane waves given by Equation (5.23) into this integral

and perform the angular integration to obtain

(am? TF . |
ol alkl lxlPlago)[* 2, Salzl 121,00l 12D 8,0
) n' ©
x falet) 1zt PagClsl e D Ryt D
(o]

x far" e™'9°E (ntms;1]r") x" [n' tmsj1) (5.54)

We have used the spherical symmetry of Iao(}_()l2 and the orthonormality

of the set of spherical harmonics to achieve this form. We may now

“recesgrsTatagr g

{hges

1359t
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perform the summation over "m" and use Equation (5.13).to demonstrate'
the spherical symmetry of the core state contribution to the last
integral over real space. Accordingly, if we expand the plane wave
using Equation (5.14), the angular integration over real space singles
out that component of the plane wave with 1 = 0. Therefore, we may
write Expression (5.54) as '

2 kp ©
) J el klPla () % 5, ,(2002) [ alz] 1,0l IR, (e

x fale' e B3l e DR (e )
< fale| 12" Bs (lal 121 B (1) R, (")) (s;és)
5 - - o 'al = nt''- n'2'= .
We have already discussed the evaluation of this l:st integral in
connection with the matrix elements of the second term in vy Ve
have now established a procedure for the evaluation of the integrals
of 5(5,3) and.Ab(E,S) rrer the Fermi sphere. Hence, we can calculate
the screening potential matrix elements once we have a procedure for
performing the integral of the first term in the integrand over the
Fermi sphere.

For values of Igl larger than twice the radius of the Fermi
sphere, the denominator in the integrands of Equations (5.51) and
(5.52) dces no* vanish for any points k in the Fermi sphere. In
these instances, the integration may be performed directly using a
computer. For values of Igl less than twice the radius of the Fermi

sphere, we may note that the denominator in these integrands vanishes




153

for values of k 1ving on a plane vhich ‘ntersects the Fermi sphere.

Lt

The evaluatiocn of this integral is similar to the evaluation of

b ( )
/ fx? ax , (5.56)
-a
vhere f(x) is a slowly varying function in the immediate vicinity
of x =0, and a and b are¢ both positi%e. The analytic procedure
of finding the principal part is equivalent to replacir~ x in the
denominator by {x+i€) and finding the limit of the integral as €
apprcaches zero. 1ln a computer calculation, we may let 1/x become
2x ) | ~ . (5.57)
x +b

and then calculate Fxpression (S5.56) for several values of b approach-
ing zero. We found that this procedure converged quite slowly toward

the limiting value and that the selection of small values of O greatly

increased the computetion time. The slow convergence of the procedure

1s most likely due to the difference between 1/x and Expression (5.57)

at the boundaries of the integral. Accordingly, we let l/x become

X . (5.58)
X2 +6 exp(-xz/ﬁ)

This expression approaches 1/x muck more rapidly than Expression (5.57)
as # deviates from x = O. But, the variation of Expression (5.58) as

a function of i is not much more rapid than the variation of Expression
(5.57). Therefore, we were able to achieve far greater accuracy using

the latter form with little increase in computation time. This pro-

cedure is suitable for calculating the matrix elements of the screening
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potentia’ *~ small values of |g| t§ within one part in one or two

hundred of the screenec pseudopotential. For smsll values of |q,

this often means a maximum errcr of one part in ~ne thousend of the
screering potential.

We have calculated the matrix elements of the average and 4dif-
ferenc: screening potentials for the 50-50 alloy of lithium and meg-
nesium using the sbove procedure. We have tabulated the values of
these m2t.ix elements inrydbergs for the three sets of core energies
in Tables 5.7 and 5.8. The values of |g| are given in atomic units.
Tke maximum error in the matrix elcments is 0.1% for |g| = 0.25, 0.3%
for |q| = 0.50, and 1.0% for |q| = 1.00. Fo: the other valuss of ]gl,
there is no singularity in the screening integration. The maximum error
in these matrix elements is one part per hundred or 0.000001 rydbergs,
whichever is the greater.

We now have all the infcrmation which we need to calculate the
off-disgonal matrix elements cf th. screened pseudopoten£iel. we have
not tabulstzd these results dvue to the much greater accurscy of the
matrix clemen.s of the unscreened pseudopotentisl relative to th-: of
*he matrix elements of the screening potential. We hsve alresdy lis-
played the bebavior of certein matrix elements of the screened pseudo-
potential in Figures 4.1 through 4.6. Botl che pseudopotential denoted
by "Present P.P." snd that denoted by "Harrison P.P." were calculated
according to the previous discussion in this chepter. The pseudo-

potential which we have chosen to use, denoted by "Present P.P.",
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Table 5.7

MATR: T ELEMENTS OF AVERAGE SCREENING POTENTIAL

(gl\'rsclo)

|q]

= |Atomic Core|Ordered Crystalline|Disordered Crystalline

Energies Core Energies Core Energies

0.25| 3.846227 3.858054 3.8662685
0.5 0.770964 0.780587 0.787352
1.0 0.090946 0.055662 0.099141
1.3 0.009699 0.010772 0.011583
2.0 0.001900 0.002124 0.002294
2.5 0.001120 0.001180 0.001227
3.0 0.000926 0.00094C 0.000960
4.0 | 0.000664 0.000667 0.000669
5.0 0.000470 0.000470 0.000471
5.0 0.000339 0.000340 0.000340




ot
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Tabl. 5.8

MATRIX ELEMENTS OF DIFFERENCE SCREENING POTENTIAL

(q]av®€lo)
lal =
~ |Atom.c Core|Ordered Crystalline|Disordered Crystalline
Energies Core Energies Core Energies

0.25 | -1.296334 -1.288873 -1.277672
0.5 -0.273529 -0.267340 -0.258193
1.0 -0.039776 -0.036535 -0.032006
1.5 -0.003984 -=0.003222 -0.002186
2.0 0.000533 0.000692 0.000908
2.5 0.000803 0.000847 0.000905 "
3.0 0.000663 0.000678 0.000696
4.0 0.0004C9 0.000412 0.000414
5.0 | 0.000273 0.000273 0.000274
6.0 | 0.000196 0.000196 0.000196
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demonstrates a marked improvement over the actual crystelline po-
tential, which is a sum of the contributions of the ionic potentials

and the screenlng potential.

The Energy-Wavenumber Characteristics

As we demonstrated in Chapter Two, the energy-wavenumber charac-
teristics are central quantities if we are interested in the changes
in the totel conduction electron energy when the ions in the solid are
resrranged at constant ioni~ volume. The energy-wavenumber character-
istics are defined by Lquaticn (2.84). We have evalusted the matrix
elements of the screened pseudopotential and of the screening potential
vhich occur in this expression. Tne integral over the fermi sphere
may be evaluated using the proéedure which we discussed in the screen-
ing potential integration. ‘e may note that Ela(g) = EZI(S) since the
pseudopotentisl waich we have uéed is Hermitian and the matrix elements
of the potentials involved are real. Therefore, we have three distinct
energ’-wavenumber characteristics, Ell(g) with the average-a?erage po-
tertials, Elz(g) with the average-difference potentials, end Eaalg)

with the difference-difference potentials. Each of these energy-wave-

number characteristics has been evaluated for each of the sets of core -

eigenvalues which we discussed before. These values are pre. .nted in
rydbergs in Tables 5.9, 5.10, and 5.11. As we noted in the tables,
we have actually tabulated the product of |q|2 and the appropriate

energy-wivenumber characteristic associated with that value of q, as

AT

et s
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Teble 5.9

ENERGY-WAVENUMBER CHARACTERISTIC:
AVERAGE-AVERAGE POTENTIAL

lal . lal? By, (la])
Atomic Core|Ordered Crystalline{Disordered Crystalline
Energies’ Core Energies Core Energies
0.0 -0 35439 ~ -0.195439 -0.195439
0.25 | -0.180312 -0.181419 -0.182183
0.5 -0.14433 -0.14784 -0.15035
1.0 -0.07083 - -0.07743 -0.08241
1.5 -0.02467 -0.02820 -0.03103
2.0 -0.01179 -0.01344 -0.01476
2.5 -0.0074¢ -0.00837 -0.00%08
3.0 -0.00520 -0.00569 -0.00509
4.0 -0.00269 -0.00283 -0.00296
5.0 -0.00150 -0.00155 -0.00160
6.0 -0.00097 -0.00087 -0.00101
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Table S.10

ENERGY-WAVENUMBER CHARACTERISTIC:
AVERAGE-DIFFERENCE POTENTIAY,

lal lal® £, (Ig])
Atomic Core|Ordered Crystalline|Disordered Crystalline
Energies Core Energies Core Energies

0.0 0.065146 0.065146 0.065146
0.25 0.061165 0.061000 0.060602
0.5 0.05165 0.05113 0.04987
1.0 0.03182 0.03098 0.02867
1.5 ‘0.01327 0.01293 0.01172
2.0 0.00635 C.00619 0.00563
2.5 0.00380 0.00370 0.00340
3.0 0.00239 0.00232 0.00218
4.0 0.00088 0.00085 0.00080
5.0 0.00023 0.00020 0.00018
6.0 -0.00007

-0.00007

-0.00007
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Table 5.11

ENERGY-WAVENUMBER CHARACTERISTIC:
DIFFERENCE-DIFFERENCE POTENTIAL

lg| lal® £, Clal)
Atomic Core|Ordered Crystalline|Disordered Crystalline
Energies Core Energies Core Energies
0.0 -0.021715 -0.021715 ~0.021715
0.25 | -0.020746 -0.020511 -0.020161
0.5 -0.01845 -0.01766 -0.01653
1.0 -0.01436 -0.01244 -0.01001
1.5 | -0.00744 -0.00613 -0.00459
2.0 -0.00366 -0.00305 -0.00233
2.5 -0.00219 -0.00188 -0.00151
3.0 -0.00140 =0.00123 -0.00104
4.0 -0.00062 -0.00056 -0.00051
5.0 -0.00033 -0.00030 -0.00028
6.0 -0.00022 -0.00022 -0.00018
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given in atomic units. Since we will be interested only in infe-
grals or sums of" these functions over reciprocal space, the factor
oflglz has been added to account for the large number of points
associated with a given magnitude of q for large |9|. The values
of the energy-wavenumber characteristics for q = 0.0 were obtained

through a limiting procedure suggested by Harrison [S].

The Ordering Energy and the Effective Pairwise Interaction

Referring to Chapter Two, we note that Expression (2.86) gives
thacv part of the total conduction electron energy which might vary
as the ions are rearrangeé at constant volume. We are now in a
position to evaluate this expression. Harrison [6] has demonstrated
that the influence on the total energy of the sum of the diagondl
matrix eic..’nts of W over the Fermi volume can be represented in
this contex* to second order in the pseudopotential by performing
an integration over the Fermi sphere. We may evaluate tﬂis term
using the values given in Table 5.4. From our discussion of F(g)

in Chapter Three, we observe that |F(q}]2 is equal to 1/N in the
completely disordered crystal, except in that it vanishes for those
values of q which are members of (5]. In the completely ordered
state of the alloy which we are cdiscussing, IF(c_;)I2 is ‘mity for
all q which belong to (ga] and is zero elsewhere. Recal. that the
set [ga] consists of all those reciprocal lattice vectors associated

with the superlattice which have not already been included in {K].
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We may now evaluate the remainder of Expression (2.86) for the
states of compl;::.order and complete disorder. In the ordered
state, we merely sum Ell(g) over all members of [§] and Eza(g)
over all members of (531' In the completely disordered state,
we sum over the values of Ell(g) as in ihe ordered state, but

the contribution from Ezz(q) be mes.

QO

(2v)3 fdg Eaz(g) . (5.59)

We have evaluated thése contributions to Expression (2.86) for each
set of core energies and placed the results in rydbergs in Table
5.12. Under these contributions, .- .ave placed the total values
of Expression (2.86) for the ordered and for the disordered states,
calculated using each set of core energies.

The pseudopotentials calculated using these three sets of
‘core energies are essentially three different pseudopotentials.
Hrwever, each of these three pseudopotentials is in the Austin,
Heine, and Sham form, and accordingly should yield the exact elec-
- tronic eigenvalues if all orders in perturbation theory are in-
cluded in the calculation. Therefore, we would expect thai the
total energies in Table 5.12 would be identical from column to
column if seccnd order perturbation theory, as we have applied it,
suffices tc determine these energies exactly. The difierences
between these values for Expression (2.86) is at least three tic :-
the differences which might have been introduced by our numerical

procedures. The discrepancy between the results of these different
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Table 5.12

STRUCTURE-DEPENDENT CONDUCTION ELECTRON ENERGY

Ordered Disordered
Atomic Crystalline|Crystalline
Core Core ~ Core
Energiés Energies Energies
Lz (klwlk) 0.179493 0.158613 | 0.143611
N “(klg'=1"0s
' hd ¥ 'Y -\ -\J
z{glsg, {l_c]En(S) | 0.363915 0.405407 0.438789
1 =0, 0. =V
b {qlag, {lgalnaz(g) 0.150621 0.130291 |[-0.105480
Qo . . i
—— [dq E,,(q) -0.223425  |-0.204080 [-0.180210
(2m) < - '
Total for Ordered -0.335043  |-0.377085 |-0.400658
Crystal
Totel for Disordered -0.407847  |-0.450874 |-0.475388
Crystal
........................... | Y AN SRR
Conduction Electron Con-
tribution to the Order- 0.072 804 0.073789 | 0.074730
ing Energy
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pseudopotentials is then a measure of our _aability to evaluate

the total conduction electron energy in our system using second
order perturbation theory. Our best estimates of the core eigen-
values for this system should be either the ordered crystalline or
the disérdered crystalline core energies. Therefore, the minimum
possible error in our evalvation of Expression (2.86) using one

or the other of these sets is + 0.013 rydbergs. We should emphasize
that this is a minimum error.

If we now subtract the disordered total energy from the ordered
total energy in each column, we obtain an estimate from each pseudo-
potential of the total conduction electron contribution to the order-
ing energy. These estimates appear in the last row of Table 5.12.
The difference in these vaiues is no larger than the difference which
night have been introduced by our numerical procedures. We are led
to expect that the values obtained from either the ordered crystal-
line or the disordered crystalline core energies would have a minimum error
of + 0.&X 05 rydbergs. The actual error introduced by our numerical
procedures could be as large as + 0.001 rydbergs. In any case, the
minimum error which we might expect in our estimate of the conduction
electron contribution to the ofdering energy is much smaller than
that in our estimate of the total conduction electrcn eﬁergy. The
total conduction electron contribution to the ordering energy is re-
presented by the difference between a sum of Eaz(g) over a di%crete set or

reciprocal space vectors and an in-egral of E22(q) over all values of
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q below the cut-off in reciprocal space. The above analysis sug-
gests that our f;;;alism is better suited to the de*ermination of
the shape of the energy-wavenumber characteristics than the actual
magnitudes. Formally, one might expect that the best estimate of
the ‘electron contribution to the orde;ing energy would be the dif-
ference between the disordered total energy calculated using the
disordered crystalline.core energies and the ordered total energy
calculate’ using the ordered crystalline core energies. This would
lead to a conduction electror contribution to the ordering energy
of 0.098303 rydbergs. However, our previous discussion suggests
that the lack of convergence of our perturbation theory expansion
would enter strongly into this estimate of the conduction electron
contribution,yielding a minimum error of + 0.025 rydbergs. Thus we
expect that a much better estimate would be obtained by averaéing
“the valués for this quantity calculated from the ordered crystalline
and disordered crystalline core energies. This leads to an estimate
of 0.0743 rydbergs with a minimum error of + 0.0005 rydbergs.
Similarly, we may evaluate the effective pairwise interactions
between the ions as defined in Equations (2.89), (2.90), and (é.Ql).
We observed large variations in the contributions to the total con-
duction electron energy which we listed in Table 5.12, depending
upon which set of core energies were used in calculating the matrix
elements of the pseudopotential. Accordingly, we have selected a

particular set of values for use in calculating the effective pairwise
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interactions. We have taken the average of the energy-waverumber
characteristiculaérived from the ordered crystalline and from the
disordered crystalline core energies. These averaged energy-wave-
number characteristics yield the effective pairwise interactions
vhich we have displayed in Figure S.1. These quantities are essenti-
ally energies per bond as a funuﬁion_éf the lergth of the bond. Con-
sidering nearest neighbors, the alloy which we are cunsidering loses
two A-B bonds per ion and gains one A-A bond and one B-B bond when
the crystal changes from a completely ordered state io a completely
disordered state. For nearest neighbors, V.

Li-Li

(mry.), vii-Mg = 5.47 mry., and vﬁg-Mg-= 12.04 mry. Therefore, the

nearest neighbors contrihute about -3.41 mry. per ion to the ordering

= ¢.31 millirydbergs

energy of the crystal. If we include n2xt nearest neighbors, this
alloy gains 3/2 A-B bonds per ion and loses 3/4 A-A bonds and 3/4 E-B
.bonds during the transition frcm the ordered to the disordered state.
For next nearest neighbors, vLi-Li = 0.86 mry., vii-Mg =.1.58 Rry.,
and VME'NZ = 2.64 mry. Therefore, the next nearest neighbors contribute’
~ atout +0.34 to the ordering energy. The contribuations of these two
scts of neighbors to the ordering energy is about -3.07 mry. pér ion.
Ve may now compare the form of »wr effective pairwise inter-
actions with the form derived by Harrison and Paskin [7]. They sug-
gested that a form of cos(ZkF,r)/r3 was appropriate for even nearest
neighbor interactions. We have noted the distances associated with
nearest ard next nearesi nejghtors for orr alloy on th:.graph of the

effective prirwise interactions. The shape »f our expressions for
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FIG. 5-1 EFFECTIVE PAIRWISE INTERACTIONS BETWEEN
THE IONS [N v i-Mg:




e e

168

these interactions is certainly not cos(ZRFB)/R3 for values of R
including many sets of neighbors. Since the error in our calcul-
ation becomes larger with large R, we are unable to predict Jﬁst
when the effective pairwise inteructions might attain this asymptotic
‘forn.

ve may also coﬁpare our estimate of the ordering energy using
Mott's caléﬁlation and experimental observatiuns regarding the be-

havior of 50-50 lithium-magnesium. For a system with nearest

"neighbor intecactions only, Mott [8] found that the ordering energy
should be greater than -chln(Z), vwhere T is the critical temperature.
The critical temperature of 50-50 lithium-magnesium could be no higher
than about 370°K, or more pronounced short range order would have
been observed in the system [9]. This reasoning would indicate that
the magnitude of the ordering energy should be less than 0.0017 rydbergs
per ion. Our estimate of the order..ig energy on the basis of
nearest and next nearest neighbors is -0.0031 rydbergs. Part of
this discrepancy might be due to the dependence of the ordering in
oﬁr system upon interactions with many sets of neighbors. The therma-
dynamic arguments which led to .the Mott expression for the upper limit
on the ordering energy are not valid for a system in which there are
interactions which are other than nearest neighbor. In addition, we
have not conside.ed the effect of the change in ionic volumc when
the system orders. This effect might be expected to lessen tﬁe

_~difference in energy between the ordered and disordered stateé, and

would therefore be a correction in the right direction.
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We may obtain an espressicn for the ordering energy which takes
into account the interactions between all sets of neighbors by adding
the total conduction electron contribution and the ionic contribution
to the ordering energy. Our expres.ion for the conduction electron
contribution includes the effect of the full ccnduction electron
charge distribution, and therefore includes the effect of the charge
orthogonalized to the ions. Thus the ionic contribution to the order-
ing energy consists of a Madelung interaction of actual ionic charges,
not effective charges. The Madelung energy is roughly -0.0769 rydbergs
for an arrey of charges of magnitude *1/2 in the cesium chloride struc-
ture with a lattice constant of 3.5 A. When the lattice disofders, the
Madelung energy of this array vanishes. Accordingly, we may combine
the above energy with the more accurate estimate of the conduction
electron contribution which we discussed previously to obtairn an order-
ing energy of -0.0026 rydbergs. We may note that the larger estimate
of the conduction electron contribution to theé ordering energy, which
we found by taking the difference between the energies in two separate
coiumns in Table 5.12, leads tc our expecting the disordered state to.
be the ground state. +7This underscores our discussion regarding the
unreliability of this procedﬁre for estimating the conduction electron
contribution to the ordering energy. In conclusion, a reasonable inter-
pretation of our results has led to an estimate of the ordering energy
which is consistent with experimental observations on the systém if one
_allows for the neglect of volume changes and the inapplicability of the

thermoédynamic relation between TC and the ordering energy.
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Chapter Six

CONCLUSIONS

The results of the calculations which we described in Chapter
Five demonstrate that our expression for the structure-dependent
part of the total conduction electron énergy is quite sensitive to
the choice of core eigenvalues in the-alloy. This behaéior is at-
tributed to the inaccuracy of our perturbation expansion of the
total conduction electron energy to second order in the pseudo-
potential. We might expect that Fhis expression for the energy
will be sensitive in a similar manner to the particular choice of
a form for the pseudopotential, as discﬁssed in Chapter Four. Ac-
cordingly, we must stress the importance of choosing the optimal
form for the pseudopcotiential with care.

The estimate of the total conduction electron energy is so
sensitive to the choice of pseudopotential that we must eipect an
error of at least + 0.013 rydbergs for a given set of core energies.
This minimum error is somewhat too large for an accurate determina-
.ticn of the cohesive energy. However, our estimete of the conduction
electfcn contribution to the ordering energy is much less sensitive
to the cheice of pseudopotential. The minimum error in this quantity
is only + 0.0005 rydbergs, which is small enough to allow a reasonable
estimate of the ordering energy. Therefore, our formalism appears to
yield reasonably accurate values for those qugntities which depend

upon the difference btetween two evaluations at the same irnic volume
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of a given conduction electron property, such as the ordering energy;
We might also expect that our formalism would be suitable for a cal-
culation of the difference in cohesive energy between two crysfalline
structures with the same ionic volume, or for a calculation of the
increase in alloy resistivity upon disordering.

Ov~ estimate of the ordering energy may be considered as & sum
over the effective pﬁirwise interactions between all the ions. There-
fore, we must conclude that these central force interactions represent
quite well those interactions wlich lead to the formation of the super-
lattice in a 50-50 alloy of lithium and magnesium. However, the effec-
tive pairwise interactions which we have calculated do not attain the
simple form suggested by Harrison and Paskin until well beyond first
and second nearest neighbor distances.

We might note that our evaluation of the results of this formalism
is based on the reasonable assumptior. that this alloy of lithiur and
magnesium would actually attain an ordered state if its eritical temper-
ature were not s0 low that the disordered state is "frozen" in the crystal
as.the temperature is lowered. Our theoretical results have definitely
indicated that the ordered state is the ground state at the absolute
zero cf temnperature. Accordingly it would be instructive to artificially
increase the movement of the ions in the alloy by supjecting it to ap-
propriate radiation while at temperatures below its e (pected critical
temperature. The ions may then reach equilibrium distributionsiat these

low temperatures. This experiment should allow a determination of the
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critical temperature and thereby provide a comparison with our
theoreticul results.
The essential limitation of our formalism appears to be &3-

sociated with the use of perturbation theory. It does not appear

‘that any other approximaticn which we have made affects our re-

sults as strongly as our use of perturbation theory. While the ap-
proximation of the screening potential in terms of a first order

expression is central to most of the pseudopotential formalism, we

rmight improve our results by using the hybrid mixture of perturbation

theory and matrix diagonalization which we discussed in Chapter Three.
This procedure wﬁuld yield Qccurate energies for the individual elec-
trons in the region of the lowest energy band gap which appears as

the system orders. These energies might ther. be used to obtain a
more accurate estimate of the total conduction electron energy. This
use of first order perturbation theory to find the screening potential
followed by a limited matrix diagonalizut’- e éimilar to a
limited self-consistent procedure. In any case, sny significan£ ja- .
provement in “he results of this formalism will most likely be brought
about through an improvement.in the accuracy of our perturbation

expansicns.
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