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Abstract

Objective of this paper is to present the foundations for a mathe-
matical theory of general systems, to discuss the limitations introduced
by the use of the mathematical methods in the theory and finally to indi-
cate the areas of application in engineering.

Two points are emphasized: A need for the simplicity an& precision
in the definition of the basic concepts so that the description of the
complex systems does not become unmanageable. An explicit recognition of
the goal-seeking approach as constituting an important aspect of the systems
theory. In order to make the second point more specific a formalization of
the notion of a goal-seeking system is developed in the last section.

The present article can be viewed as an updated version on an earlier
paper since the basic problems considered and the viewpoints adopted here

are the same as in (1),
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1. What is the Mathematical Theory of General Systems?

We consider the mathematical theory of general systems to be a theory
about mathematical models of real-life systems* such that the essential
properties of these systems are revealed uéing a minimal mathematical
structure (compatible with the intuitive interpretations of those prop-
erties). Such a general systems theory is currently under development in
the framework of set-theory and the bordering branches of abstract mathe-
natics (DG (9)(10)(11)

The selection of this basis for general systems thecry stems from
the point-of-view that the objects of study in mathematics (regardless of
the special branch one has in mina) are essentially (and in the first
place) sets and relations between sets and heir elements. Various branches
of mathematics differ primarily in what ad&itional properties (i.e. "structure'’)

the sets (and the relations) under consideration possess**,

* The term "real-life system' is used here only as a label to denote the
physical, economical, (or even conceptual) etc., class of interrelated
objects (or phenomena) defined within a given subject-matter. It is
essentially an interpretation of the given mathematical model.

%% It should be noticed that according to the established custom in mathe-
matics the temm set theory is used only to denote the study of relations
between sets {and their elements) which have very little (if any) additional
structure (such as e.g., ordering). The specialized fields of mathematics

in which the sets have more properties are not considered as being part of

set theory. For example, if the s:ts under consideration have some functions
which map the elements of a set into itself one talks about (partial) algebras
or if some set-valued functions are defined on the sets under consideration
one talks about (general) topclogy, etc.




A distinction should be made between the objects of study in mathe-
matics and the way this study is conducted. The fonmalization of the
latter process is the domain of metamathematics, i.e. a formal theory of
deductive reasoning in mathematical studies, Metamathematics, in turn,
also uses various mathematical structures. These structures are selected
on philosophical grounds since they reflect sufficiéntly closely what
intuitively (and on the basis of philosophical logic) is considered to
be deductive reasoning. However, they comprise a special subclass of the
class of mathematical structures and from the purely abstract, formalistic
pvint of view, they cannot be preferred for the development of a theory of
the behavior of various real-life systems. Traditionally, the mathematical
structures used in metamathematics were finitistic, but recently more power-
ful mathematical methods have been used (4). The inocduction of non-finitistic
methods in metamathematics has resulted in greater simplicity and increased
efficiency. This is why set theory (i.e., mathematics} rather than logic
(i.e., metaméthematics) is used as the basis for a general theory of systems,
Let us now turn, more specifically, to some of the basic concepts and

problems of general systems theory.

Given a family of sets, X = {X;,...,X } ; A (general) system is defined
to be a relationon X, i.e., S & X;x...xX , where x indicates the Cartesian

product. The sets X,,...,X which enter the relation are called gbjects.

1
Each Xi represents the totality of all appearances of (or experiences with)

an attribute of the real-life phenomena under consideration. Similarly, S
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represents the totality of all appearances of (experiments with) the real-

life system.

There are two important types of problems in general systems theory:

1) Constructive specification: How to provide an efficient procedure

for use in prediction; i.e,, to determine some of the elements of the system
when some other elements are given. Constructive specification as a basis
for predicting the systems behavior is essential for the utility of the

systems notions.

2) Systems properties: How to formalize certain properties of interest

in the characterization of real-life systems and how these properties are

related with constructive specification.

There are two basic ways tu provide a constructive specirication of

" systems: the tenninal approach and the goaf-seeking approach.

@) 1In the temminal approach the systems objects are partitioned into
two classes, X = xlx...xxm, and, Y = }gm_lx...xxn, so that the system becomes
S ©X x Y. The objects in X are called {nputs (and represent the cause,
stimulus, for the phenomenon under consideration) while Y are called outputs
(and represent the effects, response). The constructive specification of
temuinal systems is arrived at by providing additional structure on the object-
sets so that a simpler system can be defined (hopefully even of finite cardi-
nality} that can be used to specify the original system, e.g., via a pro&ess

of recursion or induction. Such simpler systems used for constructive specifi-

catici are called auxd{liary funcitions @, Often, they require introduction of
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some new [auxif&ary) objects in the description of systems, most notably
the slale object or the sfate space (2)(3).

B) Constructive specification in (and indeed the definition of the
concept of) the goal-seeking approach is achieved by introduction of the
notion of a goal for a system and then by describing the behavior of the
system in reference to that goal. The last section of this paper contains
a formal definition of a goal-seeking system. It should be emphasized that
the goal-seeking description of a system is needed not for philosophical or
conceptual reasons but rather for the purely technical reasons of arriv ng
at a constructive specification. It might even be considered as an
alternative way for implicit definition of a function (or relation); namely,
for a given class of systems one might not have available a constructive
specification via the terminal approach but only in temms of goal-seeking.
That does not mean, of course, that the basic concepts involved in the
tenninal description of such a system (e.g., the state object) cannot be
defined; rather, it might be because the associated auxiliary functions are
not available in an analytic or algorithmic form so that one has to resort
to the goal-seeking approach (5).

To make the present discussion more complete the following should be
noted:

a) The properties one is concerned with in systems thoory refer, as a
rule, to the information processing and decision-making aspects of the real-

life phencmena rather than to the physical (or other) laws per se. In this
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sense, systems theory is a theory of information processing and decision-
making.

b) There are two routes along which one éaﬁ proceed to develop
geaeral systems theory. One can start from the class of real-l1ife problems
and proceed by fomalizing their verbal descriptions. In this way one starts
from the most abstract (least constrained) description and proceeds by
introducing more structure and considering the consequences of each new
assumption, This approach we shall refer to as fowmalization. The second

approach which, we shall call the generalization approach, starts with two

given classes of mathematical models and by generalization develops a
broader class which preserves the properties and subsumes the original
classes, We pursue the formalization approach. The generalization approach
has been pﬁrsued, in particular, in connection with the unification of the

control and automata theories (presented in the algebraic rather than logical
framawofk) (6)(7)(153.



2. Limitations of a Mathematical Theory of General Systems

Before considering the potential benefits and usefulness of a mathe-
matical theory of general systems it is only appropriate to consider its
weaknesses. The theory can be criticized fnmn two opposite sides:

1) Since it is essentially a mathematical theory it can put severe
restrictions on the description of the behavier of the real-life systems,
especially if one deals with complex biological or social situations.

2) Since the theory uses father weak mathematical structures, it is not

possible to '"solve' too many problems or even to develop deep enough results

to be useful.

Consider the first objection. It is certainly true that systems theory

cannot be broader than its mathematical foundation. Yet, at this poiat one

should not proceed further without investigating with some more care what

this foundation really is. An appropriate starting point would be to con-

sider more carefully the concept of a theory. For our purpose, the most

appropriate notion of a theory is that advanced by H. Curry (8). To arrive

at the notion of a theory'one starts from a class of (elementary) statements

P about the subject matter of concern. It should be noticed that at this
point one is dealing with an "intuitively comprehended collection of elements"
which Curry calls a conceptgal class. (Technically, we differ here from ®

in that the class of statements does not have to be definite.) A theory, then,

is a subclass of statements T S P, which are asserted to be true. This

~assertion can be the result of experimentation or may reflect certain postulates
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about the behavior of the cbserved phenomenon. For further sharpening
of the notion of a theory we have to recognize *wo aspects of a theory:
the {nfoomal, concerned with the meaning, interpretation, of the state-
ments; and the foxmal, concerned with the structural aspects of the
observed phenomenon. We are concerned here only with the formal aspects
of a theory. Linguistic analysis reveals twe componcnts of a statement:
terms (nouns) denoting the objects of concern and the functors denoting
the relation between the terms. The statements in the class P have some
undetemmined constituents; otherwise, their truth or falsity would not
depend upon the theory T but will be degided on the contensive basis,
i.e., by the content of the sentences themselves. The undecided elements
could be assumed to take on values, in general, from some conceptual classes,
We shall now make the assumption that these classes are sets in a given
axiomatic set theory. Nouns, then, would designate certain sets and the
functors certain relations.

Consider now a mathematical structure which is a relation on appropriately
defined sets‘S < Xlx...xxn. The structure S will be considered to be a mathe-
matical model for the theory T if S is a valid interpretation for T, i.e., if
every statement in T is true in S. Apparently, for a given theory T there is

a multitude of valid mathematical models.* Notice that only validity relative

*It should be noted that for certain special types of fomnalized theories (such
metamathematical systems as the propositional calculus  etc.) there is quite an
active development of the mathematical theory of models (for these particular
formalized theories). Our concern here, of course, is with a broader notion
of both a theory and its model (since a theory does not have to be an inductive
class of statemonts).
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to T is required. Thus, some of the models can be incorrect in the sense

that there exists a statement outside of the elementary theory T which is
false in the subject-ma*ter interpretation; yet, it is true in S. There-
fore, onc can seiect a model which is valid but incorrect. This is, in

practice, too often the case si.ce the correctness of a given model is not
easy (or even possible) to check beforehand. A valid mathematical model S

for a theory T is precisely the (general) system S as defined in Sec. 1 and
represents the mathematical model of the real-life system about which the

theory T has been formulated.

In summary, then, as soon as we have a theory it is possibie to

introduce the notion of a system. The restrictions which general systems

theory (as defined here) imposes, follow basically from the requirement that
the range of any wadetermined term sati.fy an axiomatic set-theory. This
essentially amount to the requirement that the statements in the theory do
not centain the well-known paradoxes (of referring to itself, etc.).

The important point that followé from the-precceding discussion is
that the inadequacy of the model (system) is precisely due to the limitations

in our theory of real-life phenomena and are not dur to the introduction of

the notion of a system. If the system has very little structure and in this

sense does not reveal much, that is again due to the limitation of our know-
ledge about the behavior of the real-life system (i.e., theory T) rather

than due to the zpplication of foimal, mathematical methods.
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2) The second objection, that general systems theory might not have

. enough structure to yield useful results, can be fully answered only in

time. Invprinciple, of course, it depends upon how one defines "useful-

ness". However, it is too early in the development of general systems

theory to try to provide a full scale argument to counteract that objection.

.If the development of general systems theory is needed and, indeed, is

inevitable for further understanding of the complex phenomena (as I feel
to be the case) then, perhaps, the most prudent thing to do at this point
in time is to state one's conviction and let future development.s provide
the answer. However, some of the following papers ()0 (11) could

serve to support the argument against this objection.
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3. Complexity and Large-Scale Systems: Abstraction and Hierarchy

Consider the problem of complexity either in the o¢peration or in the

~design of systems. Of course, there is no definition of complexity at the

present; ror, in general, do we think one can be developéd on formal
grounds, However, there secems to be a consensus that a system appears to
be "large scale" or "complex" if the computational, analytical, economical
or any other combination of factors prevent the achievement of the objectives
to a satisfactory degree. How can one approach these complex problems? The
traditional way, of course, has been to use approximations. There are two
new approaches which show some promise: 1) The abstraction approach;
2) The hieranchical on multi-Level approach.

1) In the approach via abstraction one uses a mathematical model
which is less structured and models only some of the dominant, "key",
features of the problem. For example, suppose the system is described by
a large number of paftial differential equations. The study of the stability
of such a system via the Liapunov method can be quite complex. However, if
one recognizes tne algebraic structure of the system's transfonnation one
might consider the stability problem algebraically (12); thereby using a
less detailed representation of the-system. This is, of course, where the
mathematical theory of general systems should be of help. Other aspects and

properties, like decomposition and structuring of systems, can also be studied

in an algebraic framework.

-10-
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" should be noted. In the former, one uses the same mathematical structure

-ing only the two "dominant" state variables of the system. In the latter

T g,
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The distinction between the approximation and abstraction approach

and the simplification is achieved by the omission of some parts of the
model that are considered as less important, e.g., a fifth order dif-

ferential equation is substituted by a second order equation by consider-

approach, however, one uses a different mathematical structure, one which

is more abstract, and considers the system as a whole but from a less

detailed viewpoint. The simplification is not achieved by the omission
of the variables but by the suppression of some of the details considéred‘
unessential.

2) In the hierarchical approach one decomposes the problem and solves
the subproblems independently. Partial solutions are then coordinated by
a hierarchy of decision processes aiming at coming as close to the overall
solution as possible. The decomposition and the coordination can be done
either in time or in space. In the design or computational problems, one
solves the subproblems sequenfially in time and achieves the coordination
by an iteration process. In the problems of complex operational systems,
the overall system is decomposed into subsystems whose operation is
simultaneous in time and the coordination is achieved by '"on-line"

intervention during the actual operction of the subsystems.

It might be of interest to point out that, in spite of apparent

dissimilarities between general systems theory and the theory of
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multi-level (hierarchical) systems, the motivation for their development
is quite similar: to deal with complex, large-scale problems. Actually,
one should look at these two thecries as being intended to deal with the

same type of problems but from different starting points.
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4. The Role of General Systems Theory in the Engincering Process

The mathexﬁatical theory of general systems can be of use in engineering
in several different contexts and ‘for several different purposes:

a) Complexity: First, there is the problem of complexity in large
scale systems. There is not mich we should add here to the discussion in
Section 3. It suffices to pbint out that, as the problems we consider be-

come more complex and the use of computers for simulation and problem-solving

' become more widespread, the need for a conceptual framework for both the

explanation of a problem and its solution becomes more acute.

b) Model-Building and Structural Considerations: Omne of the most

crucial steps in the engineering process is to select a structure for the
system to be designed or, similarly, to analyze the structural considerations
of the behavior and operation of a system. A detailed mathematical model,
even vhen available, is not suitable for this purpose. Traditionally,
engineers have used the block diagram basically for the purpose of grasping
the overall composition of the system and the subsequent structural con-
siderations. Of course, the principle attractiveness of block diagrams

is their siﬁplicity; wvhile the major drawback is the lack of precision.
General systems theory can be- useful as a tool in basic structural con-
siderations by preserving the simplicity of the block diagrams while
introducing the precision of mathematics. Actually, the role of gencral
systems theory in the engineering methodology can, perhaps, best be

represented by the diagram in Fig. (1).
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FIGURE 1

General systems models therefore lay between the block diagram
representation and a detailed mathematical (or computer) model. Especially
for complex systems, a general systenﬁ model represents a necessary step
since the gulf between ti:2 block diagram and the detailed model can be
too great. Of course, svailability of certain gencral systems techniques
to treat the problem {at least in a preliminary way) on the general systems
level can significantly enhauce the usefulness of adding this step in the

process.

¢) Precise Definition of Cencents and Interdisciplinary Cormunication:

General systems theory provides a framework for interdisciplinary com-
munication since it is general enough so as rot to introduce constraints of
its own; yet, by its precision removes misunderstanding to a considerable
degree. For example, different notions of adaptation used in the field of
psycholozy, biology, engincering, etc. can be first formalized in general

systems theory temns and then conpared.
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It is often stated that systems theory has to reflect the "invariant"
aspects of different real-life systems which are true for structurally
similar phenomena from different fields (disciplines). This can be
accomplished only if the relevant concepts are defined with sufficient
care and precision. Otherwise, the danger of confusion is too great. It
might be appropriate then to consider the mathematical theory of general
systems as a framework for the fommalization of basic systems concepts. In
this sense, it is quite basic for the '"'systems approach” in general and
systems theory in particular. The important poimu in using general systems
theory in this context is that, after introducing a concept in a precise
manner, it is not crucial whether the definition is "'correct" in any given
interpretation but rather whether the concept is defined so that it can be
examined, compared and subsequently changed if it fails to meet certain
intuitive requivements. In other words, one has a basis for "objectively"
evaluating the fonralization of properties of the real-life systems. In this
sense general systems theory offers a "language" for interdisciplinary
comunication. This usage of genecral systems theory might seem trivial from
the purely mathematical standpoint but it is not so from the viewpcint of
managing a large. systems enginecring effort in which a team of specialists

from different disciplines is working on a complex problem.



5. Formalization of the Goal-Seeking Notion in General Systems Theory

As was mentioned in Section 1, the goal-seeking representation offers
an approach to the study of real-life systems as important as, if not more
important than, the terminal approach. In this section ye-shall define
more precisely in general systems tems the notion of a goal-seeking
system in order to illustrate both the process of foumalization and the
kind of notions usually developed in general systems theonry.

Given a system
SSXxY, | (1)

to arrive at the notion of a goal-seeking representation for S we need
two preliminary concepts; namely, the concept of a goal and the concept
of a decision-maker. (For simplicity we shall view S as a function which
implies that the members of X are input-state pairs.)
a) Goal
Let X =M = U. A goal for S is éefined then by a triplet of relations

a = (C,T,R) defired in refercnce to a set V such that

G: S+V
T:Uu-V : 2 .
REV«V

The set V represents the value or perfomance measure set. Under

interpretation, G represents the peifornance (or goaf) guncticn that assigns

3 value G(s) & V to every appearance of the system, i.e., s ¢ S. T represcnts

-16-
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the toferance (reference] function. For every u ¢ U, T gives the value

T(u) ¢ V that should be used to evaluate the performance of a given

jr = S(m,u). Finally, R represents the satisfaction refation. For any
(m,u} ¢ M x U, the satisfaction with the behavior of the system will be
evaluated with reference to G{m,u),S(m,u)},T(u) and R.

Given a goal a = (G,T,R) for a system S we have then two notions
relating the inputs with the goal. '

The input x ¢ X achieves the goal o if

(G(x,5(x)),T(w)) e R 3

where x = (m,u).

The input m ¢ M satisfies the goal a relative to U' € U if for all

u ¢ U' the input x = (m,u) achieves the goal ¢, i.e., for all u e U'

(G(m,u,S(m,u)) ,T(U)) e R {4)

The triplet 8 = (5,U',a) will be referred to as a decision problem.
An input m e M satisfies the decision predvfem (S,U',e) if it satisfies the

goal z relative to U'.

b) Decision-maker (Decision-svstem)

Given a systein

B e R L et T T D R T S T e E e

S:MxU-Y, (5)

% iR amPan

inforirally, the systen will be referred to as the decision-maker if &

[

decision preblem 3 is given such that for every (m,u) ¢ M x U, the output

y = S(m,u) satisfies 2 (in a givea sense).
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More precisely, S will be temned a decision-maker if the following
is given:

a) A pair of mappings

P:YxU+M
(6)
N:U-M
such that
m= W — Shu) =y) & (Piy,u) = m) (7

i.e., W is a composition of S and P as specified by (6).

8) A goal a for P such that for all u ¢ U, S(w,W(u)) satisfies the
decision problem g8 = (P,U',e) where U' € U is defined by a predefined set-
valued mapping F: U » n(U). -

Under interpretation, U represents the uncertainty set and the mapping
F selects (e.g., by prediction) the subset U' for which the cutput of S should
achieve the given goal.

¢} Goal-secking System

Finally, we are in a position to introduce the notion of a geal-seeking

Sys-tem.

Given a system
S: X - Y, ®

there are two ways how S can be defined as a goal-secking system.

[}
1

e S b s R R R AR R

s e SO B
. P 1

a1




-19-

1) Let a be a goal for S. The system is considered as an {open-Loop)
goal-seehing system if every x e X satisfies the goal a.
| .2) S is considered as a {{eedback] goal-seehing syston if a set M
is given together with a pair of méppings {b,P)

P: Mx XY

()
D: XxY+M

such that
a) ¥y =8(x) « (P(m,x) =y} A (D(x,y) = m)
g} D is a decision-maker relative to a goal a for a mapping Fh

defined on M x U into Y, i.e.,

By MxU-Y (10)

Apparently, according to the second notion § is a goal-secking system if
there is given a pair of mappings (P,D) such that S is a (feédback) composition
of P and D and, furthermore D is a decision-maker relative to a goal : defined
for PM‘

Starting from the notion of a goal-sceking system, some othor notions can
be defined such as learning (adaptation), self-organization etc. For example,
learning can be def&ned as a process ained at the reduction of the uncertainty

set U (13304

while seclf-organization can be defined as a process of changing
the structure of the goal-sccking process, i.e., the functions defining a goal-
secking systan (such as performance function, process model Pfﬁ tolerance

function, satisfaction relation etc.).
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