
AL, GENERAL SYSTS THEORY AND ITS MATHENLATICAL FOUNDATION*

Mihajlo D. Mesarovic

Systems Research Center

Case Western Reserve University

* For presentation at the 1967 SystenLs Science and Cybernetics
Conference, IEEE, Boston, Massachusetts, October 11-13, 1967

** This paper was supported by ONR Contract 1141(12) •

OCT 18 19•7

Relcrod.ced by the

CLEARINGHOUSE
for fmdefoal Scientific & Technical

Informaton Spenhfaedd Va 22151



L1

Abstract

Objective of this paper is to present the foundations for a mathe-

matical theory of general systems, to discuss the limitations introduced

by the use of the mathematical methods in the theory and finally to indi-

cate the areas of application in engineering.

Two points are emphasized: A need for the simplicity and precision

in the definition of the basic conccpts so that the description of the

complex systems does not become unmanageable. An explicit recognition of

the goal-seeking approach as constituting an important aspect of the systems

theory. In order to make the second point more specific a formalization of A

the notion of a goal-seeking system is developed in the last section.

The present aric"e carn be viewed as an updated version on an earlier

paper since the basic problems considered and the viewpoints adoptcd here

are the same as in (1)



1. What is the Mathematical Theory of General Systems?

We c4nsider the mathematical theory of general systems to be a theory

about mathematical models of real-life systems* such that the essential

properties of these systems are revealed using a minimal mathematical

structure (compatible with the intuitive interpretations of tihose prop-

erties). Such a general systems theory is currently under development in

the framework of set-theory and the bordering branches of abstract mathe-

matics (l) (2) (3) (9) (10) (11).

The selection of this basis for general systems theory stems from

the point-of-view that the objects of study in mathematics (regatdless of

the special branch one has in mind) are essentially (and in t1e first

place) sets and relations between sets and teir elements. Various branches

of mathematics differ primarily in what additional properties (i.e. "structure")

the sets (and the relations) under consideration possess".

SThe term "real-life system" is used here only a3 a label to denote the
physical, economical, (or even conceptual) etc., class of interrelated
objects (or phenomena) defined within a given subject-matter. It is
essentially an interpretation of the given mathematical model.

* It should be noticed that according to the established custom in mathe-
matics the term set theory is used only to denote the study of relations
between sets (and their elements) which have very little (if any) additional
structure (such as e.g., ordering). The specialized fields of mathematics
in which the sets have more properties are not considered as being part of
set theory. For example, if the s,-.ts under consideration have some functions
which map the elements of a set into itself one talks about (partial) algebras
or if some set-valued functions are defined on the sets under consideration
one talks about (general) topology, etc.



i ..

W2-
I

A distinction should be made between the objects of study in mathe-

matics and the way this study is conducted. The fonnalization of the

latter process is the domain of metamathematics, i.e. a formal theory of

deductive reasoning in mathematical studies. Metamathematics, in turn,

also uses various mathematical structures. These structures are selected

on philosophical grounds since they reflect sufficiently closely what

intuitively (and on the basis of philosophical logic) is considered to

be deductive reasoning. However, they comprise a special subclass of the

class of mathematical structures and from the purely abstract, formalistic

point of view, they cannot be preferred for the development of a theory of

the behavior of variou:s real-life systems. Traditionally, the mathematical

structures used in metamathematics were finitistic, but recently more power-

ful mathematical methods have been used (4). The J:,c'.oductio7 of non-finitistic

methods in iretamathematics has resulted in greater simplicity and increased

efficiency. This is why set theory (i.e., mathematics) rather than logic

(i.e., metamathematics) is used as the basis for a general theory of systems.

Let us now turn, more specifically, to some of the basic concepts and

problemis of general systems theory.

Given a family of sets, X = (X ,...,Xn} ; A _geneA4at.) z6 ton is defined

to be a relation on Y, i.e., S c Xlx... xXn where x indicates the Cartesian

product. The sets XI,...,Xn which enter the relation are called objects.

Each Xi represents the totality of all appearances of (or experiences with)

an attribute of the real-life phenomena under consideration. Similarly, S

pi



represent* the, totality of all appearances of (experiments with) the real-

Life system.

There are two important types of problems in general systems theory:

1) Constructive specification: How to provide an efficient procedure

for use in prediction; i.e., to determine some of the elements of the system

when sme other elements are given. Constructive specification as a basis

for predicting the systems behavior is esrsential for the utility of the

systems notions.

2) Systems properties: How to formalize certain properties of ihterest

in the characterization of real-life systems and how these properties are

related with constructive specification.

There are two basic ways to provide a constroctive sp7ciiication of

-systems: the teaminat app4oalch and the goat-4eeking appwoat.

I) in the terminal approach the systems objects are partitioned into

two classes, X Xx.. xXm, and, Y =.. so that the system becomes

S I X x Y. The objects in X are called in (and represent the cause,

stimulus, for the phenomenon under consideration) while Y are called m

(and represent the effects, response). The constructive specification of

teniinal systems is arrived at by providing additional structure on the object-

sets so that a simpler system can be defined (hopefully even of finite cardi-

nality) that can be used to specify the original system, e.g., via a process

of recursion or induction. Such simpler systems used for constructive specifi-

catiui are called auxitio ty unctiofl (2) Often, they require introduction of
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some new (auxiliary) objects in the description of systems, most notably

the 6,ta.te object or the A6te .6poce (2)(3) I
0) Constructive specification in (and indeed the definition of the

concept of) the goal-seeking approach is achieved by introduction of the

notion of a goal for a system and then by describing the behavior of the

system in reference to that goal. The last section of this paper contains

a formal definition of a goal-seeking system. It should be emphasized that

the goal-seeking description of a system is needed not for philosophical or

conceptual reasons but rather for the purely technical reasons of arriv-ng

at a constructive specification. It might even be considered as an

alternative way for implicit definition of a function (or relation); namely,

for a given class of systems one might not have available a constnrctive

specification via the tenrinal approach but only in terms of goal-seeking.

That does not mean, of course, that the basic concepts involved in the

tenninal description of such a system (e.g., the state object) cannot be

defined; rather, it might be because the associated auxiliary functions are

not available in an analytic or algorithmic form so that one has to resort

to the goal-seeking approach (5)

To make the present discussion more complete the following should be

noted:

a) The properties one is conc6rned with in systems theory refcr, as a

rule, to the infor,;ation processing and decision-making aspects of the real-

life phenomeina rather than to the physical (or other) laws per se. In this
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sense, systems theory is a theory of information processing and decision-

making.
b) There are two routes along which one can proceed to develop

general systems theory. One can start from the class of real-life problems

and proceed by formalizing their verbal descriptions. In this way one starts

from the most abstract (least constrained) description and proceeds by

introducing more structure and considering the consequences of each new

assumption. This approach we shall refer to as jowundization. The second

approach which, we shall call the enezaaization approach, starts with two

given classes of mathematical models and by generalization develops a

broader class which preserves the properties and subsumes the original

classes. We pursue the formalization approach. The generalization approach

has been pursued, in particular, in connection with the unification of the

control and automata theories (presented in the algebraic rather than logical

framework) (6) (7) (15)

f!a
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2. Limitations of a Mathematical Theory of General Systems

Before considering the potential benefits and usefulness of a n•athe-

matical theory of general systems it is only appropriate to consider its

weaknesses. The theory can be criticized from two opposite sides:

1) Since it is essentially a mathematical theory it can put severe

restrictions on the description of the behavior of the real-life systems,

especially if one deals with complex biological or social situations.

2) Since the theory uses rather weak mathematical structures, it is not

possible to "solve" too many problems or even to develop deep enough results

to be useful.

Consider the first objection. It is certainly true that systems theory

cannot be broader than its mathematical foundation. Yet, at this point one

should not proceed further without investigating with some more care what

this foundation really is. An appropriate starting point would be to con-

sider more carefully the concept of a theory. For our purpose, the most

appropriate notion of a theory is that advanced by H. Curry P8). To arrive

at the notion of a theory one starts from a class of (elementary) statements

P about the subject matter of concern. It should be noticed that at this

point one is dealing with an "intuitively comprehended collection of elements"
S(8)

which Curry calls a conceptual class. (Technically, we differ here from

in that the class of statements does not have to be definite.) A ,theo•y, then,

is a subclass of statements T c p, which are asserted to be true. This

assertion can be the result of experimentation or may reflect certain postulates

"-6-
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about the behavior of the observed phenomenon. For further sharpening

of the notion of a theory we have to recognize two aspects of a theory:

the iZjo)mt, concerned with the meaning, interpretation, of the state-

ments; and the 6o'zmt, concerned with the structural aspects of the

observed phenruenon. We are concerned here only with the formal aspects

of a theory. Linguistic analysis reveals two components of a statement:

terms (nouns) denoting the objects of concern and the functors denoting

the relation between the terms. The statements in the class P have some

undetermined constituents; otherwise, their truth or falsity would not

depend upon the theory T but will be deqided on the contensive basis,

i.e., by the content of the sentences themselves. The undecided elements

could be assumed to take on values, in general, from some conceptual classes.

We shall now make the assumption that these classes are sets in a given

axiomatic set theory. Nouns, then, would designate certain sets and the

functors certain relations.

Consider now a mathematical structure which is a relation on appropriately

defined sets S c XIx... xXn. The structure S will be considered to be a mathe-

rrneVct modet 6oo Zthe thteopy T if S is a valid interpretation for T, i.e., if

every statement in T is true in S. Apparently, for a given theory T there is

a multitude of valid mathematical models.* Notice that only validity relative

*It should be noted that for certain special types of formalized theories (such
umetamathematical syster.s as the propositional calcuhlus, etc.) there. is quite an
active development of the mathematical theory of models (for these particular
formalized theories). Our concern here, of course, is with a broader notion
of both a theory and its modcl (since a theory does not have to be an inductive
class of statements).
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to T is required. Thus, some of the models can be incorrect in the sense

that there exists a statement outside of the elementary theory T which is

false in the subject-matter interpretation; yet, it is true in S. There-

fore, one can select a model which is valid but incorrect. This is, in

practice, too often the case since the correctness of a given model is not

easy (or even possible) to check beforehand. A valid mathematical model S

for a theory T is precisely the (general) system S as defined in Sec. 1 and

represents the mathematical model of the real-life system about which the

theory T has been formulated.

In surnuary, then, as soon as we have a theory it is possible to

introduce the notion of a system. The restrictions which general systems

theory (as defined here) imposes, follow basically from the requirement that

the range of any uideternincd term satizfy an axiomatic set-theory. This

essentially amnomt to the requirement that the statements in the theory do

not contain the well-known paradoxes (of referring to itself, etc.).

The important point that follows from the preceeding discussion is

that the inadequacy of the model (system) is precisely due to the limitations

in our theory of real-life phenomena and are not due to the introzduction of

the notion of a system. If the systen has very little structure and in this

sense does not reveal much, that is again due to the limitation of our kmow-

ledge about the behavior of the real-life system (i.e., theory T) rather

than duIe to the application of foimal, nmathematical methods.

9



S "I

2) The second objection, that general systems theory might not have

enough structure to yield useful results, can be fully answered only in

time. In principle, of course, it depends upon how one defines "useful-

ness". However, it is too early in the development of general systems

theorf to try to provide a full scale argument to counteract that objection.

If the development of general systems theory is needed and, indeed, is

inevitable for further understanding of the complex phenomena (as I feel

to be the case) then, perhaps, the most prudent thing to do at this point

in time is to state one's conviction and let future developments provide

the answer. However, some of the following papers (9)(10)(11) could

serve to support the argument against this objection.

I'!
4
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3. Complexity and Large-Scale Systems: Abstraction and Hierarchy

Consider the problem of complexity either in the operation or in the

design of systems. Of course, there is no definition of conplexity at the

present; xor, in general, do we think one can be developed on formal

grounds. However, there seems to be a consensus that a system appears to

be "large scale" or "complex" if the computational, analytical, economical

or any other combination of factors prevent the achievement of the objectives

to a satisfactory degree. How can one approach these complex problems? The

traditional way, of course, has been to use approximations. There are two

new approaches which show some promise.- 1) The ab~t~ac..on a~pp'wac~h;

2) The hieacjuccze m mLIdti-teveI appkoach.

1) In the approach via abstraction one uses a mathematical model

which is less structured and models only some of the dominant, "key",

features of the problem. For example, suppose the system is described by

a large number of partial differential equations. The study of the stability

of such a system via the Liapunov method can be quite complex. However, if

one recognizes tne algebraic structure of the system's transfonration one

might consider the stability problem algebraically (12); thereby using a

less detailed representation of the system. This is, of course, where the

mathematical theory of general systems should be of help. Other aspects and

properties, like decomposition and structuring of systems, can also be studied

in an algebraic framework.

-10-
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The distinction between the approximation and abstraction approach

should be noted. In the former, one uses the same mathematical structure

and the simplification is achieved by the omission of some parts of the

model that are considered as less important, e.g., a fifth order dif-

ferential equation is substituted by a second order equation by consider-

ing only the two "dominant" state variables of the system. In the latter

approach, however, one uses a different mathematical structure, one which

is more abstract, and considers the system as a whole but from a less

detailed viewpoint. The simplification is not achieved by the omission

of the variables but by the suppression of some of the details considered

Lnessential.

2) In the hierarchical approach one decomposes the problem and solves

the suhproblems independently. Partial solutions are then coordinated by

a hierarchy of decision processes aiming at coming as close to the overall

solution as possible. The decomposition and the coordination can be done

either in time or in space. In the design or computational problems, one

solves the subproblems sequentially in time and achieves the coordination

by an iteration process. In the problems of complex operational systems,

the overall system is decomposed into subsystems whose operation is

simultaneous in time and the coordination is achieved by "on-line"

intervention during the actual opera:tion of the subsystems.

It might be of interest to point out that, in spite of apparent

dissimilarities betw'een general systems theory and the theory of
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multi-level (hierarchical) systems, the motivation for their development

is quite similar: to deal with complex, large-scale problems. Actually,

one should look at these two theories as being intended to deal with the

same type of problems but from different starting points.

a.

Ig

:C



4. The Role of General Systems Theory in the Engineering Process

The mathematical theory of general systems can be of use in engineering

in several different contexts and for several different purposes:

a) Complexity: First, there is the problem of complexity in large

scale systems. There is not much we should add here to the 'iscussion in

Section 3. It suffices to point out that, as the problems we consider be-

come more complex and the use of computers for simulation and problem-solving

become more widespread, the need for a conceptual framework for both the

explanation of a problem and its solution becomes more acute.

b) Model-Building and Structural Considerations: One of the most

crucial steps in the engineering process is to select a structure for the

system to be designed or, similarly, to analyze the structural considerations

of the behavior and operation of a system. A detailed mathematical model,

even wihen available, is not suitable for this purpose. Traditionally,

engineers have used the block diagram basically for the purpose of grasping

the overall composition of the system and the subsequent structural con-

siderations. Of course, the principle attractiveness of block diagrams

is their simplicity; while the major drawback is the lack of precision.

General systems theory can be useful as a tool in basic structural con-

siderations by preserving the simplicity of the block diagrams while

introducing the precision of mathe;iatics. Actually, the role of general

systems theory in the engineering methodology can, perhaps, best be

represented by the diagram in Fig. (1).

-13-
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FIGURE 1

General systems models therefore lay between the block diagram

representation and a detailed mathematical (or computer) model. Especially

for complex systems, a general syster.s model represents a necessary step

since the gulf between tf-,e block diagram and the detailed model can be

too great. Of course, av-.ilability of certain general systems techniques t

to treat the problem (at least in a preliminary way) on the general systems -•

level can significantly enhance the usefulness of adding this step in the

process.

c) Precise Definition of Conc'ts and Interdijplin CoZi7Umication:

General systems theory providns 6 framework for interdisciplinary com-

munication since it is general enough so as not to introduce constraints of

its own; yet, by its precision removes misunderstanding to a considerable

degree. For exan-ple, different notions of adaptation used in the field of

psychology, biology, engineering, etc. can be first fornalized in general

systems theory ter-is and then com-pared.



It is often stated that systems theory has to reflect the "invariant"

aspects of different real-life systems which are true for structurally

similar phenomena from different fields (disciplines). This can be

accoplished only if the relevant concepts are defined with sufficient

care and precision. Otherwise, the danger of confusion is too great. It

might be appropriate then to consider the mathematical theory of general

systems as a framework for the formalization of basic systems concepts. In

this sense, it is quite basic for the "systems approach" in general and

systems theory in particular. The important point in using general systems

theory in this context is that, after introducing a concept in a precise

manner, it is not crucial whether the definition is "correct" in any given

interpretation but rather whether the concept is defined so that it can be

examined, compared and subsequently changed if it fails to meet certain

intuitive requirements. In other words, one has a basis for "objectively"

evaluating the fonna"ization of properties of the real-life systems. In this

sense general syste•ms theory offers a "language" for intcrdisciplinary

commtinication. T1his usage of general systems theory might seem trivial from

the purely mathematical standpoint but it is not so from the vie:Teaxint, of

managing a large, systems engineering effort in whbich a team of specialists

from different disciplines is working on a complex problem.
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5. Formalization of the Goal-Seeking Notion in General Systems Theory.

As was mentioned in Section 1, the goal-seeking representation offers

an approach to the study of real-life systems as important as, if not more

important than, the terminal approach. In this section .we shall define

more precisely in general systems terms the notion of a goal-seeking

system in order to illustrate both the p4oce~s oj 6otnatizdtZon and the

kind o6 notiton4 u.uaw•y devetoped in ngejia syzteni6 theog,.

Given a system

S = Xx Y, (1)

to arrive at the notion of a goal-seeking representation for S we need

two preliminary concepts; namely, the concept of a goal and the concept

of a decision-maker. (For simplicity we shall view S as a function which

implies that the members of X are input-state pairs.)

a) Goal

Let X M x U. A goat for S is defined then by a triplet of relations

a (G,T,R) defined in reference to a set V such that

G:S V

T: U- V (2).

R CV xV

The set V represent.; the value or performance measure set. Uhnder

interpretation, G represents the p So.'!atnce (OA goat) SunctZon that assigns

a value G(s) F V to every appearance of the system, i.e., s c S. T represents

-16-
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the totegtunce (AedeAence) junction. For every u c U, T gives the value

T(u) c V that should be used to evaluate the perfolniance of a given

y a S(m,u). Finally, R represents the zaajt xLon tetation. For any

(M,u) E M x U, the satisfaction with the behavior of the system will be.

evaluated with reference to G(m,u),S(m,u)),T(u) and R.

Given a goal a = (G,TR) for a system S we have then two notions

relating the inputs with the goal.

The input x c X achieve6 the goal a if

(G(x,S(x)),T(u)) e R

where x = (m,u).

The input m e M ztiAdie the goal a relative to U'P c U if for all

u c U' the input x = (m,u) achieves the goal a, i.e., for all u C U'

(G(mu,S(m,u)),T(u)) c R (4)

The triplet a = (S,U' ,a) will be referred to as a dee .Jioni pkobtem.

An input m C M & the dec,-io, vobZent (S,U',a) if it satisfies the

goal a relative to U'.

A b) Decision-maker (Decision-system)

Given a system

S: lM U 4 Y, (5)

infonnally, the svstc:: will be referred to as the decisicn-rmker if a

decision pre•b•I.I is given such thit for ever" (rie _ M x U, the output

y SCm,u) satisfies 2 (in l given seRse).
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More precisely, S will b- terned a deu&.ion-mnakeA if the following

is given:

a) A pair of mappings

P:YxU-U M (6)
W: U M

such that

m = W(u) --, (SCm,u) y) A (P(yu) -M) (7)

i.e., W is a composition of S and P as specified by (6).

0) A goal a for P such that for all u e U, S(w,W(u)) satisfies the

decision problem a = (P,U',a) where U' - U is defined by a predefined set-

valued mapping F: U - 7r(U).

Under interpretation, U represents the uncertainty set and the mapping

F selects (e.g., by prediction) the subset U' for which the output of S should

achieve the given goal.

c) Goal-seekinS §stey

Finally, we are in a position to introduce the notion of a goat-zeeki• 9

. Y'S -temr. •

Given a system

S: X -,Y, (8)

thcre are two ways hou S can be defined as a goal-seeking svst'.m.

5:X- 8



1) Let a be a goal for S. The system is considered as an (open-.toup)

poatt-Aeei 4,,tern if every x r X satisfies the goal a.

.2) S is considered as a ({eeddbck) goat-,eezin9 6yteon if a set M

is given together with a pair of mappings (D,P)

P: M xX Y 
(9)

D: XxY-Y M

such that

a) y S(x) i-, (P~m,x) y) A (D(x,y) = m)

0) D is a decision-maker relative to a goal a for a mapping PbM

defined on M x U into Y, i.e.,

P M xU - Y (10)

Apparently, according to the second notion S is a goal-seeking system if

there is given a pair of mappings (P,D) such that S is a (feedback) composition

of P and D and, furthernore D is a decision-maker relative to a goal a defined

for PM"

Starting froa the notion of a goal-seeking system, some othzr notions can

be defined such as learning (adaptation), self-organization etc. For example,

learning can be defined as a process aimied at the reduction of the uncertainty

I set U (13)(14) while self-organization can be defined as a process of changing

the structure of the goal-seeking process, i.e., the functions delfining a goal-

seeking sy.t:. (such as performan.ce function, process model PMi tolerahce

function, satisfaction relation etc.).
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