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ABSTRACT 

If the edges of a plate are embedded in a visco-elastic material, 
flexural vibration of the plate is damped by virtue of the damping forces 
and couples exerted at its boundaries. This paper analyses ard assesses 
the effectiveness of this form of artificial damping when applied to a 
uniform beam and compares it with the effectiveness of homogeneous damping 

layers applied throughout the length of the beam. 

First, the theory is developed for the linear flexural response of 
the uniform beam to uniform harmonic loading. Transverse displacements 
of the beam are prevented altogether while rotation is opposed by the 
linear elastic and damping couples from the embedding material. Explicit 
expressions are derived for the amplitudes of curvature at the centre 
of the beam and from these it is shown that there exist optimum values 
of the end constraint damping properties which will minimise the beam 
resonant response. Methods of estimating these optimum values are d 
discussed. It is shown that different optimum values are required to 
give the maximum e fective flexural loss factors of the beam. This 

greatest value may oe of the order of 0.33. 

Comparison with the effectiveness of homogeneous layers shows that 
the edge-constraint damping mechanism is more effective than thin homo¬ 

geneous layers, but much less effective than thick layers. 

Distribution of this abstract is unlimited. It may be released 
to the Clearinghouse, Department of Commerce, for sale to the general 

public. 
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1. INTRODUCTION 

\ 

Plate vibration problems are often alleviated by applying damping 
treatments to the plate* Usually the *¿)ole or a large part of the surface 
is covered with a layer of a visco-elastic material which dissipates energy 
as the plate bends. An alternative method considered in this paper is to 
embed the edges of the plate in a visco-elastic material so that energy is 
dissipated as the edges rotate under the bending displacements. It is the 
purpose of this paper to compare the effectiveness of these methods of 
damping. 

This has been done by considering the resonant response of a 
simply-supported beam (rather than a plate, for sinplicity) to a uniform 
harmonic loading. To represent the embedding visco-elastic material, 
rotational constraints are introduced at the stpports which exert both elastic 
and damping couples. The response of the whole system has been computed for 
several different values of the stiffness and damping rates of the constraints. 
This is compared with the response of a similar beam danped only by (a) an 
unconstrained layer type of treatment (e.g. Aquaplas) and (b) a sandwiched 
damping layer. 

Simple reasoning suggests that there must be optimum value of the 
edge constraint damping to minimise the beam resonant response. Suppose that 
the constraint stiffness remains constant while the danping rate varies between 

>ro and infinity. With zero damping, the beam vibrates as an undamped beam 
‘ith infinite response at resonance. With infinite constraint danping, 

.ation at the supports is altogether prevented so that the beam is effectively 
fully clamped at its end. Since the ends do not rotate, no energy is 
dissipated there and the beam motion is effectively undamped, again yielding 
infinite response at resonance. Between these two extremes rotation of the 
ends must occur and energy must be dissipated as the beam vibrates. This 
necessarily means that the resonant response is finite. Since the resonant 
response is infinite for the two extreme values of the constraint damping, 
and finite for intermediate values, it follows that there must be one (or 
more) particular "optimum'' value(s) of the constraint danping at which the 
resonant response has a minimun value. Explicit expressions are derived in 
this paper by two different methods for the magnitude of this optimun danping. 

2. RESPONSE OF BEAM WITH ROTATIONAL END CONSTRAINTS 

Consider a uniform beam of length 2^, initially simply-supported at 
its ends. Equal rotational constraints are then applied to each end such 
that a couple of magnitude K + ih - K(l + i^) is exerted on the end per 

^®rrn°n^c rotation. K is the elastic restoring moment per unit rotation 
and ih is the hysteretic damping moment per unit harmonic rotation. A 

uniform harmonic loading of p e ^ per unit length acts on the beam. In the 
absence of internal damping within the beam itself, the equation of motion of 
the beam is 

^2W 

(1) 

1 



vtoere w is the transverse displacement of the beam, m 
unit length and El is the flexural stiffness. 

is the mass per 

Let the longitudinal co-ordinate x have its origin at the beam 

" "A*/ and considering only the solution of the 
differential equation which is symmetrical about the beam centre, we have 

where 

w » A cosh + B cos ^ - P/mu2 (2) 

Xa 
(3) 

At the right hand support (x aJfc) 

bending moment in the beam is equal 
i e 0« 

the displacement w is zero, and the 
to the complex moment from the constraint 

El - K(1 + iyc) & 
dx 

(4) 

From these boundary conditions, the constants A and B are found. 

nn . Fr?m ** Sha11 consid®r the effect of the damped constraints 
b«ndinnCüfraîUr? °f ^ be*m* This, ProP°rtional to the 
bending stress in the beam, is the most important response quantity in 
connection with the fatigue life of a vibrating beam. Accordingly, we 
differentiate equation (2) twice with respect to x, and using the derived 
expressions for A and B, we find aeriveo 

(cosÀ-coshÀ)-HC(l+ije)(sinX-»inhA)l/EI 

^ 2cosA cosh\+K(l+i^c)(sinXcoshX+cosA sinhÀ)|/EI 

We now wite this in the notation of Bishop (Ref. 1, p. 359), using 

F2 * cos X cosh A 

* cos ^ sinhA + sin A cosh A 

Fy = sin A -sinh A 

F10 « cos A -cosh A 

Hence, with some further re-arrangement, we find 

( ’4) a.+ 
(2Ä24KiF6) + 1,CK. f6 dx2/ • pt2 /X*0 

(5) 
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In this, “ gj1 
(6) 

and is therefore a non-dimensional measure of the end constraint stiffness. 

several difÄ^lua^ofT TnT 1° cilcul*‘* th* “"Pi»« curvature for 
values of K and ^ over the non-dimensional frequency 

rang, A - 0 to 6-6. This range covers th. resonant portion of th. ré¬ 

ponse curves of both simply-supported and clasped beams. Figure 1 show, th. 

Kj/. \c taTSiSn^Ä*of 
s¡cK is finite. The end constraint therefor, consists solely of a 

hysteretic damper. In Figure 2. * ha, th. valu, of 1. Figure 3 show 

m0dUlU5 Pl0Ued ,S,lnst A fM values of K but 

beam, but with infinite daspino^t^is ' '""strained, sinply-.upportJ 

«hole curve for r, - » u iSmticll tLi ï""’ 
can be seen from Ration 5 by Uttiío Í be«», a! 

letting ^ „ (Linit.\o^rÄ.!UT " ’ ” 

«« «. “ “rT.“1 ~ rn 
resonant ^TÎchie^e^î if th® 

intersection point is given by^h. ZltlTn to"* th* fr6qUe"Cy °f th* comon 

•to'* .i -.. y.,, _ , _ 8 
2A^P6 ¿ X2p6 

and the corresponding curvature anplit.ude is given by 

d2w 

dx4 
x»o 

El 

PC 

-I§- 

xV 

(7) 

(8) 

evaluated at the appropriate value of A . For th. first intersection point, 

using equation (7) with the negative sign, A2 - 3*95. P 
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3. OPTIMUM DAMPING FOR GIVEN CONSTRAINT STIFFNESS 

The optimum value of the constraint damping rate h , is the value 
which gives the minimum resonant response. It may be estimated for different 
values of It using sets of curves such as those of Figures 1 and 2. Plotting 
the resonant response against i} . curves of the type shown in Figure 4 are ic ^ 
obtained. From these, the optimum values of ifc, and hence of h are easily 
estimated. 

This method of estimating h ^ is obviously rather tedious, 

alternative, more rapid methods, are therefore presented. 

Two 

3.1 The Method Imrolvlng the Known Resonant Frequency 

Figures 1 and 2 have shown that the minimum resonant response occurs 
at a resonant frequency given by the common intersection point of all the curves. 

For a given value of R, therefore, we know from equation 7 the resonant 
2 

frequency, A0» of the system with optimum damping. 

Now at the resonant frequency of a single degree of freedom system 
with hysteretic damping, the displacement response is exactly in quadrature with 
the exciting force, i.e. the real part of the response is zero. In the analysis 
which follows, it will therefore be assumed that the real part of the beam 
curvature is also zero at the known resonant frequency. This leads to a simple 
equation for an approximate value of . 

,copt 

Equating to zero the real part of the curvature given by equation 5, 
we find 

(F10 + RF8/A)(2A2F2 + IUF6) + = 0 (9) 

Combining this with equation 7 (which is the frequency equation for the common 
intersection point) yields 

le* * h* - I 2WF6 + (10) 

When this is evaluated at the appropriate, known value of XQ it yields the 
required approximation for 17 

icopt 

It must be emphasised that the assumption leading to this is only 
an approximation. Some justification for it is afforded by examining the 
vector response diagrams of Figure 5. These show in the usual way, the 
real part of the curvature plotted against the imaginary part for different 
values of the frequency parameter A . Each circle has been computed for 
the same value of l((* 0) but with different values of h*. It is evident 
that the value of X for resonance (maximum response) differs slightly from 
that for zero real component. The difference, however, is not large enough 
to introduce serious errors in the calculated value of h From 

examination of Figure 5 in conjunction with Figures 1 
opt* 

and 2, it may be deduced 
that the approximate value of must give a frequency response curve which 

has its peak at a frequency slightly higher than that of the common intersection 

4 



pom. The corresponding curvature amplitude will however differ negligibly 
from the minimum possible value. negugioiy 

Table I shows the values of ^ calculated from equation 10, and 
opt 

compares them with the optimum values derived from the minima of Figure 4. 

3*2 The Method of Intersecting Asymptotes 

Figure 4 shows that at very high or very low values of , the 

resonant curvature behaves asymptotically. The two asynptotes of a given 
curve intersect at a value of ^ which is evidently very close to the 

optimum value. The equations to the asymptotes are quite easily found from 
energy considerations, so that the optimum value of 17 (or h*) may be 
determined. «c v ' u,ay 

When is very small, the mode of beam displacement at resonance 

is virtually the same as the principal mode of the undamped beam with the 

f íx)elandllt!nH C.0n8îfainÎ» °enote this non-dimensionalised mode by 
fe(x) and its derivative by f^x). The absolute displacement in thi^ 
mode is given by 

w » q x^x) 

Mche«nH oíStíhVenefaliSe5,dÍ^laCrent co“or(ttnat®. The rotation of 
the^beam u qV'To) ^ * “ 9’ th' curvature “ «>« «"tre of 

0 

H th.n fH ^he 9®n®ralised hysteretic damping coefficient in this mode is 
H, then the amplitude of q(» q) at resonance is given by 

q ■ Generalised Force Amplitude + H 

H is given by the energy relationship: 

(11) 

Energy dissipated in the system in the harmonic cycle qe - iu>t 

"Hq2 
(12) 

l 
and the generalised force amplitude by jp f (x) dx 

Now the energy dissipated by the damper h at the end of the beam 

por cyol. of rotation of amplitude 3 is %52. As.uaing that th. danpino 
Of the beam derives solely from the end danpers, we then have ^ 3 

" Hq2 - 2nh52 

Hence 

H • 2 h [fe(l)]2 

5 



so that the amplitude of the beam curvature at resonance becomes 

(13) 

Using the appropriate functions of the F's for f (x), etc. and introducing 

the non-dimensional parameteis 1» and 1C» we can re-write equation 13 in 
the form {C 

This is the equation for the low^. asymptote to the curves of Figure 4. 

X is the root of the frequency equation 
* 

2\r2 + KF6 • 0 (15) 

which is the frequency equation for the elastically restrained beam. Each 
of the F's in equation 14 must be evaluated for A ■ A^. 

The high ^ asymptote is found in a generally similar way. The 

mode of beam displacement is now virtually that of the fully-clamped beam» 
fç(x). The rotation of the ends is vanishingly small» whereas the magni¬ 
tude of the hysteretic damper is becoming indefinitely large. However» with 
a given displacement amplitude» q»_ the amplitude of the moment acting at the 
end approaches the constant value q.EI.f" (1) ■ Mj this is the end moment 

c 
in the undamped» full/’damped beam. For the energy dissipated per cycle by 
each end damper we now use the al ernatlve expression 

90 (16) 

Hence 

and H 
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The amplitude of beam curvature at resonance now becomes 

,2- 
d w 

dx x*o 

Pifc(x)dx.f»f(0) 

(2/h)[EI.fc«U)]2 
(17) 

which can be re-arranged into the form 

,2- d w 

dx 

El 

* "”2 “ ?cK* x-o Pr fc 
2XcF2 

(18) 

This is the equation for the high-^ asymptote to the curves of Figure 4. 

Ac is the root of the frequency equation 

(19) 

which is the frequency equation for the fully clamped bean. We shall con- 

r1* ->icv*lu:th* rl*‘hind ÎqÜtîoTn becomes ^H/22.35. The optimum value of ^ is found by equating the 

curvatures of equations 14 and 18, from which we obtain 

2 
opt 22.35 (20) 

'The optimum valuer caloaiaôod from «quation 18 are shown in Table I. 

4. OPTIMUM STIFFNESS FOR GIVEN CONSTRAINT LOSS FACTOR 

oDti,HHn„Aîîî0!î3h íhe Pfevious action gives insight into the method of 
íh c°n8traint properties, it is more realistic to suppose that th( 

ti i °::r lçainrt7inf r - value, while^e conítíain; 
stirrness is varied to obtain the minimun response. This is so because the 

diroiL’EateHal^ a.practJcal Problem is to choose for the constraint a high 

K, but r¡l' «llÂií coîrt»;?” °f th* n“terial -111 Ch*na' the stlffnM1 

In th. ftrIt*nUce°dFili^'h Íí„r*,dlly ,d*?ted t0 find th* ‘’P11"“® in cne rirst place, Figure 6 shows curves of resonant curvature plotted aaain. 
K for different velues of V Th,., „re obtained frc seÜ oí 
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as those of Figure 3. The equations to the asymptotes may be found in the 
same way as in £3.2 and are 

El 

x*o 
• for small K 

*F6 
(21) 

at a frequency given by F2 « 0 

and 

x»o 
—I— for large K. 
2A3F2 

(22) 

(23) 

at a frequency given by F^ * 0 (24) 

(Note that in deriving equation 23» the general expression of 16 is used 

for the energy dissipation and not the limiting expression for large 

Equating 21 and 23 and using the appropriate values of Ain the two 
expressions leads to 

V * 3,78 H + 1c)'14 (25) 

Table II compares the values of 
measured from the minima of the 

K t given by equation 25 
curves of Figure 6. 

with the values 

5. LOSS FACTOR OF DAMPED BEAM 

The loss factor ^ of a system which is vibrating in a given 
mode is a non-dimensional measure of the generalised hysteretic damping and 
is convenient for making superficial comparisons of the effectiveness of 
different damping methods (ref. 2). It can be defined by 

V . OfineialUed Hvsteretic damping Coefficient H 
Generalised Stiffness Coefficient K 

. -i- Energy dissipated per cycle_ 
2n Maximum energy stored during the cycle 

(26a) 

(26b) 

If the system is lightly damped and vibrates in a principal mode, 
the loss factor may be related to the bandwidth of the frequency response 
curve by the approximate expression 

7 (27) 
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^ iS the resonant frequency of the mode, and Au i8 the difference 

between the two frequencies at which the response is l/Xl times the resonant 
response. 

Equation 27 has been used to find the effective loss factor of the 
constrained beam by using values of Au and u^ measured from the confuted 

curves of Figures 1, 2, 3, etc. Figures 7 and 8 show the values of *7 
calculated in this way. Figure 7 shows the effect of varying keeping 

K. constant, whereas Figure 8 shows the effect of varying K, keeping si 
constant. The maximum values of 7 that are indicated are not high (c 
enough to invalidate the use of the approximate equation 27, but it must 
be borne in mind that the errors involved in the approximation do increase 
as 7 increases. 

The asymptotic nature of the curves of Figures 7 and 8 can be 
utilised, as in section 3.2, to arrive at the optimum values of ijc (or R) 

for maximum loss factor. The equations of the asymptotes can easily be 
found using the energy definition of 7 (equation 26b). The intersection 
points of the asymptotes can then be located. In this way, the optimum 
value of 7c for a given value of K is found to be given by 

Tc (—27 +—(28) copt 2. \ cos2 A cosh2A / K. e e 

Likewise, the optimum value of K. for a given value of 11 is found to 
be (c 

«opt - 2-i2 (1 + 1C2)JA 

It will be noticed that these optimum values differ from those required for 
minimum curvature (equations 20 and 25). This is a feature which has 
previously been observed in the optimisation of damped sandwich plates 
(ref. 3) and stems from the fact that as the properties of the dancing 
material are changed, so also is the stiffness of the whole system, as well 
as its damping. 

Tables III and IV show values of n and R . respectively, 
icopt opt ^ 

calculated from the above expressions and from examination of Figures 7 and 
8. Some corresponding values of 7 for the beam are also given» these 
were found from the peaks of figures 7 and 8. Now damping materials are 
available have material loss factors7 , of up to about 1*0. From Table 

IV it is seen that with such materials it should be possible to obtain 
overall effective loss factors of 0*33 with the optimun constraint stiffness. 
This is close to the loss factor obtainable from a damped sandwich plate with 
a thin core having a material loss factor of 1*0 (ref. 3). 
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6. NUMERICAL EXAMPLE USING GIVEN MATERIAL 

Suppose a long aluminium plate, 0*04 in. thick and 8 in. wide is 
to be damped by constraining its long edges. This can be achieved by gripping 
the edges between two rigid surfaces, A and B, (see Figure 9) which enclose the 
danping material. Since the plate is long compared with its width, for the 
present purpose it may be represented by a width-wise strip of unit length, 
i.e., by a beam, 8 in. long and 1 in. wide. This must have the flexural 

3/ 2 
rigidity, D » £^/12(1 - v> ) vtfiich is equivalent to the El of the foregoing 

theory. It is required to determine the dimensions a and b (Figure 9) of 
the damping layer to minimise the resonant curvature of the plate. The 
material to be used has a complex Young's Modulus, Ec(l ), of 

103(1 + i. 1*0) lb.in.“2E for aluminium is 10*5 x 106 Ib.in . 

Now when the edge of the plate-beam element rotates harmonically 
as a rigid body about point 0, the restoring moment per unit rotation exerted 
by the two layers of damping material can be shown to be 

K + ih - E (1 + in) 
6(l-*ç)b 

a2+^(l-V 
>] 

(30) 

per unit length of plate. Vc is Poisson's Ratio for the damping material. 

for the constraint (h/k) is identical to ^ for the material, so that 

no distinguishing symbol need be used. As its value has been specified, 
equation 25 may be used to determine the optimum real part of the constraint 
stiffness, k, for minimum resonant curvature. Equating this to the real 
part of the righthand side of equation 30 leads to the following equation 
for a and b: 

h2(l - V ] 3*78 (1 
2:*d 

+7c>ï 
6U-¿ 

Ec 

(31) 

Inserting the appropriate values into this, some typical pairs of values 
for a and b are found to be: 

a b 
0*473 in. 

0*333 in. 

0*234 in. 

0*1443in. 

0*473 in. 

0*166 in. 

0*058 in. 

0*0144in. 

10 
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7. comparison with other damping techniques 

The damping effectiveness of the end-constrained beam will now be 
compared with that of the unconstrained layer type of treatment (e.g. Aquaplas) 
and also with that of the sandwich plate with a damped core. 

Suppose the beam to be treated is rigidly clamped at each end. Its 
flexural stiffness before the treatment is applied is the same as that of the 
beam of section 2, viz. El. When the treatment is added, El is both 
increased and made complex so that the new flexural stiffness may be written 
in the form öEi(i + i<l^). It will be assumed that the treatment is 

uniformly applied, so that o and are constants. It will be assumed 

that the damping due to the treatment is much greater than that of all 
other sources. 

The beam is to be excited by a uniform harmonic loading pe*1** 
at the resonant frequency ^ of the fundamental bending mode. As an 

approximation, it will be assumed that the resultant mode of forced 
vibration is identical with the corresponding undamped principal mode, 
fc(x). The generalised displacement, q, in this mode and at the 

frequency <*» is then found to be 

£pf (xjdx.e^r* 
q “ —fT"*"’-(32) 

1 J, °VI(f2(x)) ^ 
The amplitude of curvature at the centre of the beam is qf" (0), i.e. c 

qfj!(0) 

,2- 
(I w 

dx x=0 

p [fe(x)dx.f»(0) 

tEIÍP;(x)]2 dx 
(33) 

Evaluating the integrals in terms of the F functions, this equation may 
be written in the form equivalent to equation 5, viz. 

(34) 

which must be evaluated with the argument ^ = 2*365 in the F functions. 
The right hand side of equation 34 then becomes 

0*l79/oflt (35) 

Now for a given damping material on a given plate (beam) the 
product üT)t is a function only of the quotient (thickness of treatment) 

t (thickness of plate), or (Weight of treatment) ♦ (Weight of plate). 
üTit has been evaluated previously (ref. 2) for two commercial treatments 

having the following properties, and applied to an aluminium plate: 

11 



Loss factor Specific Gravity Young's Modulus, lb.in 
(real part) 

Treatment A 860,000 0*193 

Treatment B 1,080,000 o*33 

1*20 

1*68 

The values of from reference 2, have been used to evaluate 

the resonant curvature expression of equations 34 and 35 for a range of values 
of r « (thickness of treatment) * (thickness of plate). The results have 
been plotted on Figure 10. Also indicated on this figure for comparison 
purposes are the minimum resonant curvatures obtained with optimised end 
constraint damping, as in section 4* these are not to be interpreted as 
being functions of the abscissa co-ordinates r. 

The corresponding analysis for the curvature at the centre of a 
damped sandwich plate, clamped at each end, is much more complicated and no 
accurate solution has yet been published. However, curves of for 

simply-supported plates have been presented (ref. 3), and those values 
corresponding to a core loss factor of 1*0 have been used in equation 35 
° obtain first approximations to the resonant curvatures of the clamped 

sandwich plate. These approximate values are also shown on Figure 10 as 
a function of t = (thickness of core) * (thickness of face-plate). 

uN0W as in section 5, that» = 1*0 is the highest value 
cînLÜÎ b? Jchie^ed for a Practicable constraint material. Comparing the 
sandwich plate and unconstrained layer curves of Figure 10 with the y * 1* 

line shows that the end constraint damping is more effective than the other 
dating methods when their material thickness ratios are less than 0*2 and 
0 75 respectively. With greater thickness ratios than these, the sandwich 
and unconstrained layer methods become much more effective than the end 
constraint damping. 

Now the calculations and curves of this paper have all been 
carried out the fundamental mode of vibration of the damped beam. If a 

of^hü; S* °f iS e“ited tby a point force> say) the effectiveness of the end constraint damping will not be as great as it is for the 
fundamental mode. In contrast to this, the effectiveness of the unconstrained 

ï ,ÍSwn0t affected at a11 fay the mode in which the plate 
hratTnn effectiveness does depend on the mode of 

vibration, but probably not to the same extent as that of the end constrained 
beam. Accordingly, it may be concluded that the edge-constraint method of 
damping a vibrating plate is superior to the other methods only if the other 
methods are limited to very thin layers of damping treatment and if vibration 
in the fundamental mode alone is to be remedied. 



8. CONCLUSIONS 

For the edge-constraint method of damping a beam or plate to be 
most effective, there must be an optimum relationship between lhe rotational 
stiffness and damping of the constraint. Explicit relationships have been 
derived for the optimum constraint damping for a given stiffness and vice- 
versa. These relationships depend on the length and stiffness of the beam 

to be damped. Of the methods used to derive them, the method of intersecting 
asymptotes is the most accurate, and is the most readily applicable to the 
problem of finding the optimum constraint damping to minimise any vibration 
response quantity of the beam. 

If the constraint material has a loss factor of 1*0, the maximum 
possible effective loss factor of the beam is about 0*33 when the beam 
vibrates in the fundamental mode. The corresponding optimum constraint 
stiffness is about 60¾ of that required to minimise the resonant curvature 
of the beam. 

When the edge-constraint has the optimum stiffness and a loss 
factor of 1*0, the beam resonant-curvatures are lower than those of beams of 
plates with conventional thin unconstrained or sandwiched danping layers. 
However, if these layers are thick, the conventional methods of damping 
are much superior to the edge constraint method. Furthermore, when the 
beam vibrates in a higher mode the conventional methods do not lose their 
effectiveness to the same extent as the edge constraint method. 
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Figure 9. Diagram showing dimensions of root 
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