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The use of electronic computers to prodgce various geographical
map projections is, of course, well known and established. If,
for example, spherical coordinates of points (latitude and longitude)
are given they may be converted to plane coordinates by whatever
transformation is required to yiecld such combinations of desired
properties as may be possible by appropriate computer programs. This
is all straightforward. The computer does the mathematical
manipulation of the values. And, if graphical output of the computed
'proJection is needed then this too can be achieved by computer
programs utilizing computer printers, scopes, or plotters.

In addition, if values for various phenomena are available at
given 10Eations these, too,can be manipulated in virtually limitless
ways to produce an eitraordinarily large varilety of maps including
ratio, density, and 1soline types, fqr example, for various topics.

Within the Laboratory for Cémputer Craphics at Harvard University
.(under the direction of Professor Howard T. Fisher) there exists
the "“SYMAP" (Synagraphic Computer Mapping) Program for producing
maps which depict quantitative and qualitative data graphically
and which use standard computer printers to achleve these results.
This program is a cohtinually evolving one w;th many new optlons
being currently developed. In its early versions a suitable source
map of the geographic area to be studieé vas always a requiremént
for the user of the program. On source maps measurements were
taken to obtain location coordinates for various purposes within
the program. This option is still avallable to the user although
now tabular data may be utilized directly, too, i1f available in this



way.

Standard computer printers, properly set to print 8 rows per
inch, produce output with characters (letters, nuﬁerals, ete.)
located in rows one-elghth inch in height and in columns one-tenth
ineh in width. The standard output "grid" for mapping is thus
composed of "character locations" or cells each measuring one-eighth inch
vertically by one-tenth inch horizontally. All coordinate measure-
ments are figured in terms of these Qells (or thelr centers). A
special SYMAP ruler, convenliently combining both units, is avalilable
to facilitate the measurement of coordinate locations on source maps
in conformance with their positions on the maps to be produced, 1if
the user chooses to work directly from a source map.

Curyent program versions still permit this type of source
map deteLmination of vertical and horlzontal coordinates measured
in the row and column units of the computer printer grid itself,
of course, and also allow vertical and horizontal coordinates to
be measured in the same scale (inches or centimeters, etec.) and
expressed 1ln decimal units and cohverted by a subroutine of the
program. And, as noted above, tabular locational coordinates may
also be used.

It 1s obvious that if measurements are made from a source
map and retained directly without transformation within the program
other than for linear scale, the map projection of the print-out ‘
will be the same as that of the source map itself, and the particular
characteristicé of the character séace (1.e. one-eighth inch in
height by one-tenth inch in width) is inconsequential except that

the general problem problem of representling a point by any finite area
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remains to be considered. This, too, is a scale problem.

Let us examine the nature of the printer output grid more
carefully, however, to see if its particular characteristics can
be turned to advantage especlally with regard to tabular data of
latitude and longltude coordinatés for locations. It should be
noted here, too, that the one-eighth inch high by one-tenth inch
wilde character space, while standard for the SYMAP program,is not
the only one avallable. For example, on the IBM 1401 printer for
alphanumeric print-out, a simple turn of a knob allows one to have
either eight rows to the inch or six rows to the inch. Thus, the
character space could be one-sixth of an inch.high by one-tenth of
an inch wide 1i1f desired as well as one-cighth by one-~tenth. In
addition another adaptation allows the printing of ten rows to
the inch so that the character space can.be one-tenth of an inch
by one-tenth of an inch. Consider now the ratio of width to height
for each of the character spaces noted above. These width to height
ratios are pure nﬁmbers and are exactly 0.60000, 0.80000, and
1.00000 respectively.

Suppose now that we regard tﬁe character spaces as bounded by
straight lines in a grid. :The family of lines in this grid running
horizontally and separating the rows are, of course, at right
angles to the family of lines running vertically and separating the
columns. Regardless of the particular value of the above ratioé,
the cells in a grid are rectangles. The actual ratio involved
determines the relative ®elongation of the cell.

Now consider these row lines and column lines as though they

were actually selected latitude and longitude lines on the graphical
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portrayal of a map proJectipn from a perfectly spherlical earth to

a plane. Thus, a difference in latitude (distance between row lines)
would be taken along a column lire and a difference in longltude
(distance between columns) would be taken along a row line. Before

we follow up thesg ideas,however, let ﬁs refresh our memories
concerning a few of the major properties of the conventional latitude-
longltude grid assumed to cover the assumed spherical earth. We

shall not attempt to be exhaustive.

The family of Jniltude llines and the family of longitude ‘lines
on the earth intersect at right angles. Longitude lines run north
and south and measure distances in angular terms to 180° east and
wést of a given zero longltude line. They are all of the same length
with the maximum distance between any two occurring at the equator
and the minimum (zero) occurring at the north and south poles. Thus
1bngitgd§ lines (sometimes called meridians) converge from the
equator poleward in both'the northern and the southern hemispheres.

A given difference in longltude represents a varying over-the-earth
distance depending upon where it is taken. Each longitude line

is an arc of a great circle and the center of each of these great
circles is the earth's center. The planes of this barticular set
of great circles interzsect along the polar axis of the earth. These
planes thus all contain the center of the earth as must the plane
of any other great clrcle on the earth's surface.

Latitude lines run east and west and measure angular distance
to 90° north and south of the equator as the zero line. Latitude
lines are equally spaced throughout for a given difference in latitude.

Thus latitude lines are small circles save for the equator which

is a great circle. Latitude lines are sometimes referred to as

R
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Parallels of Latitude. This 1s ambiguous for although any two
latitude lines remaln equidistant, neither of these lines may; in
general, be regarded as a "straight" line (great circle). 1In fact,
at most only one latitude line, the equator, is a straight line.
The planes of the latitude lines are parallel however, and intersect
the plancs of the meridians at right angles. Any two stralght lines
on a sphere must intersect not only once, but twice and the points
of intersection must be antipodal.

It is to be stressed that whereas a unit of latitude, say a

degfee, is everywhere of constant length (60 nautical miles or

-approximately 69 statute miles) on a spherical earth having the radius

it does, a degrece of longitude is equivalent in length to a degree

of lutitude-only at the equator. Everywhere else a degree of longltude
is shorter. Assuming a degree of longitude to be unit "over the
earth"'length when taken'along the equator, then the length of a
degree of longitude 1s, for example, approximately 0.86603 times

unit length in latitude 30° north and south, exactly 0.50000 times

in latitude 60°, and exactly 0.00000 times at the geographical North
and South Poles. These particular values are only specific instances
of the fact that the "over the earth" length of a degree of longitude
varles as the cosine of the angle of the latitude in which it is
taken. | .

Let us return to the rows and columns of the computer printer
output grid. As noted earlier, they do intersect at right angles as
do latitude and longlitude on the earth's surface. A given difference
between rows 1s everyvhere a constant distance as 1s a glven latitude

difference on the earth. On the computer print-out a given column
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difference is everywhere a constant distance unlike, however, the
Qarying distances this constant angular d;frerencé'represents on
the earth. ' ;

Conslider agaln the various width to height ratios for the
character spaces of the print-out. The ratios mentioned previously
were 1.00000, 0.80000 and 0.60000, Regard these ratios now as
cosines of angles. For an angle of 9° the cosine is 1.00000 and
thus on the earth's surface the length of a degree of longitude is
eqdal to that of a degree of latltude when taken at the equator.

The lgngth of a degree of longitude is 0.80000 times that of a
degree~of latitude in latitudes 36°52'+ N. and S. and is 0.60000
in latitudes 53°07'+ N. and S,

Suppose that we wished to map the entire earth under the
assumption that each print-out character space is to represent an .
area on the earth's surface one degree of latitude by one degrée
of longitude in extent. We establish the same proportionality
between number of columns and degrees of longltude as between number
of rows and degrees of latitude. .In this case both ratios have :

the value, one. That is to say, for example, every area on the
earth's surface 20° of latitude by 20° of longitude In extent Qill
be represented by U400 character spaces within the print-out space
of 20 rows by 20 columns, respectively. The actual size of such
a bounded area on the earth's surface varies systematically with
latitude. Mn the print-out map it is, of course, constant. (What
this érea is depends on the height-wldth ratio and 1s to be dlscussed
subsequently.) Thus, to map the entire earth with its full extent
of 180° of latitude and 360° of longitude would require a print-out
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180 rows and 360 columns if the ratios established above are.to be
preserved. This, of course, would require a multiple-width prinﬁ-
out as the width of one strip is 130 columns. In the SYMAP program
this presents no particular problem. Multiple-width maps are easily
accdmplished. Continuity across strips 1s preserved with a one-column
overlap. Thus, to map the world, as above, would require two full
Strips of 130 columns each and 102 columns on & third one. The
map would then measure 36 inches in its longitudinal extent assuming
that it is mounted with the overlaps and thus reduced to 360 columns.'
(Note that each of the character spaces noted earlier has a width of
one-tenth of an inch.) | -
~ The 180 rows of latitudinal extent occasions no particular problem
either as the print--out may be as long as requiréd in one continuous
strip. Paper folds occur every eleven inches and it may be desired
to skip rows at these palces. This is possible, but let us assume
that such an option is not exercised. The actual measure for this
latitudinal extent would, of course, depend upon the‘particular
character space used. If the space having as its height one-sixth
of an inch were used, the map would measure 30 inches for its
latitudinal extent; for a height of one-eighth of an inch, the map
would measure 22 1/2 inches; and for a height of one-tenth of an
inch the map would measure 18 inches. '

Each of these three maps represents a different linear schle :
relationship with the earth. We will discuss this in more detail
subsequently. For the time being, however, let us consider certain
general characteristics of these maps in terms of a class of map

projections, namely, cylindrical projections.
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Cylindrical projecticns, themselves, may be regarded as'limiting
casesAof coniqal projections when the so-called constant orAthe cone,
n, is equal to zero, n being defined for conical projections as the
ratio of the angle on the map produced by two given meridians
(straight lines co:verging to a vertex) to the éﬁgle which corresponding !
terrestrial meridians make at the geographical poles. The "simple

conical projection" has latitude lines represented by concentric

circles with thelr center as the above noted vertex.
We can use the following standard notation following Hinks (1921)
for the simple conical projection with one standard latitude, ¢°:
n = sin ¢o’ 5 R cot ¢°, and

r = Rlcot ¢ -(¢-9,)];

when n is as defined above, R is the radius of the Earth (assumed
gphericnl) expressed in scale units of the intended map, and ro is
the radius of the standard latitude taken as the length of the
tangent drawn from the polar axis to touch the sphere at the
standard latitude, and r the radius ior a latitude line, ¢.

‘Let A be the longitude of & point on the Earth. Then, the ' |
length of an elqpent of the standard latitude is: . ;

‘ R cos ¢°-AA

If we take 6 as the angle between two radil representing meridians
whose difference of longitude is AA, we have rooe as an alternative
expression for the length of an element of the standard latitude.

Thus: :

R cos ¢°-AA = R cot ¢°-e

and n = 6/A\ = sin $o°

Sor e AR
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The lengths along the meridians are true and the generai
expreésion for the radius of any latitude line is:-

r=r,- R(¢-¢o)
= R[c°t¢°-(¢-¢°)]
as given above, .

To produce such a map graphically one could draw the standard
latitude as an arc with radius R cot~¢° and length 2chos¢o. The
central meridian is then laid off and marked with the true to scale
distances to other latitude lines which can then be dfawn in. To
obtain other meridians, the standard latitude may then also be
divided truly as required, and the points so obtained can then be
Joined to the pole of the projection to obtain these meridians.

Alliof the meridians are thelr true lengths to scale by
gonstruction;.the expression for this constant scale along the
meridians is obtained by differentiation, It is:

As ¢ increases, r decrecases and the sign is thus negative.

Along any line of latitude ¢, the scale 1s:

rdae g_§1n¢ -

Rcos¢dA Recos¢
[cos¢°—(¢-¢o)sin¢°]sec¢.

The scale along the standard latitude is, of course, unity,
but along every other one it 1s greater than unity, increasing with
distance from the standard latitude. The area scale of the map varies
as the linear scale along the latitude lines since linear scale along

the meridians 1s constant.
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Now, 1f, as suggested above, we deliberately make n equal to
zero, ¢° also 1s zero and the standard latitude 1s the equator. The
radius ry of this standard latitude becomes infinite but r,-r = R¢
and is finite. Such a map projection may be regarded as a simple
cylindrical projection and as one of the limiting cases of the siﬁple
conic projections. (The other would be a plane zenithal projection.)
Though not a perspective projection the simple cylindrical may
be regarded as derived from a circumscribing cylinder tangent to
a sphere along its equator and with a normal polar axis for the
sphere,

The longitude and latitude lines become sets of equidistant
straight lines intersecting at right angles and forming a series
of squares. The length of degrees of longitude (variable on the Earth)
are shown on the map as everywhere equal to each other and everywhere
equal in length to degrees of latitude (constant on Earth). Distances
along the meridians and along the equator are correct. Distances
along the other latitude lines are shown at changing scale, so that
both the equator, a line of approximately 25,000 miles in length
on the Earth, and the North Pole, a point, are shown as lines of
the same length on the map.

This simple cylindrical map described above is obviously the
map produced by the direct identification 6f the rows and the golumns
of the computer printer with latitude and longitude respectively and
by the assumption of the same proportions between the pairs of units
when the character snace size opted is that with the width to
height ratio equal to 1.00000, .

This projection composed, as it 1is, of squares has been called
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by the Germans, "quadratische Plattkarte," by the French,
"projection plate caree," and ty the English, "plain charts."
It is a simple conventional projection that serves very well indeed
in the Tropics where the approprilate cosines for the angles of these
low latitudes vary little from 1,00000. For example, the value docs
not become less than 0.90000until nearly 26° N. and S., and is still
as large as 0.80902 outside the Troplcs at 36° N. and S. (This
latitude 1is a central one for\the ilediterranean Sea, for example.)
In low latitudes the actual system of spherical polar coordinate
specification of latitude and longitude 1s very closely approximated
by Cartesian plane coordinates. '

It is interesting to note that the terms, latitude (Latin,
latltudo, breadth) and longitude (Latin, longitudo, length), were
conceived originally with respect to the Mediterranean Seca and its

surrounding oikoumene (Greek) or known "habitable'" world.

In the Geographia of Claudius Ptolemaeus (c. 90-168 A.D.)
we find:

Not unreasonably vwe call the distance
extending from the setting to the rising sun
the longitude, and the distance from the north
pole to the south pole the latlitude, when we
mark the parallels 1n the vault of the heavens.
Moreover, the greater distance we call longltude,
which 1Is accepted by all, for the extent of our
habitable earth from west to east all concede
. 1s much greater than 1ts extent from the north
to the south.

Ptolemy did, of course, regard the earth as spherical and recognized
latitude and longitude as spherical polar coordinates rather than
as plane coordinates. The conception of the earth as a sphere

probably dates from the late fourth or early fifth century B.C.
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These pertinent ideas apparently were lost to Europeans,
however, with the decline of the Roman Empire and had to be invehted
anew. During the interval, however, the terms, latitude and
longitude did not lie unused. For example, in the. fourteenth century,
Bradwardine of Paris and his followers in Merton College, Oxford,'
used the terms in a non-geographical but abstract geometrical sense
in connection with the idea of functional relationships among
natural phenomena.

When applied to giving quantitative expression to changes of

quality, the problem of intension or latitudo formarum (the latitude
of forms), the ideas refined at Oxford involQed conceptions of
amounts by which a quality or "form" varied numerically with regard
to a fixed scale in relation to a scaled extension or longitudo
formarum. |

This conception of the relationship between intensions and
extensions gave rise in the fourteenth century to geometrical methods
and graphical portrayals. The Greeks and Arabs had used algebra 1in
connection with geometry and the idea of plotting a "position" of
a "point" in a coordinate system had been familiar to geographers
in classizal times. Geographical latitude and longitude are, of
course, both measures of extension and the idea of conceiving and
depicting graphically (i.e. cartographicaliy) the geographical
variation in the intensity of some phenomenon was not achieved
until Halley's 1solining of terrestrial magnetic variation in the
latter part of the seventeenth century.

Sometime well before the great era of geographical exploration

in the sixteenth century, the use of geographical coordinates for
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locations had again come into general use. The plane charts
employed for coastal and Medliterranean navigations contained such
latitude~-longitude grids. Within this framework the plane chart
had proved sufficient. However, the utter inadequacy of these
plane charts as ma)s for world-wide geography and navigation
requlred new ones and led to the graphical development of a more
suitable chart by Gerardus Mercator in 1569 and to the mathematlcal
statement of this "lMercator' projection by Edward Wright in 1599.
Discussion of this important part of cartographlc history, howéver,
lies beyénd the scope and intent of this paper.

Let us return now to the implications of two other avallable
character space sizes for modern computer print-out, i.e. with
width to height ratios of 0.8 and 0.6 respectively.

It is possible to have a conical projection with two standard
Jatitudes of correct length and with true meridians. Between
the standard latitude lines, the &calc 1s too small along the
latitude lines and beyond them it is too large. The differences,
hoviever, do not increase nearly so rapldly as in the case of one
standard latitude line. It should be noted that in general the
standard latitudes are in the same hemisphere. Rigorous conditions
can be imposed to determine the selectlion of the appropriate
latitudes for glven areas and given map requirements concerning
the distribution of "errors."

In the ordinary conical projection with two standard latitude
lines, ¢l and ¢2, the usual notation 1s:

cos ¢1-cos ¢ R(¢2-¢l)cos ¢1
ST » 7 ¢cos $,-c05 6,

1

and ry.r = R(¢-¢l).
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For the cylindrical case we make n equal to zero and then
¢ = ~¢? which makes r, infinite. However, ry-r remains finite.

Now, the two standard latitudes are of the same numerical
désignation but one is north of the equator and the other is south
of it. |

The computer print-out having the character space with the
width to helght ratio of 0.80000 (assuming again the same proportionality
for columns and longitude as for rows and latitude) may be regarded
as representing graphically a cylindrical projection with 36°52'+
North and 36°52'+ South as two standard latitude lines. (35°52'+
is the angle for which 0.80000 is the cosine.)

For the character space that 1s 0.6 times as wide as it is
high, thg implicit cylindrical projection with two standard latitudes
has 53°07'+ North and 53°07'+ South as the standard latitudes.

In each of these two projections, the latitude and longitude
lines form assemblages of rectangles rather than squares. On each
of these brojections the respective rectangles are everywhere
constant in size although, of course, the size differs as to the
projection., Maps of this kind have been designated by the French
as "projection plate parallélogrammatique" and by the Germans as
"rechteckige Plattkarte." Hinks noted that there seemed to be no
English name for 1t since "the projection hés obviously no serious
value." He added that, as a consequence, it would "not te '
considered further” by him. Perhaps now though it is interesting
and instructive enough to "consider further."

Consider again the projection with 36°52'+ N. and S. as
the standard latitudes. What actually exists there on the earth's

surface that this might be an appropriate projeciton for mapping?
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Well, this particular latitude line is virtually the mid-latitude
for the conterminous United States. MNMoreover, the conterminous.
Unlted States has a considerably larger east-west extent than it
has a north and south one. The range of latitude 1is from approximately
25°N. to 4g°n. | |

On the map in question the distances are correct along the
meridians and the same linearlscale that applies to the meridians
also applies along 36°52' N. latitude. The extreme linear scale
differences for such a map of the United States would occur, of
course, along the latitude lines that are the most northerly and
the most southerly ones for the United Stateg as noted above. To
the north of 36°52' N. the linear scale error may be regarded as
positive, that is to say, such latitude lines are shown as too long.
Latitude lines south of this standard 1afitude may be regarded as
having a negative linear scale error. The portrayal lines are
shown as too short.

Along latitﬁde 49° N. the magnitude of the error is nearly
18 percent, the scale being too large for the standard while along
latitude 25° N. the scale 1s too.small for the standard by about
13 percent. Along the equator, the negative scale error reaches
its maximum, being 25 percent south of the equator the negative
error again declines becomling non-existent along latitude 36°52' S.
at which line the scale error becomes positive again. It is
interesting to note that a positive error of 25 percent occurs,
for this projection, at about 53°07' N. and S. Hence there exists
a range of latitude of slightly more than 106° within which the

linear scale difference does not excecd 25% from that for the standard
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latitudes. Moreover, this maximum "error" is realized only when
distances are measured at right angles to the meridians, the linear
scale being everywhere constant and correct along the meridians,
themselves.

The area scal: of the map varies as the linear scale along the
latitude lines and hence as a relationship among the cosines of
the angles of the latitudes. This projection, of course, 1s not
an cqual area, that is to say, cquivalent, projection. It follows
from what has been sald before that the areca scale may be regafded
as virtuélly correct in the vieinity of latitudes 36°52' N. and S.
The following table shows how a 5° so-called spherical trapezoid
(i.e. a portion of the earth's surface having a span of latitude
of 5° and a span of longlitude of 5°) varies as to area taken within

the latitude range of the conterminous United States.

One trapezoid of Area 1n

5° (lat. x long.) square miles

at latitude:
25°-30° 105,606
30°-35° 100,514
35°-40° 9",653
hoe-45° 88,064
4so-50° 80,790

On this projection, of course, all such trapezoids are
portrayed as-of equal size. Subsequently we shall discuss the
actual linear scales and their variations over the maps on these
and other projections.

Conformality is that property vwhich if it exists in a given

projection renders a map such that all angles on the earth arc properly
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portrayed. Thus, shapes, too, will be correct, but only for
infinitesimal areas. Since linear scale must vary over the map,
shapes of large features must therefore be distorted, even though
angles are correctly maintained at all points. In the "ecylindrical"
projections descrinhed above, the latitude and longitude lines do
intersect at right angles on the map as they do on the earth. This
is a necessary condition for conformality on the map, but it is
not sufficient. Intervening angles must also necessarily be maintained.
This can occur only if the linear scale is the same (though not
necessarily correct) in all directions around any given point. Of
course the linear scale may (must) vary from point to point, but
whatever it may be at a given point it must be independent of
direction taken around that point. On the maps described above
this condition does obtain for the standard latitudes where the
linear -scale along the latitude line and the longitude lines are
identical. Moreover, they are not only identical, but also correct.
All of the above remarks about equivalence and conformality
serve to demonstrate the general usefulness of a rectangular
projection for the neighborhood of its standarad 1ine§ of latitude.
In the case of the computer print-out with the character space
having a width to height ratio of 1.00000 the use of a constant
ratio for columns to longitude, and the assumption that each
character space represents an area bounded by one degree of latitude
and one degree of longitude on the earth ylelds a map print-out
having a width of 36 inches and a length of 18 inches. (North at
the top)., The nominal linear scale of the map would be approximately

1/44,000,000 (nearly 700 miles to the inch) and would be correct
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along the equator and along all meridians, vérying elsevhere as
described above. For the character space with a width to

height ratio of 0.80000 the map would again measure 36 inches in
width but its meridians would be 22.5 inches long. The now larger
nominal linear scale would be aﬁout 1/35,200,000 (roughly 550 miles
to the inch) again true along the meridians, but true now along
latitudes 36°52'+ N. and S. The character space ratio 0.60000
ylelds a map also 36 inches wide, but now 30 inches from the north
pole to the south pole along the meridians and true along latitudes
53°07'+ N. and S. and, of course, the meridians. The still larger
nominal linear scale is about 1/26,400,000 or-nearly 420 miles to
the inch.

It is obvious how these scales would be affected if the constant
proportionality of columns to longitude énd rows to latitude were
taken as some value other than one--say two. The linear dimensions
of all three kinds of print-out would be halved as would the
nominal scales in each case.

In our definition of cylindrical projections we noted that
they are characterized in the coﬁventional case by the representation
of the merldians equally-spaced straight lines of the same length.
(Transverse and obllque projections are possible in which the cylinder
is assumed to be tangent to or intersecting the sphere not along
the latitude lines but rather along some meridian for transverse
projections and other than latitudes or a meridian for the oblique
case.) Let us continue to assume the conventional case for the
longitude arrangement, but now permit the latitude spacing to be

varied over the map to achieve desired properties in the resulting
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projection. Ve still maintain latitude lines as parallel straight
lines, however unevenly spaced, and thus continue to make use
of the rectilihearity of the form the standard printer put out.

A series of 1llustrations is given here to demonstrate the variety.

o

|
|
|
1
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¥ig. 2--Modified cylindrical equal-spaced pfoJection
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Fig. 5-~Mercator projection

Such projections, as indicated, would include the general
perspective cylindrical, the equal area cylindrical and the HMercator
projection which 1s a conformal projection and has the added property
of permitting all constant heading, i.e. loxodromic curves (rhuab
lines) from the earth to be portrayed as straight lines and vice versa.
When the rectilinearity constraint 1s relaxed, the varlety achievable
becomes virtually infinite.

When, however, as immediately above we begln to add additional
requirements to the determination of the latitude-longitude spaclng,
we lose the beautiful simplicity of the implicit projéctions and their
virtually effortless achievement in the form of the standard computecr
print-out. We stress again that the 0.80000 option for the width
to height ratio for the print-out character space, an exceedingly

fine general purpose projection for the conterminous United States

can be easily achieved.
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