

OPERATION CENIZA-ARENA:

THE RETENTION OF FALLOUT PARTICLES FROM VOLCAN IRAZU (COSTA RICA) BY PLANTS AND PEOPLE

PART TWO

SRI Project No. MU-4890

December 1966

Prepared by: Carl F. Miller

Contract No. OCD-PS-64-127 OCD Work Unit No. 3118A

STANFORD RESEARCH INSTITUTE

MENLO PARK CALIFORNIA

ALL MALES AND ALL DO LATER.

Prepared for:

OFFICE OF CIVIL DEFENSE DEPARTMENT OF THE ARMY OFFICE OF THE SECRETARY OF THE ARMY WASHINGTON, D.C. 20310

Through:

Technical Management Office U.S.N.R.D.L. San Francisco, California 94135

This report has been reviewed by the Office at Civil Defense and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense.

ACKNOWLEDGEMENTS

The data presented in this part of the report on Operation Ceniza-Arena were obtained through the efforts of a project team. Assistance with the field sampling and sample analysis in Costa Rica was provided by William B. Lane, Jacqueline L. Joyce, and James D. Sartor. Mr. Lane participated in all of the sampling periods, and Miss Joyce and Mr. Sartor assisted in two of the sampling periods. Mr. Lane was responsible for the sieve analysis and measurements on the properties of the cenizaarena; the measurements were carried out under the direction of Oliver D. Smith of the Analytical Services group.

Catherine A. Allen, Jere J. Allen, Jacqueline L. Joyce, and Arlene B. Stokdyk assisted in the data analysis.

Major assistance on logistics problems and administrative problems in Costa Rica was given by Roberto Alfaro Castro of the U.S. Agency for International Development, Costa Rica, and by other members of the U.S. Embassy under the direction of Ambassador Raymond L. Telles. Arrangements for local assistance in caring for the land plots and growing the crops were provided by Mario Guash of the Costa Rican Ministry of Agriculture. Finally, considerable assistance in providing laboratory facilities and information about the volcano and climatic conditions was provided by Don Elliott Coen, Director of the National Meteorological Service of Costa Rica.

The author is grateful to all of the above-named persons and agencies for their willing cooperation in contributing to the successful completion of the project.

Preceding Page Blank

CONTENTS

INTRODUCTION			• • •	••	•	1
BACKGROUND	• • • • •		• • •	• •	•	3
PROCEDURES			• • •	• •	•	9
RESULTS			• • •	•••	•	27
Gross Deposits of Ceniza-Arena					•	27
Meteorological Parameters				• •	•	37
Plate Collector Measurements .					•	55
Plant and Foliar Contamination	Data				•	72
Tree and Greased Disc Collector	• Contamin	nation Data			•	182
Personnel Contamination					•	212
Particle Size Analyses					•	217
Particle Properties				• •	•	226
Specific Area of Leaves and Oth	er Plant	Parts	• • •	••	•	231
SUMMARY AND CONCLUSIONS			• • •	••	•	243
REFERENCES					•	247

Preceding Page Blank

ILLUSTRATIONS

1	Planting Diagram of Land Plots	11
2	The Paraffin Wax Band Sampler for Cereal Grains	15
3	Laurel Tree with X-Rods in Place	19
4	Views of Field Equipment	23
5	General View of Plot No. 1	24
6	The Plate Collector	25
7	Time Variation of Average Ground Deposition Rates at the Two Land Plots	35
8	Dependence of Ratio of Post Collection to Ground Collection on Average Wind Speed During Deposition	36
9	Modified Dew Balance Chart Records for the July Sampling Period	40
10	Wind Speed Chart for January 9, 1965 at Plot No. 1	48
11	Wind Speed Correction Curve for Recording Anemometer	54
12	Variation of Plate Collector Deposits with Plate Angle	64
13	Weight Distribution Curves for Several Plate Collector Samples	71
14	Composite Grapefruit Tree at Station 16	185
15	Contamination Factor Distributions for Grapefruit Leaves	186
16	Variation of Contamination Factors with Direction for Horizontal Laurel Tree Leaves (2P Samples)	
	Taken at Midheight of the Periphery of the Canopy	190
17	Contamination of Discs in the Laurel Tree: Run Dl	195
18	Contamination of Discs in the Laurel Tree: Run D2	196
19	Contamination of Discs in the Laurel Tree: Run D3	197
20	Contamination of Discs in the Laurel Tree: Run D4, Top X-Rod	198

vii

Preceding Page Blank

ILLUS TRATIONS

21	Contamination of Discs in the Laurel Tree:						
	Run D4, Bottom X-Rod	199					
2 2	Disc Contamination Contours (Estimated)						
	for the Laurel Tree: Runs D1 and D2	200					
23	Disc Contemination Contours (Estimated)						
	for the Laurel Tree: Run D4	201					
24	View of Pine-1 in Position at Station 13	204					
25	Contamination of Discs in Pine-1	207					
26	Disc Contamination Contours (Estimated) for Pine-1	208					
27	View of Pine-2 at Station 16	209					
28	Variation of Peripheral $F(w_{t})$ Values for Pine-2 Twigs						
	as a Function of θ_r	211					
29	Variation of Specific Area of Grapefruit Leaves						
	with Dry Leaf Weight	242					

TABLES

- North

and a second sec

1	List of Crops Initially Planted in Each Land Plot	10
2	Planting Dates and Plant Designations	12
3	Summary of Ceniza-Arena Gross Dep(sition Measurements	28
4	Summary of Time-Averaged Deposition Rates and Accumulated Ceniza-Arena Deposits by Sampling Period at the Two Land Plots	34
5	Percentage of Average Daily Ceniza-Arena Deposit by Hour of Day During Reveral Sampling Periods	38
6	Averaged Values of Temperature and Relative Humidity Parameters and Times of Occurrence for Each Sampling Period as Taken from the Hygrothermograph Records	41
7	Average Daily Rainfall at the Two Land Plots	44
8	Summary of Average Hourly Wind Speeds at the Two Land Plots for Each of the Sampling Periods	46
9	Summary of Wind Speed Measurements with the Hand-Held Anemometer at a Height of 8 Feet and the \tilde{v}'/\overline{v} Ratios	50
10	Wind Speed Measurements at Plant Heights: Plot No. 1	56
11	Summary of Plate Collector Measurements	58
12	Summary of Corrected Plate Collector Data	61
13	Weight Distribution of Particles Recovered from the Plate Collector (Single Plate)	65
14	Weight Distribution of Particles Recovered from the Plate Collector (All Plates)	69
15	Summary of Plant and Foliar Contamination Data for Vegetables	73
16	Summary of Plant and Foliar Contamination Data for Cereal Grains	122
17	Summary of Foliar Contamination Data	148

i×

TABLES

18	Computed Values of $F(w_L)$ and β' for the Camphor Tree	184
19	Summary of Peripheral Sampling Location F(w_) Values for Laurel Tree Leaves and Twigs	188
20	Disc Contamination Data for the Laurel Tree: Runs Dl, D2, and D3	191
21	Disc Contamination Data for the Laurel Tree: Run D4	193
22	Summary of Ceniza-Arena Sieve Analysis Measurements for the Laurel Tree Disc Contamination Runs	203
23	Disc Contamination Data for Pine-1	2 06
24	Summary of Peripheral Sampling Location F(w) Values for Pine-2 Twigs	210
25	Summary of Personnel Contamination Data	213
26	Summary of Ceniza-Arena Sieve Analysis for Personnel Contamination Samples	215
27	Summary of the Mass Median Diameters for the Ceniza-Arena Particles Recovered from Primary Samples of Vegetable Plants	219
28	Summary of the Mass Median Diameters for the Ceniza-Arena Particles Recovered from Primary Samples of the Cereal Grains	221
29	Summary of the Mass Median Diameters for the Ceniza-Arena Particles Recovered from Primary Samples of Tree Leaves, Needles, and Twigs	223
30	Summary of d Ratios for Some Weathering Series Samples: Vegetables	224
31	Summary of d _. Ratios for Some Weathering Series Samples: Cereal Grains	225
32	Composition of Ceniza-Arena Particles as Determined from Spectrographic Analysis	227

x

TABLES

<u>.</u> .

33	Composition of Ceniza-Arena Particles	
	as Determined from Quantitative Analysis	228
34	Relative Density, Soluble Salt Content,	
	and Soluble Sulfate Content of the Ceniza-Arena Particles	
	and pH of Water in Contact with the Particles	22 9
35	Composition of the Acid-Soluble Constituents	
	of the Ceniza-Arena Samples	
	as Determined from Spectrographic Analysis	230
36	Summary of Foliar Specific Area Calculations: Vegetables	232
37	Summary of Foliar Specific Area Calculations:	
	Cereal Grains	236
38	Summary of Foliar Specific Area Calculations: Trees	238
39	Summary of Average Foliar Specific Areas	
	from Measurements on Individual Leaves	240

INTRODUCTION

This report presents the results of the foliar contamination and associated parametric measurements that were obtained in Costa Rica during the period from May 1964 through February 1965 for the second phase of the field work of Operation Ceniza-Arena.

During the first phase of the field work, described in Part One of this report, the desirability of obtaining foliar contamination data for whole plants during their growth cycle under field conditions rather than only for parts of pot-grown plants became increasingly clear. Two related technical factors indicated the desirability of extending the work: (1) difficulties associated with evaluating the parameters of the theoretical expressions for foliar contamination by plant part and applying the results to field situations; and (2) need for averaged foliar contamination data for whole plants and plant parts, together with weathering effects, in the development of the mathematical models for assessing foliar contamination problems.

Therefore, early in May of 1964, arrangements were made (through the Costa Rican office of the U.S. Agency for International Development (US/AID), Agriculture Division, and the Ministry of Agriculture of Costa Rica) with two landowners for the use of land for growing vegetables and cereal grains. The general locations of the two plots of land were selected from areas that had previously received moderate to heavy deposits of ceniza-arena from the eruptions of Volcán Irazú and were readily accessible for sampling over an extended period of time. The actual locations of the two land plots were as follows: Plot No. 1 (near lpfs) was at a distance of 9.4 miles and an azimuth of 263°TN from the location of the volcano; Plot No. 2 (near San Ramón) was at a distance of 9.4 miles and an azimuth of 251°TN from the location of the volcano.

The land plots were fenced after plowing; then the seed beds were prepared, and the planting was carried out between the 17th and 19th of May 1964 (see Procedures for details). Field sampling periods of one to three weeks' duration were carried out on a monthly basis beginning in June 1964; a total of nine sampling trips to Costa Rica were made. In mid-February 1965, the volcano apparently ceased erupting, and the second field phase of Operation Centza-Arena was terminated.

BACKGROUND

The basic parameters and equations for presenting the foliar contamination data and describing their dependence on other parameters are described in Part One of this report, and some of the parameters are evaluated in Part Three. For convenience, the definitions of several of the terms are repeated below. In addition, measurements for evaluating the impaction coefficient were added (see Procedures); some of the relationships pertaining to these measurements are discussed.

The foliar contamination factor for a plant or plant part is designated by a and is defined, in terms of experimentally measured quantities, by

$$a_{L} = C_{p}^{0} / \Delta m$$
 (1)

where C_{p}^{O} is the effective particle concentration on the foliage (in gm of particles per gm of dry foliage), and Δm is the weight of the particles deposited per unit of (open) ground area (in gm of particles per sq ft of soil area). The fraction of the deposited particles retained on the foliage, in a field of similar plants, is given by

$$F_{L} = a_{L} W_{L}$$
(2)

11

where w is the average surface density of the foliage (in gm of dry foliage per sq ft of soil area).

The basic theoretical definition of the foliage contamination factor for the impaction and retention of airborne particles of a given diameter on aboveground parts of plants is given by

$$\mathbf{a}_{\mathbf{L}p} \begin{pmatrix} \alpha \\ p \end{pmatrix} \approx \epsilon_{0} \begin{pmatrix} \alpha \end{pmatrix} \begin{pmatrix} 1 + \alpha^{2} \end{pmatrix}^{1/2} \mathbf{S}_{\mathbf{L}} \begin{pmatrix} \alpha \\ p \end{pmatrix} \exists \begin{pmatrix} \alpha \\ p \end{pmatrix} \exists \begin{pmatrix} \alpha \\ \mathbf{W} \end{bmatrix}^{*} \begin{pmatrix} \mathbf{W} \\ \mathbf{W} \end{pmatrix}$$
(3)

in which

 $\varepsilon_0(\alpha)$ is the initial retention coefficient for a particle size-group, designated by α , which hit a plant surface

$$\alpha_p$$
 is the land-surface value of $\alpha (\alpha_p = v_w^0 / v_f^0)$, where v_w^0 is the

surface wind speed and v_1^{0} is the terminal, or falling, velocity at the plant of the particle size-group designated by α)

- S (α) is the projected specific surface area of the foliage (i.e., plant area per unit plant weight) in a plane normal to the particle flux
 - $\eta(\alpha_p)$ is the particle impaction coefficient due to interception and inertia

and

F(w) is the dilution function whose value depends on the planting density or the average foliage surface density.

The experimental measurements, designed to provide separate information on the impaction coefficient, consisted of the collection of particles on greased plates that were set at a series of angles, θ , from the horizontal; the plane of the plates was kept perpendicular to the direction of wind by mounting the collecting system with an attached wind vane on a swivel bearing. The grease film on the surface of the plates was used to assure that the value of the retention coefficients for all plates would be one. After an exposure to depositing particles, the weight of the collected particles was measured; this weight, after making a correction for background dust, is designated as m (in gm per sq ft). The wind speed was measured during the exposure with a handheld calibrated anemometer, with this instrument, the average wind speed over the collecting period, designated as \overline{v}_{w}^{O} (in ft per sec), was measured.

The basic assumptions used in the relationships described below include: (1) for a given exposure or set of measurements of m, the range of particle diameters in the collected deposits was small, so that the terminal fall velocity of the particles could be represented by an average value designated as \bar{v}_{f}° ; (2) the wind speed during the time that the particles impacted was near the value of \bar{v}_{f}° ; (3) the lag time of the wind vane was small relative to the time rate of change in the wind direction; and (4) the value of the impaction coefficient depends on plate angle, particle fall velocity, and wind speed.

To minimize the collection of particles with a broad range of diameters, large or extreme changes in wind speed, and overloading of the greased plates, short exposure periods were desired. On the other hand, some extended time was required to collect a sufficient quantity

4

A second s

of particles whose weight was significantly greater than the weight of the background dust.

With the above-described assumptions, the basic relationship for defining the impaction coefficient, T_i , is given by

$$\mathbf{m} = \operatorname{Ten}_{sin}(\theta - \hat{\varphi}) \tag{4}$$

in which m is the integrated particle flux across a plane perpendicular to the average fall vector and $\overline{\phi}$ is the average angle of fall of the particles at the height of the collector plates (measured from the horizontal in the direction of the wind). The average terminal fall veloc.cy of the collected particles is given by

$$\vec{v}_{f} = \vec{v}_{w}^{O} \tan \vec{\phi}$$
(5)

The average air concentration of the particles for the exposure period is given by

$$\bar{C}_{a} = m_{a} / \bar{v}_{f}^{0} t$$

where t is the exposure time. The values of θ , fixed by the design of the collector (see Procedures), were 0, 30, 60, 90, 120, 150, and 180 degrees. The values of m for each plate, \bar{v}_w^0 , and t were measured.

The angular arrangement of the collector plates, in which the plate angles vary from 0 to 180 degrees, produces four general classes of relative geometries for impaction of falling particles in a horizontal wind stream:

- 1. Plate angles between 90 and 180 degrees; both the air and the particles strike the top or front face of the plates.
- 2. Plate angles less than $\bar{\phi}$; the air strikes the bottom of the plates, and the majority of the impacting particles strike the top of the plates.
- 3. Plate angles greater than $\bar{\phi}$ but less than 90 degrees; the air and particles strike the bottom of the plates.
- 4. An extension to the third class; a small number of particles may deposit on the top side of the plates at angles between $\vec{\phi}$ and 90 degrees because of turbulence in the airflow over the top of the plates.

Generally, the plate that is set at an angle, θ , of 90 degrees from horizontal would be expected to cause a greater diversion of the airstream than one set at any other angle (assuming the airstream) moves parallel with the surface of the ground). However, the degree of diversion of the airstream by a plate should not be expected to cause a proportionate diversion of the airborne particles, especially in terms of the weight of the collected particles. For example, if the angle of the plate is very near the angle of fall of a particle, only a small deflection in the falling trajectory could cause the particle to miss the plate. Larger particles (i.e., in the size range of 50 to 500 microns in diameter) that impact mainly by gravity settling would not be deflected as readily as the smaller particles by the airflow around the plates. These two factors suggest that the plate set at an angle very nearly perpendicular to the angle at which the particles approach the collector should collect the largest fraction (per unit projected area) of the particles in the passing airstream.

If it is assumed, for the first class of geometries, that Π has a maximum value at a plate angle, θ_0 (which is approximately 90 degrees greater than $\tilde{\phi}$), and that fractional decreases in Π are proportional to the angular displacement of the plate from θ , a first approximation of the dependence of Π on the plate angle (due to the relative angle at which the wind strikes the plate) may be written as

$$\frac{d\eta}{\eta} = -2\varepsilon \sin 2(\theta - \theta_0)d(\theta - \theta_0)$$
(7)

where ε is a proportionality constant whose value is assumed to depend on the average wind speed and on the average falling velocity of the particles. The factor of 2 is inserted to indicate that the sine function must vary a whole cycle for each 180 degrees change in $\theta = \theta$ (i.e., the value of T_1 must be the same at θ_1 and at $\theta_2 \pm 180$ degrees).

Integrating Equation 7 under the condition that [] is equal to $[]^{\circ}$ when θ is equal to θ (i.e., $[]^{\circ}$ is the impaction coefficient for a plate that is set at the angle, θ) gives

$$\log T / \eta^{0} = - \varepsilon \left[1 - \cos 2(\theta - \theta_{0}) \right]$$
 (8)

Combining Equation 8 with Equation 4 in logarithmic form gives

$$\log m = \log \sqrt[n]{m} + \log \sin(\theta - \overline{\phi}) - \varepsilon \left[1 - \cos 2(\theta - \theta_0)\right]$$
(9)

If it is assumed that θ is 90 degrees larger than $\tilde{\phi}$ for all values of \tilde{v}_{f}^{0} and \tilde{v}_{u}^{0} of interest, Equation 9 can be written as

¢

$$\log m = \log \prod_{\alpha}^{o} + \log \sin(\theta - \overline{\phi}) - \epsilon \left[1 + \cos 2(\theta - \overline{\phi})\right]$$
 (10)

The value of ϵ represents the fractional decrease in η for plates at angles other than θ . If the diversion of the airflow patterns around the plates increases as the wind speed increases (as expected), the value of ϵ should increase as the wind speed increases. Because the diversion of the airflow should have a smaller effect on the impaction of the larger particles than on the smaller particles, the value of $\tilde{\epsilon}$ (for a given wind speed) should decrease as the value of $\tilde{\theta}_{\ell}^{\circ}$ increases.

The value of η° (i.e., the value of η for the plate that is set at the angle θ) should approach unity as the value of \bar{v}° approaches zero, especially for particles with large \bar{v}°_{f} values. For very small particles, η°_{f} may approach unity at large \bar{v}°_{f} values. Unfortunately, the value of η°_{f} cannot be directly evaluated from a single set of plate collector data. It may be evaluated from several sets of data by extrapolation to a zero wind speed condition or from separate calibration experiments under zero wind speed conditions.

The evaluation of the above equation constants (and of others) from the measured data as given in this report is discussed in a separate report.¹

PROCEDURES

The dimensions of each of the two land plots were 150×100 feet. The crops selected for the initial planting are listed in Table 1; a general diagram of the plot layout is shown in Figure 1.

The soil at both locations was a loose sandy loam containing a large amount of humus. Prior to planting, the land on both plots was disc-plowed to a depth of about 10 inches. On Plot No. 2, many roots of the Quicuyo grass were pulled out by hand. The land was treated with about 70 lb/acre of (25 percent) Aldrin. The areas were fertilized with 290 lb/acre of 9-27-6 composition commercial fertilizer. The fertilizers were broadcast by hand and were washed in by rains before planting. Lime additions were made to sections of each plot during the August simpling period.

The grains were planted by hand-broadcasting followed by handraking. The average planting density of seed was as follows: wheat, 136 lb/acre; barley, 144 lb/acre; oat, 116 lb/acre; and rye, 138 lb/acre. The corn was planted in rows 2 feet apart at spacings of about 1.5 feet between hills. All of the vegetables were planted in rows 2 feet apart. Most were heavily seeded for later thinning. The Ministry of Agriculture of Costa Rica plowed the land on both plots at no cost to the project. Local labor was employed to construct fences around each plot and to prepare the land for planting. One Costa Rican farmer was employed for each plot to take care of the crops between the monthly sampling periods and to assist in the field sampling.

Later plantings were made as the crops matured or were killed by an occasional "acidic" deposit of ceniza-arena. Planting dates and plant designations according to planting time are given in Table 2.

During later sampling periods, two additional sampling locations, Stations 15 and 16, were developed for obtaining foliar contamination data on trees. Station 15 was located 17.5 km from San José on the road to Rancho Redondo (shout 2 km before reaching the village); the site was about 100 yards south of the road. On this site, one of several mountain laurel trees, about 15 feet tall, was selected for sampling. Station 16 was located about 2 km northeast of Rancho

Preceding Page Blank

Table 1

LIST OF CROPS INITIALLY PLANTED IN EACH LAND PLOT

Cereal Grains

Barley Oat Rye Wheat

Vegetables

Bean Beet (Crosby's Egyptian) Cabbage (Golden Acre) Carrot (Chantenay) Celery (Pascal) Corn^a Lettuce (Imperial #847) Onion (Cholla Roji C-5) Pepper (Ruby Giant) Squash (Cocozelle de Napoles #265) Tomato (J. Moran)

a Corn is listed along with the vegetables in this table and in all following tables because of the geometric dissimilarity of the plant. (With respect to the subject under discussion, the vegetable classification includes plants that are geometrically dissimilar.)

Figure I PLANTING DIAGRAM OF LAND PLOTS

Table 2

PLANTING DATES AND PLANT DESIGNATIONS

Plant	Plot No. 1	Plot No. 2	Plant	Plot No. 1	Plot No. 2	
Bean-1	5/17/64	5/19/64	Pea-1	10/10/64	10/10/64	
Bean-2	8/17/54	8/17/64	Pea-2	11/11/64	11/11/64	
Bean-3	-	9/10/64				
Bean-4	10/12/64	-	Pepper-1	7/20/64	7/21/64	
Bean-5	11/11/64	11/11/64	Pepper-2	-	11/11/64	
Bean-6	-	12/28/64				
Bean-7	-	1/25/65	Potato-1	10/10/64	10/10/64	
Beet-1	7/20/64	7/21/64	Radish~1	10/10/64	10/10/64	
Beet-2	11/11/64	11/11/64				
			Squash-1	5/17/64	5/19/64	
Cabbage-1	5/17/64	5/19/64	Squash-2	7/20/64	-	
Cabbage-2	10/12/64	-	Squash-3	10/12/64	10/12/64	
Cabbage-3	11/11/64	11/11/64	Squash-4	11/11/64	11/11/64	
Carrot-1	5/17/64	5/19/64	Tomato-1	5/17/64	5/19/64	
Carrot-2	7/20/64	7/21/64	Tomato-2	7/20/64	-	
Carrot-3	-	8/17/64	Tomato-3	10/12/64	-	
Carrot-4	-	11/11/64	Tomato-4	11/11/64	11/11/64	
Corn-1	5/17/64	5/19/64	Barley-1	5/16/64	5/18/64	
Corn-2	-	9/10/64	Barley-2	11/11/64	11/11/64	
Corn-3	10/5/64	10/5/64				
Corn-4	11/11/64	-	Oat-1	5/16/64	5/18/64	
			Oat-2	11/13/64	11/11/64	
Lettuce-1	5/17/64	5/19/64				
Lettuce-2	7/20/64	7/21/64	Rye-1	5/16/64	5/18/64	
Lettuce-3	11/11/64	11/11/64				
			Wheat-1	5/16/64	5/18/64	
Onion-1	5/17/64	5/19/64	Wheat-2	11/12/64	11/12/64	
Onion-2	-	11/11/64				

12

į

ŧ

Redondo (4 km from Station 15); the sile was about 300 yards north of the road. One of several pine trees at this location was selected for sampling. In addition, a juniper tree clump was relocated at this site, and a composite grapefruit tree (three small trees in one hole) was planted.

Nost of the field and laboratory experimental procedures described in Part One of this report were used without much alteration in the second phase of the operation.

The major steps in obtaining the foliar samples included: (1) washing specimen plants with a portable high-pressure water spray; (2) taking background samples of the washed plants or plant parts; (3) exposing the washed plants and a gross collector tray to depositing ceniza-arena for a given period of time; and (4) collecting the exposed plant or plant parts in glass jars or plastic jars and bags. To recover particles retained on the foliage, the fresh foliar samples were spraywashed (with hand-rubbing). The particles were removed from the water by filtration, after which the filter paper was ashed in a muffle furnace and the particles were weighed after cooling to room temperature. The plant material was dried at 105°C for at least 6 hours (mostly overnight) and then weighed.

Major changes in the original field sampling procedures were: (1) whole plants and groups of whole plants were taken as samples to obtain the desired type of data (this procedure was facilitated because many plants were small and in high abundance); and (2) a paraffin wax collecting system was developed for taking samples of the young cerealgrain plants. The previous experience in sampling and in analyzing the data on the particle retention, as measured from samples that consisted of small groups of leaves, as well as theoretical considerations strongly indicated that "whole plant" sampling procedure would be preferred for the smaller plants. However, great care in sampling was required when whole plants were sampled in a dry condition to minimize the loss of particles during sampling.

For sampling the cereal grains, 8 inch-diameter circular metal bands were prepared, to which one end of a plastic bag (both ends open) was taped. The bag was rolled down to the band prior to use; the whole assembly was set down over an area of growing plants, and the band was pressed into the ground. Afterward, the plants within and immediately around the ring were thoroughly washed. The soil within the ring was smoothed and thoroughly wetted and compacted by the spray in the washing process. Nearby plants, also washed, were taken for background samples. Paraffin (wax) was melted in the laboratory and transferred to a thermos bottle for transport to the field. After exposure of the specimens, the plastic roll was carefully spray-washed, and the wax was poured into the ring to cover the soil and about 1/4 inch of the base of the plant stems. After the wax hardened, the plastic bag was unrolled, catching particles that were knocked from the plants in the process, and taped at the top. A long knife was inserted into the ground below the metal ring (or band), and the roots and soil were cut along the base of the ring. The assembly, with some soil, was removed from the field. The plants were cut at the top of the wax surface for washing, drying, and weighing. The particles were easily removed from the wax and the inner surface of the plastic bag by spray-washing. Finally, the plant stems in the wax mold were counted to obtain the planting density. A view of the paraffin wax collecting system is shown in Figure 2.

The paraffin wax band sampler was found suitable for sampling the cereal grain plants when the ceniza-arena was deposited on dry plant surfaces. To obtain an average value of the contamination factor for the larger grain plants, the tops of all of the plants in the area around the positioned band were gently brushed in one direction with a small stick after the wax had hardened. The particles, in any case, were disturbed when the plastic bag was rolled up from the band, and it was believed preferable to average the amount of particles falling from the upper leaves over an area larger than that encircled by the band.

For ceniza-arena deposits that arrived under damp or wet conditions (after an afternoon rain until about 0800 the following morning), the samples were taken, without loss of particles, by clipping off small sections of the grain plants, starting with the top leaves, and inserting them, section by section, into a container. At the ground level, it was necessary to eliminate sections of lower (usually dead) leaves that were lying on the soil surfaces. This same procedure was satisfactory for the wind- and rain-weathered samples.

For vegetable and corn plants growing singly in rows or grouped in hills, the sampling procedure for the dry deposit condition was to spread a slitted sheet of plastic under the plant and to clip off the leaves, singly or in groups, and then the fruit and stems. Any particles falling from the disturbed parts fell on the plastic and were later brushed into the sample container. (Four- and eight-inch-diameter plastic jars with Snap-on covers were used as sample containers for most of these foliar samples.)

Under damp conditions, the vegetable plants were sampled without

Figure 2 THE PARAFFIN WAX BAND SAMPLER FOR CEREAL GRAINS

After Wax has set

After Plastic bag has been unrolled

the plastic sheet. For overnight exposures, the plastic sheets were positioned on the ground around the plant specimens to minimize the splashing of the soil and ceniza-arena particles onto the vegetable plants during periods of rainfall. The technique worked fairly well except for the very heavy raine, during which more than about 1 inch of water fell within an hour. The splashing was not noticeable until the water formed puddles and began running over the ground surface. For low-growing plants (such as potatoes) where the lower leaves lay on the ground, the plastic sheet kept the wet spray-washed leaves from contacting the soil after washing.

By July, the diurnal rainfall pattern for the season, in which most of the rain fell between about 1100 and 1800, was established. Rain seldom fell after sundown. The sky was generally clear, or nearly so, from sunrise until 0800 or 0900. Afterward, the cloud cover increased, and the rain clouds moved in from the Pacific Ocean. This cloud buildup was generally accompanied with increasing wind speed, especially of the southerly velocity components in the upper winds. After the rains ceased in the late afternoon, the wind speed decreased, and the wind usually swung back to the normal easterly flow at high altitudes. The surface winds, however, generally were from the northeast during the night and early morning hours at the two land plots, due to airflow through a gap in the mountains to the west of Irazú.

Because of the described behavior in the weather, the most favorable time of the day for deposits of ceniza-arena to occur was after 1800 at night and before 1100 in the morning. Thus, whenever possible, the plants were spray-washed after the rains ceased in the evening (at sundown) in preparation for interception of fresh ceniza-arena particles.

Because the work schedule could not always be adjusted to washing the plant specimens at sundown, another method was developed to protect the washed plants from splashed-up particles during the rain showers. In this method, a protective plastic sheet tent was constructed over groups of cleaned plants. In forming the tent, a stake was first inserted in the row between the plants to be protected, and the plastic (polyethylene) sheet was draped over the stake and secured at the corners by other stakes. This tent proved to be quite effective in protecting the clean plants from splashing, even during the heaviest rain. Clean plants were covered about noon each day, before the rain usually started, and uncovered between 1800 and 2200, depending on crassation of the rain. With this method, the sampling operation entailed visiting each station at least three times every day: (1) early in the morning to check whether ceniza-arena deposition had occurred during the night; (2) about noon to cover the plants if no deposit had occurred up to that time (or if a new sampling series was to be initiated); and (3) late in the evening to uncover the plants.

When a deposition occurred during the night or very early in the morning under damp conditions and light or calm surface winds (with little or no loss of deposit from the foliage due to wind erosion), primary samples were taken upon arrival at the plot shortly after sunrise. Following this, wind-weathered foliar samples were taken during the morning hours, and, when the first rainfall was not too heavy, rainwashed samples were taken after the shower stopped. The same general procedure was used if the initial deposit occurred under dry conditions, usually after 0800 in the morning. The more exposed foliage of the vegetable and corn plants dried very rapidly after sunrise; the more sheltered lower leaves on the grain plants did not dry as rapidly.

In November and December when the end of the rainy season approached, the rains became more gentle, and their occurrence over the day became more random. To protect the vegetable plants from splashedup particles during these random rains, rolls of plastic sheet measuring 10 x 100 feet were used so that several rows of crops could be protected with one sheet. To install these sheets, the plants, prior to washing, were drawn out through slits cut in the plastic, and the plastic was staked down along the edges. The method proved quite effective in preventing splash contamination of the plants during the less violent rains.

In December, January and February, the surface winds, especially at Plot No. 1, were generally very strong during the daytime, and they usually carried a fine mist across the plots (very little of which collected in the rain gauge). The mist was not heavy enough to wet the foliage of the plants or the surface of the soil but it appeared to be sufficient to reduce the rate of erosion of particles from the foliage and caused collection and retention of windblown soil dust on the washed plants. This dust required more frequent rewashing of the plants; however, it was found that the dust pickup in the vegetable subplot was greatly reduced when the dry soil was wetted before it was walked on during the washing and sampling of the plants.

Several general sampling methods for obtaining data on the amount of particles retained by trees were considered. The first method consisted of: (1) washing the particles from the leaves, twigs, and branches at .andom locations throughout the tree; (2) taking background samples from these locations; and (3) after contamination, taking leaf samples. The leaves were analyzed individually, and the average or median value of the contamination factor for the tree leaves was determined from a distribution curve. By this method, the total amount of particles retained by the tree was computed from a separate estimate of the total mass of leaves on the tree. This method was used on a laurel and a pine tree. Photographs of the trees and of branches from the trees were taken for correlating the weights of the leaves or needles (plus twigs) and their spatial densities.

The second method was the same as the first except that the sampling sites would be at preselected locations within the true canopy. This additional data indicated the degree of variation in leaf contamination levels throughout the volume of the tree and provided information on the dependence of this variation on direction, wind speed, volume density of the leaves, and other parameters. Measurements of the surface wind speeds and directions during deposition were needed to assist in analyzing the data. This method was used on the laurel and grapefruit trees. Photographs of a grapefruit tree, with marked branches before and after each sampling series, were taken for determining the spatial location and orientation of each leaf sampled. After the sampling run was completed, all the leaves were removed from the tree for drying and weighing.

The third method was an extension of the second method in which a network of greased disc collectors were placed at selected locations throughout the tree. The greased disc collectors provided information on the relative air concentration of the particles during the period of deposition at each disc collector location within and adjacent to the canopy of the tree. In this method, the disc collectors were not used to represent ideal leaves but to give information on the variability of the concentration of the airborne particles _s they move through the volume of the tree. Ideally, the data from the disc collectors within the tree volume and outside the tree volume should provide the information needed for estimating the total amount of particles that is retained by the leaves. Use of the greased disc collectors required sufficient care in their placement and removal so that particles were not shaken from the tree leaves onto the discs; also, the discs had to be removed as soon as possible after a deposition to minimize transfer of particles from the leaves to the discs by wind erosion.

The third method was used on a mountain laurel tree. The laurel tree was about 15 feet tall. The greased disc collectors were 2 inches in diameter and made of this aluminum sheet; they were mounted in a horizontal orientation at intervals along curtain rods with plastic clothespins. Two curtain rods were taped together at their centers to form a cross (called an X-rod). Two such X-rods were placed in the foliage of the tree at two different heights. A view of the laurel tree with the X-rods in place is shown in Figure 3.

Figure 3 LAUREL TREE WITH X-RODS IN PLACE

The procedure for removing the particles from the freshly collected foliar samples with a high-pressure spray of water and hand-rubbing was the same as was used during the first phase of the operation. However, when the plants became larger, more time was required in the washing. In addition, the leaves had to be stripped from the stems of the grains and corn in order to recover the required high fraction of the particles lodged in these joins. A minimum of about 6 hours of drying at 100° C was needed to dry most of the larger plant samples to a constant weight. Whole plant samples of matured cabbage and eared corn required at least overnight heating to dry to a constant weight.

Because of the hygroscopic nature of the oven-dried plant material, the dried plant material in the plastic containers was sealed upon removal from the drying oven and weighed as soon as it cooled to room temperature. The larger samples were transferred as rapidly as possible to a 4-inch-diameter plastic container, and the weight was read on the minimum of the second swing of the balance. The recorded weight therefore corresponded to the earliest measured weight before the balance dial indicated a steady increase in sample weight due to absorption of water vapor from the air. In extreme cases, weight gains of as much as 10 mg in the first minute after the initial weight recording were observed. Usually, however, such gains in weight were observed only for samples with a net weight of at least 5 to 10 gm.

Weight errors, in addition to the possibilit¹ of a recorded overweight of the dry plant material due to moisture absorption, initially included the contribution of particles not removed from the plant surfaces in the washing procedure. However, when particles were observed on the dried plant material, the sample was reprocessed.

The ceniza-arena particles tended to penetrate to the interior of the barley, rye, and wheat heads. They also penetrated between the main stem or stalk and the leaf folds of the grains and corn. Because of the rough exterior surfaces of these plants and the tightness of the leaf folds about the fresh stems, it was impossible to remove all of the particles in a single washing step.

Therefore, after the first drying and weighing, the foliar samples of the cereal grains and corn were reprocessed. In the drying process, the plant material contracted, and the nature of the surface of the stalks and grains was altered; many particles that had adhered to the green plant material readily fell to the bottom of the container during drying. Others fell from the dried material when the container was tapped. However, to ensure a high fractional recovery of the particles when reprocessing, the dried leaves and stalks were crushed and shredded. This material was then floated on a layer of water in a tray; it floated even after a thorough wetting. After most of the loosened particles had settled to the bottom of the tray, the wetted broken stalks and chaff were picked up on a coarse screen and sprayed with a fine, high-pressure spray jet to remove the final amount of adhering particles. Any remaining grains, small pieces of stems, and chaff not removed with the coarse screen were retained on a finer screen when the water containing the particles was poured through the screen into the filtering apparatus. The particles, after the filter paper was burned off in the furnace, were cooled and added to those recovered in the initial washing. Only occasional foliar samples of the vegetables required reprocessing.

The gross deposits of ceniza-arena were collected and measured as described in Part One of this report. Continuous collections were made during the nine-month period at both land plots with a collector mounted on a post at a height of 6 feet. The tray was exchanged at the beginning and end of each monthly sampling period. During one sampling period, the tray on the post was exchanged at the same time as the one on the ground (i.e., every time either background samples or other foliar samples were taken).

The rain gauges were left in position during the nine-month period; they were read upon arrival at each station and after each rain shower if the station was manned. The time of rainfall during the monthly sampling periods was always known to within an hour, and, for most rainwashed samples, the time of rainfall was known to within a few minutes.

The relative humidity and temperature were only recorded during the monthly sampling periods. The surface wind speed was recorded with the anemometer head mounted at a height of 8 feet above the surface of the ground. During several of the weathering experiments, wind measurements were made at the height of the plants or at the height of the recording anemometer with a calibrated hand-held anemometer. This instrument was also used at Stations 15 and 16 because recording anemometers were not available.

The recording dew balance was used during the monthly sampling periods as described in Part One of this report. During the dry season, the underwater plastic collector pan and constant-head water container were removed, and an aluminum foil collector pan was prepared and attached to the balance arm. This greatly improved the sensitivity of the balance for the detection of arrival time and rate of arrival of the ceniza-arena particles. However, occasional difficulties in operation occurred when the dew was very heavy and water drops from the entry port fell on the collector pan, causing full-scale deflection of the balance arm. Views

of several items of field equipment are shown in Figure 4. The relative location of the field equipment and the crops at Plot No. 1 is shown in Figure 5.

A plate collector was designed, constructed, and operated in the field to obtain information on the impaction coefficients of particles with surfaces as required in the theoretical equations and as a basis for extrapolating the measured foliar retention data to a variety of wind speed, particle size, and collecting conditions other than those that apply to the measurements. The collector plates consisted of 4-inch-diameter thin aluminum discs welded to 1/4-inch-diameter aluminum rods that were 6 inches long. The assembled collector consisted of seven plates mounted 8 inches apart on a 4-foot rod in such a way that the plane of the plate was parallel to the rod but at angles of 0, 30, 60, 90, 120, 150, and 180 degrees from horizontal. The 4-foot rod was mounted on a swivel bearing with a wind vane to keep the center plate and rod perpendicular to the direction of the wind. The small rods holding the plates were threaded to accept hex-nuts to facilitate installation on and removal from the main rod. A view of the plate collector is shown in Figure 6. Before installation, the plates were greased by brushing both sides with a 50-50 mixture of petroleum jelly and xylene; after the xylene evaporated, the plates were warmed until the grease softened to form a smooth thin film over the plate.

The particles were recovered from the plate, each side separately, by warming the plate and washing the grease and particles into beakers with a thin stream of xylene from a plastic wash-bottle. The particles were collected on filter paper. After the filter paper was ashed in a muffle furnace, the particles were cooled to room temperature and weighed on an analytical balance.

The greased plates were transported between the laboratory and the field in a dust-tight box. When a cloud of ceniza-arena appeared to approach the land plot being manned, the plates were quickly mounted on the main rod under cover (in the jeep or a rain shack) and installed on a prepared post. The length of exposure of the plates, from time of arrival of the particles to recovery of the sampler, was measured with a stopwatch. The wind speed during the exposure was measured with the hand-held anemometer mounted on an adjacent post at the same height (8 feet) as the collector.

To obtain data on the plant growth rates, leaf sizes and areas, and the fraction of the horizontal and vertical cross sections of a plant covered by foliage and the angular aspects of the leaves of various plants, photographs were taken of many of the plant specimens

Figure 4 VIEWS OF FIELD EQUIPMENT

Modified Dew Balance (cover removed)

Figure 5 GENERAL VIEW OF PLOT NO. 1

Figure 6 THE PLATE COLLECTOR

. . . .

÷...

in the field prior to sampling. A painted 18-inch ruled stick or gridued paper was placed beside, behind, or under the specimons so that absolute dimensions could be taken from slide projections of the photographs on a gridded screen or from printed photographe. In the laboratory, outline drawings of sampled leaves, stems, and fruit were made after the samples were washed and the excess water had evaporated from them at room temperature. The plant material was then dried and weighed. The area of the outline drawings was determined with a planimeter. In the later stages of the operation, these measurements were facilitated by use of a Pentax copying camera and Copipod. With this equipment, a large number of area measurements were made by placing the leaves, stems, and fruit on grid paper prior to photographing them.

A method was improvised for harvesting the grain in order to obtain an estimate of crop yields. Samples of the barley, oat, and wheat grains were taken by clipping 100 heads of each at random while walking back and forth over the entire plot. The grain heads were oven-dried at 50° C, placed in a polyethylene bag, and flailed with the bristle side of a stiff brush. The thrashed material was passed over screens of different mesh sizes to remove the stems, after which the chaff and grain were collected in a 2-inch-deep enameled tray. The chaff was then blown out of the tray by a blower made with a fan blade attached to a drill press whose spindle speed was adjusted to effect a clean separation of chaff and grain. The dried grain was then weighed.

The weight distributions of the ceniza-arene particles recovered from the tray collectors and foliar samples and the physical, chemical, and magnetic properties of the particles were measured using the methods described in Part One of this report.

RESULTS

Gross Deposits of Ceniza-Arena

The measurements of ceniza-arena deposited at Plot Nos. 1 and 2 and at Stations 13, 15, and 16 during the various sampling periods are summarized in Table 3. The data include: (1) the sample number; (2) the time that the sample was collected (i.e., the time at which the collector tray was recovered); (3) the time period, Δt , over which the tray was exposed; (4) the weight of the particles per unit area, Δm , that were deposited; (5) the average deposition rate, $\Delta m/\Delta t$, during the sampling period; and (6) the accumulated deposit weight, m, for the sampling period. Data on the hourly deposition rates at the two land plots, as derived from the modified dew balance charts, are summarized in Appendix A.

The time-averaged deposition rates and accumulated ceniza-arena deposits for the various sampling periods at the two land plots are summarized in Table 4. The time variation of the average deposition rates after May 31, 1964, is shown for each of the successive sampling periods in Figure 7. The center line in the figure indicates that the concentration of the particles in the clouds formed in the eruptions decreased with a half-life of about 27 days (0.87 month). From mid-June 1964 to mid-February 1965, the average hourly deposit rate decreased by about a factor of 1,000. The deposit levels in ^February were not sufficient for making foliar contamination measurements. Data on the eruptive behavior of Volcán Irazú during the entire operation are given in Appendix A.

The relative amount of particles collected by collectors on the posts (about 6-feet high) and those on the ground was found, as expected, to depend on the wind speed during the collection of the particles. The log of the ratio, $\Delta m(\text{post})/\Delta m(\text{ground})$, for the collections made during the sampling period of June 15-20, 1964, is plotted as a function of wind speed in Figure 8. The plots indicate that, even for a very slow wind speed, the ratio did not become exactly equal to unity and that, with surface wind speeds of 9 to 10 mi/hr, the post collectors only collected about 50 percent of the particle weight deposited in the ground collectors. This was probably due to a disturbance in the airflow caused by the collector on the post.

 $\mathbf{27}$

Table 3

SUMMARY OF CENIZA-ARENA GROSS DEPOSITION MEASUREMENTS

Sample	Time Co	llected	Δt	∆m	∆m∕∆t	m			
Number	Đay	Hour	(hours)	(gm/sq ft)	(gm/sq ft-hour)	(gm/sq ft)			
			Plo	t No. 1					
14001	6/15	1156	2 .9 3	5.140	1,76	-			
14006 ^a	6/15	1145	1.00	1.390	1.39	-			
14007	6/15	1145	1.00	2.100	2.10	5,32			
14011	6/16	0815	20.47	37.45	1.83	42.77			
14027	6/16	0934	1,35	6.420	4,76	49,19			
14028 ⁸	6/16	0934	1.32	4.708	3,57	-			
14034	6/16	0956	2.47	13.820	5.59	-			
14044	6/17	0836	21.03	90.10	4.29	139,29			
14060	6/17	1226	3.83	6.095	1.59	145,39			
14061 ^a	6/17	1226	3,83	3.065	0.800	-			
14077	6/18	0700	13,83	36.82	2.66	191.50			
14078 ^a	6/18	0700	13.83	34.29	2.48	-			
14089	6/18	0925	2.42	18.59	7.68	210.0 9			
14090 ^a	6/18	0925	2.42	18,28	7,56	-			
14105(RG) ^b	6/19	0840	22.92	44.40	1.94	254,49			
14106 ^a	7/13	0955	551.	4 4 3.9	0,806	-			
14107 ^a	7/21	0740	1 9 0,0	36.92	0.194	-			
14113	7/14	1008	1,68	0.13?	0.0786	0.132			
14118	7/14	1715	7.12	1.117	0.157	1.249			
14119	7/15	0735	14,33	12.62	0.881	13.87			
14133	7/15	1045	3.17	8,813	2.78	22. 68			
14138	7/15	1235	1.83	2.061	1.13	24.74			
14147	7/15	1620	3.75	4.136	1.10	28.88			
14166	7/17	0720	39,00	12.81	0.328	41.69			
14176	7/18	0715	23,91	16.26	0.680	57.95			
14176	7/20	0800	48.75	2,911	0.0597	60,86			
14192	7/21	0740	23.67	18,36	0.775	79.22			

a Samples collected at post height

ſ

b RG designates samples recovered from the rain gauge

sampre	Time C	ollected	∆t	∆m	∆m∕∆t	血
Number	Day	Hour	(hours)	(gm/sq ft)	(gm/sq ft-hour)	(gm/sq ft)
		-	Plot No.	1 (continue	d)	
14193 ^a	8/10	1530	487 5	108 00	0.409	
14194 ^a	8/15	1000	114 50	190,99	0,408	-
14195	8/10	1720	114.00	57.10	0.499	-
14196	8/10	1010	1.03	1.413	0.772	1.413
14150	0/11	1010	10.83	8,348	0,496	9,761
14016	0/11	1120	1,17	0.1038	0,0887	9,865
14210	8/11	1312	1,92	1.249	0.651	11.11
14230	8/11	1530	2,25	9.075	4,03	20,19
14238	8/13	1240	45,17	58.08	1.29	78.27
14251	8/14	0815	19,58	2.728	0.144	81.00
14263	8/15	0700	22,75	0.5142	0.0226	81,51
14264	8/15	0725	0.42	0,1508	0.359	81.66
14265	8/15	1000	2,58	0.2995	0,116	81.96
1 400.08	a (=					
14269	9/2	0700	429.0	43.570	0.102	-
14271	9/3	0615	23.25	19.112	0.822	19.112
14290	9/3	0830	2.25	5.124	2.277	24.236
14312	9/3	1250	4.33	1,366	0.315	25.602
14324	9/3	1345	0.92	0.8422	0.915	26.444
14335	9/4	0910	19.42	16.092	0.829	42.536
14337	9/7	0940	72.50	26.862	0.371	69.398
14352	9/7	1120	1.67	1.104	0.661	70.502
14353	9/9	0925	46.08	5,693	0.124	76.195
14354 ^a	10/3	0915	576 0	55 080	0.0050	
143558	10/12	1445	378.U	22,960	0,0970	-
14356	10/12	1940	221,5	2.2967	0,0104	-
14000	10/4	1515	30.0	0.4120	0.0137	0.4120
14385	10/6	0615	39.0	1,0061	0.0258	1.4181
14390	10/6	1235	6.33	1,1808	0.1870	2.5989
14443	10/6	1825	5.83	1,1465	0,1970	3.7454
14468	10/8	1220	41.92	0,2565	0,0061	4,0019

Table 3 (continued)

a Samples collected at post height
Table 3 (continued)

Sample	Time Co	llected	∆t	רת∆	∆m⁄∆t	m
Number	Day	Hour	(hours)	(gm/sq ft)	(gm/sq ft-hour)	(gm/sq ft)
	_					
			Flot No.	. 1 (conclud	ied)	
14 495^a	11/6	1050	596 .0	7.189	0.0121	-
14448 ^b	11/6	1050	693.5	11,504	0.0167	-
14496 ^a	11/13	0615	163.4	1,673	0.01025	-
14497	11/9	0720	68.5	0,7634	0.0112	0.7634
14523	11/9	1320	6.0	0,2591	0.0432	1.0225
14548	11/10	0735	18.25	0.4164	0.0228	1.4389
14547	11/13	0615	70.3	1,3263	0.0189	2.7652
14571 ^a	12/1	0800	433.8	15,695	0.0362	-
14572 ^a	12/10	0715	215.25	0.6101	0.00283	-
14573	12/2	0900	25,0	0, 2 996	0.0120	0,29 96
14591	12/3	1620	31,33	0,2762	0,00882	0.5758
14613	12/4	0715	14.92	0,1192	0.00797	0,€ 950
14642	12/4	1830	11,25	0.2832	0.0252	0.9782
14645	12/6	1720	46,83	0,1207	0.00258	1.0989
14648	12/9	0655	61.58	0,4657	0,00756	1 5646
14654	12/10	0715	24. 3 3	0.0580	0,00238	1.6226
14655 ^a	1/6	0800	649.0	2.3521	0.00362	-
14656 ^a	1/17	1130	267.50	3,9797	0.0149	-
14657	1/7	1605	32,08	0,1329	0.00414	0.1329
14689	1/7	1700	0.92	0,1576	0.171	0.2905
14690	1/10	1800	73.00	1,6632	0.0228	1,9537
14708	1/11	0700	13.00	0.3556	0,0274	2.3093
14722	1/12	0900	26,00	0.9575	0.0368	3.2668
14728	1/15	1530	78.50	0.4286	0.00546	3.6954
14738	1/16	0600	14.50	2.3144	0.160	6.0098
14751	1/16	1200	6.00	1.6228	0.270	7.6326
14767	1/17	1130	23,50	0,0214	0.00091	7.6540
1.000B	n / 9	1100	£07 C	0 0000	0.00441	
141,20	2/8	1100	327.3	2,3202	0,00441	~
14700	2/23	0800	301.0	0.1380	0.000303	-
14795	2/23	0800	331.0	aiscarded	-	-

a Samples collected at post height

b Samples collected at ground level during the same period as the post collector

ł

sample	Time (Collected	Δt	∆m	∆m /∧t	_
Number	Day	Hour	(hours)	(gm/sq f	t) (gm/sq ft-hour)	(gm/sq ft)
			Plot	t No. 2		
06001	6/17	0956	41.01	10.93	0.257	10.0-
06002 ^a	6/17	0956	41.01	6 805	0,207	10.93
06003	6/18	0550	19.90	13 68	0,100	-
06004 ^a	6/18	0550	19.90	12 50	0,008	24.61
06023	6/19	0 9 40	27.83	33 30	0.028	-
06024 ^a	6/19	0940	27.83	31,59	1.14	57,91
060448	2/24					-
06044~	1/14	1330	577.	202.3	0,350	-
00035	7/15	0850	19.33	6.420	0,332	6.420
06030	7/15	1510	6.33	2.842	0,448	9.262
06019	7/16	1755	26.75	11.90	0,445	21.16
06088	7/19	1500	69,08	2 9 .32	0,423	50.48
00089	7/21	0945	42.75	2.110	0,0493	52,59
06090 ^a	8/10	0945	480.0	45 62	0.0050	
06091	8/16	0945	144.00	22 24	0.0950	~
06092	8/10	1145	2 00	44.64 A 0367	0.154	~
06107	8/11	0725	19.67	4 340	0,418	0,8367
06129	8/12	0640	23 25	4,342	0.221	5,179
06135	8/12	1310	6 50	14.01	0.637	19,99
06146	8/12	1735	4 42	1,880	0,290	21.88
06163	8/13	0800	47.F	1,442	0.326	23,32
06183	8/16	0950	73 83	6.000	0.535	31.03
		0000	10100	0,602	0,0929	37.90
06192 ^a	9/3	1515	437.5	48 609	o 111	
06193 ^a	9/8	1540	120.42	44 745	0.111	~.
06194	9/4	0645	15.50	7 600	0.372	-
06228	9/4	1100	4 25	0.5001	0,496	7,690
06239	9/6	1520	52.33	7 207	0.120	8,199
06259	9/7	0650	15.50	1,207 5 975	0.139	15,486
06260	9/8	1520	32.50	99 010	0.377	21.331
		~~~~	22100	20.219	0.868	49.549

# Table 3 (continued)

a Samples collected at post height

é,

31

_

# Table 3 (continued)

Sample	Time Co	llected	Δt	۵m	∆m∕∆t	m
Number	Day	Hour	(hours)	(gm/sq ft)	(gm/sq ft-hour)	(gm/sq ft)
			Plot No.	2 (contin	ucd)	
06280 ^a	10/3	1345	<b>598</b> ,0	15,668	0,0262	-
06281 ⁸	10/12	1145	214.0	0,8558	0.00400	-
06282	10/7	1145	94.0	1,0565	0.0112	1,0565
06295	10/11	1430	98.75	0,2770	0,00281	1.3335
06317 ^a	11/6	1430	603.0	15.073	0.0250	-
06313 ^b	11/6	1430	624.0	17,038	0,0273	-
06318 ^a	11/13	0650	1 <b>6</b> 0.5	1.412	0,00880	-
06319	11/9	0 <b>9</b> 05	66,5	0,4869	0.00732	0,4869
06335	11/13	0650	93.8	1.7546	0.0187	2.2415
06354 ^a	12/1	1300	438.0	8.123	0,0185	-
06355 ⁸	12/10	0900	116.50 ^C	1,4180	0.0122	-
06356	12/4	1015	€9,25	0,3446	0.00498	0.3446
06380	12/5	0830	22,25	0,5145	0.0231	0,8592
06398	12/5	1230	4.00	0,1799	0.0450	1,0391
06409	12/6	1600	27.50	0,7018	0,0255	1,7409
06418	12/7	0750	15.83	0.2256	0,0143	1. <b>966</b> 5
06431	12/8	0700	23.17	0,3398	0.0147	2.3063
06437	12/8	1230	5.50	0,1545	0.0281	2,4608
06460	12/ <b>9</b>	0750	19.33	0,1067	0.00552	2.5675
06472	12/10	0900	25.17	0.3688	0.0147	2.9363
064 <b>73^a</b>	1/6	1400	653.0	13,628	0,0209	+
06474 ^a	1/13	1115	165.25	5.0410	0.0305	-
06475	1/7	1025	20.42	0, <b>798</b> 2	0.0391	0,7982
06504	1/7	1135	1.17	0,3512	0.300	1.1494
06519	1/7	1315	1.67	0.4331	0.25 <del>9</del>	1.5825
06520	1/8	0800	18.75	1.2536	0,0668	2.8361
06522	1/8	1300	5.00	0.5248	0,105	3.3609
06542	1/9	0730	18.50	2.1056	0.114	5.4665

a Samples collected at post height

b Samples collected at ground level during the same period as the post collector

c Collected from 12/5, 1230; earlier collection lost in cyclone wind which dislocated the tray

# Table 3 (concluded)

1

۱.

÷

;

ŝ

Sample	Time C	ollected	Δt	<u>^</u>	ôm∕∆t	櫓
Number	Day	Hour	(hours)	(gm/sq ft)	(gm/sq ft-hour)	(gm/sq ft)
			Plot No.	. 2 (conclud	ded)	
			_			
06573	1/10	1630	33.00	1,0239	0.0310	6.4904
06594	1/11	0800	15,50	0.9571	0.0617	7.4475
06604	1/12	0800	24.00	0.3624	0.0151	7.8099
06637	1/13	1115	27.25	0,6614	0.0243	8.4713
	- 14					
06652-	2/9	1400	651.0	12,834	0.0197	-
066534	2/22	1030	308.5	0,1831	0.000594	-
06654	2/18	0930	211.5	0.3968	0.00188	0.3968
06696	2/22	1030	97.0	~0.0	~0.0	0.3968
			Sta	tion 13		
13502	12/13	0730	18.00	1.6821	0-0934	1 6821
13503	12/13	0740	0.167	0.8968	5.38	2.5789
13509	12/13	1610	8.50	0.2245	0.0264	2.8034
13510	12/14	0800	15.83	2.4778	0.157	5.2812
			Sta	tion 15		
15001	1/14	1 400				
15001	1/14	1400	21.00	1.9599	0.0912	1,9599
15036	1/15	1735	10 22	0.8221	0.0477	2.7820
15050	1/10	1422	10.00	0.7724	0.0748	3.5544
15051	1/16	1700	10.50	0.0421	0.0052	4.3905
10001	1/ 10	1100	10.00	0.2340	0,0423	4.0303
15067	2/9	1700	24.50	0.4940	0.0202	0.4940
15069	2/16	0845	159,75	0.7188	0.00450	1.2128
15070	2/23	0715	166.50	~0.0	~0.0	1.2128
			0.			
			Sta	tion 16		
16000	2/9	0730	17,00	0.6228	0.0366	0.6228
16005	2/11	0800	<b>48.0</b> 0	0.0(disca	rd) -	0.6228
16017	2/15	1530	103.50	0.2574	0.00249	0.5802
16027	2/16	0830	17.00	0.6248	0.0368	1.5050
16028	2/16	1400	5,50	0.1598	0.0291	1.6648
16029	2/22	1600	146.00	~0.0	~0.0	1.6648

a Samples collected at post height 33

# SUMMARY OF TIME-AVERAGED DEPOSITION RATES AND ACCUMULATED CENIZA-ARENA DEPOSITS BY SAMPLING PERIOD AT THE TWO LAND PLOTS

Sampling	۵	۵m	_	∆m/∆t	m
Period	(gm/sq ft)	(gm/sq ft)	∆m [≢] /∆m ^a	(gm/sq ft-hr)	(gm/sq ft)
		Plot N	<u>lo. 1</u>		
6/15- 6/20	(265.2) ^b	300.09	0.882	2.48	300
6/20- 7/13	443.9	(659) ^b	0,674 ^C	1.19	959
7/14- 7/21	36.92	79,22	0,466	0.47	1,038
7/21- 8/10	198,99	(342)	0.582 ^C	0.71	1,380
8/10- 8/15	57,10	81.96	0,697	0,72	1,462
8/15- 9/2	43.57	(63)	0, <b>694^C</b>	0.15	1,525
9/2 - 9/9	52.76	76,19	0,692	0.45	1,601
9/9 -10/3	55, <del>96</del>	(88)	0.633 ^C	0.15	1,689
10/3 -10/10	2,297	4.002	0.574	0.021	1,693
10/10-11/6	7,189	11.504	0.625	0.017	1,705
11/6 -11/13	1.673	2.765	0.605	0.017	1,708
11/13-12/1	15.70	(32)	0.490 ^C	0.073	1,740
12/1 -12/10	0.610	1.623	0.376	0,0075	1,742
12/10- 1/6	2,352	(5.2)	0,448 ^C	0,0081	1,747
1/6 - 1/17	3,980	7.654	0.520	0.029	1,755
1/17- 2/8	2,326	(5.1)	0.456 ^C	0.0096	1,760
2/8 - 2/23	0.139	(0.354)	0.393	0,00098	1,761
		Plot N	lo. 2		
6/15- 6/20	(60.7) ^b	69.07	0.879	0.60	69
6/20- 7/14	202.3	(293) ^b	0.690 ^C	0.51	362
7/14- 7/20	-	52,59	-	0.32	415
7/20- 8/10	45.62	(84)	0.544 ^C	0.17	499
8/10- 8/16	22,24	37.90	0.587	0.26	537
8/16- 9/3	48.61	(65)	0,745 ⁰	0.14	602
9/3 - 9/8	44.74	49,55	0,903	0,41	652
9/8 -10/3	15.67	(20)	0.772 ^C	0,042	672
10/3 -10/12	0,856	1.334	0.642	0,0069	673
10/12-11/6	15.07	17.04	0,884	0.027	690
11/6 -11/13	1.412	2.242	0.630	0.014	692
11/13-12/1	8.123	(15)	0, <b>5</b> 56 ^C	0.033	707
12/1 -12/10	1.418	2,936	0,483	0.014	710
12/10- 1/6	13.63	(25)	0.539 ^C	0.039	735
1/6 - 1/13	5.041	8,471	0.595	0,051	743
1/13- 2/9	12.83	(24)	0.528 ^C	0.038	767
2/9 - 2/22	0.183	0.397	0.461	0.0013	768

a Am* represents deposit at post height

b Values in parentheses are calculated from the interpolated  $\Delta m^*/\Delta m$  values

c Interpolated values

j"i





The average diurnal variation in the relative hourly deposition rates at the two land plots is illustrated by the percentages of the daily deposits that fell during each hour, as summarized in Table 5. (Note that the average hourly deposit percentage for each day is 100/24 or 4.17.) During the rainy season, when the volcano was still quite active, some deposit occurred at both land plots during every hour of at least one of the days during the sampling periods. During the dry season, no deposit occurred during several hours of every day during the sampling periods. For the four months of the rainy season, the heaviest deposits occurred most often between midafternoon and midnight. For the two months of the dry season, the heaviest deposits occurred most often between midnight and midmorning.

The hourly deposition rates were derived from correlations between data read from the charts of the modified dew-balance, as shown in Figure 9, and the gross collector data. With the water-submerged collector tray that was used during the rainy season, the calibration factor varied to some degree from one sampling series to another due to hold-up of particles on the cylindrical plastic liner that extended from the entry port down to near the water tray. For the aluminum foil collector pans used under dry climatic conditions, the average calibration factor was 1.05 grams per scale unit.

## Meteorological Parameters

The meteorological parameters that were measured continuously during the sampling periods at the two land plots were: (1) surface air temperature; (2) relative humidity; (3) rainfall; and (4) wind speed at 8 ft above ground level. The observed data are summarized in Appendix B. In addition, measurements of wind speed at various locations on the land plots and other stations were made with a standardized hand-held anemometer.

A summary of the observed data on the surface air temperature and relative humidity at the two land plots during the sampling periods is given in Table 6. At Plot No. 1, the maximum surface air temperature for each day was generally between 75 and  $80^{\circ}F$  during the rainy season and the dry season; however, during the rainy season this maximum generally occurred between about 1000 and 1100, whereas during the dry season, it occurred at about 0900. The minimum temperature for each day was between 53 and 59°F, and it occurred most frequently between 0400 and 0500 during the rainy season and at about 0300 during the dry

# PERCENTAGE OF AVERAGE DAILY CENIZA-ARENA DEPOSIT BY HOUR OF DAY DURING SEVERAL SAMPLING PERIODS

		Sampling	g Period, Rainy	Season		Sampling	Period, Dry	Season
					Weighted			Weighted
Hour	6/15-6/20	7/14-7/2	21 8/10-3/15	9/2-9/9	Average	12/2-12/10	1/6-1/16	Average
				Plot No.	-1			
1	9.04	1.75	6.97	5.25	5.25	0.00	0.00	00.00
8	3.17	0.92	3.32	6.33	3.45	3.08	10.01	6,92
ო	3.30	$0.30^{3}$	0.20	7.27	2.91	0,00	18.04 ^b	9.92
4	3.67	1,05	0,12	7.94	3.38	$25.63^{\rm b}$	0.81	11,98
ŝ	<b>Z.64</b>	3.45	0.17	4.55	2.72	00.00	0.80	0.44
g	3.63	2.44	0.05 ^a	3.03	2.35	0.00	16,34	8,99
2	6.21	5.74	12.20	4.11	6.16	4.37	3.59	3,94
Ś	5.68	2.36	5.11	4.07	4,15	0.00	14.97	8.23
<b>6</b>	3,92	1.75	2.61	10.84 ^b	5.00	18,48	5,81	11.51
10	2.92	4.28	2.59	1.52	2.84	0.62	0.00	0.28
11	0.47 ^a	5.25	1.34	1.05	2.19	0.62	0,00	0.28
12	3,55	2.60	4.90	4,80	3,88	8,63	3.85	6.00
13	1,58	2.88	2.48	0.72 ^a	$1.90^{a}$	16.70	8.66	12.28 ^b
14	2.46	0.93	8.43	2.28	3.25	12.32	0.91	6.04
15	1,11	20,07 ^b	4.26	2,39	$7.57^{b}$	2.22	5.10	3.80
16	0.74	1,86	13.04	4,45	4.75	0.00	2.35	1.29
17	12.06 ^b	1,97	13,84 ^b	3.36	7.07	0.00	2.05	1.13
18	4.07	7.55	4.08	5.30	5.42	7.33	2,01	4.40
19	6.37	5.28	4,16	4.06	4.92	0.00	0.00	0.00
20	1.42	3.00	3,29	2.23	2.50	0,00	0.00	00.00
21	9.42	2,95	1.82	2.23	3.89	0.00	0.00	00'00
22	5,54	2.13	0.82	3.29	2.91	0.00	4.64	2.55
23	3.13	16.21	0.83	3.54	6.50	0.00	0.00	0.00
24	4.91	3.27	3.37	6.01	4.43	0.00	0,00	0.00
a Mi	inimum deposi	t	Maximum d <del>e</del> posit					

Table 5 (concluded)

\$

		Sampling	Period, Rainy	Season		Sampling	Period, Dry	Season
					Weighted			Weighted
Hour	6/15-3/20	7/14-7/2	1 8/10-8/16	9/2-9/8	Average	12/2-12/10	1/1-1/13	Average
				Plot No.	21			
1	1.09	1.84	3.77	3.42	2,56	0.00	6.14	2.69
~	0,23ª	1,73	3,96	2.87	2.25	0.00	8 30	3.64
m	2.46	1.22	2.82	3,02	2.34	3,41	4.20	3.76
4	4,60	0.97	2.96	3.67	2,92	2.72	4.18	3,36
ŝ	1.32	0,893	3.72	2,62	2,12	6.98	12,20 ^b	9.27
9	0,96	1.25	12.56 ^b	2.78	4.40	6,13	4.38	5.36
٢	5,01	1.12	11.37	3.16	5.02	$34.91^{b}$	0,00	19.62 ^b
œ	10.63	6,43	9.39	1,28	6.78	19.28	1.02	<b>8</b> □ ₽
6	4.33	2.38	1.27	4,00	2.92	0.00	5.08	2.22
10	3,10	6,22	2.03	1,94	3.43	3.42	10.75	6,63
11	2,93	8,35	3.14	1.94	4,29	6,13	2.54	4,56
12	1,91	1.16	1.72	1.37	1.51ª	1.87	3, 0 <b>5</b>	2.39
13	0,80	8,10	4.70	0,73 ⁸	3,85	2.04	2.54	2,26
14	2,95	4,96	1.37	1.10	2,67	0.00	1.02	0.45
15	4,60	5.29	2.64	1,08	3,43	0.00	2.03	0.89
16	4.16	3.00	3,69	1.73	3.10	0,00	1.55	0,68
17	3,33	6.35	1,08 ^a	7.93	4.78	10.42	0.00	5.86
18	6,82	16,62 ^b	2.45	6.08	8,35 ^b	2.69	0.00	1.50
19	8,94	7,95	1.64	7.47	6,46	C0.0	00.00	0, 00 ^a
20	3.46	2,62	3.17	18.85 ^b	6,99	0,00	0.51	0.22
21	6.49	2.00	2.06	7.16	4.27	0,00	7.62	3.34
22	7.75	5,36	4,80	5.79	5.84	0.00	9.92	4.34
23	11,87b	1.70	9,18	5.72	6.73	0.00	5,05	2.21
24	0.26	2,49	4,51	4.29	2.97	0.00	7.92	3.47
R N	inimum deposi	k b	Marimum deposi	ţţ				

Figure 9 MODIFIED DEW BALANCE CHART RECORDS FOR THE JULY SAMPLING PERIOD

ì,



40

# Best Available Copy

AVERAGED VALUES OF TEMPERATURE AND RELATIVE HUMIDITY PARAMETERS AND TIMES OF OCCURRENCE FOR EACH SAMPLING PERIOD AS TAKEN FROM THE HYGROTHERMOGRAPH RECORDS

Date

	6/15-	7/13-	8/10-	9/2-	10/3-	11/6-	12/1-	1/6-	2/8-
	6/20	7/20	8/17	6/6	10/12	11/13	12/10	1/17	2/23
				I	ot No. 1				
T max ( ⁰ F)	02	75	80	79	80	83	79	76	78
Time of T max (hour)	1335	1050	0950	1145	1035	0940	0920	0903	0060
T min ( ⁰ F)	56	57	59	58	59	57	54	53	53
Time of T min (hour)	0500	0150	0350	0150	0455	0400	0305	0315	0245
T (0 P)	63	99	69	68	70	70	66	64	66
Time when RH $\ge 90 \text{ percent}^8$	1535	1535	1400	1545	1520	1525	1535	1620	1635
Time when RH < 90 percent	0715	0640	0110	0925	0020	0650	0635	0650	0635
Hours of damp conditions ⁸	15.7	15.1	17.2	17.7	15.7	15.4	14.7	14.5	14.0
RH min (percent)	02	62	61	61	61	52	54	59	56
Time of RH min (nour)	1040	0850	0950	1145	1025	0855	0840	0855	0840

41

a These times do not take into account periods of rainfall near midday unless humidity remained greater than 90 percent continuously during the afternoon. 1

:

ì

Table 6 (concluded)

		1			Date				
	6/15-	7/13-	8/10-	0/2-	10/3-	11/6-	12/1-	1/6-	2,'8-
	6/30	7/20	8/17	6/6	10/12	11/13	12/10	1/17	2.2
				피	ot No.	21			
T max (°F)	74	72	73	69	75	74	81	73	74
Time of T max (hour)	1020	1125	1125	1050	1120	1100	1235	1210	114(
T min (°F)	55	54	55	54	55	54	50	47	48
Time of T min (hour)	0520	0445	0410	0430	0420	0545	0110	0345	0420
T (°F)	64	63	64	61	65	64	66	60	61
Time when RH > 90 percent ^a	1510	1415	1450	1340	1455	1550	1655	1710	1725
Time when $RH \le 90$ percent ^a	0745	0725	0715	1710	0630	0110	0615	0650	0105
Hours of damp conditions ²	16,3	17.2	16.4	16.5	15.6	15.3	13.3	13.7	13.7
RH min (percent)	64	99	60	69	63	60	44	52	50
Time of RH min (hour)	0850	0945	1100	1050	1115	1015	1220	1150	1150

a These times do not take into account periods of rainfall near midday unless humidity remained greater than 90 percent continuously during the afternoon.

------

-----

season. The average daily mean temperature was between 63 and  $70^{\circ}$ F. On the average, the relative humidity was greater than 90 percent after about 1530 during the rainy season and after about 1630 during the dry season (neglecting periods of rainfall during the early part of the day). The relative humidity usually decreased rapidly soon after sunrise. During the rainy season, the relative humidity was greater than 90 percent (defined as damp conditions) about 15 to 18 hours of each day; the longest periods under continuous damp conditions occurred in August. During the dry months, the relative humidity generally remained greater than 90 percent for 14 to 15 hours each day. The daily minimum relative humidity was usually between 50 and 70 percent, and the minimum was higher during the rainy season than during the dry season. As would be expected, the minimum in the relative humidity coincided on most days with the time at which the maximum temperature occurred.

At Plot No. 2, the daily maximum surface air temperature generally was between 70 and  $80^{\circ}$ F, occurring between 1100 and 1200. The daily minimum temperature was about  $55^{\circ}$ F during the rainy season and near  $50^{\circ}$ F during the dry season. The average daily mean temperature was between 60 and  $65^{\circ}$ F. Relative humidities greater than 90 percent persisted for periods of 15 to 17 hours each day during the rainy season and for 13 to 14 hours during the dry season.

Thus, the climatic conditions at the two plots were quite similar except that the surface air temperature usually was a few degrees lower at Plot No. 2, and the humidity during the dry season was somewhat lower.

The average daily rainfall at the two land plots during the sampling periods is summarized in Table 7. The rainy season in Costa Rica, which usually begins in late May and ends in mid-November, has two periods of rather heavy rainfall. As indicated by the data in Table 7, the first period has a peak rainfall rate between mid-June and mid-July, and the second period has a peak rainfall rate between mid-September and mid-October. The rains during these periods come from the Pacific Ocean. In November and December, the occasional rains usually come from the Caribbean Ocean.

As previously mentioned, the diurnal pattern of the rain showers during the rainy season is that showers ordinarily occur somewhere in the valley between about 1100 and 1800; the occurrence of showers after sundown is very infrequent. At sunrise, the sky is usually clear, but, shortly after 0800, the cloud cover starts building up and the sky is usually completely overcast by the time the rain showers start. After November, the occasional showers from the Caribbean Ocean occur at any

÷.

# AVERAGE DAILY RAINFALL AT THE TWO LAND PLOTS

Sampling	Δt	<b>Rainfall</b>	Average Rate
Period	(days)	(inches)	(inches/day)
	Plot	No. 1	
	·		
6/14- 6/19	4.72	3.32	0.703
7/13- 7/21	7,94	7.64	0, <b>96</b> 2
8/10- 8/17	6,83	2.02	0,296
9/2 - 9/3	7.04	3,91	0,555
10/3 -10/13	9,98	7.75	0 <b>,776</b>
11/9 -11/13	3.65	0,04	0.011
12/1 -12/9	7,96	0,87	0.109
12/9 - 1/6	28.08	0.17	0.006
1/6 - 1/17	11,17	0.24	0.021
	D1 - 4	N- 0	
	PIOL	NO. 2	
6/14- 6/19	4.73	1.69	0.357
7/13- 7/21	7.96	9.74	1.224
8/10- 8/17	6,96	2.16	0.310
9/2 - 9/8	6.01	3.19	0.531
10/3 -10/13	9,72	7.11	0.731
11/7 -11/13	5.87	1.37	0.233
12/1 -12/9	8,19	0.65	0.079
12/9 - 1/6	28,14	0,36	0.013
1/6 - 1/13	8,75	0,03	0,003

hour of the day without any apparent diurnal frequency pattern.

The heavy rains in late June and through mid-July, with a daily rainfall rate of almost 1 inch per day, in combination with a few hours of sunshine each day did not favor good growth of many of the planted vegetables, especially the corn. The leaves of the lower growing plants under these conditions were susceptible to the growth of mildew and other fungi.

The average hourly wind speeds at the two land plots for each sampling period are summarized in Table 8. The wind speed was always higher at Plot No. 1 than at Plot No. 2 because the former was situated in the path of the airflow through a pass in the mountain chain between the central valley and the Caribbean side of the country. This airflow at ground level was generally from the north-northeast or northeast, whereas the general flow of the upper air was from the east. However, during the rainy season, the upper winds were from the southeast until the late afternoon hours when the rain showers ceased.

The diurnal variation in the wind speeds described below persisted throughout the whole operation. The speeds were generally low during the night and perhaps lowest in the hours just before sunrise. After sunrise, terrain heating caused the surface winds to pick up. These surface winds often were westerly, with the air flowing up the mountainsides in countercurrent with the easterly flow of the upper winds. As the cloud cover built up, clouds could be seen moving in all directions at a given time.

The peak surface wind speeds usually occurred near midday. At Plot No. 1, the peak average hourly wind speed occurred between 1130 and 1230 on 27 percent of the days of observation. At Plot No. 2, the peak average hourly wind speed occurred between 1230 and 1330 on 31 percent of the days of observation. The median frequency of the daily peak in the average hourly wind speed occurred at about 1200 for Plot No. 1 and at about 1300 for Plot No. 2. During the 44 days of observation from June 15, 1964 through January 17, 1965, the maximum average hourly wind speed never occurred before 0900 or after 1600 at Plot No. 1 and never before 1000 or after 1700 at Plot No. 2. Thus, in general, the diurnal pattern of the wind speeds at Plot No. 2 was similar to that at Plot No. 1, except for a time lag of about one hour.

The surface wind speeds generally decreased during the afternoon hours and reached the average lower nighttime speeds by about 1800.

An example of the wind speed charts is shown in Figure 10 in which

# SUMMARY OF AVERAGE HOURLY WIND SPEEDS AT THE TWO LAND PLATS FOR EACH OF THE SAMPLING PERIODS

Hour	6/15-6/20	7/13-7/21	8/10-8/16	9/3-9/7	10/3-10/6	11/9-11/13	12/1-12/10	1/6-1/17
				Plot No	1			
-	3.0	1.6	1,8	(1.0) ⁴	0.3	0.4	3.0	5.1
2	3.3	1.8	1.4	(0.1)	0,4	2.0	2.9	4.8
3	3.0	1.9	2.0	(0,1)	0.3	3.4	2.4	5.1
4	3,3	1.8	1.6	(0.1)	0.3	2.4	3,3	4.6
ŝ	3.3	2,3	1.6	(1.0)	0.3	2.0	4.3	4.4
g	4.3	2.0	1.7	(0,1)	0.3	1.7	3.5	3.2
2	5.0	1.8	1,8	1.2	0.8	1.4	3.1	3.6
90	4.3	2.1	1.8	1.8	1.4	3.7	5.9	4.1
3)	4.0	4.0	4.5	2.8	1.8	7.0	8.0	8.3
10	4.8	4.5	6.2	5.0	1.9	6.5	3.8	10.2
11	8,0	4.8	6.7	5.5	2.2	6.4	9.6	10.9
12	9.7	4.7	7.8	7.2	3.0	5.9	9.8	0.11
13	9.7	4.5	6.2	8.6	4,0	5.4	9,5	10.9
14	9,3	4.3	5,0	(8.2)	3.4	5.5	10.1	10.5
15	8,0	3,5	4.6	(1.7)	0.9	,	<b>0.</b> 6	10.5
16	8,3	2,3	5.0	(2.8)	0.5	ŀ	7,8	9.0
17	6.3	2.4	3.6	(4.5)	0.3	,	6.6	6.9
18	5,0	2,3	2.6	(3.4)	0.3	ı	4,9	6.8
19	4.0	1.9	1.7	(2.4)	0.4	ı	4,8	6,0
20	3,0	1.3	2.7	(1.4)	0,4	ı	4.5	4.7
21	2.7	0.9	1.7	(1.2)	0.4	١	3.3	5.1
22	3.7	0,9	1.4	(0.1)	0.8	ı	3.1	4.8
23	4,0	1.2	1.0	(0.1)	0.7	ł	2.6	4.0
24	3.7	1.4	1.2	(0.1)	0,6	1	2.9	3.7

a Values in parentheses are estimated from hand-held anemometer measurements

: : :

;

Table 8 (concluded)

11

-12/10 1/6-1/13		0.7	6.0	1.0	6.0	1.0	1.0	0.7	6.0	2.6	3.0	3.1	2.2	3.6	3.7	3.0	2.1	1.6	6.0	5.0	0.4		2.0	R C	2.0
12/1-		0.7	0.1	0.9	1,0	1.5	1.3	1.1	1,6	2.6	3.2	9. C	3.8	3,6	3.6	2.6	1.8	0.9	0.6	0.7	0.7	0.6	6.0	9.0	0.7
11/9-11/13		0.7	6.0	1.4	1.3	1.3	1.2	1.0	1.0	2.2	2.8	4.8	4,6	4.2	3.5	1.5	2.4	1.0	2.2	1.3	0.7	0.8	1.6	1.1	0.6
10/3-10/6	No. 2	Data not	reduced	(No samples	taken)																			-	
9/2-9/8	Plot	0.3	0.3	6.0	0.3	0.3	0.3	0.3	0.3	0.6	1.0	1.4	2.2	1.8	1.1	0.5	0.7	0.6	0.3	0.3	0.3	0,3	0.4	0.3	9.3
8/10-8/17		0.3 ⁸	0.3	0.3	0.4	0.4	0.3	0.3	0.4	9.0	2.0	2.5	2.8	3.0	1.6	1.5	0.7	0.6	0.3	0.4	0.3	0.4	0 <i>.</i> ؤ	0.3	0.3
7/13-7/21		1.1	1.1	1,3	1.5	1.7	1.4	1.3	1.2	1.8	2.2	2.6	4.6	4,6	3.8	3.2	2.6	1.8	1,8	1.5	1,1	1.2	1.4	1.3	1.1
6/15-6/20		1.1	0.7	0.5	6.0	1.4	1.0	0.7	1.4	1.6	2.6	5.0	4.4	6.0	4°0	2.5	2.2	2.0	1.0	0.6	1.0	0.5	0.8	0.7	0.7
Hour		F	N	en	4	ŝ	9	2	<b>3</b> 0	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

.

அன்னைக்குளைத்தாலாக, பிலாக பல்காலை பலிதல் பரிதுப்பட்டி திருப்பிட்டப்பட்டத்தாக கண்ணும் காட்டிப்பிரும் வில் புக்கதல்கள் தாடையின் பிலால் பிரிக்கும் பிரிக்கும் பிலால் பிலால் பிலால் பிருந்தாக காட்டியை பிரியில் பிருந்து மற்றும் அதல் தல்கும் பிரியில் பிரியில் பிரிக்கும் பிரிக்கும் பிலாம் பிலாம் பிலால் கிரியில் பிரியில் பிரியில் பி

. . . . .



Figure 10 WIND SPEED CHART FOR JANUARY 9, 1965 AT PLOT NO. 1

the Rustrak recorder traces are reproduced for January 9, 1965 at Plot No. 1. The average hourly wind speeds were obtained from the charts by reading the centroid of the points for each 15-minute interval, taking the average of four consecutive readings, and tabulating these averages for each hour of the day.

The average wind speeds for each set of foliar samples or groundcollected gross samples of ceniza-arena were calculated by weighting the average hourly wind speeds by the hourly deposition rates; these average wind speeds are given by

$$\bar{\mathbf{v}}_{\mathbf{w}}^{\mathbf{o}} = (1/\Delta m) \sum_{i}^{n} (\Delta m/\Delta t)_{i} \mathbf{v}_{i}^{\mathbf{o}} \Delta t \qquad (11)$$

where

(∆m∵∆t) i vo

is the corrected average hourly wind speed (v is the average hourly wind speed as determined from the anemometer charts)

At is 1 hour or fraction thereof at the beginning or end of a sampling run

is the deposition rate for the ith hour

and

Am is the total deposit for a set of samples.

The average wind speed for weathering periods was calculated from

$$\bar{v}_{w}^{o} = (1/t) \sum_{i} v_{i}^{o} \Delta t \qquad (12)$$

where t is the time of exposure of the foliar samples to wind-weathering for a set of weathered samples starting with the time at which the primary samples were taken.

Measurements of the wind speeds that were made occasionally with the calibrated hand-held anemometer (this anemometer was always mounted on a rod or post when in use) to obtain calibration data for the recording anemometers are summarized in Table 9. The average wind speed, measured over the time interval,  $\Delta t$ , with the hand-held anemometer is designated  $\bar{v}_{w}^{O}$ , and the average wind speed read from the recording anemometer charts for the same time interval is designated  $\bar{v}_{w}$ . (The latter is the same as  $v_{w}$  where the time interval is 1 hour and the time starts at 30 minutes before a given hour of the day.)

# SUMMARY OF WIND SPEED MEASUREMENTS WITH THE HAND-HELD ANEMOMETER AT A HEIGHT OF 3 FEET AND THE $\overline{v^0}/\overline{v}$ RATIOS

	End Time	Δt	v.	- v	-0 /-
Date	(hour)	(min)	<u>(m1/hr)</u>	<u>(mi/hr)</u>	
		D1 of	No. 1		
		<u>P10t</u>	<u>NO. 1</u>		
9/7	0941	20	7.8	5.8	1.34
9/7	0957	14	8,7	8.0	1.09
9/7	1005	7	9.9	9.9	1.00
<del>9</del> /7	1011	5	9.0	9,0	1.00
9/7	1028	16	9.0	8.6	1.05
9/7	1038	7	8,3	7.1	1.17
9/7	1107	28	9.6	9.2	1.04
9/7	1029	19	9,6	9.0	1.07
9/7	1136	6	10.4	9.8	1.06
10/4	1636	2	1.1	>0.0	-
10/4	1640	3	0.89	>0.0	-
10/4	1651	10	0.84	>0.0	-
10/4	1657	4	1.2	>0.0	-
10/4	1703	5	1.6	>0,0	-
10/4	1712	9	1.4	>0.0	-
10/4	1726	13	0.91	>0.0	-
10/4	1728	1	0,95	>0.0	-
10/4	1730	1	0.93	>0.0	-
10/4	1734	2	1.9	>0,0	-
10/4	1738	3	3.4	>0.0	-
10/4	1740	1	2.6	>0.0	-
10/6	0650	33	37	0.0	4 13
10/6	0728	2	4 5	×0.0	4.11
10/6	0730	2	4.4	>0.0	-
10/6	0740	10	3.8	0.5	7 60
10/6	0754	13	4.1	0.3	13.7
10/6	0811	16	2.6	0.2	13.0
10/6	0823	11	2.2	0.2	10.9
10/6	0840	16	1.5	2.4	0.67
10/6	0851	10	7.7	3.9	1.97
10/6	0858	6	6.7	2.8	2.39
10/6	0905	6	7.7	4.3	1.79
10/6	0915	10	7.9	5.7	1.38

### End Time v₀ www. (mi/hr) ∆t Date (hour) (min) (mi/hr) Plot No. 1 (continued) 10/6 0952 27 5.5 5,1 1.08 10/6 0957 2 9.1 6.4 1.42 10/6 0959 2 9.2 6.0 1,53 10/6 1131 11 6.6 3,8 1.74 10/6 1142 10 6.5 4.4 1.48 10/6 1159 16 6,6 5,9 1.12 10/6 1211 11 8.3 6.6 1,26 10/6 1222 10 6.6 4.7 1.40 10/6 1243 20 8.1 5.7 1,42 10/6 1257 9.8 13 6.9 1,42 10/6 1325 27 10.4 8,4 1.24 10/6 1337 11 10.2 8.7 1.17 10/6 1344 6 10.7 8.8 1.22 10/6 1347 2 8.7 7.4 1.88 10/6 0730 60^a 4.0 1.2 3.32 10/6 0830 60^a 2.5 0.6 4.18 10/6 0930 60^a 6.2 4.4 1.41 10/6 1030 60^a 7.1 5,9 1.21 10/6 1130 60^a 6.8 4,9 1.38 10/6 1230 60^a 7.1 5.2 1.37 10/6 1330 60^a 9.6 7.5 1.28 12/2 0740 3 9,6 6.2 1.54 12/2 0743 3 9.6 6.5 1.47 12/2 0800 17 7.6 5.9 1.29 12/20814 13 8.8 6.4 1.38 12/20828 12 6.5 5.4 1.21 12/20900 30 9.1 7.6 1.20 12/2 0922 18 9.8 8.4 1,16 12/20935 13 9.2 8.5 1,08 12/3 0920 15 8.0 7.6 1.05 12/3 0936 15 8.9 7.9 1.13 12/30952 15 8.5 7.5 1.14

# Table 9 (continued)

a Based on average hourly wind speeds

# Table 9 (concluded)

	End Time	Δt	v	vw	
Date	(hour)	(min)	(mi/hr)	(mi/hr)	v v
		Plot No. 1	(concluded)		
12/3	1008	15	9.4	8.4	1.12
12/3	1023	15	10.0	9.4	1.06
12/3	1039	16	10.4	9.5	1.09
12/3	1046	7	9.1	8.6	1.06
12/3	1108	15	10.4	9.9	1.05
12/3	1130	15	10.8	10.0	1.08
12/3	1145	15	9.4	8.9	1.06
12/3	1200	15	10.2	9.4	1.08
12/3	1210	10	10.2	9.5	1.07
12/4	0800	6.33	3.2	1.1	2,95
12/4	0815	15	6.9	-	-
12/4	0832	15	9.8	-	-
12/4	0848	15	10.2	-	-
/-					
12/5	0706	15	7.1	-	-
12/5	0725	19	6.2	-	-
12/5	0740	15	6.3	5.4	1.16
12/0	0702	36	0.7	1.0	0.66
12/3	0702	13	2.1	1.0	2,00
14/5	0710	a	0.2	3.8	1.04
		Plot	No. 2		
- /-					
177	1120	30	5.2	2.8	1.86
2/9	1345	15	11.7	83	1 41
2/9	1401	15	10.6	7.8	1.36
2/9	1431	30	9.7	6.6	1.47
2/9	1501	30	10.0	6.3	1.58
2/9	1531	30	7.4	4.2	1.75
2/10	0800	30	3.6	1.6	2.22
2/10	0830	30	4.7	2.2	2.13
2/10	0900	30	5.8	3.3	1.77
2/10	0930	30	6.3	3.8	1.66
2/10	1000	30	8.8	4.6	1.91
2/10	1030	30	8.1	5.4	1.50
2/10	1100	30	6.2	3.6	1.72
2/10	1115	15	9.1	6.0	1.51

ł

-----

The wind speed measurements given in Table 9 for October 4 show that a wind speed of about 2 mi/hr was required to overcome the inertia of the anemometer and start it rotating. Except for the nighttime calm conditions, which were initially assigned a wind speed of 0.3 mi/hr (see Appendix B), wind gusts greater than 2 mi/hr usually occurred within any time interval exceeding 5 minutes. These gusts would be recorded and could be taken into account in the wind speed averages, so that chart-read average wind speeds of less than 2 mi/hr were possible for any interval of time. When a gust of wind started the anemometer, winds with speeds less than 2 mi/hr would keep it spinning for some period of time. Subsequent measurements of the drift speed of smoke puffs under calm conditions (no anemometer movement) gave average surface wind speeds nearer 0.7 mi/hr than 0.3 mi/hr.

The  $\bar{v}^{0}/\bar{v}$  ratios from Table 9 are shown as a function of  $\bar{v}$  in Figure 11. The values of  $v^{0}_{1}$  in Equations 11 and 12 are determined from  $(\bar{v}^{0}/\bar{v}_{1})v^{0}_{1}$  where  $\bar{v}^{0}/\bar{v}_{1}$  is read from the curve in Figure 11. The ratios indicate that the recording anemometer chart readings (as averages over time intervals up to 1 hour) did not indicate the same average wind speed as that obtained from the calibrated hand-held anemometer until the wind speed was about 12 mi/hr or greater. The limit of application of the curve in Figure 11 for correcting the average chart readings is set at a  $\bar{v}_{1}$  (or  $v_{1}$ ) value of 1 mi/hr since, to obtain an average speed of 1 mi/hr, the anemometer would be spinning most of the time. Tabulated corresponding values of  $\bar{v}_{1}$  and  $\bar{v}_{2}^{0}$  taken from the curve are as follows:

⊽wo w	v.	v v
(mi/hr)	(mi/hr)	(mi/hr)
2.9	7.0	8,6
3.4	7.5	9.0
3,9	8.0	9.3
4.4	8.5	9,6
4.9	9.0	9,8
5.4	9,5	10.2
5,9	10.0	10,5
6.3	10.5	10,8
6.7	11.0	11.2
7.2	11.5	11.7
7.6	12.0	12.1
8.0	12.5	12.0
8.3	13.0	13.0
	$\overline{v}^{O}_{W}$ (m1/hr) 2.9 3.4 3.9 4.4 4.9 5.4 5.9 6.3 6.7 7.2 7.6 8.0 8.3	$ \bar{v}_{w}^{0} \qquad \tilde{v}_{w}^{0} \qquad \tilde{v}_{w}^{0} \qquad \frac{(m1/hr)}{(m1/hr)} \qquad \frac{(m1/hr)}{(m1/hr)} $ $ 2.9 \qquad 7.0 \qquad 3.4 \qquad 7.5 \qquad 3.9 \qquad 8.0 \qquad 4.4 \qquad 8.5 \qquad 4.9 \qquad 9.0 \qquad 5.4 \qquad 9.5 \qquad 5.9 \qquad 10.0 \qquad 6.3 \qquad 10.5 \qquad 5.9 \qquad 10.0 \qquad 6.3 \qquad 10.5 \qquad 6.7 \qquad 11.0 \qquad 7.2 \qquad 11.5 \qquad 7.6 \qquad 12.0 \qquad 8.0 \qquad 12.5 \qquad 8.3 \qquad 13.0 \qquad $



The recording anemometer height of 8 ft was selected to minimize the effect of the plants and ground on the observed wind speeds. The effect of the plants on the wind speed is illustrated by a set of measurements of the wind speed at the height of several plant species, as summarized in Table 10. The average value of  $\bar{v}'(h)/\bar{v}'(h)$ , where  $\bar{v}'(h)$  is the wind speed measured with the calibrated anemometer at the height of the cereal grains in the center of the subplots and  $\bar{v}'(h)$  is the corrected average wind speed read from the recording anemometer charts, was 0.55. The wind speeds measured at the height of the cereal grains appear to be independent of the height of the measurement above ground level. The data indicate that the wind speeds at the locations where the falling particles first impact with the vegetation are between 0.5 to 0.6 of the speeds measured at the beight of 8 ft.

## Plate Collector Measurements

Twenty-two sets of plate collector measurements were made during the sampling periods from July 1964 through January 1965. The exposure period for the sets ranged from 6 minutes to about 8 hours, but most of the exposures were for less than 1 hour. Except for two overnight exposures, the average wind speed during the exposure was measured with the calibrated hand-held anemometer, and the exposure time was measured with a calibrated stopwatch. The weight measurements of the particles recovered from the plates and the exposure times for each set are summarized in Table 11. The plate deposit densities, corrected for background dust, and the average wind speed during the exposure period are given in Table 12. The average deposit density of the background dust was determined from the collections on the bottom or back side of the plates set at 0, 90, 120, 150, and 180 degrees; if the weight of the particles on the protected side of the plates set at 30 and 60 degrees was equal to or less than the largest background weight on the five other plates, it was also included in the average. The data from three sets for three different wind speeds are plotted in Figure 12. None of the curves can be represented or approximated by a sine function as might be described by Equation 4 with a constant value for the impaction coefficient.

The particles recovered from most of the plate collector sets were sieve-analyzed to determine the weight distributions. The samples recovered from each plate were sieve-analyzed separately when the samples were large enough to do so; the results for these plates are summarized in Table 13. The single plate data show that the distributions varied to some extent from one plate to another; however, no pattern of variation in the shape of the distribution curves with plate angle or with size of sample is readily apparent from the data.

### ṽw(h_o) (mi/hr) $\bar{v}_{w}^{0}(h)$ ∆t End ṽw(h)/ṽw(h_o) (mi/hr) Date (min) Time 1. Wheat (h = 18 inches)6,7 0.55 3.7 7/14 0922 1 6,3 0.49 0924 3.1 7/14 1 6.5 0.57 3.7 7/14 0926 1 0932 4.0 7.2 0.56 7/14 1 2. Wheat (h = 16 inches)2.9 6.7 0.43 7/14 0944 10 0,60 10 3.8 6,3 7/14 0955 7/14 1016 20 4.2 8,0 0,52 3.8 7,2 0.53 7/14 1037 20 3. Bean (h = 14 inches)5.0 8.1 0,62 7/14 1049 10 4. Wheat (h = 18 inches)4.2 7.6 0.55 7/15 1120 10 0.54 6.7 7/15 1146 25 3.6 0.55 7/15 1158 10 4.2 7,6 0.58 4.2 7.2 7/15 1236 37 5. <u>Rye</u> (h = 6 inches)0835 4.2 8.0 0.52 7/18 12 0848 12 4.2 7.6 0.55 7/18 7.2 0.50 7/18 0904 15 3.6 8.0 0.52 7/18 0925 20 4.2

# Tuble 10

WIND SPEED MEASUREMENTS AT PLANT HEIGHTS: PLOT NO. 1

Date	End Time	(min)	vw(h) (mi/hr)	$v_w^o(h_o)$ (mi/hr)	$\frac{\bar{v}_{W}^{0}(h)}{\bar{v}_{W}^{0}(h_{O})}$
		(h	6. <u>Wheat</u> = 21 inches)	)	
7/18	0945	17	4.8	8.3	0.58
7/18	1011	25	4.7	7.2	0.65
7/18	1022	10	4.4	8.0	0.55
7/18	1138	75	4.6	8.0	0.58

Table 10 (concluded)

# SUMMARY OF PLATE COLLECTOR MEASUREMENTS

m_o (gm/sq ft)^a

				а С.	late Angle	_			Exposure
Set	Side of				(degrees)				Time
Number	Plate	0	30	60	66	120	150	180	(min)
1	Top ^b	0,0344	0.0172	0.0183	0.02705	0.2705	0.7295	0.0504	£.
	Bottom	0,0160	0.0344	0.2154	0.0115	0.0149	0.0115	0.0183	
3	Top	0,1008	1170.0	0.0745	0.7025	0.6567	0.3472	0.0848	60
	Bottom	0,0321	0.2063	0.4286	0.0172	0.0115	0,0092	0.0344	
с С	Top	0,0483	0.0169	0.0160	0.0779	0.1077	0.0928	0.0492	72
	Bottom	0.0115	0.0160	0.0413	0,0080	0.0172	0.0138	0,0000	
4	Top	0.1788	0.1730	0,0745	0.1112	0,2097	0.2430	0.2223	24
	Bottom	0.0183	0.0206	0.0344	0,0160	0.0115	0.0080	0.0046	
ß	Top	0.1490	0.0779	0.0504	0.1513	0.2418	0.2372	0.1536	30
	Bottom	0.0030	0.0206	0.0562	0.0138	0.0138	0.0115	0.0080	
9	Top	13.57	2.808	ı	23.49	30.52	27.28	13.64	675
	Bottom	ı	ı	5,689	ı	ı	ı	ſ	
7	Top	0.5042	0.3278	0.1329	0.0974	0.3278	0.4962	0.3713	10
	Bottom	0.0080	0.0138	0,0206	0,0103	0,0080	0.0126	0.0149	

a m_o is the measured weight divided by the plate area (0.08726 sq ft) b Front face for the plate angle of 90 degrees

and the second se

5<del>8</del>

Table 11 (continued)

				ο ε	(gm/sq fi	t) ^a			
Set	Side of				<pre>plate Angle (degrees)</pre>	¢			Exposure Time
Number	Plate	0	30	60	90	120	150	180	(min)
æ	Top ^b	0.2212	0,0699	0,0103	0.3610	0.5764	0.4848	0.1971	10
	Bottom	0.0069	0.0172	0.0951	0.0080	0.0103	0,0069	0.0092	
6	Top	0.1490	0.0367	0.0126	0.5272	0.6429	0.3427	0,1226	6
	Bottom	0.0057	0.0447	0.2097	0.0138	0.0126	0.0069	0.0115	
10	Top	0,0539	0.0057	0,0069	0.2808	0.3954	0,1536	0.0539	16
	Bottom	0,0046	0.0275	0,0963	0.0057	0,0080	0,0057	0,0069	
11	Top	0.0367	0.0264	0.0183	0.4114	0.3152	0.1112	0.0390	28
	Bottom	0,0069	0.0298	0.1604	0.0194	0.0046	0.0034	0.0011	
12	Top	0.1020	0.0504	0.0309	0,0619	0.1387	0.1341	0.0882	33
	Bottom	9.0034	0.0057	0.0126	0, N <u>0</u> 46	0,0034	0,0034	0.0069	
13	Top	0.0424	0.0241	0.0298	0.2086	0.1857	0,0951	0.0413	27
	Bottom	0,0069	0.0252	0,0837	0.0103	0,0103	0,0092	0.0069	
14	Top	0.0291	0.0166	0,0156	0,0302	0,1139	0.0536	0.0252	12
	Bottom	0.0077	0,0268	0,0898	0,0138	0,0154	0.0154	0,0092	
15	Top	0.0364	0.0260	0.0176	0.3179	0.2481	0,1060	0.0551	60
	Bottom	0.0264	0.0724	0.2032	0.0123	0.0253	0.0346	0.235	

a  $m_O$  is the measured weight divided by the place area (0.08726 sq ft) b Front face fc: the plate angle of 90 degrees

20**1** 

ŧ

Table 11 (concluded)

į

				ິ	¢m∕sq ft) ^a				
Set	Side of			Plat (de	ce Angle Pgrees)				Exposure Time
Number	Plate	0	30	60	96	120	150	180	(min)
16	Top ^b Bottom	0.0322 0.0102	0.0096	0.0094 0.2642	0.4325 0.0096	0.3264 0.0155	0.1117 0.0135	0,0308 0.0165	45
17	Top Bottom	1.1861 0.0046	0.4446 0.0481	0.2773 0.3633	1.6468 0.0221	2.4261 0.0138	2.2049 0.0229	0.1827 0.0241	1,050
18	Top Bottom	0.5203 0.0115	0.1799 0.0539	0.1043 0.3919	1.0474 0.0229	1.3912 0.0183	1.0807 0.0155	0.4699 0.0126	10
16	Top Bottom	0, 1008 0, 008 (	0.0481 0.0103	0.0252 0.0355	0.1306 0.0092	<b>0.2372</b> 0.00 <b>9</b> 2	0.2474 0.0103	0.1490 0.0080	43
20	Top Bottom	0.1272 0.0172	0.0252 0.1719	0.0126 0.4859	0.8733 0.0115	0 <b>.97</b> 18 0.0080	0 <b>.</b> 5673 0.0092	0910'0 0'0160	80
5	Top Bottom	0.0562 0.0115	0.0275 0.0241	0.0149 0.0848	0,1639 0,0069	0.1925 0.0160	0,1341 0,00 <b>69</b>	0.0573 0.0155	30
22	Top Bottom	0.7529 0.0172	0.2441 0.0275	0.0550 0.0596	0.3358 0.0183	1.1460 0.0026	1.5551 0.0092	0.7953 0.0115	Ω

a  $m_0$  is the measured weight divided by the plate ar3a (0.08726 sq ft) b Front face for the plate angle of 90 degrees

.

:

1

# SUMMARY OF CORRECTED PLATE COLLECTOR DATA

					m(gom∕sq f	t) ^a				
Set	Side of				Plate An (degree	gle s)			Background	ة o د ا
Number	Plate	0	30	99	60	120	150	180	(gm/sq ft)	(ft/sec)
1	Top ^b Bottom	0.0190	- 0,0190	- 0.2000	0.2551	0.2551	0.1141	0.0350	0.0154	6.0
8	Top Bottom	0.0799	0.0502 0.1854	0.0536 0.4077	0,6816	0,6358	0.3263	0 <b>.0639</b>	0.0209	7.3
n	Top Bottom	0.0367	0,004	- 0.0297	0.0663	0,0961	0.0812	0.0377	0.0116	8.5
4	Top Bottom	0.1671	0.1613 0.0089	0.0628 0.0227	0,0995	0,1980	0.2313	0.2106	0.0117	1.9
ŝ	Top Bottom	0,1380	0,0669 0,0096	0.0394 0.0452	0.1403	0.2308	0.2262	0.1426	0.0110	2.3
0 <b>9</b>	Top Bottom	13.56	2.797	- 5.678	23.48	30, 51	27.27	13,63	0.011 ^d	3.5d
2	Top Bottom	0.4913	0,3149	0.1200 0.0077	0,0845	0.3149	0,4833	0.3584	0.0129	2.0

Inverse plate area is 11.46  $ft^{-2}$ ; m is the measured weight minus the background weight đ

Front face for plate angle of 90 degrees A

Overnight exposure υυ

Estimated values

· average at

tint a spiller a second and the second second second

ł

• • • • • •

c communication and and and a communication a communication and a communication a

.

Table 12 (continued)

(ft/sec) 14.0 11.9 7.1 9.7 13.2 9.2 ъ.4 14.4 ۹₽ Background (gm/sq ft) 0.0087 0.0062 0,0090 0.0237 0.0086 0.0105 0.0046 0.0123 0.0300 0.1885 0.0477 0.0129 0.03140.0836 0.0326 0.1121 180 0.3322 0.4762 0.0413 0.1474 0.1022 0.1295 0.0864 0.0823 150 0.1016 0.2244 0.3062 0.1770 0.5678 0.6324 0.3892 0.1341 120 **Plate Angle** m(gm/sq ft)^a (degrees) 0.1179 0.2942 0.5167 0.2746 0.1999 0.3524 0.4024 0.0573 8 0.0263 0.0033 0.0211 0.1785 0.1992 0.0901 0.1514 0.0080 0.0750 0.0775 0.0865 1 60 1 t 0.0487 0.0342 0.0086 0.0213 0.0154 0.0165 0.0043 0.0145 0.0613 0.0262 0.0174 0.0208 0.0458 30 ŧ ł 0.2126 0.1385 0.0277 0.0974 0.0337 0.0168 0.0477 0.0127 0 Side of Plate Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Topb Top Top Top Top Top Top Top Number Set 10 13 14 15 ¢, 12 H

Inverse plate area is 11.46 ft⁻²; m is the measu d weight minus the background weight đ م

Front face for plate angle of 90 degrees

-----

Table 12 (concluded)

đ	
Ð	1
<b>ч</b>	
5G	
	1
<u>6</u>	1
Ē	1

					Plate An	gle				I
Set	Side of				(degree	s)			Background	\$
Number	Plate	0	30	60	80	120	150	180	(gm/sq ft)	(ft/sec)
16	Top ^b Bottom	0.0202	- 0.0594	- 0.2522	0.4205	0.3144	0,0997	0.0188	0.0120	14.8
170	Top Bottom	1,1686	0.4271 0.0306	0.2598 0.3458	1.6293	2,4086	2.1874	1.1652	0.0175	2.9 ^d
18	Top Bottom	0.5049	0.1645 0.0385	0.0889 0.3765	1.0320	1,3758	1,0653	0,4545	0.0154	11.2
19	Top Bottom	0.0916	0,0389	0.0160 0.0263	0.1214	0.2280	0.2372	0.1398	0,0092	4.7
30	Top Bottom	0.1148	0.0128 0.1595	- 0.4735	0,8609	0,9594	0.5549	0.1675	0.0124	11.3
21	Top Bottom	0,0449	0.0162 0.0128	- 0.0735	0,1526	0,1812	0.1228	0,0460	0.0113	7.6
23	Top Bottom	0. 7391	0.2303 0.0137	0.0412 0.0458	0.3220	1.1322	I.5413	0.7815	0,0138	5.8d

a Inverse plate area is 11.46 ft⁻²; m is the measured weight minus the background weight

nistern um

------

; ;

:

• • • • •

b Front face for plate angle of 90 degrees

c Overnight exposure d Estimated values



# WEIGHT DISTRIBUTION OF PARTICLES RECOVERED FROM THE PLATE COLLECTOR (SINGLE PLATE)

Accumulated Weight Distribution

ì

	Plate		in F	Percent			
Set	Angle	(parti	cle diam	eter in	microns)	d ₅₀ a	w _c
Number	(degrees)	46	105	250	>250	(microns)	(mg)
1	0,180	7.69	69.2	89.7	100	85	10.4
	30	N1 1	83.3	100	-	<b>(9</b> 0)	4.5
	60	29.3	87.8	100	-	60	20.4
	90	19.0	84.8	98,4	100	67	24.6
	120	10.5	<b>79</b> .0	100	-	76	24.9
	150	15.5	81.7	97,2	100	71	12.3
2	0,180	44.3	85.7	97	100	51	22.0
	30	35,8	97.4	100	-	53	2 <b>4.2</b>
	60	42.2	<b>97</b> .0	100	-	50	43.9
	90	42.4	95.2	100	-	50	62.8
	120	39.8	96,0	100	-	51	58.3
	150	53 <del>6</del>	97.9	100	-	44	31.1
4	0,180	28,6	98.3	100	-	55	35.0
	30	26,8	95,1	100	-	58	15.1
	60	22.4	<b>97</b> ,0	100	-	58	9.5
	90	21.3	94.7	100	-	60	9.7
	120	24.8	99.4	100	-	55	18.3
	150	25.4	98,2	100	-	56	21.2
5	0,180	37.7	99.1	100	-	50	26,4
	30	32.6	95.6	100	-	55	6,8
	60	37,1	98,6	100	-	51	9.3
	90	32,4	100.0	-		(50)	13.2
	120	34,5	100.0	· •	-	(49)	21.1
	150	35.1	98.8	100	-	52	20.7
6	0,180	39,4	82.3	100	-	56	2374.0
	30	42,9	84,5	100	-	52	245.0
	60	52.4	94,0	100	-	44	496.4
	90	37.2	83,4	100	-	57	2049.8
	120	35,2	77,0	100	-	62	2662.8
	150	33.7	79.5	100	-	61	2380.4

a Assuming a log normal weight distribution for diameters between about 30 and 105 microns; values in parentheses are estimated values

65
Accumulated Weight Distribution

	Flate		in P	ercent			
Set	Angle	(partic	le diam	eter in	microns)	d ₅₀ a	w
Number	(degrees)	46	105	250	>250	(microns)	(mg)
7	0,180	43.7	92.3	100	-	50	76.4
	30	42.3	91.9	100	-	51	28,6
	60	34.7	91.6	100	-	55	13.4
	90	43.3	96.7	100	-	50	8.5
	120	40.8	98.5	100	-	50	28.6
	150	41.6	90.3	100	-	52	43.3
8	0,180	41,0	80,4	100	-	55	36,5
	30	37,5	95.8	100	-	51	7.6
	60	50,0	98.0	100	-	46	8.3
	90	55.9	89.5	100	-	41	31.5
	120	46.8	81.4	100	-	49	50.3
	150	48.6	80.9	100	-	48	42.3
9	0,180	60.4	89.8	100	-	37	23.7
	30	46.0	<b>96.</b> 0	100	-	48	7.1
	60	61.4	94.3	100	-	41	18.3
	90	59.7	90,6	100	•	38	<b>46</b> ,0
	120	55.7	88.4	100	-	41	56.1
	150	60.6	88.3	100	-	36	2 <b>9.9</b>
10	0,180	31.8	77.3	100	-	63	9.4
	30	44.4	88.9	100	-	50	2.4
	60	36,9	80.0	100	-	58	8.4
	90	61.9	78.8	100	-	28	24.5
	120	38.0	75.1	100	-	60	34.5
	150	35.6	74.3	100	-	62	13.4
11	0,180	27.9	76.7	100	-	66	6,6
	30	29.4	94.1	100	-	57	4.9
	60	40.7	89.8	100	-	52	14.0
	90	41.5	83.8	<b>10</b> 0	-	54	35.9
	120	39,2	81.4	100	-	56	27.5
	180	40.0	83.8	100	•	55	9.7
12	0,180	21.1	95,2	100	-	60	16.6
	30	9,68	90,3	100	-	70	4.4
	60	21.0	95.2	100	-	60	2.7

a Assuming a log normal weight distribution for diameters between about 30 and 105 microns; values in parentheses are estimated values

# Table 13 (concluded)

		Accumula	ated W	eight Di	stribu	tion		
	Plate		in Po	ercent			9	
Set	Angle	(partic	le dia	neter in	n micro	ns)	d50	wc.
Number	(degrees)	46	105	250	$\frac{1}{2}$ $\geq 2$	50	(micross)	<u>(ng)</u>
12	90	24.7	97,	3 100	)	-	57	5.4
	120	8.33	95.1	B 100	)	-	66	12.1
	150	32.9	97.3	3 100	)	-	54	11.7
13	0,180	30.1	84.	9 98	3.6 1	00	60	7,3
	30	13.6	81.	8 100	)	-	72	4.3
	<b>6</b> 0	34.2	89,	6 <b>9</b> 9	9.3 1	.00	54	7.3
	90	41,2	87.3	B 100	)	-	53	18.2
	120	33.3	86.	0 100	)	-	58	16.2
	150	36,2	87.	2 100	)	-	5 <b>6</b>	8,3
		(partic	le dia	meter in	n micro	ns)		
			88	175	295	>295		
14	<b>6</b> 0	18.5	93.8	99.9	100	-	57	9.2
	<del>9</del> 0	30.8	100	-	-	-	~48	11.4
	120	17.1	92.7	97.6	100	-	58	9.9
15	60	39.6	89.2	100	-	-	50	19.3
	<b>9</b> 0	27.5	84.1	100	-	-	57	28.8
	120	42.2	85.3	99.5	100	-	49	26.8
16	60	38.7	83.1	90,9	94.6	100	51	2 <b>3.9</b>
17	0,180	47.1	91.5	<b>9</b> 8,5	<b>99</b> ,3	100	46	209.2
	30	36,9	84.7	95,2	97.0	100	52	43.0
	<b>6</b> 0	44.4	93.4	<del>9</del> 6,8	98.5	100	47	55,9
	<b>9</b> 0	44.2	93.5	99,1	99.3	100	47	146,5
	120	44.8	90.4	99.1	99.5	100	47	212,9
	150	40.6	79.0	87.6	99.4	100	52	194,4
18	0,180	28.6	73.8	<b>96</b> ,3	97.5	100	61	88.5
	30	23.8	74,6	100	-	-	62	20.4
	<b>6</b> 0	31.5	81.6	94.5	96.6	100	56	43.3
	90	30.3	90.7	98.8	98.7	100	53	93,4
	120	27.9	78.3	<del>99</del> .3	99.8	100	59	123.0
	150	28 , <del>9</del>	73.9	98.0	98.9	100	61	95.3
22	0	36.0	60.0	87.3	98,6	100	67	65.7
	150	39,6	60.3	84,9	99.0	100	63	135.7

a Assuming a log normal weight distribution for diameters between about 30 and 105 microns; values in parentheses are estimated values

67

مستعد المتعلق المتك

The data for the gross weight distribution of the particles recovered from all the plates in all sets except Set No. 19 are summarized in Table 14; weight distribution curves of the particles recovered from the plates in several sample sets are shown in Figure 13. The values of  $d_{min}$ ,  $d_{50}$ , and  $d_{max}$  given in Table 14 for the particles from all the sample sets were estimated from distribution curves that were constructed similarly to those shown in Figure 13. Even though the curves differ greatly from each other, the median diameter for the particles from all the sets is near 50 microns.

The shape of most of the weight distribution curves, as shown by those for Set Nos. 3, 14, and 16, indicates the presence of two distributions in the sieved sample. The second distribution was presumably formed during the sieve analysis by the breakage of agglomerated particles into their basic soil or mineral grain sizes. As a first approximation, the curves indicate that, for Set No. 3, about 80 percent of the weight was in the form of agglomerated particles and, for Set Nos. 14 and 16, about 99 percent of the weight arrived on the plates in the form of agglomerated particles.

Thus, the median diameter of the particles obtained from the sieve analysis probably reveals only the median diameter of the original soil grains that were ejected from the volcano and not the diameter of the larger agglomerated particles that impacted on the plate collectors. In most cases, the median diameters of the falling particles probably varied from about 100 to 1,000 microns, rather than from about 40 to 70 microns as shown by the data in Table 14.

During the exposure of four sets of plates, simultaneous collections of ceniza-arena were made at ground level. The surface density of the deposit collected in the trays and that for the plates at angles of 0 and 180 degrees is as follows:

		n	
		(gm/sq ft)	·····
Set		Plate at	Plate at
Number	Tray	0 Degrees	180 Degrees
1	0,132	0.0190	0.0350
3	0,104	0.0367	0,0377
4	0,151	0.167	0,211
5	0.159	0.138	0.143

Table 14

WEIGHT DISTRIBUTION OF PARTICLES RECOVERED FROM THE PLATE COLLECTOR (ALL PLATES)

Accumulated Weight Distribution

			rcent						
Set	(part)	Icle dia	meter	In micr	(suo.)	ط _س را ہ	dsn	dmax	4 ا د 1
Number	\$	105	25(		250	(microns)	(microns)	(microns)	(ft/sec)
<b>, -</b> 4	16.3	81.9	98,	4	100	33	68	380	1.24
~	42.8	95.5	99.	84	100	30	49	320	0.73
4	26.0	97.7	100		100	41	50	170	0.76
ŝ	35.4	<b>66</b> °0	9 100		100	37	50	210	0.76
9	37.2	81.1	100		100	33	52	240	0.81
-	42.1	92.8	100		100	36	48	200	0.71
æ	47.7	83,6	100		100	31	47	240	0,68
6	58.4	89,9	100		100	30	43	243	0.58
10	44.2	76.9	98.	•	100	29	49	280	0.73
11	39.3	84.0	100		100	33	50	240	0.76
12	20.2	95,6	100		100	32	60	135	1.02
13	34.4	87.7	99.	75	100	34	51	260	0.78
	(part1	cle dia	meter 1	In micr	(suo.				
	44	88 88	175	295	>295				
n	45.2	62.5	71.8	89.1	100	7	52	430	0,81
14	26.8	93.7	<b>99.01</b>	100	100	35	50	290	0.76
<b>21</b>	43.9	86.6	99.88	100	100	10	48	185	0.71

a Applicable to d₅₀ for a spherical particle falling in air at an altitude of 6,000 to 10,000 ft msl

S.

Table 14 (concluded)

	Accum	ulated	Weight	Distrib	ution				
		in P	ercent						atî L
Set	(part	icle di	ameter	in micre	( <b>9</b> uc	dmin n	d <b>5</b> 0	dmax	<b>4</b>
Number	44	88	175	295	>295	(microns)	(microns)	(microns)	(ft/sec)
16	36.5	1.98	97.9	98.7	100	21	50	600	0.76
)   			05 8	95 19	100	18	47	350	0.68
11	40.0	0.00						200	0 97
18	28.9	78.9	97,8	98.6	100	16	20	3	
06	48.3	89.4	<b>98</b> °8	100	100	32	45	230	0.63
3 6	9.00	79 9	99 20	001	100	29	62	196	1.05
15						<	60	320	1,02
22	38,8	64,2	66.38	25.66	201	r	3	•	

a Applicable to  $d_{\mathbf{50}}$  for a spherical particle falling on air at an altitude of  $\mathbf{6},000$  to  $\mathbf{10},000$  ft mal





: : : :

ł

.

:

For Set Nos. 1 and 3, the surface density of particles on the horizontal plates was one-third or less of the density of particles collected in the tray. For Set Nos. 4 and 5, the surface density of particles on the plates was within about 10 percent of the density of the tray collection. The wind speeds, from Table 12, were 6.0 and 8.5 ft/sec for Set Nos. 1 and 3 and 1.9 and 2.3 ft/sec for Set Nos. 4 and 5, respectively. Thus, relative to the ground level collection by the tray, the collecting efficiency of the horizontal plates decreased as the wind speed increased.

#### Plant and Foliar Contamination Data

Plant and foliar contamination data are given in Tables 15, 16 and 17 for the vegetables, cereal grains, and trees, respectively. Information on the date, time, climatic conditions, and sample type for each set of foliar samples is given in Appendix C; data on plant age, dry weight, planting (or foliar) surface density, and the background (or  $C_{PNR}^{O}$ ) values for the various types of plants are also summarized in Appendix C.

Correlations of these sets of data, including the effect of wind speed during deposition on the contamination factors and the effect of the wind and rain on removal of the particles from the foliage during weathering periods, are given in Part Three of this report.

General observations of the contamination behavior of the cenizaarena particles under various conditions of deposition and of the major events that occurred during the sampling periods are presented in Appendix D as excerpts from the various trip itineraries. In addition, the general condition of the plants and the difficulties that occurred while obtaining the samples and data are described in Appendix D; some of the latter are summarized below.

In the field, certain difficulties were encountered in the spraywashing of some plants in order to obtain a high degree of removal of all the residual ceniza-arena and dust particles with the portable highpressure spraying equipment. The plant parts most difficult to clean included barley heads, wheat heads, rye heads, and stalks of all the cereal grains and corn, because the particles tended to sift into the leaf folds around the stems and into the interior parts of the grain heads. A similar difficulty occurred in the laboratory, where complete removal of the particles from the samples was not readily accomplished; this difficulty was resolved by reprocessing the dried foliage until the desired high fraction of particle recovery was achieved.

## Table 15

## SUMMARY OF PLANT AND FOLIAR CONTAMINATION DATA FOR VEGETABLES

#### Notations

Sample Numbers: 14,000's for Plot No. 1 06,000's for Plot No. 2

B Background deposit remaining on washed specimens of foliage or plant

P Primary samples (short-period exposure or unweathered depositions representing initial contamination levels); 2P--samples with two successive primary depositions

- S Secondary samples (long-period exposure representing weathering effects, multiple depositions, etc.)
- 0 Original unwashed specimens (except for rain and wind cleaning to date of sampling)
- R Weathering by rain (SR, secondary sample, washed by rain)
- W Weathering by wind (SW, secondary sample, exposed to wind)

SWR Secondary samples, weathered by wind and then by rain

- W Dry weight of foliage (gm)
- $\Delta m_{_{T_{_{\rm T}}}}$  Dry weight of ceniza-arena retained on the foliage (gm)
- C Foliar concentration of ceniza-arena,  $W_L (gm/gm)$
- $\Delta m$  Dry weight of ceniza-arena deposited per unit area of ground surface (gm/sq ft)
- C^O_p C corrected for background (gm/gm)

a Contamination factor,  $C_0^{o}/\Delta m$  (sq ft/gm)

Table 15

SUMMARY OF PLANT AND FOLIAR CONTAMINATION DATA FOR VEGETABLES

	Sample Designation		B, l plant	P, 2 plants, dry	B, 1 plant	S, 4 leaves, damp	0, 3 plants	P, 4 leaves, dry	SR, 1 plant	B, 1 plant	P, 4 leaves, dry	SR, 4 lower vertical leaves	SR, 4 higher horizontal leaves	P, 4 leaves, damp	P. 4 leaves, dry	2P, 3 leaves, damp	B, 2 plants	P, 3 plants, dry	P, 2 plants less pods, damp	P, 7 pods, damp	P, 2 plants, damp	SW, 2 plants	SW, 1 plant	SWR, 2 plants
• ⁻¹	(aq ft/gm)		I	0.0395	1	0.103	i	0.0880	0.789	1	0.140	0.664	0.116	0.0782	0.152	0.147	1	0.0303	0,110	0.00352	0.0432	0.0167	0.0180	0.0228
್ಟಿಗಿ	(gu/gn)	-	ı	0.0829	ı	4.061	ı	0.565	5.209	ı	0.854	8.20	1.429	2.880	2.832	8 <b>.</b> 0č	1	0.0378	1.389	0.0444	0.545	0.358	0.422	0.631
шQ	(gm/8q ft)	Bean	ŗ	2.100	ı	39,55	ı	6.420	6.60	ı	6,095	12.35	12.35	36.82	18,59	55.41	ı	1.249	12.62	12,62	12,62	21.43	23.49	27.63
లి	(gn/gn)		0.0638	0.1467	0.0250	4.12.	3.296	0.590	5.234	0.1177	0.972	8,32	1.547	2.954	2.906	8.13	0.0700	0.1078	1.556	0.0444	0.607	0.420	0.484	0.693
ΔmL	( <b>B</b> m)		0.0479	0.1893	0.0260	1,1190	5.8674	0.2528	3.6761	0.0870	0.3327	3.6385	0.4469	0.9903	0.9672	1,8869	0.2670	0.4790	3.0561	0.1468	3.2029	1.7428	1.4435	2.7897
س≮	( <b>B</b> )		0.7497	1.2904	1.0401	0.2713	1.7814	0.4288	0.7024	r. 7379	0.3423	0.4375	0.2891	0,3350	0.3331	0.2322	3.8181	4.4408	1.9636	3,3048	5,2684	4.1467	2,9802	4,0238
Samp le	Number		14004	14013	14021	14030-1	14036	14040-1	14053	14063	14073-1	14079-1	14080-1	14085-1	14097-1	14098-1	14109	14121	14130-1,3	14130-2	14130	14140	14153	14163
								7	4															

ţ

Sample Designation	<ul> <li>B. 1 plant</li> <li>P. 3 plants less pods, dry</li> <li>P. 3 plants, dry</li> <li>S. 2 plants, damp</li> <li>B. 5 plants less pods</li> <li>9 pods</li> <li>5 plants</li> </ul>	<ul> <li>3. 1 plant</li> <li>3. 3 plants, damp</li> <li>5%. 3 plants</li> <li>5%. 12 top horizontal leaves</li> <li>5%%. 12 top horizontal leaves</li> <li>1% 5 bottom vertical leaves</li> <li>1 2 plants</li> <li>18</li> <li>19</li> <li>2 plants</li> </ul>	, 2 plants , 3 plants, damp W, 3 plants
a L (aq ft/gm)	0.0452 0.0452 0.00913 0.0284 1 0.0284 1 - 1		- B 0.162 P 0.110 SI
C ^o p (gn/gn)	conclude J) - 0.0639 0.0129 0.0710 - -	- 1.534 0.397 0.479 2.706 2.706 0.278 0.072	<u>2</u> - 3.0897 2.6777
۵m ( <u>gm/sq f</u> t)	Bean-1 (- 	- 13.68 31.44 39.02 39.02 6.42 7.03 -	
с р (gm/gm)	0.0343 0.0839 0.0839 0.0143 0.0143 0.0143 0.0514 0.0808 0.00140 0.00140	0.0875 1.622 0.485 0.567 2.794 0.101 0.379 0.172 0.0432	0.0507 3.1404 2.7284
^{дщ} (gm)	0,1019 0,5816 0,0865 0,6681 0,6681 0,2735 0,2735 0,0895 0,0107 0,1002	0.0204 1.3396 0.4922 0.3522 0.9727 0.1192 1.7504 0.1076 0.1076	0.2221 1.5140 1.3473
×-」 (83)	2.9675 6.9334 6.0533 12.9867 3.3835 4.4441 7.65.94 12.1345	0.2328 0.8265 1.0149 0.6207 0.3483 1.81820 4.6164 1.9192 2.4919	0.4362 0.4821 0.4938
Sample Number	14172 14200-1,3 14200-2 14200 14212 14224-1,3 14224-2 14224-2	06006 06016 06027 06039-1 06030 06050 06058 06072 06085	14273 14294 14317

- marchine

1

-----

anple	≱եյ	л щ	రి	5	<u>ں</u>	e ^{ra}	
umber	(E8)	( <b>8</b> 8)	(gm/gm)	(gu/sq ft)	(113/113)	(sq ft/gm)	Sample Designation
				Bean-2 (col	ncluded)		
322	0.5443	0.4504	0.8275	25.602	0.7768	0,0303	8W. 4 plants
347	1.0017	0.1064	0.1062	1.104	0.0555	0.0503	P. 4 plants drv
390	1.2519	0.0535	0.0427*	ı	8	ı	B. I plant
402	1.0676	0.2102	0.1971	1.006	0.1749	0.174	P. 1 plant, damp
412	1.1189	0.2002	0.1686	1.107	0.1464	0,132	
124	0.8938	0.1327	0,1485	1.139	0,1263	0.111	SW 1 Diant
146	1.0206	0.0550	0,0539	1,070	0.0317	0.0296	P. 1 plant drv
179	0.9721	0.0104	0.0107	1	1	E	B, 1 plant
613	0.5414	0.3524	0.6509	7.690	0,6002	0.0780	P. 4 mlanta damn
233	C.6216	0.1614	0.2597	8,199	0.2090	0.0255	SW 3 blants
44	0,7232	0.1764	0.2439	8,199	0.1932	0.0236	
93	0.7753	0,0177	0.0280	1	1		R. 5 mlante
8	0.9841	0.0224	0,0278	٠	ŀ	1	B, 5 plants
				Been-	انە م		
58	2.8768	0.0426	0.0148	ł	1	ı	R 1 nlent
59	1.7906	0.0322	0.0180	ł	ı	ı	
16	3.2265	0.0984	0.0305	0.1576	0.0143	0.0907	D 9 mlants dru
60	3,5106	0.2345	0, 0668	I.4532	0,0504	0.0347	S, 2 plants, damp

* Some particles not washed from lower section of stems

----

1000

 A Management of a large strategy of a second se second sec

1.11 × 1.11 ×

. . .

Designation				ary				cop leaves			hoto)	loto)			amp		amp	•						
Sample				P, ≤ piantes, ( OP 1 =1 = 1	UK, I Plant D 2 mlast	r, 2 piants, 6 SW 9 rients	SWP Several 1	D D D D D D D D D D D D D D D D D D D	U, 2 plants	B, Z plants	0, 2 plants (3	0, 1 plant (ph		b, 2 plants	P, 3 plants, d	B, 5 plants	P, 2 plants, d	B. 3 plants	S. 2 plants d	P. 2 plants d	SW 2 mlante			SW, 2 plants
aL (sq ft/gm)		0,0282	0.0128		2160 0	0,00683	0.0130		1	•	ł	ı		I	0,0913	1	0,0288	1	0.0261	0.0393	0.0202	0.0417	0.0427	0.0~
со р (gm/gm)	ncluded)	0.0511	0, 0355	Į	0,0503	0.0269	0.6515	1	I	I	ł	ı	I	1	0,0445	ı	0.0505	ı	0,0090	0.0202	0.0140	0.0034	0.0145	0.0~
∆m (gm/sq ft)	Bean-3 (co	1.8085	2,7663	1	2.3144	3.9372	3,9586	ı	ı		1	ı	ı	0000	0. 4869	ł	1.7546	ı	0.3446	0.5146	0.6945	0.2256	0.3398	0.4943
с р (gm/gm)		0,0675	0,0519	0.0303	0806	0,0572	0.0818	0.0270	0.0168		I		0, 0535		0.000.0	0.0345	0.0850	0.0260	0,0350	0.0462	0.0400	0.0287	0.0338	0.0193
л Г (831)		0.5012	0.3197	0.2469	0.8950	0.4396	0.3377	0.7666	0.2767	ļ	ł	1	0.0510	0 0753		0.0337	0.1546	0,0627	0.1122	0.1847	0.1017	0.1269	0.565	0.0534
, r (€)		7.4305	6.1555	8.1390	11.1056	7.6781	4.1285	28.43	16.48	32,9009	10 2067	1027 77	0.9531	0.7681	0.000	Tele'n	1.5200	2404.2	3, 2085	4,0002	2.5452	4.4146	1,6702	2.7684
Sample Number		14723	14729	14740	14753	14768	14783-1	14799	14813	14833	14837		06320	06334	063.44	11.000	05.00	<b>1</b> 0000	06225	18500	06400	06426	06444	06457

, ,

→ manual state of the state

ŀ ł,

1 1

and the first state and the second state of the second state

The second se

;

7

1. . . .

77

.

O

Sample Designation S, 4 plants, semidamp 0, 3 plants (photo) S, 4 plants, damp P. 4 plants, damp P, 5 plants, damp 4 plants, damp damp P, 3 plants, damp damb dry V dry S, 4 plants, dry S, 3 plants, P. 4 plants, P, 2 plants. OR, 2 plants SWR, 1 plant S, 2 plants, SW, 3 plants SW, 5 plants 4 plants B, 4 plants B, 2 plants B, 3 plants 3 plants 0, 2 plants B, 4 plants Sw, œ, (gm/sq ft) (gm/gm) (sq ft/gm) 0.0337 0.0789 0.0797 0.0117 0.0315 0.0378 0.0217 0.0168 0.0347 0.0344 0.0017 -0.0025 0.0492 0.0346 0.143 د. • 1 ŧ , 1 0.0103 0.0410 0.0780 0.0272 0.0170 0.0229 0.0549 0.0626 0.1239 -0.0005 ~0.0007 0.0077 0.0241 0.0468 0.0461 ംറം • ı . Bean-4 1.4532 1.8068 0.6945 0.2762 0.1192 0.4657 2.7763 0.2996 0.2996 0.3556 2,3144 3,9372 3.9586 0.3446 0.5146 5 1 ı ı 0.0356 0.0947 0.1725 0.0403 0.0305 0.0904 0,0648 0.0617 0.0981 0.0981 0.0249 0.0477 0.0529 0.0823 0.0486 0.1266 0.0284 0.0164 0.0786 0.0397 0.0351 0.0307 ( Bm/ Bm) ; లి 0,3666 0.3965 0.0292 0. 2877 0.1160 0.1510 0.2216 0.0449 0.0164 0.0310 0.0552 0,0691 0.2417 0.1313 0.2658 0.0205 0.0674 0.0543 0.0346 0.0206 0.2417Ĵ 5 : 0.5756 0.6594 0.7683 0.6706 1.3067 2.4648 2.7025 7.8048 4.0560 3.1316 0.6925 0.8576 0.9562 3.4053 0.6724 0.8804 0.9861 1.1581 2,4643 2.8058 9.3501 (**B**) ×-1 9,20 Sample Number 14667 14710 14724 14730 14758 14784 (4800 06356 06375 14584 14592 14604 4615 14632 14724 14741 14754 14614 4839 06392 06399 14608

78

1

ŧ

ŧ

0,0356

0.8958

Sample	ت ج	ц Ц	ۍ ^م	5	್ಬಿಗ	ت. te		
Number	(gm)	(gm)	(gm/gm)	(gm/sq ft)	(BM/BB)	(sq ft/gm)	Sample	Designation
				Bean-4 (co	ncluded)			
06425	0.8634	0.0701	0.0812	0.2256	0.0436	0,193	P, 4 plants,	damp
06443	0.8430	0.0526	0.0624	0.3398	0.0248	0.0730	P, 4 plants,	danp
06456	0.9620	0.0411	0.0427	0.4943	0°0051	0,0103	SW, 4 plants	
06467	1.4375	0.0525	0.0365	0.1067	0.0065	0,0609	S, 4 plants,	damp
06487	1.7817	0.3312	0,1859	ı	ł	ł	0, 2 plants	
06499	2.0106	0.2360	0.1174	0.7982	0,0819	0,103	P, 4 plants,	dry
06512	1,5216	0.2377	0.1562	1.1494	0.1207	0,105	2P, 4 plants,	, dry
06512	1.5216	0.2377	0.1562	0.3512	0, 0388	0,110	P, 4 plants,	dry
06528	2, 3223	0.3335	0,1436	1.2536	0.1081	0,0862	P, 4 plants,	dry
06552	2,0035	0.2941	0.1468	1.7784	0.1113	0.0626	SW, 4 plants	
06568	1,6126	0.0418	0,0259	ı	ı	ŝ	B, 3 plants	
06584	1.2605	0.3161	0.2508	3.8840	0.2153	0.0554	S, 3 plants,	dry and damp
06584	1,2605	0.3161	0.2508	2.1056	0,1040	0.0494	P, 3 plants,	damp
06585	0.6278	0.1315	0.2095	2,1056	0,1836	0.0872	P, 1 plant, c	demp
06622	1.9495	0,0621	0.0319	ı	ı	ı	B, 3 plants	
06646	1.7324	0.1334	0.0770	0.3624	0,0451	0.124	S, 4 plants,	daap
				Rear	10 1			
					1			
06501	0.5344	0,0383	0.0717	0.7982	0.0377	0.0472	P, 5 plants,	dry
06513	0.5000	0.0533	0.1066	0.1494	0.0726	0.0632	2P, 5 plants,	, dry
06513	0.5000	0, 0533	0.1066	0.3512	0.0349	0.0994	P, 5 plants,	dry
06526	0.4403	0.0812	0.1844	1.2536	0.1504	0.120	P, 5 plants,	dry
06551	0.4270	0.0670	0.1569	1.7784	0.1229	0.0691	SW, 5 plants	

79

- inter

- ----

Table 15 (continued)

Sample Number		06567	06582	06582	06583	00990	06610	06621 (	06645		06667	06680 (	06705 (		14369 4	14386 5	14405 2	14414 5	14450 1	14476 1
я ¹ (ш		0.5728	0.4250	0.4250	0,3836	0.3769	0, 5991	0.4431	0.8805		1.2618	<b>J. 7964</b>	0.4601		1.1375	5.8486	:.6712	1.3557	. 9380	3074
کمار ( هم )		0.0128	0.1112	0.1112	0.0857	0.0724	0.1452	0.0203	0,0608		0.0612	0.0285	ı		0.8633	0.1206	0.4422	0.7560	0.1713	0.0504
с р (gm/gm)		0.0223	0.2616	0.2616	0.2234	0,1921	0.2424	0.0458	0*0691		0.0485	0.0370	ł		0.2090	0.0207	0,1655	0.1412	0,0884	0.0334
∆n (gm/sq ft)	Bean-5 (co	I	3.8840	2.1056	2.1056	1	0.9571	ı	0.3624	Bea	ı	ı	ł	300	1	ı	1.006	1.107	1.070	ı
с ^о р (gm/gm)	oncluded)	I	0.2276	0.1047	0.2011	ı	0,0503	ı	0.0233	- <u>11</u> -6	I	ı	ı	t-1	ı	ı	0.1302	0.1059	0,0531	1
a _l (sq ft/gm)		ı	0.0586	0.0497	0.0955	ı	0.0526	I	0.0643		ı	ł	ı		ı	ı	0.129	0,0957	0.0496	8
Sampl		B. 5 plants	S. 6 plants	P. 6 plants	P. 4 plants	0. 4 plants	P. 7 plants	B. 6 plants	S, 7 plants		0. 7 plants	B. 7 placts	0, 4 plants		B. 3 nlante	B. 3 plants	P. 1 plant	SW. 2 plants	P. 2 nlants	B, 3 plants
e Dertgnatio			. dry and da	daan	, danp	•	deap .	•	, damp				(photo)				damn		5 <b>6</b> 7	

* Plant washed and sampled after dark with use of flashlight; value not used

•

i

Sample	نر •	¢∎ ₽	v ^م	ą	ింా	a ¹¹	
Number	( <b>65</b> )	(12) )	( <b>B</b> ay ( <b>B</b> ay )	(ga/8q ft)	(gn/gn)	(sq ft/gm)	Sample Designation
				Beet-1 (co	ntinued)		
14501	1.8651	0.0351	0.0188	ı	ı	ł	B, 2 plants
14515	2.0377	0.1518	0.0746	0.7634	0.0530	0.0694	P, 1 plant, damp
14528	5.8067	0.2433	0.0418	1.0225	0.0202	0.0198	SW, 1 plant
14539	1.8965	0.0786	0.0416	0.4164	0.0200	0.0480	P, 1 plant, damp
14551	2.0675	0.0503	0.0244	ł	ı	ı	B, 1 plant
14563	8.0225	0.3717	0.0464	1.3263	0.0248	0.0187	P, 1 plant, damp
14582	4.6994	0.0501	0.0107	ı	I	ı	B, l plant
14596	4.0421	0.0506	0.0373	0,2996	0.0285	0.0951	P, 1 plant, damp
14606	7.8312	0.1883	0.0240	0.2996	0.0152	0.0507	SW, 1 plant
14610	5.1037	0.0347	0.00680	ı	ı	1	B, 1 plant
14618	2.5994	0.0260	0.0100	0.2762	0.0032	0.0116	S, 1 plant, damp and dry
14636	4.9658	0.0786	0.0158	0,1192	0.0070	0.0587	P, 1 plant, damp
14663	3.2317	0.1465	0.0453	0.4657	0.0365	0.0784	S, l plant, damp
14669	3.2353	0.0355	0.0110	ł	ı	ı	B, 1 plant
14696	3.5474	0.0712	0.0201	0.1576	0,0091	0.0577	P, l plant, dry
14715	5,6667	0.3494	0.0617	1.4532	0.0423	0.0291	S, l plant, damp
14733	12.3920	0.3454	0.0279	2.7763	0.0169	0,00609	S, l plant, semidamp
14752	4.9162	0,1374	0.0279	ı	ı	ı	OR, 1 plant
14758	6.5590	0.5394	0.0822	2.3144	0.0628	0.0271	P, 1 plant, damp
14772	9.4460	0.2465	0.0261	3.9372	0.0067	0.00170	SW, 1 plant
14788	3.9249	0.3155	0.0804	3,9586	0.0610	0.0154	SWR, 1 plant
14848	8.7510	I	ı	ł	•	•	0. 1 plant (photo)

----

-

ł i

,

	e Designation		20	s, damp	s, damp	s, damp	ts	ts, damp	-	s, damp	ts	nte	50	e, damp	. 50	50				Ē		3
	Sampl		B, 5 plant	P, 3 plant	P, 3 plant	P, 3 plant	SW, 3 plan	2P, 3 plan	B, 3 plant	P, 3 plant	SW, 2 plan	SWR, 3 pla	B, 2 plant	P, 2 plant	B, 3 plant:	B, 3 plant:		0, 1 plant	B, 1 plant	0, 2 plant:	B. 2 nlant	
در ۳	(sq ft/gm)		ı	0.0771	0.0765	0.109	0.0130	0.0922	ı	0,0982	0.0404	0.0237	1	0.0840	ı	I		ı	ı	1	1	
ించి	( <b>g</b> m/ <b>g</b> m)	onc <b>luded</b> )	ı	0.0645	0.3322	1.6133	0.2165	0.8447	ı	0.7548	0.3315	0.1940		0.4911	ı	•	t-2	ł	ı	ı	ı	
5	(gm/8q ft)	Beet-1 ( cc	ı	0.8367	4.342	14.81	16.696	9.158	ı	7.690	8,199	8,199	I	5,845	ı	ł	Bee	ł	ı	ı	1	
లి	( 80 / 80 )		0.0786	0.1431	0.4108	1.6919	0.2951	0.9233	0,0621	0.8169	0.3936	0.2561	0.0197	0.5108	0.0279	0.0593		0.0294	0.0107	0,0509	0.00921	
ζ ^m L	(B)		0.1159	0.0981	0.2259	1.5716	0.1447	0.4984	0.1090	2.1851	0.4708	0.4178	0.0459	1.8630	0.1220	0.1559		0.0798	0.0449	0.1440	0.0257	
,	(u3)		1.4739	0.6856	0.5499	0,9289	0.4903	0.5398	1.7562	2.6750	1,1960	1,6315	2,3269	3.6474	4.3772	2.6300		2.7104	4.1776	2,8301	2.7890	
Samp 1 e	Number		06096	06111	06117	06136	06154	06174	06212	06215	06231	06242	06262	06270	06290	06298		14805	14838	06661	06678	

And the second second

4

n-

.

ļ

.

-----

1

1

	Designation			dry		damp and dry	dry		dry	damp	Ŷ	dua		dry	damp					ry	qua	
	Sample		B, 6 plants	P, 6 plants,	B, 6 plants	S, 6 plants,	P, 6 plants,	B, 4 plants	P, 3 plants,	P, 6 plants,	P, leaves, dr	2P, leaves, d	B, 3 plants	P, 3 plants,	P, 3 plants,	SW, 2 plants	SW, 2 plants	SWR, 2 plants	B, 2 plants	P, 1 plant, d	S, l plant, d	B, 1 plant
a B	(sq ft/gm)		I	0.0617	ı	0.116	0690*0	ı	0.0277	0.218	0.166	0.188	I	0.0300	0,0993	0.05775	0.0222	0.0128	ı	0.0345	0.0143	ı
ింది	(gm/gm)	age-1	ı	0.1296	ı	4.596	0.4431	ł	0.1688	8.04	3,09	10.41	I	0.0375	1.253	1.233	0.522	0.353	I	0.0488	0.1192	ı
щQ	(gm/sq ft)	Cabt	t	2.100	1	39,55	6.420	ı	6.095	36.82	18.59	55.41	ł	1.249	12.62	21.43	23.49	27.63	1	1.413	8.348	r
లి	(gm/gm)		0.0635	0,1931	0.0980	4.660	0.5411	0.1947*	0.2496	8,12	3.17	10.49	0.0230	0.0605	1,282	1 , 262	0.551	0.382	0.0282	0.0561	0.1265	0.00419
∆m ∆n	(gu)		0.0350	0,1119	0.0823	1.4566	0.1533	0.0686	0,0609	4.4528	1,4841	1,8213	0.0579	0.1668	2,8327	2,1128	1.2440	0.4990	0.0650	0.7223	2.5142	0.0635
¥ L	(gn)		0.5504	0.5787	0.8398	0.3126	0.2833	0.3523	0.2443	0.5473	0.4684	0.1735	2.5151	2.7617	2.2124	1.5949	2,2613	1.3035	2,3076	12.8724	19.88	15.14
Sample	Number		14005	14015	14023	14032	14043	14065	14075	14088	14103-1	14104-1	14112	14123	14129	14141	14154	14164	14173	14202	14215	14226
											8	3										

* With some soil on stems

Sample Designation	<ul> <li>P. 1 plant, dry</li> <li>P. 1 plant, dry</li> <li>B. 1 plant, dry</li> <li>B. 1 plant, dry</li> <li>B. 1 plant, dry</li> <li>B. 1 plant, dry</li> <li>P. 1 plant, dry</li> <li>P. 1 plant, dry</li> <li>P. 1 plant, dry</li> <li>B. 1 plant, dry</li> <li>B. 2 ream</li> <li>B. 1 plant</li> </ul>
a. ( <u>sq_f1/gm)</u>	0.0125 0.0244 - - 0.0358 0.0358 0.0358 0.0358 0.0358 0.0141 0.0142 - -
C ⁰ p (g ^{m/gm)}	(continued) 0.0156 0.2218 - - 0.5405 0.1650 0.0156 0.0156 - - - -
Δm gm/sq ft)	Cabbage-1 1.249 9.075 9.075 19.112 26.444 1.104 1.104
c p (gn/gn)	9.0195 0.2291 0.00173 0.00173 0.0155 0.0155 0.0187 0.0187 0.00118 0.00118 0.00118 0.00118 0.00118
۵ ۳ (قط)	0.1318 2.8180 0.0230 0.2392 0.4224 0.4224 2.7457 0.4224 0.4224 0.866 0.1924 0.1924 0.1924 0.1924 0.9257 0.9257
w L (gm)	6.54 12.30 13.2600 13.2254 27.2651 50.59 54.83 88.23 47.36 6.7297 49.67 6.7297 49.67 88.23 88.23 88.23 88.23 88.23 84.73 84.73 84.73 28.33 84.73 82.02 72.25 25.02
Sanple Number	14233 14240 14260 14268 14268 14295 14295 14368 14329 14369 14367-3 14367-3 14367-1 14367-3 14367-1 14364-3 14384-1 14384-1

·· •

a Very thoroughly washed b Plent washed and sampled after cark with use of flashlight

÷

į

.

kesionation				•	ę						lamp		un p			~	đ	ġ		ē	du	đ
Samole		, stem, damp	, head, damp	, leaves, damp	, 1 plant, dar	, stem, dry	, head, dry	, leaves, dry	, l plant, dr	, 12 plants	, 12 plants, c	, 2 plants	, 3 plants, de	, 2 plants	, 1 plant	, 1 plant, dry	, 1 plant, dan	, 1 plant, dam	W, 1 plant	, 1 plant, dam	P, l plant, ds	, 1 plant, dam
a L (so ft/gm)		0,00388 P	0.00944 P	0,0565 P	0.0228 P	~0.0 P	0.00121 P	0.0355 P	0.0104 P	ч В	0,128 P	R I	0.122 P	8	R	0.0472 P	0.0474 P	0.0733 P	0.0283 SI	0.0823 P	0.1089 21	0.0224 P
Co p (em/em)	(continued	0,0039	0.0095	0.0568	0.0229	~0.0	0.0013	0.0380	0,0111	1	1.746	ı	0.784	ı	ı	0,0395	0,2060	1,0849	0.4730	0.1319	0.9970	0.1719
∆m (em/so ft)	Cabbage-1	1.006	1.005	1,006	1,006	1,070	1.070	1.070	1.070	,	13.68	ı	6.42	ı	ı	0.8367	4.342	14.81	16,696	1.602	9.158	7.690
c p (em/em)		0,0267	0.0107	0.0827	0.0336	0.0238	0.0021	0.0548	0.0181	0.2586*	1.827	0,0139	0.798	0.0502	0,0161	0.0556	0.2221	1,0922	0.4803	0.1392	1,0043	0.1874
0 ∎ 1 Ω ( 2 ₪		0.2598	0,5973	2.2655	3.1226	0.1256	0.0882	0.9567	1.1705	0,0906	0.8042	0.0137	1.0380	0.1200	0.0845	0.4170	2.9737	5,0512	3.3367	0.6973	3.4258	4.9374
м г (шл)		9, 7808	55.80	27.40	92.98	5,2835	41.95	17.48	64.71	0,3605	0.4395	0.9834	1.3025	2.3834	5.2375	7.4938	13.49	4.6249	6.9468	5.0111	3,4110	26.34
Sample Number		14406-3	14406-2	14406-1	14406	14453-3	14453-2	14453-1	14453	06013	06015	06052	06064	06086	06094	06109	06118	06139	06155	06165	06176	06217

* With some soil on stems

i

-----

1

i

•

85       0.0771       0.0260       -       -       -       B, 3 plants, damp         48       0.1120       0.0407       0.2996       0.0184       0.0614       P, 3 plants         06       0.0204       0.0117       -       -       B, 2 plants         80       0.0306       0.0264       0.2762       0.0041       0.0148       S, 3 plants, damp and dry         80       0.0306       0.0227       0.192       0.0227       0.190       P, 2 plants, damp         80       0.03053       0.0292       0.0227       0.190       P, 2 plants, damp         80       0.0633       0.0227       0.190       P, 2 plants, damp         80       0.0633       0.0227       0.190       P, 2 plants, damp
30       0.0306       0.0264       0.2762       0.0041       0.0148       5, 3 plants, damp and dry         50       0.0951       0.0491       0.1192       0.0227       0.190       P, 2 plants, damp         89       0.0633       0.0292       -       -       -       B, 3 plants, damp         39       0.1152       0.0417       0.4657       0.0194       0.0416       S, 3 plants, semider,

ì

.

•

. . . . . . . .

The second se

;;;; •

ĺ	]	۲ (مس/مس)	um (emu∕ad ft)	p (em/em)	(80 ft/gm)	Sample Desi
	(BB)	(gu/gu)	Int he man			
			Carrot-1 (c	ont1nued)		
796	0.2013	0.0240	0.1576	0.0051	0.0324	P, 3 plants, dry
354	0.1068	0.0377	1.4532	0.0183	0.0126	S, 3 plants, damp
184	0.0665	0,0199	ı	I	I	OR, 3 plants
612	0.4187	0.0827	2.3144	0.0628	0.0271	P, 3 plants, damp
895	0.2851	0,0402	3,9372	0.0203	0.00516	SW, 3 plants
126	0.2895	0,1690	3.9586	0.1491	0.0377	SWR, 1 plant
180	0.1500	0.0168	ł	I	ı	0, 1 plant
634	0.0403	0.0113	ı	ı	ì	B, 2 plants
357	ı	ł	1	ı	•	0, root (photo)
397	1	ł	I	ı	1	O, 1 plant (photo
104	0.1309	0,0685	ŀ	ł	•	B, 10 plants
632	0.516	0.0916	0.8367	0.0231	0.0276	P, 5 plants, dry
1866	0.04535	0.5765	4.342	0.5080	0.117	P, 5 plants, damp
318	0.9150	2.1190	14.81	2.0505	0.138	P, 5 plants, damp
623	0.2803	0.7737	16.696	0.7052	0.0422	SW, 5 plants
231	0.2523	0.1907	1.602	0.1222	0.0763	P, 5 plants, damp
110	0.6553	1.3944	9,158	1.5259	0,167	2P, 3 plants, dan
073	0,2313	0.1916 ^b	I	•	I	B, 3 plants
033	1,3862	0.7687	7.690	0.6866	0.0893	P, 3 plants, damp

88

a Wei weight = 97.04 grams b Particles on end of some of the leaf stems

・シュート キャンシューチャート・キャー 一 キャー 単 空間 アン重要ない ÷

ŝ

۱

.

e Designation		ts	nts	20	s, damp							1, daunp	8	i, damp		i, dry	s, dry	i, dry	i, ury		_	i, damp	, damp	, damp
Sample		SW, 2 plant	SWR, 3 plat	B, 3 plants	P, 2 plants	B, 3 plants	B, 1 plant	B, I plant	B, 1 plant			P, 4 plants	SW, 5 plant	S, 5 plants	OR, 3 plant	P, 3 plants	2P, 3 plant	P, 3 plants	P, 3 plants	SW, 3 plant	B, 3 plants	S, 3 plants	P. 3 plants	P, 2 plants
aL (sq_ft/gm)		0.0710	0.0257	ł	0.108	ı	ı	ł	ı			0.145	0.0243	0.229	I	0.0187	0.0178	0.0159	0.108	0,0389	ł	0.0776	0.110	0.140
с ^о р (gm/gm)	ncluded)	0.5817	0.2105	ı	0.6334	١	ı	ı	۱	ot-2		0.0492	0.0120	0.0244	ı	0.0178	0.0205	0,0056	0.1358	0.0692	I	0.3015	0.2323	0.2952
∆m √gm/sqft)	Carrot-1 (cc	8,199	8,199	ł	5,845	I	1	ı	I	Carr		0.3398	0.4943	0.1067	ı	0.7982	1.1494	0.3512	1.2536	1.7784	ı	3.8840	2,1056	2.1056
с р (811/£71)	0,	0.6638	0,2926	0.0821	0.7155	0.0396	0.0136	0.0332	0,00869			0.0715	0.0343	0.0467	0.0107	0.0428	0.0484	0.0484	0.1637	0.0971	0.0273	0.3294	0.3294	0.03225
الالي (الق		0.7927	0.2301	0.1070	0.2524	0.0910	0.0216	0.0558	0.0192			0.1051	0.0453	0.0431	0.0323	0.0985	0.1018	0.1018	0.2514	0.1210	0.0685	0,3081	0.3081	0,3036
د (وي)		1.1942	0.7863	1.3030	1.7504	2.2999	1.5823	1.6835	2,2086			1.4703	1.3220	0,9223	3.0133	2.2994	2,1025	2.1025	1.5356	1.2464	2.5100	0.9352	0.9352	0.9419
Sample Number		06230	06241	06263	06269	06294	06297	06322	06343			06442	06454	06465	06480	06496	06510	06510	06530	06550	06564	06578	06578	06579

.

-----

-----

1

**!*** 1

Ì

							8 7 6 8															
	Designation			damp		leaf area	photo) leaf	mentdamn			(-hata)	(proto)				(photo)			dry		damp and dry	,
	Sample		B. 3 plants	P. 3 plants.	B. 3 plants	0. 3 plants	0. 1 plant (	S. 3 plants	0. 3 nlante	B 3 blante		antrend 7 "n			B, 3 plants	0, 5 plants		B. 3 plants	P, 2 plants.	B, 3 plants	S, 1 plant,	•
a-1	(aq ft/gm)		1	0,0558		1	ı	0,0991		ı	I	l			,	t		ı	0.116	·	0.120	
ింది.	(mg/mg)	concluded)	ł	0.0534	ı	I	ı	0.359		•	1	I	ot-3		•	ł	뷥	ı	0.244	ı	4.74	
ي الح	(gm/8q ft)	Carrot-2 (0	ı	0,9571	ı	ı	ł	0.3624	ı	ı	ł		Carr		1	•	Cor	ı	2,100	I	39.55	
ບື້			0.0463	0,0997	0,0273	i	0.2559	0,0632	0.0646	0.0104	ı			1900 0	0* 0301	ı		0.688*	0.519	0.283	5.02	
			0.0680	0.2748	0.0327	1	0.5874	0.1457	0.1823	0,0109	ł					ı		0.4807	0.2425	0.1242	1.5160	
≥ ⁻¹ (			1.4700	2.7549	1.1962	4.4234	2.2950	2,3053	2.8215	1,0509	1,9326			0 4060		1.3805		0.6978	0.4677	0.4395	0.3019	
Sample Murbor	John		06598	06608	06618	06632	06636	06642	06660	06683	06701			ngge 9		06700		14002	14014	14022	14031	

* One leaf touched ground, carried some watra soil plus ceniza-arena

. . . . . . . . . . . . .

į

. . . .

۴

the second s

.....

:

1

* Particles remaining in crown

1.

.

ł

Sample	اس≰	∆ ∎ L	లి	₽ Q	ംറം	e ^{بم}	
Number	( <b>E</b> II)	(R)	(gm/gm)	(gm/sq ft)	(gn/gn)	(sq ft/gn)	Sample Designation
				Corn-1 (c	con ti nued)		
14241	4.3332	0.4737	0,1093	9.075	0,0663	0.00731	P, I plant, dry
14262	7.5455	0.1780	0.0236	ł	ı	ı	B, 1 plant
14278-4	0.6738	0,0760	0.1128	1	ı	ı	B, I tassel
14278-3	7.2814	0.2171	0.0298	ŀ	ı	ı	B, stalk
14278-2	5.1997	0.1225	0,0236	ı	ł	۱	B, ear and husk
14278-1	5,3709	0.2529	0.0471	ı	ı	ł	B, 7 leaves
14276	18.5258	0.6685	0.0361	ı	ł	1	B, 1 plant
14300-4	0.6280	0.5896	0.9389	19.112	0.8261	0.0432	P, 1 tassel, damp
14300-3	12.4658	1.3517	0.1084	19.112	0,0786	0.00411	P, stalk, damp
14300-2	6.3116	0.6881	0.1090	19.112	0.0854	0.00447	P, ear and husk, damp
14300-1	5,3846	8.5187	1.5820	19.112	1.5349	0.0803	P, leaves, damp
14300	24.7900	11.1481	0.4497	19.112	0.4156	0.0217	P, 1 plant, damp
14323	6,1891	1.3457	0.2174	25.602	0,1861	0.00727	SW, 1 plant
14330	14.96	1.9135	0.1279	26,444	0,0966	0.00365	SWR, 1 plant
14361-4	1.1065	0.8287	0.7490	1	ı	ı	O, tassel
14361-3	19,0950	9,2563	0.4855	ı	I	I	O, stalk
14361-2	14.0395	1.4725	0,1049	i	ł	1	O, ear plus husk
14361-1	7.8466	2.8140	0.3588	ł	1	ı	O, 6 leaves
14361	42.10	14.3715	0.3414	ı	1	1	0, 1 plant
14371-4	0.4687	0.5723	$1.2220^{*}$	1	ı	ı	B, tassel
14371-3	5.4456	1.7082	0.3140*	I	ł	1	B, tassel

92

* Plant washed and sampled after dark with use of flashlight; values not used

ļ

ł

ŝ

-

	Sample Designation		B. 1 ear plus husk	B. 5 lerves	B. 1 plant	B. tessel. drv	P. stalk. drv	P. lear plus husk. drv	P. 5 leaves. drv	P, 1 plant, dry	a nante	D. 3 nlante dama	<pre>B. 2 blants</pre>	SW. 2 Diante	SWR. 3 plants	SWR. corn centers	B. 2 plants	P. 2 plants, dam	B. 1 plant	SWR. 2 Diants	SWR. 2 plants	B. 2 plants	P, 1 plant, damp	•
a B	(89 ft/gm)		ı	ı	I	0.248	0.0479	0,00813	0.0425	0,0354	1	0,189		0.0315	0.0148	0.197	ı	0.100	•	0.0374	0.0873	,	0.0246	
ించి	(ug/ug)	on tinued)	ı	ı	ı	0.2650	0.0513	0,0087	0.0455	0.0379	1	2.58		166.0	0.577	7.69	ı	0.644	I	0.263	0.808	1	0.1066	
μŲ	(gm/sq ft)	Corn-1 (c	1	ı	1	1.070	1.070	1.070	1,070	1.070	1	13.68		31,44	39.02	39,02	J	6.42	ı	7.03	9.26	ł	4.342	
ి	(gu/gu)		0.1485*	0,0388*	0.2051*	0.3510	0.0753	0.0323	0,0816	0.0640	0.148	2.72	0.140	1.135	0.721	7.83	0.171	0,815	0.0772	0.434	0.979	0.354	0,1838	
۵۳ ۱	(gn)		1.6130	0.1050	3,9985	0.1464	0.5958	0,2303	0.0876	1,0601	0.0189	1.3316	0,0253	0.3988	0.2043	1.3779	0.2874	2.1847	0.7093	1.4938	2.2321	0.9040	2.8244	
רג אר			10,8656	2.7062	19.50	0.4177	7.9167	7.1466	1,0729	16.56	0.1274	0,4890	0,1801	0.3516	0.2832	0.1760	1.6809	2.6815	9.1864	3.4456	2.2792	2,5552	15.37	
Sample	NUBORI		14371-2	14371-1	14371	14456-4	14456-3	14456-2	14456-1	14456	06007	06014	06025	06030	06042	06043	06054	06059	66090	06071	06078	06087	06121	

* Plant washed and sampled after dark with use of flashlight; values not used

.

· · · · · · · · · · · ·

. . . . . . . .

	Sample Designation		P, 1 plant, damp	SW, 1 plant	P, 1 plant, damp	2P, 2 plants, damp	B, 1 tassel	B, stalk plus two ears	B, leaves	B, 1 plant	P, i tassel, damp	P, stalk plus two sars, damp	P, 8 leaves, damp	P, 1 plant, damp		B, 5 plants	P, 3 plants, damp	P, 5 plants, damp	B, stalk	B, 7 leaves	B, 1 plant	P, stalk, damp	P, 7 leaves, damp	P, l plant, damp
•13	(sq ft/gm)		0,0478	0.0185	0.0757	0.0727	1	I	F	ı	0.0218	0.00250	0.0668	0.0203		ı	0.195	0,0596	I	ł	I	0.0344	0.00583	0.0202
൦ൄൔ	(gm/gm)	ncluded)	0,7075	0.3090	0.1213	0.6656	ı	I	ł	ı	0.1277	0.0146	0.3904	0.1187	n-2	1	0.0950	0.1044	ı	I	I	0.0177	0.0030	0.0104
ą	(gm/sq ft)	Corn-1 (co	14.81	16.696	1.602	9.158	ı	ı	1	1	5.845	5,845	5.845	5.845	COL	ı	0.4869	1.7546	1	ł	I	0.5146	0.5146	0.5146
<b>ი</b> _	(gm/gn)		0.7505	0.3520	0,1643	0.7086	0.0592	0.0213	0.0251	0.0265	0,1869	0,0359	0.4155	0.1424		0,0415	0.1510	0,1342	0.0127	0.0349	0.0262	0.0304	0.0379	0.0342
Δ ^m L	(gn)		9.7488	2.2289	1.5350	3.2406	0.1000	0.1920	0.1431	0.4351	0.2846	1.0043	4.4354	5.7243		0.0217	0.2800	0.3325	0.0883	0.3756	0.4639	0.4476	0.5575	1.0051
× ×	(gu)		12,99	6.3312	9.3405	4.5734	1,6900	9.0263	5.6926	16.4089	1.5230	28.0105	10.6736	40.2071		0.5202	1.8560	2.4640	6,9380	10.77	17.71	14.6965	14.70	29.40
Sample	Number		06145	06162	06168	06181	06264-4	06264-2,3	06264-1	06264	06267-4	06267-2,3	06267-1	06267		06301	06332	06349	06361-3	06361-1	06361	06387-3	06387-1	06387

.

iciń

. -

3

	Sample Designation		O, stalk	O, several leaves	0, 1 plant	B, I tassel	B, 1 stalk	B, 10 leaves	B, 1 plant	P, tassel, dry	P, stalk, dry	P, 12 leaves, dry	P, l plant, dry	P, leaves plus tassel, dry	P, stalk, dry	P, 1 plant, dry	O, area, stalk	O, leaf area, 12 leaves	0, 1 plant	B, stalk	B, leaves	B, 1 plant	P, 9 leaves plus forming	tassel, damp		P. stalk, damp
a L	(sq ft/gm)		1	1	ı	ł	I	ı	,	0.00207	0.0127	0.00626	0.00987	0.0345	0.00965	0.0189	1	ı	ı	,	ı	I	0.0402		00100	9°100'0
ింి	(gm/gm)	continued)	I	I	ı	ł	ı	I	1	0.00165	0.0101	0.0050	0,00788	0.0432	0,0121	0.0237	ı	ł	I	ı	ı	ı	0,0385			0.013
Δm	(gm/sq ft)	Corn-2 (c	ı	ı	1	ı	ı	ı	ı	0.7892	0.7982	0.7982	0.7982	1.2536	1.2536	1,2536	ı	ı	ı	ł	ı	ı	0.9571			0.9571
ں ^م	(mg/gm)		0.0845	0.1541	0.1223	0.00407	0.00618	0,00911	0,00664	0,00572	0,0163	0.0141	0.0144	0.0523	0.0183	0.0310	ı	ł	ı	0,0242	0.0142	0.0202	0.0527			0,0255
¢m L	(gn)		1,2898	2.7870	4.0768	0.0384	0.3465	0.1853	0.5702	0,1003	1.4696	0.4502	2,0201	1,3973	0.8209	2.2182	ı	ł	ı	1.1437	0.4423	1.5860	1.6990		1	1,0353
ສ [ີ]	(gn)		15.26	18.08	33,34	9.4450	56.04	20.34	85.82	17.54	90.42	31.55	139.91	26.73	44.92	71.65	30.17	28.38	58.55	47.2104	31.11	78.32	32.26			41,34
Sample	Number		06483-3	06483-1	06483	06489-4	06489-3	06489-1	06489	06492-4	06492-3	06492-1	06492	06525-1,4	06525-3	06525	06559-3	06552-1	C6559	06595-3	06595-1	06595	06605-1,4			00605-3

i

the second se

の時代になった。

Sample	,1 ≽	∆m L	ో	μŲ	್ಷಿ	a L	
Number	(gn)	(ar)	(gm/gm)	(gm/sq ft)	(mg/mg)	(sq ft/gm)	Sample Designation
				<u>Corn-2</u> (con	cluded)		
06626-1,4	27,69	0,8685	0.0314	0,9571	0.0172	0.0180	PW, 10 leaves plus forming
							tassel
06626-3	41.67	1.7590	0.0325	0.9571	0.0083	0.00867	PW, stalk
06626	69.56	2.2275	6.0320	0.9571	0.0118	0.0123	PW, l plant
06638-1,4	25,04	C.5574	0.0223	0.3624	0.0107	0.0295	S, 11 leaves, plus forming
							tassel, semidamp
06638-3	41.34	0.5205	0.0126	0.3624	0.0064	0.0177	S, stalk, semidamp
06638	66,38	1.0779	0.0162	0.3624	0,0080	0.0221	S, 1 plant, semidamp
06656-4	5.8415	0.1389	0.0238	1	ı	ı	O, 1 tassel
06656-3	89.81	0.6551	0,00845	ı	,	ı	O, 1 stalk
06656-2	35,16	0,0961	0,00273	ı	I	1	O, 2 ears plus husks
06656-1	28.98	0.5815	0.3201	ı	ı	1	O, 10 leaves
06656	159.79	1.4716	0,00933	1	ı	ı	O, 1 plant
06688-4	5.6715	0.1181	0.0208	ı	ł	ı	B, 1 tassel
06688-3	76,63	1.0859	0.0142	ı	,	1	B, 1 stalk
06688-2	40.81	0,3625	0,00888	I	ı	ı	B, 2 ears plus husk
06688-1	23,13	0.1424	0.00161	ı	1	1	B, 10 leaves
06688	146.24	1.7089	0.011~	,	ı	ı	B, 1 plant
06694-4	4.3550	ı	1	ı	I	I	0, 1 tassel (p ^t )
06694-3	68.7915	ı	ı	I	ı	ı	0, 1 stalk (photo)
06694-2	35.90	1	I	ł	ı	ı	0, 1 ear plus husk (photo)
06694-1	31,8586	ł	I	1	ı	ł	0, 12 leaves, (photo)
06694	140.91	t	I	ı	ŗ	I	0, 1 plant (photo)

K

	ignation			4	<b>1</b>		1		4.11		y and due	r aug ury		<b>a</b> .					the past of		2		, É	<b>7</b>
	Sumple Des		B. 5 nlants	D 3 nlante do	SW 1 mlant	P. 4 mlants da	-, - printo, du R d nlanta	P. 5 mlante da	e, o pranto, un R 3 minute	P 2 nlants dr	s, s prante, un S l nlant dam	S ] nlant com	D ] nlont don	r, i prant, uam	UK, I plant	B 5 blante	B 3 mlante	B 3 mlants	-, c process S 2 mlante dar	e, z plante, dar P. 2 nlante, dar	sw. 3 nlants	P. ] blant dami	P. 2 nlante dan	man (output a f a
e I	(sq ft/gm)		ı	0.304	0.0626	0.218	1	0,146		0.108	0,0500	0.6739	0.0335		•	•	ł	ı	0.0592	0.114	0.0654	0.172	0.214	
ించి	(gm/gm)	2- 2- 2-	;	0.2318	0.0640	0,0508	ı	0.1930	, ,	0.0325	0.0138	0.0344	0.0775		I	ı	ı	1	0.0204	0,0589	0.0454	0,0388	0.0727	3100 0
ų	(gm/sq ft)	Cor	ı	0.7634	1.0225	0.4164	ı	1,3263	1	0, 2996	0.2762	0.4657	2.3144		I	ı	ı	ı	0.3446	0.5146	0.6945	0.2256	0.3398	0 1067
రి	(gm/gm)		0.0751	0.2878	0.1200	0,1468	0.0439	0.2490	0.0547	0.1025	0,0838	0.1044	0.1009	0,0234		0.0754	0.0298	0.0852	0.1056	0.1289	0,1154	0.1088	0.1427	0.0915
л Б	(mg)		0.0259	0.1083	0.0174	0.0576	0.0241	0.2473	0,0619	0.1607	0,0568	0.3483	1.3666	0.3122		0, 0334	0.0096	0.1832	0.3480	0.4795	0.3049	0.3373	0.3394	0.4046
, I M	(E)		0.3447	0.03766	0.1449	0.3924	0.5493	0.9922	1.1313	1.5678	0.6774	3.3363	13,55	13.3340		0.4435	0.3235	2.1490	3.2963	3.7201	2.6418	3,0991	2.3785	4.4210
Sample	Number		14506	14518	14531	14542	14554	14566	14588	14600	14621	14656	14762	14739		06324	06341	06362	06373	06388	06406	06420	06439	06462

1

•

A statement of the second secon

. . .

	uo										damp	damp														
	Sample Designati		B, 1 plant	P, 1 plant, dry	ZP, l plant, dry	P, 1 plant, dry	P, 1 plant, dry	SW, 1 plant	SW, I plant	B, 1 plant	P, stalk plus tassel,	S, stalk plus tassel,	S, 7 leaves, damp	P, 7 leaves, damp	S, 1 plant, damp	P, l plant, damp	S, 1 plant, damp	P, 1 plant, damp	B, 1 plant	S, 1 plant, semidamp	O, 1 stalk	O, leaves	0, 1 plant	B, 1 stelk	R, leaves	B, 1 plant
a B	(sq ft/gm)		ı	0.0120	0.0141	0.0188	0.0262	0.0405	0.0262	ı	0.0513	0.0581	0.0604	0,0689	0.0601	0.0662	0.0504	0.0649	ı	0.0185	ł	I	ı	ı	ı	ı
್ಟಿ	(gm/gm)	concluded)	ı	0,0096	0.0162	0.0066	0.0329	0.0721	0.0466	I	0.1080	0.2255	0.2348	0.1450	0.2334	0.1394	0,1959	0.1366	ı	0.0067	ı	ı	ı	ı	ł	ı
¢ a	(gm/sq ft)	Corn-3	1	0.7982	1.1494	0.3512	1.2536	1.7784	1.7784	ı	2.1056	3,8840	3.8840	2,1056	3,8840	2.1056	3,8840	2.1056	r	0.3624	ı	t	ſ	1	ı	ı
లి	(gm/gm)		0.0432	0.0528	0.0594	0.0594	0,0798	0,1190	0.0935	0.0386	0.2407	0.2407	0.2464	0.2464	0.2456	0.2456	0.2428	0.2428	0.0589	0.0656	ı	ł	0.0981	I	I	0.0138
∆ ⊓L	( <b>B</b> )		0.5830	1.2277	0.8594	0.8594	2.0635	1.3763	0.4535	0.3706	0.2773	0.2773	1.5545	1.5545	1,8318	1.8318	1.2607	1.2607	1.1038	1.6568	٠	ı	6.1523	ı	ı	0.5994
W.L.	(gn)		13.4814	23,2689	14.4602	14.4602	25,85	11.57	4.8525	9.59	1.1521	1.1521	6.31	6.31	7.46	7.46	5.1933	5,1933	18.74	25.27	32,67	30.04	62.71	20.52	22.84	43,36
Sample	Number		06490	06493	06506	06506	06524	06545	06546	06561	06575-3,4	06575-3,4	06575-1	06575-1	06575	06575	06576	06576	06615	06639	06655-3	06655-1	06655	06689-3	06689-1	06689

98

ł

A THE PARTY OF THE

•••••

Sample	ہ ¥	∆m L	లి	Qu	'ం <del>°</del>	в Г	
Number	( <u>B</u> a)	(gn)	(gm/gm)	(gm/sq ft)	(gm/gm)	(sq ft/gm)	Sample Designation
				100	1-4		
14647	0.5440	0,0328	0,0603	I	ı	1	B, 10 plants
14657	0.8588	0,1061	0.1235	0.4657	0,0632	0.136	S, 10 plants, semidamp
14672	4.9073	0,2916	0.0594*	ł	ı	ı	O, 1 plant
14684	4.7358	0,2536	0.0535	ı	ı	,	B, 1 plant
14685	5,50	0.2970	0.0540	ı	ı	1	OR, 1 plant
14699	8,1177	0.4662	0.0574	0.1576	0.0036	0.0228	P, 1 plant, dry
14717	4.6335	0.4794	0.1035	1.4532	0.0599	0.0412	S, 1 plant, damp
14736	5.9400	0.5275	0,0888	2.7763	0.0452	0.0163	S, 1 plant, semidamp
14776	8.3278	0.7610	0.0914	3,9372	0.0680	0,0173	SW, 1 plant
14790	4.9177	0.5241	0.1066	3,9586	0.0832	0.0210	SWR, 1 plant
14808	25,88	0.3545	0.0137	ı	ı	ı	0, 1 plant
14824	8,4915	0.0944	0.0111	ı	ı	1	B, 1 plent
14825-4	1,9388	0,0078	0,00402	1	ł	,	B, I tassel
14825-3	25.6134	0.0905	0,00353	I	ı	ı	B, 1 stalk
14825-1	12.2140	0.0711	0,00582	ł	I	ı	B, 9 leaves
14825	39,7662	0,1694	0.00426	,	ı	ı	B, 1 plant
14645-4	2.3724	ł	ł	1	ı	ı	O, 1 tassel (photo)
14845-3	16.8411	1	I	ł	,	ı	0, 1 stalk (photo)
14845-1	13.2343	ł	ı	ł	I	ı	O, 11 leaves (photo)
14845	32.4478	ł	ı	ł	ł	ı	0, 1 plant (photo)

* Value not used

-----

......

-----

	Sample Designation		B, 5 plants	P, 3 plants, dry	P, 5 plants, damp	P, 5 placts, damp	SW, 5 plants	P, 5 plants, damp	2P, 5 plants, damp	B, 3 plants	P, 3 plants, damp	SW, 2 plants	SWR, 3 plants	B, 2 plants	P, 3 plants, damp	b, 3 plants			B, 5 plants	P, 3 plants, damp	SW, 5 plants	P, 5 plants, dry
г в	(sq ft/gm)		ı	0.243	0.189	0,168	0.0628	0,159	0.281	ı	0.184	0.0951	0.0515	i	0.221	ı			ł	0.423	0.312	0.102
ించా	(mg/mg)	uce-1	ı	0.2030	0.8207	2.4865	1.0492	0.2543	2.5705	1	1.4179	0.7800	0.4225	1	1.2897	ı	c	nce-z	ı	0.4682	0.3137	0.1087
5	(gm/sq ft)	Lett	ı	0.8367	4.342	14.81	16.696	1.602	9.158	ı	7.690	8,199	8,199	ı	5.845	ı	•	Trect	t	1,107	1.006	1.070
ი _ლ	(gm/gm)		0.1676	0.3706	0.9883	2.6541	1.2168	0.4219	2.7381	0.4469*	1.4854	0.8475	0.4900	0.0675	1.3572	0.0223			0.0338	0.5020	0.3475	0,1530
Ът Ст	(gn)		0.1331	0.4680	0.7507	2.6589	1,0359	0.3328	2,1612	0.4517	1.3242	0.5540	0.3252	0.0337	1.4040	0,0661			0.0257	0.4076	0.3410	0.2277
3 B	(gm)		0.7941	1.2629	0.7596	1.0018	0.8513	0.7889	0, 7893	1.0107	0.8915	0.6537	0.6637	0.4996	1.0345	2.6964			0.7607	0.8142	0.9805	1.4889
Sample	Number		06098	06113	06114	06134	06151	06166	06172	06210	06213	06229	06240	06260	06268	06292			14387	14404	14416	14452

* Particles on stems of bottom leaves

ļ

Sample	ہے ع	2m2	υ ^Δ	щQ	ిరి	a L															
Number	(B)	(gm)	(mg/mg)	(gm/sq ft)	(gm/gm)	(sq ft/gm)	Sample [	Designation													
				Lettuce-2 (	continued)																
14473	0.4374	0.0465	0,1040	ı	ł	ı	B, 3 plants														
14508	1,1553	0,0197	0.0170	ı	ł	I	B, 2 plants														
14517	1.6001	0.2346	0,1465	0.7634	0.1259	0.165	P, 2 plants,	damp													
14529	1,5990	0.2086	0.1305	1.0225	0.1099	0,107	SW, 1 plant														
14540	1.7095	0.1050	0.0614	0.4164	0.0408	0.0980	P, 1 plant, c	damp													
14553	0.7631	0.0195	0.0256	I	ı	ı	B, l plant														
14565	2,4893	0.3742	0.1505	1.3263	0.1299	0.0979	P, 1 plant, d	damp													
14585	3,9365	0.2849	0.0724	ı	ı	ı	B, l plant														
14590	14.36	0.6465	0.0450	1	ŀ	1	B, I plant														
14597	4.3785	0.4120	0.0941	0,2996	0.0363	0.121	P, l plant, c	daurp													
14620	1,1420	0.1326	0.1161	0.2762	0.0574	C.208	S, l plant, d	damp and dry													
14631	5.3149	0.6761	0.1272	0.1192	0.0111	0,0931	P, 1 plant, c	damp													
14660	8,9191	0.7148	0.0801	0.4657	0.0223	0.0479	S, I plant, s	semidamp													
14661	3.5854	0.3879	0.1082	0.4657	0.0495	0,106	S, I plant														
14671	8,9689	0.2620	0.292	ı	ı	ı	B, l plant														
14697	15.71	0.6152	0.0392	0.1576	0.0100	0.0634	P, l plant, c	dry													
14716	12.2935	2.4374	0.1983	1.4532	0.1401	0,0964	S, l plant, d	damp													
14735	14.67	2.3806	0.1623	2.7763	0.1041	0.0375	S, 1 plant, s	senidamp													
14746	7.67	0.6686	0.0872	1	I	ł	OR, 1 plant														
14760	23.01	5.5790	0.2425	2.3144	0.1553	0.0671	P, 1 plant, d	danp													
14774	5,0950	1,8285	0.3589	3.9372	0.2717	0.0690	SW, 1 plant														
14789	8.5711	8,3468	0.9738	3,9586	0.8866	0.224	SWR, 1 plant														
	Designation							l mjent	, I Plant whotel	puotaj				damn			damt.			dry	
---------------------------------------------------------------------------------------------	-------------	-------------	------------	---------------------	-------------	--------	------------	-------------	---------------------	---------	----	--------	-------------	-------------	---------------------	---------------------	-------------	--------------	-------------	--------------	---
	29mbre		B 5 mlante	B 1 blant	B, 2 plants		0 3 njante	B 20 leaves	D, 20 Jeaved	A Press			B. 5 plants	P. 5 nlante	B 3 niante	B. 5 nlants	P. 5 plants	SW. 5 plants	SW 5 mlante	P, 5 plants,	•
8. L (	Lag IC/81			ı	ı		ł	I	ı				ı	0.0136	•	ı	0.0175	0.0117	0.00684	0,00907	
°ບ ^ດ [		(concluded)	ı	ı	ı	tuce-3	ı	ı	٠		[]	1-1101	ı	0.2602	1	ı	0, 0176	0,0129	0.0105	0,0097	
(am/an/ (am/an/	AT be man	Lettuce-2	ı	ł	ł	Let	ı	1	ı			31	ı	19,112	ı	ł	1.006	1.107	1.535	1.070	
C b b c			0.0171	0.0527 ⁸	0,0191		0, 303	0.0435	ı				0.0343	0.2945	0,0171 ^a	0,0500 ^b	0.0364	0.0317	0.0293	0.0285	
L L L L L L L L L L L L L L L L L L L			0.0223	0,0356	0.0251		0.4599	0.0273	ł				0.0243	0.2117	0,0392	0.1076	0.0660	0.0763	0.0160	0,0654	
K Ku Ku Ku			1.3018	0.6755	1.3104		1.5189	0.6273	3, 3290				0.7088	0.7188	2.2924	2,1539	1.8125	2.4041	0.5459	2,2925	
Sample Number			06296	06323	06342		06659	06677	06698				14279	14296	14368	14385	14403	14415	14433	14449	

a Plants washed and sampled after dark with use of flashlight b Particles on bottom part of some of the stems (cut too close to ground); value not used

	ple Designation		nts	nts	nts, damp	ants	nt, damp	nts	nts, damp	nts	nts, dry	nt, damp and dry	nts, damp	<b>bts</b>	nts, semidamp	nt	nt	nt, dry	nt, damp	nt, damp	nts, semidamp	nts, semidamp	nts, semidamp
	Sum		5 pla	3 pla	2 pla	2 pl	l pla	2 pla	2 pla	3 pla	2 pla	l pla	2 pla	2 pla	2 pla	l pla	l pla	l pla	l pla	l pla	2 pla	2 pla	2 pla
			ш,	щ.	Ъ,	SW,	Å.	ш.	ц,	'n	Å,	ູ່	а,	щ.	ູ້	<b>"</b>	а,	а,	Ś	ູ້	ŝ	ຶ່	່
а Г	(sq ft/gm)		ı	ı	0.0165	0.00587	0.0115	ł	0.00882	i	0,00858	0.00626	0.0428	I	0.00434	ı	ı	0.00235	0.00244	0.00148	0.00644	0.00403	0.00318
ಂ್ರಿ	(mg/mg)	ntinued)	I	ı	0.0126	0*0060	0.0048	ł	0.6117	ł	0.00257	0.00173	0.0051	ı	0.00202	ı	ł	~0.00037	0.00355	0.00268	0.00616	0.00529	0,00884
μĄ	(gm/sq ft)	Onton-1 (co	ı	ı	0.7634	1.0225	0.4164	ı	1.3263	ı	0.2996	0.2762	0.1192	ł	0.4657	ı	ł	0.1576	1.4532	1,8088	0.9575	1,3131	2.7763
లే	(gm/gm)	·	0.0205	0.0148	0.0256	0.0190	0.0178	0.0140	0.0247	0.00600	0.00881	0,00797	0.0131	0.00649	0,00826	0.00517	0,00720	0.00554	0,00831	0.00744	0.01360	0.01360	0.01360
J m2	(B)		0.0184	0.0154	0.0347	0.0304	0.0349	0.0126	0.0615	0.0150	0.0336	0.0128	0,0525	0.0198	0.0361	0.0097	0,0120	0.0268	0.0274	0.0340	0.0435	0,0435	0.0435
к К	(gm)		0.8958	1.0431	1.3545	1.6022	1.9567	0.9026	2.4945	2.4998	3.8122	1.6062	4.0106	3.0500	4,3698	1.8748	1.6662	4.8355	3.2990	4.5670	3.1974	3.1974	3.1974
Sample	Number		14477	14503	14514	14527	14538	14550	14562	14581	14595	14617	14634	14649	14664	14667	14668	14694	14713	14727	14734	14734	14734

Value not used

Ï

ì

1

s

	Sample Designation		JR, 1 plant	P, 1 plant, damp	SW, 2 plants	SWR, 1 plant	), 2 plants	3, 2 plants	), l plant (photo)	), 3 plants (photo)	), stems (photo)	), seed pod (photo)	), l plant (photo)	3, 20 plants	² , 20 plants, damp	3, 15 plants	', 10 plants, dry	), 10 plants, damp	', 10 plants, damp	SW, 10 plants	2P, 10 plants, damp	°, 5 plants, dump	WR, 3 plants	SWR, 3 plants	3, 5 plents
یں ع	(sq ft/gm)			0.00279	0.000922	0,000333	•	1	•	,	•	•		1	0.0215 F	1	.,0562 F	0,0109 F	0,00695 F	0,000982 5	0.00383	0.0405 F	0.0128 5	0.00392	
ంది	( <u>gm/gm</u> )	ontinued)	ı	0.00645	0.00363	0.00132	ı	I	ı	ı	ı	ı	ı	I	0.1381	I	0.0470	0.0475	0.1029	0.0164	0,0351	0,3111	0.1046	0.0321	ı
щŢ	(gm/sq ft)	Onion-1 (c	ı	2,3144	3,9372	3.9586	ı	ı	ı	ı	ı	I	ı	ı	6.42	1	0.8367	4,342	14.81	16.696	9,158	7.690	8,199	8.199	•
లి	(gm/gm)		0,00435	0.01080	0.00798	0.00567	0.00416	0,00307	ı	1	ı	1	ı	0.0433	0.1814	0.07733	0.1243	0.1248	0.1802	0,0937	0.1124	0.3367	0.1302	0.0577	0.0169
л Ч	(mg)		0.0313	0.0685	0.0489	0.0172	0.0452	0.0160	ſ	ı	1	ı	ł	0.0121	0.0572	0.0344	0.0347	0.0605	0.0569	0.0247	0.0948	0,3034	0.0536	0.0337	0.0162
r «	(gm)		7,1903	6.3410	6,1240	3.0316	10.8779	5.2142	21.1778	9,6353	3.7336	0.9834	4.7170	0.2794	0.3154	0.4451	0.2792	0.4846	0.3158	0.2635	0.8435	0,9012	0.4117	0.5841	0.9576
Sample	Number		14744	14757	14781	14786	14803	14818	14836	14842	14850-3	14850-2	14850	06053	06061	06095	06110	06116	06137	06153	06175	06216	06232	06243	06261

きょう 一般の 聞く言 はなさきのいこう 読みでき いち ビマー・ロ

• 1.44 · · · · · · •

Designation	damp	(photo)			daap d	damp damp		damp and dry damp semidamp
Sample	P, 3 plants, B, 3 plants B, 5 plants B, 2 plants	0, 10 plants B, 10 plants 0, 64 plants		B, 5 plants	r, o plants, SW, 5 plants r f stants	P. 5 plants, P. 5 plants	B, 3 plants P 3 plants	S, 3 plants, P, 3 plants, S, 3 plants,
aL (sq ft/gm)	0,0390			- 0	0.0168	0.0354	- 0,0404	0.0174 0.0906 0.00258
Co Ban (gan)	oncluded) 0.2280 - -		71	- - 0,045	0,0172	0, 0469	- 0.0121	0,0048 0,0108 0,0012
∆m (gm/sq ft)	<u>0nion-1</u> (c 5.845 - -	01110	Pea	0.7634	1.0225	- - 1.3263	- 0, 2996	0.2762 0.1192 0.4657
c p (gm/gm)	0,2449 0,00793 0,0295 0,0102	0,0193 0,0139 -		0,00986 0,0594	0.0281	0.0138	0,0126 0,0231	0.0158 0.0266 0.0122
کس _ل (وس)	0.1588 0.0184 0.0156 0.0156	0,0131 0,0066 -		0,0090 0,0586	0.0220 0.0338	0.0101 0.0842	0.0444 0.0568	0,0360 0,0838 0,0615
κ Γ (6m)	0.6483 1.3119 0.5287 0.9475	0,06780 0,4757 4,5034		0.9115 0.9876	0.7833 0.9595	0.9745 1.4567	3.5220 2.4564	2.2800 3.1560 5.0535
Sample Number	06271 06291 06299 06321	06663 06684 06702		14507 14519	14530 14541	14555 14567	14586 14599	14622 14630 14655

) (. *

ł

ł

-----

Table 15 (continued)

ł

	ation												and dry									
	est kn				lry	dry			damp		damp		damp	damp		damp	damp		damp	lry		
	Sample L		B, 5 pods	0, 3 vines	P, 10 pods, d	P, vine tops,		B, 5 plants	P, 5 plants,	B, 5 plants	P, 5 plants,	B, 3 plants	S, 3 plants,	P, 3 plants,	SW, 3 plants	P, 3 plants,	P, 3 plants,	SW, 3 plants	S, 3 plants,	P, 10 pods, d	SW, 10 pods	B, 10 pods
e Te	(sq ft, gm)		i	ł	0.00209	0.0243		•	0.114	ł	0.0261	ł	0.0662	0.0350	0.00446	0.0505	0.0224	0.00324	0.0309	0.00783	0.00644	ı
్రం	( 1831 / 1831 )	ntinued)	ı	ı	0,00033	0, 00383		ı	0.0554	I	0.0458	ı	0.0228	0.0180	0,0031	0.0114	0.0076	0.0016	0.0033	0,00982	0.01145	t
۳	(gm/sq ft)	Pea-1 (co	1	I	0.1576	0.1576		ı	0.4869	I	1.7546	ł	0.3446	0.5146	0,6945	0.2256	0.3398	0.4943	0.1067	1.2536	1.7784	ı
o [¶]	(mg/mg)		0,00195	0,0308	0.00228	0,00583	*	0.0374	0.0663	0.00898	0.0567	0.00931	0.0338	0.0290	0.0141	0.0224	0.0186	0,0126	0.0143	0,01152	0,01315	0,00146
J m	(B)		0,0067	0.9746	0.0130	0.0267		0.0244	0.0470	0.0090	0.0410	0.0226	0.0729	0,1589	0.0650	0.1247	0.0816	0,0565	0.0618	0,0595	0.0635	0,0046
L.	(BJI)		3.4300	31.62	5,6984	4.5810		0.6530	0.7091	1.0070	0.7210	2.4285	2,1538	5,4845	4.6220	5.5785	4.3917	4.4826	4.3292	5,1632	4.8291	3.1415
Sample	Number		14670-2	14678	14701-2	1.4702		06325	06333	06340	06350	06371	06372	06386	06405	06419	06438	06451	06461	06533-2	06544-2	06569-2

* Value not used

the second second

Sample Number	× ^I	∆ ^m L	ບື້	щĄ	್ಟಿ	в Г	
I DOIMINAT	(BB)	(gm)	(gm/gm)	(gm/sq ft)	(gm/gm)	(sq ft/gm)	Sample Designation
				Pea-1 (c	oncluded)		
06586-2	4,3855	0.0522	0.01190	3,3840	0.01020	0 00963	
06586-2	4,3855	0.0522	06110.0	2.1056	0.00408	0.00194	P. 10 node, protected, damp P. 10 node, protected damp
06587-2	4.5038	0.0936	0.02078	3.8840	0.01908	0,00491	S. 10 Dods express down
06587-2	4.5038	0,0936	0.02078	2,1056	0,00763	0.00362	P. 10 node evoced done
06614-2	4.8554	0.0481	16600*0	0.9571	0,00821	0.00858	P. 10 node domn
06634-3	1.9284	ı	ı	i	!	ł	C stome
06634-2	1.7303	ł	ı	I	ı	I	
06634-1	1.5865	9	I	I	1	ł	U, pods and tendrils
06634	5.2452	ł	1	ł	1	ı	O, leaves
_			I	1	I	ı	O, l vine (photo), leaf area
				Pea-	5		
14646	0.9216	0.0141	0.0153	ł	ı		
14658	1.4164	0.0475	0.0335	0.4657	1060 0	6670 U	b, o plants
14679	14.59	0.3317	0.02273		1030 2	20H0 0	o, 5 plants, semidamp
14680	4.1735	0.0405	02600.0	ı	ŗ	1	0, J Vines
14688	8.49	0,1044	0.01230	ı	I	1	U, 3 Vine tops
14700	8.7385	0.1429	0.01635	0.1576	0 00405		B, Z VINGS
14763	15.08	0.4871	0.03230	2.3144		1020.0	P, Z VINGS, dry
14777	10.0348	0.2119	0.02112	3 9379	60770°0	0.00005	P, 2 vines, damp
14791	10.9813	0.1239	0.01128	3 DF05	1/110°0	0.00297	SW, 2 vines
14807	13,00	0.1595	0 0123		19100'0	U. U00472	SWR, 2 vines
14822-2	6.6325	0 0076		I	ı	t	0, 2 vines
14823	28.86	0 3699		1	ı	ı	B, 5 pods
148.44	10 7634	3400 1	9710.0	I	ı	ı	B, 3 vines
1 6 7		l	T	1	1	ı	0, 1 vine (photo)

į

,**1** 

•

1 i

ストレービス アイ・ション・ション しんしょう 気気気 ひょうかい コード・ション しょうちん しょうかい しょうかい かんしょう たいかん かった しょうかん たんしゅう 雪

.

. .

1

•

l vine (photo), leaf area Sample Designation O, pods and tendrils damp P, 5 plants, damp damp P, 3 vines, damp P, 2 vines, damp S, 3 vines, damp P, 2 vines, dry 2P, 1 vine, dry P, 3 vines, dry P, 1 vine, dry S, 5 plants, P, 5 plants, SW, 5 plants SW, 5 plants B, 5 plants 5 plants PW, 2 vines B, 2 vines SW, l vine B, 2 vines 0, 3 vines leaves B, 1 vine B, l vine 0, stems ò 6 ъ. (sq ft/gm) 0.0140 0.0416 0.0245 0.0145 0.0134 0.0975 0.0259 0.0158 0.0133 0.0541 0.0544 0.0237 0,0702 0.0113 . م 0.125 ł 1 ı ī ı 0.03087 0.03059 0.01085 0.02370 0.05429 0.01263 0.02724 0.01461 0.05181 0.0128 0.0361 0.0220 0,0093 0,0133 0.0185 (mg/mg) Pea-2 (continued) ı ł ī ł ı ı (gm/sq ft) 0.2256 0.5146 0.6945 2.1056 0,5398 0.3512 0,7982 1.1494 .2536 1.7784 0.9571 0.4943 3.8840 0.9571 0.1067 e √ ī ī 0.03409 0.01247 0,00685 0,06370 0.02126 0.01948 0.06370 0,03555 0.03409 0.04028 0.06222 0.03311 0.00501 0.01041 0.0354 0.0114 0,0319 0.0227 0.0262 0.0267 0.0495 gm/gm) లి Ŧ ı 1 1,1313 0.0825 0.5948 0.0334 0.0155 0,0397 0,0265 0.4949 0.1695 0.2097 0.2097 0.2220 1.1313 0.0587 0.4821 0.0480 0.0394 0,0411 0.0442 0.0669 0.2143u ₽ 7 Es 7.9240 9,5600 5,3655 4.0738 6.7040 6,1508 6.1508 8.8144 17.7605 17./605 1.1862 1.4734 1.3575 1.3547 1.2439 1.0102 1.4756 10.0784 1.7800 0.2474 2.0464 11.97 8.70 л Ж 3.92 6,00 ( ga 06635-3 06635-2 Sample 06635-1 Number 06635 06616 06628 06606 06-104 06412 06440 06452 06485 06507 06507 06523 06543 06562 065 4 96 **:4** 06336 06421 06463 06491 06494 06384

· 4. F .

	Sample Designation		S, 2 vines, semidamp	B, l vine	B, 2 vines		B, 10 plants	P, 10 plants, dry	B, 10 plants	B, 5 plants	P, 5 plants, damp	SW, 5 plants	P, 5 plants, damp	B, 5 plants	P, 2 plants, dry	B, 4 plants	S, 3 plants, damp and dry	P, 4 plants, damp	B, 4 plants	S, 4 plants, semidamp	B, 1 plant	B, J. plant	OR, 2 plants
ъ Г	(sq ft/gm)		0.0273	1	i		ı	0.0133	ı	ŧ	0.169	0.113	0.159	ı	0.0837	ı	0.0188	0,121	ı	0.0193	ı	ı	
പറ	( gm / gm)	icluded)	0.00990	ı	ı	er-1	ı	0.0142	i	ł	0.1293	0.1157	0.0610	ı	0.0251	1	0.0052	0.0144	ı	0.0090	ł	ł	ł
Ę	(gm/sq ft)	Pea-2 (con	0.3624	I	ı	Pepp	ı	1.070	ı	ı	0.7634	1.0225	0.4164	١	0.2996	1	0.2762	0.1192	I	0.4657	۱	ı	ı
ئم	(gm/gm)		0.02237	0.0227	0.0134		0.0357	0.0499	0.0627	0.0857	0.2150	0.2014	0.1518	0.0190	0.0411	0.00774	0.0212	0.0356	0.0214	0.0250	0.0373	0.0305	0.0584
Δm <b>L</b>	(gm)		0.2843	0.4982	0.2100		G. 0195	0.0257	0.0168	0.0393	0.1463	0.1311	0.1059	0.0320	0.0226	0.0085	0.0106	0,0302	0.0275	0.0600	0.0393	0.0294	0.1365
31	(gm)		12.7085	21.91	15.68		0.5457	0.5152	0.2680	0.4586	0.6817	0.6523	0.6975	1.6805	0.5497	1.0978	0.4992	0.8480	1.2832	2.4023	1.0531	0.9628	2,3355
Sample	Number		06640	06657	06679		14471	14448	14474	14505	14513	14526	14537	14580	14594	4612	14616	14635	14651	14665	14665 <b>A</b>	14666A	14743

- 100

1

ż

いい あい いい しきまい

いっちゃん データンプしたいたいちょう

----

	Designation		dry	damp	damp	damp	semidamp	semidamp	damp		(splashed)				(0)	to)	ioto)	hoto)	damp		damp	dry			hoto)
	Sample		P, 3 plants,	S, 3 plants,	P, 2 plants,	S, 2 plants,	S, 2 plants,	S, 2 plants,	P, 3 plants,	SW, 3 plants	SWR, 1 plant	0, 3 plants	B, 1 plant	B, 2 fruit	0, stem (phot	O, fruit (pho	0, leaves (p	0, 1 plant (p	P, 2 plants,	SW, 3 plants	P, 4 plants,	P, 2 plants,	0, l plant	B, l plant	0. 1 plant (p
a L	(sq ft/gm)		0.0127	0.0143	0.0304	0.0175	0.00342	0.0107	0.0216	0.00300	1610.0	ı	ı	ı	ı	ı	ł	1	0.0389	0.0204	0,118	0.0316	ı	ı	ı
್ರಿ	(mg/ng)	onc luded)	0.0020	0.0208	0,0108	0.0316	0.0045	0.0298	0.0500	0.0118	0.0757	ı	ı	ı	I	i	ı	t	0.0200	0.0140	0,0267	0.0252	ı	ı	ı
Δm	(gm/sq ft)	Pepper-1 (c	0,1576	1.4532	0.3556	1,8088	1.3131	2.7763	2,3144	3,9372	3,9586	1	1	ſ	ł	1	ł	1	0.5146	0.6945	0.2256	0.7982	;	ı	1
చి	(mg/mg)		0.0359	0.0547	0.0655	0.0655	0.0592	0,0592	0.1084	0,0702	0.1341	0.0342	0.0120	0.000733	ł	I	I	ı	0.0360	0.0302	0.0427	0.0591	0.0745	0.0243	ı
∆ "L	(gm)		0.0707	0.1266	0.1652	0.1652	0.1043	0.1043	0.2899	0.2311	0.2321	0.1543	0.0427	0.0029	i	ı	ł	ł	0,0975	0.0730	0,0595	0.0518	0.0883	0.0237	1
к К	(gm)		1.9701	2.3129	2.5233	2.5233	1.7603	1.7603	2.6737	3.2920	1.7307	4.5172	3.5443	3.9574	1.1116	5.6597	2.4457	9.2170	2.7040	2.4145	1,3923	0.8763	1.1853	0.9745	1.5633
Sample	Number		14693	14712	14725	14725	14731	14731	14756	1477,	14787	14802	14816	14817-2	14847-3	14847-2	14847-1	14847	06389	06402	06423	06497	06662	06685	06703

Sample	ML W	C ^I	о ^ф	щą	್ಟಿಗ	ца В	
Number	(mg)	(E3)	(gm/gm)	(gm/sq ft)	(gm/gm)	(sq ft/gm)	Sample Designation
				Pota	to-1		
14598	0.8761	0.0750	0.0856	0.2996	0,0489	0,163	P, 1 plant, dry
14659	1.1288	0,1339	0,0916	0.4657	0.0549	0.118	S, 1 plant, semidamp
14677	2.6385	0.1724	0,0653	ı	ı	ŀ	B, 1 plant
14698	2,3265	0.1719	0,0739	0.1576	0,0086	0.0546	P. 1 plant, dry
14747	3,5183	0.1745	0.0496	ı	1	ı	OR, 1 plant
14761	2,2605	0.4620	0.2044	2.3144	0.1548	0,0669	P, 1 plant, damp
14775	1,6657	0.4850	0.2912	3.9372	0.2416	0.0614	SW, 1 plant
14806	1,6557	0.1178	0.0711	ı	I	ı	0, 1 plant
14821	1,9966	0.0826	0.0414	ı	۱	I	B, 2 plants
14843	3.4072	I	ı	I	ł	I	0, 1 plant (photo)
06363	0.9100	0.0358	0.0393	I	ı	I	B, 1/2 plant
06413	1.3328	0.0455	0.0341	I	I	I	B, l plant
06374	3.8134	0.3059	0.0802	0.3446	0.0435	0,126	S, 1 plant, damp and dry
06385	4.1636	0.2481	0.0596	0.5146	0.0229	0.0445	P, 1 plant, damp
06403	1.5991	0.0997	0.0623	0.6945	0.0256	0,0369	SW, 1 plant
06422	1.3267	0.1169	0.0881	0.2256	0.0514	0.228	P, 1 plant, damp
06441	1.4553	0.1362	0,0936	0,3398	0.0569	0.167	P, 1 plant, damp
06453	1,4850	0.0932	0.0628	0.4943	0,0261	0.0528	SW, 1 plant
06464	1.7458	0.0668	0.0383	0.1067	0.0016	0.0150	S, 1 plant, semidamp
06486	4.7508	1.1213	0.2360	ì	I	ı	0, 1 plant
06495	5.2103	0.4855	0.0932	0.7982	0.0564	0.0706	P, 1 plant, dry
06508	3.3418	0.3029	0,0906	1.1494	0.0538	0.0468	2P, 1 plant, dry
06508	3.3418	0,3029	0,0906	0.3512	0.0~	1	P. 1 plant, dry

ź

i

	Sample Designation		2P, 1 plant, dry	P, I plant, dry	B, 1 plant	P, l plant, dry	P, l plant, dry	SW, 1 plant	SW, 1 plant	B, l plant	S, 1 plant, damp	P, 1 plant, damp	B, 1 plant	P, 1 plant, damp	B, I plant	PW, 1 plant	S, 1 plant, semidamp	0, 1 plant	B, 1 plant	0, 1 plant (photo)		B, 3 plants	P, 3 plants, dry	SW, 3 plants
г з	(sq ft gm)		0.0494	ı	ı	0.174	0.0988	0.0574	0.0828	ı	0.0797	0.0879	۱	0.0914	ı	0.0368	0.134	ı	I	I		ı	0.0344	0.0257
ించి	(gm gm)	oncluded )	0,0568	0.0~	1	0.2181	0.1238	0.1020	0.1472	I	0.3096	0.1850	1	0.0875	ł	0.0352	0.0485	ł	ł	ı	ish-1	ı	0.0103	0.0077
μÇ	(gm/sq ft)	Potato-1 (co	1,1494	0.3512	I	1.2536	1.2536	1.7784	1.7784	ı	3.8840	2.1056	ı	0.9571	ı	0.9571	0.3624	١	ı	ı	Rad	ı	0.2996	0.2996
లో	(mg/mg)		0,0936	0,0536	0.0107	0.2549	0.1606	0.1388	0.1840	0,0191	0.3464	0.3464	0.0569	0.1444	0.0190	0,0921	0.0675	0.255	0.0157	ł		0,0592	0.0617	0,0591
Δm L	(gm)		0,4146	0.4146	0.0846	0.6694	0.7988	0.3933	0.5138	0.0779	2.6511	2,6511	0.1690	0.5125	0.1121	0.2378	0.3928	0.6735	0,0571	ı		0.0505	0.0525	0.0587
к Г	(gm)		4.4301	4.4301	7.9239	2.6258	4.9750	2.8340	2.7530	4,0835	7.6566	7.6566	2.9701	3.5485	5.9100	2.5815	5.8217	2.6382	3,6259	2.7864		0.8532	0.8510	0.9937
Sample	Number		06509	06509	06521	06531	06532	()6547	06548	06563	06577	06577	06597	06607	06617	06627	06641	06658	06676	06697		14583	1.4593	14605

· · · · · · · · · · · ·

,

• • • • •

Sample	¥	Jm∆	లో	щĄ	್ರಿಕ	aL		
Number	(gn)	(gm)	(gm/gm)	(gm/sq ft)	(mg/mg)	(sq ft/gm)	Sample De	signation
				Radish-1 (c	onti nued)			
14609	1.1056	0.0435	0,0393	I	ł	۱	B, 4 plants	
14614	0.8500	0.0589	0,0693	0.2762	0.0179	0.0648	S, 3 plants, d	amp and dr
14633	1.4528	0.1472	0,1013	0,1192	0.0320	0.268	P, 4 plants, d	amp
14660A	1.4629	0.0673	0.0460	ł	ı	1	B, 1 plant	
14661A	1.6086	0.1084	0.0674	ı	ı	ı	B, 1 plant	
14666	2,9008	0.2188	0,0754	0.4657	0.0240	0.0515	S, 4 plants, s	emidamp
14692	3,1458	0.1971	0.0626	0.1576	0.0059	0.0374	P, 3 plants, d	ry
14711	4.2575	0.4254	0,0999	1.4532	0.0548	0.0377	S, 2 plants, d	amp
06365	0.898.0	0 0549	0,0611	ı	ł	ı	B. 3 plants	
06377	1.6551	0.1461	0.0882	0,3446	0.0369	0.107	S. 3 plants, d	amp and dr
06390	1,8129	0.1671	0.0922	0.5146	0.0408	0.0793	P, 4 plants, d	amp
06401	1.4070	0,1035	0.0736	0.6945	0.0222	0.0320	SW, 5 plants	
06411	1.5285	0.0703	0.0460	1	1	â	B, 4 plants	
06424	1.4026	0.1797	0.1281	0.2256	0.0767	0.340	P, 4 plants, d	amp
06445	0.9692	0.0880	0.0908	0,3398	0,0394	0.116	P, 4 plants, d	amp
06455	1.6318	0.1325	0.0812	0.4943	0,0298	0.0603	SW, 4 plants	
06466	2.3325	0.1507	0.0646	0.1067	0.0132	0.124	S, 4 plants, d	amp
06484	2.5843	0.9231	0.3572	i	I	1	0, 3 plants	
06566	2,1328	0,0658	0, 0309	1	I	ı	B, 3 plants	
06599	2.9121	1.3353	0,4585	ı	ł	I	0, 3 plants	
06620	2.5087	0, 0906	0,0361	1	ł	ł	B, 3 plants	
06498	4.5173	0,3331	0,0737	0.7982	0.0286	0.0358	P, 3 plants, d	Iry
06511	4.7637	0.4874	0.1023	1.1494	0.0572	0.0498	2P, 3 plants,	dry

ı

.

Sample Designation		3 plants, dry	3 plants, dry	, 3 plants	3 plants, damp	3 plants, damp	3 plants, damp	3 plants, semidamp	2 plants	2 plants		l plant	1 plant, dry	l plant	2 leaves, damp and dry	4 leaves	3 leaves, dry	, 3 leaves	3 leaves	4 leaves, dry
(E		Ч.	้ผ้	WS 6	ູ. ເ	Ч	Å.	s,	ó	в,		B,	ц.	'n	s,	°	Å,	SR	В	Ч
aL (sq_ft, §		0.081	0.132	0.0759	0,109	0.136	0.146	0,0836	ı	ı		ı	0,0204	1	0.0946	ı	0,162	2.88	۱	0,0269
c ^o p (gm/gm)	(concluded	0,0286	0,1659	0.1350	0.4223	0.2873	0,1398	0.0303	ı	I	sh-1	I	0.428	I	3.74	I	1.042	18,99	I	0.164
l∑m (gm/sq ft)	Radish-1	0.3512	1,2536	1.7784	3.8840	2.1056	0.9571	0,3624	ı	i	Squa	ı	2.100	;	39, 55	I	6.420	6,60	ł	6.095
C p ( හා්ිහා)		0.1023	0.2110	0.1801	0.4674	0.4674	0.5983	0.0664	ı	I		0.1476	0.1904	0.0595	3,89	8,43	1.102	19.05	11, 226	0.264
∆m ل (وس)		0.4874	0.8883	0.2776	0.8406	0.8406	2.6836	0.3273	0.4532	0.0464		0.1534	0,2396	0.0451	1,5521	6.4053	0.7566	7.4708	0.1787	0.2234
w L (gm)		4.7637	4.2090	1.5411	1.7985	1.7985	4.4855	4.9275	2,3185	1.8600		1.0380	1.2608	0.7582	0,3995	0.7584	0,6863	0.3922	0.7904	0.8471
Sample Number		06511	06529	06560	06581	06581	06609	06644	06666	06686		14003	14012	14020	14029-1	14035-1	14039-1	14054-1	14062-1	14072-1

* Particles on tips of leaves

ş

ł

	Sample Designation		P, 2 leaves, damp	P, 2 leaves, damp	P, 3 leaves, dry	2P, 4 leaves, damp	B, 1 plant	P, 2 plants, dry	P, 2 small plants, damp	SW, l plant	SW, 1 plant	S, 1 blossom, damp	SWR, 1 plant	SWR, 1 plant	P, 3 leaves, dry	P, 3 fruits, dry	S, 10 leaves (1 plant), damp	B, 3 leaves	P, 1 plant less 2 leaves, dry	P, 2 leaves, dry	P, 1 plant, dry	P, 3 leaves, dry	P, l fruit, dry	P, l leaf, dry	P, l leaf, dry	P, 1 leaf, dry
പ്	(sq ft/gm)		0.115	0.267	0.221	0.226	ı	0.0576	0,0966	0,0141	0,00966	0.103	0.103	I	0.0770	0.6884	0,0308	ı	0.0796	0.0838	0,0809	0.0624	0.112	0.146	0.133	0.237
ిం	(gm/gm)	continued)	4.22	9 <b>.</b> 83	4.10	12.51	ı	0.072	1.219	0,303	0.227	2.430	2,851	ı	0.1090	0.1249	0.2569	1	0.0994	0.1047	0.1010	0.5667	0,0506	0.0658	0,0598	0.1067
Δm	(gm/sq ft)	Squash-1 (c	36.82	36,82	18.59	55.41	I	1.249	12,62	21.43	23.49	23.49	27.63	1	1.413	1,413	8.348	9	1.249	1.249	1.249	0.075	0.4503	0.4503	0.4503	0.4503
లి	(gm/gm)		4.32	9 <b>°</b> 93	4.20	12.61	0.121	0.193	1,343	0.427	0,351	2,430	2.975	0.147	0.1420	0.1249	0.2899	0.0209	0.1203	0.1256	0.1219	0.5997	0.0506	0.0988	0.0928	0.1397
Ωm	(gn)		0.9240	2.7571	2,5968	9.4500	0.1853	0.5939	2,0584	0.5111	0.5258	0.2311	4.6318	0.0200	0.4208	0.0983	1.1117	0.0371	0.1396	0.0633	0.2029	1.0957	0.0322	0.0790	0.1063	0.0778
ж К	(gn)		0.2137	0.2780	0.6172	0.7504	1.5325	3.0711	1.5327	1,1966	1.4973	0,0951	1.5569	0.8170	2.9641	0.7871	3,8350	1.7771	1.1608	0.5041	1.6649	1.8270	0.6360	0.8000	1.1457	0.5570
Sample	Number		14083-1	14084-1	14095-1	14096-1	14108	14120	14134	14139	14152	14156-2*	14162	14171	14198-1	14199-2	14211-1	14223-1	14231-1,3	14231-1	14231	14239-1	14266-2	14266-1(1)	14266-1(2)	14266-1(3)

ł

7

1

i

Sample Designation		P, 1 leaf, dry	P, 1 leaf, dry	P, l leaf, dry	P, leaf, dry	P, 1 leaf, dry	P, 8 leaves, dry	P, 1 plant, dry	B, 3 leaves	B, 1 fruit	P, 2 leaves, damp	P, 2 fruits, damp	P, 2 flowers, damp	SW, 3 leaves	SW, 2 leaves	P, 1 plant, dry	P, 1 leaf, damp	SW, leaf	SW, leaf	P, 1 plant (8 leaves), dry
(sq ft/gm)		0.0313	0.150	0,00799	0.0957	0.0546	0.0924	0.0937	ı	ı	0.178	0.0172	0.172	0.0824	0.0661	0.0505	0.166	0.0924	0,111	0.0295
(mg/mg)	(continued)	0.0141	0.0676	0.0036	0,0431	0.0246	0,0146	0.0422	I	t	3.4108	0,3289	3,2833	1.9979	1.6920	0.8134	1.4221	0.8043	1,0061	0.0326
(gm/sq ft)	Squash-1	0.4503	0.4503	0.4503	0.4503	0.4503	0.4603	0.4503	1	ı	19,112	19.112	19.112	24.236	25,602	16.092	(8.55) ^b	(8.70) ^b	(01.6) ^b	1,104
(mg/mg)		0.0471	0.1006	0.0366	0.0761	0.0576	0.0746	0,0729	0.0563	0.00722	3.4671	0.3361	3,2833	2,0542	1.7483	0.8697	1.4784	0.8606	1.0624	0.0476
(gn)		0.0651	0,0985	0.0418	0.0967	0.0767	0.6419	0.6741	0.1749	0.0060	9.7672	0.7284	1.0244	7.2451	5,3067	35.0843	3.0177	2.1402	1.9538	0.9752
(m)		1,3810	0.9793	1,1422	1.2705	1,3316	8.6073	9.2433	3,1043	0.8315	2.8171	2.1669	0,3120	3.5270	3.0353	40,34	2.1204	2.4868	1.8390	20,4968
Number		14266-1(4)	14266-1(5)	14266-1(6)	14266-1(7)	14266-1(8)	14266-1	14266	14272-1	14289-2	14291-1	14292-2	14293-2*	14318-1	14321-1	14336	14343-1	14344-1	14345-1	14346 ⁸
	Number (gm) (gm/ gm) (gm/ gm/ gm/ gm/ gm/ gm/ gm/ gm/ gm) (sq ft/gm) Sample Designation	Number (gm) (gm/ gm) (gm/ sq ft) (gm/ gm) (sq ft/ gm) Sample Designation Squash-1 (continued)	Number         (gm)         (gm/gm)         (gm/gm)         (sq ft)         Sample Designation           Squash-1         (continued)         Squash-1         (continued)         14266-1(4)         P, 1         leaf, dry	Number         (gm)         (gm/gm)         (gm/gm)         (sq ft)         Sample Designation           14266-1(4)         1.3810         0.0651         0.0471         0.4503         0.0141         0.0313         P, 1 leaf, dry           14266-1(5)         0.9793         0.0985         0.1006         0.4503         0.0676         0.150         P, 1 leaf, dry	Number         (gm)         (gm/gm)         (gm/gm)         (gm/gm)         (sq ft/gm)         Sample Designation           14266-1(4)         1,3810         0.0651         0.0471         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(5)         0.9793         0.0985         0.1006         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(6)         1.1422         0.0418         0.0366         0.4503         0.0036         P, 1         1eaf, dry	Number         (gm)         (gm/gm)         (gm/gm)         (sq ft)         (sq ft/gm)         Sample Designation           14266-1(4)         1.3810         0.0651         0.0471         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(5)         0.9793         0.0985         0.1006         0.4503         0.0676         0.150         P, 1         1eaf, dry           14266-1(6)         1.1422         0.0985         0.1006         0.4503         0.00799         P, 1         1eaf, dry           14266-1(6)         1.1422         0.0967         0.4503         0.00366         0.4503         0.00799         P, 1         1eaf, dry           14266-1(7)         1.2705         0.0967         0.0761         0.4303         0.0431         0.0957         P, 1         1eaf, dry	Number         (gm)         (gm/gm)         (gm/gm)         (gm/gm)         (sq ft/gm)         sample Designation           14266-1(4)         1.3810         0.0651         0.0471         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(5)         0.9793         0.0985         0.1006         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(5)         0.9793         0.0985         0.1006         0.4503         0.00769         P, 1         1eaf, dry           14266-1(5)         1.1422         0.0985         0.1006         0.4503         0.00799         P, 1         1eaf, dry           14266-1(7)         1.2705         0.0967         0.4503         0.0431         0.0957         P, 1         1eaf, dry           14266-1(8)         1.3316         0.0761         0.4503         0.0246         P, 1         1eaf, dry	Number         (gm)         (gm)         (gm/gm)         (gm/gm)         (gm/gm)         (sq ft/gm)         (sq ft/gm)         (sq ft/gm)         (sample Designation           14266-1(4)         1.3810         0.0651         0.0471         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(5)         0.9793         0.0985         0.1006         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(5)         1.1422         0.0985         0.1006         0.4503         0.0036         0.100799         P, 1         1eaf, dry           14266-1(6)         1.1422         0.0967         0.4503         0.0036         0.00799         P, 1         1eaf, dry           14266-1(7)         1.2705         0.0967         0.4503         0.0246         P, 1         1eaf, dry           14266-1(8)         1.3316         0.0761         0.4503         0.0246         P, 1         1eaf, dry           14266-1(8)         1.3316         0.0761         0.4503         0.0246         P, 1         1eaf, dry           14266-1(8)         1.3316         0.0746         0.4503         0.0246         P, 1         1eaf, dry           14266-1(8)         0.331	Number         (gm)         (gm/gm)         (gm/gm)         (gm/gm)         (gm/gm)         (sq ft/gm)         (sq ft/gm)         (sample Designation           14266-1(4)         1,3810         0.0651         0.0471         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(5)         0.9793         0.0985         0.1006         0.4503         0.0141         0.0313         P, 1         1eaf, dry           14266-1(5)         1.1422         0.0985         0.1006         0.4503         0.0036         0.1500         P, 1         1eaf, dry           14266-1(6)         1.1422         0.09418         0.0761         0.4503         0.0036         P, 1         1eaf, dry           14266-1(8)         1.2705         0.0967         0.0761         0.4503         0.0246         P, 1         1eaf, dry           14266-1(8)         1.3316         0.0761         0.4503         0.0246         P, 1         1eaf, dry           14266-1         8.6073         0.67419         0.0729         0.0924         P, 1         1eaf, dry           14266         9.2433         0.6741         0.74203         0.0146         0.60246         P, 1         1eaf, dry	Number(gm)(gm)(gm/gm)(sq ft)(gm/gm)(sq ft/gm)sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.09850.10060.45030.06760.150P, 11eaf, dry14266-1(5)1.14220.09850.10060.45030.06760.150P, 11eaf, dry14266-1(6)1.14220.09670.07610.45030.00360.00799P, 11eaf, dry14266-1(7)1.27050.09670.07610.45030.02460.0576P, 11eaf, dry14266-1(8)1.33160.07670.07610.45030.0246P, 11eaf, dry14266-18.60730.64190.07460.45030.01460.0957P, 11eaf, dry142669.24330.67410.07290.45030.01460.0924P, 811eaf, dry142669.24330.67410.07560.45030.01460.0924P, 811eaf, dry142669.24330.67410.07560.45030.01460.0924P, 811eaf, dry142669.24330.01460.0924P, 11eaf, dry11eaf1ry142669.24330.01460.0924P, 11eaf1ry142669.24330.01460.0924P, 31eaf1ry142669.24330.07490.0953 <th>Number(gm)(gm)(gm/gm)(gm/gm)(gq ft)(gm/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)1.38100.06550.04710.45030.01410.0313P, 11eaf, dry14266-1(5)1.14220.09850.100660.45030.00799P, 11eaf, dry14266-1(7)1.27050.09670.07610.45030.003660.00799P, 11eaf, dry14266-1(8)1.33160.07670.07610.45030.00466P, 0.0576P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0957P, 11eaf, dry14266-1(8)1.33160.077670.67460.46030.01460.0924P, 81eares, dry14266-18.60730.07290.45030.01460.0924P, 81eares, dry14266-13.10430.07290.45030.01460.0924P, 31eares, dry14266-13.10430.07290.45030.01460.0924P, 31eares, dry14266-13.10430.07290.45030.01460.0924P, 31eares, dry14266-13.10430.07290.45030.01460.0924P, 31eares14289-20.83150.00600.00722B, 1fruit</th> <th>Number         (gm)         (gm/gm)         (gm/sqn ft)         (gm/sqn ft)         (gm/sqn ft)         (gm/sqn ft)         (gm/str)         (gm/str)</th> <th>Number         (gm)         (gm/gm)         (gm/gm/gm/gm/gm/gm/gm/gm/gm/gm/gm/gm/gm/g</th> <th>Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.09850.10060.45030.001410.0313P, 11eaf, dry14266-1(5)1.14220.004180.03660.45030.00360.00799P, 11eaf, dry14266-1(6)1.14220.09670.07610.45030.0046P, 11eaf, dry14266-1(8)1.33160.07660.07460.02460.0954P, 11eaf, dry14266-1(8)1.33160.07460.46030.01460.0924P, 11eaf, dry14266-18.60730.67410.07290.46030.01460.0924P, 81eaves, dry14266-18.60730.67410.07290.46030.01460.0924P, 81eaves, dry14266-18.60730.67410.07290.49220.0937P, 11eaf, dry14266-18.60730.67410.07290.49220.0937P, 21eaves, dry14289-20.83150.07600.0722B, 31fruit14289-20.83179.76723.467119.1123.41080.172P, 21eaves, damp14292-22.16690.72840.336119.1123.28330.172P, 221eaves, damp14293-2**0.3120<!--</th--><th>Number(gm)(gm)(gm/sm)(sq ft)(sq ft/gm)sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 1 leaf, dry14266-1(5)0.97930.99850.10060.45030.005760.1500P, 1 leaf, dry14266-1(5)1.14220.90850.10060.45030.00360.10313P, 1 leaf, dry14266-1(6)1.14220.00670.07610.45030.00360.00354P, 1 leaf, dry14266-1(8)1.133160.07670.07610.45030.00346P, 1 leaf, dry14266-1(8)1.133160.07670.07610.45030.00346P, 1 leaf, dry14266-1(8)1.133160.07670.07690.45030.00346P, 1 leaf, dry14266-18.60730.64190.07670.05360.09246P, 1 leaf, dry14266-18.60730.67410.07230.01460.09374P, 8 leaves, dry14266-13.10430.07420.0924P, 8 leaves, dry0.014214266-13.10430.0722B, 3 leaves14266-13.10430.0722B, 3 leaves14286-20.83150.06600.0722B, 3 leaves14289-20.83179.76723.467119.1123.41080.178P, 2 leaves, damp14291-12.81719.76723.467119.1123.28330.0172P, 2 leaves, damp14292-2<!--</th--><th>Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)lample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 1 leaf, dry14266-1(5)0.37930.09850.10060.45030.00799P, 1 leaf, dry14266-1(5)1.14220.09870.016610.45030.00799P, 1 leaf, dry14266-1(6)1.132160.07610.45030.00360.00799P, 1 leaf, dry14266-1(7)1.27050.09670.45030.01460.0576P, 1 leaf, dry14266-1(8)1.33160.076160.45030.02460.05546P, 1 leaf, dry14266-1(8)1.33160.077610.45030.012460.0924P, 1 leaf, dry14266-18.60730.67410.07590.46030.012460.0924P, 1 leaf, dry14266-13.10430.07290.45030.012460.0937P, 1 leaf, dry14266-13.10430.07290.45030.01220.0937P, 1 leaf, dry14266-13.10430.0723B, 3 leaves14266-13.10430.0723B, 3 leaves14266-13.10430.072314286-20.83150.072314286-30.70440.323890.0172P, 2 fuves, damp14289-22.16690.72840.32330.172P, 2 fuve</th><th>Number(gm)(gm)(gm/gm)(gm/gm)(sq ft)(gm/gm)(sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.09850.10060.45030.00799P, 11eaf, dry14266-1(5)1.14220.044180.03660.45030.00360.00799P, 11eaf, dry14266-1(5)1.14220.04180.07610.45030.00360.00799P, 11eaf, dry14266-1(5)1.27050.09670.07610.45030.00466P, 11eaf, dry14266-1(8)1.33160.07670.07610.45030.00466P, 11eaf, dry14266-1(8)1.33160.07670.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31660.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31660.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31040.07220.45030.01460.0934P, 11eaf, dry14266-1(8)1.31040.07220.04310.0934P, 11eaf, dry14286-18.60730.17490.07230.44130.07231114289-20.81710.07230.11220.01460.0934P, 11eares14289-12.16690.72840.336119.1123.41080.1728P, 2<th>Number(gm)(gm)(gm/gm)(sq ft)(sq ft/gm)(sq ft/gm)bangle Designation14366-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.00360.00799P, 11eaf, dry14266-1(6)1.14220.09670.07610.45030.004310.0057P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry142669.24330.07410.07460.46030.01460.0546P, 11eaf, dry142669.24330.07410.07220.01460.0924P, 21eaves, dry14292-13.10430.17490.07230.01420.0333P, 11ear, dry14289-20.83150.07330.17490.0553B, 11ruit14291-12.31040.17490.0722B, 11ruit14292-22.16690.772410.073230.01320.0172P, 21eaves, dry14291-13.03335.3054</th><th>Number(gn)(gn)(gn/gm)(gn/gm)(gn/gm)(gn/gm)(gn/gm)leaf, ft/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.99850.10060.45030.001410.0039P, 11eaf, dry14266-1(5)0.97930.90850.10060.45030.003660.45030.00799P, 11eaf, dry14266-1(6)1.14220.007710.45030.003660.45030.00366P, 11eaf, dry14266-1(8)1.33160.077610.45030.003460.0546P, 11eaf, dry14266-18.60730.641190.077610.45030.014460.0937P, 11eaf, dry14266-18.60730.641190.077610.45030.014260.0937P, 11eaf, dry14266-18.60730.674190.077610.45030.01422P, 21earf, dry14272-13.10430.17760.0937P, 11earf, dry14272-13.10430.17720.0937P, 11earf, dry14272-13.10430.17490.0723B, 314272-13.10430.17410.0723B, 314272-13.10430.17240.0723114272-12.81719.76723.467119.1123.28330.1722P, 2&lt;</th><th>Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)14266-1(4)1,38100,06510,04710,45030.01410.0313P, 11eaf, dry14266-1(5)1,37050,09850,10060,45030,01410.0357P, 11eaf, dry14266-1(6)1,14220,09670,07610,45030,0036P, 11eaf, dry14266-1(7)1,27050,09670,07610,45030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0954P, 81ears, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14269-20,81710,07290,46030,01460,0957P, 11ears, dry14289-20,17490,07290,01460,0957P, 11ears, dry14289-20,18170,07290,01460,0954P, 21ears, dry14289-20,31701,07290,01460,0954SW, 331ears, dry14289-13,037119,1123,28330,01721.924SW, 331ears, dry<tr< th=""></tr<></th></th></th></th>	Number(gm)(gm)(gm/gm)(gm/gm)(gq ft)(gm/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)1.38100.06550.04710.45030.01410.0313P, 11eaf, dry14266-1(5)1.14220.09850.100660.45030.00799P, 11eaf, dry14266-1(7)1.27050.09670.07610.45030.003660.00799P, 11eaf, dry14266-1(8)1.33160.07670.07610.45030.00466P, 0.0576P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0957P, 11eaf, dry14266-1(8)1.33160.077670.67460.46030.01460.0924P, 81eares, dry14266-18.60730.07290.45030.01460.0924P, 81eares, dry14266-13.10430.07290.45030.01460.0924P, 31eares, dry14266-13.10430.07290.45030.01460.0924P, 31eares, dry14266-13.10430.07290.45030.01460.0924P, 31eares, dry14266-13.10430.07290.45030.01460.0924P, 31eares14289-20.83150.00600.00722B, 1fruit	Number         (gm)         (gm/gm)         (gm/sqn ft)         (gm/sqn ft)         (gm/sqn ft)         (gm/sqn ft)         (gm/str)         (gm/str)	Number         (gm)         (gm/gm)         (gm/gm/gm/gm/gm/gm/gm/gm/gm/gm/gm/gm/gm/g	Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.09850.10060.45030.001410.0313P, 11eaf, dry14266-1(5)1.14220.004180.03660.45030.00360.00799P, 11eaf, dry14266-1(6)1.14220.09670.07610.45030.0046P, 11eaf, dry14266-1(8)1.33160.07660.07460.02460.0954P, 11eaf, dry14266-1(8)1.33160.07460.46030.01460.0924P, 11eaf, dry14266-18.60730.67410.07290.46030.01460.0924P, 81eaves, dry14266-18.60730.67410.07290.46030.01460.0924P, 81eaves, dry14266-18.60730.67410.07290.49220.0937P, 11eaf, dry14266-18.60730.67410.07290.49220.0937P, 21eaves, dry14289-20.83150.07600.0722B, 31fruit14289-20.83179.76723.467119.1123.41080.172P, 21eaves, damp14292-22.16690.72840.336119.1123.28330.172P, 221eaves, damp14293-2**0.3120 </th <th>Number(gm)(gm)(gm/sm)(sq ft)(sq ft/gm)sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 1 leaf, dry14266-1(5)0.97930.99850.10060.45030.005760.1500P, 1 leaf, dry14266-1(5)1.14220.90850.10060.45030.00360.10313P, 1 leaf, dry14266-1(6)1.14220.00670.07610.45030.00360.00354P, 1 leaf, dry14266-1(8)1.133160.07670.07610.45030.00346P, 1 leaf, dry14266-1(8)1.133160.07670.07610.45030.00346P, 1 leaf, dry14266-1(8)1.133160.07670.07690.45030.00346P, 1 leaf, dry14266-18.60730.64190.07670.05360.09246P, 1 leaf, dry14266-18.60730.67410.07230.01460.09374P, 8 leaves, dry14266-13.10430.07420.0924P, 8 leaves, dry0.014214266-13.10430.0722B, 3 leaves14266-13.10430.0722B, 3 leaves14286-20.83150.06600.0722B, 3 leaves14289-20.83179.76723.467119.1123.41080.178P, 2 leaves, damp14291-12.81719.76723.467119.1123.28330.0172P, 2 leaves, damp14292-2<!--</th--><th>Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)lample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 1 leaf, dry14266-1(5)0.37930.09850.10060.45030.00799P, 1 leaf, dry14266-1(5)1.14220.09870.016610.45030.00799P, 1 leaf, dry14266-1(6)1.132160.07610.45030.00360.00799P, 1 leaf, dry14266-1(7)1.27050.09670.45030.01460.0576P, 1 leaf, dry14266-1(8)1.33160.076160.45030.02460.05546P, 1 leaf, dry14266-1(8)1.33160.077610.45030.012460.0924P, 1 leaf, dry14266-18.60730.67410.07590.46030.012460.0924P, 1 leaf, dry14266-13.10430.07290.45030.012460.0937P, 1 leaf, dry14266-13.10430.07290.45030.01220.0937P, 1 leaf, dry14266-13.10430.0723B, 3 leaves14266-13.10430.0723B, 3 leaves14266-13.10430.072314286-20.83150.072314286-30.70440.323890.0172P, 2 fuves, damp14289-22.16690.72840.32330.172P, 2 fuve</th><th>Number(gm)(gm)(gm/gm)(gm/gm)(sq ft)(gm/gm)(sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.09850.10060.45030.00799P, 11eaf, dry14266-1(5)1.14220.044180.03660.45030.00360.00799P, 11eaf, dry14266-1(5)1.14220.04180.07610.45030.00360.00799P, 11eaf, dry14266-1(5)1.27050.09670.07610.45030.00466P, 11eaf, dry14266-1(8)1.33160.07670.07610.45030.00466P, 11eaf, dry14266-1(8)1.33160.07670.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31660.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31660.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31040.07220.45030.01460.0934P, 11eaf, dry14266-1(8)1.31040.07220.04310.0934P, 11eaf, dry14286-18.60730.17490.07230.44130.07231114289-20.81710.07230.11220.01460.0934P, 11eares14289-12.16690.72840.336119.1123.41080.1728P, 2<th>Number(gm)(gm)(gm/gm)(sq ft)(sq ft/gm)(sq ft/gm)bangle Designation14366-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.00360.00799P, 11eaf, dry14266-1(6)1.14220.09670.07610.45030.004310.0057P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry142669.24330.07410.07460.46030.01460.0546P, 11eaf, dry142669.24330.07410.07220.01460.0924P, 21eaves, dry14292-13.10430.17490.07230.01420.0333P, 11ear, dry14289-20.83150.07330.17490.0553B, 11ruit14291-12.31040.17490.0722B, 11ruit14292-22.16690.772410.073230.01320.0172P, 21eaves, dry14291-13.03335.3054</th><th>Number(gn)(gn)(gn/gm)(gn/gm)(gn/gm)(gn/gm)(gn/gm)leaf, ft/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.99850.10060.45030.001410.0039P, 11eaf, dry14266-1(5)0.97930.90850.10060.45030.003660.45030.00799P, 11eaf, dry14266-1(6)1.14220.007710.45030.003660.45030.00366P, 11eaf, dry14266-1(8)1.33160.077610.45030.003460.0546P, 11eaf, dry14266-18.60730.641190.077610.45030.014460.0937P, 11eaf, dry14266-18.60730.641190.077610.45030.014260.0937P, 11eaf, dry14266-18.60730.674190.077610.45030.01422P, 21earf, dry14272-13.10430.17760.0937P, 11earf, dry14272-13.10430.17720.0937P, 11earf, dry14272-13.10430.17490.0723B, 314272-13.10430.17410.0723B, 314272-13.10430.17240.0723114272-12.81719.76723.467119.1123.28330.1722P, 2&lt;</th><th>Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)14266-1(4)1,38100,06510,04710,45030.01410.0313P, 11eaf, dry14266-1(5)1,37050,09850,10060,45030,01410.0357P, 11eaf, dry14266-1(6)1,14220,09670,07610,45030,0036P, 11eaf, dry14266-1(7)1,27050,09670,07610,45030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0954P, 81ears, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14269-20,81710,07290,46030,01460,0957P, 11ears, dry14289-20,17490,07290,01460,0957P, 11ears, dry14289-20,18170,07290,01460,0954P, 21ears, dry14289-20,31701,07290,01460,0954SW, 331ears, dry14289-13,037119,1123,28330,01721.924SW, 331ears, dry<tr< th=""></tr<></th></th></th>	Number(gm)(gm)(gm/sm)(sq ft)(sq ft/gm)sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 1 leaf, dry14266-1(5)0.97930.99850.10060.45030.005760.1500P, 1 leaf, dry14266-1(5)1.14220.90850.10060.45030.00360.10313P, 1 leaf, dry14266-1(6)1.14220.00670.07610.45030.00360.00354P, 1 leaf, dry14266-1(8)1.133160.07670.07610.45030.00346P, 1 leaf, dry14266-1(8)1.133160.07670.07610.45030.00346P, 1 leaf, dry14266-1(8)1.133160.07670.07690.45030.00346P, 1 leaf, dry14266-18.60730.64190.07670.05360.09246P, 1 leaf, dry14266-18.60730.67410.07230.01460.09374P, 8 leaves, dry14266-13.10430.07420.0924P, 8 leaves, dry0.014214266-13.10430.0722B, 3 leaves14266-13.10430.0722B, 3 leaves14286-20.83150.06600.0722B, 3 leaves14289-20.83179.76723.467119.1123.41080.178P, 2 leaves, damp14291-12.81719.76723.467119.1123.28330.0172P, 2 leaves, damp14292-2 </th <th>Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)lample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 1 leaf, dry14266-1(5)0.37930.09850.10060.45030.00799P, 1 leaf, dry14266-1(5)1.14220.09870.016610.45030.00799P, 1 leaf, dry14266-1(6)1.132160.07610.45030.00360.00799P, 1 leaf, dry14266-1(7)1.27050.09670.45030.01460.0576P, 1 leaf, dry14266-1(8)1.33160.076160.45030.02460.05546P, 1 leaf, dry14266-1(8)1.33160.077610.45030.012460.0924P, 1 leaf, dry14266-18.60730.67410.07590.46030.012460.0924P, 1 leaf, dry14266-13.10430.07290.45030.012460.0937P, 1 leaf, dry14266-13.10430.07290.45030.01220.0937P, 1 leaf, dry14266-13.10430.0723B, 3 leaves14266-13.10430.0723B, 3 leaves14266-13.10430.072314286-20.83150.072314286-30.70440.323890.0172P, 2 fuves, damp14289-22.16690.72840.32330.172P, 2 fuve</th> <th>Number(gm)(gm)(gm/gm)(gm/gm)(sq ft)(gm/gm)(sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.09850.10060.45030.00799P, 11eaf, dry14266-1(5)1.14220.044180.03660.45030.00360.00799P, 11eaf, dry14266-1(5)1.14220.04180.07610.45030.00360.00799P, 11eaf, dry14266-1(5)1.27050.09670.07610.45030.00466P, 11eaf, dry14266-1(8)1.33160.07670.07610.45030.00466P, 11eaf, dry14266-1(8)1.33160.07670.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31660.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31660.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31040.07220.45030.01460.0934P, 11eaf, dry14266-1(8)1.31040.07220.04310.0934P, 11eaf, dry14286-18.60730.17490.07230.44130.07231114289-20.81710.07230.11220.01460.0934P, 11eares14289-12.16690.72840.336119.1123.41080.1728P, 2<th>Number(gm)(gm)(gm/gm)(sq ft)(sq ft/gm)(sq ft/gm)bangle Designation14366-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.00360.00799P, 11eaf, dry14266-1(6)1.14220.09670.07610.45030.004310.0057P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry142669.24330.07410.07460.46030.01460.0546P, 11eaf, dry142669.24330.07410.07220.01460.0924P, 21eaves, dry14292-13.10430.17490.07230.01420.0333P, 11ear, dry14289-20.83150.07330.17490.0553B, 11ruit14291-12.31040.17490.0722B, 11ruit14292-22.16690.772410.073230.01320.0172P, 21eaves, dry14291-13.03335.3054</th><th>Number(gn)(gn)(gn/gm)(gn/gm)(gn/gm)(gn/gm)(gn/gm)leaf, ft/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.99850.10060.45030.001410.0039P, 11eaf, dry14266-1(5)0.97930.90850.10060.45030.003660.45030.00799P, 11eaf, dry14266-1(6)1.14220.007710.45030.003660.45030.00366P, 11eaf, dry14266-1(8)1.33160.077610.45030.003460.0546P, 11eaf, dry14266-18.60730.641190.077610.45030.014460.0937P, 11eaf, dry14266-18.60730.641190.077610.45030.014260.0937P, 11eaf, dry14266-18.60730.674190.077610.45030.01422P, 21earf, dry14272-13.10430.17760.0937P, 11earf, dry14272-13.10430.17720.0937P, 11earf, dry14272-13.10430.17490.0723B, 314272-13.10430.17410.0723B, 314272-13.10430.17240.0723114272-12.81719.76723.467119.1123.28330.1722P, 2&lt;</th><th>Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)14266-1(4)1,38100,06510,04710,45030.01410.0313P, 11eaf, dry14266-1(5)1,37050,09850,10060,45030,01410.0357P, 11eaf, dry14266-1(6)1,14220,09670,07610,45030,0036P, 11eaf, dry14266-1(7)1,27050,09670,07610,45030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0954P, 81ears, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14269-20,81710,07290,46030,01460,0957P, 11ears, dry14289-20,17490,07290,01460,0957P, 11ears, dry14289-20,18170,07290,01460,0954P, 21ears, dry14289-20,31701,07290,01460,0954SW, 331ears, dry14289-13,037119,1123,28330,01721.924SW, 331ears, dry<tr< th=""></tr<></th></th>	Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)lample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 1 leaf, dry14266-1(5)0.37930.09850.10060.45030.00799P, 1 leaf, dry14266-1(5)1.14220.09870.016610.45030.00799P, 1 leaf, dry14266-1(6)1.132160.07610.45030.00360.00799P, 1 leaf, dry14266-1(7)1.27050.09670.45030.01460.0576P, 1 leaf, dry14266-1(8)1.33160.076160.45030.02460.05546P, 1 leaf, dry14266-1(8)1.33160.077610.45030.012460.0924P, 1 leaf, dry14266-18.60730.67410.07590.46030.012460.0924P, 1 leaf, dry14266-13.10430.07290.45030.012460.0937P, 1 leaf, dry14266-13.10430.07290.45030.01220.0937P, 1 leaf, dry14266-13.10430.0723B, 3 leaves14266-13.10430.0723B, 3 leaves14266-13.10430.072314286-20.83150.072314286-30.70440.323890.0172P, 2 fuves, damp14289-22.16690.72840.32330.172P, 2 fuve	Number(gm)(gm)(gm/gm)(gm/gm)(sq ft)(gm/gm)(sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.09850.10060.45030.00799P, 11eaf, dry14266-1(5)1.14220.044180.03660.45030.00360.00799P, 11eaf, dry14266-1(5)1.14220.04180.07610.45030.00360.00799P, 11eaf, dry14266-1(5)1.27050.09670.07610.45030.00466P, 11eaf, dry14266-1(8)1.33160.07670.07610.45030.00466P, 11eaf, dry14266-1(8)1.33160.07670.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31660.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31660.07460.45030.01460.0934P, 11eaf, dry14266-1(8)1.31040.07220.45030.01460.0934P, 11eaf, dry14266-1(8)1.31040.07220.04310.0934P, 11eaf, dry14286-18.60730.17490.07230.44130.07231114289-20.81710.07230.11220.01460.0934P, 11eares14289-12.16690.72840.336119.1123.41080.1728P, 2 <th>Number(gm)(gm)(gm/gm)(sq ft)(sq ft/gm)(sq ft/gm)bangle Designation14366-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.00360.00799P, 11eaf, dry14266-1(6)1.14220.09670.07610.45030.004310.0057P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry142669.24330.07410.07460.46030.01460.0546P, 11eaf, dry142669.24330.07410.07220.01460.0924P, 21eaves, dry14292-13.10430.17490.07230.01420.0333P, 11ear, dry14289-20.83150.07330.17490.0553B, 11ruit14291-12.31040.17490.0722B, 11ruit14292-22.16690.772410.073230.01320.0172P, 21eaves, dry14291-13.03335.3054</th> <th>Number(gn)(gn)(gn/gm)(gn/gm)(gn/gm)(gn/gm)(gn/gm)leaf, ft/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.99850.10060.45030.001410.0039P, 11eaf, dry14266-1(5)0.97930.90850.10060.45030.003660.45030.00799P, 11eaf, dry14266-1(6)1.14220.007710.45030.003660.45030.00366P, 11eaf, dry14266-1(8)1.33160.077610.45030.003460.0546P, 11eaf, dry14266-18.60730.641190.077610.45030.014460.0937P, 11eaf, dry14266-18.60730.641190.077610.45030.014260.0937P, 11eaf, dry14266-18.60730.674190.077610.45030.01422P, 21earf, dry14272-13.10430.17760.0937P, 11earf, dry14272-13.10430.17720.0937P, 11earf, dry14272-13.10430.17490.0723B, 314272-13.10430.17410.0723B, 314272-13.10430.17240.0723114272-12.81719.76723.467119.1123.28330.1722P, 2&lt;</th> <th>Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)14266-1(4)1,38100,06510,04710,45030.01410.0313P, 11eaf, dry14266-1(5)1,37050,09850,10060,45030,01410.0357P, 11eaf, dry14266-1(6)1,14220,09670,07610,45030,0036P, 11eaf, dry14266-1(7)1,27050,09670,07610,45030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0954P, 81ears, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14269-20,81710,07290,46030,01460,0957P, 11ears, dry14289-20,17490,07290,01460,0957P, 11ears, dry14289-20,18170,07290,01460,0954P, 21ears, dry14289-20,31701,07290,01460,0954SW, 331ears, dry14289-13,037119,1123,28330,01721.924SW, 331ears, dry<tr< th=""></tr<></th>	Number(gm)(gm)(gm/gm)(sq ft)(sq ft/gm)(sq ft/gm)bangle Designation14366-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.01410.0313P, 11eaf, dry14266-1(5)0.97330.99850.10060.45030.00360.00799P, 11eaf, dry14266-1(6)1.14220.09670.07610.45030.004310.0057P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry14266-1(8)1.33160.07670.05760.45030.01460.0546P, 11eaf, dry142669.24330.07410.07460.46030.01460.0546P, 11eaf, dry142669.24330.07410.07220.01460.0924P, 21eaves, dry14292-13.10430.17490.07230.01420.0333P, 11ear, dry14289-20.83150.07330.17490.0553B, 11ruit14291-12.31040.17490.0722B, 11ruit14292-22.16690.772410.073230.01320.0172P, 21eaves, dry14291-13.03335.3054	Number(gn)(gn)(gn/gm)(gn/gm)(gn/gm)(gn/gm)(gn/gm)leaf, ft/gm)Sample Designation14266-1(4)1.38100.06510.04710.45030.01410.0313P, 11eaf, dry14266-1(5)0.97930.99850.10060.45030.001410.0039P, 11eaf, dry14266-1(5)0.97930.90850.10060.45030.003660.45030.00799P, 11eaf, dry14266-1(6)1.14220.007710.45030.003660.45030.00366P, 11eaf, dry14266-1(8)1.33160.077610.45030.003460.0546P, 11eaf, dry14266-18.60730.641190.077610.45030.014460.0937P, 11eaf, dry14266-18.60730.641190.077610.45030.014260.0937P, 11eaf, dry14266-18.60730.674190.077610.45030.01422P, 21earf, dry14272-13.10430.17760.0937P, 11earf, dry14272-13.10430.17720.0937P, 11earf, dry14272-13.10430.17490.0723B, 314272-13.10430.17410.0723B, 314272-13.10430.17240.0723114272-12.81719.76723.467119.1123.28330.1722P, 2<	Number(gm)(gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)(gm/gm)14266-1(4)1,38100,06510,04710,45030.01410.0313P, 11eaf, dry14266-1(5)1,37050,09850,10060,45030,01410.0357P, 11eaf, dry14266-1(6)1,14220,09670,07610,45030,0036P, 11eaf, dry14266-1(7)1,27050,09670,07610,45030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0954P, 81ears, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14266-1(8)1,33160,07460,46030,01460,0957P, 11eaf, dry14269-20,81710,07290,46030,01460,0957P, 11ears, dry14289-20,17490,07290,01460,0957P, 11ears, dry14289-20,18170,07290,01460,0954P, 21ears, dry14289-20,31701,07290,01460,0954SW, 331ears, dry14289-13,037119,1123,28330,01721.924SW, 331ears, dry <tr< th=""></tr<>

a Plant very thoroughly spray-washed b Value calculated from dew balance record

ł

continued)	
le 15 (	
abl	

1

) S ple Designation		P, l leaf, horizontal, dry	P, I leaf, ~45 degrees from	horizontal, dry	B, 2 leaves	B, 1 fruit	B, 2 leaves	P, 1 leaf (north), damp	P, 1 leaf (west), damp	P, 1 flower (protected), damp	SW, I leaf	SW, 2 leaves	SW, 2 leaves	SW, 2 leaves	SW, 2 leaves	P, 2 small fruit, dry	P, 2 leaves, dry	P, I large fruit, dry	B, 2 leaves	B, 2 leaves	P, 2 leaves, damp
a _L (sq ft/gm		0.0452	0,0620		ı	ı	ı	0.187	0.121	0.186	0.0860	0.0650	0,105	0.0913	0,0931	0,0208	0.0728	0,00140	ł	ı	0,0792
Co p (gm∑gm)	continued)	0.0499	0.0685		ı	I	ļ	0.1882	0.1222	0.1870	0.0952	0.0719	0.1202	0.1401	0.2037	0,0223	0.0779	0.0015	I	ı	0,0605
∆m (gm/sq ft)	Squash-1 (	1.104	1.104		ı	ı	1	1.006	1.006	1.006	1,107	1.107	1.139	1,535	2,187	1,070	1,079	1.070	ł	ł	0.7634
с р (gm/gm)		0.1062	0.1248		C. 0996 ^a	0.00213	0. 0203	0.2085	0.1425	0.1370	0.1153	0.0922	0.1405	0.1604	0.2240	C.0244	0.1045	0,00358	0.0116	0.0603	0,0969
∆m_L (gm)		0.1443	0.1459		0.4428	0.0627	0.1273	0.3882	0.3371	0.0561	0.5735	0.4348	0.6349	0.5693	0.7372	0.1536	0.4752	0.0849	0.0464	0.1162	0.2387
لاس) (هم)		1,3584	1,1695		4,4385	29.4782	6,2282	1.8618	2,3636	0.3004	4.9646	4.7098	4.5291	3.5431	3.2959	6.2869	4.5482	23.63	4,0026	1.9282	2.4644
Sample Number		14350-1	14351-1		14365-1	14366-2	14383-1	14399-1	14400-1	14409-2*	14410-1	14411-1	14422-1	14431-1	14442-1	1444-2	14445-1	14451-2	14475-1	14504-1	14512-1

a Plant washed and sampled after dark with use of flashlight; value not used

į...

: : ....,

1

:

5.5

.

Sample	×	ĊĦ.	ی <mark>م</mark> ن	μÇ	ిరి	в Г	
Number	(E)	( <b>6</b> 3)	(mg/m	(gm/sq ft)	(mg/mg)	(sc ft/gm)	Sample Designation
				Squash-1 (c	ontinued)		
14525-1	3.1820	0.2365	0.0744	1.0225	0, 0380	0.0372	SW, 2 leaves
14536-1	4.9540	0.4716	0.0952	0.4164	0.0588	0.141	P, 2 leaves, damp
14549-1	3.0160	0.0379	0.0126	,	1	1	B, l leaf
14561-1	3,8308	0.6001	0.1566	1,3263	0.1202	0.0906	P, 2 leaves, damp
14815	2.4267	0.0703	0.0475	ł	ı	1	B, 5 leaves
14846-3	1.9716	1	i	ı	ł	ı	O, stem (photo)
14846-2	6,2331	ł	ı	ı	I	3	0, 6 fruit (photo)
14846-1	13.45	ı	i	ı	ł	ı	O, 12 Leaves (photo)
14846	22,3071	١	1	ı	1	I	O, 1 plant (photo)
05005-1	0.2512	0.0235	0.0936	ı	ı	I	B, J LERVES
06017	0.5863	1.7791	3.035	13.68	2.941	0.215	P, 3 plants, damp
06026	0.4438	0.3804	0.856	31,44	0.762	0.0242	SW, 2 plants
06038	0.3672	0.6570	1.792	39.02	1.398	0.0435	SWR, 2 plants
06049	3, 3375	0.3718	0,111	ł	ł	I	B, I plant
06057	4.1390	5,0809	1.228	6.42	1.117	0.174	P, 1 plant, da.mp
06073	0.9814	0.6675	0.680	7.03	0.569	0,0809	SWR, 1 plant
06084	2.4628	0.2856	0,116	t	i	ı	B, l plant
06093-1	2.5881	0,1652	0.0638	ı	1	1	B, 3 leaves
06108-1	2, 5605	0.3948	0.1542	0.8367	0,0904	0.108	P, 3 leaves, dry
06119-1	2,8325	2.8416	1.0032	4,342	0.9394	0.216	P, 3 leaves, dry
06120-2*	0.4609	0.2925	0.6346	4.342	0.6346	0.146	P, 2 upright open flowers
06140-1	2,5028	6.2926	2.5142	14.81	2.4812	0.168	P, 3 leaves, damp
06156 - 1	1.7869	2.1159	1.1841	16.696	1.1511	0.0689	SW. 3 leaves

118

•

_

Sample Designation	<pre>P, 1 fruit, damp P, 1 upright flower, damp P, 3 leaves, damp 2P, 3 leaves, damp 2P, 3 leaves, damp SWR, 3 (top) leaves P, 1 leaf SWR, 2 plants, semidamp</pre>	<ul> <li>B. 12 plants</li> <li>P. 10 plants, dry</li> <li>B. 6 plants</li> <li>S. 6 plants, dry and damp</li> <li>O. 6 plants, dry</li> <li>B. 6 plants, dry</li> <li>P. 6 plants, dry</li> <li>P. 6 plants, dry</li> <li>P. 6 plants, dry</li> </ul>
a _{l.} (sq_ft/gm)	0.0275 0.240 0.229 0.0154 0.163 0.163 0.163 0.116 0.104 -	- 0.0571 - 0.0355 0.139 0.126 0.125
Co p (gm/gm)	concluded) 0.4597 4.0118 0.5186 2.0060 0.1836 1.2561 0.9523 0.9523 0.8495 -	ato-1 - - 2,27 - 2,27 - 0,120 - 0,228 0,848 7,57 2,33
∆m (gm/sq ft)	Squash-1 ( 16.696 16.696 1.602 9.158 11.908 7.690 8.199 9.199 9.199	Tom. 2,100 2,100 6,420 6,095 36,82 18,59
C P (gn/gn)	0.4597 4.0118 0.5516 0.55166 2.0390 0.2166 1.3124 1.0086 0.9058 0.9058 0.0480	0.257 0.377 0.0718 2.53 7.44 0.300 0.345 1.193 7.88 2.64
Са Г (19)	0.3618 0.9520 0.9527 0.9597 3.2767 0.95002 1.6753 1.6753 1.6753 1.6753 1.6753 0.1878 0.1149	0.1162 0.1223 0.0110 0.4659 2.0474 0.0480 0.0480 0.0480 0.0480 0.0480 0.0921 0.1802 1.2030 0.4291
الا (وي)	0.7870 0.2373 1.7400 1.6070 2.3093 1.2765 1.5725 1.5725 1.1184 3.9016 1.0768	0.4510 0.3241 0.1531 0.1531 0.2752 0.1599 0.1599 0.1526 0.1526
Sample Number	06157-2 06158-2* 06164-1 06177-1 06186-1 06218-1 06218-1 06234-1 06234-1 06238-1 06288-1 06288-1	14008 14016 14016 14024 14033 14037 14045 14045 14064 14086 14099

ł

.. .. ....

Sample	بر ۲	Δ ^m L	υ ^ຊ	щŎ	ిలి	а в	
Number	(u3)	(gm)	(gm/gm)	(gm/sq ft)	(gm/gm)	(sq ft/gm)	Sample Designation
				Tomato-1 (c	oncluced)		
14100	0.1780	0.9712	5.46	55.41	5,15	0.0929	2P, 6 plants, damp
14110	0.3093	0.0242	0.0782	ł	1	ı	B, 3 plants
14132	0.2815	0.4278	1.520	12,62	1.442	0.114	P, 2 plants, damp
14280	0.9415	0.2161	0.2295	ł	ı	ı	B, 1/2 plant
14297	1.6040	3,1576	1,9686	19,112	1.7391	0160.0	P, 3/4 plant, damp
14401	1.1499	0.2214	0.1925	1,006	0.1229	0.122	P, 1/2 plant, damp
14413	0.8521	0,1505	0,1765	1.107	0,1069	0.0966	SW, 1/2 plant
14423	1,2004	0,2221	0.1848	1,139	0.1152	0,101	SW, 1/2 plant
14432	1.7910	0.3428	0,1914	1,535	0,1218	0.0793	SW, 1/2 plant
06012	0*0936	0,0513	0,548	1	ı	·	B, 20 plants
06018	0.1223	0,3747	3.07	13,68	2,52	0.184	P, 24 plants, damp
06029	0.1229	0,2380	1,935	31,44	1.387	0.0441	SW, 20 plants
06041	0.0708	0.2834	4.01	39,02	3.46	0.0887	SWR, 12 plants
06051	0,2288	0,0489	0.214	ı	ı	ł	B, 2 plants
06060	0, 4189	0.2770	0,661	6.42	0.447	0,0696	P, 3 plants, damp
				Toma	to-2		
14370	0.6777	0.1720	0,2540	I	ł	ı	B, l plant
14389	0.3532	0.0341	0,0965	ł	ı	I	B, 1/2 plant
14447	1.1413	0.2207	0.1935	1.070	0.1239	0,116	P, l plant, dry
14478	0,9149	0,0389	0.0426	I	ı	ı	B, 1 plant

* Plant washed and sampled after dark with use of flashlight; value not used

A 10 STATE OF STREET

Ì

Table 15 (concluded)

Sample Number	[−] [−] [−] [−]	کس لا ( روس)	с р (gm/gm)	∆m (gm/sq ft)	с ^о р (gm/gm)	aL (sq ft/gm)	Sample Designation
14849	7,6897	٠	I	Тота	to-3	ı	0, 3 plants (photo)
14830	1.6401	0.0721	ł	Tomat	to-4	·	B, 2 plants
06687 06687	0. 4364 0. 3254	0, 1593 0, 0533	i i	• •	1 1	11	0, 4 plants B, 5 plants

121

S. S. Salar Car

Ŧ

1:

## Table 16

SUMMARY OF PLANT AND FOLIAR CONTAMINATION DATA FUR CEREAL GRAINS

## Notations

- Sample Numbers: 14,000's for Plot No. 1 06,000's for Plot No. 2
  - B Background deposit remaining on washed specimens of foliage or plant
  - P Primary samples (short-period exposure or unweathered depositions representing initial contamination levels); 2P--samples with two successive primary depositions
  - S Secondary samples (long-period exposure representing weathering effects, multiple depositions, etc.)
  - O Original unwashed specimens (except for rain and wind cleaning to date of sampling)
  - R Weathering by rain (SR, secondary sample, washed by rain)
  - W Weathering by wind (SW, secondary sample, exposed to wind)

SWR Secondary samples, weathered by wind and then by rain

W Dry weight of foliage (gm)

 $\Delta \mathbf{m}_{\mathbf{f}}$  Dry weight of ceniza-arena retained on the foliage (gm)

- $C_{\rm p}$  Foliar concentration of ceniza-arena,  $W_{\rm L}/\Delta m_{\rm L}$  (gm/gm)
- Am Dry weight of ceniza-arena deposited per unit area of ground surface (gm/sq ft)
- C_n C_n corrected for background (gm/gm)
- $a_L$  Contamination factor,  $C_p^O/\Delta m$  (sq ft/gm)

Table 16

92

SUMMARY OF PLANT AND FOLIAR CONTAMINATION DATA FOR CEREAL GRAINS

Sample	ت ج	Δ ⁿ L	లి	Δ¤	ელ	8 ^{1]}	
Number	(8m)	(gn)	(gm/gm)	(gm/sq ft)	(gn/gn)	(sq ft/gm)	Sample Designation
				Barle	<u>1-1</u>		
14048-1	0.2635	0.2554	0,969	î	·	ł	O, several blades
14058	0.7378	0.0282	0.0382	1	I	I	B, 8 plants
14071	2.5077	0.9575	0.382	6,095	0.344	0.0564	P, 27 plents, dry ^a
14093	2.0913	4,4533	2.13	18.59	2.10	0.113	P, 22 plants, dry
14117	7.5858	0.5273	0,0695	ı	ı	ı	B, 10 stalks
14127	13.4036	1,3688	0,1021	0.0326	1.249	0.0261	P, 23 stalks, dry
14136	8,9939	4.3747	0.486	0.446	12.62	0.0353	P, 19 stalks, damp
14143	9.1307	1.6679	0.183	0.143	21.43	0,00667	SW, 14 stalks
14150	9.9340	1.0137	0.1020	0.0620	23,49	0.00264	SW, 17 stalks
14158	11.4678	0.7749	0.0676	0.0276	27.63	0.00100	SWR, 22 stalks
14157	5.7639	0.0597	0.0104	1	ı	ı	B, 10 stalks
14194	10.4726	2,1203	0.202	0.162	4.70	0.0345	P, 22 stalks, damp
14205	8.6512	1.8954	0.2191	8.348	0.1263	0.0151	S, 6 stalks, damp
14208-2	3,6248	1.0689	0.2949	8,348	0.2381	0.0285	S, 5 heads, damp
14222-1,3	5,9851	1,7805	0.2975 ^b	ı	ı	ı	B, 5 stalks less heads
14222-2	3,1808	0,1241	06E0.0	ı	ł	ı	B, 5 heads
14222	9.1659	1,9046	0.2078 ^b	I	ł	ı	B, 5 stalks
14229-2	2.6739	0.7365	0.2717	8.452	0.2149	0.0254	SW, 5 heads

a Plants in 0.35 ag ft of ground area

b Particles on some of the bottom leaves, values not used

-----

:

Sample	×	$\Delta^{n}_{L}$	లి	Δm	್ಟಿ	a B	
Number	(ga)	(gn)	(Km/gm)	(gm/sq ft)	(gm/gm)	(ad ft/gm)	Sample Designation
				Barley-1 (	continued)		
14236-2	2.4370	0,1895	0.0778	1.249	0.0388	0,0311	P, 5 heads, dry
14243-2	3.7510	1.1202	<b>6.2986</b>	10.32	0.2596	0.0251	P, 5 heads, dry
14250-1,3	6,6994	1,7626	0.2631	58.08	0.1703	0.00293	SWR, 5 stalks less heads
14250-2	3,3575	0,8142	0.2425	58.08	0.1857	0,00320	SWR, 5 heads
14250	10.0569	2.5768	0.2562	58.08	0.1638	0,00281	SWR, 5 stalks
14254-2	4.2142	0.6482	0.1538	60.81	0.0970	0,00160	SWR, 5 heads
14257	9,9345	2.3462	0.2362	60.81	0.1434	0.00236	SWR, 5 stalks
14272	9.8392	1.0850	0.1103	ı	ł	ł	B, 5 stalks
14285-2	5,2325	0.7982	0,1525	ı	ı	ı	B, 5 heads
14286	8.2110	1.7386	0.2117*	ı	ı	ı	B, 5 stalks
14305-2	5.3829	1.5618	0.2901	19.112	0.1376	0.00720	P, 5 heads, damp
14306	2,3563	0.5807	0.2464	19,112	0.1145	0.00599	P, 2 stalks, damp
14310-2	4.5658	1,2662	0.2773	24.236	0.1248	0,00515	SW, 5 heads
14315-2	3,6933	0,8167	0.2211	24.236	0.0686	0,00283	SW, 5 heads
14320-2	2,8613	0.5600	0.1957	24,236	0.0432	0.00178	SW, 5 heads
14327-2	3.0136	0.5456	0.1810	25,602	0.0285	0.00111	SW, 5 heads
14333-2	2.9892	0.4781	0,1599	26.444	0.0074	0.0280	SWR, 5 heads
14359-2	4.9403	0.9466	0,1915	1	ı	ı	OR, 5 heads
14381-1,3	7.8510	1.9497	0.2475	ł	1	ı	B, 5 stalks less heads
14381-2	6,0912	1.0013	0.1644	ı	ł	:	B, 5 heads
14381	13,9422	2.5510	0.1830	ı	ł	ł	B, 5 stalks

* Lower leaves almost dead, difficult to clean in field; value not used

2

ę

	gm) Sample Designation		P, 5 stalks less heads, damp	P, 5 heads, damp	5 P, 5 stalks, damp	SW, 5 heads	6 SW, 5 heads	() SW, 5 stalks less heads	5 SW, 5 heads	3 SW, 5 stalks	5 SW, 5 heads	5 SWR, 5 heads	9 SWR, 5 stalks	OR, 5 stalks	OR, 10 heads	B, 4 plants	P, 28 plants, damp*	4 SW, 17 plants	7 SWR, 16 plants	OR, 10 stalks	
a I V	(sq ft/{	~	0.0112	0,0163	0,0082	0,0142	0.0075	0,0059	0,0032	0,00613	0,00205	0,0028	0,00575	ı	ł	ı	0,0466	9600 0	0,0022	ı	0100
00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(ga/ga)	(continued	0.0113	0.0164	0,0083	0.0157	0.0116	0.0129	0,0071	0.0134	0.0045	0,0095	0,0193	ı	I	ı	0.637	0,303	0.0884	I	0,0
Δm (1) (1) (2)	(gu/sq ft)	Barley-l	1,006	1,006	1,006	1,107	1,535	2.187	2.187	2.187	2.200	3,333	3,333	ł	1	·	13,68	31.44	39.02	ı	0.960
υ ^α	(gm/gm)		0.3313	0.1888	0.2746	0,1881	0,1840	0.3329	0.1795	0.2797	C.1769	0,1819	0.2856	0,2663	0,1613	0,0259	0.663	0.329	0.1143	0,0386	000 0
<b>4</b>	(gm)		3,0549	1.1126	4,1675	0.9716	0.9664	2.9644	0.0493	3,8137	0.8489	0.7502	2.8492	1.4772	1.1303	0,0093	1.8706	0.5607	0,1868	0.1917	0010 0
¥⊐ (	(ga)		9.2210	5.9556	15,1766	5,1653	5.2514	8,9052	4.7302	13,6354	4.7998	4.1240	9.9776	5.5455	7,0081	0.3594	2.8175	1.7046	1,6360	4.9618	0007 01
Sample	Number		14395-1,3	14395-2	14395	14419-2	14429-2	14438-1,3	14438-2	14438	14462-2	14466-2	14471	14481	14485-2	06011	06021	06032	06035	06048	Achee

* Plants in 0.35 sq ft of ground area

2

ŧ

Samp le	, ⁻ ,	Δ ^m L	లి	Δm	್ರಿಗಿ	а ¹¹	
Number	( <b>E</b> 3)	(B)	(gm/gm)	(gm/sq ft)	(gn/gn)	(sq ft/gm)	Sample Designation
				Barley-1 (c	ontinued)		
06074	10,5860	1,1224	0,1060	0.0674	9.26	0,00728	SWR, 21 stalks
06080	8.0749	0.4963	0.0615	ı	ı	1	OR, 15 starks
06102-2	3.8496	0.2867	0.0745	ł	ı	ı	B, 5 heads
06105	8.3248	0.6263	0.0752	i	I	J	B, 5 stalks
06124-2	3,3980	0.3109	0.0915	4.342	0.0170	0,00392	P, 5 heads, damp
06126	7.5500	0.8309	0.1101	4.342	0.0349	0.00804	P, 5 stalks, dry
06132-2	2.9880	0.4900	0.1640	14,81	0.1072	0.00724	P, 5 heads, damp
06143	5.6272	2.8163	0.5005	14,8)	0.4077	0.0275	P, 5 stalks, damp
06148-2	2.7948	0.3515	0.1258	16.70	0.0690	0,00413	SW, 5 heads
06159	5.5424	0.9589	0.1730	16.70	0.0802	0.00480	SW, 5 stalks
06169-2	2,9524	0,3651	0.1237	18,14	0.0669	n.00369	S, 5 heads, damp
06180-2	3.3363	0.4991	0.1496	9,158	0.0238	0.00260	2P, 5 heads, damp
06186-2	3.0524	0.1887	0,0618	11.908	0.0050	0.000420	SWR, 5 heads
16190	7.1345	0.5528	0.0775	28.60	0.0023	0.0000804	SWR, 5 stalks
06199-2	5.5485	0.6249	0.1126	ł	ı	1	OR, 5 heads
06200	9,1502	1,0808	0,1181	,	ı	ı	OR, 5 stalks
06206	3.7146	0,2946	0.0793	ı	ı	ı	B, 5 heads
06207	7.7044	1,1223	0.1457	ı	ı	ı	B, 5 stalks
06222-2	4.6149	0.7351	0.1593	7.690	0.0633	0,00823	P, 5 heads, damp
06225	7.8909	1.2664	0,1605	7.690	0.0286	0,00372	P, 5 stalks, damp
06237-2	4.0412	0.6328	0,1566	8.199	0,0606	0,00739	SW, 5 heads
06249-2	4.4920	0.6584	0,1466	8,199	0.0506	0.00617	SWR, 5 heads
06256-1,3	5.3220	0.9793	0,1840	8,199	0.0149	0.00182	SWR, 5 stalks less heads

signation				ss heads, damp	<b>D</b> .	du	right	nging down					y	amp				amp	amp		emp	
Sample Dec		SWR, 5 heads	SWR, 5 stalks	P, 5 stalks let	P, 5 heads, dam	P, 5 stalks, dau	OR, 5 heads, up;	OR, 5 heads, hai	OR, 5 stelks	OR, 10 heads		OR, 5 stalks	P, 5 stalks, dr	S, 10 stalks, d	OR, 10 stalks	B, 10 stalks	B, 20 plants	P, 20 plants, d	P, 20 plants, d	SW, 20 plants	S, 20 plants, d	
a L (sq ft/gm)		0.00271	0.00251	0.000855	0.00842	0.00484	ı	ı	ł	ł		ł	0.0419	0.0183	ı	ı	ı	9.185	<b>J.132</b>	0.0194	0.0384	
с ^о р (gm/gm)	continued)	0.0222	0.0206	0,0050	0.0492	0,0283	ı	ı	ı	1	<u>y-2</u>	ı	0,0066	0.0266	ı	1	ı	0.0417	0.0447	0,0096	0.0041	
Δm (gm/sq ft)	Barley-1 (	8.199	8,199	5.845	5.845	5,845	ı	ł	ı	ł	Barle	ı	0.1576	1.4532	,	I	ł	0.2256	0,3398	0,4943	0.1067	
c p (ga/gn)		0,1182	0.1525	0.1741	0,1452	0,1602	0.2310	0.1975	0.2362	0,1412		0,0239	0.0305	0,0505	0.0165	0.00748	0,0383	0,0800	0.0830	0.0479	0.0341	
Δ ^m L (gm)		0.5776	1.5569	0.8681	0.6676	1.5357	0.9028	0.8779	1,3358	1,2043		0.0574	0.0709	0,2087	0.1309	0.0576	0.0507	0.0870	1601.0	0.0610	0.0535	0 0 0 0
(سال الم		4.8848	10.2068	4.9875	4.5984	9,5859	3.9171	4.4500	5.5315	8.5280		2.4065	2,3228	4.1293	7.9190	7.7000	1.3240	1.0873	1.3147	1.2740	1.5674	
Sample Number		06256-2	06256	06277-1,3	06277-2	06277	06286-2	06287-2	06303	06307-2		14675	14705	14720	14812	14829	06415	06427	06446	06458	06468	****

,

ı

•

;

•

Sample	*	Δ ^m L	రి	۵m	ింది	<b>•</b>	
Number	(KJ)	(gn)	(gm/gm)	(gm/sq ft)	(gm/gm)	(sq ft/gm)	Sample Designation
				<u>Barley-2</u> (c	on ti nued)		
06536	2,1850	0.3827	0,1751	1.2536	0,0395	0.0315	P, several stalks, dry
06537	3.1487	0.5644	0,1792	1.2536	0.0436	0.0348	P, 10 stalks, dry
06555	3.0160	0.4457	0.1478	1.7784	0.0122	0.00686	SW, 10 stal
06572	2.8469	0,0902	0.0317	ı	ı	ı	B, 10 stalks
06590	2.8519	0.3806	0.1335	2,1056	0.1318	0.0483	P, 10 stalks, damp
06603	3.6210	0.6748	0,1864	ı	ı	ı	0, 10 stalks
06613	4.0339	0.9746	0.2416	0.9571	0.0552	0.0577	P, 10 stalks, damp
06625	3.8305	0.0821	6,0214	ı	ł	I	B, 10 stalks
06631	6,6753	8	ł	ı	ı	ł	O, 10 stalks, leaf area (photo)
06651	4.3920	0.1518	0.0346	0.3624	0.0132	0.0364	S, 10 stalks, semidamp
06670	9.46	0.3635	0.0384	ı	ı	ı	OK, 10 stalks
06675	9.2778	I	ı	ı	I	ł	0, 10 stalks (photo)
06990	4.8061	0.1206	0,0251	ı	ı	ı	B, 5 stalks
				Ont	귀		
14046-1	0.4768	1.3371	2,804	ı	2.744	ı	O, several blades
14051-1	0.7453	0.0623	0.0836	ı	0.0234	I	OR, several blades
14059	0.8474	0.0511	0.0602	ı	ı	ı	B, 6 plants
14070	4,4094	1.0062	0.228	6,095	0.168	0.0276	P, 27 plants, dry [*]
14092	1.5543	1,5542	1,000	18.59	0.954	0.0513	P, 10 plants, dry
14116	6,2849	0,1918	0,0305	I	ı	ŀ	B, 10 stalks

* Plants in 0.35 sq ft of ground area

ļ

- - - ----

----

Samp1e	¥ ¥	<b>Δ</b> ⁿ L	చే	Δm	ిం	a I	
Number	(gn)	(gn)	(gm/gm)	(gm'sq ft)	(gm/gm)	(sq ft/gm)	Sample Designation
				0at-1 (co	ntinued)		
14126	6.4081	0.4113	0.0642	0.0337	1.249	0.0270	P, 21 stalks, dry
14137	10.8897	3.1205	0.297	0.259	12.62	0.0205	P, 22 stalks, damp
14144	12.5156	1.7642	0,141	0,113	21.43	0.00527	SW, 24 stalks
14149	9.5595	0.8993	0.0941	0,0665	23.49	0.00283	SW, 15 stalks
14159	8,3123	0.3792	0,0456	0,0180	27.63	0.000651	SWR, 17 stalks
14168	3.8728	0,0961	0.0248	ı	t	1	B, 10 stalks
14183	8.2741	0.3837	0.0464	0.0188	16.26	0.00116	SW, 17 stalks
14195	9.0570	1,0386	0,1147	0.0847	4.70	0.0180	P, 15 stalks, damp
14206	8,9691	0.7489	0,0835	8.348	0.0477	0.00571	S, 8 stalks, damp
14207-2	1.6464	0.0288	0.0175	8.348	0.0075	0,000898	S, 5 heads, damp
14220-1,3	4,0050	0.1363	0.0340	ł	ı	:	B, 5 stalks less heads
14220-2	1.2205	0.0083	0.00680	T	ł	ł	B, 5 heads
14220	5.255	0.1446	0.0277	١	I	·	B, 5 stalks
14228-2	1.1467	0.0167	0.0146	8.452	0.0046	0.000544	SW, 5 heads
14237-2	1,2139	0.0133	0.0110	1.249	0.0042	0.00336	P, 5 heads, dry
142442	1.8837	0.0620	0.0329	10.32	0.0261	0.00253	P, 5 heads, dry
14248-1,3	7.3155	0.9688	0.1324	58,08	0.0984	0.00169	SWR, 5 stalks less heads
14248-2	1.7750	0.0170	0.0096	58.08	0.0028	0.0000482	SWR, 5 heads
14248	3, 0905	0.9858	0.1084	59.08	0.0726	9.00125	SWR, 5 stalks
14253-2	2.0179	0.0175	0.0087	60.81	0.0019	0.0000312	SWR, 5 heads
14261	6,3805	0.4541	0.0712	60.81	0.0354	0.000582	SWR, 5 stalks
14271	7,3720	0.3043	0.0413	ŧ	۱	ı	B, 5 stalks
14283-2	3,6865	0.0545	0.0148	1	I	1	B, 5 heads
14284	6,3236	0.4384	0.0693	1	ı	ı	B, 5 stalks
14303-2	2.6962	0.2618	0.0971	19.112	0.0823	0.00431	P, 5 heads, damp
14304	2.7614	0.5122	0.1855	19.112	0.1162	0.00608	P, 2 stalks, damp

1.

¢

1

Samle	*"	۵ _۳	లి	Δm	ಿಂದಿ	8 1	
Number	(gn)	(gn)	(gm/gm)	(gm/sq ft)	(gn/gn)	(sq ft/gm)	Sample Designation
				0 <b>a</b> t-1 (co	ntinued)		
14309-2	2,8503	0.2205	0,0774	24.236	0.0626	0.00258	SW, 5 heads
14314-2	3,4359	0.2593	0.0755	24.236	0,0607	0.00250	SW, 5 heads
14326-2	2.8224	0.0953	0.0338	25.602	0.0190	0.0C0742	SW, 5 heads
14332-2	2,9904	0.0734	0.0245	26.444	0,0097	0.000367	SWR, 5 heads
14358-2	5,7293	0.1510	0.0261*	ı	ł	ł	OR, 5 heads
14378-1,3	9,0386	0.6202	0,0686	I	I	ſ	B, 5 stalks less heads
14378-2	3,2357	0.0557	0.0172	T	I	ı	B, 5 heads
14378	12.2743	0.6759	0.0551	ı	I	ı	B, 5 stalks
14394-1.3	5,8904	0.4937	0.0838	1.006	0.0152	0.0151	P, 5 stalks less heads, damp
14394-2	4.2113	0.1126	0.0268	1.006	0,0143	0.0142	P, 5 heads, damp
14394	10.1017	0,6063	0.0600	1.006	0.0148	0.0147	P, 5 stalks, damp
14418-2	5,9012	0.1250	0.0212	1.107	0,0087	0.00786	SW, 5 heads
14428-2	3,6571	0.0734	0.0201	1.535	0,0076	0.00495	SW, 5 heads
14437-1,3	5.1781	0.3934	0,0761	2,187	0,0075	0.00343	SW, 5 staiks less heads
14437-2	3.1425	0.0506	0.0161	2,187	0.0036	0.00164	SW, 5 heads
14437	8.3206	0.4440	0,0534	2.187	0,0060	0.00274	SW, 5 stalks
14461-2	4.1764	0.0606	0.0145	2.200	0.0020	60600C°0	SW, 5 heads
14465-2	3.4422	0.0516	0.0149	3,333	1.0024	0.000720	SWR, 5 heads
14470	10.3497	0.6536	0.0630	3,333	0.0079	0.00237	SWR, 5 stalks
14482	10,9917	0,6459	0.0646	1	ı	ŧ	OR, 5 stalks
14486-2	4.3356	0.0541	0.0127	ı	ı	ł	OR, 5 heads
14498-2	6,8526	0.0512	0.00746	,	ł	I	OR, 5 heads

* Value not used

ji ž

Training of the second s

ц. Ц

Number         (gm)         (gm)         (gm/gm)         (gm/	Sample	R K	<b>An</b> _L	లి	Δm	ిచి	a B	
(at-1) (continued)           14521-2         7.5461         0.00657         0.0119         0.7634         0.0043         0.00563         P, 5 head, 1 damp           14533-2         6.4040         0.0689         0.0015         0.0016         0.00165         Sw, 5 heads         damp           14533-2         6.4040         0.0689         0.0017         0.1143         0.0016         U,00156         Sw, 5 heads         damp           14544-2         3.5181         0.0017         0.1144         0.00117         0.1144         0.00141         0.00356         P, 5 heads         damp           14566-2         8.8707         0.0673         0.0180         0.0321         -         -         -         0.0, 5         0.0180         0.0132         -         -         -         0.0, 5         0.0180         0.0132         -         -         -         0.0, 5         0.0023         0.0023         Sw, 20 plants         0.0031         -         -         0.0, 1         0.0023         0.0023         1.440         0.0117         0.1748         0.0105         0.0023         Sw, 20 plants         0.011         0.0023         Sw, 20 plants         0.003         1.414         0.00218         Sw, 20 plants         0.001<	Number	(mg)	(u.)	(gm/gm)	(gm/sq ft)	( <u>mg/u</u> 2)	(sq ft/gm)	Sample Designation
14521-27.54610.08970.01190.75340.00430.00553 $P_1$ 5 heads, 1 damp14532-26.40400.056890.00170.101540.00166Sw, 5 headsdamp14532-28.87070.04160.00170.11640.00156Sw, 5 headsdamp14556-28.87070.06740.00740.0356P_5 5 heads, damp14556-28.87070.06740.00740.05,5 %5 heads, damp060090.55020.01800.03210.05,5 %5 heads, damp060342.51751.28940.7313.680.4900.0331P, 32 plants, damp060342.14810.21580.100531.440.06840.00218Sw, 20 plants060359.80032.25210.20560.01756.420.00720Sw, 20 plants060659.80032.22510.30310.01,1750606818.77731.54580.09327.030.00120Sw, 22 stalks, damp0606818.77731.54580.00332.22510.3032060187.11520.24350.03320.11,100.114,10060191.1140180.33551.54360.00120Sw, 22 stalksdemp06104111.40180.3355061122.71760.03660.0150<					0at-1 (c	ontinued)		
14533-2         6.4040         0.0589         0.0012         1.0255         0.0016         0.00156         Sw, 5 heads           14544-2         3.5181         0.0416         0.0117         0.4164         0.0041         0.00855         P, 5 heads         damp           14564-2         3.5181         0.0416         0.0117         0.4164         0.0041         0.00855         P, 5 heads         damp           14554-2         3.5175         1.2894         0.773         -         -         B, 6 plants           06009         0.5502         0.0180         0.0321         -         -         B, 6 plants           06031         2.1481         0.2316         0.1005         31.44         0.0684         9.0191         8%, 20 plants           06033         2.1481         0.2316         0.1005         31.44         0.0684         5%, 20 plants           06034         2.1789         0.1748         0.0105         39.02         0.0311         -         -         0%, 10 stalts           06033         2.1481         0.2315         0.2315         0.2315         0.2418         0.1012         5%         0.1145           06047         7.7643         0.2317         0.2315         0	14521-2	7.5461	0.0897	0.0119	0.7634	0.0043	0.00563	P, 5 head, 1 damp
14544-2         3.5181         0.0416         0.0117         0.4164         0.0041         0.00955         P, 5 heads, damp           14556-2         8.8707         0.0674         0.00774         -         -         -         B, 6 plants           06009         0.5602         0.0180         0.0321         -         -         B, 6 plants           06003         0.55175         1.2894         0.0321         -         -         B, 6 plants           06003         2.5175         1.2894         0.732         13.44         0.0031         P, 32 plants, damp           06031         2.4789         0.1748         0.0705         31.44         0.0684         SW, 20 plants           06033         2.4789         0.1748         0.0705         31.44         0.0634         SW, 20 plants           06034         7.7643         0.2016         0.175         6.42         0.00218         SW, 20 plants           06045         9.8003         2.2451         0.7033         9.0256         0.175         6.42         0.0010           06046         18.777         1.5458         0.0331         7.03         0.0072         P, 3 stalks           06061         15.2336         0.6250	14533-2	6.4040	0.0589	0,0092	1.0225	0,0016	0.00156	SW, 5 heads
14556-2       8.8707       0.0674       0.00774       -       -       -       0.8, 5 heads         06009       0.5502       0.0180       0.0321       -       -       -       B, 6 plants         06003       2.5175       1.2894       0.73       13.68       0.4800       0.0351       P, 32 plants, damp         06031       2.5175       1.2894       0.73       13.68       0.00584       5.0,218       10.0105         06034       2.4789       0.1748       0.0705       39.02       0.0384       0.00218       5.%, 20 plants         06034       2.4789       0.1748       0.0705       39.02       0.0384       0.0218       5.%, 20 plants         06047       7.7643       0.2465       0.0105       31.44       0.00218       5%, 20 plants         06068       18.7773       1.5458       0.0032       0.0326       0.175       6.42       0.0272       P, 24 stalks         06073       15.2336       0.6250       0.0410       0.0093       9.26       0.0010       SW, 22 stalks         06073       15.2336       0.6250       0.0132       -       -       0%, 10 stalks         06074       1.14018       0.3352       0.0033 </th <th>14544-2</th> <th>3.5181</th> <th>0.0416</th> <th>0.0117</th> <th>0.4164</th> <th>0.0041</th> <th>0.00985</th> <th>P, 5 heads, damp</th>	14544-2	3.5181	0.0416	0.0117	0.4164	0.0041	0.00985	P, 5 heads, damp
060090.556020.01800.0321B, 6 plants060032.51751.28940.71313.680.4900.0351P, 32 plants, damp*060032.51751.28940.71313.680.003840.00318SW, 20 plants, damp*060032.51751.28940.010531.440.006845.90SW, 20 plants06034A2.47890.17480.070539.020.03840.000984SW, 20 plants060477.76430.24650.070539.020.03840.000984SW, 20 plants060659.80032.22510.20660.17556.420.0272P, 24 stalks0606818.77731.54580.08230.050667.030.00120SW, 20 stalks0607515.23360.62500.04100.009339.2660.00100SW, 22 stalks0601122.71769.03860.0332B, 5 stalks06101411.40180.43900.03850.0118061022.71760.03860.015906101411.40180.43900.038506101411.40180.43900.03850.015406102512.5911.2860.03860.01509.5 stalks0610212.5912.5911.2860.03860.01509.5 stalks <th>14556-2</th> <th>8.8707</th> <th>0.0674</th> <th>0.00774</th> <th>ı</th> <th>ł</th> <th>ı</th> <th>OR, 5 heads</th>	14556-2	8.8707	0.0674	0.00774	ı	ł	ı	OR, 5 heads
06020         2.5175         1.2894         0. ^{-1.2} 13,68         0.480         0.0351         P, 32         plants, damp*           06031         2.1481         0.2158         0.1005         31.44         0.0684         0.00218         5%, 20         plants           06034         2.4789         0.1748         0.0705         39.02         0.0384         5%, 20         plants           06047         7.7643         0.2465         0.0705         39.02         0.0384         5%, 20         plants           06065         9.8003         2.0251         0.2066         0.175         6.42         0.0272         P, 24         stalks           06068         18.7773         1.5458         0.0823         0.0506         7.03         0.00720         5%, 30         stalks           06075         15.2336         0.6250         0.0410         0.0093         9.26         0.0710         5%, 10         stalks           06081         7.1152         0.2435         0.0342         -         -         0%, 10         stalks           06104         11.4018         0.4390         0.0335         9.26         0.00100         5%, 10         stalks           06104         1	0000	0.5602	0.0180	0.0321	ı	1	1	B, 6 plants
06031         2.1481         0.2158         0.1005         31.44         0.0684         0.00218         Sw, 20 plants           06034A         2.4769         0.1748         0.0705         39.02         0.0384         0.00238         Sw, 20 plants           06047         7.7643         0.2465         0.0705         39.02         0.0384         0.000984         Sw, 20 plants           06046         9.8003         2.2251         0.2066         0.175         6.42         0.00720         Sw, 30 stalks           06068         18.7773         1.5458         0.0823         0.0506         7.03         0.00720         Swr, 20 plants           06068         18.7773         1.5458         0.0823         0.0506         7.03         0.00720         Swr, 20 stalks           06075         15.2336         0.6250         0.0410         0.00933         9.266         0.00100         Swr, 22 stalks           06104         11.4018         0.0385         -         -         -         -         0.8, 10 stalks           06104         11.4018         0.4390         0.0132         -         -         B, 5 stalks         0.118           06112         12.5331         0.2306         0.0314 <td< th=""><th>06020</th><th>2.5175</th><th>1.2894</th><td>0.512</td><td>13,68</td><td>0.480</td><td>0,0351</td><td>P, 32 plants, damp*</td></td<>	06020	2.5175	1.2894	0.512	13,68	0.480	0,0351	P, 32 plants, damp*
06034A         2.4789         0.1748         0.0705         39.02         0.0384         0.000984         SWr. 20 plants           06047         7.7543         0.2465         0.0317         -         -         0K. 10 stalks           06047         7.7543         0.2465         0.0317         -         -         0K. 10 stalks           06065         9.8003         2.0251         0.2066         0.175         6.42         0.0272         P. 24 stalks, damp           06066         18.7773         1.5458         0.09823         0.0506         7.03         0.00100         SWR, 20 stalks           06075         15.2336         0.6350         0.0410         0.0093         9.26         0.00100         SWR, 22 stalks           06076         11.152         0.2435         0.0342         -         -         0R, 10 stalks           060112         2.7176         9.0386         0.0132         -         -         B, 5 heads           06104         11.4018         0.4390         0.0385         -         B, 5 stalks           06112         2.7176         0.4390         0.0386         4.342         0.0118         P, 5 stalks           06123-2         3.3390         0.0986	06031	2.1481	0.2158	0,1005	31.44	0.0684	0,00218	SW, 20 plants
06047         7.7643         0.2465         0.0317         -         -         -         0.0., 10 stalks           06065         9.8003         2.0251         0.2066         0.175         6.42         0.0272         P, 24 stalks, damp           06065         18.7773         1.5458         0.0823         0.0506         7.03         0.00720         5WR, 30 stalks, damp           06075         15.2336         0.6250         0.0410         0.0093         9.26         0.00100         5WR, 22 stalks, damp           06071         15.2336         0.6235         0.0342         -         -         0R, 10 stalks           06081         7.1152         0.2435         0.0342         -         -         0R, 10 stalks           06012         2.7178         9.0360         0.0132         -         -         0R, 10 stalks           06104         11.4018         0.4390         0.0385         -         -         B, 5 stalks           06103-2         3.3390         0.0956         0.0132         -         -         B, 5 stalks           06123-2         3.33390         0.0956         0.0385         P, 5 stalks         dry           06123-12.53         12.59         0.0511	06034A	2.4789	0.1748	0,0705	39.02	0.0384	0.000984	SWR, 20 plants
06065         9.8003         2.0251         0.2066         0.175         6.42         0.0272         P.         24 stalks, damp           06068         18.7773         1.5458         0.0823         0.0506         7.03         0.00720         SWR, 30 stalks, damp           06075         15.2336         0.6410         0.0933         9.266         0.00100         SWR, 22 stalks           06081         7.1152         0.2435         0.0342         -         -         0R, 10 stalks           06081         7.1152         0.2435         0.0342         -         -         0R, 10 stalks           06081         7.1152         0.2435         0.0332         -         -         0R, 10 stalks           06012         2.7176         9.0360         0.0132         -         -         B, 5 heads           06104         11.4018         0.4390         0.0385         -         -         B, 5 stalks           06123-2         3.3390         0.09566         0.0385         -         B, 5 stalks         damp           06123-2         3.0731         0.2336         0.00180         P, 5 stalks         damp           06123-2         3.0731         0.2373         0.0160         P, 5	06047	7.7643	0.2465	0,0317	1	ł	I	OR, 10 stalks
06068         18.7773         1.5458         0.0823         0.0506         7.03         0.00720         SWR, 30 stalks           06075         15.2336         0.6250         0.0410         0.0093         9.26         0.00100         SWR, 22 stalks           06081         7.1152         0.2435         0.0342         -         -         0R, 10 stalks           06081         7.1152         0.2435         0.0132         -         -         0R, 10 stalks           06081         7.1152         0.2435         0.0132         -         -         0R, 10 stalks           06101-2         2.7178         0.0386         -         -         -         B, 5 heads           06103-2         3.7390         0.0956         0.0385         -         -         B, 5 stalks           06123-2         3.3390         0.0956         0.0511         0.0118         P, 5 stalks, dry           06123-2         12.59         1.1286         0.0750         14.81         0.0550         P, 5 stalks, dry           06131-2         3.0731         0.2335         P, 5 stalks, dry         0         0.0160         P, 5 stalks, dry           06131-2         3.0731         0.23375         0.0160         P, 5 st	06065	9.8003	2.0251	0.2066	0.175	6.42	0.0272	P, 24 stalks, damp
06075         15.2336         0.6250         0.0410         0.0093         9.26         0.00100         SWr, 22 stalks           06081         7.1152         0.2435         0.0342         -         -         0R, 10 stalks           06081         7.1152         0.2435         0.0342         -         -         0R, 10 stalks           06101-2         2.7178         0.0360         0.0132         -         -         B, 5 heads           06104         11.4018         0.4390         0.0385         -         -         B, 5 heads           06123-2         3.3390         0.0956         0.0386         4.342         0.0511         0.0118         P, 5 heads, damp           06123-2         3.3390         0.0556         0.0750         14.81         0.0551         0.0118         P, 5 heads, damp           06131-2         12.59         1.1286         0.0750         14.81         0.0550         P, 5 heads, damp           06131-2         3.0731         0.2336         0.0160         P, 5 heads, damp           06131-2         3.0731         0.2337         0.00160         P, 5 heads, damp           06131-2         9.8770         2.6996         0.2733         14.81         0.2375	06068	18.7773	1.5458	0,0823	0.0506	7.03	0.00720	SWR, 30 stalks
06081         7.1152         0.2435         0.0342         -         -         -         OR, 10 stalks           06101-2         2.7178         9.0360         0.0132         -         -         B, 5 heads           06104         11.4018         0.4390         0.0385         -         -         B, 5 heads           06104         11.4018         0.4390         0.0385         -         B, 5 heads           061032         3.3390         0.0956         0.0386         4.342         0.0154         0.00355         P, 5 heads, damp           06123-2         3.3390         0.0956         0.0286         4.342         0.0154         0.00355         P, 5 heads, damp           06125         12.59         1.1286         0.0896         4.342         0.0511         0.0118         P, 5 heads, damp           06131-2         3.0731         0.23306         0.0750         14.81         0.0650         0.00439         P, 5 heads, damp           06131-2         9.8770         2.6996         0.2733         14.81         0.2375         0.0160         P, 5 stalks, damp           06142         9.88770         0.2733         14.81         0.2375         0.0160         P, 5 stalks, damp	06075	15.2336	0.6250	0.0410	0,0093	9.26	0.00100	SWR, 22 stalks
06101-2       2.7176       0.0360       0.0132       -       -       B, 5 heads         06104       11.4018       0.4390       0.0385       -       B, 5 stalks         06104       11.4018       0.4390       0.0385       -       B, 5 stalks         06123-2       3.3390       0.0956       0.0386       4.342       0.0154       0.00355       P, 5 heads, damp         06125       12.59       1.1286       0.0896       4.342       0.0511       0.0118       P, 5 stalks, dry         06131-2       3.0731       0.2306       0.0750       14.81       0.0650       0.0160       P, 5 stalks, damp         06142       9.8770       2.6996       0.2733       14.81       0.2375       0.0160       P, 5 stalks, damp         06142       9.8770       2.6996       0.2733       14.81       0.2375       0.0160       P, 5 stalks, damp         06142       9.8770       2.6996       0.2733       14.81       0.2375       0.0160       P, 5 stalks, damp         06143       8.9382       0.6762       0.0130       16.70       0.00399       0.00239       Sw, 5 stalks	06081	7.1152	0.2435	0.0342	I	ı	ı	OR, 10 stalks
06104         11.4018         0.4390         0.0385         -         -         B, 5 stalks           06123-2         3.3390         0.0956         0.0286         4.342         0.0154         0.00355         P, 5 heads, damp           06123-2         3.3390         0.0956         0.0286         4.342         0.0154         0.00355         P, 5 heads, damp           06125         12.59         1.1286         0.0896         4.342         0.0511         0.0118         P, 5 stalks, dry           06131-2         3.0731         0.2306         0.0750         14.81         0.0650         0.0160         P, 5 stalks, damp           06131-2         3.0731         0.2733         14.81         0.2375         0.0160         P, 5 stalks, damp           06142         9.8770         2.6996         0.2733         14.81         0.2375         0.0160         P, 5 stalks, damp           06150-2         2.1137         0.0274         0.0130         16.70         0.00390         0.000180         Sw, 5 heads           06161         8.9382         0.6762         0.0757         16.70         0.0399         0.00239         Sw, 5 stalks	06101-2	2.7178	9.0360	0.0132	ı	ı	1	B, 5 heads
06123-2         3.3390         0.0956         0.0286         4.342         0.0154         0.00355         P. 5         heads, damp           06125         12.59         1.1286         0.0896         4.342         0.0511         0.0118         P. 5         stalks, dry           06135         12.59         1.1286         0.0896         4.342         0.0511         0.0118         P. 5         stalks, dry           06131-2         3.0731         0.2306         0.0750         14.81         0.0650         0.00439         P. 5         stalks, damp           06131-2         3.0731         0.2306         0.0750         14.81         0.2375         0.0160         P. 5         stalks, damp           06142         9.8770         2.6896         0.2733         14.81         0.2375         0.0160         P. 5         stalks, damp           06150-2         2.1137         0.0274         0.0130         16.70         0.00390         0.000180         Sw, 5         heads           06161         8.9382         0.6762         0.0757         16.70         0.0399         0.00239         Sw, 5         stalks	06104	11.4018	0.4390	0.0385	ı	ı	ı	B, 5 stelks
06125       12.59       1.1286       0.0896       4.342       0.0511       0.0118       P. 5 stalks, dry         06131-2       3.0731       0.2306       0.0750       14.81       0.0650       0.00439       P. 5 heads, damp         06131-2       9.8770       2.6996       0.2733       14.81       0.2375       0.0160       P. 5 stalks, damp         06142       9.8770       2.6996       0.2733       14.81       0.2375       0.0160       P. 5 stalks, damp         06150-2       2.1137       0.0274       0.0130       16.70       0.0030       0.000180       SW, 5 heads         06161       8.9382       0.6762       0.0757       16.70       0.0399       0.00239       SW, 5 stalks	06123-2	3,3390	0.0956	0.0286	4.342	0,0154	0.00355	P, 5 heads, damp
06131-2         3.0731         0.2306         0.0750         14.81         0.0650         0.00439         P. 5 heads, damp           06142         9.8770         2.6996         0.2733         14.81         0.2375         0.0160         P. 5 stalks, damp           06142         9.8770         2.6996         0.2733         14.81         0.2375         0.0160         P. 5 stalks, damp           06150-2         2.1137         0.0274         0.0130         16.70         0.0030         0.000180         SW, 5 heads           06161         8.9382         0.6762         0.0757         16.70         0.0399         0.00239         SW, 5 stalks	06125	12.59	1.1286	0.0896	4.342	0.0511	0.0118	P, 5 stalks, dry
06142 9.8770 2.6996 0.2733 14.81 0.2375 0.0160 P, 5 stalks, damp 06150-2 2.1137 0.0274 0.0130 16.70 0.0030 0.000180 SW, 5 heads 06161 8.9382 0.6762 0.0757 16.70 0.0399 0.00239 SW, 5 stalks	06131-2	3.0731	0.2306	0.0750	14.81	0.0650	0.00439	P, 5 heads, damp
06150-2 2.1137 0.0274 0.0130 16.70 0.0030 0.000180 SW, 5 heads 06161 8.9382 0.6762 0.0757 16.70 0.0399 0.00239 SW, 5 stalks	06142	9.8770	2,6996	0.2733	14.81	0.2375	0.0160	P, 5 stalks, damp
06161 8.9382 0.6762 0.0757 16.70 0.0399 0.00239 SW, 5 atalks	06150-2	2.1137	0.0274	0.0130	16.70	0.0030	0.000180	SW, 5 heads
	06161	8.9382	0.6762	0.0757	16.70	0.0399	0.00239	SW, 5 stalks

* Plants in 0.35 aq ft of ground area

ł

•

.

	E O													ø			quep							
	Sample Designati		S, 5 heads, damp	2P, 5 heads, damp	SWR, 5 heads	SWR, 5 stalks	OR, 5 heads	OR, 5 stalks	B, 5 stalks	P, 5 heads, damp	P, 5 stalks, damp	SW, 5 heads	SWR, 5 heads	SWR, 5 stalks less head	SWR, 5 heads	SWR, 5 stalks	P, 5 stalks less heads,	F, 5 heads, damp	P, 5 stalks, damp	OR, 5 heads	OR, 5 stalks	OR, 10 heads	OR, 5 heads	P, 5 heads, damp
<b>در</b>	(sq ft/gm)		0.00106	0.00348	0.0000420	0.000832	I	r	I	0.0142	0.00553	0.00582	0,00346	0.000354	0.000707	0.000427	0.00912	0.00861	0.00878	ı	ı	ı	,	0.0123
ింది	(mg/mg)	ntinued)	0.0193	0.0319	0,0005	0.0238	ı	ı	ı	0.1092	0.0425	0.0477	0.0284	0.0029	0.0058	0.0035	0.0533	0,0503	0.0523	I	1	ı	ı	0.0060
Å	(gm/sq ft)	0at-1 (co	18.14	9.158	11,908	28.60	ı	1	,	7,690	7.690	8,199	8,199	8,199	8,199	8,199	5.845	5.845	5.845	ı	ı	•	ı	0.4869
లి	(Bu/Bm)		0.0293	0.0449	0.0105	0,0596	0.00877	0.0680	0.0617	0.1210	0.1073	0.0595	0.0402	0.0827	0.0176	0.0683	0,1398	0.0621	0.1171	0,0122	0.0663*	0,00800	0.00990	0.0136
<b>∆</b> ^m ⊥	( <b>En</b> )		0,0605	0.1013	0.0171	0.6896	0.0345	0.7599	0.5254	0,3650	1.0149	0.2192	0.1121	0.7215	0.0437	0.7652	0.8755	0.1600	1,0355	0.0658	0.9046	0.0836	0.0623	0.0460
¥	(B)		2,0667	2.2567	1.6310	11.5780	3.9327	11.1804	8.5167	3.0168	9.4557	3,6816	2.7918	8.7252	2.4847	11.2099	6.2631	2.5763	8,8394	5.4076	13.6352	10.4549	6.2418	3.3874
Samp1e	Number		06171-2	06179-2	06185-2	06190	06197-2	06198	06205	06221-2	06227	06236-2	06248-2	06254-1,3	06254-2	06254	06273-1,3	06273-2	06273	05285-2	06304	06309-2	06327-2	06337-2
											1:	32												

* Values not used

-

.

Sample	≱⊔	$\Delta_{n_L}$	లి	Δm	၀ၟ႖	в Г	
Number	(E3)	( <b>B</b> 3)	(gm/gm)	(gm/sq ft)	(gm/gn)	(sq ft/gm)	Sample Designations
				Oa	t- 5		
14589	0.4024	0,0124	0,0308	ı	ı	I	B, 20 plants
14603	0.4916	0,0190	0.0386	0.2996	0.0078	0.0260	P, 20 plants, dry
14623	0.4354	0.0219	0.0503	0.2762	0.0195	0.0706	S, 20 plants, damp and dry
14638	0,5658	0.0405	0.0716	0.1192	0,0213	0.179	P, 20 plants, damp
14668	0.8411	0.0383	0.0455	0.4657	0.0147	0.0316	S, 20 plants, semidamp
14673	3.2745	0,1283	0,0392	ı	ı	ł	OR, 10 stalks
14687	3.1944	0.1780	0.0557	ı	ı	1	OR, 10 stalks
14703	1.8924	0.0953	0.0504	0.1576	0.0030	0.0190	P, 5 stalks, dry
14718	2,7375	0.1455	0.0585	1.4532	0,0111	0.00764	S, 10 stalks, damp
14748	3.2175	0.1104	0.0343	ı	ı	1	OR, 10 stalks
14764	4.3178	0.5564	0.1544	2.3144	0,1201	0.0519	P, 10 stalks, damp
14778	4.2333	0.1940	0.0458	3.9372	0.0115	0.00292	SW, 10 stalks
14792	4.7870	0.1947	0.0407	3.9586	0,0064	0.00162	SWR, 10 stalks
14809	6.5409	0,1739	0.0266	1	I	I	OR, 10 stalks
14826	5,3875	0.2015	0.0374	I	ı	ı	B, 5 stalks
06476	3,2041	0.2902	9060°0	ı	1	ı	0, 10 stalks
06503	2.3454	0.1620	0.0691	0.7982	0.0427	0.0535	P, 10 stalks, dry
06516	2.9481	0.2283	0.0774	1.1494	0.0510	0.0444	2P, 10 stalks, dry
06516	2,9481	0.2283	0.0774	0.3512	0.0083	0.0236	P, 10 stalks, dry
06535	2.7575	0.2212	0.0802	1.2536	0.0538	0.0429	P, 10 stalks, dry
06554	3,0086	0.1028	0.0342	1.7784	0.0078	0.00439	SW, 10 stalks
06571	3.7452	0.0828	0.0221	ı	ł	I	B, 10 stalks
06589	2.2154	0.3454	0.1559	2,1056	0.1338	0.0635	P, 10 stalks, damp
06602	3.3145	0.3479	0.1050	ı	1	ı	O, 10 stalks

NAXX.

ġ.

Ĭ

: /

•

L

Sample Designation		P, 10 stalks, damp	B, 10 stalks	0, 10 stalks, leaf area (photo)	S, 10 stalks, semidamp		B, 8 plants	P, 31 plants, dry [*]	B, 7 plants	O, several blades, damp	OR, several blades	B, 5 plants	P, 32 plants, dry*	P, 33 plants, damp*	P, 28 plants, dry*	B, 10 stalks	P, 41 stalks, dry	SW, 22 stalks, damp	SW, 24 stalks	SWR, 15 stalks	B, 10 stalks	P, 34 stalks, damp
a _L (sq ft/gm)		0.0141	ł	I	0.0334		ł	0,0998	I	ł	I	ı	0.0704	0.0563	0.112	r	0.0239	0.0484	0.0353	0.0104	ı	0.0571
C ^o p (gn/gn)	tinued)	0.0135	ı	ı	0,0121	<b>[</b> ]	,	0.2096	ł	4.151	0.0949	I	0.4288	2.074	2.074	ı	0.0299	1.0367	0.8291	0.02883	ı	0.2684
Δm (gm/sq ft)	0at-2 (con	0.9571	ı	ı	0.3625	Rye	ł	2,100	I	ı	i	1	6,095	36,82	18.59	ł	1.249	21.43	23.49	27.63	ł	4.70
с р (gm/gm		0.1185	0,0308	ı	0.0429		0.2177	0.4273	0.0341	4.185	0.1290	0.1183	0.5471	2.19%	2,192	0.1491	0.1790	1,1858	0.9782	0.4374	0.0710	0.3394
Δ ^m L (gm)		0.4261	0.0988	ı	0.1287		0.1316	0.9893	0.0185	1.1224	0.0566	0.0461	1,3529	4.9092	4.4505	0.1611	0.9556	2.9062	2,1631	0.8799	0.0935	_ 1.3482
,⊓ ,⊓ ,¶		3.5970	3.2086	3,3530	2.9983		0.6044	2.3150	0.5427	0.2682	0.4386	0.3898	2.4730	2.2391	2.0313	1.0803	5.3377	2.4509	2.2113	2.0115	1.3168	3.9726
Sample Number		06612	06624	06630	06650		14010	14019	14026	14047-1	14049-1	14057	14069	14082	14094	14114	14125	14145	14151	14160	14169	14196

* Plants in 0.35 sq it of ground area

ļ

1

ł

1

------

	Sample Designation		OR, 3 heads	OR, 5 stalks	B, 5 stalks less heads	B, 5 heads	B, 5 stalks	P, 5 heads, damp	SW, 5 heads	SW, 5 heads	SW, 5 heads	SWR, 5 heads	OR, 5 heads	B, 5 stalks less heads	B, 5 staiks	P, 5 stalks less heads, damp	P, 5 heads, damp	P, 5 stalks, damp	SW, 5 heads	SW, 5 heads	SW, 5 heads	SW, 5 stalks less heads	SW, 5 heads	SW, 5 stalks
в Г	(sq ft/gm)		ı	1	I	F	1	0.0276	0,0206	0.0177	0.0109	0,00816	ſ	ı	ł	0.00557	0.0591	0.0269	0.0359	0.0306	0.00912	0.00571	0.00727	0.00846
ပို	(gu/gu)	ontinued)	,	ı	I	ł	ı	0.5277	0,4986	0.4285	0.2800	0.2157	ı	1	1	0.0056	0.0595	0.0271	0.0397	0.0348	0.0140	0.0125	0.0159	0.0185
Δm	(gm/sq ft)	Rye-1 (co	ı	t	I	I	I	19.112	24.236	24.236	25.602	26,444	ı	ı	ı	1,006	1,006	1.006	1.107	1,139	1.535	2,187	2.187	2.187
లీ	(gm/gm)		0.0430	0.0413	0.0234	0.0436	0.0289	0.5713	0.5422	0.4721	0.3236	0.2593	0.2490*	0.00966	0.0120	0.0153	0.1195	0.0391	0.0997	0.0948	0.0740	0.0222	0.0759	0,0305
∆ [™] L	(gm)		0.0260	0.2068	0.0753	0.0535	0.1288	0.6049	0.6451	0.3889	0.4039	0.2159	0.3257	0.0260	0.0660	0.0815	0,1879	0.2694	0.1323	0.0947	0,0978	0.1190	0.0740	0.1930
л м	(gm)		0.6048	5.0060	3.2240	1.2277	4.4517	1.0589	1.1897	0.8237	1.2483	0.8326	1.3072	2,6991	3.3658	5.3169	1.5719	6.8888	1.3266	0.9984	1.3234	5.3536	0.9745	6.3281
Sample	Number		14255 -2	14258	14288-1,3	14288-2	14288	14307-2	14311-2	14316-2	14328-2	14334-2	14360-2	14379-1,3	14379	14397-1,3	14397-2	14397	14420-2	14426-2	14430-2	14440-1,3	14440-2	14440

* Value not used

ŝ

-----

, 10 ,

	u o																					dry	•		
	Sample Designati		SW, 5 heads	SWR, 5 heads	SWR, 5 stalks	OR, 5 stalks	OR, 10 heads	OR, 5 heads	P, 5 heads, damp	SW, 5 heads	P, 5 heads, damp	OR, 5 heads	OR, 5 stalks	P, 5 heads, damp	P, 5 stalks, damp	O, 5 stalks	O, 5 heads	B, 5 stalks	B, 5 heads	P, 5 heads, dry	SW, 5 heads	P, 5 stalks less heads,	P, 5 heads, damp	P, 5 stalks, damp	OR, 5 heads
e	(sq ft/gm)		0.00864	0.00102	0.00333	,	ı	ı	0.0266	0.00538	0.0374	I	I	0.0244	0.00701	ı	ı	ı	1	0.0731	0.00334	0,0258	0.0230	0.0331	ı
ిందా	(gm/gn)	nt1nued)	0.0190	0.0034	0.0111	1	ı	ı	0.0203	0.0055	0.0156	ı	ı	0.0323	0.0093	ı	ı	ı	ı	0.0219	0.6010	0.0102	1600.0	0.0131	ı
Δm	(gm/8q ft)	<u>Rye-1</u> (co	2.20	3,333	3.333	ı	ı	ı	0.7634	1.0225	0.4164	ł	ı	1,3263	1.3263	ł	1	ł	ł	0.2996	0.2996	0.3954	0.3954	0.3954	1
ഗ്	(gm/gm)		0.0790	0.0634	0.0231	0.0246	0.0823	0.0300	0.0503	0.0355	0.0456	0.0374	0.0145	0.0623	0.0238	0.0383	0,0383	0,00696	0,0257	0.0602	0,0393	0.0189	0.0474	0.0247	0.0418
Δ ^m L	( <b>6</b> m)		0.1023	0.0541	0.1323	0,1609	0.1600	0.0567	0.0708	0,0506	0.0441	0.0432	0.0786	0.0827	0.1578	0.1736	0.0504	0.0592	0.0337	0.0806	0.0548	0.1104	0.0720	0.1824	0.0828
∍ ^{∟]}	(BB)		1,2950	0.8534	5.7292	6.5236	1.9479	1.8879	1.4078	1.4225	0.9668	1.1538	5.4320	1.3264	6.6296	4.5300	1.3150	8.5040	1.3123	1.3392	1.3948	5.8549	1.5194	7.3743	1.9820
Sample	Nunber		14463-2	14467-2	14472	14483	14487-2	14500-2	14522-2	14534-2	14545-2	14558-2	14559	14569-2	14569	14574	14575-2	14578	14579-2	14601-2	14607-2	14639-1,3	14639-2	14639	14652-2
											~														

÷

Sample Designation		OR, 5 stalks	S, 5 heads, semidamp	S, 5 stalks, semidamp	O, 5 stalks	O, 5 heads	P, 5 heads, dry	B, 5 plants	P, 25 plants, damp ^a	SW, 35 plants	SWR, 25 plants	OR, 10 stalks	P, 45 stalks, damp	SWR, 18 stalks	SWR, 27 stalks	OR, 10 stalks	B, several blades	P, 3 stalks, damp	P, 3 heads, damp	P, severai biades, damp	SW, 3 heads
aL (sq_ft/gm)		ı	0.0346	0.0206	1	1	0.0501	r	0.0472	0,0172	0.00217	ł	0.0351	0.00940	0.00181	ı	ł	0.0523	0.0385	0.0788	0,00868
с ^о р (gm/gm)	ntinued)	I	0.0161	9600*0	ı	I	0,0079	ı	0.6459	0.5396	0.0847	ı	6.42	7.03	9,26	ı	1	0.2273	0.5700	1.1676	0.1449
∆m (gm/sq ft)	<u>Rye-1</u> (co	ı	0.4657	0.4657	ł	I	0.1576	ı	13.68	31.44	39,02	I	0.2255	0,0661	0.0168	i	ı	4.342	14.81	14.81	16.70
с р (gm/gm)		0.00956	0.0579	0.0212	C,00982	0,00963	0,0175	0.0522	0.6981	0.5918	0.1369	0.1838	0.4093	0.2499	0.2006	0.3602 ^b	0.1467	0.2686	0.6130	1.3143	0,1879
Δ ^m L (g ^m )		0.0722	0.0932	0.1642	0.0626	0.0203	0.0431	0.0154	0.8604	1.0232	0.1687	0.4197	3.4108	0.7913	1.4739	0.6857	0.3695	0.6551	0.3887	2.9176	0.1085
w ь (gm)		7,5533	1.6110	7.7603	6,3735	2.1076	2.4575	0.2951	1.2325	1.7291	1.2324	2.2828	8.3325	3,1662	7.3461	1.9038	2,5194	2.4390	0.6341	2,2199	0.5775
Sample Number		14653	14669-2	14670	14674	14676-2	14706-2	06010	06022	06034	06037	06045	06063	69090	06076	06082	06106-1	06128	06133-2	06144-1	06147-2

a Plants in 0.35 sq ft of ground area b Particles on bottom part of some stalks ÷.

status da servición de la servición de la

į

:

·

•

•
P, 5 stalks less heads, damp Sample Designation SWR, 5 stalks less head OR, 5 stalks less heads B, 5 stalks less heads 2P, 3 heads, damp P, 5 stalks, damp P, 5 heads, damp P, 5 heads, damp P, 5 stalks, damp SWR, 5 stalks SWR, 5 heads SWR, 3 heads 5 heads OR, 5 stalks OR, 10 heads OR, 5 stalks OR, 5 stalks OR, 5 heads SW, 5 heads B, 5 stalks OR, 5 heads OR, 5 heads B, 5 heads SWR (sq ft/gm) 0.000134 0.00983 0.00342 0.00635 0.00183 0.00837 0.0320 0.0267 0.0124 0.0186 0.0469 0.9137 . ( **g**u/gu) 0.2448 0.0407 0.0950 0.2742 0.2464 0.1525 0.0806 0.0800 0.0011 0.0097 0.0489 Eye-1 (continued) 0.0521 ംറം , 1 (gm/sq ft) ₽ B 9.158 7.690 7.690 8.199 8.199 8,199 8.199 8.199 5.845 5.845 5.845 11.908 ł (gm/gm) 0.0216* 0.3766 0.1170 0.0438 0.0837 0.0276 0.0113 0.0386 0.0238 0.0985 0.0292 0.3488 0,1365 0.2549 0.1530 0.1545 0,0489 0.0754 0.0887 0.4327 0.1064 0.0444 0.0271 ంి **۵**۳ L 0.0760 0.4109 0.1784 0.2343 0.0832 0.3300 0.0852 0.1612 0.0471 0.0882 0.0902 0.2007 0.0943 0.1064 0.2007 0.3437 0.7722 0.0951 0.0587 0.0493 0.1231 0.4285 0.1301 6.5986 2,9156 0.9192 0.5628 3.7055 0.7145 3.4173 7.3556 3.6301 3.0112 1.0779 6.0643 0.7626 0.9156 0.5754 4.1060 5.6859 0.9127 2.1701 4.6211 0.6727 0.6887 1.1265 (m) ≱___ 06202-1,3 06209-1,3 06258-1,3 06279-1,3 Sample Number 06187-2 06202-2 06182-2 06209-2 06238-2 06223-2 06250-2 06258-2 06279-2 06283-2 06308-2 06328-2 06224 06209 06305 06202 06258 06279 06329

* Value not used

----

	Sample Designation		P. 5 heads. damp	SW. 5 heads	P. 5 heads damp	P. 5 stalks damp	0. 5 heads	0. 5 stalks	B. 5 heads	B. 5 stalks	S. 5 heads. damp and drv	S. 5 stalks, damp and drv	P. 5 heads. damp	P. 5 stalks, damp	SW 5 heads	SW. 5 stalks	OR. 5 heads	P, 5 heads, damp	OR, 5 heads	OR. 5 stalks	P. 5 heads damp	P. 5 stalks, damp	SW. 5 heads	S. 5 heads damp	0. ästalks	0, 5 heads
aL	(sq ft/gm)		0.0723	0,00390	0.0219	0,00661	I	ł	1	ı	0.0528	0.0130	0,0431	0.0204	0.0108	0,00806	ı	0.0656	ı	1	0.0565	0.0438	0.0182	0,0525	ŀ	ı
ిం	(gm/gm)	ntinued)	0.0352	0.0019	0.0385	0.0116	ı	ı	ı	ı	0,0182	0.0015	0.0222	0.0105	0.0075	0.0056	1	0.0148	ı	ı	0.0192	0.0149	0600.0	0.0056	ı	ı
Δm	(gm/sqft)	Rye-1 (co	0.4869	0.4869	1.7546	1.7546	'	t	I	1	0.3446	0.3446	0.5146	0.5146	0.6945	0.6945	ı	0.2256	I	ı	0.3398	0.3398	0.4943	0.1067	ı	ı
പ്	(mg/mg)		0.0790	0.0457	0.0823	0.0248	0.0482	0.0284	0.0416	0.0150	0.0664	0,0161	0.0638	0.0221	0,0491	0.0172	0.0424	0.0572	0.0620	0.0147	0.0812	0.0296	0.0710	0.0766	0.0136	0,0266
$\Delta_{\rm L}^{\rm m}$	(gm)		0.1043	0.0142	0.0641	0.1173	0.0663	0.2298	0.0347	0.0597	0.0765	0.0972	0.0784	0.1090	0.6472	0.0696	0.0409	0.0630	0,0713	0.0580	0.1230	0.1592	0.0966	0.1206	0.1099	0.0680
نہ ×	(E)		1.3205	0.9677	0.7917	4.7262	1.3756	7.7530	0.8339	3.9892	1,1513	6.0470	1,2291	4.9305	0.9610	4.0497	0,9640	1.1017	1.1495	3.9341	1.5154	5.3805	1.3610	1.5743	8,1001	2.5545
Sample	Number		06336-2	06346-2	06351-2	06352	06357-2	06358	06359-2	06360	06378-2	06379	06393-2	06394	06407-2	06408	06414-2	06428-2	06-135-2	06436	06447-2	06448	06459-2	06469-2	06478	06488-2

ŧ

:	gnation							(photo)								54					۱ ₀ .		
	e Des		dry	, dry		danab	damp	, area			r n	s, dry	s dry	UŹ.	blades	blade:	ŝ	ۍ ۳	ب	s, dry	s, dam	s, dry	UD.
	Samp		heads,	stalks,	heads	heads,	heads,	heads	heads		plants	plant:	plant	plant	veral	everal	plant:	plant	plant	plant	plant:	plant	stalk
			P, 5	P, 5	SW, 5	s, 5	P, 5	0, 10	0, 6		B, 11	P, 22	P, 15	B, 15	0, 56	OR, s	B, 10	B, 10	P, 52	P, 48	P, 43	P, 25	B, 10
	(sg ft/gm)		0.0486	0.0152	0.0134	0.0154	0.0171	ł	ı		ı	0.0779	0.1122	۱	ı	ı	ł	ı	0.0229	0.0456	0.0837	0.0721	ł
ంరి	(gm/gm)	ncluded)	0,0609	0.0190	0.0239	0.0599	0.0360	I	ŀ	1-1	I	0.1635	0.2355	ı	4.604	0.1400	۱	ı	0.1397	0.2777	3.081	1.341	ı
Δm	(gm/sq ft)	<u>kye-1</u> (co	1.2536	1.2536	1.7784	3.8840	2,1056	1	ı	Whee	I	2.100	2.100	ı	ı	ı	ı	1	6.095	6,095	36.82	18.59	ı
లి	(gm/gm)		0.7815	0.0307	0.0445	0.0805	0,0805	0.0255	0,0432		0,1173	0,2808	0.3528	0.0352	4.639	0.1752	0.0606	0.0765	0.2003	0.3542	3.148	1.408	0.0219
∆ ⁿ L	(Bm)		0.1283	0,1909	0.0876	0.1770	0.1770	0.1168	0.0979		0.0754	0.3482	0.2753	0.0298	0.9585	0.1093	0.0331	0.0391	0.6425	0.8629	7.6124	1,9902	0.0687
ي س	(gn)		1.5737	6.2135	1.9685	2,1986	2,1986	4.5890	2,2682		0.6430	1.2413	0.7790	0.8475	0.2066	0.6237	0.5463	0.5113	3.2105	2.4351	2.4199	1.4123	3.1401
Sample	Number		06538-2	06539	06556-2	06591-2	06591-2	06633-2	06671		14009	14017	14018	14025	14045-1	14050-1	14055	14056	14067	14068	14081	14091	14115

* Plants in 0.35 sq ft of ground area

۱

-

( <del>ç</del>
1 nue
cont
Ű
16
016
[B]

	Sample Designation		P, 34 stalks, dry *	P, 44 stalks, damp [*]	SW, 23 stalks	SW, 36 stalks	SWR, 20 stalks	B, 10 stalks	S, 10 stalks, damp	S, 15 stalks, damp	SW, 15 stalks	SW, 14 stalks	SW, 10 stalks	SW, 12 stalks	SW, 9 stalks	SW, 17 stalks	SW, 15 stalks	SW, 14 stalks	SWR, 12 stalks	SWR, 20 stalks	SWR, 20 stalks	SWR, 16 stalks	P, 16 stalks, damp
a L	(sq ft/gm)		0.0502	0.0574	0.00983	0.00446	0.00147	I	0.0119	0,00806	0.00899	0.00712	0,00352	0.00580	0.00250	0.00332	0.00168	0.00266	0.00106	0.000800	0.00356	0,000261	0.0298
ిం	(gm/gn)	ntinued)	0.0627	0.7245	0.2106	0.1049	0.0407	I	0,1939	0.1311	0.1462	0.1157	0.0573	0.0944	0.0407	0.0540	0.0273	0.0433	0.0172	0.0130	0.0600	0.0044	0.1399
Δm	(gm/sq ft)	Wheat-1 (co	1.249	12.62	21.43	23.49	27.63	I	16.26	16.26	16.26	16.26	16.26	16.26	16,26	16.26	16,26	16.26	16.26	16.26	16.84	16.84	4.70
లి	(gm/gm)		0.0925	0.7543	0.2404	0.1347	0.0705	0.0260	0.2179	0.1551	0.1702	0.1397	0.0813	0.1184	0.0647	0,0780	0.0513	0.0673	0.0412	0.0370	0.0840	0.0284	0.1697
$\Delta_{\rm L}^{\rm m}$	(gn)		0.9852	8.2947	1.9604	1.5001	0.5281	0.0932	0.9028	0.7453	0.8132	0.5995	0.2471	0.4841	0.1913	0.4140	0.2460	0.3012	0.1515	0.2352	0.4732	0.1633	0.8280
» I	( III )		10.6462	10,9961	8.1544	11.1377	7,4946	3,5835	4.1434	4.8050	4.7782	4.2920	3.0390	4,0881	2,9553	5.3104	4.7944	4.4752	3.6799	6.3571	5.6360	5.7523	4.8784
Sample	Number		14124	14135	14146	14148	14161	14170	14177	14178	14179	14180	14181	14182	14184	14185	14186	14187	14188	14189	14190	14191	14197

* Plants in 0.29 sq ft of ground area

ţ

1

¥.

į

	Sample Designation		S, Jl stalks, damp	S, 5 heads, damp	B, 5 stalks less heads	B, 5 heads	B, 5 stalks	Sw, 5 heads	P, 5 heads, dry	P, 5 heads, dry	SWR. 5 stalks less heads	SWR, 5 heads	SWR, 5 stalks	SWR, 5 heads	SWR, 5 stalks	B, 5 stalks	B, 5 heads	B, 5 stalks	P, 5 heads, damp	P, 2 stalks, damp	SW, 5 heads	SW, 5 heads	SW, 5 heads	SW, 5 heads	SWR, 5 heads
в Г	(sq ft/gm)		0.0166	0.00702	ł	ı	ı	0.00341	0.00616	0.00357	0.00132	0.000458	0.00114	0.000289	0.000891	I	I	1	0.0101	0.0113	0.00559	0.00554	0.00423	0,00409	0.00326
൦ഺ	(gm/gm)	continued)	0.1389	0.0586	T	I	I	0.0288	0.0077	0.0368	0.0764	0.0266	0.0665	0.0176	0.0542	ı	1	ŧ	0,1938	0.2163	0,1355	0.1343	0.1026	0.1048	0.0863
$\Delta_{\mathrm{m}}$	(gm/sq ft)	Wheat-1 (	8.348	8.348	1	I	1	8.452	1.249	10.32	58.08	58.08	58.08	60,81	60.81	ı	1	ı	19.112	19.112	24.236	24.236	24.236	25.602	26.444
లి	(mg/mg)		0,1769	0.1252	0.0308	0.0834	0.0397	0.1122	0.0911	0.1202	0.1072	0.0932	0.1045	0.0842	0.0922	0.0394	0,0993	0.0750	0.2931	0.2913	0.2348	0.2336	0.2019	0.2041	0.1856
$\bm{\Delta}_{\mathrm{L}}^{\mathrm{m}}$	( @)		1.2459	0.1137	0.1072	0.0597	0.1669	0,0902	0.0553	0.1087	0.3947	0.0817	0.4764	0.0645	0.3308	0.1671	0.1352	0.3211	0.3402	0.3934	0.3170	0.2418	0.2218	0.1799	0.1586
ہ≓ ≆	(@)		7.0435	0.9052	3.4845	0.7160	4.2005	0.8037	0.6067	0.9044	3.6835	0.8768	4.5603	0.7659	3.5896	4.2360	1.3612	4.2820	1.1605	1.3504	1.3502	1.0350	1,0986	9.8814	0.8543
Sample	Number		14204	14210-2	14218-1,3	14218-2	14218	14227-2	14235-2	14242-2	14246-1,3	14246-2	14246	14252-2	14256	14270	14281	14282	14301-2	14302	14308	14313-2	14319-2	14325-2	14331-2

Ĭ

Sample Designation		P, 5 heads, damp	SW, 5 heads	SW, 5 heads	SW, 5 heads	SW, 5 heads	OR, 5 heads	B, 5 stalks less heads	B, 5 heads	B, 5 stalks	P, 5 heads, damp	P, 5 stalk3, damp	P, 5 stalks less heads, dump	SW, 5 heads	SW, 5 heads	SW, 5 heads	SW, 5 stalks less heads	SW, 5 heads	SW, 5 stalks	SW, 5 heads	SWR, 5 heads	SWR, 5 stalks
a _l (sq ft/gm)		0.0104	0,00899	0.00732	0.00657	0.00487	ı	1	I	I	0.0113	0.0175	0,0209	0.00876	ú <b>,</b> 00667	0.00378	0.00828	0.00210	0.00622	0.00114	0.000570	0.000780
C ^O (gn∕gn)	continued)	0.0889	0.0782	0,0666	0.0624	0.0463	ı	I	ı	ı	0.0114	0.0176	0.0210	0,0097	0.0076	0.0058	0.0181	0.0046	0.0136	0.0025	0.0019	0,0026
∆m ( <u>gm/sq ft)</u>	Wheat-1 (	8.55*	8,70*	9.10*	9.50*	9.50*	ı	ı	ı	r	1,006	1,006	1,006	1,107	1.139	1.535	2,187	2.187	2.187	2.20	3.333	3,333
С р (8#/8 ^m )		0.1863	0,1756	0.1640	0.1598	0.1437	0.1340	0160.0	0.1101	0,0958	0.1215	0.1156	0.1129	0,1198	0.1177	0.1159	0.1102	0.1147	0.1116	0.1126	0.1020	0.1006
Δ ^m L (gm)		0,3066	0.2891	0,3024	0.2759	0.2393	0.2312	0.2513	0.2150	0.4518	0.2072	0.5974	0.3902	0.1979	0.2258	0,1549	0.3576	0.1780	0.5356	0.1892	0.1936	0.3863
ж Г (gm)		1.6459	1.6461	1.8436	1.7266	1.6655	1.7256	2.7613	1.9530	4.7143	1.7024	5.1665	3.4641	1.6515	1.9187	1.3362	3.2462	1.5518	4.7980	1.6795	1.7286	3,8382
Sample Number		14338-2	14339-2	14340-2	14341-2	14342-2	14357-2	14375-1,3	14375-2	14375	14091 2	14391	14395-1,3	14417-2	14425-2	14427-2	14434-1,3	14434-2	14434	14460-2	14464-2	14469

* Values estimated from dew balance chart data

-

1.00

. ....

1.3

3

	ple Designatio		ks	ds	Ø	, damp	8	, damp	5	ts 。	ts, damp"	nts	ants	lks _	ks, damp ^c	alks	alks	ks		IQ.	, damp	s, dry
	Sam		OR, 5 stal	OR, 10 heat	OR, 5 head	P, 5 heads	SW, 5 head	P, 5 heads	OR, 5 head	B, 10 plan	P, 21 plan:	SW, 20 pla	SWR, 25 plu	OR, 10 stal	P, 27 stall	SWR, 23 st	SWR, 21 st	B, IO stall	B, 5 heads	B, 5 stalks	P, 6 heads	P, 5 stalk
в	(sq ft/gm)		ı	ı	ı	0.0194	0.00489	0.0170	I	I	0.0517	0.00257	0.00102	ı	0.0263	0.00635	0.00522	ı	ı	I	0.00530	0.0137
ംപം	(gm/gm)	ontinued)	ı	ł	1	0.0148	0,005	0.0071	ı	I	0.707	0.0807	0.0398	ı	0.01669	0.0481	0.0483	1	ł	I	0.0230	0.0595
Δn	(gm/sq ft)	Wheat-1 (c	ı	ı	ı	0.7634	1.0225	0.4164	ł	ı	13.68	31.44	39,02	ı	6.42	7.02	9.26	ı	ı	1	4.342	4.342
లి	(gm/gm)		0.0889	0.1201	0.0491	0.0639	0.0496	0.0562	0.0697	0.0437	0.751	0.1244	0.0835	0.161 ^b	0.210	0.0895	0.0897	0.0414	0.0498	0.0350	0.0728	0.0945
Δ ^m	( <b>g</b> m)		0.3412	0.3219	0.1586	0,2055	0.1600	0.2112	0.2240	0.0263	1.3293	0.2062	0.1481	0.7119	1.9666	0.5802	0.4697	0.1831	0.0529	0.2018	0.0926	0.4465
× ×	(1831)		3.8373	2.6805	3.2295	3.2171	3.2287	3.7580	3.2289	0.6015	1.7690	1.6554	1.7673	4.4320	9.3665	6.4810	5.2342	4.4191	1.0619	5.7680	1.2723	4.7257
Sample	Number		14480	14484-2	14499-2	14520-2	14532-2	14543-2	14557-2	06008	06019	06033	06036	06046	06062	06070	06077	06083	06100-2	06103	06122-2	06127

a Plants in 0.35 aq ft of ground area b Particles on bottom of some stalks

c Plants in 0.29 sq ft of ground area

a second records of the second of the second second second second

• : - - - - - -

:

•

	Sample Designation		5 heads, damp	5 stalks, damp	/, 5 heads	/, 5 stalks	5 heads, damp	), 5 heads, damp	R, 5 heads	R, 5 stalks	l, 5 heads	, 5 stalks	5 heads	5 stalks	5 heads, damp	5 stalks, damp	5 heads	R, 5 beads	R, 5 stalks less heads	R, 5 heads	R, 5 stalks	5 stalks less heads, damp	5 heads, damp	5 stalks, damp	, 10 heads	, 5 stalks
a L	(sq ft/gm)		0.00607 P	0.0144 P,	0.000665 SV	0.0C345 SV	0.00248 S,	0.00736 2F	0,00119 SV	0.00137 SV	- 0	- 0	В	В	0.00263 P,	0.00605 P,	0.00123 SW	0.000634 SW	0.00276 SW	0.000415 SW	0.00128 SW	0.00707 P,	0.00551 P,	0.00652 P,	- NO	- OR
ింది	(gm/gm)	ntinued)	0,0899	0.2135	0.0111	0.0576	0.0450	0.0674	0.0142	0,0393	ı	ı	ı	i	0.0202	0.0465	0.0101	0.0052	0.0226	0.0034	0.0105	0.0413	0.0322	0.0381	J	•
Δm	(gm/sq ft)	Wheat-1 (col	14.81	14.81	16.70	16.70	18.14	9.158	11,908	28,60	1	ı	,	ı	7.690	7.690	8.199	8,199	8.199	8,199	8,199	5.845	5.845	5.845	ı	1
రి	(mg/mg)		0,1565	0.2515	0.0777	0,0956	0.1116	0,1451	0,0919	0.0773	0.1130	0.1140	0.0956	0.1025	0.1158	0.1353	0.1057	0.1008	0.1077	0660*0	0.1083	0.1265	0.1278	0.1269	0.0879	0.1094
$\Delta m_{\rm L}$	(E)		0.1567	1.1213	0.0612	0.4627	0.0948	0.1319	0.0724	0.3761	0.2420	0.5961	0.1789	0.6114	0.2534	0.7428	0.2249	0.1773	0.4255	0.1667	0.5922	0.5697	0.2377	0.8074	0.2596	0.3616
×_1 ×	(m)		1.0013	4.4580	0.7876	4.8407	0.8493	0.9003	0.7860	4.8672	2.1416	5.2300	1.8707	5,9629	2.1873	5.4896	2.1273	1.7581	3.9510	1.6830	5.6340	4.5044	1.8593	6.3637	2.9544	3.3048
Sample	Number		06130-2	06141	06149-2	06160	06170-2	06178-2	06184-2	06189	06195-2	06196	06203-2	06204	06220-2	06226	06235-2	06247-2	06252-1,3	06252-2	06252	06275-1,3	06275-2	06275	06284-2	06302
											14	5														

the state and the state of the state of the state of the state of the state

ł ì

A REAL PROPERTY

- - - NGS -- -

į

1.4.4.20

A LANGE

;

aL m) (sq ft/gm) Sample Designa	ed)	- OR, 10 heads	- OR, 5 heads	57 0.0117 P, 5 heads, damp		- 0, 10 stalks	- OR, 10 stalks	867 0.0550 P, 10 stalks dry	109 0.0214 S, 10 stalks, damp	629 0.00587 S, 12 heads, semidamp	- 0, 10 stalks	- 0, 12 heads	404 0.0104 P, 10 stalks, damp	427 0.00617 P, 12 heads, damp	562 0.00143 SW, 10 stalks	468 0.00119 SW, 12 heads	- Leaf area, 10 stalks	194 0.000490 SWR, 10 stalks	040 0.000101 SWR, 10 heads	- OR, 10 stalks	- OR, 10 heads	- B, 5 heads	- B, 5 stalks	- 0, 10 stalks (photo)	- 0, 1741 grains, 100 he
	(conc lude	I	1	0°05	eat-2	ı	ł	0,00	0.031	0.016	1	3	0.024	0.014	0,00	0.00	ı	00°υ	0.00	I	ŀ	ı	ı	ı	I
∆m (gm/sq ft	Wheat-1	ı	1	0.4869	<u>, d'W</u>	I	I	0,1576	1.4532	2.7763	ł	I	2.3144	2.3144	3.9372	3.9372	ı	3,9586	3,9586	ı	ı	I	I	I	ı
c p (gm/gn)		0,0972	0.0550	0,0607		0,00982	0,00964	0.01840	0.04001	0.02501	0.00472	0.00872	0.02876	0.02299	0,01034	0.01340	ł	0,00666	0.00912	0.00450	0.00688	0.00644	n.00430	ı	ı
Δ ⁿ L (gm)		0.3355	0.1732	0.2070		0.0320	0.0410	0.0586	0.1330	0.0542	0.0412	0.0247	0.2340	0.0632	0.0934	0.0383	ł	0,0650	0.0174	0.0758	0.0303	0.0182	0.0215	ł	ł
ر هما هما		3,4516	3.1460	3.4088		3.2574	4,2530	3,1850	3.3239	2.1672	8.7200	2,8339	8,1351	2.7488	9.0320	2,8587	0666.11	9.7625	1,9080	16.8559	4,4(35	2.7407	5,0013	19.6917	73.68
Sample Number		06306-2	06326-2	06338-2		14681	14686	14704	14719	14737-2	14749	14750-2	14765	14766-2	14779	14780-2	14782	14793	14794-2	14810	14811-2	14827-2	14828	14835	14851-2

146

and the second secon

Table 16 (concluded)

Sample Number	w L (gm)	Δ ^m L (gm)	c p (gm/gm)	Δm (gm/89_ft)	c ^o p (gm/gm)	a _L (sq ft/gm)	Sample Designation
				Wheat of (c	oncluded)		
06479	4,0063	0.2243	0.05598	ł	,	ı	O, 10 stalks
06502	3,1028	0,0866	16750.0	0.7982	0.01899	0.0238	P, 10 stalks, dry
06515	3,2625	0,1304	0,03997	1.1494	0.03105	0.0270	2P, 10 stalks, dry
06515	3,2625	0.1304	0,03997	0.3512	0.01206	0.0343	P, 10 stalks, dry
06534	4.2370	0.2335	0.06927	1.2536	0.06035	0.0481	P, 10 stalks, dry
06553	4,3006	0.2149	0.04997	1.7784	0.04105	0.0231	SW, 10 stalks
06570	3.9170	0.0340	0.00868	ı	ı	ı	B, 10 stalks
06588	4,0394	0.2812	0.06961	2.1056	0.6093	0.0289	P, 10 stalks, damp
06601	3.9325	0.2202	0.05599	1	ı	ı	0, 10 stalks
1199(	5,1816	0.3349	0.06463	0.9571	0.00864	0,0003	0, 10 stalks, damp
6623	4.1450	0.0487	C.01175	,	ı	ł	B, 10 stalks
6629	5,0985	ł	ł	ı	ı	ł	Leef area, 10 stalks (photo)
6648	5.8661	0.0938	0.01549	0.3624	0.00424	0.0117	S, 10 stalks, semidamp
6449-2	2.3055	0.0240	0.01041	0.3624	0,00169	0.00466	S, 12 heads, semidamp
6668-2	4.0586	0.0577	0.0142	•	ı	ł	OR, 10 heads
69999	12.56	0.1423	0.0413	,	ı	i	OR, 10 stalks
6674-2	6.7165	ł	ı	I	ł	ı	0, 8 heads (photo)
2-1699	2.2737	0.0327	0.0144	\$	1	I	B, 5 heads
6692	8.4805	0.0820	0,00967	ı	ı	ı	B, 5 stalks
6695	27.1397	ı	١	I	ı	1	0, 15 stalks (photo)
6706-2	92.47	ł	ł	,	,	•	0. 2185 grains. 100 heads

-

### Table 17

## SUMMARY OF PLANT AND FOLIAR CONTAMINATION DATA FOR TREE LEAVES, NEEDLES, AND TWIGS

### Notations

Sample Numbers: 14,000's fcm Plot No. 1 06,000's for Plot No. 2 13,000's for Station 3 km above Rancho Redondo 15,000's for Station 1 km below Rancho Redondo 16,000's for Station 1 km above Rancho Redondo

- B Background deposit remaining on washed specimens of foliage or plant
- P Primary samples (short-period exposure or unweathered depositions representing initial contamination levels); 2P--samples with two successive primary depositions
- S Secondary samples (long-period exposure representing weathering effects, multiple depositions, etc.)
- O Original unwashed specimens (except for rain and wind cleaning to date of sampling)
- R Weathering by rain (SR, secondary sample, washed by rain)
- W Weathering by wind (SW, secondary sample, exposed to wind)

SWR Secondary samples, weathered by wind and then by rain

W, Dry weight of foliage (gm)

Am, Dry weight of ceniza-arena retained on the foliage (gm)

C_ Foliar concentration of ceniza-arena,  $W_L/\Delta m_L$  (gm/gm)

Am Dry weight of ceniza-arena deposited per unit area of ground surface (gm/sq ft)

C C corrected for background (gm/gm)

a Contamination factor,  $C_p^{\upsilon}/\Delta m$  (sq ft/gm)

TWIGS
AND
NEEDLES,
LEAVES,
TREE
FOR
DATA
CONTAMINATION
FOLIAR
0F
SUMMARY

Sample Designation		OR, 10 leaves, bottom (new)	OR, 10 leaves, middle (new)	0, 10 leaves, middle (old)	P, 10 leaves (new), damp	SW, 10 leaves (new)	P, 10 leaves (new) damp	SW, 18 leaves (new)	P, 19 leaves (new) damp	OR, 12-leaf twig, old leaves	OR, 8-leaf twig, new leaves	S, 9-leaf twig, old and new	leaves, damp	P, 17-leaf twig, new leaves,	damp	B, 17-leaf twig, old leaves	B, 15-leaf twig, new leaves	0, 17 leaves	O, 16 leaves	O, 93 new leaves plus twigs	0, twigs	0, 93 new leaves	O, 28 old leaves plus twigs	O, twigs	O, 28 old leaves
a _L (sq ft/gm)		·	1	ı	0.0212	0.00548	0.0221	0.0146	0.0169	ı	•	0.0207		0.0294		ł	•	ı	•	۱	,	ı	1	ı	ł
с ^о р (gm/gm)	ad o	ı	I	ł	0.0162	0.0056	0.0092	0,0061	0.0224	ı	ı	0.0119		0.0035		ı	ł	ı	ı	1	ı	ı	ı	ı	ı
∆m (gm/sq ft)	Avoc	ı	I	ł	0.7634	1.0225	0.4164	0.4164	1.3263	ı	ı	0.5758		0.1192		ł	•	ı	•	٠	•	ł		4	ł
c p (gm/gm)		0.00719	0.00434	0.232	0.0220	0.0114	0.0178	0.0147	0.0326	0,0541	0,0391	0.0585		0.0501		0.0158	0.00827	0.0267	0.0406	0.00630	1	ŧ	0.0104	1	ı
∆m_L (85m)		0.0072	0.0102	0.7201	0.0340	0.0211	0.0192	0.0547	0.1455	0.1928	0.0761	0.1707		0.1743		0.1281	0.0457	0.1328	0,1884	0.0669	ł	1	0.1027	ł	1
"L (Вт)		1.0015	2.3524	3.1014	1.5408	1.8418	1.0808	3.7319	4.4623	3.5658	1.9485	2.9185		3.4781		8.1185	5.5232	4.9715	4.6383	10.6211	7.4234	3.1977	9.8479	3 . 5954	6.2525
Sample Number		14509-1	14510-1	14511	14524-1	14535-1	14546-1	14560-1	14570-1	14576-1,3	14577-1,3	14624-1,3		14641-1,3		14643-1,3	14644-1,3	14682	14683	14831-1,3	14831-3	14831-1	14832-1,3	14832-3	14832-1

,

n a la caractería de la companya de la caractería.

ł

----

STREET, LOD.

Table 17

ę

1

Í

-----

-

í.

Semple designation		OR, 24 Leaves, N side	OR, 24 leaves, under limb	P, 24 leaves, N side, damp	PW, 20 leaves, N aide	P, 32 leaves, N side, damp	O, 14-leaf twig, protected	O, 16-leaf twig, protected, low	0, 24-leaf twig, exposed, NB	0, 16-leaf twig, exposed, SW	S, 16-leaf twig, exposed NE side, damp and dry	S, 12-leaf twig, exposed SW side,	damp and dry	S, 8-leaf twig, protected, low,	damp and dry	P, 16-leaf twig, exposed,	NE side, damp	S, 16-leaf twig, exposed,	ME side, damp and dry	O, 16-leaf twig, exposed, NE side	P, 15-leaf twig, exposed,	Sw side, damp
a. (sq_ft/gm)		ı	ı	0.0653	0.00925	0.0704	ı	ı	ı	1	0.0502	0.0197		0.00929		0.0256		0.0355		ł	0.0212	
с ^о р (gm/gm)	lor	•	ł	0.0318	0.0045	0.1235	ı	ı	ł	I	0.0173	0,0068		0.0032		0.0132		0.0305		0.0659	0.0109	
∆m (gm/sq ft)	Cempt	ł	ı	0.4869	0.4864	1.7546	ł	ı	ı	ı	0.3446	0.3446		0.3446		0.5146		0.8592		ł	0.5146	
c p (gm/gm)		0.0104	0,0169	0.0422	0.0149	0.1415	0.0366	0,0344	0.0474	0.0385	0,0647	0.0453		0.0376		0,0779		0,0779		0,0779	0.0562	
0 mL (88m)		0.0121	0.0284	0.0353	0.0125	0.2376	0.0846	0,0663	0,1026	0.0386	0.0954	0,0686		0.0319		0,1024		0.1024		0.1024	0.0637	1
ر الا س		1.1700	1.6767	0.8357	0.8388	1.6796	2.3105	1.9278	2.1644	1.0034	1.4743	1.5128		0.8475		1.3137		1.3137		1.3137	1.1339	
Sample Number		06330-1	06331-1	06339-1	06347-1	06353-1	06367-1,3	06368-1,3	06369-1,3	06370-1,3	06381-1,3	06382-1,3		06383-1,3		06395-1,3		06395-1,3		06395-1,3 ⁸	06396-1,3	

150

.•

a Assumed spray-washed Backgrounds

ŧ

. . . . .

. . . . .

¢

-

;

i

	1			•		, low		1, low	_		, low			i, low		
	ignation		exposed, and dry	protected,	protected. dry	protected,	exposed,	protected	protected,		protected,	exposed,	exposed,	protected	exposed,	exposed,
	Sample Des		15-leaf twig, SW side, damp	12-leaf twig, low, damp	12-leaf twig, low, damp and	12-leaf twig,	32-leaf twig, NE side	18-leaf twig,	14-leaf twig,	low, damp	ld-leaf twig,	12-leaf twig, NE side, damp	12-leaf twig, NE side	16-leaf twig,	40-leaf twig, NE side	14-leaf twig, Sw mide
			ູ້	Å,	ດ້	o	OR,	OR,	<u>.</u>		o	a.	•	OR,	OR,	OR,
e ⁾	(sq ft/gn)		0,0206	0.00874	0,00896	1	r	ı	0.0341		ı	0.0971	ŀ	ı	Ŧ	1
ించి	(gm/gm)	ntinued)	0.0177	0.0045	0.0077	0.0301	0.0177	0,0064	0.0077		0,0161	0.0219	0.0416	0.0020	0,0019	0,0085
ł	(gm/sq ft)	Camphor (co	0.8592	0,5146	0.8592	ı	•	•	0.2256		•	0.2256	,	ı	ı	ł
లి	(Em/gm)		0,0562	0,0421	0.0421	0.0421	0,0297	0,0184	0.0261		0,0261	0,0516	0.0516	0.0120	0,0119	0,0185
کس ل			0,0637	0.0428	0.0428	0.0428	0,0492	0.0308	0.0438		0.0438	0 <b>,04</b> 94	0,0494	0,0180	0,0209	0.0174
≱ີ	(gn)		1.1339	1.0156	1.0156	1.0156	L .6546	1.6769	1.6779		1.6779	0.9568	0.9568	1.4929	1.7529	0,9398
Sample	Number		06396-1,3	06397-1,3	06397-1,3	06397-1,3 ⁸	06416-1,3 ⁸	06417-1.5 ⁸	06429-1,3		06429-1,3	06430-1,3	06430-1,3	06432-1,3	06433-1,3 ⁸	06434-1,3 ⁴
							15	51								

a Assumed spray-washed Backgrounds

-----

1

.

. ž

د غير ـ

Plant Designation		P, 24-leaf twig, exposed, NE side, damp	<pre>P, 14-leaf twig, protected, low, damp</pre>	SW, 23-leaf twig, exposed, NE	SW, 19-leaf twig, protected, low	O, 12-leaf twig, protected	O, 12 leaves, protected	0, 30-leaf twig, exposed,	NE side	O, 30 leaves, exposed, NE side	P, 16-leaf twig, protected, dry	P, 16 leaves, protected, dry	P, 17-leaf twig, exposed	NE side, dry	P, 17 leaves, exposed, NE side,	dry	P, 25-leaf twig, protected,	dry	P, 25 leaves, protected, dry	
а. Б. (ва <i>ft/g</i> m)		0,0368	0,0159	0,0115	0.00416	ı	ı	ł		1	0.0114	0.0153	0,0197		0.0234		0.0232		0.0267	
с ^о р (gm/gm)	ontinued)	0.0125	0.0054	0.0069	0.0025	ı	ı	ı		1	0.0131	0.0176	0.0226		0.0269		0.0391		0.0450	
Δm (gm/sq ft)	Camphor (co	0,3398	0.3398	0.6010	0.6010	ı	ı	ł		ł	1.1492	1.1492	1.1492		1.1492		1,6867		1.6867	
c p (gm/gm)		0,0244	0.0174	0.0188	0.0145	0.6562	0.7537	0.0437		0,0502	0.0251	0.0296	0.0346		0,0389		0.0642		0.0746	
∆ ^m L (881)		0,0374	0610'0	0.0253	0.0198	0.6757	0.6757	0.0815		0.0815	0.0382	0.0382	0.0477		0.0477		0.0982		0.0982	
€ ¹ (6m)		1.5345	1.0919	1,3449	1.3621	1,0297	0.8965	1.8657		1.6243	1.5236	I.2897	1.3772		1.2265		1.5292		1,3164	
Sample Number		06499-1,3	06450-1,3	06470-1,3	06471-1,3	06481-1,3	06481-1	06482-1,3		06482-1	06517-1,3	06517-1	06518-1,3 ⁸		06518-1		06540-1,3		06540-1	

a Take OR Background of 0.0120

1.1.1

7

(gm) Sample Designation		<pre>1 P, 22 leaf-twig, exposed, NE side, dry</pre>	l P, 22 leaves, exposed, NE side, dry	17 SW, 13-leaf twig, protected	25 SW, 23 leaves, protected	7 SW, l <b>i-leaf twig, exposed</b> , NE side	5 SW, 16 leaves, exposed, NE side	59 S, 12-leaf twig, protected, dam	l P, 12-leaf twig, protected, dam	06 S, 12 leaves, protected, damp	1 P, 12 leaves, protected, damp	3 S, 22-leaf twig, exposed, NE side, damp	) P, 22-leaf twig, exposed,	NE side, damp 4 S, 22 leaves, exposed, NE side,	damp	4 P, 22 leaves, exposed, NE side,	damp	O, 23 leaves, SW side, bottom	O, 28 leaves, NE side, bottom	0. 60 leaves, random
aL (sq ft/	~	0.026	0.031	0.0054	0.005	0.013	0.015	0.008(	0.012]	)600°0	0.013	0*013	0.013(	0,016		0.017		ı	ı	ı
c ^o p (gm/gm)	(concluded)	0.0446	0.0524	0.0121	0.0116	0,0302	0.0342	0.0375	0.0254	0,0391	0.0275	0.0576	0.0274	0,0708		0,0366		ı	ł	ı
∆m (gm/sq ft)	Camphor	1,6867	1.6867	2,2115	2.2115	2,2115	2.2115	4.3171	2,1056	4.3171	2,1056	4.3171	2.1056	4,3171		2,1056		1	ı	ı
с р (gm/gm)		0,0792	0,0913	0.0372	0.0412	0.0648	0.0731	0.0626	0,0626	0.0647	0.0687	°.0922	0,0922	0.1097		0.1097		0.0320	0.0222	0.0218
Δ ^m L (gm)		0.1337	0.1337	0.0650	0,0650	0.0618	0,0618	0.0752	0.0752	0.0752	0.0752	0.1510	0.1510	0.1510		0.1510		0.0627	0.0451	0.1353
ы Г (gm)		1.6872	1,4648	1.7447	1.5762	0.9544	0.8452	1.2015	1.2015	1.0948	1,0948	1.6374	1.6374	1,3761		1.3761		1.9618	2,0298	6.1915
Sample Number		06541-1,3	06541-1	06557-1,3	06557-1	06558-1,3	06558-1	06592-1,3	06592-1,3	06592-1	06592-1	06593-1,3	06593-1,3	06593-1		06593-1		06672-1	06673-1	06693-1

:

÷

-

Table 17 (continued)

	Sample Designation		B, 5 2-year leaves, dry	R, G l-year leaves, dry	B, 6 rew leaves, dry	B, 6 2-year leaves, dry	B, 6 new leaves, dry	B, 6 1-year leaves, dry	P, l leaf, t-l, s-l, ^a dry	P, leaf, t-l, s-ĩ, dry	P, l leaf, t-1, s-1, dry	P, l leaf, t-l, s-l, dry	P, 1 leaf, t-1, s-1, dry	P, 1 leaf, t-l, s-l, dry	P, I leaf, t-l, s-l, dry	P, 12 leaves, t-1, s-1, dry	P, 1 leaf, t-], s-2, dry					
a I	(sq ft/gm)		,	١	1	ı	ı	ı	0,01581	0.00725	0.02483	0,00983	0,00352	0.02017	0.00248	0.00643	0.01436	0.02079	0.01183	0.00514	0,01133	0.04997
ిరి	(Bu/Bu)	tit Tree	ł	ł	i	ł	1	i	0.00988	0.00453	0.00302	0.00614	0.00220	0.01260	0.00155	0.00402	0.00897	0.01299	0.00739	0.00321	0,00708	0.03122
дn	(gm/sq ft)	Grapefru	t	1	1	ł	ſ	ı	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
లి	(gm/gm)		0.0108	0.00594	0.00607	0.00441	0.00714	0,00498	0.01559	0.01024	0,00873	0.01185	0,00791	0.01831	0,00726	0,00973	0.01468	0.01870	0.01310	0,00892	0.01279	13693
∆m L	(RM)		0.0338	0.0189	0.0109	0.0175	0.0118	0.0126	0.00360	0.00210	0.00140	0.00216	0.00318	0.01282	0.00330	0.00770	0.01334	0.02125	0.01355	0.01150	0,09590	0.00482
×	( gm)		3.1426	3.1807	1,7961	3.9657	1.6538	2.5309	0.2309	0.2050	0.1603	0,1823	0.4021	0.7002	0.4548	0.7314	0.9086	1.1364	1.0347	1.2886	7.4953	0.1305
Sample	Number		16020-1	16021-1	16022-1	16030-1	16031-1	16032-1	16046-1	16047-1	16048-1 ^b	16049-1	16050-1	16051-1	16052-1	16053-1	16054-1	16055-1	16056-1	160571	16057s-1	16058-1

154

a t-l for trunk l; s-l for section l; s-2 for section 2
b Sample dropped

ŝ

omine second second states

	ļ																						
	tion		a dry	, dry	, dry	, dry	, dry	, dry	, dry	, dry	-2, dry	, dry	, dry	, dry	, dry	, dry	, dry	, dry	, dry	, dry	, dry	, dry	, dry
	1 gna		s-2	8-8 8-8	8-S	2-5	21	01 10 10	8-2	S-2	1, s [.]	s-1	g-1	S - 1	<b>1-5</b>	S-1	8-1 2	8-1	8-1 -	8-1	8+]	s. I	8-J
	Des		t-1,	t-1,	t-1,	t-1,	t-1,	t-1,	<del>[</del> -].	t-1,	• •	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2.
	Sanple		leaf,	leaf,	l leaf,	l leaf,	Leaf,	l leaf,	l leaf,	l leaf,	) leaves	l leaf,	leaf,	l leaf,	i leaf,	l leaf,	l leaf,	Leaf,	i leaf,	leaf,	l leaf,	i leaf,	leaf.
			Р, ј	Р.	Р, ј	Ъ,	Р, ]	Р,	Г 4	L L	ۍ م	2	а а	Ъ.	с 4	Р. Г	Ъ.	Р, ]	Ч	С С	Р, ]	Ъ,	Д
B B	(sq ft/gm)	(p	0.05378	0.02335	0.03896	0.03302	0.02263	0.02858	0.01500	0,02881	0.02881	0.01708	0.01152	0.01956	0.02021	0.03068	0.00757	0.02127	0.01292	0.01191	0.00962	0.00567	0.00211
್ರಿ	(gm/gm)	e (continue	0.03360	0.01459	0.02434	0.02063	0,01414	<b>0.0178</b> 6	0,00938	0,01800	0,01800	0.01067	0.00720	0.01222	0.01263	0.01917	0.00473	0.01329	0.00807	0.00744	0.00601	0.00354	0.00132
ШQ	(gm/sq ft)	apefruit Tre	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
లీ	(gm/gm)	19	0,03931	0.02030	0.03005	0.02634	0.01985	0.02357	0.01508	0.02371	0.02371	0.01638	0.01291	0,01793	0.01834	0.02488	0.01044	0.01900	0.01378	0.01315	0.01172	0.00925	0.00703
ΔnL	(gm)		0.00603	0,00599	0.01138	0.01118	0.01024	0.00922	0.00802	0.01036	0.07724	0.00816	0.00368	0.00558	0,00968	0.00884	0.00522	0.00680	0.00339	0.00521	0.00580	0.00547	0.00078
ML L	(gm)		0.1534	0.2950	0.3787	0.4245	0.5159	0.3912	0.5320	0.4369	3.2581	0.4982	0.2850	0.3112	0.5277	0,3553	0.3 <b>001</b>	0.3578	0.2460	0.3961	0.4950	0.5916	0.1110
Sample	Number		16059-1	16060-1	1-19091	16062-1	16063-1	16064-1	16065-1	16066-1	16066s-1	16067-1	16068-1	16069-1	16070-1	16071-1	16072-1	16073-1	16074-1	16075-1	16076-1	16077-1	16078-1

s-1 for section 1; s-1 for section 2 a t-1 for trunk 1; t-2 for trunk 2;

ì

ł ÷

ł

i .

والمراجع ومسادية والمراجع ومواصور والمراجع والمراجع والمراجع

i , .

• ;

i

	I																				
	ation		a dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
	s1gn		3-1, ¹	s-1,	3-1,	s-1,	8-1,	s~1,	s-1,	8-1,	s-1,	s-1,	8-1,	8 - J ,	8-1,	8-1,	s-1,	s-1,	8-l,	s-1,	s-1,
	le De		t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2.	t-2,	t-2,	t-2,	t-2,	t 2,	t-2,	t-2,	t-2,
	Samp		leaf,	leaf,	leaf,	leaf,	leaf	leaf,	leaf,	luaf,	leaf,	leaf,	leaf,	leaf,							
			Ч	-	-1	٦	м	-	~		-	٦	~	e-t	٦	-	٦	Ч	٦	H	Г
	I		ď	٩,	Ч,	4	4	P.	Å	ч,	Р,	ď	ď	4	ď	ď	Δ.	ď.	ď.	Ρ.	ď
a ¹	(sq ft/gm)	(þe	0.03419	0.03241	0.02834	0.03460	0.03179	0.02473	0.02358	0,00911	0.04569	0.01359	0.03888	0,03843	0.01429	0.04950	0.02730	0.01748	0.03030	0.02487	0.02013
್ಟಿ	(gm/gm)	e (continue	0,02136	0.02025	0.01771	0.02162	0.01986	0.01545	0.01473	0.00569	0.02855	0.00849	0.02429	0.02401	0.00893	0.03093	0.01706	0.01092	0.01893	0.01554	0.01258
Δm	(gm/sq ft)	apefruit Tre	0.6248	0.6248	0.6248	0.6248	0.6248	0,6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
లి	(gm/gm)	Gr	0,02707	0.02596	0.02342	0.02733	0.02557	0.02116	0.02044	0.01140	0.03426	0.01420	0.03000	0.02972	0.01464	0.03664	0.02277	0.01663	0.02464	0,02125	0.01829
ΔmL	(gn)		0,00245	0.00317	0.00348	0.00520	0.00425	0.00327	0.00334	0.00850	0.00135	0,00528	0.00147	0.00280	0.00201	0.00672	0.00357	0.00300	0,00405	0.00360	0,00192
M M	(gm)		0,0905	0.1221	0.1486	0.1903	0.1662	0.1545	0.1634	0.7456	0.0394	0.3718	0.0490	0.0942	0.1373	0.1834	0.1568	0.1804	0.1644	0,1694	0.1050
Samp le	Number		16079-1	16080-1	16081-1	16082-1	16083-1	16084-1	16085-1	16086-1	16087-1	16088-1	16089-1	16090-1	16091-1 ^b	16092-1	16093-1	16094-1	16095-1	16096-1	16097-1

a t-2 for trunk 2; s-l for section 1
b Sample dropped

.....

.

	ation		, dry	dry	dry	dry	dry	dry	dry	dry	dry		dry	dry	dry	dry	dry	dry						
	esign		5-1 ⁸	s-1,	g−1,	s-1	s-1,	g-1,	g-1,	g-1,	s-1,	s-1,	<b>8−1</b> ,	s-1,	s-1,	°−1,	s-1,	s-1,						
	ple D		t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2.	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,	t-2,
	Sam		leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf.	leaf,	leaf,	leaf,	les?,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,
			P, 1	P, 1	P, 1	P, 1	P, 1	P, 1	P, 1	P, 1	P, 1	P. 1	P, 1	Ρ, Ι	P, 1	P, 1	P, 1	Γ, Ι	P, 1	P, 1	P, 1	P, 1	ь <b>.</b>	<b>,</b>
	(E		~	80	N		00	4	20	4	6	~		0	0	6	N	5	2	~	G	0	~	<b>m</b>
с В	(sq ft/	(pa	0,0337	0,0013	0,0224	0,0739	0.0087	0,0333	0.0178	0.0255	0.0084	0.0304	0.0429	0.0221	0.0291	0.0329	0.0249	0.0345	0.0337	0.0713	0,0482	0.0419	0,0265	0.0318
ംറം	(gm/gm)	e (continu	0.02107	0.00086	0.01401	0.04619	0.00549	0.02083	0.01117	0.01596	0.00528	0.01904	0.02682	0.01381	0.01818	0.02061	0.01557	0.02161	0.02110	0.04456	0.03015	0.02619	0.01660	0,01992
ШĄ	(gm/sq ft)	apefruit Tre	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
లి	(gm/gm)	5	0.02678	0.00657	0.01972	0,05190	0.01120	0.02654	0.01688	0,02167	0,01099	0.02475	0.03253	0.01952	0.02389	0.02632	0.02128	0.02732	0,02681	0.05027	0.03586	0.03190	0.02231	0.02563
∆ n L	(gm)		0.00113	0.00360	0.00270	0.00436	0.00424	0.00410	0.00215	0.00231	0.00319	0.00195	0.00230	0.00188	0.00227	0.00185	0.00262	0.00333	0.00241	0.00465	0.00445	0.00185	0.00255	0.00450
r ≪	(gn)		0.0422	0.5476	0.1369	0.0840	0.3787	0.1545	0.1274	0.1066	0.2903	0.0788	0.0707	0.0963	0.0950	0.0703	0.1231	0.1219	0,0899	0.0925	0.1241	0.0580	0.1143	0.1756
Samp le	Number		16098-1	1-6091	1-00191	16001-1	16102-1	16103-1	16104-1	16105-1	16106-1	16107-1	16108-1	16109 1	16110-1	16111-1	16112-1	16113-1	16114-1	16115-1	16116-1	16117-1	16118-1	161191

a t-2 for trunk 2; s-1 for section 1

. }

4

,

Sample	×	Сш Г	ე <del>ი</del>	щQ	, <b>a</b>	<b>-</b>				
Number	(E9)	(gn)	(gm/gn)	(gm/sq ft)	(mg/ng)	(sq ft/gm)	S	umple.	Descri	ption
			3	repefruit Tr	ee (contin	ued)				
16120-1	0.1629	0.00360	0.02210	0.6248	0.01639	0.02623	P, 1 lea	1f, t-2	, s-l,	^a dry
16121-1	0.1400	0.00138	0.00986	0.6248	0.00415	0.00664	P, 1 lea	1f, t-2	, 8-1,	dry
16122-1	0.1173	0.00276	0.02353	0,6248	0,01782	0.02852	P, I las	lf, t-2	, 8-1,	dry
16123-1	0,0954	0,00238	0.02495	0.6248	0.01924	0.03079	P, 1 lea	lf, t-2	, s-1,	dry
16124-1	0.1156	0.00278	0.02405	0.6248	0.01834	0,02935	P, 1 los	11, t-2	, 5-l,	dry
16125-1	0.1048	0.00285	0.02719	0.6248	0.02148	0.03438	P, 1 les	1f, t-2	, s-l,	dry
16126-1	0.2383	0.00529	0.02220	0.6248	0.01649	0.02639	P, 1 les	ıf, t-2	, s-l,	dry
16127-1	0.2294	0.00312	0,01360	0.6248	0.00789	0.01263	P, l lem	if, t-2	, s-l,	dry
16128-1	0,2319	0.00445	0.01919	0.6248	0.01348	0.02157	P, l lea	1f, t-2	, s-l,	dry
16129-1	0.3132	0,00515	0.01644	0.6248	0.01073	0.01717	P, 1 les	1f, t-2	, 8-l,	dry
16130-1	0.2619	0.00465	0.01775	0.6248	0.01204	0.01927	P, l lea	ıf, t-2	, s-l,	dry
16131-1	Q.1600	0.00260	0.01625	0.6248	0.01054	0.01687	P, 1 lea	1f, t-2	1-51	dry
16132-1	0.2150	0.00350	0.01814	0.6249	0,01243	0.01989	P, 1 lea	lf, t-2	, s-l,	dry
16133-1	0.1754	0.00245	0.01397	n.6248	0.00826	0.01322	P, 1 les	lf, t-2	, s-1,	dry
16134-1 ^b	0.1878	0.00382	0.02034	0.6248	0,01463	0.02342	P, 1 lea	1f, t-2	, s-1,	dry
16134s-1	14.0349	0.25361	0.01807	0.5248	0.01236	0.01978	P, 68 le	SAVOS ,	t-2, s	-l, dry
16135-1	0.4659	0.00620	0.01331	0.6248	0 00,760	0.01216	P, 1 lea	1f, t-3	, s-l,	dry
16136-1	0.3977	0.00462	0,01162	0.6248	0.00591	0.00946	P, 1 les	1f, t-3	, s-l,	dry
16137-1	0.9199	0.01613	0.01753	0.6248	0.01182	0.01892	P _: 1 lea	1f, t-3	, s-l,	dry
16138-1	0,8096	0.01305	0.01612	0.6248	0.01041	0.01665	P, 1 ler	·f, t-3	, s-l,	dry
16139-1	1.0783	0.02098	0.01946	0.6248	0.01375	0.02201	P. 1 lea	LL. t-3	. s-l.	dry

a t-2 for trunk 2; t-3 for trunk 3; s-1 for section 1
b Sample dropped

	1																					
	le Designation		t-3, s-1, ⁸ dry	t-3, s-1, dry	t~3, s~1, dry	t-3, s-1, dry	t-3, 8-1, dry	t-3, g-1, dry	t-3, s-1, dry	t-3, s-1, dry	t-3, s-1, úry	t-3, s-1, dry	t-3, g-l, dry	t-3, g-l, dry	s, t-3, s-1, dry	t3, s2, dry	t-3, s-2, dry	t3, s2, dry				
	Samp		P. 1 leaf,	P, 1 leaf,	P, l leaf,	P, l leaf,	P, l leaf,	P, l leaf,	P, 1 leaf,	P, 1 leaf,	P, 1 leaf,	P, I leaf,	P, 1 leaf,	P, 1 leaf,	P, l leaf,	P, 1 leaf,	P, 1 leaf,	P, 1 leaf.	P, 21 leave	P, l leaf,	P, l leaf,	P, 1 leaf,
a L	(sq ft/gm)	(pa	0.01260	0.02383	0.02350	0,01013	0,01861	0.00272	0.00218	0.01865	0,00898	0.01681	0.01423	0.00946	0.01765	60600*0	0.02638	0.01130	0.01549	0.01674	0.03712	0.00760
ిరి	(gm/gm)	ee (continu	0.00787	0.01489	0.01468	0.00633	0.01163	0.00170	0.00136	0.01165	0.00561	0.01050	0.00889	0.00591	0.01103	0,00568	0.01648	0,00706	0,00968	0.01046	0.02319	0.00475
шŢ	(gm/sq ft)	apefruit Tre	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0,6248	0.6248	0.6248	0.6248
లి	(gm/gm)	5	0.01358	0.02060	0.02039	0.01204	0.01734	0.00741	0.00707	0.01736	0.01132	0,01621	0.01460	0.01162	0.01674	0.01139	0,52219	0.01277	0-01539	0.01617	0,02890	0.01046
∆m L	(gn)		0.01222	0.02074	0.01650	0.00972	0,01381	0,00369	0.00466	0.01016	0.00566	0,00805	0,00641	0,00502	0.00720	0.00397	0.00770	0.00281	0.19930	0.90249	0.00337	0.00270
بر ع	(gm)		0,9001	1.0070	0.8091	0.8071	0,7962	0.4977	0.6588	0.5853	0.5000	C.4967	0389	0.4320	0.4301	0.3487	0.3470	0.2200	13,9461	0.1540	0.1166	0.2531
Sample	Number		16140-1	16141-1	16142-1	16143-1	16144-1	16145-1	16146-1	16147-1	16148-1	16149-1	16150-1	16151-1	16152-1	16153-1	16154-1	16155-1	16155s-1	16156-1	16157-1	16158-1

a t-3 for trunk 3; s-1 for section 1; s-2 for section 2

.

1

1

ļ

1

0 0

đ7

ł,

72

Sample Designation		P, l leaf, t-3, s-2 ^b , dry	P, 1 leaf, t-3, s-2, dry	P, 1 leaf, t-3, s-2, dry	P, 1 leaf, t-3, s-2, dry	P, l leaf, t-3, s-2, dry	P, I leaf, t-3, s-2, dry	P, I leaf, t-3, s-2, dry	P, 1 leaf, t-3, s-2, dry	P, 11 leaves, t-3. s-2, dry	PW, 1 leaf, t-1, s-3, dry	PW, l leaf, t-1, s-3, dry	PW, l leaf, t-1, s-3, dry	Pw, 1 leaf, t-1, s-3, dry	PW, l leaf, t-l, s-3, dry	PW, 1 leaf, t-l, s-3, dry	PW, 1 leaf, t-1, s-3, dry	PW, 7 leaves, t-1, s-3, dry	PW, 1 leaf, t-1, s-4, dry	PW, 1 leaf, t-1, s-4, dry	PW, l leaf, t-l, s-4, dry
a. L (sq ft∕gm)	1 nued)	0,00923	0.00715	0.01068	0.02225	0.01560	0.00723	0.00994	0.01684	0.01317	0.01306	0.00322	0,00283	0.00222	0.00371	0.00139	0,00070	0,00330	0,00896	0.03716	0.01509
င ⁰ ၉။ (၉။	ree - (cont	0,00577	0.00447	0,00657	0,01390	0,00975	0.00452	0.00621	0.01052	0.00823	0,00816	0,00201	0,00177	0,00139	6,00332	0.00087	0.00044	0,00206	0,00560	0.02322	0,00943
∆m (cm/€3 ft)	rapefruit T	0.6248	0.6248	0.6248	0.6248	0.6248	0,6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
С т (ш/кш)		0,01148	0,01018	0.01238	0.01961	0.01546	0.01023	0.01157	0.01623	0.01394	0.01387	0.00772	0.00748	0.00710	0,00803	0.00658	0,00615	0.00777	0,01131	0,02893	0.01514
ريس ( (سي)	6	0,00323	0.00341	0,00308	0.00580	0,00428	0,00282	0.00270	0,00394	0.03792	0.00314	0,00404	0,00450	0.00345	0,00503	0.00270	0.00272	0.02558	0.00308	0.00727	6.00715
r L Em)	d	0.2813	<b>0.33</b> ∢9	0.2487	0.2957	0 2769	0,2853	0.2256	0.2427	2.7198	0.2264	0.5235	0.6014	0.4861	2.6035	0.4102	0.4425	3, 2936	0.2723	0.2513	0.4723
Sample Number		16159-1	16160-1	16161-1	16162-1	16163-1	16164-1	16165-1	16166-1	161668-1	16157-1	1,6168-1	16169-1	16170-1	16171-1	16172-1	16173-1	161738-1	16174-1	16175-1	16176-1

160

Sample dropped a ,o

t-l for trunk l; t-3 for trunk 3; s-2 for section 2; s-3 for section 3; s-4 for section 4

1.11

° - •

	Sample lesignation		PW, 1 leaf, t-1, s-4, ^B dry	PW, I leaf, t-1, s-4, dry	Pw, I leaf, t-1, s-4, dry	PW, 1 leaf, t-1, s-4, dry	PW, 1 leaf, t-1, s-4, dry	PW, l leaf, t-l, s-4, dry	PW, 1 leaf, t-1, s-4, dry	PW, 1 leaf, t-1, s-4, dry	PW, 11 leaves, t-1, s-4, dry	PW, I leaf, t-2, s-2, dry	PW, 1 leaf, t-2, s-2, dry	PW, 1 leaf, t-2, s-2, dry	PW, 1 14af, t-2, s-2, dry	PW, I leaf, t-2, s-2, dry	PW, I leaf, t-2, s-2, dry	PW, l leaf, t-2, s-2, dry	PW, 1 leaf, t-2, s-2, dry	PW, l leaf, t-3, s-2, dry				
പ്	(sq ft/gm)	lued)	0.03444	0.00751	0.02090	0.01103	0.00517	0.00413	0,00392	0.01388	0.01325	0.01317	0.03196	0.00752	0.01053	0.01005	0.00640	0.00571	0.00312	0.00807	0.00655	0.00599	0.01601	0.02044
ింది	(gm/gm)	ee (contin	0.02152	0.00469	0.01306	0,00689	0.00323	0.00258	0.00245	0.00867	0.00828	0.00823	0.01997	0.00470	0.00658	0.00628	0.00400	0.00357	0.00195	0.00504	0.00409	0.00374	0.01000	0.01277
Δm	(gm/Bq ft)	rapefruit tr	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
లి	(gm/gm)	01	0.02723	0,01040	0.01877	0.01260	0.00894	0.00829	0,00816	0.01438	0.01399	0.01394	0.02568	0.01041	0.01229	0,01199	0.00971	0.00928	0.00766	0.01075	0,00980	0.00945	0.01571	0.01848
л Б	(gm)		0.01296	0.00542	0.01227	0.00705	0.00584	0,00490	0,00552	0,00956	0.08102	0.00350	0.00170	0.00305	0,00435	0,00405	0,00315	0.00310	0.00215	0.00215	0.00180	0.00170	0.00260	0,00285
¥ K	(mg)		0.4759	0.5214	0.6536	0.5596	0,6535	0.5908	0.6769	0.6650	5, 7926	0.2511	0,0662	0,2930	0.3539	0,3378	0.3244	0, 3339	0.2808	0,2000	0, 1837	0,1799	0.1655	0,1542
Sample	Number		16177-1	16178-1	16179-1	16180-1	16181-1	16182-1	16183-1	16184-1	16184s-1	16185-1	13186-1	16187-1	16188-1	16189-1	1-06191	1-16151	1-1192-1	16193-1	16194-1	16195-1	16196-1	16197-1

a t-1 for trunk 1; t-2 for trunk 2; s-2 for section 2; s-4 for section 4

and the

**L** ....

Sample	× L	ΔmL	రి	Ę	ించి	a ^ل						
Nunbe r	(gm)	(B)	(gm/gm)	(gm/sq ft)	(gm/gn)	(sq ft/gm)			ple De	signe	tion	l
			01	rapefruit Tr	ee (contin	ued)						
6198-1	0.1387	0.00355	0.02559	0.6248	0.01988	0.03182	, WQ	1 les	f, t-2		Đ.	ð
1-0019	0.0234	0.00115	0.04915	0.6248	0.04344	0.06953	PW,	l les	f, t-2	-2-5	, dry	_
6200-1	0.1237	0,00205	0.01657	0.6248	0.01086	0.01738	PW,	l les	f, t-2	2 - 5 - 5	, dry	
6201-1	0.1998	0.00220	0,01101	0.6248	0.00530	0,00848	PW,	l lea	f, t-2		, dry	
6202-1	0.2300	0,00355	0.01543	0.6248	0.00972	0.01556	PW,	l lea	f, t-2		, dry	_
6203-1	0.2096	0.00265	0.01264	0.6248	0.00693	0.01109	PW,	l lea	f, t-2	- - -	dry	
6204-1	0.2356	0.00270	0.01146	0.6248	0.00575	0.00920	PW,	l les	f, t-2		, dry	
6205-1	0.2210	0,00255	0.01154	0.6248	0.00583	0.00933	PW,	l lea	f, t-2		, dry	
6206-1	0.1745	0.00465	0.02665	0.6248	0.02094	0.03351	PW,	l lea	f, t-2	, s-2	, dry	
6207-1 ^b	0.1610	0,00205	0.01273	0,6248	0.00702	0.01124	PW,	l les	f, t-2	2 2 2	, dry	
6208-1	0.1520	0.00260	0,01711	0.6248	0.01140	0.01825	ΡW,	l les	£, t-2	-	, dry	
6209-1	0,1093	0.00140	0.01281	0.6248	0,00710	0.01136	PW,	1 198	£, t-2	ې ۳	, dry	_
6209s-1	5.1030	0.06725	0.01318	0.6248	0.00747	0.01196	, WQ	52 Ie	aves,	t-2,	5-2,	dry
6010-1	0.0661	0,00220	0.03328	0.6248	0.02757	0.04413	PW,	l les	f, t-3	- -	l, dry	
6011-1	0.1832	0.00255	0.01392	0.6248	0.00821	0.01314	PW.	l les	<b>f</b> , t-3	ຕີ. ອີ	Ĵ.	
6012-1	0.2480	0.00320	0,01290	0.6248	0.00719	0.01151	ΡW,	1 1ea		- -	, dry	
6013-1	0.2754	0,00335	0,01216	0.6248	0.00645	0.01032	PW,	l lea	<b>1</b> , t-3		, dry	~
6014-1	0,2266	0,00440	0.01942	0.6248	0.01371	0.02194	, wq	l les	1, t-3		s, dry	

162

s-2 for section 2; s-3 for section 3 a t-2 for trunk 2; t-3 for trunk 3;

Sample dropped م

ب وليا بو ال الار

* .

:

•

°ບ

!

•	ontinuex	0 <b>.01558</b> 0.00527	PW, l leaf, t PW, l leaf, t PW, l leaf, t PW, l leaf, t DW & leaves	3, 8-3, dry
	00864	0,00527	PW, I LOHI, U PW, I LOHI, t DW & LOHVOS	
0 0	,00329 2021		DW R leaves	3, 8-3, dry
э с	.00611 00836	0,01338		o, s−o, ury t−3, s−3, drv
) O	.02762	0.04421	PW, I leaf, t	3, s-4, dry
O	.01679	0.02687	PW, 1 leaf, t	3, s-4, dry
0	.00716	0.01146	PW, 1 leaf, t	3, s-4, dry
0	.00880	0.01408	PW, 1 leaf, t	3, s-4, dry
0	.00921	0.01474	PW, 1 lenf, t	3, s-4, dry
0	61010.	0.01631	PW, 1 leaf, t	3, s-4, dry
0	.01941	0.03107	PW, 1 leaf, t	3, s-4, dry
Ŭ	,00669	0.01071	PW, I leaf, t	3, s-4, dry
0	.01043	0.01669	PW, 1 leaf, t	3 <b>, s</b> -4, dry
0	,00278	0.00445	PW, 1 leaf, t	3, s-l, dry
Ģ	.00850	0.01360	PW, 1 leaf, t	3, 8-4, dry
0	.01272	0.02036	PW, 1 leaf, t	3, s-i, dry
Č	.00958	0.01533	PW, 12 leaves	t-3, s-4, dry
Č	.02120	0.02702	SW, 1 lenf, t	1, <b>8-</b> 5, dry
Č	0.00637	0.00812	SW, 1 leaf, t	·l, s-5, dry
Ū		0.01157	SW, 1 leaf, t	1, s-5, dry

163

m t-l for trunk l; t-3 for trunk 3; s-3 for section 3; s-4 for section 4; s-5 for section 5

:

.

Department of the second second

: .

b Sample dropped

			۲۷	*	*	~	*	A	*	*	*	٨	4	٩	*	*	*	dry	•	*	*	٨
	tion		5, <b>8</b> dj	S, dr	5, dr	5, dr	5, dr	5, dr.	5, dry	5, drj	5, dr)	5, dr	, drj	5, dr)	5, dr)	S, dry	i, dr)	8⊷1 ,	, dry	, dr	3, dr.	à, dr)
	1 gna 1			12	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- 5- 5	-		- - - -	. ⁵ -5		• •		5-S-			- H-	t-1,	• 8-6	* 8-6	• 5-6	9-5-
	e Des		t-1	1	1-1	T.	<u>1</u>	t-1	t-1	t-1	t-1	t-1	<u>t</u>	1	. t-1	. t.	t-1	, es ,	t-1	t-1	<u>1</u>	1
	ampl		leaf,	leaf,	leaf,	leaf	leaf,	leaf,	leaf	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf	leat	leaf,	leaf,	leaf,	leaf,
	50		-	~	-		-			м .•				-		-	۲.	, 18	-		-	۲.
			SW	NN NN	N.	ΗS	MS	МS	NS.	MS	SW	МS	<b>W</b> S	MS	MS	SW	SW	MS	MS	SW	MS	NS.
ц в	(sq ft ^{/gm} )	(P	0,00902	0.00330	0.00432	0.00391	0,00177	0,00735	0.00834	0,00962	0.00423	0.00381	0.00251	0.00978	0.00776	0.00088	0.00588	0,00581	0.00547	0.01457	0.02288	0.01292
್ಧಿ	(gm/gm)	(continue	0.00708	0.00259	0.00347	0.00307	0,00139	0,00577	0.00654	0.00755	0.00332	0.00299	0,00197	0.00767	0,00609	0,00069	0.00461	0,00456	0,00429	0.01143	0.01795	0.01014
шĄ	(gm/sq it)	pefruit Tree	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846
്	(gm/gm)	Gra	0.01279	0.00830	0.00918	0.00878	0.00710	0,01148	0.01225	0.01326	0,00903	0.00870	0,00768	0,01338	0.01180	0.00640	0.01032	0,01027	00010.0	0,01714	0,02366	0,01585
ζ ^μ Γ	(gn)		0,00805	0.00620	0.00465	0.00720	0.00640	0,00865	0.00290	0.01200	0,00500	0.00754	0.00666	0.01262	0.00620	0.00465	0.00760	0.11992	0,00160	0.00810	0.00340	0.00385
¥1 ¥	( uga)		0.6296	0.7472	0.5067	0.8200	0.9011	0, 7533	0, 2368	0,9050	0.5535	0.8665	0.8674	0.9435	0.5253	0.7266	0.7364	11.6759	0,1600	0.4726	0.1437	0.2429
Sample	Number		16233-1	16234-1	16235- I	16236-1	16237-1	16238-1	16239-1	16240-1	16241-1	16242-1	16243-1	16244-1	16245-1	16246-1	16247-1	16247s-1	16248-1	16249-1	16250-1	16251-1

a t-1 for trunk 1; s-1 for section 1; s-5 for section 5; s-6 for section 6

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

•

ę

ويتحد المتعاكم أتحاج والعالي والمرادي

1.44

	uo											6									
	i gna ti		s-6 ^a	91 S	8 I 8	s-6	s-6	9-s	s-6	91S	s-6	-1, s-	8 - S	s-3	813	s-3	S-3	s-3	က 1 အ	s = 3	s-3
	t Des		t-1,	t-1,	t-1,	t-1,	t-1,	t-1,	t-1,	t-1,	t-1,	es, t	t-1,	t-2,	t-2,	t-2,	t-2,	t-2,	t2,	t-2,	t-2,
	Plan		leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	3 leav	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,	leaf,
			«, 1	¥, 1	«, 1	к, 1	κ, 1	К <b>,</b> 1	м. М.	Υ.,	κ, 1	н.	×, 1	¥, J	κ, 1	ч ч	~1 • •	¥, 1	«, 1	к, 1	¥, 1
			ŝ	S	S	S	S	ŝ	S	S	S	S	ŝ	ŝ	S	S	ŝ	ŝ	S	S	ŝ
a L	(sq ft/gm	(pe	0.01440	0.01348	0.00237	0.00529	0.01435	0.00116	0.00361	0.00686	0.01088	00600*0	0.02018	0.01166	0.00817	0.00356	0,00390	0.00644	0.00371	0,00122	0.00707
ిలి	(gm/gm)	e (continue	0.01130	0.01058	0,00186	0.00415	0.01126	0,00091	0.00283	0,00538	0.00854	0,00706	0.01583	0,00915	0.00641	0.00279	0,00306	0,00505	0,00291	0,00096	0.00555
Δm	(gm/sq ft)	pefruit Tre	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846
లి	(gm/gm)	5	0.01701	0.01629	0.00757	0.00986	0.01697	0.00662	0.00854	0.01109	0.01425	0.01277	0.02154	0.01486	0.01212	0.00850	0,00877	0.01076	0,00862	0,00667	0.01126
∆m L	(gn)		0,00860	0.00525	0,00365	0.00505	0,00535	0.00265	0.00415	0.00450	0,00655	0,06270	0.00380	0.00332	0.00153	0.00235	0,00165	0,00199	0,00186	0.00125	0.00179
×	(gn)		0.5057	0.3222	0.4821	0.5122	0,3153	0.4002	0.4862	0.4058	0.4596	4,9085	0.1764	0.2234	0.1262	0.2765	0.1881	0.1850	0.2159	0.1873	0.1590
Sample	Number		16252-1	16253-1	16254-1	16255-1	16256-1	16257-1	16258-1	16259-1	16260-1	16260s-1	16261-1	16262-1	16263-1	16264-1	16265-1	16266-1	16267-1	16268-1	16269-1

a t-1 for trunk 1; s-3 for section 3; s-6 for section 6

. . .....

	Sample Designation		SW, 9 leaves, t-2, s-3, ⁸ dry	SW, lleaf, t-2, s-4, dry	SW, l leaf, t-2, s-4, dry	SW, 1 leaf, t-2, s-4, dry	Sw, l leaf, t-2, s-4, dry	SW, 1 leaf, t-2, s-4, dry	SW, 1 leaf, t-2, s-4, dry	SW, 1 Jeaf, t-2, s-4, dry	EW, I leaf, t-2, s-4, dry	SW, 1 leaf, t-2, s-4, dry	SW, leat, t-2, s-4, dry	Sw, l leaf, t-2, s-4, dry	SW, lì leaves, t-2, s-4, dry	SW, 1 leaf, t-3, s-5, dry	SW, lleaf, t-3, s-5, dry	SW, 1 leaf, t-3, s-5, dry	SW, 1 leaf, t-3, ±-5, dry	SW, I leaf, t-3, s-F, trv
تر ه	(sq ft/gm)	(pa	0.00705	0.01238	0.00358	0,00173	0.00311	0.01300	0,00895	0,00616	0.00014	0.01260	0.00291	0.00047	0.00517	0.01229	0.00752	0,00348	6.01133	0.00812
ిం	( <u>gm/gm)</u>	e (continue	0.00553	0.00971	0.00281	0.00136	0.00244	0.01020	0.00703	0.00483	0.00011	0,00989	0.00228	0.00037	0.00406	0.00964	0,00590	0,00273	0.00889	0.00637
ų	(gm/sq ft)	apeîruit Tre	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846	0.7346	r.7846	0.7846
టి	(gm/gm)	Gre	0.01124	0.01542	0.00852	0.06707	0.00815	0.01591	0.01274	0.01054	0,00582	0.01560	0.00799	0.00608	0.00977	0.01535	0.01161	0.00844	0.01460	0.01208
¢۳ ر	(gm)		0.01954	0,00508	0.00456	0.00525	0.00677	0.00440	0.00932	0 00612	0.00342	0.00658	0.00435	0.00225	0.05810	06100.0	0,00280	C.00249	0.00421	0.00325
¥ L	(gn)		1.7378	0.3294	0.5350	0.7421	0.8307	0.2765	0.7315	0.5806	0.5875	0.4217	0.5443	0.3700	5.9493	0.1238	0.2412	0.2949	0.2883	0.2690
Sample	Number		16269s-1	16270-1	16271-1	16272-1	16273-1	16274-1	16275-1	16276-).	16277-1	16278-1	16279-1	16280~1	16280s-1	16281-1	16282-1	16283-1	16284-1	16285-1

a t-2 for trunk 2; t-3 for trunk 3;

s-3 for section 3; s-4 for section 4; s-5 for section 5

.

q

	Sample Designation		SW, 1 leaf, t-3, s-5, ⁸ dry	SW, I leaf, t-3, s-5, dry	SW, 1 leaf, t-3, s-5, dry	SW, 8 leaves, t-3, s-5, dry	S, twig, t-1, s-5, dry	S, 18 leaves plus twigs,	t-1, s-5, dry	S, twig, t-1, s-6, dry	S, 13 leaves plus twigs,	t-1, s-6, dry	S, twig, t-2, s-3, dry	S, 9 leaves plus twigs,	t-2, s-3, dry	S, twig, t-3, s-5, dry	S, 8 leaves plus twigs,	t-3, 8-5, dry	0, 28 2-year leaves,	17 l-year leaves, t-l, s-l,	O, 57 2-year leaves,	6 1-year leaves,	22 new leaves, t-1, b-2
a ₁	(sq ft/gm)	d)	0.00472	0.00187	0.01620	0.00798	0.00164	0.00495		0.00431	0.00836		0.00575	0.00682		0.00452	0.00678		ı		ı		
ిౖ≏	(gm/gm)	(continue	0.00370	0.00147	0.01271	0.00626	0.00129	0.00389		0.00338	0.00656		0.00451	0.00535		0.00355	0.00532		ı		ł		
ШД	(gm/sq ft)	pefruit Tree	0.7846	0.7846	0.7846	0.7846	0.7846	0.7846		0.7846	0.7846		0.7846	0.7846		0.7846	0.7846		ı		ı		
ى <mark>م</mark>	(ga/gn)	Gra	0.00941	0.00718	0.01842	0.01197	0.00129	0.00840		0.00338	0.01150		0.00451	0.01004		0.00355	0.00905		ı		I		
∆m L	(gn)		0.00245	0.00129	0.00411	0.02250	0.00394	0.12386		0.00260	0.06530		0.00170	0.02124		0.00354	0.02604		ı		ı		
3 ^{_1} ≆	(gm)		0.2603	0.1798	0.2231	1.8804	3,0661	14,7420		0.7692	5.6777		0.3767	2.1145		0.9970	2.8774		24.63		28.00		
Sample	Number		16286-1	16287-1	16288-1	16288s-1	162893	16289s-ï,3		16290-3	162908-1,3		16291-3	162918-1,3		16292-3	162928-1,3		16293-1		16294-1		

t-1 for trunk 1; t-2 for trunk 2; t-3 for trunk 3;

•

s-3 for section 3; s-5 for section 5; s-6 for section 6;

b-1 for branch 1; b-2 for branch 2

į

İ

ļ

,

A statement of the statemen

Sample Designation		0, 110 2-year leaves, 6 1-year leaves, t-1, b-3, ^a dry	0, 63 2-year leaves, 15 1-year leaves, 13 new leaves, t-1, b-4, dry	O, 37 2-year leaves, 100 1-year leaves, 111 new leaves, t-2, b-1, dry	0, 33 2-year leaves, 56 1-year kaves, 134 new leaves, t-2, b-2, dry	0, 52 2-year leaves, t-3, b-1, dry	0, 59 2-year leaves, 116 1-year leaves, t-3, b-2, dry
al (sq ft/gm)	led)	ı	ı	ı	I	ł	I
с ^о р (gm/gm)	e (conclue	I	ı	ı	I	I	1
Δm (gm/sq ft)	apefruit Tre	ŧ	I	I	ı	I	î
c (gm/gm)	51	ſ	ı	1	ı	ı	I
۵۳ _L (gm)		ı	I	ł	I	ı	1 4
w L (gn)		50,20	48.24	61.49	53,33	16.27	53,90
Sample Number		16295-1	16296-1	16297-1	16298-1	16299-1	16300-1

a t-l for trunk l; t-2 for trunk 2; t-3 for trunk 3; b-l for branch l; b-2 for branch 2; b-3 for branch 3

ł

1000 - 10 m

	Sample Designation		B, northwest	B, east, twigs	B, east, twigs	B, cast, twigs (photo)	B, east, twigs	B, southeast	B, southwest	P, north, twigs, dry	P, east, twigs, dry	P, south, twigs, dry	P, west, twigs, dry	P, top center, twigs, dry		0, il leaves, north, bottom	0, 9 leaves, east, bottom	0, 11 leaves, south, bottom	0, 10 leaves, west, bottom	0, 10 leaves, center, bottom	0, 12 leaves, north, top	0, 13 leaves, east, top	0, 11 leaves, south, top	O, 11 leaves, west, top
a B	(sq ft/gm)		ı	ı	1	1	ł	5	ł	0.00205	~0.0	0.00178	0.0192	0.00149		ı	I	I	ì	I	1	ı	ı	ı
ംപ	(gm/gm)	er.	I	ı	ı	1	1	ł	ŧ	0.00128	~0.0	0.00111	0.01232	0,00093	el	ı	t	I	ı	ı	ı	ı	,	ł
u P	(gm/sq ft)	Juni	I	I	ı	1	1	ı	ı	0.6248	0.6248	0.6248	0.6248	0.6248	Laur	I	I	I	ţ	ı	ı	I	ı	ŀ
లి	(mg/mg)		0.00344	ł	ı	t	0.00665	0.00644	0.00766	0.00708	0.00580	0.00691	0.01812	0,00673		0.2409	0.3419	0.2063	0.2418	0.1834	0.3071	0.3014	0.3230	0.3019
Jm∆	(gm)		0.0308	1	ï	ł	0.0662	0.0443	0.0551	0.07240	0.03920	0.06330	0.1130	0.0303		0.3112	0.2833	0.1710	0.2738	0.1350	0.4026	0.3658	0.3895	0.4187
≱⊐	(ug)		8,9512	1.0667	5.7315	3.1550	9.9532	6.8825	7,1960	10.2245	6.7485	9.1636	6.2347	4.5026		1.2917	0.8286	0.8288	1.1325	0.7360	1.3108	1.2137	1.2060	1.3869
Sample	Number		16023	16024-3	16024-2	16024-1	16024	16025	16026	16033	16034	16035	16036	16037		15002-1	15003-1	15004-1	15005-1	15006-1	15007-1	15008-1	15009-1	15010-1

A set of the set of th

,

,

-----

t . |

1 2

O, 14 leaves, center, top

I

ł

I

0.1476

0.1722

1.1662

15011-1

	Sample Designation		B, 16 leaves, south, top	B, 10 leaves, center, top	B, 10 leaves, west, top	E, 15 Leayes, north, bottom	S, 10 leaves, north, bottom,	semidamp	S, 12 leaves, south, bottom,	semidamp	S, 15 leaves, east, bottom,	senidemp	S, 11 leaves, west, bottom,	semidanp	S, 10 leaves, center, bottom,	semidanp	S, 15 leaves, north, top,	semidamp	S, 11 leaves, south, top,	semidanp	S, 13 leaves, east, tup,	semidamp	S, 12 leaves, west, top,	semidamp
5 5 7 8 7 7 8	(9q ft/gm)		ı	I	I	ł	0.00291		0.00582		0.00179		0,00750		0.00454		0.00327		0.00173		0.00036		0.0128	
` عن `	(gm/gm)	ontinued)	I	ı	ı	ł	0.0057		0.0114		0.0035		0.0147		0.0089		0.0064		0,0034		0.0007		0.0251	
Am V	(gm/sq ft)	Laurel (cc	I	I	ł	I	1,9599		1,9599		1,9599		1,9599		1.9599		1.9599		1.9599		1.9599		1,9599	
లి	(mg/mg)		0.0533*	0.0240	0.0246	0.0351	0.0337		0.0394		0.0315		0.0427		0.0369		0.0344		0.0314		0.0287		0.0531	
Сп Г	(gn)		0.0838	0.0246	0.0322	0,0516	0.0412		0.0642		0.0558		0.0847		0.0493		0.0646		0.0390		0.0718		0.0529	
я Т	(Km)		1.5724	1.0248	1,3098	1.4709	1.2231		1.6298		1.7723		1.9837		1,3373		1.8783		1.2402		2,4982		0,9959	
Sample	Number		15012-1	15013-1	15014-1	15015-1	15017-1		15018-1		15019-1		15020-1		15021-1		15022-1		15023-1		15024-1		15025-1	

170

* Value not used

1

.

.

-44

e,

	Sample Designation		, 13 leaves, center, top,	senidrap	, 122 leaves, semidamp	, il leaves, east, bottom,	damp	. 12 leaves, north, bottom,	damp	, 6 leaves, west, bottom,	damp	, 10 leaves, south, bottom,	damp	, 12 leaves, north, top, dam	, 24 leaves, east, top, damp	, 14 leaves, west, top, damp	, 11 leaves, south, top, dam	, 15 leaves, center, top, da	, 115 leaves, damp	, 30 leaves, random	8 leaves, east, bottom, dr.	, 10 leaves, south, bottom,	, 10 leaves, west, bottom, d	, 10 leaves, north, bottom,	, 8 leaves, center, bottom,	C leaved north ton Arv
с В	(sq_ft/gm)		0,00668 S,		0.00434 S,	0.0292 P,		0.0106 P,		0.00109 P,		G.00681 P,		0.0556 P,	0.0412 P,	0.0174 P,	0.0381 P,	0,0298 P,	0.0269 P,	-	0.0308 P,	0.0298 P,	0.0123 P,	0.0123 P,	0.00272 P,	0.0324 P.
ംറം	(mg/mg)	ontinued)	0.0131		0.0085	0.0240		0.0087		0,0009		0,0056		0.0459	0.0339	0.0143	0.0313	0.0245	0.0221	1	0.0238	0.0230	0,0095	0.0095	0.0021	0 0250
Δm	(gm/sq ft)	Laurel (c	1.9599		1,9599	0,8221		0.8221		0.8221		0.8221		0.8221	0,8221	0.8221	0.8221	0.8221	0.8221	ı	0.7724	0.7724	0.7724	0.7724	0.7724	P677 0
ۍ ط	(gm/gm)		0.0411		0.0365	0,0555		0.0424		0,0436		0.0450		0,0803	0,0626	0.0674	0,0627	0.0656	0.0586	0.0263	0.0501	0.0493	0.0358	0.0358	0.0284	0.0513
$\Delta m_L$	(gn)		0.0664		0.5899	0.0753		0.0591		0.0433		0.0486		0,0808	0.0944	0.1039	0.0779	0,0919	0.6752	0.1000	0.0390	0.0512	0.0331	0.0329	0.0210	0 0380
Mr M	(gm)		1.6173		16.1761	1.3571		1.3946		0.9919		1,0793		1,0065	1.5071	1.5422	1.2430	1,4017	11.5234	3,8065	0.7787	1.0386	0,9240	0.9184	6.7395	0 75.95
Sample	Number		15026-1		15026s-1	15027-1		15028-1		15029-1		15030-1		15031-1	15032-1	15033-1	15034-1	15035-1	15035s-1	15037-1	15038-1	15039-1	15040-1	15041-1	15042-1	15043-1

•

U

0

P

Sample	л ж	ч ^л	പറ	μŢ	ಂ್ದಿ	с,-] с		
Number	(gm)	(gm)	(gm/gm)	(gm/sq ft)	(gm/gm)	(sq ft/gm)	Sample De	esignation
				Laurel (co	ntinued)			
15044-1	1.1271	0,0896	0.0795	0.7724	0.0532	0,0689	P, 13 leaves, so	outh, top, dry
15045-1	0.9076	0.0448	0.0494	0.7724	0.0231	0.0299	P, 12 leaves, we	est, top, dry
15046-1	0.9226	0.0804	0.0871	0.7724	0.0608	0.0787	P, 10 leaves, ca	ast, top, dry
15047-1	0.9971	0.0828	0.0830	0.7724	0.0567	0.0734	P, 10 leaves, ce	enter, top, dry
15048-1	0.9368	0.0488	0.0521	0.7724	0,0238	0.0334	P, 10 leaves, ca	ast, center, dry
15049-1	0.8572	0,0476	0.0555	0.7724	0.0292	0.0378	P, 9 leaves, wes	st, center, dry
15049s-1	10,9061	0,6101	0.0559	0.7724	0.0296	0,0383	P. 119 leaves, d	dry
15052-1	1.3037	0.0786	0,0603	0.8421	0.0245	0,0291	P, 10 leaves, no	orth, bottom,
							damp	
15052-1	1,3037	0.0786	0.0603	1.6145	0.0340	0.0211	2P, 10 leaves, n damp	north, bottom,
15053-1	1.0619	0,0649	0,0611	0.8421	0.0118	0.0140	P, 10 leaves, so damp	outh, bottom,
15053-1	1.0619	0.0649	0.0611	1.6145	0.0348	0.0216	2P, 10 leaves, a damp	south, bottom,
13054-1	1,1966	0,0665	0,0556	0.8421	0,0055	0.00653	P, 14 leaves, ea damp	sst, bottom,
15054-1	1,1966	0,0665	0,0556	1.6145	0,0293	0,0181	2P, 14 leaves, e damp	east, bottom,
15055-1	1,4045	0060.0	0.0641	0.8421	0.0283	0,0336	P, 14 leaves, we damp	est, bottom,
15055-1	1,4045	0060*0	0.0641	1,6145	0,0378	0.0234	2P, 14 leaves, w damp	west, bottom,
15056-1	1.2426	0.0438	0.0352	0.8421	0.0068	0,00808	P, 12 leaves, ce damp	enter, bottom,

......

1000

	Sample Designation		2P, 12 leaves, center, bottom, damp	P, 13 leaves, north, top, damp	2P, 13 leaves, north, top, damp	P, 22 leaves, south, top, damp	2P, 22 leaves, south, top, damp	P, 12 leaves, east, top, damp	2P, 12 leaves, east, top, damp	P, 15 leaves, west, top, damp	2P, 15 leaves, west, top, damp	P, 15 leaves, center, top, damp	2P, 15 leaves, center, top, damp	P, 137 leaves, damp	2P, 137 leaves, damp	2P, 1 leaf, NW sector, center,	damp	2P, I leaf (V), "NW sector.	center, damp	2P, 1 leaf, NW sector, center,	damp	2P, 1 leaf (V) NW sector,	center, damp	
8 8	(sq ft/gm)		0,00551	0.0564	0.0449	0,0390	0,0533	0.0118	0.0438	0,0931	0.0629	0.0391	0.0555	0.0341	0.0361	0.149		0.0286		0.0972		0.0188		
ംറം	(gm/gm)	ontinued)	0,0089	0.0475	0.0725	0.0328	0.0860	0,0099	0.0707	0.0784	0.1015	0.0329	0.0896	0.0287	0.0583	0.240		0.0462		0.157		0.0304		
Δm	(gm/sq ft)	Laurel (co	1.6145	0,8421	1.6145	0.8421	1.6145	0.8421	1.6145	0.8421	1.6145	0.8421	1.6145	0.8421	1.6145	1.6145		1.6145		1.6145		1.6145		
లి	(gu/gn)		0.0352	0,0988	0,0988	0.1123	0.1123	0.0970	0.0970	0.1278	0.1278	0.1159	0.1159	0.0846	0.0846	0.266		0.0725		0.183		0.0567		
рщ Г	(mg)		0.0438	0.1296	0,1296	0.2398	0.2398	0.1029	0.1029	0.1364	0.1364	0.1650	0.1650	1.1175	1.1175	0.0351		0,0093		0.0231		0.0074		1
ui ¥	(gn)		1.2426	1.3114	1.3114	2,1351	2.1351	1.0609	1.0609	1.0673	1.0673	1.4240	1.4240	13.2080	13.2080	0.1317		0.1282		0.1263		0.1305		
Sample	Nunber		15056-1	15057-1	15057-1	15058-1	15058-1	15059-1	15059-1	15060-1	15060-1	15061-1	15061-1	15061s-1	150618-1	15062-1		15063-1		15064-1		15065-1		

(V) indicates leaves hanging vertically; remainder were horizontal

the state and the resolution of the second states of

Carlos and Arrest.

----

ĺ.
Sample Designation		P, I leaf, NW sector, center,	damp P, lleaf (V), [*] MM sector. contor damp	P, 1 leaf, NW sector, center	P, 4 leaves, NW sector,	center, damp P. 1 leaf, SW sector, center,	damp 2, 1 leaf, SW sector, center,	damp 2, 1 leaf, SW sector, center,	damp 3, 1 leaf, SW sector, center,	damp , 1 leaf, SW sector, center,	damp , lleaf, 5W sector, cenier,	damp , lleaf, SW sector, center, damp
"L (sq ft/gm)		0.0611 21	0.00898	0.0960.0	0.101 21	0.0626 21	0.0731 21	0.0923 21	0.0836 21	0.0391 25	0.0329 2F	0,0537 ZF
с ^о р (gm/gm)	ntimed)	0.0987	0.0145	0.155	0,163	0,101	0.118	0.149	0.135	0,0631	0.0531	0.0867
Åm (gm/aq ft)	Laurel (co	1.6145	1.6145	1.6145	0.6145	1.6145	1.6145	1.6145	1.6145	1.6145	1,6145	1.6145
c p (gm/gm)		0.125	0,0408	0,181	0.1893	0.127	0,144	0.175	0.161	0.0894	0.0794	0,113
0 mL (gm)		0.0162	0.0056	0,0193	0,0937	0,0199	0.0186	0.0155	0.0249	0.0103	0,0110	0.0150
и Г (800)		0,1301	0,1371	0,1069	0,4950	0,1567	0.1288	0.0887	0.1546	0.1152	0.1384	0.1322
Sample Number		15066-1	15067-1	15068-1	15068s-1	15069-1	15070-1	15071-1	15072-1	15073-1	15074-1	15075-1
						17	4					

* (V) indicates leaves hanging vertically; remainder were horizontal

j

-

ļ

	L 146 818 939 939	ΔmL (gm) 0.1152 0.0162 0.0193	С р ( <u>gm/gm)</u> 0.1260 0.254 0.105	Δm ( <u>gm/sq ft)</u> <u>Laurel</u> (co) 1,6145 1,6145 1,6145	c ^o p ntinued) 0.0997 0.0628 0.228 0.0787	8 (sq_ft/gm) 0,0618 0,0389 0,0141	Sample Designation 2P, 7 leaves, SW sector, center, damp 2P, 1 leaf, SE sector, center, damp 2P, 1 leaf, SE sector, center, damp 2P, 1 leaf, SE sector, center, damp
	374 176 199	0.0231 0.0174 0.0204	0.123 0.148 0.170	1.6145 1.6145 1.6145	0.0967 0.122 0.144	0.0599 0.0756 0.0892	<ul> <li>2P, 1 leaf, SE sector, center, damp</li> <li>2P, 1 leaf, SE sector, center, damp</li> <li>2P, 1 leaf, SE sector, center, damp</li> </ul>
10 m m m	75 40 96	0,0342 0,1405 0,0373 0,0245	0.217 0.1504 0.206 0.176	1.6145 1.6145 1.6145 1.6145	0.191 0.1241 0.180 0.150	0.118 0.0769 0.111 0.0929	<ul> <li>2P, I leaf, SE sector, center, damp</li> <li>2P, 7 leaves, SE sector, center, damp</li> <li>2P, 1 leaf, NE sector, center, damp</li> <li>2P, 1 leaf, NE sector, center, damp</li> </ul>
	25	0,0218	0,164	1.6145	0.138	0,0855	2P, 1 leaf, NE sectur, center, damp

J

t

2P, 7 leaves, NE sector, center, 2P, 1 leaf, NE sector, center, I leaf, NE sector, center, l leaf, NE sector, center, 2P, 1 leaf, NE sector, center, S, 39 leaves, south, top, dry S, 35 leaves, north, top, dry S, 47 leaves, east, top, dry 2P, 28 leaves, center, damp Sample Designation Leaf density, 592 leaves Leaf density, 890 leaves 2PW, random, 311 leaves SW, random, 411 leaves 2P, random, 552 leaves B, 145 leaves, random P, random, 552 leaves B, 241 leaves, random da⊌b damp danb damp damp 2P , 2P, (sq ft/gm) 0,0000929 0.00515 0.0774 0.0512 0.0241 0.0412 0.0838 0.0718 0.0302 0.01520.0155 0.0102 0.103 . r ∆m p (gm/sq ft) (gm/gm) 0,1160 0.020260.00010 0.0037 0.0827 Laurel (continued) 0.0665 0.1353 0.0487 0.0073 0.0286 0.0109 0.125 0.166 ംപ 1.6145 1.6145 1.6145 1.6145 0.8421 1.6145 1.6145 1.6145 0.7188 0.7188 .0761 . 8485 0.7188 1 (mg/mg) 0.07501 0.05488 0.05488 0.07501 0,0928 0.16160.0328 0.0292 0,0299 0.0219 0.0256 0.109 0.151 0.142 0,192 లి ı 1 3.9590 2.2255 2.2255 0.0155 0,0093 0.0125 0.0224 0.1433 0.5150 3.9590 0.1460 0.4223 ∎ 7 0.5695 ∩.0882 0.1131 (mg) 1 . 0.1025 0.1002 0.1145 0.1167 3.6261 0.8867 F ¥ (ang) 3.4431 4.4487 3.8695 52.55 26,03 52,89 52.89 14.13 40.55 40.55 70,17 Number 15089s-1 15089s-1 Sample 15086-1 15087-1 15088-1 15089-1 1-06051 15093-1 15095-1 15090-1 5091-1 15091-1 15092-1 15100-1 15097-1 15099-1 15098-1

Sample Designation		S, 48 leaves, west, top, dry	S, 34 leaves, north, center,	dry	S, 33 leaves, east, center, drv	S, 35 leaves, south, center,	dry	S, 47 leaves, west, center,	drv	S, 27 leaves, center, bottom,	dry	S, 345 leaves, center, dry	B, 36 leaves, south	B, 26 leaves, west	B, 37 leaves, north	B, 24 leaves, east		B, needles plus twigs	P, needles plus twigs, south	side, damp	P, needles plus twigs, north	side, damp	P, needles plus twigs, east	side, damp
a L (sq ft/gm)		0.00487	0.0134		0.0499	0,0193		0.0120		0.0147		0.0150	ſ	I	I	ı		ı	0.00166		0,000558		0.00347	
co p (gm/gm)	ontinued)	0,0035	0,0096		0,0359	0.0139		0.0086		0.0106		0.0108	1	ı	I	ı	1-6	ı	0.00427		0.00144		0,00894	
∆m (gm/sq ft)	Laurel (co	0.7188	0.7188		0.7188	0.7188		0.7188		0.7188		0.7188	ı	I	ı	I	Pine	ĩ	2.5789		2.5789		2.5789	
с р (gm/gm)		0.0254	0.0315		0.0578	0.0358		0,0305		0.0325		0.0327	0.0246	0.0180	0.0179	0.0238		0.00441	0.00868		0.00585		0.01335	
∆n L (gm)		0.1196	0.1047		0,1731	0.1200		0.01513		0,0886		1.1046	0.0769	0.0443	0,0659	0,0466		0.0230	0.0852		0.0413		0.0618	
м С В Ш		4.7083	3,3225		2,9938	3,3468		4.9625		2.7274		33,8226	3.1259	2.4575	3.6830	1.9607		5.2130	9.8205		7.0632		4.6283	
Sample Number		15101-1	15102-1		15103-1	15104-1		15105-1		15106-1		15106s-1	15108-1	15109-1	15110-1	15111-1		13501-1,3	13504-1,3		13505-1,3		13506-1,3	

į

:

	Sample Iksignation		0, twig	O, stem	0, 900 needles	B, twig, north	B, stem, north	B, 310 needles, north	B, twig, south	B, stem, south	B, 550 needles, south	B, twig	B, top stem (photo)	B, center stem (photo)	B, bottom stem (piuto)	B, 104 needles (photo)	P, twig, south-southeast, dry	P, stem, south-southeast, dry	P, 76 needles, south-southeast,	dry	P, twig, south, dry	P, stem, south, dry	P, 82 needles, south, dry	P, twig, southwest, dry	P, stem, southwest, dry	P, 110 needles, southwest, dry
a L	(sq ft/gm)		ł	ı	I	I	I	ł	I	I	1	ı	I	I	ı	ł	0.00119	ł	ı		0,00328	ı	ł	0.00573	ł	I
ిద	(gm/gm)	2-6	ı	1	1	1	ı	ı	I	ł	I	ı	I	1	I	I	0.00074	I	ł		0.00204	ı	I	0.00357	I	I
E ₽	(gm/sq ft)	Pine	ı	I	ı	ı	1	ł	ł	ł	I	١	I	I	I	ı	0.6228	I	I		0.6228	ı	ļ	0.6228	ł	I
ບີ້	(mg/mg)		0,0164	ı	ŧ	0,00816	I	I	0,00615	ı	ı	ı	ı	ļ	ı	ı	06200.0	ł	I		0.00920	ı	١	0.01073	I	I
ר עת	(gn)		1,1255	ı	I	0.2044	ſ	;	0.2564	ł	ı	I	1	ı	ı	i	0.0460	ı	ł		0.0583	1	ł	0.0867	ı	ł
L W	(@)		68.70	7.5462	61.15	25,0367	3,0582	21,9785	41,6734	4.7219	36,9515	11,3686	т.8100	0.5167	1.9(49	7.0770	5.8252	1016.0	4.9151		6.3904	0.7003	5.6901	8.0765	0.7993	7,2772
Semple	Number		16001-1,3	16001-3	16001-1	16002~1,3	16002-3	16002-1	16003-1,3	16003-3	16003-1	16004-1,3	16004-3	16004-3	16004-3	16004-1	16006-1,3	16006-3	16006-1		16007-1,3	15007-3	16007-1	16008-1,3	16008-3	16008-1

178

14 A.

32.41.20

Ś

Sample Designation		P, twig, south-southwest, dry	P, stem, south-southwest, dry	P, 86 needles, south-southwest,	dry	P, twig, west, dry	P, stem, west, dry	P, 162 needles, west, dry	P, twig, north-nokust, dry	P, stem, north-northwest, dry	P, 56 needles, north-northwest,	dry	P, twig, north, dry	P, stem, north, dry	P. 94 meedles, north, dry	P, twig, northeast, dry	P, stem, northeast, dry	P, 68 needles, northeast, dry	P, twig, east, dry	P, 9 twigs, dry	P, stem, east, dry	P, 32 needles, east, dry	B, random twigs	B, stems	B, 488 needles
a L (sq ft/gm)		0.00392	ł	1		0.0308	I	ł	0.0247	I	1		0,00869	ı	ł	0.00189	ł	I	0.00189	0.0116	ı	1	ı	1	ł
c ^o P (gm/gm)	ontinued)	0.00244	ı	I		0.01919	ı	1	0.01536	ı	ı		0.00541	ł	I	0.00118	ł	I	0.00118	0.00721	1	ı	1	1	I
∆m (gm/sq ft)	Pine-2 (co	0.6228	ı	ı		0.6228	I	ı	0.6228	1	I		0.6228	ł	ı	0.6228	I	I	0.6228	0.6228	ł	1	ı	ł	t
c p ( <u>gm/gm</u> )		09600*0	I	1		0.02645	ı	I	0,02252	1	t		0.01257	I	1	0.00834	ı	ı	0.00834	0.01437	ı	ı	0.00395	1	ı
∆n L (gn)		0.0604	ì	ı		0.3444	t	ł	0.0950	I	I		0.0801	1	ı	0.0463	I	I	0.0226	0.8403	ı	ł	0.1450	ı	T
м Г ( ВШ)		6.2897	0.6850	5.6047		13.0212	1.0768	11.9444	4.2185	0.5260	3,6925		6.3733	0.6229	5.7504	5 . 5532	0.7293	4.8239	2.7090	58.4570	0.4506	2.2584	36.6884	3.4564	33,2320
Sample Number		16009-1,3	16009-3	160031		160.0-1,3	16010-3	16010-1	16011-1,3	16011-3	16011-1		16012-1,3	16012-3	16012-1	16013-1,3	16013-3	16013-1	16014-1,3	16014s-1,3	16014-3	16014-1	16015-1,3	16015-3	16015-1
										17	79														

•

. .

----

•

۰

;

	Sample Des [±] gnation		3, random meristem twigs	3, meristem tips	3, 112 meristem needles	3, random twigs	3, stems	3, 570 needles	3, random meristem twigs	3, meristem tips	3, 114 meristem needles	b, twig, north, dry	b, stem, north, dry	3, 220 needles, north, dry	i, twig, east, dry	s, stem, east, dry	3, 276 needles, east, dry	b, twig, south, dry	s, stem, south, dry	i, 256 needles, south, dry	i, twig, west, dry	, 4 twigs, dry	i, stem, west, dry	, 402 needles, west, dry	i, meristem, twig, north, dry	i, meristem, tip, north, dry	, 88 meristem needles, north,
	(ing		-			ш	Ц	ш	н	-	н	28	0,	0,	9	U1	01	01	01	01	0 0	5	01	01	0) N	01	0.
с Г	(sq fr/		ı	ı	ı	ı	t	I	ı	I	1	6000*0	ı	I	0,0013	ı	ı	0.0138	ı	I	0.0041	0.0051	i	ł	0,0075	I	ı
ింది	(gm/gm)	atinued)	ı	I	I	I	I	1	I	1	ł	0.00058	ł	1	0.00085	ı	ı	0.00860	I	I	0,00262	0.00323	I	ł	0.00470	I	ŀ
Δm	(gm/sq ft)	Pine-2 (col	I	I	1	J	I	I	ı	I	1	0.6248	i	1	0.6248	ı	ı	0.6248	1	I	0.6248	0.6248	J	I	0.6248	ł	ı
ე ^ი	(m/gm)		0.00472	ı	I	0,000856	ı	ı	0.00185	ı	I	0.00144	ı	1	0,00171	ł	ı	0,00946	ļ	ţ	0.00348	0.00409	ł	I	0.00655	ł	I
5 T	( mg)		0.0401	ł	ł	0,0352	ł	ì	0.0156	i	I	0.0234	I	ı	0.0360	1	ı	0.1978	ı	I	0.1105	0.3677	1	I	0.0421	ı	ł
M M	(mg)		8,4887	1.3767	7.1120	41.10	5.8960	40.50	3.4484	1.7031	6.7453	16.1942	2.2548	13.8394	21.0470	3,1219	17.9251	20.9126	3,3016	17.6110	31.76	16.68	4.4014	27.36	6,4247	0.9242	5.5005
Samrle	Number		16016-1,3	16016-3	16016-1	16018-1,3	16018-3	16018-1	16015-1,3	16019-3	16019-1	16038-1,3	16038-3	16038-1	16039-1,3	16039-3	16039-1	16040-1,3	16040-3	16040-1	16041-1,3	16041s-1,3	16041-3	16041-1	16042-1,3	16042-3	16042-1

dry

Table 17 (concluded)

and the stand of the second

1

ð

Sample Designation		S, meristem twig, east, dry	S, meristem tip, east, dry	S, 72 meristem needles,	east, dry	S, meristem twig, south, dry	S, meristem tip, south, drv	S, 40 meristem needles,	south, dry	S, meristem twig, west, dry	S. 4 meristem twigs. drv	S, meristem tip, west, drv	S, 112 meristem needles,	west, dry
a L sq ft/gm)		0,00525	ı	I		0.0196	ı	I		0.00951	0.00927	ł	I	
C P gm∕gm)	continued)	0,00328	ı	I		0.01226	ı	I		0.00594	0.00579	ı	ŀ	
∆m (gm/sq ft)	Pine-2 (c	0.6248	I	١		0.6248	1	I		0.6248	0.6248	ł	ł	
c p (gm/gm)		0.00513	I	I		0.01411	ſ	ı		0.00779	0.00764	ı	I	
∆ ^m L (gm)		0.0281	ł	1		0.0425	ı	ļ		0.0652	0.1779	I	ı	
لالقا) (القا)		5,4802	0,6353	4.8149		3.0112	0.7303	2.2809		8.3749	23.29	1.4562	6.9187	
Sample Number		16043-1,3	16043-3	16043-1		16044-1,3	16044-3	16044-1		16045-1,3	16045s-1,3	16045-3	16045-1	

181

. ...

a de ante astribucas en la co

Į.

The low air temperatures at the altitude of the land plots and the short period of sunshine each day resulted in very slow germination of seeds and slow growth rates of many of the vegetables, and, as previously noted, the damp conditions were favorable to the growth of mildew and molds and to rotting. In addition, the growth of many plants was adversely affected by occasional showers of ceniza-arena particles that carried sufficient quantities of sulfuric acid or sulfate salts to burn the foliage. Single showers of such particles killed entire bean crops and burned the corn leaves to a uniform gray color. Large squash plants so affected died within a few days. Tomato leaves were easily burned at their edges and tips; the burned edges first dried and became brittle, but within a few days, under damp conditions, the dead tissue became soft and rotted. The tips of the onion foliage were burned, but otherwise the onion foliage did not retain enough particles to seriously affect the growth of the plants. (The acidic solution would run down the stems to the ground rather than concentrate in place on the foliage as the water evaporated, as was the case for the other leafy plants.) The oat and rye foliage was less sensitive to burn than was the wheat and barley (the latter was most sensitive) foliage; all the grains suffered leaf-tip burns to some degree. Cabbage was never affected by acid burn.

The Acidic ceniza-arena showers apparently developed from eruptions that produced white-colored steam (plus sulfur oxide) clouds. When such an eruption was followed closely by one that produced a dark particle cloud, and the two became mixed, the particles were apparently wetted by the acidic water drops and carried larger than usual amounts of sulfuric acid on their surfaces.

The severest burn condition on the plants resulted when the acidcarrying particles landed on the foliage during the night or early morning hours when the foliage was damp with dew. The acid then dissolved into the dew and spread more or less uniformly over the whole top surface of each contaminated leaf. When the temperature increased after sourise, the water rapidly evaporated; in the process, the acidic salts were concentrated on the surface of the leaves, and, as dryness approached, the acidic salts dehydrated and burned the leaves.

#### Tree and Greased Disc Collector Contamination Data

Some contamination data were obtained on six different types of trees--avocado, camphor, grapefruit, juniper, laurel, and pine. Greased disc collector data were obtained for only one of the two pine trees and for a laurel tree. The general conditions under which the contamination data for the camphor, grapefruit, laurel, and pine trees were obtained are briefly discussed below.

The foliar samples from the camphor tree were usually taken from two or three locations on the tree canopy. One of these was an exposed location on the northeast side of the tree at a height of 9 to 11 feet from the ground; the second was an exposed location on the southwest side of the tree at a similar height; and the third was a shielded location on the southeast to southwest side of the tree at a height of 5 to 7 feet. The tree was about 12 feet tall, with the lower branches, or bottom of the canopy, at a height of 5 feet; the width, or diameter of the canopy (maximum at mid-height of the canopy) was about 6 feet; and the trunk diameter at 3 feet was about 3.5 inches.

The contamination factors obtained from the samples taken at a given time from both the exposed and the protected locations can be used to evaluate the  $F(w_L)$  parameter of Equation 3. If a uniform density of foliage between the two sampling locations is assumed, the decrease in  $F(w_L)$  or  $a_L$ , with distance parallel to the average fall trajectory of the particles, should approximately be given by

$$\mathbf{F}(\mathbf{w}_{\mathrm{L}}) = \mathrm{e}^{-\beta \mathrm{r}} \tag{13}$$

where r is the distance from an exposed exterior location to a protected (interior or exterior) location along the line of fall of the particles through the canopy. For the camphor tree data, the true value of r is not readily determined; however, because the direction of fall through the canopy usually was approximately in the direction of the line between one of the exposed sampling locations and the protected location, the geometric distance, r', was used as the estimate of r in the treatment of the data. The corresponding value of  $\beta$  for this approximation of r is then  $\beta'$ .

The computed values of  $F(w_{L})$  and  $\beta'$  for the camphor tree are summarized in Table 18; the averaged data indicate that  $\beta'$  values of 0.2 ft for damp conditions and 0.1 ft for dry conditions would give satisfactory representations of the observed results. The dependence of the value of  $\beta$  (or  $\beta'$ ) on wind speed is discussed in Part Three of this report.

The foliar samples for the composite grapefruit tree (see Figure 14) were all single leaves taken from selected sections or branches of the tree for a single contamination and weathering sequence. In the sequence, 243 leaf samples were taken. The number distribution of the a values are shown in Figure 15 for the P, PW, and SW samples. The averaged values of the contamination factors and the median values taken from Figure 14 are summarized as follows:

Table	18
-------	----

COMPUTED VALUES OF F(w_L) AND  $\beta$  ' for the camphor tree

Sample Number	F(wL)	r	<u></u> З´	Sample Type and Conditions
06383-1,3/06381-1,3	0.185	6	0.281	S, damp and dry
06397-1,3/06395-1,3 06397-1,3/06395-1,3	0.341	6	0.179	P, damp S, damp and dry
06429-1,3/06430-1,3 06450-1,3/06449-1,3	0.351	6 5	0.175	P, damp P, damp D. dawy
06540-1,3/06541-1,3	0.579	5 4 2	0.0322	P, dry P, dry S. down
06592-1,3/06593-1,3	0.833	3	0,143 0,0238 ^a	P, damp
		Average: Average:	0.191 0.0711	Damp conditions

a Not used in calculating the average

i



1 :

Figure 14 COMPOSITE GRAPEFRUIT TREE AT STATION 16



Type of Sample	Number of Leaves	a L (sq ft/gm)	a_(50) (sq_ft/gm)
Primary	121	0.0171	0.020
Primary, Wind Weathered	63	0.0108	0.012
Secondary, Wind Weathered	59	0.00650	0.0070

The frequency peaks in the a distribution curves were 0.020 to 0.030 sq ft/gm for the P samples, 0.010 to 0.015 sq ft/gm for the PW samples, and 0.003 to 0.004 and 0.010 to 0.015 sq ft/gm (two peaks) for the SW samples. As the weathering progressed, the distributions tended to smooth out.

After the sampling series was completed, all the leaves were removed from the tree, counted, washed, dried, and weighed. The total number of leaves, including those taken as foliar samples, was 1,344; their total dry weight was 438.46 gm (gross average of 0.326 gm/leaf). Further analysis of the data on the grapefruit tree leaves regarding location and orientation is given in Part Three of this report.

The laurel tree specimen was about 15-feet tall; the surface of the leaves, after cleaning, was smooth and glossy. The newer leaves were V-shaped and curved from tip to stem: the angular orientation of the leaves ranged from near horizontal to vertical. Several sets of greased disc (2-inch-diameter) collector data were obtained on the contamination of the foliage of this tree.

Sampling location  $F(w_{L})$  values from the several sets of contamination factor data on the laurel tree are summarized in Table 19 as a function of the direction of the sampling location from the center of the tree and the height of the sample location on the periphery of the canopy (i.e., top, center or bottom). The  $F(w_{L})$  value of the sample with the largest a value was taken as unity for each set of samples; in all sets except one, the highest a value was found for a sample near the top of the tree canopy. The lowest  $F(w_{L})$  value for the primary samples usually occurred for the leaves or twigs taken from the bottom of the canopy opposite the direction of arrival of the shower or tor the samples taken from the bottom center of the canopy. The average value of  $F(w_{L})$  for all the leaf (plus twig) samples taken from the periphery of the laurel tree was 0.421. The  $F(w_{L})$  values for similar types of samples taken at random throughout the tree canopy were 0.259 and C.480 for Set Nos. 4 and 5, respectively.

The variation in the contamination factor with direction around the

### Table 19

# SUMMARY OF PERIPHERAL SAMPLING LOCATION $F(w_L)$ VALUES FOR LAUREL TREE LEAVES AND TWIGS

	Directio	on of Sa	mple Loc	ation fr	om Certe	er of Tree	Sample Type
	N	E	Center ^a	S	W	Average	and Condition
			2	iet No. 1			
		a 000	-	0.125	1 000	0.388	S. semidamp
Гор	0.255	0.028	0.521	0,135	0.585	0.352	•
Bottom	0.227	0.140	0,354	0,404	0.000	0.370	
Average	0.241	0.084	0.438	0.294	0.152	0.010	
			2	Set No. 2	2		
Top	1.000	0,738	0.534 ⁵	0.683	0,312	0,683	P, damp
Bottom	0.190	0.523	-	0.122	0.020	0.214	
Average	0.595	0.630	-	0,402	0,166	0.448	
0				Set No.	3		
	0 412	1 000	0.933	0,876	0.380	0.702	P, dry
Conton	-	0 424 ^h	-	-	0,480 ^b	-	
Detter	0 156	0.391	0.035	0.379	0.156	0.223	
Average	0.284	0,696	0.484	0,628	0,268	0.472	
and age				Set No.	4		
	0.000	0 197	0 420	0 419	- 1.000	0.514	P, damp
тор	0.000	0.127	0.420	0 150	0.361	0.196	
Bottom	0.313	0.070	0.254	0,284	0,680	0.355	
Average	0,400	0,000	0,002		-		
				Set No.	5		
Тор	0,714	0.696	0,882	0.847	1,000	0.828	2P, damp
Bottom	0,335	0,288	0,088	0,343	0.372	0.285	
Average	0.524	0.492	0,485	0.595	0.686	0,556	
				Set No.	6		
Top	0.103	0,305	-	0.204	0,098	0.178	S, dry
Conter	0.269	1,000	-	0.387	0,241	0.474	
Botton	-		0.295 ^b	-	~	-	
Average	0.186	0.652	-	0.296	0,170	0.326	
INVELLEGE	*						

a Protected locations around the bottom of the canopy b Not used in taking averages

periphery of the center of the tree canopy for horizontal leaves is shown in Figure 16. This set of data (corresponding to Set No. 5 of Table 19) shows that two major depositions occurred-one from the east (93 degrees) and one from the north (351 degrees). The lowest  $F(w_L)$ value for the set is 0.0903; this value occurred at an azimuth of 162 degrees, which is almost 180 degrees from the direction of the leaf sample with the largest  $a_L$  value. The integrated average value of  $a_L$ for the horizontal peripheral leaves (center of canopy) was about 2.5 times larger than the  $a_L$  obtained for the leaves taken at random throughout the canopy.

Data on the locations and contamination levels of the 2-inch-diameter horizontal greased discs that were mounted on the two X-rods in the laurel tree are given in Tables 20 and 21. The contamination data are plotted as a function of the distance from the X-rod centers in Figures 17 through 21; estimates of the disc contamination contours in the planes of the X-rods are given in Figures 22 and 23 for Runs D1, D2 and D4.

The Run DI samples were contaminated by a dense ceniza-arena shower that lasted about 5 minutes. An initial set of discs had been exposed for almost 8 hours and had only collected a few scattered particles on the grease film; these discs were in the process of being replaced with clean ones when the shower occurred. All the original discs had been removed, and only the discs on the north, south, and east sections of the top X-rod had been replaced when the shower started. After the shower, these discs were recovered, and new clean discs were put on the lower X-rod to obtain weathering information during the night. The remaining supply of clean prepared discs was only sufficient for one X-rod, since the few extra clean discs for the top X-rod were contaminated in their open carrying case when the shower took place. A second shower occurred a few minutes after the team left the station, but it was then too dark to attempt the recovery of the second set of discs; they were recovered shortly after sunrise the following morning.

The disc contamination data for Run Ul correspond to the leaf contamination data of Set No. 3 in Table 19; both sets of data show that the shower came from an easterly direction (see Figure 22). The disc contamination data for Run D2 correspond to the leaf contamination data of Set No. 4 in Table 19. The leaf contamination data indicate that the second shower came from the west or northwest (also see Figure 16 for the directions of these two showers); the lobe of the Run D2 contours in Figure 22 also indicates a northwesterly direction, but the highest air concentrations at the protected locations near the bottom of the canopy, as represented by the disc contamination data, are shown for the downwind side of the tree (east to south).



#### Table 20

# DISC CONTAMINATION DATA FOR THE LAUREL TREE: RUNS D1, D2, AND D3

θ.		E		^ش م	
d (degrees	*d	Exposure		(gm/sq f	t)
	<u>. (11)</u>	Condition	Run D1	Run D	2 Pun D3
			Top X-rod		
5	<b>0</b> ,20	F	0.00		
	0.89	E. F	0.752	-	-
	1.62	E	0.723	-	0.0723
	2.21	PP	1.037	-	0,106
	2.75	DD	0.743	-	0,0916
	3.29	FO	0.545	-	-
05			0.056,0.690	-	0.106,0.0964
95	1.05	Р	0.767	-	0.116
	1.73	PP	1.128	-	0.110
	2.18	ъъ	0.907	-	0.121
	2,67	Р	0.931	-	0.0808
	3,66	Р	0.256	_	0.0868
185	2.13	Ð	0		0.0820
	2.44	ר ממ	0.781	-	0.0964
	3 08	rr FO	0.477	-	0.0916
	3 76	EO	0.868	-	0.0820
	0.10	EO	0.844	-	0.0916
	0,92	рр	-	_	• • • •
	1,77	P	-	-	0.140
	2,72	PP	-	-	0.101
	3,64	EO	-	-	0.116
				-	0.116,0.111
		Bot	tom X-rod		
70	0.52	Р	_	0 970	
	0.98	Р	_	0.270	0.0916
	1.66	Р	_	0.417	0.0772
	2.21	2	-	0.207	0.0916
	2.85	E	_	0.212	0.125
	3.77	EO	-	0.506	0.149
160	0.00	_		0.559	0.135
	0.35	P	-	0.183	0.135
	0.90	P	-	0.227	0.145
	1.01	P	-	0,260	0.116
	4.31	Р	-	0,227	0.154

-		<b>D</b>		∆ ^m d	
⊎d	rd	Exposure		(gm/sq ft)	
(degrees)	<u>(ft)</u>	Condition	Run [	<u>Run D2</u>	Run D3
		Bottom	X-rod (c	concluded)	
160	3.07	PP	-	0.357	0,159
	0,387	EO	-	0.521,0.564	0.125,0.101
250	0.52	Р	-	0.246	0.0916
	1.02	Р	-	0.251	0.0964
	1.53	PP	-	0.284	0.0916
	2.30	EO	-	0.376,0.342	0.106,0.0916
340	0,10	Р	-	0.217	0.0868
	0.59	PP	-	0.212	0.101
	1.49	P	-	0.280	0.0868
	2.07	Р	-	0.188	0.0916
	2.66	PP	-	0.231	0.0723
	3.48	EO	-	0.347,0.429	0.0964,0.0820

#### Table 20 (concluded)

#### Notes:

Run	D1:	Recovered	1/15,	1745;	∆t	22	0.083	hrs;	∆m	(tray)	=	0.7724	gm/sq	ft
Run	D2:	Recovered	1/16,	0630;	∆t	23	12,50	h <b>rs;</b>	∆m	(tray)	=	0.8421	gm/sq	ft
Run	D3:	Recovered	1/16,	1655;	∆t		7.83 1	irs;	∆лі (	(tray) =	- (	0.0		

E: Disc exposed from above and to the sides

O: Disc outside of tree canopy

P: Disc protected by leaves (top and all sides)

PP: Disc partially protected by leaves (top and at least one side)

 $\boldsymbol{\theta}_d:$  Azimuth of the arm of the X-rod on which the discs were mounted

 $\mathbf{r}_{\mathbf{d}}$ : Distance from the center of the X-rod to the point where the disc was located

### Table 21

#### DISC CONTAMINATION DATA FOR THE LAUREL TREE: RUN D4

θ _d (degrees)	r _d (ft)	Exposure Condition	^{∆m} d (gm/3q ft) Run_D4
		Top X-rod	
13	0.31	Р	0,454
	0.80	PP	0,665
	1.71	FP	0,608
	2.30	Е	0,771
	2.89	PP	0.698
	3.71	EO	0.836
103	0.49	Р	0.449
	1.52	PP	0.624
	2.07	Е	0.703
	2.71	Е	0.744
	3.64	EO	0,756
1 <b>9</b> 3	0. <b>7</b> 4	P	0.448
	1.31	Р	0.520
	2.11	PP	0.602
	2.86	РР	0.609
283	0,33	Р	0,553
	0.79	PP	0.627
	1.82	PP	0.686
	2.32	Р	0.597
	2.83	Е	0.607
	3 <b>.6</b> 0	EO	0,882,0,650
	Bo	ttom X-rod	
6	0,20	P	0.511
	0.89	P	0,546
	1.62	Р	0,475
	2.21	PP	0,625
	2,76	PP	0,696
	3.03	EO	C.958,0.756

96

0.85

1.92

2.97

193

Р

₽

PP

0.504

0.538

0.693

.

			<u>۳</u> ۳
θa	rd	Exposure	(gm/sq ft)
(degrees)	<u>(ft)</u>	Condition	Run D4
	Bottom	X-rod (conclu	ided)
96	3.87	EO	0.754
	3,92	EO	0,776
186	0.48	Р	0,503
	2.12	P	0,527
	2.67	P	0,472
	3.08	PP	0,569
	3,74	EO	0.640,0.694
2 <b>76</b>	0. <b>59</b>	F	0,525
	1,28	₽	0,598
	2,18	PP	0,612
	3.13	EO	0,652

#### Notes:

Run D4: Recovered 2/16, 0900; Δt~ 3 hrs; Δm(tray) = 0.7188 gm/sq ft
E: Disc exposed from above and to the sides
O: Disc outside of tree canopy
P: Disc protected by leaves (top and all sides)
PP: Disc partially protected by leaves (top and at least one side)
0d: Azimuth of the arm of the X-rod on which the discs were mounted
rd: Distance from the center of the X-rod to the point where the disc was located

194

Figure 17 CONTAMINATION OF DISCS IN THE LAUREL TREE: RUN DI



!



Ľ



クリアルステロ・アーム 読み 建水の 読みをかせる シートネイト・コート・ハート きまく アイ・マー

e

2

0

~

ŝ

0

- feet

Ъ









## Figure 22 DISC CONTAMINATION CONTOURS (ESTIMATED) FOR THE LAUREL TREE: RUNS D1 AND D2



200

مرجود والمرجوع والمرجوع



service a destant to the service servi

i



Run D3 was a weathering experiment following the second shower, since very little ceniza-arena was deposited during the exposure period. The data given in Figure 19 show very little variation in the deposits on the discs, although the discs to the south and west of the X-rod centers were contaminated to levels as much as 50 percent higher than the average (0.104 gm/sq ft). The average wind-weathering factor,  $\phi_{\rm W}$ , during the same period for the random leaf samples was 0.513; this loss of particles from the leaves was undoubtedly the main source of the particles collected by the discs.

The disc contamination data for Run D-4 correspond to the leaf contamination data of Set No. 6 in Table 19. The leaf contamination data indicate that the shower came from the east, whereas the disc contamination data indicate a more northerly direction; however, the contours from the disc data include variable effects of leaf shielding and probably are not as reliable an indicator of the direction of the shower as are the peripheral leaf samples.

Data on the weight distributions of the ceniza-arena particles recovered from all the discs used in Runs D1, D2 and D4, as determined from the sieve analysis, are summarized in Table 22. The d. For the ceniza-arena collected in the trays at ground level at the same time3 are included for comparison. In all three runs, the median size of the particles recovered from the discs is about the same as that of the particles recovered from the tray, but the distributions for the disc samples are somewhat broader than they are for the tray samples, with larger percentages of both smaller and larger particles.

The tree, Pine-1, shown in Figure 24, was about 7.5 feet tall; it was purchased as a Christmas tree but instead was set in position at Station 13 to obtain contamination data. In the only good foliar contamination experiment, an observed  $F(w_L)$  value as low as 0.16 was obtained. In this experiment, a plastic sheet was placed on the ground around the tree. The deposit on the sheet did not show a tree shadow of decreased deposit on the downwind side; rather, the deposit on the downwind side was somewhat larger than on the upwind side, probably due to disturbance of the windflow by the tree. In another experiment with two X-rods in place, a cow appeared on the scene just as preparations were being made to recover the discs and to take foliar samples; she walked across the plastic sheet, brushed against the tree, and went on her way. Some of the discs were knocked off the X-rods in the process; the tree was shaken, spoiling the deposit for foliar sampling (and some additional particles probably fell on the remaining discs).

#### Table 22

#### SUMMARY OF CENIZA-ARENA SIEVE ANALYSIS MEASUREMENTS FOR THE LAUREL TREE DISC CONTAMINATION RUNS

		Disc	: Conta	ninatio	n Runs		
	Accumu	lated We	eight D	istribu	tion in	Percent	
Sample	()	particle	e diame	ter in i	nicrons)		d ₅₀
Туре	10	44	88	175	295	>295	(microns)
			_				
			Rui	n DI			
Tray	2.7	33,2	77.7	<del>9</del> 9,7	100	-	60
Discs	-	36,6	58.9	88.3	99.4	100	72
			Ru	n D2			
Tray	2.0	25.4	71.4	99.7	100	-	68
Discs	-	35,3	71.6	97.2	99.2	106	60
			Rut	<u>n D4</u>			
Tray	1.3	25,9	77.0	99,3	99.9	100	62
Discs	3.5	33.0	80.4	99,4	99.8	100	58

. . . . . .



Figure 24 VIEW OF PINE-1 IN POSITION AT STATION 13

The disc contamination data from the cow-disturbed experiment are given in Table 23; they are plotted as a function of distance from the center of the X-rod in Figure 25. The estimated locations of the contours for the disc contamination levels in the planes of the two X-rods are plotted in Figure 26. If it is assumed that the low deposit levels to the south of the tree trunk were due to shielding by the trunk, the deposit came from the north. The deposit density on the more exposed discs near the periphery of the tree was very near to that of the tray collector.

Pine-2, shown in Figure 27, was a fairly large tree located at Station 16. Two sets of foliar contamination data were obtained on the tree; the  $F(w_L)$  values for samples (needles plus twigs) taken around the periphery of the tree from the lower one-third of the canopy are given in Table 24 (Set No. 2m consisted of meristem samples). The data of Set No. 2 were obtained from Pine-2 for the same ceniza-arena shower that contaminated the grapefruit and the juniper. The  $F(w_L)$  values are plotted as a function of the azimuth from the center of the tree,  $\theta_{r}$ , in Figure 28. The data show significant shielding effects for the pine tree with  $F(w_r)$  values as low as 0.04 across the diameter of the canopy.

One experimental check was made comparing the collecting efficiency of the 2-inch-diameter discs with that of the tray collector near ground level. A set of five discs were placed on branches of a dead tree at Station 16 at heights ranging from 10 to 12 feet. The recovered weights of ceniza-arena were as follows:

Disc	∆m				
Number	(gm_sq_ft)				
1	1.101				
2	0.844				
3	0.887				
4	0.770				
5	0.820				

The average value of  $\Delta m$  for the set is  $0.884 \pm 0.088$  (9.9 percent) gm/sq ft; the deposit density for the tray collection was 0.882 gm/sq ft. This agreement indicates that the wind speed must have been low during the particle shower because surface density of the particles deposited on the small discs was within about 10 percent of that for the large collector at ground level.

#### Table 23

#### θď rd Exposure ∆m_d (degrees) (ft) Condition (gm/sq ft) Top X-rod (h = 4.5 ft)90 1.25 ΡP 1.951 180 0.50 Р 1.403 1.00 Р 1.403 1.50 PP 1,824 270 0.83 PP 2.119 1.25 E 2.212 1.67 EO 2.085 2.00 ΕO 2,058 Bottom X-rod (h = 2.0 ft)0 0.83 PP 2.418 2.08 PP 2,123 90 0.67 Ρ 2.400 1.25 PP 2.418 2.33 $\mathbf{PP}$ 2.829 180 0.33 Ρ 1.833 1.00 Р 2.119 1.67 Р 2.175 270 0.75 Р 2.460 1.67 PP 2.722

# DISC CONTAMINATION DATA FOR PINE-1

Height of tree = 7.5 ft а

Notes:

5

Run D1:

Recovered 12/14, 0830;  $\Delta t = 0.15$  hr;  $\Delta m$  (tray) = 2.7023 gm/sq ft E:

- Disc exposed from above and to the sides 0:
- Disc outside of tree canopy **P**:
- Disc protected by needles (top and all sides) PP:
- Disc partially protected by needles (top and at least one side) θ_d:
- Azimuth of the arm of the X-rod on which the discs were mounted Distance from the center of the X-rod to the point where the r_d: disc was located

Figure 25 CONTAMINATION OF DISCS IN PINE-1





.

and share a more set



Figure 27 VIEW OF PINE-2 AT STATION 16
### SUMMARY OF PERIPHERAL SAMPLING LOCATION F(w_L) VALUES FOR PINE-2 TWIGS

θr		F(w _L )	
(degrees)	Set No. 1	Set No, 2	Set No. 2m
0	0 282	0.067	0 384
45	0.061	-	-
90	0.061	0,098	0.268
160	0,039	-	-
180	0.106	1,600	1.000
200	0,127	-	-
225	0,186	-	-
270	1,000	0.304	0.485
340	0,802	-	-







#### Personnel Contamination

Because of the press of work in obtaining and processing the foliar samples, only 26 measurements of personnel contamination were made. The results are summarized in Table 25. In all cases, the contamination events took place while the project members were working in the open (moving about, taking samples, preparing plant specimens for sampling, changing collectors, or standing still). A small fraction of the exposure time was spent in the jeep writing field notes and labeling and packaging samples. In all but one case, the exposure period ended when the project members entered the jeep station wagon, closed the windows, and proceeded to the laboratory in San Jose where the cenizaarena particles were removed, collected, and prepared for weighing.

The personnel contamination factor for any part of the body or clothes is defined by

$$a = \Delta w \Delta m$$
 (14)

where  $\Delta w_{n}$  is the weight in grams of the particles retained (in terms of the weights recovered by various removal methods) and  $\Delta m$  is the weight in gm/sq ft of the particles deposited on a horizontal surface during the exposure period.

No attempts were made to remove the particles from any part of the body or clothing during the exposure periods or to stay in positions where the deposits would be minimized or maximized (some normal movements were restrained whereby the hair or other exposed part of the body was not touched during the period). However, the resulting higher a values for the shorter exposure periods indicate that particles were removed during the course of normal activities in the field.

Most of the sample descriptions given in Table 25 should be sufficient definitions of the part of the body from which the particles were recovered and the method of recovery. A few designations may require further clarification. For example, the designation, hair, includes all hair on the top of the head and that on the back of the neck to the point where the skin is readily visible. The designation, face, includes all the skin surfaces in front of the ears and below the hairline on the forehead to the bottom of the chin.

The mass distribution data obtained from sieve analyses of the recovered particles are summarized in Table 26; the data for ceniza-arena particles from the trays for each set are included for comparison. In most cases, the median diameter of the particles recovered from the

SUMMARY OF PERSONNEL CONTAMINATION DATA

Sample Description ^a	WBL, hair, spray-wash WBL, hair, spray-wash, plus brushing	CFM, hair, spray-wash CFM, hair, spray-wash plus brushing	WBL, inside ears, spray-wash CFM, inside ears, spray-wash CFM, spectacles, spray-wash	WBL, hair, dry brushing WBL, hair, dry brushing, plus wet brushing	CFM, hair, dry brushing CFM, hair, dry brushing, plus wet brushing	CFM, forehead, spray-wash CFM, spectacles, spray-wash	CFM, hair, dry brushing CFM, face, wash plus shave	CFM, forearms, spray-wash plus rubbing WBL, hair, dry brushing	WBL, hair and face, spray-wash WBL, hair and face, spray-wash plus dry- combing hair
a h (sq ft)	0,193 0,233	0.0972 0.127	0.00728 0.00623 0.00144	0,0111 0.0725	0.01 <b>78</b> 0.0512	0,00806 0.00111	0.104 0.00265	0.145 0.0616	0.204 0.266
dw [∆] (gm)	0.9897 1.1952	0.4996 0.6504	0.0374 0.0320 0.0074	0.1533 1.0019	0,2463 0.7069	0.1114 0.0153	1.5701 0.0401	0.1640 0.0026	0.2438 0.3180
لية (gm/sq ft)	5,140			13.82			15.13	1.13 0.0422	1.197
Exposure Period (hours)	2.93			2.47			7.10	7.00 0.67	4.00
Date	6/15			6/16			8/11	10/6 12/9	1/1
Sumple Number	PC-1	PC-2	PC-3 PC-5 PC-5	PC-6	PC-7	PC8 PC9	PC-11 PC-11	PC-12 PC-13	PC-14

Î

Ę

'n.

Allowed In Second

STREET, SHE

Table 25 (concluded)

----

:

Sample Description ¹¹	hair, spray-wash with combing hair, spray-wash with combing face, spray-wash inside ears, spray-wash forearms and hands, spray-wash spectacles, spray-wash	blouse, spray-wash hair, dry-combing hair, dry-combing, plus spray-wash	hair, spray-wash forearms and hands, spray-wash hair, spruy-wash hair, spray-wash
	CFM, JLJ, CFM, CFM, CFM, CFM,	JLJ, WBL, WBL,	CFM, CFM, UBL, CFM,
ah (sq ft)	0,154 0,103 0,0204 0,00645 0,0709 0,00493	0.414 0.221 0.450	0.666 0.185 0.629 0.422
^{∆w} h (gm)	0.2440 0.1626 0.0322 0.0102 0.1121 0.078	0.3302 0,0349 0.0710	0,1050 0,0291 0,4855 0,3262
کس (gm/sq ft)	1.582	0.7982 0.1576	0.7724
Exposure Period (hours)	2,00	2.67 0.92	0.25
late	1/7	1/1	1/15
Sample Number	PC-15 PC-16 PC-16 PC-19 PC-19 PC-20	PC-22	PC-23 PC-24 PC-25 PC-26

a Hair Cut: WBL, crew, male

CFM, medium, male CFM, medium, male JLJ, medium, female ÷

ļ

· · · · ·

大田口山の東京の

i

:

the second se

:

SUMMARY OF CENIZA-ARENA SIEVE ANALYSIS FOR PERSONNEL CONT. VINATION SAMPLES

				41	[nun ]	lated 1	Weight	Distr:	ibut lor	i in Per	cent		
Sample		I				(part	ticle a	size ii	l micro	ns)			ط 50
Number		Type	m	0	리	20	8	4	88	175	295	>295	(microns)
							۵.	it 1					
14001	נש.יז,		0,30	0.47	1.2	13.4	35.0	32.5	54.3	91.7	9,66	100	80
PC-1	WB.	hair	ı	ı	ı	I	ı	29.5	52.6	92.5	99.7	100	84
	, JEW	hair	ı	ł	1	ı	ı	27.9	51.6	92.3	99.7	100	86
PC-2	E	hair	ı	I	1	I	i	21.3	44.4	89.2	<b>9</b> .6	100	96
	CFM,	hair	1	ı	ı	I	ł	20.6	45.2	90.6	99.7	100	95
PC-3	WBL,	ears	ł	ı	ŀ	1	1	32.5	65.7	96,8	100	,	6,8
Pc-4	CFW	ears	ı	ı	ı	ı	ı	27,9	63.7	95.0	001	ı	8 5
PC-5	CFM,	specs	ı	ı	ı	I	ı	33.3	56.5	87.0	100	ı	
							Se	t 2					
14034	Tray		0.30	0.46	1.6	18.0	31.0	38,1	60,3	98.9	100	ı	11
PC-6	WBL,	hair	ı	ı	I	i	ı	6.5	29.4	92,8	100	ı	011
	WBL,	hair	ł	ı	ı	ı	1	43.9	69,5	98.9	100	ł	57
PC-7	CFM,	hair						7.0	28,9	<b>99.1</b>	100	ł	108
	CF.M.	hair						39.1	61.4	<b>99.</b> 3	100	1	69
PC-8	CFM,	forehead	ì	ł	ı	ı	I	66.8	86.3	59,5	100	i	27
HC-9	CFM,	specs	ı	4	ı	ı	ı	46.0	73.0	100	1	ł	54

a ser a ser a ser a ser a ser a ser a grander provincia de la ser a s

Table 26 (concluded)

----

....

d50	(microns)	60 32 39 27 39 27 29 27 29 20 20 20 20 20 20 20 20 20 20 20 20 20	59 69 22 22	60 74 77
	>295	100 100 100 100	100 100 100 100	100
비	295	99.9 99.7 99.1 99.5 99.5 99.5	99.7 99.9 99.5 99.5	100 99.2 99.0
n Perce	175	99.8 99.0 98.6 97.3 97.2	99.2 99.7 96.3 96.4 96.5	99.7 86.0 82.5
tion i	88	73.4 94.3 58.5 57.4 79.1 93.2	91.5 66.9 63.3 90.8	77.7 57.5 55.2
stribu	44	38.0 38.0 21.7 21.4 28.4 31.0 53.1 78.2	62.1 31.4 32.6 35.6 80.0	33.2 34.4 34.4
ght Di	300	Set 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	41,8 22,2 22,1 7,1	Se 18.4 26.0 25.5
ed Wei	20 S	14.6 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23,3 12,4	9.4 17.1 15.7
umulat	10	8 8	<b>5.6</b> 7.11,3 7.0	2.7 5.4 4.4
Acc	2	1.1 0.64 	3.1 0.97 -	1.1 3,4 0,63
	6	0.80 	2.3 0.62	0,65 2.4 0.25
	Type	forearms hair & face hair	lorearms blouse hair hair forearms	hair hair
		Tray CFM, Tray WBL, JLJ,	Crw, JLJ, Tray WEL, CFM, CFM,	Tray WBL, CFM,
	Sample Number	14390,1443 PC-12 06425 PC-14 PC-15,17,16 PC-16	PC-19 PC-21 14689 PC-23 PC-23 PC-23	15036 PC-25 PC-26

1

100 - 100 - 100 -

「「「」」では、「」」」では、「」」」」

ŝ,

216

hair was a few microns larger than that deposited in the trays. However, the median diameter of the particles recovered from other parts of the body and clothing was generally much smaller than that of the particles deposited in the trays. Dry brushing preferentially removed the larger particles from the hair (see data for PC-6 and PC-7), whereas any of the wet removal methods removed the smaller particles about as effectively as the larger particles.

Correlations of the data of Table 25 with wind speed during the exposure and other factors are given in Part Three of this report.

#### Particle Size Analyses

The results of the particle size analysis, in terms of accumulated weight distributions from the sleving and settling measurements, of the ceniza-arena recovered from the foliar samples and collector trays are summarized in Appendix E. The procedures used in obtaining, tabulating, and treating the measured data are discussed in this appendix.

Because a large number of the ceniza-arena particles in many of the showers felt and impacted on the foliar specimens in the form of agglomerated particles and these agglomerates disintegrated into separate sand or minetal grains on impaction or in the sieving analysis, the reported distributions are not always true representations of the distributions that were transported through the air to the sampling locations. The consequences of particle breakage after impaction would be that, relative to the distribution of the airborne particles, the reported distributions would show (1) the presence of small particles that would otherwise not have fellen at the location; (2) higher fractions of smaller particles; (3) a smaller value of the mass median diameter,  $d_{50}$ ; (4) a break or discontinuity in the mass distribution curve (i.e., the presence of a double distribution; however, this evidence would not be conclusive since a similar discontinuity in the curve could result from a sample produced by multiple showers or other causes); and (5) a lower value of the maximum particle diameter in some cases.

The agglomerated particle breakage problem is a major limitation on the application of the reported distribution data for evaluating the constants of the basic contamination factor equation. However, the data are applicable with respect to other questions about the contamination process, such as whether the foliage retained the largest particles in the distribution, whether the distribution of the particles on the foliage was significantly different from that of the particles varied significantly from one type of plant to another.

The data given in Appendix E show that the maximum diameter of the particles retained by the foliage was generally the same as that of the particles collected in the tray at ground level. Over all sample sets, the accumulated weight percentage at a diameter of 295 microns was generally smaller for the foliar deposits than for the tray deposits. (A smaller accumulated percentage at 295 microns, in this case, reprecents a larger percentage of the sample weight for larger particles.) In the few cases where the maximum diameter of the foliar deposits was definitely smaller than that of the ground deposit, the plant specimen was usually a cereal grain (or grain head), on on, squash leaf, or young cabbage plant.

In most sample sets, the accumulated weight percentages, up to a diameter of 44 microns, was generally larger for the foliar deposits than for the ground deposit, indicating a higher degree of retention of the smaller particles by the foliage. Accordingly, the value of  $d_{50}$  for foliar deposits is smaller than it is for the ground deposit. The most frequent exceptions to the relative higher retention of small particles were corn, tomato, lettuce, barley, and onion.

The data indicate, at least to some degree, preferential retention by the foliage of particles within a given size range. In general, the  $d_{50}$  values for the foliar deposits have larger positive differences from the  $d_{50}^{\circ}$  values of the tray samples, where the latter are large. However, when the  $d_{50}^{\circ}$  value is small, the differences decrease, and the frequency of negative values of  $d_{50}^{\circ} d_{50}^{\circ}$  tend to increase. The mass median diameters of the ceniza-arena from the primary sample sets of vegetable plants are summarized in Table 27; the data are grouped by one of the two major types of climatic conditions under which the deposit occurred--dry or damp.

Since the maximum diameter of the particles in all samples of each set was about the same, the departure of the ratio,  $d_{50}^{0}/d_{50}^{0}$ , from unity to a lower value is a relative measure of the preponderance of smaller particles in the distribution for the foliar samples compared with the ground deposit. The ratio specifically gives the shift of the distribution peak of the foliar deposits relative to that of the ground deposit. For all except two plants (onion and pepper), the values of the ratio,  $d_{50}/d_{50}^{0}$ , are larger for the foliar deposits that occurred under damp conditions. In other words, the weight distribution of the foliar deposit under damp conditions was more like that of the ground deposit than it was under dry conditions. However, the averages of the  $d_{50}$ values in Table 27 do not take into account possible effects of wind

ł.

-+

. .

#### SUMMARY OF THE MASS MEDIAN DIAMETERS FOR THE CENIZA-ARENA PARTICLES RECOVERED FROM PRIMARY SAMPLES OF VEGETABLE PLANTS (d₅₀ values in microns)

						-77								
	Tray	Bean	Beet	Cabbege	Carrot	Corn	Lettuce	Obion	Pea	Papper	Potato	Radiah	Bquesh	Tonato
						Dry	Conditi	ons						
	81	32		71		102							44	76
	77	25		63		103							21	63
	87	68		75		84							78	76
	105	75		76		##								75
	79	47		73		51							66	
	160			80		75							33	
	107			102		79							93	
	55			51									47	
	63	48		€C									54	
	57	52	60	66		59	35	80		59			65	70
	49	50	62		51	102	58	52	53	61	50	57		
	69	26	29	24	26	47	56	64	22	32	28	47		
	83		34	51	35		66	34						
	72	42		46	33	60			42	32	68	54		
	80	42		38	33	69			-48		39	47		
	68	48		56	53	58			52		-58	57		
Average	81	46	46	62	38	75	54	58	43	51	49	52	56	72
d 50/d ⁰ 50	-	0,62	0,72	0,75	0.54	0.89	0.84	0.91	0,62	0.81	0.71	0,75	C, 66	0.89
						Damp	Couditi	01.5						
	71	56		69		71							65	78
	84	68		84		72							73	66
	63	57		54		57							77	61
	60	57		<b>#1</b>		59		66					51	63
	55	53	66	55			66	51					50	54
	66		64		66	84	#1	62	79	59			67	
	94		74			93	75	83	51	90			68	
	61		53		\$3	74	60	50	40				57	
	73	46	60		70		66	58	38	50		63		
	85	30	45	55	30	57	65	41	34	39		36		
	67	64		72		68							69	73
	64	54		68		64		57					56	59
	102		90	95	100	94	92	50					96	
	75		65	69	65	72	70	46					44	
	74		68	67	66	82	73	46					<b>\$8</b>	
	71			48	51	86	55						51	
	79	65	75	72	79		78	77					74	
	55		53		54	49	55	58						
	55	54				73			54					
	57	70				73			46					
	65	46				63			50	50	52	56		
	70	47			_	74			54	62	58	78		
	56	52			71	83			60		77	60		
	88	75		83	75									
	52	43			44	54			50		48	28		
Average	70	55	65	68	64	72	70	57	51	58	59	59	67	65
den/ Can	-	0.82	0,88	0,92	0,89	1.04	0.95	0.78	0,76	0.76	0.97	0.68	0.93	0.94

#### Type of Foliar Sample

219

ig, easily 18th approximate

speed; and if it is assumed the distributions of the foliar deposits would depend on the wind speed and that the shift in the d₅₀ value for the foliar deposits would decrease as the wind speed decreases, some of the differences between the d₅₀ values between dry and damp conditions could be due to differences in wind speed, since lower wind speeds usually prevailed for the damp conditions. In addition, the averages of the d₅₀ values are for all sizes and ages of a given plant.

The unweighted average value of d (dry)/d (damp) for all the vegetable plants from the data of Table 27 is 0.85. The order of the plant species with decreasing values of d  $_{50}/d_{50}^{\circ}$  for the foliar deposits that were collected under damp conditions is (1) corn, (2) tomato, (3) potato, (4) lettuce, (5) squash, (6) cabbage, (7) carrot, (8) bean, (9) beet, (10) radish, (11) onion, (12) pea, and (13) pepper.

The mass median diameter for the ceniza-arena particles recovered from primary samples of the cereal grains and of the trees are given in Tables 28 and 29, respectively. For the cereal grains, the smallest value of  $d_{50}/d_{50}^{\circ}$  is for oat heads under dry conditions, and the largest value of  $d_{50}/d_{50}^{\circ}$  is for barley stalks (and heads) under damp conditions. The values of both  $d_{50}$  and  $d_{50}/d_{50}^{\circ}$  for the juniper and pine trees were smaller than they were for the other trees. The values of  $\overline{d}_{50}$  and  $d_{50}/d_{50}^{\circ}$  for the leaves and twigs of the avocado, camphor, grapefruit, and laurel trees were similar under both dry and damp conditions.

The effect of weathering on the weight distributions, as measured by the ratio of the d  $_{50}$  value for the weathered foliar deposit to that for the primary sample foliar deposit, is shown in Tables 30 and 31 for vegetables and cereal grains, respectively. The tabulated data indicate that the wind weathering of the deposits on young or small plants did not cause a preferential loss of the larger particles. Even for the deposits on the taller plants (e.g., grain heads), the d ratios did not decrease consistently for all sample sets (except for oats). The effect of the rain on the  $d_{50}$  ratios usually indicated a preferential removal of the smaller particles, as indicated by in increase in the  $d_{50}$  ratios; however, for the young and smaller plants, splashing up of soll could have been a cause for the observed d ratios being larger  $\frac{50}{50}$ than unity. In one weathering series for the laurel tree leaves, the  $d_{50}$  values decreased from 42 to 36 microns (ratio of 0.86); and on one series for the grapefruit tree leaves, the  $d_{50}$  values decreased from 36 to 32 microns (ratio of 0.89). Thus, the data show no large changes in the distribution of the particles not removed from the foliage of the vegetables, cereal grains, and tree leaves by wind and rain weathering.

····· } ····· }

ŕ

# SUMMUARY OF THE MASS MEDIAN DIAMETERS FOR THE CENIZA-ARENA PARTICLES RECOVERED FROM PRIMARY SAMPLES OF THE CEREAL GRAINS (d₅₀ values in microns)

# Type of Follar Sample

	Tray	Stalks	Heads	Stalks	Oat Heads	Rye Stalks	Rye Heads	Wheat Stulks	Wheat Heads
			Dry	Deposit (	Condition	81			
	81					۽ ا		4	
	77	56		63		9 UC		65 9	
	87	73		74		0 1		5 4	
	105	61		67				69	
	160		69	5	¥6	00		68	
	126		6		7, a				30
	49		9 1	57	07		ļ		60
	69	36		40		5	47	-	
	78			69		27		30	
	08			55				4 1	
	68	57		58		43	49	89 ¥	
Average	68	57	80	60	26	59			!
^d 50 ^{/d} 50	1	0.70	0.56	0.78	0,18	0.64	0,76	0.67	45 0.31
			Damp 1	Exposure (	Condition	36			
	11					5			
	63	56		57		80		90 10 10	
	103	58		65		F		60	

9 -

A second 
water to a take a take of a

......

.

92

1

Table 28 (concluded)

Type of Foliar Sample

	Barley	Barley	Oat	Oat	Rye	Rye	Wheat	Whea
Tray	Stalks	Heads	Stalks	Heads	Stalks	Heads	Stalks	Head
		Damp Expo	sure Cond	itions (d	concluded)	- 1		
60	60	63	<b>9</b> 0	39		49	59	40
55	54	55	53	38	47	49	38	39
<b>6</b> 6				42		99		80
94				37		50		57
61					39	41		
73			43		42	55		
85			45				33	35
67	62		99		64		65	
64	60		57		56		68	
102	74	11	65	35	83		53	37
75	63	73	63	41	67	54	61	53
74		65		57		50		49
79	51	59	64	59	63	56	45	45
55	54	56	40	37	41	46	35	39
55				54		49		50
57					38	40		
65					41	43		
70	107					60		
56	80				40	48		
88	81		75				74	
52	55		56				50	
10	65	63	58	44	54	50	56	48
i	0.92	0.89	0.79	0.61	0.77	0,76	0.77	0,66

Average d₅₀/d₅₀ · ----

1

3

## SUMMARY OF THE MASS MEDIAN DIAMETERS FOR THE CENIZA-ARENA PARTICLES RECOVERED FROM PRIMARY SAMPLES OF TREE LEAVES, NEEDLES, AND TWIGS ( $d_{50}$ values in microns)

			بتحسرت ويعقف				
-	Tray	Avocado	Camphor	Grapefruit	Juniper	Laurel	<u>Pine</u>
	66	46					
	94	54					
	61	42					
	73	41					
	55		49				
	57		35				
	65		39				
	70		38				
	56		42				
	80		26 ^a				
	63					39	
	60					35 ^a	
	64					42	
	73						22ª
	69			36 ^a	17 ^a		
Average	-	46	41 (26) ^a	36 ^a	17 ^a	41 (35) ^a	22 ^a
d ₅₀ ∕d ₅₀	-	0,62	0.67(0.32) ^a	0,52 ^a	0 <b>.25^a</b>	0.64(0.58) ^a	0 <b>,30^a</b>

#### Type of Foliar Sample

a Dry conditions (all other values apply to damp exposure conditions)

#### SUMMARY OF d₅₀ RATIOS FOR SOME WEATHERING SERIES SAMPLES: VEGETABLES

Type of Sample	d'50 (aicreas)	<u>Bean</u>	Beet	Cabbage	Carrot	Corn	Lettuce	Outon	Pija	Peoper	Potato	Radish	Squash	Tomate	Average
Р	63	1.00		1.00		1 00							1.00		1,00
SW	61	0.88		0,98		1.23							0,56		0,91
28	62	0.89		0.93		ι,09							0.51		0.86
SWR	62	1.68		1.94		1,42							1,30		1.58
2	60	1.00		1.00		1.00							1.00		1.00
SW	59	1.09		-		-							n, 98		1.04
5W	58	0.91		-		ù.19							0.98		1,00
STR	58	-		0,98		0.95							-		0.96
Р	55	1.00	1.00				1,00	1.00					1,00	1,00	1.00
37	55	1.09	0.89				1,66	1.39					1.12	1,96	1.10
51	55	0,96	-				-	-					1.02	1,06	1.01
SW	56	-	-				-	1,04					1.04	1.22	1.10
3W	58	-	-				-	-					1.24	-	1.24
P	85	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				1.00
SW	92	0,80	0.64	0,69	0.77	1:04	1.34	0, <b>76</b>	0.85	0.23	1.03				0.88
SWR	<b>9</b> 3	0,93	1.38	1.44	2.63	1.37	1.31	-	0,82	1.31	-				1.40
2	67	1.00				1,00							1,00	1.00	1.00
5W	67	0.86				1.15							0.84	1.0M	0.96
SWR	67	1.23				1.44							1.28	1.40	1.36
P	75		1.00	1.00	1.00	1.60	1.00	1,90					1.00		1.00
S¥	71		0,32	0.93	0.57	0,99	0,92	0.70					0,81		0.78
Р	79	1.00	1.00	1.00	1.00		1.00	1.00					1.00		1.00
5¥	78	0,78	0,93	-	0,94		0.91	0.90					0,93		0.90
SWR	78	0.78	ə.83	0.82	0.52		9.77	0,39					0.89		0.74
р	65	1.00				1,00			1.00	1.00	1,00	1.00			1.00
SW	63	0,98				0,83			0.72	0,90	0.75	0,85			0,84
Р	56	1.00			1.00				1.00		1.00	1.00			1.00
SW	57	0,92			0.83				6.73		0,92	1.12			0,90
₽	68	1.00		1_00	1.00	1,00			1.00		1.00	1.00			1.00
SW	69	1,00		0.95	0.87	0,92			0,94		0,90	1.04			0.95

#### Typ.) of Foliar Sample

#### SUMMARY OF d RATIOS FOR SOME WEATHERING SERIES SAMPLES: CEREAL GRAINS 50

	_		Typ	os of Fol:	iar Samp	les				
Type of	4 ⁰ 50	Barlev	Barley	Ont	Ont	Rve	Rve	Wheat	Wheat	
Sample	(microns)	Stelks	Heads	Sta)ks	Neads	Stalks	Reads	Stalks	Heads	Average
	<u> </u>					<u> </u>				
P	56	1.00		1.00		1.90		1.00		1.00
SW	54	0.96		0.95		0,90		0.83		0.91
SW	48	0.86		0.79		0.83		0.70		0.80
SWR	54	<b>0.96</b>		0.98		0.88		0.98		0.95
P	60		1,00		1.00		1,00		1.00	1.00
SW	59		0.92		1,00		1.02		0.98	0.98
SW	58		0.83		0.82		0.98		0,88	0.88
SWR	58		0.84		0.67		0,82		0.88	0.80
P	55	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SW	55	-	1,02	-	0.87	-	1.16	-	0.92	0,99
SW	55	-	-	-	-	-	1.14	-	0,92	1.03
SW	56	-	1.14	-	0.82	-	0.94	-	1.03	0.98
CW			0.00							
3* SWD	50	1.11	0.98	0,75	0,92	0.72	0.73	0.89	1,21	0.91
D	39	1.04	1.13	0.83	0.74	1.26	1.04	0,89	0.82	0.97
r cw	60 67			2.00				1,00		1.00
3.	32			0.91				0.82		0.80
SWR	92			0.93				0.97		0.95
Р	67	1,00		1.00		1.00		1.00		1.00
SW	67	0.85		0.64		0.94		0.69		0.78
SWR	67	1.29		1.08		1.02		1.02		1.10
Р	75	1,00	1.00	1.00	1.00		1.00	1,00	1.00	1.00
SW	71	0.95	1.15	0.59	0.56		0,70	0.64	0.68	0.75
Р	79	1,00	1,00	1.00	1.00	1,00	1.00	1.00	1.00	1,00
SW	78	-	0.90	-	0.86	-	0.91	-	0.89	0.89
SWR	78	-	0.97	-	0,51	-	0.71	+	0.89	0.77
SWR	78	1.04	0.98	0,72	0.36	0.52	0,79	0.89	0.89	0.77
P	65					1.00	1,00			1.00
SW	63					0.71	1.12			0.92
ъ	<b>E</b> .c	1 00								
r SW	50	1,00					1 00			1,00
5	31 69	1 00		1 00			0.39	1 00		0.89
г СЖ	50	1.00		1,00				1.00	1.00	1.00
	63	0.90		1,00				1.07	0.84	0,96

Ċ

#### Particle Properties

One tray-collected sample of the ceniza-arena particles at each land plot was selected from each monthly sampling period for making measurements on various properties of the particles. When available, the sample was selected from those collected under dry conditions, so that the soluble chemical compounds carried by the particles could be determined without the effects of washing by rainwater. The pair of samples from each of the nine sampling periods was analyzed so that any noticeable changes in the particle properties over the duration of the whole operation could be detected.

The photomicrographs of the particles in all samples were similar to those shown previously in Part One of this report and in Reference 2; therefore, no additional photomicrographs are exhibited here.

The relative abundance of the chemical elements present in the ceniza-archa particles from semiquantitative spectrographic analyses is given in Table 32; quantitative analysis data on the contents of the more abundant oxides are given in Table 33. No significant change in the chemical composition of the ceniza-arena particles over the ninemonth period is shown by these data. The small increase in the iron content (noted in Part One of this report) appears to persist in the Table 33 data. No explanation of the slightly larger Na₂O content of the samples from Plot No. 1 has been found. Within the limits of precision of the analytical methods, these reported chemical compositions are the same as those given in Part One of this report for the cenizaarena samples collected in the first phase of the operation.

Data on the relative density of the particles, the pH (relative acidity) of water in contact with the particles, the amount of soluble materials leached from the particles by water and by 0.1 normal hydrochloric acid, and the amount of sulfate (SO₄) in the acid leaching are summarized in Table 34. The relative density (specific gravity) of the particles was between 2.61 and 2.68, similar to previous measurements. The pH of the water solutions, also similar to previous measurements, indicated a slight degree of acidity due to the presence of bisulfate or sulfuric acid. The amount of soluble salts carried by the particles varied considerably from one sample to the next and occasionally exceeded 3 percent in the acid leaching, on a dry weight basis. On the average, about 26 percent of the weight of the acid-soluble residues was sulfate  $(SO_4)$ .

The data from spectrographic analysis of the acid-soluble residues are summarized in Table 35. The major metallic elements present in the

ţ

-

#### COMPOSITION OF CENIZA-ARENA PARTICLES AS DETERMINED FROM SPECTROGRAPHIC ANALASIS

1. Plot No. 1 Samples Sample Number

Element	14089	<u>14175</u>	11230	14335	11390	14495	14571	14856	14751	Average
£	4.0	4.5	5.0	4.5	5.0	4.0	4,0	1,0	4.5	4.4
Cs	9.0	10.0	8.5	9.0	10,0	9.0	9,0	9.0	8.0	9.1
A1	15.0	17.5	15.0	15.0	20.0	15.0	20.0	15.0	15.0	16.4
1121	0.1	0,1	0.1	0,08	0.1	0.05	0.12	0.1	0.1	0.0%8
7.	9.0	10.0	7.0	9.0	7.0	8,0	7.0	8.0	7.0	¥.0
57	6.1	0.1	0,06	0.08	0.00	<del>0</del> ,07	0.l	0.06	0,05	0,08
T1	0.9	1.0	0.9	0,9	0,8	0.9	0.8	0.75	0.8	0,86
Mg	4.5	5.0	6.0	4.5	5,0	4,0	4.5	4,5	4.0	4.7
Cr	0.02	0.04	0,03	0.025	0.03	0.025	0.02	0.035	0.025	0.028
G=	0.002	0.002	0.002	0,002	0.003	0,001	0,002	0,002	0,002	0.002
Mo	-	-	-	•	-	-	-	-	•	-
v	0.07	0,08	0,05	0.05	0.06	0,05	0.04	0.04	0.05	0.054
Cu	.025	0,02	0,038	0.015	0.008	0.015	0.008	0.01	0.008	0.013
Na	6.0	8.0	7,0	6.0	7.0	5.0	6.5	6.0	6.0	6.4
\$c	0.002	0,003	0,002	0.002	0,003	0.002	0,002	0,003	0,003	0.002
2.	0.03	0,04	0.03	0.03	0.02	0.02	0.02	0.01	0,02	0.024
Ni	0,008	0,01	0,008	0.01	0,0 <b>08</b>	0,008	0.007	0,008	0,008	0.008
Co	0.002	0.002	0.002	0.003	0.002	0,003	0.002	0.002	0,002	0.002
8.8	0.1	0.1	0,12	0.12	0.1	0.1	0.1	0.1	0.1	0,10
Y	<0.01	in all sa	mples							

Si + non-detectables: Balance in all samples

#### 2. Flot No. 2 Samples

Sample Number

Flement	06003	06088	06183	06239	06282	06335	06354	06542	06652	Average
x	3.5	3.5	5.0	4.5	5.0	5.0	3.0	6.0	5.0	4.5
Ca	7.5	9.0	9.0	10.6	7.5	8,0	9,0	9,0	10.0	8.8
A1	15.0	20.0	17.5	20,0	15.0	15.0	15.0	15.0	17.5	16.7
Mar .	0.1	0.12	0.1	0.1	0.07	0.06	0,06	0,08	0,12	0,090
Fe	9.0	10.0	9,0	10.0	8.0	8.0	8.0	10.0	10,0	9.1
Sr	0.12	0.12	0.1	0.1	0.07	0,06	0,06	0.07	0.1	0.09
TÍ	0.8	1.0	0.9	1.0	0.85	0,75	0,85	0,9	1.0	0.89
Me	4.5	5.0	5,0	5.0	4.5	4.5	4,0	5.0	6.0	4.8
Cr	0.02	0.035	0.035	0,03	0.025	0.02	0.02	0.025	0.03	0.027
Gå	0,002	0.003	0.002	0,002	0,002	0,002	0.001	0.003	0.003	0.002
Mo	0.001	-	-	-	-	-	-	-	-	0.001
v	0.04	0,08	0,07	0,06	0.04	0,04	0,05	0.06	0.08	0.060
Cu	0.02	0.01	0,008	0.015	0,008	0,007	0,008	0.01	0.01	0.011
Nø	6.5	6.5	7.0	6,5	7.5	6.0	4.5	8.0	8.0	6.7
Sc	0,003	0.004	0.004	0,004	0,003	0,002	0,003	0.003	0.004	0.003
Žr	0.03	0.05	0.04	0,04	U, 02	0,03	0,03	0.04	0,03	0,034
Ni	6.007	0.01	0.008	0,01	0,007	0.006	0,007	0,008	0.01	0.008
Co	0.003	0.004	0,003	0.004	0.002	0.003	0,003	0.002	0,003	0.003
84	0.1	0.1	0.08	0.1	0.1	0,08	0.1	0.1	0.1	0.096
Y	<0,01	in all am	<b>h</b> ples							

Si + non-detectables: Belance in all samples

a Reported as weight percent of the oxides of the indicated elements

a di di se anchesione di a di anchesione destructures destructures de la constructure de la constructure de la c

#### COMPOSITION OF CENIZA-ARENA PARTICLES AS DETERMINED FROM QUANTITATIVE ANALYSIS²

Sample	_			0:	xide				
Number	Na ₂ 0	<u>K₂0</u>	CaO	MgO	A1203	Fe ₂ 0 ₃	MnC ₂	Ti02	SiO ₂
1 4089	2.89	2,04	7.66	4.02	19.51	7.12	0.10	1.19	55.46
14175	3,56	1.96	7.87	4.42	19.20	7.44	0.10	1.28	54.16
14230	3.69	1,91	8.09	5.44	17.62	7.70	0.11	1.24	54.20
14335	3.49	1.99	7.77	4.52	17.63	7.77	0.10	1.32	54.53
14390	3.47	1.83	8.12	4.75	18.88	7,45	0,11	1.20	54.18
14495	3.59	2.03	7.48	4.52	17.71	7.60	0.10	1.24	55,38
145 <b>7</b> 1	3.73	2.03	7.74	4.33	17.67	7.75	0.10	1.19	55.19
14656	3.70	1.91	7.85	5.07	17.58	7.88	0.11	1.18	54.71
14751	3.63	1.81	8.11	5.56	16.85	8.12	0.11	1.22	54.4 <del>9</del>
06003	2,95	2.17	7.53	3,86	19.82	7.43	0.10	1.15	55,00
06088	2.76	2.19	7.68	4.24	19.58	7.65	0.11	1.11	54.67
06183	2.74	2.04	8.05	4.82	18.10	7.96	0.11	1.15	54,97
06239	2.66	2.02	7.85	4.42	19.05	7.41	0.10	1.19	54.92
06282	2.84	1,96	7.67	4,35	19.00	7.04	0.10	1.19	55.02
06335	2.68	1.87	8.11	5.05	19.20	7.52	0,11	1.11	54.34
06354	2.61	2.16	7.76	4.54	20.46	7.49	0.10	1.09	53.79
06542	2.81	1.95	7.78	4,05	19.81	7.02	0,10	1.12	55.3 <b>5</b>
06652	2.83	1,96	7.87	5,19	18,83	7.57	0,11	1.17	54,45
Average	3.15	1.99	7.83	4.62	18.69	7.55	0.10	1.18	54,71

a Reported as weight percent of the dried ignited samples

#### RELATIVE DENSITY, SOLUBLE SALT CONTENT, AND SOLUBLE SULFATE CONTENT OF THE CENIZA-ARENA PARTICLES AND PH OF WATER IN CONTACT WITH THE PARTICLES

	Relative	pH of	Water	Acid	SO ₄ Content
Sample	Density	Water	Soluble	Soluble	of Acid
Number	of Particles	Solution	<u>Salts^a</u>	Saltsa	Soluble Salts ⁴
14089	2.64	5,25	1.18	2.87	1.22
14175	2.67	5,50	0.87	2.72	0.66
14230	2.69	5,55	0.14	0.92	0.10
14335	2.68	5.90	1.61	3,76	1.65
14390	-	-	0.62	3.13	0.66
14495	2.66	5,80	0.16	2.05	0,31
14511	2.69	5,60	0.29	2.27	0.64
14656	2,68	5,40	0.31	1.49	0.25
14751	-	-	0.50	-	0,30
06003	2.64	5.25	1.16	3.01	1.23
06088	2.61	5,40	0.16	1.87	0.25
06183	2.61	5,80	0.23	2.52	0.19
06239	2.66	5.60	0.82	2.47	0,97
06282	-	-	0.19	1.89	0,38
06335	-	-	0.25	1,10	0.21
06354	2.65	5.35	0.76	2.89	1.07
06542	-	-	0.17	-	0,12
06652	2,68	6.10	0.62	1.65	C.43
Average	2.66	5,58	0.56	2.29	0.59

a Reported as weight percent of the original dried particles: 2.0 grams of the particles were shaken in 50 milliliters of water or 0.1 normal hydrochloric acid for one hour at room temperature; the slurry was then filtered, the filtrate evaporated to dryness at  $105^{\circ}$ C, and the dried residue weighed; the SO4 content of the acid soluble salts includes total sulfur, computed as SO₄ (most of the sulfur was present as SO₄).

a promotive second second

#### COMPOSITION OF THE ACID-SOLUBLE CONSTITUENTS OF THE CENIZA-ARENA SAMPLES AS DETERMINED FROM SPECTROGRAPHIC ANALYSIS

					5ample	Number					
Element	06003	06068	06183	06239	06354	14089	14175	14230	14335	14495	Average
в	-	0,06	-	-	-	-	~	0.05	-	0.03	0.05
Pe	3.5	4.0	3.5	5.0	3.5	5.0	4.0	6,0	4,5	4.5	4.4
Si	10.0	25.0	8,5	5.0	7.0	5.0	6.5	10.0	6.0	15.0	9,8
P	5.0	20,0	8.0	8.0	7.5	8.0	10.0	20.0	8.0	20.0	11.4
	0.12	0,4	0.5	0.1	0.07	0,15	0.2	0.25	0.2	0,06	0.2
A1	10,0	15.0	10.0	8.0	12.0	8.0	8.0	12.0	8.0	6.0	9.7
Mg .	3.0	2.0	1.0	3.5	1.5	4.0	3.0	6.0	5.0	0.8	3.0
Pb	0.002	0.1	0,04	0.005	0.02	0.002	0.025	0.04	9.002	0.006	0.02
Cu	1.0	0,3	0.05	0.6	0.03	0.7	0.8	0.6	0.4	0.04	0.45
Sn	-	-	-	-	-	-	-	0.008	-	0.002	0,005
Ge	-	0,001	0.001	-	-	-	-	0.001	-	0.002	0,001
C£	10.0	5.0	8.0	12.0	8.0	12.0	10,0	10.0	12.0	2.5	9.0
v	0,015	0,01	0.01	0.015	0.008	0.015	0,008	0.02	0.01	0.005	0.012
¥	0.01	0.02	0,005	0,02	0.005	0.015	0.015	0.015	0.01	-	0.013
Ma	0.9	c <b>.</b> 9	0.7	2.5	1.0	2.5	2.0	3.0	2.5	1.0	1.7
Ti	0,03	0, <b>08</b>	0.06	0.07	0,05	0.07	0.04	0.06	0.06	0.01	0.05
Ni	0.007	0,004	0.01	0.01	0.008	0.01	0,008	0,03	0.008	0.01	0.01
Co	0.002	-	0.003	0,001	9.001	0.04	0,002	0.002	0.001	-	0,002
Sr	9,1	0,08	0.05	0.1	0.06	0.13	0.05	0.2	0.2	0.1	0.11
ĸ	1,5	N.D.	-	2.0	9.75	3.5	2.5	N.D.	3,0	N.D.	2.2
Cr	0,01	0.008	0,005	0.01	0.01	0.01	0,007	0,01	0.008	0.02	0.01
Ba	0.04	0,06	0.1	0.08	0.03	0.07	0,04	0.08	0.06	0.06	0,96
Zn	0,05	N.D.	0.1	0.05	0,05	•	-	N.D.	-	N.D.	0.06
s٥	40.9	13.4	7.5	39.3	37,0	12.5	24.0	10,9	43.9	15.1	27.4

a Reported as weight percent of the oxides of the indicated elements; N.D. indicates "not determinable" because of insufficient sample size

b From the data of Table 34 (not from spectrographic analysis)

.

and a construction of the same state of the same state of the same same

residues were calcium, aluminum, iron, magnesium, potassium, and sodium; the major nonmetallic elements (besides oxygen and perhaps chlorine from the hydrochloric acid, which were not measured) were sulfur, phosphorous, and silicon.

The solubility data indicate that a water soluble residue of 1.0 to 1.5 percent resulted in severe acid burns on the foliage of the tomato, bean, corn, and other similar plants and in fatality of these plants when the deposit levels were moderately high.

#### Specific Area of Leaves and Other Plant Parts

Although the foliar contamination factor, as defined by Equation 1, has been used as the basic coefficient for tabulation of the experimental data on retention of particles by leaves and other aboveground plant parts, the projected area of these same plant parts is actually a more basic parameter in the retention process. This fact is shown by the form of Equation 3, in which the conversion of the area to weight is indicated by the inclusion of the specific area,  $S_L$ , as a direct multiplier. Additional factors that influence the degree of foliar retention by plant parts include the geometry and volume density of the foliage; these are also indicated as parameters in Equation 3.

Many scaled photographs were taken of the plants in the field during the sampling periods. Information from these photographs are to be presented in a subsequent report when a sufficient number of analyses are completed; generalized descriptions of the geometric form and gross projected areas of plant parts are to be evaluated from the photographic data. The measurements of the areas of individual leaves and other parts of many plants and of the dry weights of these foliar samples are presented in Appendix F. Average values of the foliar specific areas calculated from the data are summarized in Tables 36, 37, and 38 for vegetables, cereal grains, and trees, respectively. Average values of the foliar specific areas from measurements on individual leaf samples are summarized in Table 39. As discussed in Appendix E, the tabulated values of the areas and foliar specific areas refer to the maximum projected area of a leaf and the minimum projected areas (or their averages) of plant parts, such as stems and fruit.

The data show that the values of the specific areas for leaves generally range from about 0.1 to 0.2 sq ft/gm, except for the cereal grains, which have values about twice as large. Inspection of the data indicates that the specific areas of the leaves depend on plant or leaf age, leaf weight, and, to some degree, on the relative amount of sunlight

#### SUMMARY OF FOLIAR SPECIFIC AREA CALCULATIONS: VEGETABLES

Sample Number	Age (days)	Total Area (sq_ft)	Total Weight (gm)	S _L (sq ft/gm)	S_n (sq ft/gm)	Average Area per Plant Part (so ft)
				Bean		
14658-1	86	0,5068	2.8768		0.177	0.0158
1465 <del>9-</del> 1	86	0,3043	1,7906		0,170	0,0138
14833-1	122	1,0125	6.3160	0,160		0.0178
14833-2 ¹	b	0,1895	9,8375	0,0193		0,0111
14833-3		0,3625	8,7704	0.0413		0,181
14833		2,8433	32,9009	0.0864		-
14837-1	122	0,3172	2.2823	0.139		0,0117
14837-2	b	0,1256	6,8184	0.0184		0,0157
14837-2	c	0,0846	6,8184	9.0124		0.0106
14837-2		0,1051	6.8184	0.0154		0.0131
14837-3		0,0463	1.8124	0,0255		0,0463
14837		0,6606	12,2 <b>957</b>	0.0537		-
14839-1	93	0,7461	4,3004	0.173		0.0111
14839-2	Ь	0.1302	7,2174	0.0180		0.0118
1483 <del>9-</del> 2	c	0.1169	7,2174	0.0162		0.0106
14839-2		0.1236	7,2174	0.0171		0.0112
14839-3		0.0787	3,3842	0.0233		0.0262
14839		1.5356	19,3501	0.0794		-
06567-1	11	0,1385	0,5728		0.294	0.0168
				Beet		
14669-1	170	0.3931	2,6829	0.147		0.0357
14669-1	.3	0.3931	3.2353		0.122	0.0357
14805-1	90	0.2602	2.7104	0.0960		0.0173
14848-1	214	0,7961	8,7510	0.0910		0,0468
			<u>c</u>	labbage		
14662-1	86	0.4698	2 2932		0 205	0 0522
14663-1	86	0,4561	2,3766		0.192	0.0507

a SL includes stem weight

b Maximum area

S. 1. 1. 1. 1.

c Minimum area

#### Table 36 (continued)

,

• •

i

todra -

Į

Sample	Age	Total Area	Total Weight	<u>s</u> L	s _L a	Average Area per Plant Part
Number	(days)	(sq ft)	(gm)	(sq ft/gan)	(sq ft/gm)	(sq ft)
			Cabbage	(concluded)		
14834-1	122	4.242	42.3127	0.100		0.128
14834-3		0,0242	3,3063	0.00732		0.0242
14834		4.266	45, <b>619</b> 0	0.0935		-
06565-1	58	0.1660	0.4920		0.337	0.0118
			Ca	rrot		
14841-1	207	1,450	13,8397	0,105		0.112
06632-1	174	0.6946	4,4234	0.157		0.0366
			<u>_</u>	orn		
14845-1	96	2.963	13.2343	0.224		0.269
14845-3 ^b		0.154	16.8411	0.00914		0.154
14845-3 ^C		0.103	16,8411	0.00612		0.103
14845-3		0.128	16.8411	0,00760		0.128
14845-4		0.0468	2,3724	0.0197		0,0468
14845		3.138	32,4478	0,0 <b>967</b>		-
06559-1	120	5,598	28.4297	0.197		0.466
0655 <del>9-</del> 3 ^b		0.187	30,17	0.00620		0.187
06559-3°		0.146	30,17	0.00484		0.146
06659-3		0.166	30.17	0.00550		0.166
06559		5.764	58.60	0.0984		-
06694-1	158	4.683	31.8586	0.147		0.390
0 <b>669</b> 4-2 ^b		0.1870	35.90	0.00521		0.187
06694-2 ^C		0.1320	35,90	0.00368		0.130
06694-2		0,1595	35,90	0.00444		0.160
06694-3 ^b		0.3870	68,7915	0.00563		0.387
06694-3 ^C		0,3397	68.7915	0.00494		0.340
0 <b>669</b> 4-3		0,3634	68,7915	0,00528		0 <b>,36</b> 3
06694-4		0.2043	4.3550	0.0469		0.204
06694		5.369	140.91	0.0381		-

a SL includes stem weight

b Maximum area

c Minimum area

#### Table 36 (continued)

1. Mar. 1.

.

		7-+-1	<b>.</b>			Average
Samala	1	IOTAI	Total	—		Area per
Number	(do	Area	Seight	S _L	s _L ª	Plant Part
Mandel	(URAR)	(sq It)	<u>(gm)</u>	(sq 10/gm)	(sq ft/gm)	(sq ft)
			Onio	on		
14667-1	234	0.1261	1.8748	0.0673		0.01.40
14836-1 ^b	270	0.6161	13.0031	0.0474		0.0140
14836-1 [°]		0.5874	13.0031	0.0452		0.0616
14836-1		0.6018	13.0031	0.0463		0.0587
14836-3		0.0242		-		0.0602
14836 ^b		0.697	21,1778	0 0329		0.0242
14836 ^C		0,1003	21.1778	0.00474		-
14836		0.3985	21.1778	0.0199		-
14850-1	278	0.0663	4 1903	0.0168		-
1 48 50- 2		0.0158	0 5267	0.0138		0,0663
14850		0.0821	4 7177	0.0300		0,0158
		010021	4.7170	0.0174		-
			Pe	a		
14844-1 ^d	93	0 3848		_		
14844-1*		0.3548	-	-		0.00962
14844-1		0.3117	-	-		0,0412
14844-2b		0.1905	4.3121	9.185		0.0159
14844-2 ^C		0.1315	8,1430	0.0161		0.0164
14844-2		0,0040	8,1430	0.0104		0.0106
14844-3		0,1080	8,1430	0.0133		0.0135
14844		0,1025	4,8178	0.0213		0.102
		1,0070	17.2729	0.0583		-
06569-2 ^b	90	0,0687	3.1415	0.0219		0.00007
06569-2 [°]		0.0315	3.1415	0.0100		0.0087
06569-2		0,0501	3.1415	0.0160		0.00313
06634-1 ^u	93	0,2054				0.00501
06634-1 ^e		0.1770	-	-		0.00411
06634-1		0.3824	1.5865	0.241		0.0221
06634-3		0.0454	1.9284	0.0235		0.00648
				VIVAJU		U.0454

a SL includes stem weight

and the second second

d Regular leaves

e Stem leaves

b Maximum area

c Minimum area

#### Table 36 (concluded)

I.

Sample Number 06635-1 ^b 06635-1 06635-1 06635-3	Age (days) 61	Tota' Area (sq ft) 0.3741 0.5139 0.8880 0.0910	Total Weight (gm) Pea (cond	SL (sq ft/gm) cluded) -	S _L ^a (sq ft/gm)	Average Area per Plant Part (sq ft) 0.0107 0.0467 0.0193 0.0910
			Peppe	er		
1 4665-1 1 4666-1 1 4847- <u>)</u> 1 4847-2 1 4847-3 1 4847	142 170 214	0.1389 0.0618 0.2706 0.0426 0.00893 0.3221	1.0531 0.4628 2.4457 5.6597 1.1116 9.2170	0,170 0,111 0,00753 0,00803 0,0349	0.132 0.134	0.00731 0.00412 0.00933 0.0426 0.00893
			Potat	0		
14843-1 14843-3 14843 06521-1 06563-1	125 89 90	0.5843 0.0067 0.5910 2.2732 0.9919	- 3.4072 7.9239 4.0835	- - 0.173	0.171 0.287 0.243	0.0531 0.0067 - 0.0334 0.0992
			Radis	h		
14660-1 14661-1 06566-1	88 88 90	0.3037 0.2954 0.4624	1.4629 1.6086 2.1328 Square	0.208 0.184 0.217 h		0.0152 0.0148 0.0231
14846-1 14846-2 14846-2* 14846-3 14846	100	1.321 0.0703 0.0384 0.0282 1.4579	13.45 6.2831 0.6024 1.9716 22.3071			0.110 0.0117 0.0128 0.00235

a SL includes stem weight

b Regular leaves

o Stem leaves

:

#### SUMMARY OF FOLIAR SPECIFIC AREA CALCULATIONS: ( REAL GRAINS

						Average
		Total	Total			Area per
Sample	Age	Area	Weight	s _L	$s_L^a$	Plant Part
Number	(days)	(sq ft)	(gm)	(sq ft/gm)	(sq ft/gm)	<u>(sq ft)</u>
			Barl	ey		
06331-1(1)	61	0,4317	0,9725	0.444		0,0432
06631-1(2)		0.3628	0,8477	0.428		0.0363
06631-1(3)		0.2872	C.6453	0.445		0.0287
06631-1(4)		0.2082	0,4945	0.421		0.0231
06631-1(5)		0.1310	0.3098	0,423		0.0146
06631~ <b>1</b>		1.6163	3. <b>7</b> 094	0.436		0.0296
06631-3		0,1609	3.0411	0.0529		0.0161
C6631		1.7772	6.7505	0.263		-
06675-1(1)	90	0.2278	0.8775	0.260		0.0228
06675-1(2)		0.2897	0.9130	0.317		0.0290
06675-1(3)		0.2327	0.7047	0.330		0,0233
63675-1(4)		0.2018	0,5790	0.349		0.0202
06675-1(5)		0.1635	0.4426	0.369		0.0164
06675-1(6)		0,1158	0,2990	0.387		0.0129
06675-1(7)		0.0303	0,0822	0.369		0.0101
06675-1		1.2616	3,8990	0.324		0.0203
06675-3		0.2570	5,3788	0.0478		0.0257
06675		1.5186	9.2778	0.164		-
			0a	t		
				-		
06630-1(1)	61	0.2727	0.6843	6,398		0.0273
06630-1(2)		0.2622	0.8793	0.298		0.0262
06630-1(3)		0.1937	0.6770	0,286		0.0194
06630-1(4)		0.1121	0,4422	0.254		0.0112
06630-1		0.8755	2,7702	0.316		0.0210
06630-3		0.0341	0,6020	0,0566		0.00341
06630		0.9096	3,3722	0,270		-

a  $S_L$  includes stem weight

~

#### Table 37 (concluded)

						Average
		Total	Total			Area per
Sample	Age	Area	Weight	SL	$\overline{s_L}^a$	Plant Part
Numbe r	(days)	(sq ft)	(gm)	(sq_ft/gm)	(sq_ft/gm)	(sq ft)
			Whe	at		
14782-1(1)	65	0.1168	0.4440	0.2 3		0.0117
14782-1(2)		0.1472	0.5517	0.267		0.0147
14782-1(3)		0.1208	0.4282	0.282		0.0121
14782-1(4)		0.0880	0.3011	0,292		0.00880
14782-1		0.4728	1.7250	0.274		0,0118
14 <b>7</b> 82-2 ^b		0.1186	2.4541	0,0483		0.0119
14 <b>7</b> 82-2 ^C		0.0917	2.4541	0.0374		0,00917
14782-2		0.1052	2.4541	0.0428		0.0105
14782-3		0.1936	7.2167	0.0268		0.0194
14782		0.7716	11,3958	0,0677		-
14835-1(1)	91	0.0917	0,6000	0.153		0.00917
14835-1(2)		0.1069	0,6334	0.169		0.0107
14835-1(3)		0.0879	0,4602	0.191		0,00879
14835-1(4)		0.0348	0,1660	0.210		0,00870
14835-1		0.3213	1.8596	0.173		0,00945
14834-2 ^b		0.0607	5.7180	0.0106		0.00607
14835-2 ^C		0.0579	5.7180	0.0101		0,00579
14835-2		0.0593	5.7180	0.0104		0.00593
14835-3		0.2186	12.1141	0.0180		0.0219
14835		0.5992	19,6917	0.0304		-
06629-1(1)	60	0.1502	0.4540	0,331		0.0150
06629-1(2)		0.1405	0.4341	0.324		0.0140
06629-1(3)		0,0864	0.2718	0,318		0.00864
06629-1(4)		0.0598	0,2002	0.299		0.00598
06629-1		1.0398	3,1824	0.327		0,0109
06629-3		0.0 <b>596</b>	1.9122	0.0312		0,00596
06629		1.0994	5,0946	0.216		-
06674-2 ^b	8 <b>9</b>	0,0598	6.7165	0,00890		0.00748

a SL includes stem weight

b Maximum area

c Minimum area

#### SUMMARY OF FOLIAR SPECIFIC AREA CALCULATIONS: TREES

					Average
<b>.</b> .	Total	Total			Area per
Sample	Area	Weight	$s_L$	SL	Plant Part
Number	<u>(sq ft)</u>	<u>(gm)</u>	(sq ft/gm)	(sq ft/gm)	(sq ft)
			Avocado		
14641-1	0,3670	2.9745	0.123		0.0216
	0.3670	3,4832		0.105	0.0216
14643-1	0,7172	7.1290	0,101	-	0.0422
	0.7172	8.1199		0,0883	0 0422
14644-1	0,4809	4.5124	0.107		0.0321
	0,4809	5.5359		0.0869	0.0321
14682-1	0,7675	4,9715	0.154		0.0451
	0,7675	6.1020		0.126	0 0451
14831-1	0,6255	3.1818	0.197		0.0313
14832-1	0,6116	6.2155	0.0984		0 0468
					0.0408
			Camphor		
06381-1	0,1483	1.3014	0.114		0.00927
	0.1483	1,4767		0.100	0.00927
06382-1	0.1608	1.3543	0.119		0.0146
	0.1608	1.5106		0.106	0.0146
06383-1	0.1111	0.7503	0.148		0.0139
	0,1111	0.8452		0.131	0.0139
06481-1	0.1176	0.8965	0,131		0.00840
	0.1176	1.0297		0.114	0 00840
					0,00040
		Gr	apefruit		
$16020-1(t)^{b}$	0 2422	2 1 295	0.077.4		
$16020 - 1(b)^{c}$	0,2322	3.1283	0,0774		0.0484
16020-1	0.2250	3,1483	0.0731		0.0457
16020 = 1 16021 = 1(+)	0,2334	3.1285	0.0752		0,0471
16021 - 1(b)	0.2312	3,1/13	0,0729		0.0385
16021-1	0.2000	3.1/13	0.0838		0,0443
14481-1	V.2483	3,1715	0.0784		0.0414
a S- includ		• •			

a SL includes stem weight

b Letter t designates projected area measured for top side of leaf

c Letter b designates projected area measured for bottom side of leaf

77 .....

#### Table 38 (concluded)

Sample Number	Total Area (sq_ft)	Total Weight (gm)	SL (sq_ft/gm)	SL ^a (sq ft/gm)	Average Area per Plant Part (sq ft)
		Grapef	ruit (sonelud	ed)	
16022-1(t) ^b	0.2200	1,7855	0,123		0.0367
16022 <b>-1(</b> b)	0.2239	1.7855	0.125		0.0373
16022-1	0.2220	1.7855	0.124		0.0370
16166s-1	1.0224	15.6659	0,0653		0.0320
16198s-1	0,2696	3.2631	0,0826		0.0193
16209s-1	0,2558	1.8399	0,139		0,0233
16229s-1	0.4138	5.3355	0.0 <b>776</b>		0.0207
162 <b>6</b> 0s-1	1,3961	16,5844	0,0842		0,0450
16280s-1	0.6246	7.6871	0,0812		0,0312
162885-1	0.1501	1,8804	0.0798		0.0188
			Juniper		
16024-1	0.214	3.1550		0,0678	-
			Laurel		
15012-1	0.2 <b>67</b> 1	1.5677	0,170		0.0167
15013-1	0.1818	1.0202	0.178		0.0152
15014-1	0.2613	1,1557	0.226		0.0218
1 501 5 1	0.2643	1.4246	0,186		0,0155
			Pine ^C		
16004-1	0,1640	7.0770	0.0232		0.00156
16004-3	0.0143	4.2916	0.00333		_
16004-1,3	0.1783	11.3686	0.0157		-

b See page 238 for t and b designations

c Outer branches have an average of 220 needles/ft; average needle length is 0.359 ft; average needle width is 0.00436 ft

ï

a  $S_L$  includes stem weight

#### SUMMARY OF AVERAGE FOLIAR SPECIFIC AREAS FROM MEASUREMENTS ON INDIVIDUAL LEAVES

ł

1. 1. C. S. C. A.

.

Sample		s _L
Number	Plant	(sq ft/gm)
14834 <b>-1</b>	Cabbage	0,0981
14845-1	Corn	0.228
06559-1	Corn	<b>0.245</b>
06694-1	Corn	0.154
14641-1	Avocado	0.129
14643-1	Avocado	0.103
14644-1	Avocado	0.109
14831-1	Avocado	0.209
14832-1	Avocado	0,0968
06381-1	Camphor	0.116
06382-1	Camphor	0.123
06383-1	Camphor	0.149
16020-1	Grapefruit	0.0775
16021-1	Grapefruit	0,0798
16022-1	Grapefruit	0.12 <b>9</b>
16166s-1	Grapefruit	0,0686
16198s-1	Grapefruit	0.0830
16209s-1	Grapefruit	0,141
16229s-1	Grapefruit	0.0814
16260s-1	Grapefruit	0.0891
16280s-1	Grapefruit	0.0928
16288s-1	Grapefruit	0.0830
15012-1	Laurel	0.171
15013-1	Laurel	0,184
15014-1	Laurel	0.225
15015-1	Laure1	0,192

9

240

····

to which the leaf is exposed. The dependence of the specific area on leaf age and weight is illustrated in Figure 29, where the specific areas of both new and old grapefruit tree leaves are plotted as a function of dry leaf weight. In this set of data, the new leaves (at a given dry leaf weight) have a higher specific area than the older, more mature leaves, and, for both classes of leaves, the specific area is shown to decrease as the dry leaf weight increases. The analysis of the foliar specific area data for all plants is presented in Part Three of this report.

e degree de les



0.1



5

,

#### SUMMARY AND CONCLUSIONS

In the second phase of Operation Ceniza-Arena, measurements were made of the contamination factors for retention of airborne particles by the foliage of thirteen different vegetable plants (including corn), four different cereal grains, and six different kinds of trees. Data were obtained on both the initial contamination of these plants by individual ceniza-arena showers and the weathering of the initial deposit by wind and rain. The vegetables and grains grown at two land plots provided a sufficient supply of vegetation for the sampling of whole plants or parts thereof through their complete growth cycles or from planting to harvesting of the crops.

The contamination data showed that, depending on the foliage density and meteorological conditions, up to 100 percent of the depositing particles is initially retained by foliage. Under dry conditions, moderate wind speeds rapidly dislodge the initial deposits. After brief periods of weathering, about 0.01 inch of rain is required to remove a significant additional amount of particles; however, under dry conditions, heavier rains may remove essentially all of the removable particles from most of the foliage.

The deposits of ceniza-arena particles at the two land plots were measured continuously over a nine-month period beginning in June 1964. The data revealed a continuous decrease in volcanic activity and led to a prediction of the month in which the volcano would cease erupting (at least to the degree that significant amounts of debris would be deposited in the central valley); the observed decrease in activity was related to deposit density decrease with a half-life of 27 days. The gross deposition data for the two land plots have been tabulated on an hourly basis in terms of the hourly deposit rate and accumulated deposit for the duration of each of eight of the nine sampling periods.

During each sampling period, continuous measurements were made of the surface air temperature, humidity, and wind speed. Rainfall measurements were made on a daily (or more frequent, depending on the sampling schedule) basis during the same periods. The wind speed records were tabulated in terms of the average hourly surface wind speed for each hour of the day for the duration of each sampling period (except for several short periods of malfunction or loss of equipment). The seasonal patterns and diurnal variations of these climatic variables during the various sampling periods are discussed in the report; these climatic patterns were used a great deal to establish sampling schedules in the field.

A new greased plate collector was designed and used in the field to obtain information on the angle of fall of the particles and to obtain data on the impaction coefficient of large airborne particles; 22 sets of measurements were made. The plate collector data are summarized, together with the measured wind speeds, for each set of measurements. The median diameter of the collected material, as determined by sieve analysis, ranged from about 40 to 70 microns.

The foliar contamination data and the calculated values of the contamination factors are tabulated by plant type, sample type, and environmental conditions during deposition (damp or dry). In addition, data were obtained on the dry weights of the plants and plant parts as a function of age after planting and on the average surface density of the foliage. Data on the contamination of tree leaves included the effects of foliage volume density (or shadowing) from one side of a tree canopy to another. Reductions in the contamination factors as low as 0.09 across the canopy of a laurel tree were observed. Small greased discs mounted on rods through the canopy of the laurel tree and on one pine tree were used to obtain information on the particle air concentration gradients through the canopy of those trees. The data show that, in general, the individual leaf contamination is highly dependent on the direction of fall of the particles.

During the operation, 26 measurements of personnel contamination were made; of these, most were for contamination of hair, since it was the most efficient collector of all the exposed parts of the human body.

Essentially all the ceniza-arena particles recovered from the foliar samples and the collecting equipment were sieve-analyzed for determination of particle weight distributions as a function of particle diameter. These data show that the foliage intercepted and retained, at least initially, all particle sizes that fell. In most sample sets, the distribution of particles on the foliage tended to have somewhat greater fractions of small particles than did the distribution of those deposited on the ground; this increased concentration of smaller particles in the foliage deposits was higher when the deposit occurred under dry conditions. Weathered deposits, either by wind or wind and rain, had about the same distribution as the initial deposits on the foliage. In other words, wind and rain did not preferentially remove large particles; rain appeared to remove the smaller particles somewhat more effectively than the medium or relatively large particles. Most of the sample sets had distributions with all but 2 or 3 percent of the weight contributed by particles with diameters between about 7 and 300 microns; for such distributions, the median mass diameter was between 40 and 80 microns.

The particle properties of the ceniza-arena collected during the second phase of the field operation were similar to those reported for the first phase. The solubility data indicated that, when the cenizaarena particles carried water soluble residues greater than about 1.0 percent by weight and were deposited on foliage under damp conditions, severe or fatal acid burns occurred on the foliage of the tomato, bean, corn, and similar plants.

The areas of leaves, stems, fruit, and flowers of all the plants were measured, and the specific areas of these plant parts were determined from the data. The specific areas of younger leaves were generally found to be larger than for older mature leaves, and the specific areas decreased with increasing dry weight of the leaves. A number of plant geometry photographs were taken of the plants in the field; data from some of these photographs are summarized in Part Three of this report.

Correlation and analysis of the experimental data presented in this part of the report are discussed in Part Three of this report. In all essential aspects, the data reported in this part of the report appear to be consistent with the conclusions given in Part One, as deduced from the data obtained during the first phase of the operation.
## REFERENCES

- Miller, Carl F., The Impaction of Airborne Particles on Plate Collectors, Stanford Research Institute, Project No. MU-6358, in preparation
- Miller, Carl F., <u>The Contamination Behavior of Fallout-Like</u> <u>Particles Ejected by Volcáno Irazú</u>, Stanford Research Institute, Project No. MU-5779, April 1966

Preceding Page Blank

247



## STANFORD RESEARCH INSTITUTE

333 Ravenswood Avenue Menio Park, California 94025

Tel. (415) 326-6200 Cable: stanres, menlo park twx: 910-373-1246

## Regional Offices and Laboratories

Southern California Laboratories 820 Mission Street South Pasadena, California 91031 Tel. (213) 799-9501 + 682-3901

SRI-Washington 1000 Connecticut Avenue, N.W. Washington, D.C. 20036 Tel. (202) 223-2660 Cable: stansis, wash.D.C. Tvix: 710-822-9310

SRI-New York 270 Park Ascnue, Room 1770 New York, New York 10017 Tel. (212) 986-6494

SRI-Huntsville Missile Defense Analysis Office 4810 Bradford Blvd., N.W. Huntsville, Alabama 35805 Tel. (205) 837-3050 TWX: 510-579-2112 SRI-Detroit 303 W. Northland Towers 15565 Northland Drive Southfield (Detroit), Michigan 48075 Tel. (313) 444-1185

SRI-Chicago 10 South Riverside Plaza Chicago, Illinois 60606 Tel. (312) 236-6750

SR1-Europe Pelikanstrasse 37 Zurich, Switzerland 8001 Tel. 27 73 27 (Day, Night) + 27 81 21 (Day) Cable: STANRES, ZURICH

SRI-Scandinavia Skeppargatan 26 Stockholm Ö, Sweden Tel. 60 02 26; 60 03 96; 60 04 75

SRI-Japan Nomura Securities Building I-1 Nihonbashidori, Chuo-ku Tokyo, Japan Tel. Tokyo 271-7108 Cable: stanRestarch, tokyo

## Representatives -

Canada

Cyril A. Ing 86 Overlea Boulevard Toronto 17, Ontario, Canada Tel. 425-5550 Italy

Lorenzo Franceschini Via Macedonio Melloni 49 Milan, Italy Tel. 72 32 46