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APPENDIX A

ADDITIONAL LAGRANGE MULTIPLIER THEORY

A. GENERAL

The presentation here assumes familiarity with Section IIID of the basic

report. The notation is the same, with K representing attack level, H the

payoff, etc. First we present two theorems regarding single-sided niaximization'*

Lambda Theorem: Suppose X, and ) 2 produce solutions Xj*- and X2 and

suppose K(XI*) >_ K(X2 k).

Then A2  H(Xl*) - H(X2 *) >T A2 _ K(X1*) - K(X2 *) >

In the limit for a continuous case this becomes aH*_ = . This theorem
WK

indicates that lower lambdas produce higher resource consumption, and hence

provides the information needed for consumption-closing by iteration. Also

contained in the theorem is the following important bounding corollary:

Corollary: If A1 produces a solution Xl*, then for any other resource

level K:X), H(X) _< H(Xl*) + Al [K(X) - K(X1*) I.

This coroflary provides an upper bound for payoffs for resource levels

other than the one found in the optimization.

Epsilon Theorem: Suppose X comes within of maximizing the Lagrangian,

i.e., for all X,

H(X) - MK(X) > H(X) - AK(X)- e

•Generalized Lagrange Multiplier Method for Solving Problems of Optimum
Allocation of Resources," Hugh Everett, III, Operations Research, Vol.11,No.3.
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Then X is a solutioot of the constrained problem with constraint A = K(X) that

is itself within t of the maximum for that constraint.

This theorem is useful when an iterative scheme is used for maximization

or when an approximation is used for a true finction.k

With the main theorem and the above theorems, we have the material to

handle one-sided nmaxin;zation. The main theoreri gives the procedue for finding

maxima. The lambda theorem gives the strategy cor iterative resource level

matching, and the corollary and the epsilon theorem provide error bounds if

resource levels are not exactly matched or the maximuum Lagrangian is not found

exactly. It should be noted that al! solutions found by this method are rigorous,

although it is possible that solutions do not exist (and hence will not be found).

This is discussed fully in Everett's pa,)er.

There is a theorem for the two-sided Lagrange procedure related to the

epsilon theorem. This theorem applies to the case in which an attack is com-

puted by an approximation to the real damage function. If we know the error

in the approximation, how much better than indicated can the defender expect

to do? For the double Lagrange we can only assess this error in the Lagrangian

itself.

Approximation Theorem: Suppose the payoff function H(X,Y) is approximated

with H(X,Y) such that

H(X,Y >_ H(X,Y)-E and

H(X,Y) -< H(X,Y).

*See Section IVD of the main report for an example of the use of this theorem.
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Suppose that H.X,Y) is minimaxed to find a defense Y* and an optimal attack

X". Then

1) Max H(X,Y) - AK(X) -j A'C(Y >eH(X*,Y*) .•K(X*)+ C(Y*) -(

That is, the true minimax Lagrangian is less than , below thr; true Lagrange

evaluation of the optimal defense and attack.

2) Max [H(X, Y) - AK(X) 4- MC(Y)]ŽH(X+,Y*) -AK(X*)* +MC(Y*)

That is, the true minimax Lagrangian is greater than the apl.oximate solution.

Proof: Since the Lagrangian is ninimaxed,

lR(X*,y), Y K(X*)4MC(Y*) Max [rH(X,Y) -K(X)4 ,C(Y)]

Using on the right the second supposition we get the first result:

H(X, Y*) - \K(X-?) + MC(Yk) <Max [H(X, Y)- K(X)+ mC(Y]

Using on the left the first supposition we obtain

H(X+,y*) - xK(X-.:) 4 -(y*+) - _< Max H(X,Y) - \K(X)+ wC(Y)]

This result tells us how errors will affect the Lagrangian--first, the

approximate Lagrangian solution is less than the true Lagrangian if the

approximation underestimates kill. More importantly, we are guaranteed that

if we used the true payoff function we could only improve the defense effectiveness

by e ; i.e., the defense Y* which we find is within i of the best the defense

ran do.

For the two-sided Lagrange procedure there is no theorem correspond-

ing to the main theorem in the previous section. Results may be erroneous,

in that solutions may be found which are not the best possible choices for the

defense. However, these spurious solutions are not troublesome for problems
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with large numbers of cells, for the possible enrors become very smalI. All

defenses found in the study were calculated usinq only the theory presented up

to this point. Nevertheless, the possibility of error should be considered,

and spurious solutions will be discussed now.

It is very instructive to attempt to prove an extension of the main theorem

for the two-sided case. Suppose we find X* and Y* to minimax the Lagrangian,

i.e.,

H(X*,Y*-). -K(X*)± +C(Y*")< Max [H(X, Y)- xK(X) +C(Y)

On the left we have found H(X*,Y*) for which

H(X*,Y*) ?! H(X,Y*) for all X, K(X) • K(X*).

It would seem we could apply the one-sided theorem to the right. We can, and

we filid X such that H(XY) 4H(X ,Y) for all X, K(X) k--K(ý). Note, however,

that since Y• Y*, the two one-sided maximizations were effectively performed

with different payoff functions, H(X,Y*) and H(XY). The two attack levels

K(X*) and K(X) result from those maximizations, and K(X*)5- K(X)! Thus,

we cannot cancel the terms and we cannot even determine which attack level

is larger. Thus the attempt breaks down.

As an example suppose we have two equal cost defenses YV and Y2

with payoff functions shown for each in Figure A-1 Maximizing the

attacker's Lagrangian using the lambda value q for defense Y1 leads us

to A with Lagrangian value a, for Y2 to B with value b. Since the costs are

equal, it can be seen that we minimize the maximum Lagrangian by selecting

A as the best point and Y1 as our defense. But observe that at the attack
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level at A, Y is a better defense. Now also notice that if lambda is decreased'2
to A 2 ' then point B will be chosen over point A and defense Y2 will be

chosen, which for the attack level at B is again the wrong defense. If lamibda

S•1 H

SG Y2

0- A

D
KMX Attack Level

Figure A-i. Example of Spurious Solutions

is decreased still more to x tile contest will be between points C and A,

with defense Y being chosen, which is correct for attack level at C. Thus
2

we see that the double Lagrange method may find both valid solutions (e.g. ,

point C) and spurious solutions.

Now look again at Figure A-1, If we imagine beginning with a high lambda

and reducing it, we will find that we will pick up solutions in the following order:

D, E, A, B, C, G, H. There are points which are never found, such as F,
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and the double- Lagrange procedure will screen out many such points. If we

connect the points for VI(D, E, A) and Y2 (D, C, G, H), or if we simply

connect all points in the order found, we find we can locate the optimal curves.

Consideration of this capability to find the optimal curve will lead to the theorem

which follows. First, however, let us define things a bit rrore precisely.

We are interested in determining which solutions generated by the double

Lagrange method are spurious.* This is, of course, equivalent to finding the

optimal curve, for any non-spurious solutions lie on the optimal curve. The

optimal curve for some cost is defined to be

SMin Max H(X,Y).
OY(A,B) YC(Y)<_B X,K(X)__.A

Let us also make the assumptions about the attacker's payoff explicit. We

consider the maximunm payoff for some attack level , G(A Y) -Max HK(Y)_

Concerning Lhis maximum payoff, we assume

I) G(A ,Y) is a continuous function of A.

d
2) - G(A,Y)-O (but possibly discontinuous)

d

3) T G(AY) is a monotone nonincreasing function of A.**

* One point should be made here: the spurious solutions are actual defenses and
the payoff for each defense is its true and proper payoff; the spurious nature
is only that there is a better solution. Thus the separate and independent evalua-
tion used in the computer program does not change the nature of the solution. It
may be, however, that some "spurious" solution is the best solution for some
set of defense objectives.

**"Lagrange Multipliers and the Optimal Allocation of Defense Resources", George
E. Pugh, Operations Research, Vol. 12, No. 4, has a thorough discussion of
how to handle gaps, i.e., regions where these assumptions are not valid.
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Many times it will also be true that 0(A,B) is a concave upward function of B,

i.e., G(A,Y)> M(A, B) -, B- C(Y)

Existence Theorem: Any point on an optimal curve which is concave upward

wit h respect to cost can be located with the Lagrangian procedure;* i.e.,

there exist x and M such that

H(X*,YY*) - \ K(X*)- •C(Y*) < Max [H(X,Y) AK(X)÷ +,C(Y)j

Proof: Suppose to the contrary that for every X and u, there is a Y0 such that

Max H(X,Yo) - \K(X) + mC(YO < H(X*,Y*)- XK(X*) + PC(Y*)

If the inequality is true with maximization over all X,it is true over the

subset for which K(X) = K(X*), and K(X) is achievable because of the

convexity with respect to X. Then

Max HH(X,Y°) + -C(YO) <H (X*,Y*) - xK(X*) + AC(Y*)X, K(X)-- K(X*)

Or, Max
X, K(X)= K(X*) H(XY°)-I ,C(Yo)KH(X*,y*) + uC(y*)

which contradicts the concavity assumption.

The usefulness of this theorem is that it guarantees that if we examine

all lambdas and mus we have found all solutions of interest. If the computation

procedure has an efficient cost closing mechanism, then all solutions can be

found by sweeping through all lambdas. If distinct defenses exist,then spurious

solutions will abound.

Without the assumption of concavity in cost and convexity in attack level the
theorem could be proved for a single cost with no restriction on concavity.
However, these difficulties have to do with gaps, and the theorem is directed
toward assuring that even with spurious solutions, the optimal curve can still
be found.
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Suppose we find Lagrangian solutions by sweeping lambdas for a fixed cost;

we may distinguish two types of "adjacent" solutions as we sweep lambdas:

1. Both adjacent solutions are the same defense. This is true if

alld only if the resultant attack level shift is with the prevailing

lambda trend. About these points we can say nothing--they are

not obviouisly spurious.

2. The adjacent solutions are different defenses. The resultant attack

level shift may be either direction, but is probably opposite to the

lambda trend. These points are always spurious, but it should be

remembered that they will give information to finding the optimal

curve.

The following theorem enables us to find the optimal curve by a simple

graphical method.

Construction Theorem: The optimal curve is the lower envelope of lines

connecting in order all solutions found in the lambda sweep.

Proof: The existence theorem tells us

that every point on the optimal curve

can be found with some lambda (here we
PortionofX

consider the fixed cost case). Thus all optimal on, Yn)

we need to show is that we do not draw curve

a line below the optimal curve. Suppose

we have two solutions H(Xn, Yn) and

H(Xn+1, Yn+) for xn and Xn+l
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with no other distinct solutions for intermediate lambdas. Supose there is a

portion of the optimal curve above the line with slope Xt which joins the

two points. The optimal curve cannot cross either line An or line ,n+l for

by convexity, defenses Yn and Yn+1 are always below those lines, and

that wouild contradict the optimnality conditions. Thus the optimal curve must

cross the A t line segment twice and hence the optimal curve achieves a

maximum with respect to At; therefore there exists a distinct solution to

the Lagrangian forrmed with At. But %n+1 < xt < xn, which contradicts

our assumption that there were no intermediate solutions.

B. BOUNAS FOR THE OPTIMAL CURVE

The continuous lambda sweep we have been discussing will not usually

be feasible. The question can then be raised as to how small a step is

allowable to accomplish the same purpose. However, for any step, no

matter how small, it is possible to construct a point on the optimal curve

which will not be located. Certainly, though, we achieve an approximate

location for the cptimal curve, and the verification procedure addresses

itself to the task of finding rigorous bounds for the optimal curve, with no

other assumptions than the ones on convexity. More knowledge of the

functions involved could probably provide better bounds.

We now give the theorem from Pugh's paper which provides an upper bound

on the optimal curve.

Upper Bound Theorem: If X* and Y* are solutions to the Lagrangian, for all A,
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O[A, C(Y*)] _< H(X*, Y*) + X IA - K(X*)]

The upper boLind theorem is for only a single cost, C(Y). If it is reasonable

to assume concavity (and if it is not, solutions will not exist), then inter-

polation can be used to determine the upper bound for any cost between solutions

for two different costs.

Before we prove the lower bound theorem we will consider a lemma, which

is useful in its own right for understanding spuirious solutions.

Lemma: Suppose that X* and Y* are solutions of the Lagrangian for X and

S. Then for every defense Y there exists some X' such that

H(X',Y) - xK(X:) + ACCY) Ž_ H(X*, Y*) - WK(XJ--) + AC(Y*)

i.e., for every defense Y there is at least one point which lies above the plane

H(X*,Y'k)+ X [A-K(X*j - i, [B - C(Y*)] ,which we denote P(A, B).

Proof: By the minimization of the Lagrangian over Y,

H(X*,Y*) - A K(X*) + AC(Y*) < Max H(X,Y) - XK(X) + ,C(YM

But since the right hand side must achieve its maximum, there exists some

X' such that

H(X' ,Y) - ?,K(X') + iC(Y) - H(X*,Y*) - XK(X*) -- , C(Y*)

Let us now see how to use the Lemma to bound possible solhations.

Figure A-2 shows the lemma surfaces it the plane of cost

12



H AO

Ho

Attack Level

Figure A-2. The Lower Bound

B for two solutions to the Lagrangian for A 1 and A 2 (the solution points

do not appear in the figure since they need not be of cost B). The

lemma states that any defense not found must lie above P1 at some point

and above P2 at some other point. We now ask where this requirement together

with convexity Al lows this other defense to wander. We first consider only

parts of the optliial cirve with slope between Al and x'2 . Some consideration

will show that the worst possible condition for convex curves will require

that C (A,Y) go straigqH.t trom the origin to point HO, then to point AO,

as shown in the figure. Th:Ut line then is the lower bound for all parts of

the optimal curve with slope between x1 and 1 2 . The "spoiler" line shows

why the requirement that the curve lies somewhere above P1 and P2 does not

give that bound for portions of the curve with any slope whatever, in that it

clearly lies below the lower bound line.
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The lower bound theorem makes this more precise:

Lower Bound Theorem Suppose that XI, Y 1 and X2 , Y2 are solutions of

the Lagrangian for Aj1, nd A2 (with A I> A 2 ) and 9 1 , " 2. Then

any portion of O(A,B) with slope A, x2 _< x < A1 lies on or above the surface

determined by

H A+ HO(1 - A-)

for every cost B. In the above

HO= Mini H(X 1,Y 1)- -1 A1 " (1B3B-1),

H(X2 ,Y 2 )- A2 A2 - u 2 (B-B 2 ))

AO = Max{AI+ •' [H- H(Xi'Yi)'4 •(B-B1)

A2 +~ 2- H -H(X2 1 Y2) + 0(B-13 2 )]

Proof: Consider O(A,B) some point of *(A,B)with slope X, A2'<-'xi< A

and let Ybe the defense at this point. From the lemma,

H(X,V) >_ P1 (A,S) for some X (P1 is the plane associated with

1), and hence

G(A,Y) -e Pl(A,E) for some A. Similarly

G(A,Y-) >- P2 (A,'9) for some other A.

Consider 3 cases:

Case I. Pl(A,Th and P2 (A,g) cross (i.e., there is A such that PI(A,B) =

P2(A,9)) in the region of interest (with ordinate below H and with positive

abscissa). Now since G(A,) - Pl(A,89) for some A, it must cross P1 in two

14



places or be tangent to it. Deqenerate cases with one or no crossings can easily

he proved or eliminated. Let P1 (A1, B) be the crossing where the slope of

G(A1, B) Ž (This is the crossing whose abscissa is snialler.). Similarly,

for P2 let P2 (A2 , 9) be the crossing where the slope of G(A2 , -) < ' 2

(the crossing with the larger abscissa). Since G is convex in A, G is above

the line connecting Aland A2 tor A' < A <_ A2 :

G(AS) - P2 (A2 , 11) -. PI(A 1 , B) (A-A1 ) * P1 (Al,B).
Az - Ai

Also, since G is nondecreasing, the point on G with slope ", which

is ,(A,B), will fall in the interval [A1, A2] Hence

, P 2 (A2 ') _ F1 (A1  ()
A2 AI (A--A)AP (A1 A)"

But Al and A2 are unknown, so we provide a bound for the worst cases of Al

and A2 . For example, P1 (A1 , 13) 4 Pl (0,B) z HO for this case. In

[A1,A2] we obtain

H - H0  (A - A1 ) + P1 (Al ,)

Ao -0

H -H-lH° (A-A')+ HO+ + 1 A1

Ao

But in this case A 1 A°•4H-H°. Thus

0(W,) W H-HO (A-Al)+ HO1+ H-HO A1

AO AO

15



> H-HeH A+ H°
Ao

> H- " A + 1 -A /H°A"

Case II. P1 (A,B) is everywhere below P2 (A,B) in the region of interest.

That the theorem is true in this case may be seen by noting that this bound is

everywhere below the secondary bound in Pugh's paper.

Case Ill. P2 (A,B) is everywhere above P2 (A,B) in the region of interest--

here the bound is below Pugh's primary bound.*

Notice several things about the procedure implied by the above theorem;

1) many times the primary or secondary bound wili be better than the above

theorem; 2) since any two solutions bound the optimal curve for lambdas between

them, a range of solutions is needed with bounds generated for adjacent lambdas;,

3) the optimal curve will be bounded by the minimum of all such single bounds

generated, and hence 4) the lambdas must be carefully chosen or one bad bound

will spoil the cumulative bound.

The remaining problem is how to apply the verification procedure. The

procedure uses a number of Lagrangian solutions for different lambdas. For

each lambda it is not necessary to match the desired cost exactly in order to obtain the

lower bound; even rough cost closing can give good results. The upper bound

k Actually this theorem can be derived from the primary and secondary bound
aod amounts to the most efficient use of the two bounds. It is felt, however,
that the lemma and the geometric proof (if not the analytic version) are sufficiently
intuitive to be important in their own right.
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requires interpolation between two solutions to get the bound for the desired

cost. There is, vowever, a morte essential difference between upper and lower

bounds.

Each upper bound line bounds the entire optimal curve, and hence the bound

is the lower e'nvelope of all the bounding lines, a very simpile pro.udure. And for

.a bound at any one point, a sinqle line nmay be sufficient.

To do the lower bound, it should be observed that since each pair of

lambdas (and these are "adjacent" lambdas) bounds only that portion of the

optimal curve between the two lambdas, the entire lawbhda range (or at least

a reasonably large portion) im'st be covered. And each bounding line so found

must be from well-chosen lambdas, for one "bad" line can spoil a bound carefully

:ieierated over most of the range. Th: s is because the lower boeind is the lower

envelope± of all lower bound lines yienerated.* And becaluse of this, the lower bound

is the onie for which solutions nmust be carefully chosen to keep the required

number of solutions down.

The following method for choosing the lambdas to find the lower bound

is suggested; results obtained with it were good. In Figure A-3 , suppose

that we have a solution for x1 giving the line P1 and resultant attack level

A1 . Now if we pick a slightly different Al we may imagine that the new line

"k Although it looks like a mistake for both upper and lower boiznds to be the
minimum envelope, these statements are simply logical implications of the
two bounding theorems.

17
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r
P2 could pass through the point PI(A1, B)*; in this case that the worst error
(difference between generated lower bound and upper bounds formed by P1 and

P 2 ) will be at A1 .* if we have some error criterion e , we may mark that

below the point Pl(A1 ,B), and draw the desired lower bound starting from the

intercept HO through the point at e below Pl(A1 13) up to the saturation point

b.

P1 (Al , B)

CL~

HO

Al Attack Level

Figure A-3. First Step in Picking New Lambda

A°. The slope A2 is then found by drawing the line from A" through

P (Al,B), as shown in Figure A-4.

* Actually if cost closing is exact, P2 must be above the points; if cost closing
is poor, then it will fall below the point.

18



AO

0

0 ,
a_

HO

LI

Attact level
Figure A-4. Chosen Lambda Value

The X2chosen here was less than X .A similar procedure starts from the

saturation point of P1 (instead of H0) to find higher lambda values.

The procedure shown graphically here can be described analytically,

of course, but the problem is merely one in similar triangles, and it will not be

presented here. In this procedure, the difference Aj - A2is approximately

proportional to I/ e, and since the entire lambda range must be covered, the

error reduction is proportional to 1/(number of Lagrangian solutions).

19
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APPENDIX B

I. INTRODUCTION

The cell model described in the basic report makes feasible the solution of large-

scale weapons effects problems which otherwise are intractable. The cclI model rests

on several assumptions. A targeting model has been developed which, in addition to its

general utility as a targeter, helps to illuminate the nature and degree of the approximations

of the cell model . This paper describes the targeting model and compares the results that

it produces with those produced by the cell model. It is assumed here that the reader under-

stands the operation of the cell model.

The targeting model conimunicates with the cell model in the sense that the defenses

generated and the weapon-to-cell allocations of the cell model can be used to determine

weapon allocations in the targeting model. (The actual method of communicating is discussed

in another section of this appendix.) The targeting model uses the cell model to suggest

ground zcros, generates a weapon drop to correspond roughly to the number of weapons predicted,

dud calculatcs the effects of that drop on a citywide basis. By using the cell model as a

guide for initial ground zero selection and making the final adjustments (called here "diddling")

only after the entire attack is laid down, the targeting model achieves the advantages of

simultaneous targeting, in contrast to the method of sequential weapon drops.
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II. COMPARISON OF WEAPON EFFECTS CALCULATIONS

Fatality calculations are based on three facLors: distribution of population and shelters,

distribution of weapons, and the method of cal.ulating weapons effects for the two distribu-

tions given. The cell model treats these factors as follows:

1C. Population is distributed uniformly over the entire cell; shelters are
distributed over the entire cell.

2C. Weapons laydown is characterized by the number of weapons allocated
for a cell--effects are independent of position within a cell, but depend
only upon number per cell. As the cell model is implemented in this
study, weapons may be allocated only in discrete quanta which may
be less than one weapon per cell.

3C. The only pertinent parameters for effects calculations are the area of
the cell and the total expected lethal area of the weapons. The total
lethal area is calculated from the effects radius for a sinqle weapon
and the expected number of weapons delivered. In addition, it is
assumed that weapons effects are confined to the cell in which the
weapon is delivered. While not inherent in the cell model, the present
calculations also assume that weapons effects in a cell can be cal-
culated from an exponential function which considers only the ratio
of delivered lethal area to total cell area.

It should be noted that the assumptions in 3C above are entirely consistent with a drop

of one weapon which covers more than one cell, since the allowed quantum levels may permit

fractional weapons in a single cell. Figure B-1 shows, for example, the cell model prediction

for a single weapon drop on Washington. This is consistent with a drop of one weapon at

the juncture point of cells 9, 10, 7, and 6.

It is not unreasonable to expect that the cell model would therefore become an accurate

guide for weaoon placement and would thus be a valuable first approximation t.o the exact

targeting. The effectiveness of the cell model in predicting ground zeros could be

proved if, and only if, there were some method of predicting the absolute maximum kill
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Washington, D. C.

15

9
.12 2.2 4
7 76 5L

J-3

Figure B-1

achievable on a city. Since no theorems have as yet been discovered to find this maximum,

the optimality of a targeting doctrine Enust be determined by heuristic methods. The targeting

model program provides a mechanism for taking a particular laydown of weapons, examining

it in a systematic manner and attempting to improve the laydown by moving those v, .ipons

which kill the fewest people to a location wherein the kill could be increased, This brute

force method of moving weapons does not guarantee that the optimum kill configuration will

be obtained, but it does guarantee that every weapon move made will improve the kill. If

some weapon drop has achieved a local maximum no provision is made for moving two or

more weapons simultaneously in order to find the global maximum.
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In addition to the possible use of the cell model as a targeting guide, it may also

be useful for calculation of fatalities. Its accuracy in this role depends on the applica-

bility of the partic,dar function it employs for cell-wide fatality calculations. The section

on results in this Appendix comments further on this question.

In contrast to the cell model, the targeting model is based on the following set of

assumptions:

IT. Population is concentrated at points--those points given by hie
census tracts. For each tract point the population is sheltered
proportionally to the shelters allocated for that cell.

21T Weapons laydown is characterized by ground ?eros specified by
latitude and longitude.

3T. Weapons effects can be calculated from the yield, CEP, delivery
probability, and relative distance of separation.

The first assumption, that of population distribution, may iead to an overestimate

of the kill against sheltered population, since the weapons, in either the initial laydown

or in the diddling process, may seek local concentrations of populaton which would not

exist in any real shelter situation. Note that the shelter costs are based on bome

occupancy factor, say 1000 people/shelter; if two or more 1000-person shelters are

indicated for a single tract, the kill would be computed on the basis of destruction of

more than one shelter's worth at a single point. The actual population distribution is

a mixture of shelters, with 1000 people/shelter for the shelter cases and a probably

uniforin random distribution of unsheltered people within a city. The tract model repre-

sents a gross averaging of these effects providing more detail than the cell model but

not as much detail as an individual shelter model.
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For calculation of weapon effects , the yield, CEP, height -f buirst, and shelter

hardness are all incorporeted in a single function, the single shot kill probability function

which will calculate the kill of a given shelter hardness at a given distance for a given

weapon with a given yield, height of burst and CEP. The calculation of distance between

population point and weapon burst point is explicit in the targeting model, althruqh implicit

in the cell model. (The cell model also has an implicit interpretation of CEP.) The kill

scales in the usual manner with yield; the functions used for calculating the kill closely

approximate the sigmIa 20 and sigma 30 curves for weapons effects.
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II1. PROGRAM DESCRIPTION

It is important, in inderstanding the flow of informaton within the program, to

distinguish between two separate interpretations of the targeting model:

1. The model itself represents an approximation to the real world in that the
model purports to predict the outcome of a particular sequence of actions,
blast shelter deployments, weapon laydowns. The corresponden.e between
the model and the real world (and any real world action) was chosen on the
basis of a set of approximations--approximations necessary to allow iterative
solutions to the basic equations. This information flow, and model ap'proxi-
mation to real world actions, was described in the Introduction to this Appen-
dix, and the rationale for the choice of popWu'tion distribution representation,
weapon effects representation, and weapons laydown approximations was
discussed there. All of this discussion forms a preamble to the second
description of the mode!, i.e., its representation in the computer program.

2. For a given set of assumptions, which were chosen on the basis described
in Paragraph 1., information is passed from one section of the model to another
to attempt to solve the equations. This section of the paper will describe
the use of information flow within the model in the solution of the equations.

The computational method suggested by this study to find ground zeros in a city is
as follows:

1. Use the cell model to lay down a lambda-constrained attack. From this attack,
the weapon density to be delivered to a particular cell is predicted.

2. Using the weapon density found in Step 1. as a guide, make a laydown of
actual ground zeros which matches the particular number of weapons/cell.
Evaluate stoch a laydown on a citywide basis. A Monte Carlo selection of
ground zeros continues and the set of ground zeros which maximizes the
kill is chosen.

3. Diddling, or fine scale improvement, is the final step. An attempt is made to
find a better location for the weapons on a citywide basis, and this process
continues as long as there is substantial improvement in the kill.

Kill computations may be handled in either of two ways:

1. As an AGZ (no random effects) - the PSI at the point from a weapon at
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another point is calculated, and knowing shelter hardness, the kill probability
is calculated.

2. As a DGZ - the effects of CEP and delivery probability can be included
by using a single shot kill probability function to calculate the expected
kill. This use of the DGZ is, of course, the most usual way of treating the problem.

In procgraming this miodel an attempt has been made to yield the maximum possible

flexibility consistent with the accuracy and speed requirements. This flexibility includes a

numbher of nmethods of interpreting weapon parameters and shelter parameters. The programn

is desiqned to communicate with the cell model, but at the same time act as a completely

independent targetinig model--receiving its input from outside the cell model and targeting

weapons and allocating shelters independently of aniy information available to the cell model.

In order to allow the user the flexibility described in the preceding paragraph, the

program has oeen written in four separate sections, with control of the various sections

monitored by a super monitor program - VALID. One of the subsections, DATAIN, reads

(almost) all the data for the program, both parameter descriptions and program flow controls.

On the basis of the data inputs through DATAIN,various other sub-monitors are called.

These sections are as follows. (See Figure B-2.)

DATAIN -Reads in all the data, prefills the kill computation tables, sets up the

monitor controls. The data order is predetermined, and the entire block of data must be

read in in DATAIN. (In several of the options additional data is called for; this information

always follows the DATAIN package.) DATAIN is always called.

INCELL - This subroutine provides the major communication link with the cell model.

At the user's designation the INCELL computation can be bypassed in its entirety, and the

model used as a targeter or as an evaluator. In several of the options only INCELL is called,

in order to give the user a microscopic view of the cell model--that is, what migt happen
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on a single selected city with certain choices of cell model parameters. In certain options,

INCELL is called many times for the purpose of choosing a set of parameters for future

exploration.

SELECT - This subroutine monitors the basic targeting. It uses arrays either filled

from INCELL (from the cell model) or filled from external sources. A fixed point parameter

is provided as an argument to the subroutine which could control the targeting algorithm to

be used. At the present time, the only path which has been activated is one wfich does a

random drop of weapons within cells and chooses the drop which maximizes the kill. The

modular structure of the program allows for expansion to include other targeting doctrines.

The subroutine SELECT (and all of its calls on the targeting programs) may be by-

passed. It may be (and has been found to be) desirable to cycle through INCELL in order

to determine the effects on a single city. For example, for a number of values of lambda,

one might desire to knov, the number of weapons dropped on each city, and from this list

(called a iambda map) select several sets of lambdas and mus for further exploration. A

simple switch setting in the data input subsection will allow this cycling.

DIDDLE, the fourth major subsection of the program, incorporates processes to

improve weapon allocations. These allocations are based on the output from SELECT, and

DIDDLE attempts to move weapons around in an effort to improve the kill. The controls

over DIDDLE are rather elaborate--the grid size for weapon moving can be selected,

and that to several degrees of accuracy. The control over the cessation of the

DIDDLE process depends upon the number of weapons laid down, or some absolute

number of weapons, or the amovnt of improvement which came from the last diddle.

At the end of the DIDDLE cycle, the least effective weapon should have a removal potential

roughly corresponding to the lambda used in the initial laydown. For the subset of weapons
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with the lowest payoff, the DIDDLE process smooths out the remnoval potential and tends to

equalize all weapons. Thie DIDDLE process itself should 1)e a fine targeting scheme;

however, it is an inherently slow method of doing things. With any laydown, the DIDDLE

process should tend to provide an optimal kill, although it does it by selectively placing

each weapon on a yrid and evaluatinc the effects of moving that weapon. As a targeter it

woIld tend to be slow and should •c used only with a good initial laydown, such as would

be provided by SELECT. For speed, the entire DIDDLE process can be bypassed.

The basic process--that one which is repeated many, many times--is the calculation

of the kill at a point from a weapon at another point. In the basic laydown, this operation

is done for each weapon against each tract; in the DIDDLE process for a single weapon

against each tract, this process is repeated for many weapons moved on a grid. Only the

pretabling of the kill keeps this computation from being so slow as to prohibit any significant

amount of diddling.

The major comm'unication link between subroutines is through information passed through

a series of arrays. SELECT depends upon the weapons/cell arrays being filled, as well as

the shelter/cell . DIDDLE in turn depends upon the ground zeros being specified (i.e. , the

latitudes and longitudes) and people,/shelter being specified. As long as these arrays are

filled, the appropriate monitor subroutine will work, controlling its own subprograms.

Communication links between the various monitors is provided by switches set in VALID.

The basic, most time consumillg step in the program is the calculation of the kill

probability at a given point. Much effort has been devoted to making this calculation as

rapid as possible. For a given weapon one computes the kill probability at each population

point in the city; if these are tracts, one computes the kill at each of, say, several hundred

to several thousand points. For each tract, separate computation must be made of the kill
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on cacti shelter, and there may be as many as five shelters at a given point. The survival

probability must be stored for each component at each point. Thus, the kill computation

apparently must be made for the product of, first, the number of weapons on a city; second,

the number of tracts in a city and, third, the number of shelters/tract. For a single trial,

each basic computation involves the entrance into a function which compute3 the kill given

the weapon yield, CEP, shelter hardness, and distance. Fourth, multiply this basic com-

putation by, say, 100 trials for the basic weapons laydown and the number of basic simple

computations becomes horrendous. The DIDDLE process adds yet another dimension since

for the best laydown the background kill (defined as the effect of N-1 weapons on the city)

is calculated for each of the N weapons. For the worst weapon (that weapon which has the

largest background) and a predetermined grid, the kill is computed for each grid point.

In order to expedite this basic kill computation as a function of distance and PSI, the

following steps have been taken:

1. The kill is pretabled.

2. At those places where the physics dictates that computation is not needed, it is
not made. In this program, a regular grid is laid down over the city.
Many of these grid points are tested in the calculation although they lie outside
the city limits and a weapon put there will contribute nothing to the kill. It is
faster to calculate and discard these points than to precompute that they will
be discarded.

a. If at a given distance in the softest shelter component the kill probability
is almost zero, no further kills are made on this tract, since harder shelters
will certainly survive.

b. If population is small (i.e., survivors from other weapons or original filled
population), then no kill computation is made on this component.

This pretabling of kill compLitati; accomplishes most of the speedup. The kill

.;,,r:putation in the program is made L, entering two arrays which have been prefilled. The
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first has thle survival probability calculated at equal intervals of distance, and the Seconld

array has tile slope between cqual intervals. For a given distance thle index to enter thle

vrrays is computed by diividling the distance by the increment Used. The survival probability

then is simply the survival probability at that distance (found from a single index 1) and that

hardness (founid from) a single indey. J ) plus the fractional contribution at VLI disiance. All

of the basic interl.,flatiru ~irravs are precoruputed.

r The precompuILtation makes maxinmum1 use of the availabie storage Space computing its

own distance i ncremenit and filling Up the entire available space in the foillowing manner,

A starting value of Xmin and Xmax (the maximul~m distance) is given. The number of di stance

increments (i.e. , the amount of storage space) is specified and a starting delta distance is

com~puted. The prog~ram thien starts with the softest shelter and fills L4p the kill versus

di stance table . As the kill is computed,thie program examines to inSUre thalt at thle mlaximum

ciistance tile kill for each shelter component goes to zero. If , fcr some shelter ,at theo

maximumn distance it does not go to zero , thle program doubles the niaximuliffll dstan1ce , computes

a new delta and fill s up the table. The softest shelter com~ponent is that which is certain

to be wrong if any are wrong. This doubling process is con1tilnuLed until tile survival1 proba-

bility (loes rk-ach zero. At this point thle kill arrays for harder shelters will be filledl properly.

An alternative possibility is that the maximum has, beeni selected at too long a distance

and the entire available space would not have been used. After the entire table is filled

(i .e. , for each shelter component) the maxinmn distan"'o e.e , f or any further distance no

k ill computatioils need bo made) i s kno)wn . I f the maxi mum of max imum dlI stances Is less

than Xmax ,then Xumax is set aquai to the maxi mum of maximumin distances ,inSUring9
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immiediately best use of the table. The iteration of table filling generally takes no more

than two or three cycles which involves typically one undershoot, a doubling of the distance

to produce an overshoot, followed by an exact zeroing in on Xmax, i.e., a rudimentary root

findinci. In the course of filling the data tables the distance at which the kill goes to zero

was determined. This distance is filled into a supplemlentary table and whenever the kil!

function is entered the distance is compared with thil cutoff distance for this PSI; if the

dlistance is greater than Dmax for that hardness comptonent, a kill of zero is returned and the

kill computation fiirther expedited.

After the basic kill versus distance tables are filied up, the program then calculates

the interpolation table wich is jus the kill between successive entries per nautical mile.

Thus the difference between the actual distance and the number of increments is nMultiplied

by the kill/mile anid added to the ba,'ic kill to rapidly prochdce an interpolated distance,

This schele , though rapid , is space consutming. It requires two tables for each of

two hei(Ihts of hurst (I.e , one interpolation table and one basic table). It also requires

a number of distance increments (in this version 60 are used) for a number of hardness

components (five in this version); a total of 1200 spaces are required to cove five hard-

nesses , two HOB's and the entire distance, plus two supplementary cutoff tables--one for

each height of burst (i.e., the distance at which the kill for a particular PSI becomes zero).

The more storage space available,the more accurate the interpolation. Since the

scheme Is a piecewlse linear approximation, at relatively short intervals the approximation

can be made as accurate as possible by using more space. The interpolation accuracy can

be tested directly in the program by calling Subroutine TESTKILL. TESTKILL spans the

entire range of distance and delivers the kill as computed directly from the SSKP function

and the kill as computed from the interpolated kill function. It selects points at random
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from the kill range (sweeping the entire range first from smaller to larger distance and then

from larger to smaller so that for the analyst the plotting job is expedited).

The combined effect of the pretabling and interpolation and cutoff in kill collpuitation

is sufficient to allow a weapon laydown of some nominal to large number of weapons, one

hundred trials and several cycles of diddling, all within an 8-15 mninute cycle of compluter

time suggesting that even tighter coding might speed up the process. For example, the

number of trials is presently fixed. However, in many cases the sigma from the first 20 or

so trials is only a small fraction of the mean and the casualty distribution is a very tight

one. In this case, the appropriate optimum can be achieved with a few trials. This is

particularly the case when the population is all soft and the weapons big, and it makes

little difference where they are put, since the entire population is killed. If, however, the

population is hard, or a mixture of hard and soft, it then may take more trials and more

selective diddling to find the correct ground zeros. Thus the program could adjust the

number of trials dependent upon the distribution of casualties achieved uip to this point.

Tables B-. and B- 2 list the basic data used in the present analysis for computing

the result tables in Section V.
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IV. USE OF THE PROGRAM

Almost all of the data required for the targeting program is read in in DATAIN. Shelter

specifications and city designations are done in DRIVE. All of the input is contained in a

series of arrays, which are used in the various options of running the program. The list of

cards to be read is:

I . An alphabetic card which prints out a label for the particular run.

2. The diagnostic cards: many of the subroutines contain diagnostic printing which
can be set to print merely by reading in the name of the appropriate subroutine.
In many cases this produces voluminous printing which is most useful for debugging.
The list of diagnostic controls is terminated by a blank card. If no diagnostic
printing is required, the blank card must be includen.

3. A card with the basic weapon characteristics is read ini. Parameters are yield,
CEP , height of burst, and probability of delivery.

4. The set of array fillers follows:

Array BINPUT, with six elements, interpreted as shown in Table B -3.

Array ISWITCH, which determines the calling sequence for the various
submonitors as well as the interpretation of the parameters. The wealth of
attack and defense options can best be understood by examining ISWITCH.
Table B -4 gives the use of the various elements in ISWITCH, subsequent
tables describe the interpretation of the values ascribed to elements of this
array.

The various values that ISWITCH(1) call assumne are given in Table B -.5.

A value of 6 combined with a value of 2 or 3 in ISWITCH(9) controls
special options for reading in defense only and evaluating with lambda. Most
useful in evaluating against a stabilized defense, or one not easily derivable
from a mu/lambda combination.

A value of 2, 5, or 6 for ISWITCH(1) causes supplementary cards to
be read in: for 2 or 5, weapon and shelter arrays are filled; if ISWITCH(l.) = 6
and ISWITCH(1O) = 0, then lambda and mu arrays are read in, If ISWITCH(1)
6 but ISWITCH(1O) = 1, only lambdas are read. These supplementary
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Table B -3. Interpretation of BINPUT

1 Lambda

2 Mu

3 Switch to control DIDDLE parameters grid control; a value of
1 allows DGZs to be moved over the entire city; 2 restricts
the weapon to its cell

4 (Not Used)

5 Total cost of the nationwide defense, used only in the option where
total defense cost rather than mu or city defense is read in. If
ISWITCH(1) = 7, BINPUT(5) is interpreted as the total number of
weapons in the attack.

6 City cost, used in a similar manner to BINPUT(5) to set the defense
level on a city, rather than nationwide.
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Table B-4. Interpretation of ISWITCH
Sheet 1 of 2

I Input control switch (see Table 18 - _5 for explanation of values).

2 Validation algorithm - currently only a value of 1 is acceptable.
If algorithms for weapon assignment other than random within a
cell were to be used, the flow in SELECT would be controlled
through setting of this switch.

3 Full validation control - 1 Program cycles through SELECT after

choosing initial laydown

2 Program returns after INCELL, no
validation

4 DIDDLE control 1 No fine mesh improvement in DIDDLE
subroutine

2 Fine scale improvement used in DIDDLE

5 Control on filling the kill probability arrays:

1 Arrays will not be filled--this option implies
that PSI will be calculated directly and speed
Lip provisions will not be used

2 PREFILL will be called and arrays filled
will kill versus distance

3 Same as 2, but TESTKILL will be called
in addition, and interpolation schemes can
be compared with direct calculation for
accuracy checks

6 Equation to be used in filling arrays:

1 Fills kill arrays using PSI

2 Fills kill arrays using single shot kill
probability function, using yield and CEP
read in on weapon card
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Table B-4. Interpretation of ISWITCH
Sheet 2 of 2

7 Control on tracts or shelters - (Not presently used) - This option is
inserted to allow future expansion of the program to go to the fine detail
of including individual shelters, with a maximum shelter size to be
determined by input cards. If the costing is based on 1000 people/
shelter, the program can be modified to spread the tracts (which have
typically more than 1000 people) into more numerous points with
smaller numbers of people/point.

8 Use of basic point kill calculation routine:

I Use BAD, which calculates kill based
on PSI and does not use the pretabled kill

2 Use BADBAD which uses the precomputed
tables

9 Special control on Input, used in conjunction with ISWITCH(1). If,
and only if, ISWITCH(1) 6.

1 Read a lambda/mu list (normal interpretation
of ISWITCH(1) - 6

2 Read a lambda list and evaluate in INCELL
without changing preread defense options

3 Read a value of lambda and evaluate using
prefilled defense option

10 Option control for normalizing weapons:

1 Normalize weapons/cell as found by INCELL
rounding to nearest integer

2 Use actual cell model outputs from INCELL
as expected number of weapons/cell

3 Same as 2 with additional proviso that
total number of weapons/cell is constrained
to insure total number of weapons is within
one weapon for all trials
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Table B -5. Interpretation of Values of ISWITCH(1)

1 Input value of lambda and mu, and determine attack and defense from
these values.

2 Input fixed point numbers for numbers of weapons, height of burst,
and number of people in each shelter, bypass INCELL computation
in its entirety.

3 Input value of lambda and cost of a defense on a single city

(BINPUT(6)).

4 Input value of lambda and the nationwide defense cost (BINPUT(5)).

5 Read floating point number of weapons, height of burst and number
of people in each shelter (same as 2, except that weapons now
treated as expected number of weapons (ISWITCH(1O) should be
equal to 2 or 3).

6 Read in an array of lambdas and mus and cycle only through INCELL,
no validation, prints out only a list of payoffs for lambda and mu
and does not give the details of what happens on each cell.

7 Cuts out detailed cell printing in INCELL, just prints out payoff.
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reads occur in VALID itself, not in DATAIN and only after the entire data deck
is re.ad in . Thus , the card order is fixed and inviolate and even if data is not
interpreted it .mist be read in. In this way tile data deck card order never nee~i
be altered.

The next array to be supplied is NFIXED, which controls the parameters
of tile evaluation. Table B -6 describes this array. DIDDLE consists of call Is
on two basic subroutines, FINDWORS arid MOVEGRID. FINDWORS locates
the worst weapon by calcudating the payoff if each weapon in succession is
omitted from the set of weapons dropped. That weapon which makes the smallest
contribution to the total payoff is designated as worst (note that locating and
moving the worst weapon , under this definition, does not guarantee that an
optimum targeting will be found; it is possible that a weapon found by some
other criterion than that above should be moved, since the cells are not actually
independent) . However, this direct method is used rather than any of the niore
elaborate algorithms (for example, interchange all pairs, move two or three
simlultaneously) . The background survivors from all weapons except tine worst
are calculated and prestored, and MOVEGRID moves the worst weapon over the
grid to find a place where the kill is improved. The grid can be specified to
be confined to that cell in which the weapon appears, or can be over the entire
city, this being the more usual case. In a major cycle, a grid is set up by
taking the m ininlunim and maximum latitudes and longitudes and specifying the
number of intervals to divide this into by NXMAJOR and NYMAJOR. (The
Il1in iulum aind maximunl latitude and longitude will be that for a cell or for the
city, dependent upon the setting in BINPUT(4).) The numbler of times this
process is repeated (the process being call (1) FINDWORS to locate the worst
weapon and (2) MOVEGRID to find the best location) is controlled by several
other parameters which are explained below. Following completion of the major
cycles , the program May undergo minor cycles if NFIXED(8) = 1. In a minor
cycle the worst weapon is found using FINDWORS; MOVEGRID is called to find
a better place (exactly as was done in a major cycle) but then a fine grain improve-
muent is imade. At the best grid point, a smnaller grid point, tile numllber in each
direction being given by NFIXED(6) and (7) is set ui , the size being given in
FLOAT. And MOVEGRID locates the final coordinates for the best
ground zero. The sequence is

MAJOR CYCLE: FINDWORS, MOVEGRID (repeat until end)

MINOR CYCLE: FINDWORS, MOVEGRID (reset grid
pararmieters for fine mesh, MOVEGRID,
repeat until done)

Controls on cycling are given in FLOAT which is described in Table B-7. The
last set of input cards are read into FLOAT, an array of 24 elements. SCALE,
SCALE2, and SCALE3 can be used in the grid in DIDDLE to insure that the
grid chosen is not regular. SCALE is a number between 0 and 1., and should be
about ..10. A value of .'1 will insure that separately the X and Y displacements
lie within 107 of the specified (unrandomized) value.
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Table B-6. Interpretation of NFIXED

1 NTRIALS Number oF trials in Random Laydown

2 NINTER Number of intervals in which to accumulate statistics:
When making random laydowns of weapons, the program
keeps the best value of the payoff, and the first NINTER
values of payoff. If NINTER is less than or equal to the
number of trials, it orders the total NTRIAL laydown and
prints out an ordered list of answers. If NINTER is greater
than the number of trials, it uses the first NINTER resu Its
to calculate the mean and sigma, and then accumulates the
distribution in fractions of sigma intervals below and above
the mean

3 (Not Used)

4 NXMAJOR Number of grid points in a major cycle in DIDDLE in the
X direction

5 NYMAJOR Number of grid points in a major cycle in DIDDLE in the
Y direction

6 NXMINOR Minor cycle, X direction grid points

7 NYMINOR Minor cycle, Y direction grid points

8 IFMI14OR Include both major and minor cycles (1=yes, 2=no)

9 NNLAM Number of lambdas to be read in if ISWITCH(1) = 6

10 NNMU Number of mus to be read in if ISWITCH(1) = 6
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Table B-7. Interpretation of FLOAT

I (Not Used)

2 FTOTAL Tot.al number of ,n.icr cycles in DIDDLE will not cxceed
FTOTAL*- total number of weapons

3 DXMINOR Grid size in nautic7' miles in X direction in minor cycle

4 DYMINOR Y direction grid size

5 FSECOND Total number of minor cycles will not exceed FSECOND-A"
total number of weapons

6 FIRMAX Absolute number of major cycles (cutoff is Min(FTOTAL;.*
total weanons, FIR MAX))

7 SECMAX Absolute number of minor cycles

8 SCALE Major cyc!e scale factor to determine random placement of
groutid zeros

9 SCALE2 Minor 'yc;e scale factor - major grid

10 SCALE3 Minor grid on minor -ycle scale factor

11 XMIN Minimnun, X2 for SSKP table: Fcr speed the SSKP tahle
,ises distance squared rather than distance i'or the aruI-
mctnt. XMIN is typically set equal to some small nuwber
(i~c., .0001 mliles 2 )

12 XMAX Maximum distance. This parameter must be (ireater than XMIN
but need not be chosen accurately. Due to the root finding
capability of the SSKP routine (PREFILL), the program will
adjust XMAX to the value necessary to fill the array. Iteration
cycles can be eliminated if the exact value is put in but this
iteration is not very time coný.mfing,

13 NSIGMAS Number of sigmas to compute intervals to store results of
random trials,

14-24 (Not Used)
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V. RESULTS

The targeting model was studied for two purposes:

I. To deterlnine the degree of correspondence between the cell model, which
neglects overlap, and a model of targeti; ,using overlap. Two questions
arise here: is the cell niodel a good tar ter, and does it provide realistic
fatality calculations?

2. To provide a method for rapid and accuraWe placement of ground zeros within
a city in order to determine the damiage to that city, using the properties of
simultaneous targeting rather than the more conventional but less accurate
oiethods of sequential targeting.

"Tables B-S throuh B-i1 9 show exemplar cases in whicl' both the cell at d tlhe

targeting model lay down weapons in attacks on Washington, when the natioiwvc budget

for these stabilized defenses is $5, 10 and 20 billion dollars. These weacon.j in the

targeting model are assumed to be one me(Jaton; the results of the cell model are then

adjusted so tlhzt they can also be interpreted as ote-megaton weapons.

It can he seen from these tables that tile cell model predicts the fatalities in attacked

cells quite well, whether the attacked ceils were sheltered or unsheltered. The sheltered

unattacked cells show little if any kill, indicating that the cell effects are well confined,

The only serious discrepancy of the cell m-idel Shows 1p ill cases of unsheltered unattackeci

cells, in which there iS of course no consideration of the effects on a cell which was not

attacked directly but whose neighboring cells were attackea. Indeed, it can be said that

the differences between the total kills predicted by the two models can be traced to

differences in this one case.

Tables appear at the end of this section.
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One method of improving the cell model is to replace the exponential function by one

which considers the entire unsheltered fraction of an attacked cell to be killed if the ratio

of delivered lethal area exceeds the cell area. This correction would at least predict that

the entire unsheltered population of anl attacked cell would be killed, whereas at present the

cell model predicts only 60%ý fatalities in an unsheltered attacked cell

The tables also show that the process of "diddling,' the improvement of the placement

of we-pons, brinjs about relatively small increases in fatalities over those predicted by the

cell model. This suggests that the cell model is an excellent mechanism for preliminary

selection of ground zeros for a simultaneous targeting scheme. In cases in which only a few

(five or fewer) weapons are dropped, diddling attempts to achieve optimal coverage and

neglects its kill of hardened people, going after the unsheltered unattacked populatioii so that

in t.is ease there are larger differences between the two models than in other cases. In cases

in which a larger number of weapons is to be laid down, the situation is different. The cell

model might well, on the basis of the population distribution, target one cell of sheltered

population with, say, six weapons; the dIddling process would move those weapons to destroy

unsheltered population. If, however, the number of weapons to be used is sufficiently large,

and if the population distributiom is relatively uniform over the city, the diddling process does

attempt to destroy sheltered population as well as unsheltered.

When 0.25 weapon is assigned to a cell, the lethal area Is approximately four square
nautical miles, the area of the cell. Th.i exponential prediction for the fraction killed Is
then 1 - exp - (0.25 x 4) or approximately 60N.
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Table B-8

CASE 47 DEFENSE TOTAL 5 NUMBER OF WEAPONS 4

CL:L- TARGET

MODEL MODEL DIDDLý

TOTAL KILL 394056 638260 686579

UNSHELTERED KILL 369379 617750 679800

UNSHELTERED/ATTACKED 369379 371186 373283

UNSHELTERED/UNATTACKED 0 246564 306517

SHELTERED AT 42 PSI KILL 24675 10784 2937

SHELTERED/ATTACKED 24675 10784 2937

SHE LTERED/UNATTAC!'ED 0 0 0

SHELTERED AT 141 PSI KILL 0 9727 3842

SHELTERED/ATTACKED 0 9727 3842

SHELTERED/UNATTACKED 0 0 0
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Table B-9

CASE 45 DEFENSE TOTAL 5 NUMBER OF WEAPONS 7

CELL TARGET
MODEL MODEL DIDDLE

TOTAL KILL 510997 809638 830113

UNSHELTERED KILL 438009 783369 798977

UNSHELTERED/ATTACKED 438009 430611 445943

UNSHELTERED/UNATTACKED 0 352758 353029

SHELTERED AT 42 PSI KILL 50779 19535 22495

SHELTERED -ATTACKED 50779 5374 3335

SHELTERED UNATTACKED 0 14161 14160

SHIELTERED AT 141 PSI KILL 22209 6464 8641

SHELTERED ,,ATTACKED 22209 6464 8641

--------------- - - ------ - ---------KSHELTERED,'UNATTACKED 1 0 0 0
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T ,ble B-10

CASE 48 DEFENSE TOTAL 5 NUMBER OF WEAPONS 10

[CEL'L TARGET
MODEL MODEL DIDDLE

TOTAL KILL 761191 859182 868224

UNSHELTERED KILL 682633 798508 805236

UNSHELTERED,7 ATTACKED 682633 699932 701331

UNSHELTERED/UNATTACKED 0 98666 103905

SHELTERED AT 42 PSI KILL 69751 50129 51885

SHELTERED/ATTACKED 69751 50129 51885

SHELTEREDi;UNATTACKED 0 0 0

SHELTERED AT 141 PSI KILL 8807 10455 11103

SHELTERED/ATTACKED 8807 10455 11103

SHELTERED/UNATTACKED 0 0
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Table B-11

CASE 46 DEFENSE TOTAL 5 NUMBER OF WEAPONS 15

CELL TARGET
MODEL MODEL DIDDLE

TOTAL KILL 897259 913351 913351

UNSHELTERED KILL 786863 824613 824613

UNSHELTERED/ATTACKED '786863 805273 805273

-------------- --------- -
UNSHELTERED/UNATTACKED 0 19340 19340

SHELTERED AT 42 PSI KILL 88] 87 70797 70797

SHELTERED/ATTACKED 88187 70797 70797

SHELTERED..'UNATTACKED 0 0 0

SHELTERED AT 141 PSI KILL 22209 17940 17940

-- - - -------
SHELTERED/ATTACKED 22209 17940 1 /40

SHELTERED/UNATTACKED 0 - - 0 0
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Table B-] 2

CASE 144 DEFENSE TOTAL 10 NUMBER OF WEAPONS 5

CELL TARGET
MODEL MODEL DIDDLE

TOTAL KILL 676510 701624 726399

UNSHELTERED KILL 234498 633514 651486

UNSHELTERED/ATTACKED 234498 266027 240685

UNSHELTERED/UNATTACKED 0 367487 410801

SHELTERED AT 42 PSI KILL 22927 46189 50695

SHELTERED/ATTACKED 22927 38001 30913

SHELTERED/UNATTACKED 0 8188 19782

SHELTERED AT 141 PSI KILL 21713 21921 24218

SHELTERED/ATTACKED 21713 20543 20543

SHELTERED/UNATTACKED 0 1378 3675
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Table B-13

CASE 143 DEFENSE TOTAL 10 NUMBER OF WEAPONS 5

CELL TARGET
MODEL MODEL DIDDLE

TOTAL KILL 280095 634084 717842

UNSHELTERED KILL 229928 569718 628407

UNSHELTERED/ATTACKED 229928 225429 215143

UNSHELTERED/UNATTACKED 0 344289 413264

SHELTERED AT 42 PSI KILL 28454 39865 60485

SHELTERED/ATTACKED 28454 39865 39865

SHELTERED.-UNATTACKED 0 0 20620

SHELTERED AT 141 PSI KILL 217)3 24501 28951

-------------------------------------------------------

SHELTERED/ATTACKED 21713 24501 24500

SHELTERED/UNATTACKED 0 0 4451
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Table B-14

CASE 134 DEFENSE TOTAL 10 NUMBER OF WEAPONS 9

CELL TARGET
MODEL MODEL DIDDLE

'TOTAL KILL 676510 796469 812875

UNSHELTERED KILL 601956 726625 733048

UNSHELTERED/ATTACKED 601956 626165 626165

UNSHELTERED/UNATTACKED 0 99460 106983

SHELTERED AT 42 PSI KILL 42509 52789 62773

SHELTERED/ATTACKED 42509 46659 46659

SHELTERED,/UNATTACKED 0 6130 16114

SHELTERE.D AT 141 PSI KILL 32046 17055 17055

SHELTERED/ATTACKED 32046 16886 16886

SHELTERED/UNATTACKED 0 169 169
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Table B-15

CASE 132 DEFENSE TOTAL 10 NUMBER OF WEAPONS 14

CELL TARGET
MODEL MODEL DIDDLE

TOTAL KILL 796168 867968 880680

UNSHELTERED KILL 687833 731574 734744

------ ------ --------------- ----- ------- -

UNSHELTERED/ATTACKED 687833 712351 715403

UNSHELTERED UNATTACKED 0 19223 19341

SHELTERED AT 42 PSI KILL 72840 88739 9,S280

SHELTERED ATTACKED 72840 o-.8739 98280

SHELTERED UNATTACKED 0 0

SHELTERED AT 141 PSI KILL 35495 47656 47656

---------------------------------------------------- ------- I
SHELTERED ATTACKED 1 35495 47656 47656

SHELTEREDUNATTACKED 00 0
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Table B-16

CASE 140 DEFENSE TOTAL 10 NUMBER OF WEAPONS 16

C-ELL TARGET
MODEL MODEL DIDDLE

TOTAL KILL 812494 884311 884311

UNSHELTERED KILL 609681 721526 721526

UNSHELTERED/ATTACKED 609681 655626 614409

UNSHELTERED/UNATTACKED 0 65900 107117

SHELTERED AT 42 PSI KILL 97178 85032 85032

SHELTERED/ATTACKED 97178 85032 85032

SHELTERED/UNATTACKED 0 0 0

SHELTERED AT 141 PSI KILL 105635 77752 77752

SHELTERED/ATTACKED 105635 77752 777L

SHELTERED/UNATTACKED 0 0 0
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T " _R- 7

CASE 137 DEFENSE TOTAL 10 NUMBER OF WEAPONS 26

CELL TARGET
MODEL MODEL DIDDLE

TOTAL KILL 942451 946579 955380

UNSHELTERED KILL 729213 734862 734862

UNSHELTERED/ATTACKED 729213 734862 734862

UNSHELTERED/UNATTACKED 0 0 0

SHELTERED AT 42 PSI KILL 107600 118596 125794

SHELTERED/ATTACKED, 107600 118596 I 125794

SHELTERED/UNATTACKED 0 0 0

SHELTERED AT 141 PSI KILL 105638 93120 94724

SHELTERED/ATTACKED 105638 93120 94-724

SHELTERED/UNATTACKED 0 0 0
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CASE 54 DEFENSE 1OTAL 20 NUMBER OF WEAPONS 5

CELL TARGET
MODEL MODEL DIDDLE

JTOTAL KILL 382615 471329 492015

UNSHELTERED KILL 325776 384318 398926

UNSHELTERED/ATTACKED 325776 352982 349766

UNSHELTERED/UNATTACKED 0 31336 49160

SHELTERED AT 42 PSI KILL 0 0 4153

SHELTERED/ATTACKED 0 0 0

SHELTERED/UNATTACKED 0 0 4153

SHELTERED AT 141 PSI KILL 51944 80235 82169

SHELTERED/ATTACKED 51944 80235 79633

SHELTERED/UNATTACKED 0 0 2536

SHELTERED AT 424 PSI KILL 4895 6766 6766

SHELTERED/ATTACKED 4895 6766 6766

-----------------------------------------1

SHELTERED/UNATTACKED 0 0 01
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CASE 52 DEFENSE TOTAL 20 NUMBER OF WEAPONS 9

CELL -E

MODEL MODEL DIDDLE

TOTAL KILL 400669 566521 577892

UNSHELTERED KILL 374522 1 430345 4384 ,0

--------------------------------- ------ ---1----
UNSHELTERED'ATTACKED 374522 3954300 395572

UNSHELTERED/UNATTACKED 0 42907 -42808-

SHELTERED AT 42 PSI KILL 5824 10773 1 0773

--------------------------- i------J
SHELTERED,.ATTACKED 90889 10619 10619

---------- --- ---- --- --- --- -- ----I
SHELTEREDiUNATTACKED 0 154 154

SHELTERED AT 141 PSI KILL 90889 107866 113627

SHELTERED/ATTACKED 90839 105805 11i566

-------------------------------------------

SHELTEREDi.UNATTACKED 0 2061 2051

'SHELTERED AT 424 FSI KILL 9434 9536 15012

--------------------------------------- --- F----
SHELTERED/ATTACKED 9434 9536 15012

SHELTERED/UNATTACKED 0 0 0
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APPENDIX C

AN ANALYTICAL MODEL FOR BLAST SHELTER DEPLOYMENT

A. INTRODUCTION

In designing a very detailed computer model to investigate the optimal deploy-

ment of blast shelters in the U. S., and their effectiveness in reducing casualties in

case of enemy attack, it was noted that employment in the model of certain analytic

relationships of fairly general acceptability permitted a simple analytic solution to a

useful version of the optimum deployment and national effectiveness problem. While this

byf;-roduct is of interet in itself it cannot replace the original model for research purposes,

because of certain s',mplifications required in the analytic model.

In this analytic version, only pure sheltering is permitted (uniformly) in each

rcgion and a single optimal air burst height- is implied in the relation chosen for

individual blast shelter effect in reducing weapon lethal area. In addition, the 12

density regions listed in the Hudson Institute publication "The Design and Performance

of 'Optimum' Blast Shelter Programs," by William M. Brown** were chosen for repre-

sentative calculations on the LI. S.; these were checked against 1960 census density

distributions given in aollther study.***

* Consideration of ground bursts is discussed later.

S'Hudson Institute HI-361-RR/2, June 11, 1964.
SH. A. Knapp, h115titute for Defense Analyses, Research Paper P-194. A recent

Hudson Institute paper HI-495-RR, Population Density in the United States
Urbanized Areas, March 22, 1965, improved the population density distribution.
However, the earlier Hudson Institute 12-cell distribution was retained for the
present work.
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The treatment is based on a rigorous double Larwanqe multiplhl-r rotihizatioli

techniquc to generate the defense deployment. Such deploymei-ts take into accouit both

the defense cost to deploy blast shelters and the attacker's cost to overcome such

deployments. This is in marked constrast to most published treatments of pure blast

sheltering. In particular, "balanced defense" deployments, which tend to make diverse

regions equally attractive to the attacker (generally to the attacker's first weapon), are

not in general "optimum" deployments because they ignore the cost to the defense in

providing the deployment. Thus, the cost of defending a given area in a more lucrative

target is greater than the cost of defending the same area in a less lucrative target

because the population density in the region defended is higher in the former target,

while the cost of shelters per person sheltered is generally not sufficiently lower in that

same area to compensate. However, the cost to the attacker to overcome either depoly-

ment is the same, a function of his weapons' lethal area only. Therefore, blast shelter-

ing is best deployed from the "inside out" with respect to an ordered target list, since

the less valuable areas may not be worthy of attack or defense at all and the most

valuable regions tend to be too costly to defend except for relatively light attacks or

more extravagant defense deployments. The general model and the simplified analytic

treatment both naturally reflect this tendency in generating a defense deployment. The

resulting optimal deployments, it should be noted, will not make all areas equally

:'attrac;ive" to the attacker, This variation from "balanced defense" is specifically

treated later.

Throughout the treatment which follows, there is a purposeful bias in favor of blast

shelters. Thus, essentially 100% occupancy is assumed for all shelters deployed. In

addition, cost studies used in the general study tend to attribute to sheltering programs
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nearly doWule thc cost expendtttire -ý l ,. t io,,ru r '.. WIs -T jt c ot variation

is cquivalcnt to iultiphicatiosi of tlie costs labled Of eacit cttrve iy at ii-or oi two.

The choice of optimistic assumptions tends to set an uppcr limit on blast shelter effective-

ness. Thus, the reader can draw negative inferences with high confidence concerning

blast shelter effectiveness. Choice of pessimistic assumptions in this case would

have to avoid the many situations which would result in nearly zero effectiveness for

the shelter system - insufficient warning, undisciplined population, attack on counter-

force systems only, etc. Accordingly, we have chosen to give the shelter system all

reasonable advantages when choices of assumptions arose.

B. WEAPON EFFECT MODEL

The "weapon density model" described here is basic to both the general and

simpl ified treatments, but the more general approach can vary the weapon effect model

as needed.

Consider weapons of lethal area, W, dropped at random into a region of area,

A ( > W). The probability of survival of a point within the area to N weapons is

S=(1- ) N
A

If weapon density, d, is defined as N/A (weapons/mi. 2), we can write
Wd N

S = (1- -(weapon density model)

for the survival probability in a region attacked by density, d, of weapons of lethal

area, W. The parameter, N, is to be chosen for best representation. By examination

of detailed damage calculations for multiple weapon attacks on cities, it has been

found that N = 1 best represents "perfect" weapons (zero aiming and delivery error)

and very large values of N best represent other cases. In the latter event, a useful
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ex;)ressiotl Is

Wd N

or

-Wd
(I) S

Equatioii (1) has 'een selected for this treat!,Ient.

C. ASTSHEJ_-,TAN FC-_LVEK-55 RELATIONS

To a fair approximation, the effectiveness of a givenr psi shelter in redHcin.j

attack weapon lethal area is proportioiial to 1/P (where P is the psi hardness of the

shelter). For weapons of 1 MT yield, the relation for optimal air bursts between

lethal area, W, and psi hardness of the shelter, P, is approximately
160W ::"- V" 'sq. 11i. )

For other than optimal air bursts, the inverse proportion scemus unacceptable,

although Hudson Institute used 150/P (in sq. miles) as a conqiromise between

optimal air burst and ground burst. We choose simply

K
(2) W

for our derivation, and I)resent results for K = 160. "Balanced defense" results

presented later were all recItculated for K = 160.

For simplicity, and to permit comparison with their results, the expression for

blast shelter cost was taken from the Hudson Institute publication * ioted above. The

cost relation (dollars/person sheltered) chosen by Hudsonj Institute wa%

C -50 4 20 P 1/2

* Hudsoon Institute, op cit.
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-3•C a r bPV

f3ý C 1/

These relations, (2) and C'.), are admittedly imprecise, but probably as acceptable

as any sipple alialytic functions that could be adcpted. Their use here permits comparison

of the present results with those of the Hudson Institute "balanced defense" results.

D. POPULATION DENSITY DISTRIBUTION

The following urban populatioo density distribution for the U.S., derived by Hudson

lnstitute, is convenient to use.

Table C-1. Urban Population Density [Jstributc,o

Y i (density ni (number of people)

80 (thousands/sq.wrile) 2 million

40 1 11. .. 4 1

20 " 5 " 6 "

15 " " 1 1 I t

10 I " 6

8 " It 7 "

6 " " 8

5 " " 10 "

4 " " 15 "

3 " " " 20 "

2 " " 10 "

1 " " " 4 "i
4 If

N ni 96 million
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E. LAGRANGIAN PAYOFF FUNCTION

The payoff to the attacker, H, assuming the weapon density model, is

H= -- Hi A

where Ai is the area and Hi is the payoff per unit area in the ith cell, i.e.,

Hi = (1 - exp (-diWi)

Including the Lagrange multipliers for attacker, x , and defender, A,

in the usual way, we obtain for the Lagrangian payoff function (the attacker's profit),

Hi =fi(Q - exp(-diWi) - x Ci A + Ci D

The cost in the ith cell to the attacker, CiA, is simply di , the density of

weapons applied at that cell. The cost in the ith cell to the defender, D , is given

by equation (3) mlltiplied by the population density in that cell, fi,

1/2
Ci D= (a+ bPPi )

The resulting equation for H' is

H =f (1 - exp(-dW) - x d + jof (a + b P 1 12 )

dropping the subscript "i", but understanding that the optimal results in each cell

are ýo be summed for the nationwide totals. The final relation to obtain an equation

in d and P only, is provided by equation (2)

W = K/P
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Substituting, we obtain, finally

(4) H'= 1 '(-e dK/P X d +f + b P/2)

As described by Pugh* , the optimal deployment can be obtained by

determining strategies which are solutions to

MIN I MAX [H'(P'd)]

F. OPTIMAL ATTACK

In the present case, we may derive the optimal attack by differentiating

equation (4) with respect to d to obtain the maximum. Differentiating, then, and

equating the result to zero, we obtain eventually

(5) d* = P In (K/XP) K> AP

d" = 0, otherwise

It is convenient to define a special defense level from the relation for

d*-)O,i.e., YK>,X P. Thus

(6) Po = YK

Witn defense to the level POthe adtacker is unable to achieve a positive profit

and, hence, does not attack. This defense level, P. ,is identical to the deployment

* Pugh, George E., Jotwnal Op. Res. Soc. America, Aug., 1964.
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level selected by Hudson Institute for "balanced defense." The argument leading to

this balanced deployment is approximately as follows. The attacker is to be held to "

fatalities per weapon regardless of his attack level. If the attacker's A exceeds

W - YK/P, he simply doesn't attack. If his X is less than 'f K/P, he can

attack and achieve even more than his criterion of efficiency (choice of A, ) would

demand. At exactly X = :f K/P, he is indifferent, hence P::--f K/A is a

"balanced" defense.

C. OPTIMAL DEFENSE DEPLOYMENT

Substituting d* into equation (4), we can minimize the expression with

respect to P, again by differentiating.

We finally obtain the following general form,

(7) P=Po exp("AK

From the relation given before for CD, we obtain the explicit form

~exp - o bPnP

which is easily solved for P by iteration from P = Po on the right hand side.

Substituting (7) into (4), we obtain the optimized Lagrangian payoff (profit).

-'1 1° l 1- In + ja

0

To add realism, the above profit should be constrained not to exceed that at

which the defender simply does not defend (at zero cost), i.e.,
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("*) MAX 1- Punshelterd -In neereP )
P 0 -Punsheltered

Note that the "u" term drops out, since the defense cost is zero.

H. OPTIMUM DEPLOYMENT RESULTS

Figure C-1 shows the results of calculations using the mathematical formula-

tion described above to generate optimum blast shelter deployments. Population not

provided blast shelters are attributed a hardness of 6 psi. Total urban fatalities are

indicated on the left scale and attack size along the bottom. Each curve is labeled

with the cost of the blast shelter programs in billions of dollars. For comparison with

other studies, curves have also been generated for an unsheltered population hardness

of 3 psi. In either case, expenditures of $20 billion or more involve some degree of

blast shelter for nearly all the population and no difference would be exhibited from

the 6 psi case. This region of higher defense cost is discussed below.

Notice that the relation for the optimal defense level involves the attacker's

x , which corresponds to some attack level. Thus, as might be expected, the choice

of assumption about the attack level or x affects the defense which is found -- each

defense is optimized for some attack level. In accordance with the aim of presenting

the best blast shelters can do, the curves here indicate the performance of blast

shelters optimized at each attack level; the performance of a single defense over the

attack level range is not considered.
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Figure C-1. Effectiveness of Optimal Blast Shelter Programs
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Figure C-2. Effectiveness of Optimal Blast Shelter Programs
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I. EFFECT OF LIMITING MAXIMUM SHELTER HARDNESS TO 300 PSI

Since the optimal shelter program often calls for several thousand psi hardness

in some regions of high population density, it is interesting to examine the effect

on the program of limiting the maximum shelter hardness to a value such as 300 psi,

above which construction feasibility and cost information tend to be very uncertain,

since additionail weapon effects come into play.

In general, the optimum program does not call into use shelters of hardness above

300 psi for program costs less than about $15 billion. At $20 billion, shelters of

hardness above 300 psi are used in the few highest density regions aloneJ and only at

lower attack levels; thus, the effect of a hardness limit is still not very noticeable.

The effect at $25 and $30 billion is measurable and illustrated in Figure C-3. The

hardiless limitation sets an upper limit on defense cost at about $38 billion with

this model; the higher defense expenditures ,hcwn, $35 and $50 and $65 billion

were attained with unlimited shelter hardness and cost.

In any realistic program, population outside this target system would become

eligible for blast sheltering long before such extreme expenditures that tend to

saturate the targets with sheltering.

Another manifestation of the inaccuracy involved in any choice of a limited

target set is the artificial suppression of attack efficiency at higher attack levels, when the

attacker often is hard pressed to find a defended target lucrative enough to provide the

desired payoff (i.e., " A ") per attacking weapon. At the lower end of the target set

used for this study, population density is 1000 people/sq. mi. Since the lethal area

of a single 1MT weapon is about 27 sq. mi( 61, the attacker can obtain 27,000
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Figure C-3. Effect of 300 psi Limit on Maximum Shelter Hardness

fatalities/weapon in the last cell. However, it is possible that he may obtain even more

than 27,000 fatalities per weapon by attacking in regions outside the 12 cells of this

study. Thus, optimal attacks ýjenerated over the restricted target set for the lower values

of " X" tend to be inefficient to the extent that the attacker can go outside the target set

and, perhaps, get the desired " x" fatalities per weapon in undefended regions. Such

regions will lie among the cities of less than 50,000 population outside urbanized

areas, which were not included in the formation of the above density distribution.

Assuming such small communities will generally have areas of less than 10 sq. mi.,

they will therefore often have population densities exceeding 5,000 people/sq. mi.
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Thus, the attacker may find lucrative targets outside the five lowest density cells in the

target set. Against such cities the attacker may achieve up to 50,000 fatalities per

weapon. Communities of 10,000 to 50,000 population outside urbanized areas average

about 2,400 people/sq. mi. and include about 16,000,000 people The average payoff

would approxiniate 25,000 people/weapon, the same as in the lowest density cell if

undefended. Whether any attacker would divert his attack to such 1Imn1-urban areas is some-

what academic, since there is substantial doubt that such high courtervalue attack levels

themselves would ever be obtained or sought by an attacker.

J. VULNERABILITY OF UNSHELTERED POP'JLATION AND

BALANCED DEFENSE RESULTS

A critical variable in evaluating the effectiveness of various shelter programs is the

Vulnerability associated with the unsheltered population. Both 3 psi and 6 psi were used

in this calculation, although the latter seems much more realistic, even highly conservative,

since a blast shelter program generally presupposes a nationwide fallout shelter program.

In addition, the results are based on 100'/' occupancy of those shelters that are deployed,

imp'ying a warned and disciplined population that certainly could take advantage of any

fallout shelters available.

The lower hardness of 3 psi was included in these calculations to permit com-

parison of the present optimal deployments with "balanced" deployments such as those

presented by Hudson Institute , whose "unprotected population" case corresponds

H. A. Knapp, op. cit.

• Hudson Institute, op. cit.
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fairly closely to tile results of this model with a population hardness of 3 psi.

Tile optimal blast shelter defense results based on 3 and 6 psi unsheltered hardness

are given in Figure C-4.

Figure C-5 shows balanced defense results for various expenditures or, blast

shelters (billions of dollars). The unprotected population case is taken directly from tile

Hudson Institute study cited before. The $10 to $50 billion balanced defense expenditure

curves were generated by using the analytic relations employed by Hudson Institute. The

dotted curve illustrate.i the vulnerability of an mnsheltered population attribu|ited a hardness

of 6 psi. Since the unprotected case of Hudson Institute c')rresponds roughly to a

factor of two greater vulnerability (a factor of two less in numiber of weapons or

total lethal area, which varies in indirect proportion with hardness), the 3 psi

resLults of Figure C-2 were generated primarily to compare with the Hudson Institute

results. The importance of the vulnerability associated with the unsheltered population

is shown by the poor performance of the $10 billion balanced defense curve of

Figure C-5, which actually lies above the 6 psi unsheltered population results over

much of the span of attack levels shown. The technique of calculation of fatalities

for balanced defentse deployments is based on the attacker achieving " fatalities per

weapon delivered. The defense is "balanced" when the attacker gets just " ; as a

maximum Mnumnber of fatalities per weapon regardless of the size attack. The technique

f* Actually, the Hudson Institute unprotected population curve (Figure C-5) corresponds

to a mix of hardnesses generally somewhat above 3 psi. The lethal area relation used here,
160/P, onderestimates lethal area in the region of very low psi.

76



UNSNELTERED POPULATtON= 3 PSI

UNSHELTERED POPULATION= 6PSl

96

"go
=!8O~

'6 1 --0
4A

F 270

10

Tho iobo -'-io~ooo

ATTACK LEVEL C NUMBER OF' 1 I" OR EQUIVALENT WEAPONS)

Figure C-4. Comparison of Results far 3psi and 6 psi Cases

zoF
r40

30

2010

290

U.d°

z so

40

20

10

la 100 1000 10,0

ATTACK LEVEL (NUMBE OF I M1 M EQWVALENT CEAfl

Figure C-5. Balanced Defense Results
(Hudson Institute Technique)

77



used by Hudson Institute can be considered to attribute ' to each attackinq weapon for

derivation of the balanced defense. Thus, for st"after attack., the fraction of population

killed, F, can be approxiriated very well by:

Nx
T

where "N" is the number of weapons and "T" is the total population. This is the relation

that is implied in "balancing" the defense deployment.

However, the more realistic equation

(8) F =Iep(_

is used by Hudson Institute for calcuLlation of actual fatalities, hence attributing some-

what less than " x" fatalities to each weapon at higher and higher attack levels. Using

the relations previously derived for optimal attacks, equation (8) can be shown to give the

total fatalities for an optimal attack against a balanced defense deployme-t, when

equation (1), S = e-wd , represents attack effectiveness in each unit cell.

Unfortunately, equation (8) often tends to overstate attack effectivenec.s and under-

rate defense efficiency, as Figure C-5 clearly demonstrates ior 6 psi unsheltered popula-

tion. In this case, the balanced defense actually tends to attribute an enhanced vulnera-

bility to unsheltered people, so that the attacker can still achieve almost " X" fatalities

per weapon in the lower density population cells. In fact, the attacker realistically

cannot achieve the " V" implied by a $10 billion balanced defense (about 146,000

fatalities per weapon) in the population cells of lower density. This remains true even
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for unsheltered )oputlation vulwrability of 3 psi. Thus the defender clearly can do better

for the lower defense expenditures than shown in Figure C-5.

A riore accurate calculation of the effectiveness of balanced defense is presented

in Figure C-6. In this case, limits of 300 psi on the highest shelter hardness and 3 psi

on the lowest were set with the intermediate cells balanced as before. Three psi (at zero

cost) was assigned to all cells wherein balanced defense would usually dictate a hardness

below 5 psi. The defenses derived are shown in Table C-2. For each fixed defense,

optimal attacks were generated for a spectrum of attack levels. These more judiciously

chosen r'efenses (dotted lines on Figure C-6) are clearly more effective than those implied

in generating the results of the preceding Figure, until the 300 psi cutoff !nhibits defense

effectiveness (above $20 billion). However, for the very high attack levels, the 300 psi

cutoff begins to act in favor of the defense since the optimal developments, as shown in

More detail later, tend to drop the highest density cells from the defended set as the

attack levels increase, while the strictly balanced defenses (solid lines) always place

the heaviest defense in the highest density cells.

Figure C-7 compares optimal and balanced defense results from Figures C-2 and

C-6 respectively. At higher expenditures the balanced program for defense begins to

approach the optimal program, High defense expenditures imply lower and lower values of

1 " in the double Lagrange multiplier treatment, a region in which the optimal psi approaches

the maximum psi more and more closely, called Po in the earlier derivation, and the deploy-

ment hence approaches the balanced deployment of exactly P0 hardness for shelters in each

density region. This tendency is not strong at all if a 300 psi limitation is placed on

muaximlium hardness, as shown in Figure C-7.
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Table C-2. Balanced Defenses
with Cutoffs at 3 psi and 300 psi

Hardness Levels at which Cells are Protected

Cell $2 $5 $10 $15 $20 $25 $35
Number Billion Billion.,' Billion 21 Billion Billion Billion Billion

1 40 psi 80 psi 132 psi 300 psi 300 psi 300 psi 300 psi

2 20 40 66 184 300 300 300

3 10 20 33 92 205 300 300

4 7 1/2 15 25 69 150 300 300

5 3 9 16.5 46 102 200 300

6 3 8 13 36.5 81 160 300

7 3 6 10 27.5 61.5 120 300

8 3 5 (27 T,") 8 22.7 50 100 300
3 (7 3 1)

9 3 3 6.5 18 40 80 280

10 3 3 5 (3'/o) 14 30 60 213
3 (97'/)

11 3 3 3 9 20 40 140

12 3 3 3 3 10 20 70

a/ It was necessary to split the last defended cell to achieve the target cost.
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The discrepancies toward lower defense expenditures are generally due to

overdefense in the highest density cells by the balanced program. As defense

is deployed in the optimal program, the middle cells receive the initial increment-- and

the deployment spreads Lo the other cells of higher and lower population density as

more money is spent by the defense. In the present case the last cells to receive

defense are those of highest density. The balanced defense, by ignoring the cost of

supplying defense (the terms involving " " in the payoff formulation),always puts

the heaviest defense in the cells of largest population density, where the attacker can

most cheaply nullify any deployment. As noted earlier in Figure C-3, $40 and $50 and

$65 billion deployments (where balanced defense most closely approaches optimal

defense) cannot be achieved except by exceeding a 300 psi maximum hardness. For

these higher expenditure regions the defense essentially saturates the restricted target

system with shelters - the region of filling out from the middle of the target system in

a typical optimal deployment has been passed -- and balanced deployment becomes

equivalent to optimum deployment, but only in a mathematical sense, since neither

mode can invest the quantity of money implied.

K. OPTIMAL VERSUS BALANCED DEPLOYMENTS

A form of the relation derived earlier for the optimal shelter hardness is

useful to show the expected regions of attack and defense level where balanced

deployments eventually became equivalent to optimal deployments. This relation

was given in equation (7) before,

P0 exp I8
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Where CD is the defense cost function; in the present case,
CD=•/ (a+bPl/2)

Since balanced defense corresponds to the relation P = Po, the condition for

equivalence of balanced and optimal deployments is

AAK (_ýCD0

implying A -*0 or x -- . The former condition, s, --- 0 , leads to very heavy

defense deploynients since the defense is willing to expend an unlimited amount of money

to save idditional population.* As observed earlier, the very highest expenditures on

blast sheltering do lead to optimal deployments equivalent to the balanced deployment.

Table C-3 shows this behavior in detail, cell by cell, for three levels of defense

expenditure at roughly constant attack level. As noted earlier for the graphical results,

the region of equivalence lies at defense costs beyond those which can be achieved with

a 300 psi limitation on maximum shelter hardness (about $38 billion). The tendency at

$24.7 billion is toward a more uniform distribution of hardness over the population

density cells for the optimal deployment, and at $10.7 billion the highest density

!tells are simply not efficient to defend at all, and the lower density cells are much

more heavily defended than for balanced defense. It is interesting to note that balanced

defense of $10.7 billion calls for one and three psi hardness in the two lowest density

"*,' measures the value the defender places on his blast shelters in terms of required

population saved per dollar invested in blast shelters.
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Table C-3. Comparison of Various Defense Expenditures on Optimal
Versus Balanced Deployments at Constant Attack Level

Hardness Levels at which Cells are Protected
(No Maximuni or Minimumi Hardness Limitations)

Cell Density 1696 Weapons 1554 Weapons 1445 Wapons

Number Thousand $48.26 Bil!ion $24.7 Billion $10.7 Billion

Mil Balanced Optimal Balanced Optirial Balatced Op•tim,

1 80 6,100 psi 5,602 psi 1280 psi 785 psi 112 psi n1o defit1ir

2 40 3,050 2,917 640 515 56 no dfi('rlw,-

3 20 1,520 1,500 320 300 28 ,in drfvwo v

4 15 1,140 1,135 240 235 21 1o1 defels

5 10 760 764 160 165 14 no delost

B 610 614 128 135 11 ,,o (dfelist.

7 6 457 464 96 104 8 53 psi

8 5 380 388 80 88 7 46

9 4 305 311 64 71 6 39

10 3 230 234 48 54 4 31

11 2 152 157 32 .37 3 12

12 1 76 79 16 19 1 1 __ce,,__c
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cells. As mentioned before, the strict "balancing" process would often require

a super-softening below the hardness of the unsheltered population. Thus, the

analytic relations developed by Hudson Institute must be used with caution. The more

detailed calculation leading to the results presented in F igure C-6 is recommended for any

precise analysis

The other limit at which balanced defense becomes equivalent to optimal

defense is X---o . Since A measures the attackers propensity to attack,* and

varies inversely with attack level, the region of very low attack level, as shown in Table C-4,

is the region of equivalence. The general behavior of the optimal defense deployments

is as discussed before and requires no special comment again.

L. WHEN IS BALANCED DEFENSE ALSO OPTIMAL DEFENSE?

Aside from limiting cases which may or may not be of practical significance, a

version of balanced defense can occur whenever the exponential term is more or less

constant with c.,anges in shelter hardness, that is

(9) - K ( CD) A f ()

implying that

IC D
C)P

* The value he places on his weapons in terms of required (minimum) fatalities
per weapon delivered.
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Table C-4. Comparisoi of $20 Billion Defense Deployments
Optirnizc-d Ac:ainst Various Attack Levels

Hardness Level at which Cells are Protected

Density Bal Ianu d 150 303 570 2,341 5,110

CeIt Thousands Defene-~a/ Weapons Weapons Weai)ops WCapons Weapon!,

M; $20.0 $20.3 $20.0 $19.4 $20.1 ' $20
Bilion: Billion Billion Billion BiIli•n Billion

1 LO 752 psi 730psi 655 psi 5151i io defensc no deienst

2 40 376 375 349 300 no defensc no defenwe

3 20 188 191 182 165 205psi no defense

4 15 141 144 138 127 174 no defei•-

5 10 94 97 94 88 132 205 psi

6 3 75 78 75 71 11i 11

7 6 56 59 57 54 88 150

8 5 47 49 48 46 76 132

9 4 38 39 38 37 63 ill

]0 3 28 29 29 28 49 30

1i 2 19 20 19 19 34 63

12 1 9 10 10 10 18 34

a/ This column shows balamcod defense results to coIlare with the other resillts
to the right, which are all optimal defense deployiints at the attack level,
indicated.
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Thus, any defense cost function that , for instance, is Iliiear with shelter

hardness, P, leads to a form of balanced defense. This behavior has been observed

before in our studies of the optimization of ballistic missile defense deployments,

where the defense effectiveness is approximated by a pure saturation model.

Weaipons utp to a "price of adnmission" are successfully intercepted by the defen•se. All

cxccss attacking weapons then penetrate to the target. The chosen function for

defense cost was linear with the defen.e "price of admission" and it was observed

that the optiial defense deployments in that case corresponded to balanced defense.

Thus, balanced defense cannot necessarily be precluded as non-optimal without

further examination of the implicit cost and effectiveness functions used.

it should be pointed out that the balanced deployment is in fact a typical

deployment subset of the entire optimal deployment. The balanced region in the

optimal deployment corresponds to a region in the solution space where the defense

could make the attacker's Lagrangian expression negative. An obvious boundary

condition, however, causes a zero value of the attacker's Lagrangian to be in force

in any such region. When the attacker's Lagrangian is zero, he can obtain over

that subset of the targets only zero prc fit, and is therefore indifferent between

attack or no-attack. In this region also the optimal defense results are, of course,

indepcuident of mu, which implies an independence of the defense cost to deploy

the shelters. It is essentially a saturation phenomenon.
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APPENDIX D

A. POPULATION AND INDUSTRY DISTRIBUTIONS

The population and industrial data used in the program was sorted by population

density and industrial density to obtain several distributions. The first of the dis-

tributions are the marginal distributions, the distributions of a factor without con-

sidering any of the other factors. For reference, the total daytime population is

209,474,000, total nighttime pnpulation is 207,959,000, and total industrial

value is $97,263,000,000.

The first marginal distribution is shown in Figure D-1; it shows the amount

of daytime population below each population density. For example, according to the

graph, 100 million people are located in cells whose population density is less

than 4000/persons/sq.n.mi., and a few million people are located in cells whose

density is greater than 100,000. The points shown in the figure are the data from

which the curve was plotted; such points are not shown on subsequent curves.

Figure D-2 shows the distribution of nighttime population, and Figure D-3

shows the distribution of the maximum population in each cell.* The industrial data

also has an associated industrial value density, and a similar plot can be done for the

industrial value distribution as shown in Fgure D-4.**

* Note that the total is not the same as the day or night population, since Emax
(day population, night population) :I max (total day population, total night population).

** The program considers explicitly only those cells whose population or industrial
density is above some cutoff; all other cells are lumped into 10 "tail cells". These
tail cells diluted the industry in lower density brackets, resulting in the long tail in
Figure D-4.
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The first pair of curves depicting the joint character cf population and indo.stry

are Figures D-5 and D-6. The first is the average industri ! density in areas with

a given population density; the second sho.-s the average population density around

industry. In each industry bracket the i,,ý,rage population density is computed from

,Population x Population Density
SPopulat ion

and similarly for the average industry. The figores show the averagje densities, the cells

in any area may be expected to deviate from the curve. For example, Figure D-5 includes

several cells selected from Washington, D. C., Philadelphia, and Chicago to illustrate

how the curve is an average of all such cells. Each of the letters plotted represents a

cell in that city with population density and indtustry density as indicated. From these

corves we see that areas of highly dense industry, on the average, have dense daytime

population. However, in highly dense population areas, the average industry density is

relatively low.

Another aspect of the jointness of population and industry is shown in Figures

D-7 and D-8. In statistical terms, Figure D-7 shows the ctw,;ilative distribution of

industry for various i:opulatiort densities; the ctuiulative distribution of population with

respect to population density is shown for comparison. Figure D-7 indicates how much

industry is located where the population density is less than some specified level.

Similarly, Figture D-8 shows the cumulative distribution of population with respect to

industrial density. From Figure D-7, for instance, we can observe that 47,. of the

population and 31 of the industry are located in areas with less than 5000 persons
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per square mile.*

This pair of graphs is useful in that unsheltered fatalities in a pure population

or pure industry attack can be determined directly from them. In the two types of

attack, the attack density is a function of population or industry density, respectively.

Then for different ranges of density the fraction killed is determined, and the populaticorn

in each different fractional kill bracket is read from the curves. Total fatalities then

come directly.

*These last two figures deserve a word of caution: they should not be interpreted as
saying more than is indicated. Observe, for instance, that Figure D-7 indicates that
half the population is located in areas with 33% of the industry, and that Figure D-8
indicates that half the population is located in areas with 100/0 of the industry. The
explanation, of course, is that it is not toie same 104,000,000 people, and the
curves in no way indicate that it is the same population.
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IOTAL DAY POPULATION 209,474,000
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2TOTAL MAX POPULATION 2313,58 000
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APPENDIX E

SUGGESTED ADDITIONAL STUDY

There remain many interesting possibilities for additional exploration of the techniques

developed in this study; some of tihese will be mentioned here.

The first computation requires no program changes, and it uses the capabilities of the

program quite completely. This procedure is as follows:

1. Using the parameters from one of the stabilized defenses (with the assumed

attack objective set to pure population) or with a set chosen according to the

procedure outlined in the stabilization section, compute a nationwide defense

and evaluate it. The performance of these defense parameters will now be

known for the gross nationwide model.

2. For some city prepare detailed population data, first into cells smaller than two

mile squares, and then perhaps into closely spaced "census tract" points.

3. Use the parameters mentioned above as inputs for the defense generation in the

targeting model.

4. Use the lambdas corresponding to different nationwide attack levels to generate

different attacks on the city. In this way these city attacks can be considered

as parts of total nationwide attack. The city evaluation may then be performed

for different yields, CEP's, shelter filling modes, times of attack, and attack

objectives.

A second area begins with the observation that the effectiveness of shelter deployments

seems quite insensitive to the deployment scheme; for example, balanced defense appears to
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be a rcasornaly effective defense. Now that insensitivity has beetl established, it c.11!1

exploited to obtain simple deployment rules as follows:

1. !t appears (from time-phasing results) that a defense using 100 psi shelter,

only would be alhost as effective as an unrestricted defense. Several stich

100 psi defenses could be generated.

2. The shelter distribution from such an output could be used to generate a curve

of either cost allocated per person or average hardness as a function of popu-

lation density. Since there is only a single shelter type, and since the exact

shelter mix dL,,ioyed makes no difference, such cur,,es completely define the

defense.*

3. Fit a simple analytical approximation to the allocation curve. Then, use the

approximate ruie to generate a shelter deployment, perhaps leaving one or more

parameters in the approximation free for an optimiza ion. Such simple rules

cannot be found from regular optimization runs, because the optimization

procedure, inherently generates an "irregular" deployment, choosing one

deployment over another to gain even the slightest improvement.

4. The curves found in 2. above themselves would be interesting for comparison

between low lambda, medium lambda, high lambda, and stabilized defenses.

Third, there renmain areas within the model which could be modified or made more

realistic. The exponential evaluation function used in the cell model could be improved on

*For the defenses generated in this study, which consist of shelters of different hardnesses,

such curves do not define a defense and hence are not as meaningful.
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(lwcrlihips folloowinc one of the suiggeestions made in Appendix B); a different shelter fillincj

riode could be added; or the cost of shelters could be varied as a function of poptilation

deinsity. However, the study seems to have eliminated the need to consider certain aspects,

such as further industry-like national resources.

Lastly, from consideration of the results of the stabilization procedure, it can be

seen that of the three types of stabilization, attack size stabilization and attack objective

stabilization achieve their (joals satisfactorily. The important factor in a stabilized defense

which deqraded performance must was attack level stabilization, since the stabilized defenses

a•ppear not to offer very mnuch over a range of attack levels compared to a defense tuned to a

middle" valuie of thait ranie.

In this study the delenses postulated consider blast shelters only; it is at least as

iiiterestinq to include active defenses also. On the basis of past experience, it is believed

that a defense considering active defenses and blast shelters can be made to stabilize the

entire attack levei range effectively. In such a posture the two types of defenses are

coiplemnentary: the active defense providing protection against a low level of attack and the

blast shelters providing defense against large levels of attack.
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APPENDIX F

PARAMETERS FOR CURVES

Section IV of the riain body of this report (Volume I) contains results

plotted from data whicli was in turn generated by computer runs. This Appendix

merely cross correlates the comlputer runs with those figures based on such

compuitations.

The defense number (*XXXXX) is assigned to each defense deployment;

the run number refers to a specific printout. The cost and the lambda combination

are specified for each defense, and then the population bases will be shown as

NIGHT/DAY, indicating the first and second population bases. The assumed

attack objective will be indicated as 70/30, meaning 70¾ weight on population

and 30"' weight on industry.

Figures 3 - 6: runs 98, 99, and 105.

Figure 7: runs 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, and 60

Figure 8: run number 151, $5 billion, DAY/DAY, pure population objective;
run number 113, $10 billion, DAY/DAY, pure population objective; run
number 152, $15 billion, DAY/DAY, pure population objective; run number
115, $20 billion, DAY/DAY, pure population objective; run number 118,
136 and 140, $30 billion, DAY/DAY, pure population objective.

Figure 9: run number 103, $10 billion, NIGHT/NIGHT, pure population; run
number 87, $15 billion, NIGHT/NIGHT, pure population; run number 116,
$20 billion, NIGHT/NIGHT, pure population; run number 119, $30 billion,
NIGHT/NIGHT, pure population; run number 99, unsheltered nighttime popula-
tion, pure population attack.
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r
Figure 10: run 97, "56728, S10 billion, lambda -7 (78850 x .6, 7SG5 x .4),

NIGHT,/DAY, pure population assumed, compared with the $10 billion optimal
curve, run 113.

Figure 11: run 82, a1236, $5 billion, lambda - (118270 x .7, 11827 x .3),
NIGHT/DAY, 50.50 assumed; ron 145, a60592, $10 billion, lambda -
(78850 x .75, 7885 x .25), DAY/DAY, 70/30 assumed; run 142,
-41596, $15 billion, lambda (47300 x .7, 550 x .3), DAY/'DAY,
75,/25 assumed; run 160, ,62474, $20 billion, lambda -(40000 x .65,
2500 x .35), DAY/'DAY, 80, 20 assumed.

Figure 12: run 82, '1236, $5 billion, lambda - (118270 x .7, 11827 x .3),
NIGHT, DAY, 50,,50 assumed; run 95, P10930, $10 billion, lambda :
(78850 x .7, 7885 x .3), NIGHT /DAY, 50-50 ass-ied; run 92, -46136,
$15 billion, lambda :- (47300 x .6, 5500 x .4), NIGHT/ DAY, 50. 50
assumed; rin 93, :874.0, $20 billion, lambda - (31540 x .5, 4500 x .5),
NIGHT/DAY, 50,. 50 assumed.

Figure 13: run 106, v40642, $10 billion, lambda - 100000, DAY DAY,
pure poptilation assumed; run 145, *60592, $10 billion, lambda =(78850 x
.75, 7885 x .25), DAY/DAY, 70/30 assumed,

Figure 14: run 149, =30353, $20 billion, lambda c 25000, DAY/DAY,
80120 ass:imned; run 160, -62474, $20 billion, lambd _-- (40000 x .65,
2500 x .35), DAY/DAY, 80,20 ass-ined.

Figure 15: run 98, unsheltered popuilation; run 145, =60592, $10 billion,
lambda - (78050 x .75, 7885 x .25), DAY/DAY, 70.30 aIsstumed; run
113, the 10.0 DAY'DAY bounds.

Figure 16: runs 79 and 80, z95458, $10 billion, lambda - (7T850 x .6,
7885 x .4), NIGHT/DAY, 50,50 ass~umed.

Figures 17-29, runs 79, 80, 90, 91, 97, and 122, =56728, z-95450,
and *38442, $10 billion, lambda - (78850 x .6, 7885 x .4), NIGHT.-DAY.

Figure 30: run 79, z:95458, $10 billion, lambda -(78850 x .6, 7885 x .4),
NIGHT/DAY, 50/50 assumed; run 109, 418480, lambda = (78850 x .6,
7885 x .4), DAY/DAY, 50,'50 assumed.

Figure 31: run 108, *95458, $10 billion, lambda = (788504.6, 7885 x.4),
NIGHT/DAY, 50/50 assumed; run 117, -7426, $10 billion, lambda =
(78850 x .6, 7885 x .4), NIGHT/NIGHT, 50,50 assumed; run 103,
$10 billion, NIGHT/NIGHT, pure population.

Figure 32: runs 71, 77, 85, and 86; FINAL shelters, NIGHT/DAY, pure
population attack.
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Figure 33: run number 155, *56762, $5 billion, lambda- (118270 x .7,
11827 x .3), NIGHT/DAY, 50/50 assumed, time-phased with *27218,
run 153, #27218, $10 billion, lambda= (78850 x .7, 7885 x .3),
NIGHT/DAY, 50/50 assumed, time-phased with #11364, run 148, *11364,
$15 billion, (47300 x .6, 550 x .4), NIGHT/DAY, 50/50 assumed,
time-phased with 487480. All other curves identical with Figure 12.

Figure 35: The standard case for the next several figures is run 125, #46521,
$10 billion, lambda = minimax (78850, 7885), NIGHT/DAY, 70/30
assumed. The minimax lambda selection is to hold down "twisting" between
the standard case and variational cases; run 147, *60402, $10 billion
STATCOST, lambda n minimax (78850, 7885), NIGHT/DAY, 70/30
assumed.

Figure 36: run 135, 50Y° alert evaluation of defense *46521, the standard
case; run 127, 4417, $10 billion optimized with 50/Q alert, lambda =

minimax (78850, 7885), NIGHT/DAY, 70/30 assumed.

Figure 37: run 135, 150/ softer evaluation of defense #46521, the standard
case; run 146, #5016, $10 billion optimized with 15%. softer shelters,
lambda = minimax (78850, 7885), NIGHT/DAY, 70/30 assumed.

Figure 38: run 131, *65717, $10 billion, FINAL-3 shelters (3 added shelter
mixes), lambda = minimax (78850, 7885), NIGHT/DAY, 70/30 assumed.

Figure 39: run 4and 7, *51944, both are HOUSTON she!ters, $15 billion,
lambda z 10000, DAY/DAY, pure population assumed; total population is
90,619,000.

Figure 40: runs 79 and 133, #95458, $10 billion, lambda = (78850 x .6,
7885 x .4), NIGHT/DAY, 50/50 assumed.

Figure 43: run 161, 414396; run 93, #87480; both are $15 billion, lambda
(31540 x .5, 4500 x .5), NIGHT/DAY, 50/50 assumed.

Figure 44: runs 137, 138, 143, and 144; run 106, #40642, $10 billion,
lambda = 100000 DAY/DAY pure population assumed.

Figure 45: run 125, #46521, $10 billion, lambda = minimax (78850,
7885), NIGHT/DAY, 70/30 assumed.

Figure 47: runs 29 and 30, #59995 and #54375, HOUSTON shelters,
$15 billion, lambda = (40000 x.65, 2500 x .35), DAY/DAY,
population attack only.

Figure 48: runs 79 and 122, #95458 and #38442; both are $10 billion,
lambda = (78850 x .6, 7885 x .4), NIGHT/DAY.
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Figure 49: rur 150: =87454, $20 billion, lambd,i - (31540 x .5,
4500 x .5), NIGHT/DAY, pure industry assumed; run 124, #692, lambda
minimax (400000,4500), NIGHT/DAY, pure population assumed.

Table IV: runs 8, 1i, 11, 13, 14, 17, 18, 19; -9476 13575,
77414, 735S00, 52789, and 28249; $15 billion, lani.da - 40,000,
pure ropwlati'n assumed; total population is 90,619,000.

Table V: runs 82, 100, 101, 102; w1236, 41036, aid 49068;
$5 billion, lambda - (118270 x .7, 11827 x .3) 50/50 assumed;
runs 79, 108, 109, !il, and 117; defense numbers 95458, 18480
and 7426; lambda = (78850 x .6, 7885 x .4), 50/50 assumned; runs
93, 123, 128, 129, and 130; defense numibers 87480, 42734, 90382,
and 96390; $20 billion, lambda = (31540 x .5, 4500 x .5), 50/50
assumed.

Ta;'les XIl and XIII: run 12, #22740, HOUSTON Shelters; run 20, t36505,
HOUSTON2; both are $15 billion, lambda - (40,000 x 522, 2500 x .47/C),
DAY/DAY, pi:e population assumed; total popLIlation is 90,619,000.
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APPENDIX G

HOUSTON AND APRIL SHELTER DATA

Some of the computer runs were nmade with shelter data other than the FINAL

set. These other two sets of data have labels HOUSTON and APRIL; Table G-1 shows

the HOUSTON parameters and Table G-2 the APRIL data.
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Table G-1. HOUSTON Parameters

DFFNSE CODE .4USTON

o LISTINI OF SHbLTFR TYPl S

SHELTFR TYPF COST SPRE:A OF PSI LEVELS

.mi4SHEL non 3,6 * 0,33 A,6 * 0.33 13,n * 0,33

3- PS! 32;,M 40, * 0,33 , 0,33 TO-*-0- ..o i'0 PSI 379.n 117,0 * 0.33 143,0 0,33 17S,0 * 0,33
300 ý S " 771.q '350.0 0,33 43n,0 * 0,33 520, 0 0,33

L!STI4 JOr POSUIMLE b"ELTI- ALLOCATIONS

0 UFfF'-,E OPT I. rRACTION OF PUPUIATION SIIPPLIET) FACH bwf:LTFR rypF

I rT1.• I-•ltATTON ';uPPLIFo SwLT FR TYPF UNSHFL

O 2 - .NTI' P-JPLATION SUPPLIF-0 ,HELTFR T~pr 35 P-!
3 'S1IR• Pg.LT!OJ SUPPLIF0 SHELTFR Typr 100 PS!

0- 5 1,'%fFL * 0.50 35 PSI * 0 50
6 15 PSI * 0,50 110 PSI * 0,50
7 100 PSI 0 0,5 .300 PSI 1 0,50

0 8 : INS FL * 0,50 100 PS I * 0,50
9 INSHf1L * 0,5n 300 PSI * 0.50

'I' SO'HSF: L * 0,70 110b PSI * n #10o-___ ___

_ 11 'J' FL * 0,20 110 PSI * 0,A0
1 ',4SHL - -0 -8 t-A 6--' T nP-

13 15 PS! * 0o10 100 PSI * 0,50 300 PS! * 0,4n
S14 1% .... .0,4 1. 00 PSI * 0140 300 PSI * 0,20 ......

15 jINmHFL 0,20 100 Pi"I * 0,50 30n PSI * 0,30

OrTPUT FOR PuN TYPE INPUT

LETHAL ARrA TA3LE

PSI
3,66~~ -6 4- 3 '--4T, no -70-0 6-G- 6'6 J t7 n 143,00 1.75 ,W n-0 ,O~0 -JfljmG q20 A0

n, m _0 30,68 14,36 6,73 ?,39 1,0A 1,W4 n,A4 0,it 0,62 0,34 0,1. .:)5
25jno 0-4F--3- 07,l7 A,33 7,48 1v,9z 1,50 Itn7 0,90 0,76 0,19 0, 14 I0d
3%i0 I0 43,02 1 ,P7 8,84 2,57 1,98 1,18 1,13 0,93 0,71 0, 7 n,r 3 n.0
3 rOn 00--44"6 ,2 b . ,37 1,67 , t,96 0,A7 0,53 3 ,34 0,00 0,oO 3.0
4,n00 I0 51,01 21,76 11,04 ?,91 7,30 2,00 Al,12 0,00 - fla0 0a,0 flnn0 0,n0

55bon , 1 3,12 23,1 r26 6;~ Th75 n1~ Th0 o' ~0 -0,110 n-, a 700
6500 00 59,e8 2A,C3 13,92 0,62 0,00 0,10 0,00 0,00 0,00 0 00 n, 0 n0n0
80001 0 64,27 29,09 8,50 0,00 0,00 0f,0 1,0n 0 ,00 0,00 0 ,00 n,nO A.00

t0000 0 -. - ,6, - 2,72,4 ,39 0,00 0,00 0,a0 n ,m0 A000 000 0 a00 fn0 1.n0

'.-vISEn LETHAL APEA TAý4LF

PS I
3,60 A,'A li,0o 4M,00 50,0o 0,'0 117,.0 143,00 175,00 350,00 430, o0 r20 00

1,0 if 3, 6 b 14, b ,7 3 2,39 8 bu I 1, 4-9,A4 0,710A ~ ,4 0,i m : -
6500,10 59,68 26, r 3 13,2 ,62 0,00 n n' 0 n,0O 0, 0 0,00 0,00 On n 0.00
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si:.e of the attack, thus overlooking the attacker's freedom of choice
after a blast shelter program has been deployed. Rather, the study
seeks "stdbilized" deployments which protect population almost as
well as an optimal deployment, even though it is not truly optimal
for any specified attack.

The study examines the attacker's freedom to vary force level,
time of attack, attack objective, height of bi.rst, and targeting. A
quite general and flexible computer model BLAST, based on generalized
Lagrange multipliers, generates shelter deployments for the U.S. and
computes their effectiveness against attacks in which these factors
are varied. In BLAST the nation is considered as a collection of
culls two nautical miles square, providing a detailed analysis of the
offense/defense interaction.

Volume I summarizes the methodology, results, and conclusions.
Volume II contains technical appendixes, including the data employed.
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