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APPENDIX A

ADDITIONAL LAGRANGE MULTIPLIER THEORY

A. GENERAL

The presentation here assumes familiarity with Section (HD of the basic
report. The notation is the same, with K representing attack level, H the
payoff, etc. First we present two theorems regarding single-sided maximization:*

Lambda Theorem: Suppose M and A 5 produce solutions le: and xz-;:‘. and

suppose K(X1*) 2 K(XZ*),

H(Xy*) = H(X2%)

Then Ay 2 KX, = K(Xp) 2 M-

In the limit for a continuous case this becomes g:k = X. This theorem
indicates that lower lambdas preduce higher resource consumption, and hence
provides the information needed for consumption-closing by iteration. Also
contained in the theorem is the following important bounding corollary:
Corollary: If My produces a solution Xl*, then for any other resource
level KiX), HOO < HOG# + 2y [KOO = KiXy® ].
This coro!lary provides an upper bound for payoffs for resource levels

other than the one found in the optimization.

Epsilon Theorem: Suppose X comes within e of maximizing the Lagrangian,

i.e., for all X,

HX) = AK(X) > HIX) - AK(X) - ¢ .

*Generalized Lagrange Multiplier Method for Solving Problems of Optimum
Allocation of Resources,” Hugh Everett, 11, Operations Research, Vol.11,No.3.
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Then X ic a solution of the constrained problem with constraint A = K(X) that

is itself within ¢ of the maximum for that constraint

This theorem is useful when an iterative scheme is used for maximization
or when an approximation is used for a true function.*

With the main theorem and the above theorems, we have the material to
handle one-sided maximization. The main theoren gives the procedure for finding
maxima. The lambda theorem gives the strategy for iterative resource level
matching, and the corollary and the epsilon theorem provide etror bounds if
rescurce levels are not exactly matched or the maximum Lagrangian is not found
exactly. It should be noted that al! solutions found by this method are rigorous,
aithough it is possible that solutions do not exist (and hence will not be found),
This is discussed fully in Everett's paser.

There is a theorem for the two-sided Lagrange procedure related to the
epsilon theorem. This theorem applies to the case in which an attack is com-
puted by an approximation to the real damage function. If we know the error
in the approximation, how much better than indicated can the defender expect
to do? Forthe double Lagrange we can only assess this error in the Lagrangian
itself.

Approxiriation Theorem: Suppose the payoff function H(X,Y) is approximated

with H(X,Y) such that
HIX,Y 2 HIX,Y) -~ ¢ and
HIX,Y) < HIX,Y).

*See Section VD of the main report for an example of the use of this theorem.




Suppose that i:l'(X,Y) is minimaxed to find a defense Y* and an optimal attack
X*. Then

1) hﬂax [H(X,Y) - AK(X) + uC(Y)] ZHXH, YF)  aK(X*) + u C(Y¥) - €
That is, the true minimax Lagrangian is less than ¢ below the true Lagrange
evaluation of the optimal defense and attack.

2) l\)ﬁlax [H(X,Y) - AK(X) + uC(Y)] Z HIX*, Y*) = AK(X¥) + uC(Y*)
That is, the true minimax Lagrangian is greater than the approximate solution.
Froof: Since the Lagrangian is minimaxed,

HOX*, Y4) = AKIXH) + nC(y%) < Max X, YD - AKO0 4 uC(Y)]

Using on the right the second supposition we get the first result:

HOCK Y*) - AK(X®) + wC(Y) < N)l(ax FH(X,Y) - AK(X) + uC(Y)]
Using on the left the first supposition we obtainL
HOX:, Y%) = AKOXH) 4 m(y%) = ¢ < Max [H(X,Y) -AK(X)+#C(Y)]

This result tells us how errors will affect the Lagrangian~-first, the
approximate Lagrangian solution is less than the true Lagrangian if the
approximation underestimates kill, More importantly, we are guaranteed that
if we used the true payoff function we could only improve the defense effectiveness
by e ; i.e., the defense Y* which we find is within ¢ of the best the defense

can do.

For the two-sided Lagrange procedure there is no theorem correspond-
iny to the main theorem in the previous section. Results may be erroneous,
in that solutions may be found which are not the hest possible choices for the

defense. However, these spurious soluticns are not troublesome for problems
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with large numbers of cells, for the possible erors become very small, All
defenses found in the study were calculated using only the theory presented up
to this point. Nevertheless, the possibility of error should be considered,
and spurious solutions will be discussed now,

It is very instructive to attempt to prove an extension of the main theorem
for the two-sided case. Suppose we {ind X* and Y* to minimax the Lagrangian,
i.e.,

HOXE, YF) = aKIXk) + wClYH) € h;'ax [H(X,Y) - AKIX) + uC(Y)]

On the left we have found H(X*,¥*) for which

HIX*,Y*) 2 H(X,Y*) for all X, K(X) £ K(X*),

It would seem we could apply the one-sided theorem to the right, We can, and
we find X such that H(/)?,Y) AH(X,Y) for all X, K(X) éK(/)E). Note , however,
that since Y# Y*, the two onc-sided maximizations were effectively performed
with different payoff functions, H{X ,¥*) and H(X,Y), The two attack levels
K(X*) and KCX) result from those maximizations , and K{X¥)# KOO Thus,

we cannot cancel the terms and we cannot even determine which attack level

is larger, Thus the attempt breaks down.

As an example suppose we have two equal cost defenses Yy and Yo
with payoff functions shown for each in Figure A-1 .  Maximizing the
attacker's Lagrangian using the lambda value ) for defense Yy leads us
to A with Lagrangian value a, for Y, to B with value b. Since the costs are
equal, it can be seen that we minimize the maximum Lagrangian by selecting

A as the best point and Y7 as our defense. But observe that at the attack
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level at A, Y2 is a better defense, Now also notice that if lambda is decreased
to Ay, then point B will be chosen over point A and defense Y2 will be

chosen, which for the attack level at B is again the wrong defense. if lambda

b =

K(X) Attack Level

Figure A1, Example of Spurious Solutions

is decreased still more to 2 3 the contest will be between points C and A,
with defense Y2 being chosen, which is correct for attack level at C. Thus
we see that the double Lagrange method may find both valid solutions (e.q.,
poirt C) and spurious solutions,
Now look again at Figure A-1. If we imagine beginning with a high lambda

and reducing it, we will find that we will pick up solutions in the following order;

D, E, A, B, C, G, H. There are points which are never found, such as F,
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and the double~-Lagrange procedure will screen out many such points. f we
connect the poirits for V3(D, £, AYand Y2 (D, C, G, H), or if we simply
connect all points in the order found, we find we can locate the optimal curves.
Consideration of this capability to find the optimal curve will lead to the theoren
which follows. First, however, let us define things a bit more precisely.

We are interested in datermining which solutions generated by the double
Lagrange method are spurious.* This is, of course, equivalent to finding the
optimal curve, for any non-spurious solutions lie on the optimal curve. The

optimal curve for some cost is defined to be

—  Min Max
B(AB) = yeivi<B  X,Kooga HXY).

Let us also make the assumptions about the attacker's payoff exnlicit. We
consider the maximum payoff for some attack level, G(A,Y) :)!(M,?Z((X)QA HIX,Y),
Concerning this maximum payoff, we assume

1) G(A,Y) is acontinuous function of A,

d
2) A G(A,Y)20 (but possibly discontinuous)

d
3) & G(A,Y) is a monotone nonincreasing function of A J*

* One point should be made here: the spurious solutions are actual defenses and
the payoff for each defense is its true and proper payoff; the spurious nature
is only that there is a better solution. Thus the separate and independent evalua-
tion used in the coinputer program does not change the nature of the solution. It
may be, however, that some "spurious" solution is the best solution for some
set of defense objectives.

*x"Lagrange Multipliers and the Optimal Allocation of Defense Resources"”, George
E. Pugh, Operations Research, Vol. 12, No, 4, has a thorough discussion of
how to handle gaps , i.e., regions where these assuniptions are not valid,




Many times it will also be true that 6(A,B) is a concave upward function of B,
i.e., G(A,Y)Z 6(A,B) +u B - C(Y)

Existence Theorem: Any point on an optimal curve which is concave upward

with respect to cost can be located with the Lagrangian procedure;* i.e.,

there exist » and u such that

HOXR, Y40 = AKOXR) + Gy < Max [H(X,Y) - AK(X) + nC(Y)] .

Proof: Suppose to the contrary that for every A and u there is a Y° such that
N)l(ax [H(X,Yo) - AK(X) + nC(YO)]( H(X*,Y*) « AK(X*) + uC(Y*)
If the inequality is true with maximization over all X, it is true over the

subset for which K(X) = K(X*), and K(X) is achievable because of the

convexity with respect to X. Then

Max 0 + (X* - %
X, K(X)=K(X*) HIX,Y rCYO) CH (X*,Y*) = AK(X*) +uC(Y*)

Or, x',M;?()(X): Koy HOX YO 4 MCYO) CHOXK, Y5) 4 WC(Y)
which contradicts the concavity assumption,

The usefulness of this theorem is that it guarantees that if we examine
all lambdas and mus we have found all solutions of interest. If the computation
procedure has an efficient cost closing mechanism, then all solutions can be

found by sweeping through all lambdas. If distinct defenses exist,then spurious

solutions will abound.

* Without the assumption of concavity in cost and convexity in attack level the
theorem could be proved for a single cost with no restriction on concavity.
However, these difficulties have to do with gaps, and the theorem is directed
toward assuring that even with spurious solutions, the optimal curve can still
be found.
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Suppose we find Lagrangian solutions by sweeping lambdas for a fixed cost;
we may distinguish two types of "adjacent" solutions as we sweep lambdas:
1. Both adjacent solutions are the same defense. This is true if

and only if the resultant attack level shift is with the pravailing

lambda trend. About these points we can say nothing-=they are

not obviousiy spurious.
E" 2. The adjacent solutions are different defenses. The resultant attack
level shift may be either direction, but is probably opposite to the
lambda trend. These points are always spurious, but it should be
remembered that they will give information to finding the optimal
curve.

| The foilowing theorem enables us to find the optimal curve by a simple

graphical method.

Construction Theorem: The optimal curve is the lower envelope of lines

connecting in order all solutions found in the lambda sweep.
Proof: The existence theorem tells us

that every point on the optimal curve Y

can be found with some lambda (here we

consider the fixed cost case). Thus all PO’P'O," of
»% optimal

curve

H(Xn, Yn)
we need to show is that we do not draw
a line below the aptimal curve. Suppose

we have two solutions H{Xn, Yn) and

H(Xn+1, Yn+1)for anand an+l

10




with no other distinct solutions for intermediate (ambdas. Supose there is a
portion of the optimal curve above the line with slope Ay which joins the
two points. The optimal curve cannot cross either line an or tine an+1 for
by convexity, defenses Yn and Yn+1 are always below those lines, and
that would contradict the optimality conditions. Thus the optimal curve must
cross the Ay line segment twice and hence the optimal curve achieves a
maximum with respect to Ay ; therefore there exists a distinct solution to
the Lagrangian formed with Ay, But an+1 C x¢ < an, which contradicts

oilr assuniption that there were no intermediate solutions.

B. BOUNUS FOR THE OPTIMAL CURVE

The continuous lambda sweep we have heen discussing will not usually
be feasible. The question can then be raised as to how small a step is
aliowable to accomplish the same purpose. However, for any step, no
matter how small, it is possible to construct a point on the optimal curve
which will not be located, Certainly, though, we achieve an approximate
location for the cptimal curve, and the verification procedure addresses
itself to the task of finding rigorous bounds for the optimal curve, with no
other assumptions than the ones on convexity. More knowledge of the
functions involved could probably provide hetter bounds.

We now give the theorem from Pugh's paper which provides an upper bound

on the optimal curve.

Upper Bound Theorem: If X* and Y* are solutions to the Lagrangian, for all A,

11



ofa, cova] < HOe:, v+ A A - Ko |
The upper botind theorem is for only a single cost, C(Y*). If it is reasonab'e
to assume concavity (and if it is not, solutions will not exist), then inter-
polation can be used to determine the upper bound for any cost between selutions

for two different costs.
Before we prove the lower bound thearem we will consider a temma, which

is useful in its own right for understanding spurious solutions.

Lemma: Suppose that X* and Y* are solutions of the Lagrangian for A and

u . Then for every defense Y there exists some X' such that
HIX', Y)Y = AKX + uCY) 2 HIX*®, Y*) = AK(X*) + uClY*)

i.e., for every defense Y there is at least one point which lies above the plane

HOXx, Y*) + A[A - K(X*)] - H[B - C(Y*)] , which we denote P(A, B).

Proof: By the minimization of the Lagrangian over Y,
Max "
HOX), Y*) = AKOXR) + wCIYH) < [H(X,Y) = AK(X) + pC(Y)J

But since the right hand side must achieve its maximum, there exists some

X' such that

HIX',Y) « AK(XY) + aCY) 2 HIX*,Y¥) = AK(X¥) - 0 COYH)

Let us now see liow to use the Lemma to bound possible solutions.

Figure A~2 shows the lemma surfaces ir the piane of cost

12
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HO

Attack Level

Figure A-2. The Lower Bound

B for two solutions to the Lagrangian for A 1and ) 5 (the solution points

do not appear inthe figure since they need not be of cost B). The

lemma states that any defense not found must lie above Pl at some point

and above Py at some other point. We now ask where this requirement together
with convexity allows this other defense to wander. We first consider only
parts of the optiinal ¢'irve with slope between M and Ay Some consideration
will show that the worst possible condition for convex curves will require

that G (A,Y) go straigkt irom the origin to point H®, then to point A9,

as shown in the figure. That line then is the lower bound for all parts of

the optimal curve with siope between xyjand 1. The "spoiler" line shows

why the requirement that the curve lies somewhere above Py and Py does not
give that bound for portions of the curve with any slope whatever, in that it

clearly lies befow the lower bound line.

13
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The lower bound theorem makes this more precise:

Lower Bound Theorem  Suppose that X 1’ Y1 and Xz, Y5 are solutions of

the Lagrangian for A3 and Ao (with A3 > Ap)and wy, wp. Then
any portion of 6(A,B) with slope 1, Ao £2s M 'ies on or above the surface

determined by

H of1. A
S aewli- A

for every cost B, In the above

HO= Min { KXy, Yp)- A1 Ay - uy (B-By),

HX,Yp) - 3 Az - up (B-B2)}
1
1

-+
1 .
A2+ 3= [ H - H(X,,Y) + M(B-BZ)] }

AC = Ma_X{ Al [H-H(Xl, Y1)+“(B'Bl)]

Proof: Consider O(A,B) some point of O(A,B) with siope -il P ASRE Ny
and let Y be the defense at this point, From the lemma,

H(X,Y) 2 Py (A,B) for some X (Py is the plane associated with

A 1), and hence

G(A,Y) > P1(A,B) for some A. Similarly

G(A,Y) 2 P, (A,B) for some other A.
Consider 3 cases:
Case I. Py(A,B) and F3(A,B) cross (i.e., there is A such that P1(A,B) =
Po(A,B)) in the region of interest (with ordinate below H and with positive

abscissa). Now since G(A,Y) 2 P;(A,B) for some A, it must cross Py in two

14




places or be tangent to it. Degenerate cases with one or no crossings can easily
be proved or eliminated, Let Pl(Al, B) be the crossing where the slope of
G(Al, B) > 1 {This is the crossing whose abscissa is smaller.). Similarly,
for P let PZ(AZ, B) be the crossing where the <lope of G(Az, B) < Ao

(the crossing with the larger abscissa). Since G is convex in A, G is above

the line connecting Aland A2 tor ,‘\1 £ A< AZ:

6a® = P2l B -PLal B (aalys py Al B,
AL - Al

Also, since G is nondecreasing, the point on G with slope 1, which

is O(A,B), will fall in the interval [Al, AZ] . Hence

Po(A2,B) - Fy (al, B

(A-abL+ Py (al, B).
2 Al

o(A,B) >

But Al and A2 are unknown, so we provide a bound for the worst cases of Al
and A2. For example, P1 (Al, B 2P (0,B) = HO for this case. In

[Al ,A2] we obtain

oA,B H-H_ (a-al+ Py al, B
! Ao —0

|7

_ﬂ.:.ﬂ?_ (A-aly+ HO+ Ay Al
A
0

But in this case A1 A% H- H°, Thus

O(AE) > HH® (A-Al+ o+ H-HO Al
Y Ao

15

2 s



—_—— oy, ToEem———

> H-H a4 o

[1°4
x

LIy (1 - A ) HO
Case ll. Pl (A,B) is everywhere below P5 (A,B) in the region of interest.
That the theorem is true in this case may be seen by noting that this bound is
everywhere below the secondary bound in Pugh's paper.
Case Il. P, (A,B) is everywhere above P,(A,B) in the region of interest--
here the bound is below Pugh's primary bound . *

Notice several things about the procedure implied by the above theorem:
1) many times the primary or secondary bound wili be better than the ahove
theorem; 2) since any two solutions bound the optimal curve for lambdas between
them, a range of solutions is needed with bounds generated for adjacent lambdas;
3) the optimal curve will be bounded by the minimum of all such single bounds
generated; and hence 4) the lambdas must be carefully chosen or one bad bound
will spoil the cumulative bound,

The remaining problem is how to apply the verification procedure. The
procedure uses a number of Lagrangian sotutions for differemt lambdas. For
each lambda it is not necessary to match the desired cost exactly in order to chtain the

lower bound; even rough cost closing can give good results. The upper hound

* Actually this theorem can be derived from the primary and secondary bound

and amounts to the most efficient use of the two bounds . It is felt, however,

that the lemma and the geometric proof (if not the analytic version) are sufficiently
intuitive to be important in their own right.

16




requires interpolation between two solutions to get the bound for the desired
cost. There is, rowever, a mote essential difference between upper and lower
bounds .

Each upper bound line bounds the entire optimal curve, and hence the bound
is the lower envelope of all the bounding lines, a very simpie procedure. And for
a bound at any one point, a single line may be sufficient.

To do the lower bound, it should be observed that since each pair of
lambdas (and these are "adjacent” lambdas) bounds only that portion of the
optimal curve betwecn the two lambdas, the entire lambda range (or at least
. reasonably larae portion) must be covered . And each bounding line sc found
must be from well-chosen lambdas, for one "bad" line can spoil a bound carefully
;jenerated over most of the range. This is because the lower bound is the lower
envelope of all lower bound lines generated.* And because of this, the lower bound
is the one for which solutions must be carefully chosen to keep the required
number of solutions down.

The following method for choosing the lambdas to find the lower bound
is suggested; results obtained with it were good. In Figure A-3 , suppose
that we have a solution for 17 giving the line P and resuitant attack level

Aj. Now if we pick a slightly different 1) we may imagine that the new line

* A!t}!ongh it looks like a mistake for both upper and lower bounds to be the
minimum envelope, these statements are simply logical implications of the
two bounding theorems.,

17
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P2 could pass through the point Py(Ay, B)*; in this case that the worst error
(difference between generated lower bound and upper bounds formed by Py and
P2) will be a Ay .* il we have some error criterion ¢ , we may mark that

below the point Pl(A:1 +B), and draw the desired lower bound starting from the

intercept HO through the point at « below P1(A;.B) up to the saturation point

L.

Payoff for Cost 8

Ay Attack L?;el

Figure A-3. First Step in Picking New Lambda

A°. The slope 15 is then found by drawing the line from A° through

Pl(Al,B}, as shown in Figure A-4.

* Actually if cost closing is exact, P2 must be above the points; if cost closing
is poor, then it will fall below the point.

18




Payoff for cost B

o =
o

Attacr level
Figure A-4. Chosen Lambda Value

The X5 chosen here was less than Xy . A similar procedure starts from the
saturation point of Py (instead of HO) to find higher lambda values.

The procedure shown graphically here can be described analytically,
of course, but the problem is merely one in similar triangles, and it will not be
presented here. In this procedure, the difference A3 - 2 2 is approximately
proportional to 1/ ¢ , and since the entire lambda range must be covered, the

error reduction is proportional to 1/(number of Lagrangian solutions).

19
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APPENDIX B

|. INTRODUCTION

The cell model described in the basic report makes feasible the solution of large-
scale weapons effects problems which otherwise are intractable. The ccll medel rests
on several assumptions. A targeting model has been developed which, in addition to its
general utility as a targeter, helps to illuminate the nature and degree of the approximations
of the cell medel. This paper descrihes the targeting model and compares the results that
it produces with those praduced by the cell model. It is assumed here that the reader under-
stands the operation of the cell model,

The targeting model communicates with the cell madel in the sense that the defenses
generated and the weapon-to-cell allocations of the cell madel can be used to determine
weapon allocations in the targeting madel, (The actual method of communicating is discussed
in another section of this appendix.) The targeting model uses the cell model to suggest
ground zcros, generates a weapon drop to carrespond roughly to the number of weapons predicted,
angd carculates the effects of that drop on a citywide basis. By using the cell model as a
guide for initial ground zero selection and making the final adjustments (called here “diddling")
only after the entire attack is laid down, the targeting model achieves the advantages of

simultancous targeting, in contrast to the method of sequential weapon drops.

23




fI. COMPARISON OF WEAPON EFFECTS CALCULATIONS

Fatality calculations are based on three factars: distribution of population and shelters,

distribution of weapons, and the method of calculating weapons effects for the two distribu-

tions given, The cell model treats these factors as follows:

1C.

2C.

3C.

Population is distributed uniformly over the entire cell; shelters are
distributed over the entire cell,

Weapons laydown is characterized by the number of weapons allocated
for a cell--effects are independent of position within a cell, but depend
only upon number per cell, As the cell model is implemented in this
study , weapons may be allocated only in discrete quanta which may

be less than one weapon per cell,

The only pertinent parameters for effects calculations are the area of
the cell and the total expected lethal area of the weapons. The total
lethal area is calculated from the effects radius for a single weapon
and the expected number of weapons delivered. In addition, it is
assumed that weapons effects are confined to the cell in which the
weapon is delivered. While not inherent in the cell model, the present
calculations also assume that weapons effects in a cell can be cal-
culated from an exponentia! function which considers only the ratio

of delivered lethal area to total cell area.

It should be noted that the assumptions in 3C above are entirely consistent with a drop

of one weapon which covers more than one cell, since the allowed quantum levels may permit

fractional weapons in a single cell, Figure B-1 shows, for example, the cell model prediction

for a single weapon drop on Washington. This is consistent with a drop of one weapon at

the juncture point of celis 9, 10, 7, and 6.

It is not unreasonable to expect that the cell model would therefore become an accurate

guide for weanon placement and would thus be a valuable first approximation to the exact

targeting. The effectiveness of the cell model in predicting ground zeros could be

proved if, and only if, there were some method of predicting the absolute maximum kili

24
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Figure B-1
achievable on a city. Since no theorems have as yet been discovered to find this maximum,
the optimality of a targeting doctrine must be determined by heuristic methods. The targeting
mode! program provides a mechanism for taking a particular laydown of weapons, examining
it in a systematic mamner and attempting to improve the laydown by moving those v 1pons
which kill the fewest people to a location wherein the kill could be increased. This brute
force method of moving weapons does not guarantee that the optimum kill configuration will
be obtained, but it does guarantee that every weapon move made will improve the kill, If
some weapon drop has achieved a local maximum no provision is made for moving two or

more weapons simultaneously in order to find the global maximum.

25
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In addition to the possible use of the cell model as a targeting guide, it may also
be useful for calculation of fatalities. Its accuracy in this role depends on the applica-
bility of the particular function it employs for celi-wide fatality calculations. The section
on results in this Appendix comments further on this question,
In contrast to the cell model, the targeting model is based on the following set of
assumptions:
1T. Populatior is concentrated at points-=those points given by the
census tracts. For each tract point the population is sheltered
proportionally to the shelters allocated for that cell,

2T. Weapons laydown is characterized by ground zeros specified by
latitude and longitude.

3T. Weapons effects can be calculated from the yield, CEP, deiivery
probability, and relative distance of separation,

The first assumption, that of population distribution, may iead to an overestimate
of the kill against sheltered population, since the weapons, in either the initial laydown
or in the diddling process, may seek local concentrations of population whicli would not
exist in any real sheiter situation. Note that the shelter costs are based on some
occupancy factor, say 1000 people/shelter; if two or more 1000-person shelters are
indicated for a single tract, the kill would be computed on the basis of destruction of
more than one shelter's worth at a single point, The actual population distribution is
a mixture of shelters, with 1000 people/shelter for the sheiter cases and a probably
uniforin random distribution of unsheltered people within a city. The tract modei repre=-
sents a gross averaging of these effects providing more detail than the cell model but

not as much detail as an individual shelter model.
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For calculation of weapon eifects, the yield, CEP, height zf Liwst, and shelter

hardness are all incorporated in a single function, the single shot kill probability function
whicl will calculate the kill of a given shelter hardness at a given distance for a given
weapon with a given yield, height of burst and CEP. The calculation of distance between
population point and weapon burst point is explicit in the targetinag mode!, although implicit
in the cell model, {The cell model also has an implicit interpretation of CEP,) The kili
scales in the usual manner with yield; the functions used for calculating the kill closely

approxunate tie sigma 20 and sigma 30 curves for weapons effects,
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1. PROGRAM DESCRIPTION

it is important, in understanding the flow of information within the program, to
distinguish between two separate interpretations of the targeting model:

1. The model itse!f represents an approximation to the real world in that the
mode! purports to predict the outcome of a particular sequence of actions,
biast sheiter deployments, weapon laydowns. The correspondence between
the model and the real world {and any real worid action) was chosen on the
basis of a set of approximations--approximations necessary to allow iterative
solutions to the basic equations. This information flow, and model apsroxi-
mation to real world actions, was described in the Introduction to this Appen-
dix, and the rationale for the choice of popu'ation distribution representation,
weapon effects representation, and weapons laydown approximations was
discussed there. All of this discussion forms a preamble to the second
description of the model, i.e., its representation in the computer program.

2. For a given set of assumptions, which were chosen on the basis described
in Paragraph 1., information is passed from one section of the mode! to another
to attempt to solve the equations. This section of the paper will describe
the use of information flow within the mode! in the solution of the equations.

The computational method suggested by this study to find ground zeros in a city is
as follows:

1. Use the cell model to lay down a lambda-constrained attack. From this attack,
the weapon density to be delivered to a particular cell is predicted.

Using the weapon density found in Step 1. as a guide, make a laydown of
actual ground zeros which matches the particular number of weapons/cell.
Evaluate such a laydown on a citywide basis. A Monte Carlo selection of
ground zeros continues and the set of ground zeros which maximizes the
kill is chosen.

N

W

Diddling, or fine scale improvement, is the final step. An attempt is made to
find a better location for the weapons on a citywide basis, and this process
continues as long as there is substantial improvement in the kill.

Kill computations may be handled in either of two ways:

1. As an AGZ (no random effects) - the PSI at the point from a weapon at
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another point is calculated, and knowing shelter hardness, the kill probability
is calculated.

2. As a DGZ - the effects of CEP and delivery probability can be included

by using a single shot kill prohability function to calculate the expected
kith, This use of the DGZ is, of course, the most usual way of treating the problem

In programming this model an attempt has been made to yicld the maximum possible
flexibility consistent with the accuracy and speed requirements, This flexibility includes a
number of methods of interpreting weapon parameters and shelter parameters. The program
is designed to communicate with the cell model, but at the same time act as a completely
independent targeting model--receiving its input from outside the cell medel and targeiing
weapons and allocating shelters independently of any information available to the cell model.

In order to allow the user the flexibility described in the preceding paragraph, the
program has neen written in four separate sections, with control of the various sections
monitored by a super monitor progran - VALID. One of the subsections, DATAIN, reads
(almost) all the data for the program, both parameter descriptions and program flow controls.
On the basis of the data inputs through DATAIN, various other sub-monitors are called,
These sactions are as follows. (See Figure B-2.)

DATAIN - Reads in all the data, prefills the kill computation tables, sets up the
monitor controls. The data order is predetermined, and the entire block of data must be
read in in DATAIN. (In several of the options additional data is called for; this information
always follows the DATAIN package.) DATAIN is always called.

INCELL - This subroutine provides the major communication link with the cell model .
At the user's designation the INCELL computation can be bypassed in its entirety, and the
model used as a targeter or as an evaluator. In several of the options only INCELL is called,

in order to give the user a microscopic view of the cell model--that is, what might happen
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on a single selected city with certain choices of cell model parameters. In certain options,
INCELL is called many times for the purpose of choosing a set of parameters for future
exploration.

SELECT - This subroutine monitors the basic targeting. It uses arrays either filled
from INCELL (from the cell mode!) or filled from extemal sources. A fixed point parameter
is provided as an argument to the subroutine which could control the targeting algorithm to
be used. Al the present time, the only path which has been activated is one which does a
random drop of weapons within cells and chooses the drop which maximizes the kilt. The
modular structure of the program allows for expansion to include other taryeting doctrines.

The subroutine SELECT (and all of its calls on the targeting programs) may be by-
passed. It may be (and has been found to be) desirable to cycle through INCELL in order
to determine the effects on a single city. For example, for a number of values of lambda,
one might desire to knov. the number of weapons dropped on each city, and from this list
(called a iambda map) select several sets of lambdas and mus for further exploration. A
simple switch setting in the data input subsection will allow this cycling.

DIDDLE, the fourth major subsection of the program, incorporates processes to
improve weapon allocations. These allocations are based on the output from SELECT, and
DIDDLE attempts to move weapons around in an effort to improve the kill. The controls
over DIDDLE are rather elaborate--the grid size for weapon moving can be selected,
and that to several degrees of accuracy. The control over the cessation of the
DIDDLE process depends upon the number of weapons laid down, or some absalute
number of weapons, or the amount of improvement which came from the last diddle.

At the end of the DIDDLE cycle, the least effective weapon should have a removal potential

roughly cotresponding to the {ambda used in the initial laydown. For the subset of weapons
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with the lowest payoff, the DIDDLE process smooths out the removal potential and tends to
cqualize all weapans, The DIDDLE process ilsell should he a fine targeting scheme;
however, it is an inherently slow method of doing things, With any laydown, the DIDDLE
process should tend to provide an optimal kiil, althounh it does it by selectively placing
each weapon on a yrid and evaluating the effects of moving that weapon, As a targeter it
would tend to be slow and should he used only with a good initial taydown, such as would
be provided by SELECT. For speed, the entire DIDDLE process can he hypassed.

The basic process-=that one which is repeated many, many times=--is the calculation
of the kill at a point from a weapon at another point, In the basic laydown, this operation
is c¢one for each weapon against each tract; in the DIDDLE process for a single weapon
against each tract, this process is repeated for many weapons moved on a grid. Only the
pretabling of the kill keeps this computation from being so slow as to prohibit any significant
amount of diddling.

The major communication link between subroutines is through information passed through
a series of arrays. SELECT depends upon the weapons/cell arrays being filled, as well as
the shelter/cell, DIDDLE in turn depends upon the ground zeros being specified (i.e., the
latitudes and longitudes) and people/shelter being specified, As long as these arrays arc
filled, the appropriate monitor subroutine will work, controiling its own subprograms .
Communication links between the various monitors is provided by switches set in VALID,

The basic, most time consuming step in the program is the calculation of the kill
probability at a given point. Much effort has been devoted to making this calculation as
rapid as possible. For a given weapon one computes the kill probability at each population
point in the city; if these are tracts, one computes the kill at each of, say, several hundred

tc several thousand points. For each tract, separate computation must he made of the kill
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on each shelter, and there may he as many as five shelters at a given point, The survival
probability must be stored for each component at each point., Thus, the kill computation
apparently must be made for the product of, first, the number of weapons on a city; second,
the number of tracts in a city; and, third, the number of shelters/tract. For a single trial,
each hasic computation involves the entrance into a function which computes the kill given
the weapon yield, CEP, shelter hardness, and distance, Fourth, multiply this basic com-
putation by, say, 100 trials for the basic weapons laydown and the number of basic simple
computations becomes horrendous. The DIDDLE process adds yet another dimension since
for the best laydown the background kill (defined as the effect of N-1 weapons on the city)
is calculated for each of the N weapons. For the worst weapon (that weapon which has the
largest hackground) and a predetermined grid, the kill is computed for each grid point.
In order to expedite this basic kill computation as a function of distance and PSI, the
following steps have been taken:
1. The kiil is pretabled.
2. At those places where the physics dictates that computation is not needed, it is
not made. Inthis program, a reqular grid is laid down over the city.
Many of these grid points are tested in the calculation although they lie outside

the city limits and a weapon put there will contribute nothing to the kill. It is

faster to calculate and discard these points than to precompute that they will
be discarded,

a, If at a given distance in the softest shelter component the kill probability
is almost zero, no further kills are made on this tract, since harder shelters
will certainly survive,

b. If population is small (i.e., survivors from other weapons or original filled
population), then no kill camputation is made on this component,

This pretabling of ki!l computation accomplishes most of the speedup. The kill

utzputation in the program is made Ly citering two arrays which have been prefilled, The
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first has the survival probability calculated at equal intervals of distance, and the second
array has the slone hetween equal intervals, For a given distance the index 'o enter the
arrays is computed by dividing the distance by the increment used, The survival probability
then is simply the survival probability at that distance (found from 2 single index 1) and that
hardness (found from a single index J) plus the fractional contribution at tt * distance, All
of the basic interpolation arravs are precomputed,

The precomputation makes maximum use of the available storage space computing its
own distance increment and filling up the entire avaiiahle space in the following mamner,
A starting value of Xmin and Xmax (the maximum distances is given. The number of distance
increments (i.e., the amount of storage space) is specified and a starting delta distance is
comiputed, The program then starts with the softest shelter and fills up the kill versus
distance table, As the kill is conputed,the program examines to insure that at the maximum
oistance the kill for each shelter component goes to zero, If, fer some shelter, at the
maximam distance it does not go to zero, the program doubles the maximum distance , computes
a new delta and fills up the table, The softest shelter companent is that which is certain
to be wrong if any are wrong, This doubling process is continued until the survival proba-
hility does reach zero, At this point the kill arrays for harder shelters will he filled properly.

An alternative possibility is that the maximum has heen selected at too long a distance
and the entire availahle space would not have been used, After the entire table is filled
(i.e., for each shelter component) the maximun distanse {i.e., for any further distance no
kitl computations need be made) is known, If the maximum of maximum distances is less

than Xmax, then Xwax is set 2qual to the maximum of maximum distances, insuring
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immediately best use of the table. The iteration of table filling generally takes no more
than two or three cycles which involves typically one undershoot, a doubling of the distance
to produce an overshoot, followed hy an exact zeroing in on X.max, i.e., a rudimentary root
finding. In the course of filling the data tables the distance at which the kill gnes to zero
was determined, This distance is filled into a suppiementzry table and whenever the kil!
function is entered the distance is compared with the cutoff distance for this PSI; if the
distance is greater than Dmax for that hardness component, a kili of zero is returned and the
kill camputation further expedited.,

Atter the basic kill verzus distance tables are filied up, the program then calculates
the interpolation table waick is jus. the kill between successive entries per nautical mile.
Thus the difference hetween the actual distance and the number of increments is multiplied
hy the kill/mile and added to the ba<ic kill to rapidly produce an interpolated distance.

This scheme, though rapid, is space consuming, It requires two tables for each of
two heights of burst (l.e,, one interpolation table and one basic table). It also requires
a number of distance increments (in this version 60 are used) for a number of hardness
components (five in this version); a total of 1200 spaces are required to cove- five hard-
nesses, two HOB's and the entire distance, plus two supplementary cutoff tables--one for
each height of burst (i.e., the distance at which the kill for a particular PS| becomes zero).

The more storage space available the more accurate the interpolation. Since the
scheme Is a pleccwise linear approximation, at relatively short intervals the approximation
can be made as accurate as possible by using more space. The interpolation accuracy can
he tested directly in the program by calling Subroutine TESTKILL. TESTKILL spans the
entire range of distance and delivers the kill as computed directly from the SSKP function

and the kill as computed from the interpolated kill function. It selects points at random
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from the kill range (sweeping the entire range first from smaller to larger distance and then
from larger to smaller so that for the analyst the plotting job is expedited).

The combined effect of the pretabling and interpolation and cutoff in kill computation
is sufficient to allow a weapon laydown of some nominal to large number of weapons, onc
hundred trials and several cycles of diddling, all within an 8-15 minute cycle of computer
time suggesting that even tighter coding miaht speed up the process. For cxample, the
number of trials is presently fixed. However, in many cases the sigma from the first 20 or
so trials is only a small fraction of the mean and the casualty distribution is a very tight
one. In this case, the appropriate optimum can be achieved with a few trials. This is
particularly the case when the population is all soft and the weapons hig, and it makes
little difference where they are put, since the entire population is killed, if, however, the
population is hard, or a mixture of hard and soft, it then may take more trials and more
selective diddling to find the correct ground zeros. Thus the program could adjust the
number of trials dependent upon the distribution of casualties achieved up to this point,

Tables B-1 and B- 2 list the basic data used in the present analysis for computing

the result tables in Section V.
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IV. USE OF THE PROGRAM

Almost all of the data required for the targeling program is read in in DATAIN. Shelter

specifications and city designations are done in DRIVE . Al of the input is contained jn a

series of arrays, which are used in the various options of running the program. The list of

cards to be read is:
1. An alphabetic card which prints out a label for the particuiar run,

2. The diagnostic cards: many of the subroutines contain diagnostic printing which
can be set to print merely by reading in the name of the appropriate subroutine,
In mary cases this produces voluminous printing which is most useful for debugging.
The list of diagnostic cantrols is terminated by a blank card. If no diagnostic
printing is required, the blank card must be includea,

3. A card with the basic weapon characteristics is read in. Parameters arc yield,
CEP, height of burst, and probability of delivery.

4. The set of array fillers follows:

Array BINPUT, with six elements, interpreted as shown in Table B -3,

Array ISWITCH, which determines the calling sequence for the various
submonitors as well as the interpretation of the parameters, The wealth of
attack and defense options can best be understood by examining ISWITCH.
Table B -4 gives the use of the various elements in ISWITCH, subsequent
tables describe the interpretation of the values ascribed to elements of this
array.

The various values that ISWITCH(1) can assume are given in Table B -5,

A value of 6 combined with a value of 2 or 3 in ISWITCH(9) controls
special options for reading in defense only and evaluating with lambda. Most
useful in evaluating against a stabilized defense, or one not easily derivable
from a mu/lambda combination.

A value of 2, 5, or 6 for ISWITCH(1) causes supplementary cards to
be read in: for 2 or 5, weapon and shelter arrays are filled; if ISWITCH(1) = 6
and ISWITCH(10) = 0, then lambda and mu arrays are read in, If ISWITCH(1) =
6 but ISWITCH(10) = 1, only lambdas are read. These supplementary
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Table B -3, Interpretation of BINPUT

Lamhda
Mu

Switch to control DIDDLE parameters grid control; a value of
1 allows DGZs to he moved over the entire city; 2 restricts
the weapon to its cell

(Not Used)

Total cost of the nationwide defense, used only in the option where
total defense cost rather than mu or city defense is read in. If
ISWITCH(1) = 7, BINPUT(5) is interpreted as the total number of
weapons in the attack,

City cost, used in a similar manner to BINPUT(5) to set the defense
level on a city, rather than nationwide.
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Table B-4. Interpretation of ISWITCH

Sheet 1 of 2
1 Input control switch (see Table B - & for explanation of values).
2 Validation algorithin - currently only a value of 1 is acceptable.

If algorithms for weapon assignment other than random within a
cell were to be used, the flow in SELECT would he controlled
through setting of this switch.

3 Full validation control - 1 Program cycles through SELECT after

choosing initial laydown

2 Program returns after INCELL, no
validation

4 DIDDLE control 1 No fine mesh improvement in DIDDLE

subroutine

2 Fine scale improvement used in DIDDLE

5 Control on filling the kill probability arrays:

1 Arrays will not he filled--this option implies
that PSI will be calculated directly and speed
up provisions will not be used

2 PREFILL will he called and arrays filled
will kill versus distance

3 Same as 2, but TESTKILL will be called
in addition, and interpolation schemes can
be compared with direct calculation for
accuracy checks

6 Equation to be used in filling arrays:
1 Fills kill arrays using PSl

2 Fills kill arrays using single shot kill
probability function, using yield and CEP
read in on weapon card
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Table B-4. Interpretation of ISWITCH
Sheet 2 of 2

Control on tracts or shelters - (Not presently used) - This option is
inserted to allow future expansion of the program to go to the fine detail
of including individua! shelters, with a maximum shelter size to he
determined by input cards. If the costing is based on 1000 people/
shelter, the program can be modified to spread the tracts (which have
typicalty more than 1000 people) into more numerous points with
smaller numbers of pecple/point.

Use of basic point kill calculation routine;

1 Use BAD, which calculates kill based
on PSI and does not use the pretabled kill

2 Use BADBAD which uses the precomputed
tabies

Special control on Input, used in conjunction with ISWITCH(1). If,
and only if, ISWITCH(1) = 6.

1 Read a lambda/mu list {(normal interpretation
of ISWITCH(L) - 6

2 Read alambda list and evaluate in INCFLL
without changing preread defense options

3 Read avalue of lamhda and evaluate using
prefilled defense option

Option control for normaiizing weapons:

1 Normalize weapons/cell as found by INCELL
rounding to nearest integer

2 Use actual cell model outputs from INCELL
as expected number of weapons /cell

3 Same as 2 with additional proviso that
total number of weapons/cell is constrained
to insure total number of weapons is within
one weapon for all trials
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Tahle B-5. Interpretation of Values of ISWITCH(1)

fnput value of lambda and mu, and determine attack and defense from
these values.

Input fixed point numbers for numbers of weapons, height of burst,
and number of peopie in each shelter, bypass INCELL computation
in ils entirety,

input value of lamhda and cost of a defense on a single city
(BINPUT(6)).

Input value of tambda and the nationwide defense cost (BINPUT(5)).
Read floating point number of weapons, height of burst and number

of people in each shelter (same as 2, except that weapons now
treated as expected number of weapons (ISWITCH(10) should be
equal to 2 or 3),

Read in an array of lambdas and mus and cycle only through INCELL,
no validation, prints out only a list of payoffs for lambda and mu

and does not give the details of what happens on each cell,

Cuts out detailed cell printing in INCELL, just prints out payoff,
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rcads occur in VALID itself, not in DATAIN and only after the entire data deck
is read in. Thus, the card order is fixed and inviolate and even if data is not

interpreted it must be read in, |In this way the data deck card order never need
he altered.

The next array to be supplied is NFIXED , which controls the parameters
of the evaluation, Tabhle B -6 describes this array. DIDDLE consists of calls
on two hasic subroutines , FINDWORS and MOVEGRID, FINDWORS locates
the worst weapon hy calcnlating the payoff if cach weapon in succession is
omitted from the set of weapons dropped, That weapon which makes the smallest
contribution to the total paycff is designated as worst (note that locating and
moving the worst weapon, under this definition, does not guarantee that an
optimum targeting will be found; it is possible that a weapon found hy some
other criterion than that above should be moved, since the cells are not actually
independent). However, this direct method is used rather than any of the wore
elahorate algorithms (for example, interchange all pairs, move two or three
simultancously) . The background survivors from all weapons except the worst
are calculated and prestored , and MOVEGRID moves the worst weapon over the
grid to find a place where the kill is improved. The grid can be specified to
be confined to that cell in which the weapon appears, or can be over the entire
city, this being the more usual case. In a major cycle, a grid is set up hy
taking the minimum and maximum latitudes and longitudes and specifying the
number of intervals to divide this into by NXMAJOR and NYMAJOR ., (The
minimum and maximum latitude and fongitude will be that for a cell or for the
city, dependent upon the setting in BINPUT(4).) The number of times this
process is repeated (the process being call (1) FINDWORS to locate the worst
weapon and (2) MOVEGRID to find the best location) is controlled by several
other parameters which are explained below. Foallowing completion of the major
cycles, the program may undergo minor cycles if NFIXED(8) = 1. In a minor
cycle the worst weapon is found using FINDWORS; MOVEGRID is calied to find
a hetter place (exactly as was done in a major cycle) but then a fine grain improve-
ment is made. At the hest grid point, a smaller grid point, the number in each
direction being given by NFIXED(6) and (7) is set up, the size being given in
FLOAT. And MOVEGRID locates the tinal coordinates for the best
ground zero. The sequence is

MAJOR CYCLE: FINDWORS, MOVEGRID (repeat until end)

MINOR CYCLE: FINDWORS, MOVEGRID (reset grid
parameters for fine mesh, MOVEGRID,
repeat until done)

Controls cn cycling arc given in FLOAT which is described in Tahle B=7, The
last set of input cards are read into FLOAT, an array of 24 elements. SCALE,
SCALEZ2, and SCALE3 can be used inthe grid in DIDDLE to insure that the
grid chosen is not requiar., SCALE is a number between O and 1, and should be
about .10, A value of .1 will insure that separately the X and Y displacements
lie within 104 of the specified (unrandomized) value,
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1
2

N N O

10

NTRIALS
NINTER

{Not Used)

NXMAJOR
NYMAJOR

NXMINOR
NYMINOR
[FMINOR
NNLAM
NNMU

Table B-6. Interpretation of NFIXED

Number of trials in Random Laydown

Number of intervals in which to accumulate statistics:
When making random laydowns of weapons , the program
keeps the hest value of the payoff, and the first NINTER
values of payoff. If NINTER is less than or equal to the
number of trials, it orders the total NTRIAL laydown and
prints out an ordered list of answers, |f NINTER is greater
than the number of trials, it uses the first NINTER results
to calculate the mean and sigma, and then accumulates the
distribution in fractions of sigma intervals below and above
the mean

Number of grid points in a major cycle in DIDDLE in the
X direction

Number of grid points in a major cycle in DIDDLE in the
Y direction

Minor cycle, X direction grid points

Minor cycle, Y direction grid points

Include both major and mincer cycles (1=yes, 2=no)
Number of lambdas to be read in if ISWITCH(1) = 6
Number of mus to be read in if ISWITCH(1) = 6
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10

11

12

13

{Not Used)

FTOTAL

DXMINOR
DYMINOR
FSECOND

FIRMAX

SECMAX
SCALE

SCALE?2
SCALE3

XMIN

XMAX

NSIGMAS

14-24 (Not Used)

Table B-7. Interpretation of FLOAT

Total number of maicr cycles in DIDDLE will not exceed
FTOTAL* total number of weapons

Grid size in nauticz' miles in X direction in minor cycle

Y direction grid size

Total number of minor cycles will not exceed FSECOND*
total number of weapens

Absolute number of major cycles {cutoff is MintFTOTALx
total weanons, FIR MAX))

Absolute number of minor cycles

Major cycle scale factor to determine random placement of
ground 2evos

Minor ~ycie scale factor -~ major grid
Minor grid on minor cycle scale factor

Minimum X2 for SSKP table: For speed the SSKP table
nses distance squareu rather than distance for the argu-

ment, XMIN is typically sct equal to soma small number
Gi.e., 0001 miics?)

Maximum distance. This parameter must he geeater than XMIN,
hut need not he chosen accurately. Due to the root finding
capability of the SSKP routine (PREFILL), the program will
adjust XMAX to the value necessary to fill the array. Iteration
cycles can be eliminated if the exact value is put in but this
iteration is not very time cons.ming,

Number of sigmas to compute intervals to stere results of
random trials,

46

| sk




]

V. RESULTS

The targeting model was studied for two purposes:

1. To determine the deyrec of correspondence between the cell model, which
neglects overlap, and a model of targeti: . using averlap. Two guestions
arise here; is the cell model a good tar ter, and does it provide realistic
fatality calculations?

2. To provide a method for rapid and accurate placement of ground zeros within

a city in order to determine the damage to that city, using the properties of
stmultaneous targeting rather than the more conventional but less accurate
methods of sequential targeting,

i lk . .

Tables B=-8 through B-19 show exemplar cases in whick hoth the cell -+ . ard the
targeting model lay down weapons in attacks on Washington, when the nationwio. hudget
for these stabilized defenses is $5, 10 and 20 billion dollars, These weavons in the
targeting mode! are assumed to be one megaton; the results of the cell model are then
adjusted sa that they can also he interpreted as otie=megaton weapons,

It can he scen from these tables that the cell model predicts the fatalities in attacked
cells quite well, whether the attacked ceils were sheltered or unsheltered. The sheltered
iattacked cells show little if any kill, indicating that the call effects are well confined.
The only serious discrepancy of the cell madel shows up in cases of unsheltered unattacked
cells, in which there is of course o consideration of the effects on a cell which was not
attacked directly hut whose neighboring cells were attacked, Indeed, it can be said that

the differences between the total kills predicted by the two models can be traced to

differences in this one case.

* Tables appear at the end of this section,
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One method of improving the cell model is to replace the exponential function by one
which considers the entire unsheltered fraction of an attacked cell to be killed if the ratio
of delivered lethal area exceeds the cell area, This correction would at least predict that
the entire unsheltered population of an attacked cell would be killed, whereas at present the
cell model predicts only 60% fatalities in an unsheltered attacked celi*.

The tables also show that the process of "diddling,"” the improvement of the placement
of wearons, brings about relatively small increases in fatalities over those predicted hy the
cell model, This suggests that the cell model is an excellent mechanism for preliminary
selection of ground zeros for a simultaneous targeting scheme, In cases in which anly a few
(five or fewer) weapons are dropped, diddling attempts to achieve optimal coverage and
neglects its kill of hardened people, going after the unsheltered unattacked population so that
intnis rase there are larger differences between the two models than in other cases, In cascs
in which a larger number of weapons is to be laid down, the situation is different, The cell
model might well, on the basis of the population distribution, target one cell of sheltered
population with, say, six weapons; the diddling process would move those weapans to destroy
unsheltered population, If, however, the number of weapons to he used is sufficiently large,
and if the population distribution is relatively uniform over the city, the diddling nrocess does

attempt to destroy sheltered population as well as unsheltered.

%

When 0,25 weapon is assigned to a cell, the lethal area is approximately four square
nautical miles, the area of the cell, Tha exponential prediction for the fraction killed is
then 1 - exp - (0.25 x 4) or approximately 60¢,
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Table B-8

CASE 47 DEFENSE TOTAL 5 NUMBER OF WEAPONS 4
CELL | TARGET
MODEL MODEL DIDDLE
TOTAL KILL 394056 638260 636579
UNSHELTERED KILL 369379 617750 679800
___________________________________ “ _—
UNSHELTERED/ATTACKED 369379 371186 373283
———————————————————————————— b il Bl
UNSHELTERED/UNATTACKED 0 246564 306517
SHELTERED AT 42 PSI KILL 24675 10784 2937
———————————————————————————— 4--—————T———-—-——1
SHELTERED,/ATTACKED 24675 10784 2937
————————————————————————————— l--—--——w——-—-—-———i
SHELTERED/UNATTAC!ED 0 0 0
SHELTERED AT 141 PSIKILL 0 9727 3842
—————————————————————————————— i R
SHELTERED/ATTACKED 0 9727 3842
——————————————————————————————————— JF -t e 4en mm
SHELTERED/UNATTACKED 0 0 0
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Table B-9

CASE 45 DEFENSE TOTAL 5 NUMBER OF WEAPQONS 7
CELL ARGET
MODEL MODEL DIDDLE
TOTAL KILL 510997 809638 830113
UNSHELTERED KiLL 425009 783369 798977
—————————————————————————————— e et
UNSHELTERED/ATTACKED 438009 430611 445943
UNSHELTERED/UNATTACKED 0 352758 353029
SHELTERED AT 42 PSI KILL 50779 19535 22495
______________________ L e e m o = = - —— ]
SHELTERED ATTACKED 50779 5374 3335
—————————————————————— ot e - e e R AR e me we w  m em  E e ay
SHELTERED UNATTACKED 0 14161 14160
SHELTERED AT 141 PSI KILL 22209 6464 8641
e - e wma ewe W EE wE S AT S o e e T e e W e S e L ------- - e e e me Ty e ] L M R e wee me e
SHELTERED ATTACKED 22209 6464 8641
SHELTERED UNATTACKED 0 0 0
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Tebhle B-10

CASE 48 DEFENSE TOTAL 5 NUMBER OF WEAPONS 10
CELL TARGET
L MODEL MODEL DIDDLE
TOTAL KILL 761191 859182 868224
UNSHELTERED KILL 682633 798548 805236
—————————————————————— L-—-———o—-—--um-—————l———————
UNSHELTERED-ATTACKED 682633 699932 701331
pur = - - = e e e v - e fr o — o —— - e me e e e e -
UNSHELTERED/UNATTACKED 0 98666 103905
SHELTERED AT 42 PSI KILL 69751 50129 51885
SHELTERED-ATTACKED 69751 50129 51885
SHELTERED, UNATTACKED 0 0 0
SHELTERED AT 141 PSI KILL 8807 10455 11103
SHELTERED/ATTACKED 8807 10455 11103
—————————————————————— h——-————qh——————j————-—
SHELTERED/UNATTACKED 0 0 0 ‘l
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Table B-11

CASE 46 DEFENSE TOTAL

5 NUMBER OF WEAPONS _ 15

CELL TARGET ”
MODEL MODEL  DIDDLE

TOTAL KILL 897259 913351 i 913351 .
UNSHELTERED KILL 786863 ; 824613 ' 824613

—————————————————————— - - - —-——--!+————-——-—7———--——-T
UNSHELTERED/ATTACKED 1786863 | 805273 ' 805273

e e m e m— e I 1 ....... e e
UNSHELTERED,/UNATTACKED 0 ;19340 | 19340

.

SHELTERED AT 42 PSIKILL 88187 . 70797 70797
e ————— e e e e ————— .
SHELTERED/ATTACKED 88187 70797 70797
______________________ R PR A ——
SHELTERED UNATTACKED 0 0 0
SHELTERED AT 141 PSI KILL 22209 17940 17940
_____________________ IR SRR
SHELTERED/ATTACKED 22209 17940 17540
SHELTERED/UNATTACKED 0 0 0
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CASE_ 144 DEFENSE TOTAL 10

Table B=12

NUMBER OF WEAPONS 5

CELL TARGET
MODE L MODEL DIDDLE
TOTAL KILL 676510 701624 726399
UNSHELTERED KILL 2344938 633514 6514386
_____________________ e e e — e - = — ]
UNSHELTERED/ATTACKED 234498 266027 240685
UNSHELTERED/UNATTACKED 0 367487 410801
SHELTERED AT 42 PSI KILL 22927 46189 50695
_____________________ fr e e e e e e e - — -]
SHELTERED/ATTACKED 22927 38001 30913
SHELTERED/UNATTACKED 0 8188 19782
SHELTERED AT 141 PSIKILL 21713 21921 24218
SHELTERED/ATTACKED 21713 20543 20543
____________________________ r.__.__-... | [
SHELTERED/UNATTACKED 0 1378 3675
;
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Table B-13

CASE 143 DEFENSE TOTAL 10 NUMBER OF WEAPONS 5
i CELL + TARGET
MODEL MODEL DIDDLE
TOTAL KILL 280095 634084 717842
UNSHELTERED KILL 229928 569718 628407
———————————————————————————— -1p-—--—————————-—4
UNSHELTERED/ATTACKED 229928 225429 215143
———————————————————————————— -, - - -~
UNSHELTERED/UNATTACKED 0 344289 413264
SHELTERED AT 42 PSI KILL 28454 39865 60485
SHELTERED/ATTACKED 28454 39865 39865
_____________________ T TR S AU S PR R —————
SHELTERED-UNATTACKED 0 0 20620
SHELTERED AT 141 PSI KILL 21713 24501 28951
————————————————————— b e e -
SHELTERED/ATTACKED 21713 24501 24500
_____________________________ ] [ S —
SHELTERED/UNATTACKED 0 0 4451
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Table B-14

CASE 134 DEFENSE TOTAL 10 NUMBER OF WEAPONS 9

CELL TARGET 0
' MODEL MODEL DIDDLE
i
TOTAL KILL 676510 796469 812875
UNSHELTERED KILL 601956 726625 733048
UNSHELTERED/ATTACKED 601956 626165 626165
————————————————————— i—————-——J-—-—— -——— e . —
UNSHELTERED/UNATTACKED 0 99460 106983
SHELTERED AT 42 PSIKILL 42509 52789 62773
————————————————————————————— b - o —— —— — —
SHELTERED/ATTACKED 42509 46659 46659
_____________________ r-————.—.—--.—_———————-——---
SHELTERED/UNATTACKED 0 6130 16114
SHELTER:D AT 141 PSIKILL 32046 17055 17055
SHELTERED/ATTACKED 32046 16886 16886
e e mE e e e m e e T e e e e = e — - o o ] — - ——— ~
SHELTERED/UNATTACKED 0 169 169
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Table B-15
CASE_ 132 DEFENSE TOTAL__10  NUMBER OF WEAPONS 14
“CELL TARGET |
. MODEL MODEL __ DIDDLE |
TOTAL KILL 796168 | 867968 | 880630 f
| UNSHELTERED KILL 687833 731574 | 734744 |
{
e i bl Sy Sttt ekl
UNSHELTERED/ATTACKED . 687833 712351 | 715403
!
____________________ _IT__——————_—————L_-.-—-—-—
UNSHELTERED. UNATTACKED 0 19223 19341 -
'SHELTERED AT 42 PSI KILL 72840 88739 98280 '
S S RO S i
SHELTERED ATTACKED 72840 88739 98280
SHELTERED UNATTACKED 0 0 0
'SHELTERED AT 141 PSI KILL 35495 47656 47656
SHELTERED ATTACKED 35495 47656 47656
SHELTERED,UNATTACKED 0 0 0
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Table

B-16

CASE 140 DEFENSE TOTAL 10  NUMBER OF WEAPONS 16

CELL TARGET i
MODEL MODEL DIDDLE
TOTAL KiLL 812494 884311 884311
UNSHELTERED KILL 609681 721526 721526
————————————————————— L..—.-—_.——_.{L—————————_.._-__...
UNSHELTERED/ATTACKED 609681 655626 614409
UNSHELTERED/UNATTACKED 0 65900 107117
SHELTERED AT 42 PSI KILL 97178 85032 85032
———————————————————————————— {-—--—‘—--‘——-—1————-——--{
SHELTERED/ATTACKED 97178 85032 85032
____________________________ R
SHELTERED/UNATTACKED 0 0 0
SHELTERED AT 141 PSIKILL 105635 77752 77752
b e e e e e M e e e e e e = e = - - e = (o = ——]
SHELTERED/ATTACKED 105635 77752 777¢
SHELTERED/UNATTACKED 0 0 0
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Tahia R-17

CASE_ 137 DEFENSE TOTAL 10 NUMBER OF WEAPONS_ 26
CELL TARGET .
MODEL MODEL | DIDDLE
TOTAL KILL 942451 946579 | 955380
UNSHELTERED KILL 729213 734862 | 734862
T— ——————————————————— - == P —————
UNSHELTERED/ATTACKED 729213 734862 | 734862
o e e 2e e e = e = A e = e - - S e = — - P A o i e e — o — =
UNSHELTERED/UNATTACKED 0 0 0
SHELTERED AT 42 PSI KILL 107600 118596 | 125794
___________________________ S S P ——
SHELTERED/ATTACKED. 107600 118596 | 125794
____________________ U g —
SHELTERED,/UNATTACKED 0 0 0
SHELTERED AT 141 PSIKILL 105638 93120 94724
———————————————————— T————————{ -—-n-———l-——————-l
SHELTERED/ATTACKED 105638 93120 94724
SHELTERED/UNATTACKED 0 0 0
, |
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CASE__ 54  DEFENSE TOTAL_20 _ NUMBER OF WEAPONS__ 5
: CELL TARGET ,
| MODEL MODEL | DIDDLE |
| TOTAL KILL 382615 | 471329 | 492015
'UNSHELTERED KILL 325776 | 384318 | 398926
' nsHeLTeReD/ATTACKED | 305776 | 352952 | 349766
S R . § R
UNSHELTERED/UNATTACKED 0 31336 | 49160
SHELTERED AT 42 PSIKILL 0 0 4153
setereomtraces | o | o | o
seterenarmckes | o | o | aiss)
SHELTERED AT 141 PSI KILL 51944 80235 | 82169
| SHELTEREOATTAGKED | 51944 | aozss | 79633
e I P
SHELTERED AT 424 PSI KILL 4895 6766 6766
| seLTeRED/ATTAGKED | 4895 | 6766 | 6766
seiteReumaTace | o | o | o
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| CASC_ 52 DEFENSE TOTAL_ 20 NUMBER OF WEAPONS 9
; ; “CELL TTARGET
. MODEL MODEL | DIDDLE
TOTAL KILL 50669 | 566521 | 577892
UNSHELTERED KILL 374522 | 438345 | 438400
S RIS IPRPNPDEY RN L]
UNSHELTERED/ATTACKED 374522 | 395438 | 395572 |
_____________________________ -[_.—.-—————___—_ l
|
UNSHELTERED/UNATTACKED 0 42907 | 42808 |
1
SHELTERED AT 42 PS! KILL 5524 10773 | 10773 |
___________________________________________ i
SHELTERED, ATTACKED 90889 10619 | 10619
| | SHELTERED,UNATTACKED 0 154 154 |
'SHELTERED AT 141 PSI KiLL 90889 | 107866 | 113627
I S | R ]
 SHELTERED/ATTACKED 90889 | 105805 | 111566 |
—————————————————————— 1———-—————]——————-—&——-————--‘1
| SHELTERED, UNATTACKED o i 206l 2051
f
'SHELTERED AT 424 FSI KILL 9434 9536 | 15012
| SHELTERED/ATTACKED 9434 9536 | 15012
| SHELTERED/UNATTACKED 0 0 i o
'. j
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APPENDIX C

AN ANALYTICAL MODEL FOR BLAST SHELTER DEPLOYMENT

A, INTRODUCTION

In designing a very detailed computer mode! to investigate the optimal deploy~
ment of hlast shelters in the U. S., and their effectiveness in reducing casualties in
case of enemy attack, it was noted that employment in the mode! of certain analytic
relationships of fairly general acceptability permitted a simple analytic soiution to a
useful version of the optimum deployment and national effectiveness problem. While this
byroduct is of interest in itself it cannot replace the original model for research purposes,
because of certain simplifications required in the analytic model,

In this analytic version, only pure sheitering is permitted (uniformly) in each
rcgion and a single optimal air burst height* is implied in the relation chosen for
individual blast sheiter effect in reducing weapon lethal area. In addition, the 12
density regions listed in the Hudson Institute publication "The Design and Performance
of 'Optimum' Blast Shelter Programs,”" by William M. Brown** were chosen for repre-
sentative calculations on the LI, S, ; these were checked against 1960 census density

distributions given in another study.***

* Consideration of ground bursts is discussed later.
**  Hudson Institute HI-361-RR/2, June 11, 1964.
Sedoke

H. A. Knapp, lustitute for Defense Analyses, Research Paper P-194. A recent
Hudson Institute paper HI-495-KRR, Population Density in the United States
Urbanized Arezs, March 22, 1965, improved the population density distribution.
However, the earlier Hudson Institute 12-cell distribution was retained for the
present work .
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The treatment is based on a rigorous double Laorange multiplier eptimization
technique to generate the defense deplovment. Such deployments take into account boti
the defense cost to deploy blast shelters and the attacker's cost to overcome such
deployments. This is in marked constrast to most published Lreatments of pure blast
sheltering. |In particular, "balanced defense" deployments, which tend to make diverse
regions equally attractive to the attacker (generally to the attacker's first weapon), are
not in general "optimum" deployments because they ignore the cost to the defense in
providing the deployment. Thus, the cost of defending a given area in a more lucrative
target is greater than the cost of defending the same area in a less lucrative target
hecause the population density in the region defended is higher in the former target,
while the cost of shelters per person sheitered is generally not sufficiently lower in that
same area to compensate. However, the cost to the attacker to overcome either depoly-
ment is the same, a function of his weapons' lethal area only. Therefore, blast shelter-
ing is best deployed from the "inside out" with respect to an ordered target list, since
the less valuable areas may not be worthy of attack or defense at all and the most
valuable regions tend to be too costly to defend except for relatively light attacks or
more extravagant defense deployments, The general model and the simplified analytic
treatment both naturally refiect this tendency in generating a defense deployment. The
resulting optimal deployments, it should he noted, will not make all areas equally
"attraciive" to the attacker. This variation from "balanced defense" is specifically
treated later.

Throughout the treatment which follows, there is a purposeful bias in favor of blast
shelters. Thus, essentially 100% occupancy is assumed for all shelters deployed. In

addition, cost studies used in the general study tend to attribute to sheltering programs



neariy double the cost expenditures i nlied onthe Baliowing recats . Trys type of variation
is cguivalent to multiplication of the costs labeied on eacih curve by a fartor of two,

The choice of optimistic assumptions tends (o set an uppcr limit on blast shelter effective-
ness. Thus, the reader can draw negative inferences with high confidence concerning
hlast shelter effectiveness, Choice of pessimistic assumptions in this case would

have to avoid the many situations which would result in nearly zero effectiveness for

the shelter system - insufficient warning, undisciplined population, attack on counter-
force systems only, etc. Accordingly, we have chosen to give the shelter system all

reasonable advantages when choices of assumptions arose,

B. WEAPON EFFECT MODEL

The "weapon density model" described here is basic to both the general and
simplified treatments, but the more general approach can vary the weapon effect model
as needed,

Consider weapons of lethal area, W, drapped at random into a region of area,

A ( > W), The probability of survival of a point within the area to N weapons is

s=a-% N
If weapon density, d, is defined as N/A (weapons/mi.z), we can write

wd N
S=(1- T) (weapon density model)

for the survival probability in a region attacked by density, d, of weapons of iethal
area, W. The parameter, N, is to be chosen for best representation. By examination
of detailed damage calculations for multiple weapon attacks on cities, it has been
found that N = 1 best represents “"perfect" weapons (zero aiming and delivery error)

and very large values of N best represent other cases. In the latter event, a useful
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ex;ression s
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1 S -~ tlim (1~ )
@ N
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-Wd
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Equation (1) has heen selected for this treatment.,

C. BLAST SHELTER COST AND EFFECTIVENESS RELATIONS

To a fair approximation, the effectiveness of a given psi shelter in reducing

s

attack weapon lethal area is proportional to 1/P (where P is the psi hardness of the
shelter). For weapons of 1 MT yield, the relation for optimal air bursts between
lethal area, W, and psi hardness of the shelter, P, is approximately

i6
; W:-T,-Q 50. mi.)

For other than optimal air bursts, the inverse proportion scems unacceptable,

although Hudson Institute used 150 /P (in sq. miles) as a conjromise hotween

optimal air burst and ground burst. We choose simply
(2) W= {5—
for our derivation, and present results for K = 160, "Balanced defense” results
presented later were all recalculated for K = 160,

For simplicity, and to permit comparison with their results, the expression for
blast shelter cost was taken from the Hudsor Institute publication * noted above. The

cost relation (doiiars/person sheitered) chosen by Hudson Institute was

c=50~+20p 1/2

*  Hudson Institute, op cit.
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These relations, (2) and (2), are admittedly imprecise, but probahly as acceptable
as any sinple analytic functions that could be adopted. Their vse here permits comparison

of the present results with those of the Hudson Institute "balanced defense results,

0. POPULATION DENSITY DISTRIBUTION

The foliowing urban population density distribution for the U, S, , derived by Hudson

institute, is convenient to use,

Table C-1. Urban Population Density Distribut on

fi (density m {number of people}
80 ({thousands/sq.mile) 2 million
; 40 " » " 4
20 " . " 6 "
15 v v 3
10 " " " 6 "

N = E n = 96 million
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E. LAGRANGIAN PAYOFF FUNCTION

The payoff to the attacker, H, assuming the weapon density model, is
H= 2. H.A
where A; is the area and H; is the payoff per unit area in the ith cell, i.e.,

Hi= 1 (1 = exp (=d;W))

Including the Lagrange multipliers for attacker, a , and defender, u ,

in the usual way, we obtain for the Lagrangian payoff function (the attacker's profit),

H' =311 = expladiVp) - x C;A + uC,P

h

The cost in the ith cell to the attacker, C;A, is simply d;, the density of

weapons applied at that cell. The cost in the ith cell to the defender, D, is given

.li
by equation (3) multiplied by the population density in that cell, fi ,

1/2

The resulting equation for H' is

1/2
H' =1 -exp(-dW) -2 d+ » f (a+ bP '

dropping the subscript "i", but understanding that the optimal results in each cell
are to be summed for the nationwide totals. The final relation to obtain an equation

in d and P only, is provided by equation (2)

W = K/P
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Substituting, we obtain, finally

-dK/P
@ w1 - ")

i xd+,‘fé+bp|/2)

As described by Pugh® , the optimal deployment can be obtained by

determining strategies which are solutions to

MIN § MAX [H'(P,d)]}
P d

F. OPTIMAL ATTACK

In the present case, we may derive the optimal attack by differentiating
equation (4) with respect to d to obtain the maximum, Differentiating, then, and

equating the result to zero, we obtain eventually

¥ _ P
5)  d¥ = _R.ln(j’K/Ap), PK> AP
d* = 0, otherwise

It is convenient to define a special defense level from the relation for
d*> 0,i.e., 5’ Kyx P, Thus
(6) P, = XK
Witn defense to the level );’o,the actacker is unable to achieve a positive profit

and, hence, does not attack. This defense level, P, ,is identical to the deployment

*  Pugh, George E., Journal Op. Res. Soc. America, Aug., 1964,
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level selected by Hudson Institute for "balanced defense." The argument leading to

this balanced deployment is approximately as follows. The attacker isto be heldto "} "
fatalities per weapon regardless of his attack level. If the attacker's 1 exceeds

P W= FK/P, he simply doesn't attack. If his 1 is less than ¥ K/P, he can

attack and achieve even more than his criterion of efficiency (choice of 2 ) would
demand, At exactly A =F K/P, he is indifferent, hence P= FK/» isa

"balanced" defense.

C. OPTIMAL DEFENSE DEPLCYMENT

Substituting &% into equation (4), we can minimize the expressian with
respect to P, again by differentiating.

We finally obtain the following general form,

(7)  P=Pyexp (- K 93CD
oo (LK 300

From the relation given before for Cp, we obtain the explicil form

bpp 72
P=P €xp '.“_z.n__

which is easily solved for P by iteration from P = P on the right hand side.

Substituting (7) into (4), we obtain the optimized Lagrangian payoff (profit).

W = 1-f (1-|n%°_) +aa
AL

To add realism, the above profit should be constrained not to exceed that at

which the defender simply does not defend (at zero cost), i.e.,
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H*! ) unsheltered 0
( s 0 punsheltered

Note that the "u" term drops out, since the defense cost is zero,

H, OPTIMUM DEPLOYMENT RESULTS

Figure C-1 shows the resuits of calculations using the mathematical formula-
tion described above to generate optimum blast shelter deployments. Population not
| provided blast shelters are attributed a hardness of 6 psi. Total urban fatalities are
{ indicated on the left scale and attack size along the bottom. Each curve is labeled
i with the cost of the blast shelter prcgrams in billions of dollars, For comparison with
i other studies, curves have also been generated for an unsheltered population hardness
i of 3 psi, In either case, expenditures of $20 billion ar more involve some degree of
blast sheiter for nearly all the population and no difference would be exhibited from
the 6 psi case. This region of higher defense cost is discussed helow.
Notice that the relation for the optimal defense level involves the attacker's
x , which corresponds to some attack level. Thus, as might be expected, the choice
of assumption about the attack level or ) affects the defense which is found -- each
defense is optimized for some attack level, In accordance with the aim of presenting
the best blast shelters can do, the curves here indicate the performance of blast
shelters optimized at each attack level; the performance of a single defense over the

attack level range is not considered.
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I. EFFECT OF LIMITING MAXIMUM SHELTER HARDNESS TO 300 PS|

Since the cptimal shelter program often calls for several thousand psi hardness
in some regions of high population density, it is interesting to examine the effect
on the program of limiting the maximum shelter hardness to a value such as 300 psi,
above which construction feasibility and cost information tend to he very uncertain,
since additional weapon effects come into play.

In general, the optimum program does not call into use shelters of hardness above
300 psi for program costs less than about $15 billion, At $20 billion, shelters of
hardness above 300 psi are used in the few highest density regions alone/ and only at

lower attack levels; thus, the effect of a hardness limit is still not very noticeable,

The effect at $25 and $30 billion is measurable and illustrated in Figure C-3. The
hardiness limitation sets an upper limit on defense cost at about $38 billion with
this model; the higher defense expenditures shcwn, $35 and $50 and $65 billion
were attained with unlimited shelter hardness and cost.

In any realistic program, population outside this target system would become
eligible for hlast sheltering long before such extreme expenditures that tend to
saturate the targets with sheltering.

Another manifestation of the inaccuracy involvea in any choice of a limited
target set is the artificial suppression of attack efficiency at higher attack levels, when the
atlacker often is hard pressed to find a defended target lucrative enough to provide the
desired payoff (i.e,, " A ") per attacking weapon. At the lower end of the target set
used for this study, population density is 1000 people/st. mi, Since the lethal area

of a single 1MT weapon is about 27 sq. mi( 160 , the attacker can obtain 27,000
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fatalities/weapon in the last cell. However, it is possible that he may obtain even more
than 27,000 fatalities per weapon by attacking in regions outside the 12 cells of this
study. Thus, optimal attacks venerated over the restricted target set for the lower values
of "A" tend to be inefficient to the extent that the attacker can go vutside the target set
and, perhaps, get the desired "A" fatalities per weapon in undefended regions. Such
regions will lie among the cities of less than 50,000 population outside urbanized
areas, which were not included in the formation of the above density distribution,

Assuming such small communities will generally have areas of less than 10 sq, mi.,

they will therefore often have population densities exceeding 5,000 people/sq. mi,
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Thus, the attacker may find lucrative targets outside the five lowest density cells in the
target set. Adgainst such cities the attacker may achieve up to 50,000 fatalities per
weapon, Communities of 10,000 to 50,000 population outside urbanized areas average
about 2,400 people/sq. mi. and include about 16,000,000 people*, The averaye payoff
would approximate 25,000 people/weapon, the same as in the lowest density cell if
undefended., Whether any attacker would divert his attack to such nuon-urban areas is some-
what academic, since there is substantial doubt that such high courfervalue attack tevels
theinselves would ever be obiained or sought by an attacker.

J. VULNERABILITY OF UNSHELTERED POP'JLATION AND
BALANCED DEFENSE RESULTS

A critical variable in evaluating the effectiveness of various shelter programs is the
vulnerability associated with the unsheltered population. Both 3 psi and 6 psi were used
in this calculation, although the latter seems much more realistic, even highly conservative,
since a blast shelter program generally presupposes a nationwide fallout shelter program.
In addition, the results are based on 100% occupancy of those shelters that are deployed,
imp'ying a warned and disciplined population that certainly could take advantage of any
fallout shelters available,

The lower hardness of 3 psi was included in these calculations to permit com-
parison of the present optimal deployments with "balanced" deployments such as those

sk
presented by Hudson Institute , whose "unprotected population" case corresponds

“ H. A, Knapp, op. cit.
** Hudson institute, op. cit.
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fairly closely to the results of this model with a population hardness of 3 psi.*
The optimal blast shelter defense results based on 3 and 6 psi unsheltered hardness
are given in Figure C-4.

Figure C-5 shows balanced defense resulits for various expenditures on blast
shelters (bitlions of dollars). The unprotected population case is taken directly from the
Hudson Institute study cited before.  The $10 to $50 billion balanced defense expenditure
curves were generated by using the analytic relations employed by Hudson Institute, The
dotted curve illustrates the vulnerability of an unsheltered population atiributed a hardness
of 6 psi. Since the unprotected case of Hudson Institute ¢corresponds roughly to a
factor of two greater vulnerability (a factor of two less in nuniber of weapons or
total lethal area, which varies in indirect proportion with hardness), the 3 psi
results of Figure C-2 were generated primarily to compare with the Hudson Institute
results. The importance of the vulnerability associated with the unsheltered population
is shown by the poor performance of the $10 billion balanced defense curve of
Figure C=5, which actually lies above the 6 psi unsheltered population results over
much of the span of attack fevels shown. The technigue of calculation of fatalities
for balanced defense deployments is based on the attacker achieving " X " fatalities per
weapon delivered. The defense is "balanced" when the attacker gets just " 2" as a

maximum number of fatalities per weapon reqardliess of the size attack. The technique

& Actually, the Hudson Institute unprotected population curve (Figure C-5) corresponds
to a mix of harduesses generally somewhat above 3 psi. The lethal area relation used here,
160/P, underestimates lethal area in the region of very low psi.
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used by Hudson Institute can be considered to attribute "1 "' to each attacking weapon for
derivation of the halanced defense. Thus, for smatter attacks, the fraction of population

killed, F, can be approximated very well by:

£ = NU
T

where "N" is the number of weapons and "T" is the total population. This is the relation
that is implied in "balancing" the defense deployment,

However, the more realistic equation

{8) F = l-exp( . 1 )

T
is used by Hudson Institute for caiculation of actual fatalities, hence attributing some-
what less than " A" fatalities to each weapon at higher and higher attack levels, Using
the refations previously derived for optimal attacks, equation (8) can be shown to give the
total fatalities for an optimal attack against a baianced defense deployment, when

Wd , represents attack effectiveness in each unit cell,

equation (1), S=e”
Unfortunately, equation (8) often tends to overstate attack effectiveness and under-
rate defense efficiency, as Figure C-5 clearly demonstrates ior 6 psi unsheltered popula=~
tion, In this case, the balanced defense actually tends to attribute an enhanced vulnera-
bility to unsheltered people, so that the attacker can still achieve almost ¥ A" fatalities
per weapon in the lower density population cells. {n fact, the attacker realistically
cannot achieve the " " implied by a $10 biflion balanced defense (about 146,000

fatalities per weapon) in the population cells of lower density, This remains true even
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for unsheltered population vulnerability of 3 psi, Thus the defender clearly can do better
for the lower defense expenditures than shown in Figure C-5,

A more accurate caiculation of the effectiveness of balanced defense is presented
in Figure C-6., Inthis case, limits of 300 nsi on the highest shelter hardness and 3 psi
on the lowest were set with the intermediate cells balanced as before, Three psi (at zero
cost) was assigned to all cells wherein halanced defense would usually dictate a hardness
helow 5 psi. The defenses derived are shown in Table C-2, For cach fixed defense,
optimal attacks were generated for a spectrum of attack levels. These more judiciously
chosen rlefenses (dotted lines on Figure C-6) are clearly more effective than those implied
in generating the results of the preceding Figure, until the 300 psi cutoff inhibits defense
effectiveness (above $20 billion). However, for the very high attack levels, the 300 psi
cutoff begins to act in favor of the defense since the optimal developments, as shown in
more detail later, tend to drop the highest density cells from the defended set as the
attack levels increase, while the strictly balanced defenses (solid lines) always place
the heaviest defense in the highest density cells.

Figure C-7 compares optimal and balanced defense results from Figures C-2 and
C-6 respectively, At higher expenditures the balanced program for defense begins to
approach the optimal program, High defense expenditures imply lower and lower values of
"u* inthe double Lagrange multiplier treatment, a region in which the optimal psi approaches
the maximum psi more and more closely, called P, in the earlier derivation, and the deploy-
ment hence approaches the balanced deployment of exactly Po hardness for shelters in sach
density region, This tendency is not strong at all if a 300 psi limitation is placed on

maximnn hardness, as shown in Figure C-7,
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Table C~-2. Balanced Defenses
with Cutoffs at 3 psi and 300 psi

Hardness Levels at which Cells are Protected
Cell $2 $5 $10 $15 $20 $25 $35
Number Biltien Billiond/ | Billion 2/ | Billion Billion Billion Billion
1 40 psi 80 psi 132 psi 300 psi 300 psi 300 psi 300 psi
2 20 40 66 184 300 300 300
3 10 20 33 92 205 300 300
4 71/2 15 25 69 150 300 300
5 3 9 16.5 46 102 200 300
6 3 8 13 36.5 81 160 300
7 3 6 10 27.5 61.5 120 300
8 3 5277 8 22.7 50 100 300
3(737)
9 3 3 6.5 18 40 80 280
10 3 3 5(3%) 14 30 60 213
3 (97%)
11 3 3 3 9 20 40 140
12 3 3 3 3 10 20 70
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The discrepancies toward lower defense expenditures are generally due to
overdefense in the highest density cells by the balanced program. As defense
is deployed in the optimal program, the middle cells receive the initial increments and
the dep'oyment spreads to the other cells of higher and lower population density as
more money is spent by the defense. In the present case the last cells to receive
defense are those of highest density. The balanced defense, by ignoring the cost of
supplying defense (the terms involving " » " in the payoff formulation),always puts
the heaviest defense in the cells of largest population density, where the attacker can
most cheaply nullify any deployment. As noted earlier in Figure C-3, $40 and $50 and
$65 billion deployments (where balanced defense most clesely approaches optimal
defense) cannot be achieved except by exceeding a 300 psi maximum hardness, For
these higher expenditure regions the defense essentially saturates the restricted target
system with shelters - the region of filling out from the middle of the target system in
a typical optimal deployment has been passed -- and balanced deployment becomes
equivalent to optimum deployment, but only in a mathematical sense, since neither

mode can invest the quantity of money implied,

K. OPTIMAL VERSUS BALANCED DEPLOYMENTS

A form of the relation derived earlier for the optimal shelter hardness is
useful to show the expected regions of attack and defense level where balanced
deployments eventually became equivalent to optimal deployments. This relation

was given in equation (7) before,

P =P, exp { > ( 3

82



[ e prerre et Y

Where Cpy is the defense cost function; in the present case,
Cp =5 (a+bP1/2)

Since balanced defense corresponds to the relation P = P, the condition for

equivalence of balanced and optimal deployments is

uk 3Cp
Iy 3P

=0

implying u —»0 or » —> o= , The former condition, u-— 0 , leads to very heavy
defense deployments since the defense is willing to expend an unlimited amount of money
to save 1dditional population.*  As observed earlier, the very highest expenditures on
blast sheltering do lead to optimal deployments equivalent to the balanced deployment,
Table C-3 shows this behavicr in detail, cell by cell, for three levels of defense
expenditure at roughly constant attack level. As noted earlier for the graphical results,

the region of equivalence lies at defense costs beyond those which can be achieved with

a 300 psi limitation on maximum shelter hardness (about $38 billion), The tendency at

$24.7 billion is toward a more uniform distribution of hardness over the population
density cells for the optimal deployment, and at $10.7 biliion the highest density
rells are simply not efficient to defend at all, and the lower density cells are much
more heavily defended than for balanced defense, It is interesting to note that balanced

defense of $1G.7 hillion calls for one and three psi hardness in the two lowest density

¥
"4 " measures the value the defender places on his blast shelters in terms of required
population saved per dollar invested in blast shelters.
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Table C-3. Comparison of Various Defense Expenditures on Optimal
Versus Balanced Deployments at Constant Attack Level

Hardness Levels at which Cefls are Protected
(No Maximum or Minimum Hardness Limitations)

Celf Density 1696 Weapons 1554 Weapons 1445 Weapons
j Number | Thousands $48.26 Biltion $24.7 Billion $10.7 Billion o
f Mp Balanced Optimal Balanced Ontimal Balanced Ontinal
w 1 80 6,100 psi | 5.602psi || 1280 psi | 735psi ||  112psi | o defenee
E 2 40 3,050 2,917 640 515 56 nn defense
3 20 1,520 1,500 320 300 28 no defense
4 15 1,140 1,135 240 235 21 no defense
5 10 760 764 160 15 14 no defensc
8 610 614 128 135 11 no defense
7 6 457 464 96 104 8 53 psi
8 5 380 388 80 88 7 46
, 9 4 305 311 64 71 [} 39
10 3 230 234 48 59 4 31
11 2 152 157 32 .37 3 12
12 1 76 79 “ 16 19 1 no defense
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cells, As mentioned before, the strict "balancing" process would often require
a super-softening below the hardness of the unsheltered population. Thus, the
analytic relations developed by Hudson Institute must be used with caution. The more
detailed calculation leading to the results presented in F igure C-6 is recommended for any
precise analysis .

The other limit at which balanced defense becomes equivalent to optimal
defense is A—»e . Since A measures the attackers propensity to attack,* and
varies inversely with attack level, the region of very low attack level, as shown in Table C-4,
is the region of equivalence. The general behavior of the optimal defense deployments

is as discussed before and requires no special comment again.

L. WHEN IS BALANCED DEFENSE ALSO OPTIMAL DEFENSE?

Acide from limiting cases which may or may not be of practical significance, a
version of balanced defense can occur whenever the exponential term is more or less

constant with ¢.»anges in shelter hardness, that is

(9) - uK aCp
» P

# f(P)
implying that

*  The value he places on his weapons in terms of required (minimum) fatalities

per weapon delivered.
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Table C-4, Comparison of $20 Billion Defense Deployments
Optimized Acainst Various Attack Levels

Hardness Level at which

Cells are Protected

Density Balanced 150 303 570 2,341 5,110
Cell Thousands | Defense®/ | Weapons | Weapons | Weapous| Weapons | Weapons
T | %200 | $203 | s20.0 | $19.4 | $26.1| §20F
Billion Bittion Billion Billion Billicn Biltwn
1 €0 752 psi 730psi| 655psi 515psi| no defensd no defens
2 40 376 375 349 3c0 no dcfensq no defense
3 20 188 191 182 165 205psi| o defense
4 15 131 144 138 127 174 no defensc
5 10 94 97 94 88 132 205 psi
6 3 75 78 75 71 111 181
7 6 56 59 57 54 88 150
8 5 47 49 48 46 76 132
9 4 38 39 30 37 63 111
10 3 28 29 29 28 49 86
il 2 19 20 19 19 34 63
12 1 9 10 10 10 18 34
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a/ This column shows balanced defense results to con:pare with the other results
to the right, which are all optimal defense deployiments at the altack levels
indicated,




Thus, any defense cost function that , for instance, is lincar with shelter
hardness, P, leads to a form of balanced defense. This behavior has heen observed
hefore in our studies of the optimization of ballistic missile defense deployments,

where the defense effectiveness is approximated hy a pure saturation model .

Weapons up to a "price of admission” are successfully intercepted by the defense. All

cxcess attacking weapons then penctrate to the target. The chosen function for
defense cost was linear with the defense "price of admission" and it was observed
that the optimal defense deployments in that case corresponded to balanced defense.
Thus, halanced defense cannot necessarily be precluded as non-optimal without

further examination of the implicit cost and effectiveness functions used.

it should be pointed out that the balanced deployment is in fact a typical
deployment subset of the entire optimal deployment, The balanced region in the
optimal deployment corresponds to a region in the solution space where the defense
could make the attacker's Lagrangian expression negative. An obvious boundary
condition, however, causes a zero value of the attacker's Lagrangian to be in force
in any such region. When the attacker's Lagrangian is zero, he can obtain over
that subset of the targets only zero prcfit, and is therefore indifferent between
attack or no-attack. Inthisregion also the optimal defense results are, of course,
independent of mu, which implies an independence of the defense cost to deploy

the shelters. It is essentially a saturation phenomenon.
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APPENDIX D

A. POPULATION AND INDUSTRY DISTRIBUTIONS

The population and industrial data used in the program was sorted by population
density and industrial density to obtain several distributions, The first of the dis-
tributions are the marginal distributions, the distributions of a factor without con-
sidering any of the other factors. For reference, the total daytime population is
209,474,000, total nighttime population is 207,959,000, and total industria!
value is $97,263,000,000.

The first marginal distribution is shown in Figure D-1; it shows the amount
of daytime population below each population density. For example, according to the
graph, 100 million people are located in cells whose population density is less
than 4000/persons/sq.n.mi., and a few million people are located in cells whose
density is greater than 100,000, The points shown in the figure are the data from
which the curve was plotted; such points are not shown on subsequent curves.

Figure D-2 shows the distribution of nighttime population, and Figure D-3
shows the distribution of the maximum population in each cell.* The industrial data
also has an associated industrial value density, and a similar plot can be uone for the

industrial value distribution as shown in F gure D-4 .**

* Note that the total is not the same as the day or night population, since Zmax
(day population, night population} # max {total day population, total night population).

*% The program considers explicitly only those cells whose popuiation or industrial
density is above some cutoff; all other cells are lumped into 10 "tail celis”. These
tail cells diluted the industry in lower density brackets, resulting in the long tail in
Figure D-4.
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The first pair of curves depicting the joint character cf popuiation and industry
are Figures D-5 and D-6. The first is the average industria! density in arcas with
a given population density; the second sho.ws the average population density around

industry. In each industry bracket the u.crage population density is computed from

ZPogulation x Population Density
' Y- Population

and similarly for the average industry. The figures show the average densities, the cells
in any area may be expected to deviate from the curve. For example, Figure D-5 includes
several cells selected from Washington, D. C., Philadelphia, and Chicago to illustrate
how the zurve is an average of all such cells. Each of the letters plotted represents a
cell in that city with population density and industry density as indicated. From these
curves we see that areas of highly dense industry, on the average, have dense daytime
population. However, in highly dense population areas, the average industry density is
relatively low.

Another aspect of the jointness of population and industry is shown in Figures
D-7 and D-8. In statistical terms, Figure D-7 shows the cwrulative distribution of
industry for various population densities; the cumulative distribution of population with
respect to population density is shown for comparison. Figure D-7 indicates how much
industry is located where the population density is less than some specified level.
Similarly, Figure D-8 shows the cumulative distribution of population with respect to
industrial density. From Figure D-7, for instance, we can observe that 477 of the

population and 31 of the industry are located in areas with less than 5000 persons
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per square mile . *

This pair of graphs is usefu!l in that unsheltered fatalities in a pure population
or pure industry attack can be determined directly from them. In the two types of
attack, the attack density is a function of popuiation or industry density, respectively.
Then for different ranges of density the fraction killed is determined, and the population

in each different fractional kill bracket is read from the curves. Total fatalities then

come directly.

*These last two figures deserve a word of caution: they should not be interpreted as
saying more than is indicated. Observe, for instance, that Figure D-7 indicates that
halif the population is located in areas with 33% of the industry, and that Figure D-8
indicates that half the population is located in areas with 10% of the industry. The
explanation, of course, is that it is not tue same 104,000,000 people, and the
curves in no way indicate that it is the same popuiation.

23



TR NN TR TR

PCPULATION (millions

tions)

POPULATION imi

20

200

i IR D iy ser wn 2 R W SR WD M D DD RS G GID VJ8 Wk ol (ED 3 G0 D N P SR G Gl &) G B D &N 5D A D N D D 0% AR G5 S &9 4R G S0 ED . 4

TOTAL DAY POPULATION 209,474,000

180F

HOT

100

,,,,,,,, -4 —

80

) b R R : T T B AN | L b 41

0
100

220

1,000 10,000 100,000
D, PLRSOMS SQUARE N. MILE

Figure D-1. DAYTIME Population L.ocated Where the
Population Density is Less Than D

ITOTAL NIGHT Pgm.l!ﬁu'g'\l 207 959, 000

200

------- svssiissdesionfnatiiqeeee

140

120

40

P o

i WSRO WSS WU T W J 1 SO W S TR T |

1,000 10,000 100,000
D, PERSONS/SQUARE N. MILE

Figure D=2, NIGHTTIME Population Located in
Areas Where the Population Density is Less Than D

94




POPULATION (mibio-s

PERCENT CF TOT&L

240 s ——

[P e ——
220 /
200
180
160}
Vao0}-
120F
100 F—-— —~ - - - - —
80
&1
40
1 /
0 i Il . )| i 4 ) O S T e L ) R N N
100 1,000 10,000 100,000
D, PERSONS /SQUARE N, MILE
Figure D-3. Portion of MAXIMUM Population Located Where
the Population Density is Less Than D
100 —
75
-
50 -
25
B _‘----h----_——
---—-
—-"—-—
0 1 L { { I H ] ] S T 1 A 1] F I N
100 1,000 10,000 100,000

I, $1,000 ADDED/SQUARE N. MILE

Figure D-4. Percentage of INDUSTRY Located Where
the Industrial Density is Less Than |

95



T TTITTTeE

—~—v e

100,000 — -
: ¢
z 5
&
«
2
3 -
wy
75,000
8 N
o
«
;\ i
& 50,000f— e ,
E P
a - . i
% ’ i
2 25,000 {
3 - =
= - H
2 :
1 / w ‘i
0 I I will| i ! Ll L1l LA L
100 1,000 10,000 100, 000
D, PEOPLE/SJUARE N. MILE
Figure D-5. Average Industry Density in Areas Where the
Daytime Population Density is D, Including Several Example Cells
from Washington, D.C., Philadelphia, and Chicago
w
= 100,000
z
z L.
=
«
2
3 .
£ 75,000
z L
ol
g
>
: -
z
w
& 50,000 S S e
Z
Q
L —
h]
g
9 ..
& 25,000
p-S B /
[T¥]
>
< /
e 4. Iy ) T | L | s J | S 1 ] L i Ll
100 \,000 10,000 100,000

1, $1,000 ADDED /SQUARE N. MILE

Figure D-6. Average DAYTIME Population Density
in Areas Where the Industrial Density is |

96




TCTAL

PE-JERIT OF

PERCENT OF TOTAL

100
. 4 4
100 1,000 10,000 100,000
D, PEOPLESQUARE MILE
Figure D-7. Percentage of Maximum Population and Industry
Located Where the Population Density is Less Than D
100 — — o — — ,,ﬁ'______________,}_v
73
50
25
g
N i N T N S I R S SR N L 1
100 , 1,000 10,000

i, $1,000 ADDED/SQUARE N, MILE

Figure D-8. Percentage of Maximum Pqpulation.and' Induslry
Located Where the Industrial Density is Less Than }

97



AL R ol

S e T s s S e s

APPEND!X E

SUGGESTED ADDITIONAL STUDY



APPENDIX E

SUGGESTED ADDITIONAL STUDY

There remain many interesting possibilities for additional exploration of the techniques

develaped in this study; some of these will be mentioned here,

The first computation requires no program changes, and it uses the capabiiities of the

program quite completely. This procedure is as follows:

1. Using the parameters from one of the stabilized defenses (with the assumed
attack objective set to pure population) or with a set chosen according to the
procedure outlined in the stabilization section, compute a nationwide defense
and evaluate it. The performance of these defense parameters will now be
known for the gross nationwide model,

2. For some city prepare detailed population data, first into cells smaller than two
mile squares, and then perhaps into closely spaced "census tract" points,

3.  Use the parameters mentioned above as inputs for the defense generation in the
targeting model,

4. Use the lambdas corresponding to different nationwide attack levels to generate
different attacks on the city. In this way these city attacks can be considered
as parts of total nationwide attack. The city evaluation may then be performed
for different yields, CEP's, shelter filling modes, times of attack, and attack
objectives.

A second area begins with the observation that the effectiveness of shelter deployments

seems quite insensitive to the deployment scheme; for example, balanced defense appears to
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be a rcascnably effective defense. Now that insensitivity has been established, it can ho

exploited to obtain simple deployment rules as follows:

1.

It appears (from time-phasing results) that a defense using 100 psi sheiter:
anly would he alimost as effective as an unrestricted defense. Several such
100 psi defenses couid be generated.

The shelter distribution from such an output couid be used to generate a curve
of either cost allocated per person or average hardness as a function of popu-
lation density. Since there is only a single sheiter type, and since the exact
shelter mix de,.ioyed makes no difference, such curves completely define the
defense.™

Fit a simple analytical approximation to the allocation curve. Then, use the
approximate ruie to generate a shelter deployment, perhaps leaving one or more
parameters in the approximation free for an optimization. Such simple rules
cannot be found from reguiar optimization runs, because the optimization
procedurr inherently generates an "irregular' deployment, choosing one
deployment over ancther to gain even the siightest improvement.

The curves found in 2. above themselves would he interesting for comparison

between low fambda, medium lambda, high lambda, and stabilized defenses,

Third, there remain areas within the model which could be modified or made more

realistic. The exponential evaluation function used in the cell model could be impraved on

*For the defenses generated in this study, which consist of shelters of different hardnesses,
such curves do not define a defense and hence are not as meaningful.
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{(perhaps following ane of the suggestions made in Appendix B); a different shelter filling
mode could he added; or the cost of shelters could be varied as a function of population
density. However, the study seems to have eliminated the need to consider certain aspects,
such as further industry-tike national resources.

Lastly, from consideration of the results of the stabilization procedure, it can be
seen that of the three types of stabilization, attack size stabilization and attack objective
stabilization achieve their yoals satisfactorily. The important factor in a stabilized defense
which deyraded performance most was attack fevei stabifization, since the stabilized defenses
appear not to offer very much over a range of attack levels compared to a defense tuned to a
"mriddle" value of that range.

In this study the defenses postitlated consider blast shelters only; it is at least as
interesting to include active defenses also. On the basis of past experience, it is believed
that a defense considering active defenses and bhlast shelters can be made to stabilize the
entire attack leve! range effectively. In such a posture the two types of defenses are
conplementary: the active defense providing protection against a low level of attack and the

hlast shelters providing defense against large levels of attack,
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APPENDIX F

PARAMETERS FOR CURVES

Section IV of the main body of this report (Valume 1) contains resuits
plotted from data which was in turn generated by computer runs. This Appendix
mercly cross correlates the computer runs with those figures based on such
computations.

The defense number (=XXXXX) is assigned to each defense deployment;
the run number refers to a specific printout. The cost and the lambda combination
are specified for each defense, and then the population bases will be shown as
NIGHT/DAY, indicating the first and second population bases. The assumed
attack objective will be indicated as 70/30, meaning 707 weight on population

and 307 weight on industry.

Figures 3 - 6: runs 98, 99, and 105.
Figure 7: runs 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, and 60

Figure 8: run number 151, $5 billion, DAY/DAY, pure population objective;
run number 113, $10 billion, DAY/DAY, pure population objective; run
number 152, $15 billion, DAY/DAY, pure population objective; run number
115, $20 bitlion, DAY/DAY, pure population objective; run number 118,
136 and 140, $30 billion, DAY/DAY, pure population objective.

Figure 9: run number 103, $10 billion, NIGHT/NIGHT, pure popuiation; run
number 87, $15 billion, NIGHT/NIGHT, pure population; run number 116,
$20 biilion, NIGHT/NIGHT, pure population; run number 119, $30 billion,
NIGHT/NIGHT, pure population; run number 99, unsheltered nighttime popula-
tion, pure population attack.
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Figure 10: run 97, =56728, 510 billion, lambda = (78850 x .6, 78G5 x .4),
NIGHT /DAY, pure population assumed, compared with the $10 billion optimal
curve, run 113,

Figure 11: run 82, =1236, $5 billion, lambda = (118270 x .7, 11827 x .3),
NIGHT /DAY, 50:50 assumed; run 145, 260592, $10 billion, lambda -
(78850 x .75, 7885 x .25), DAY/DAY, 70,30 assumed; run 142,
=41596, $15 billion, lambda = (47300 x .7, 550 x .3), DAY,/DAY,
75,25 assumed; run 160, =62474, $20 billion, lambda —(40000 x .65,
2500 x .35), DAY /DAY, 80,20 assumed,

Figure 12: run 82, <1236, 55 billion, lambda = (118270 x.7, 11827 x .3},
NIGHT, DAY, 50,50 assumed; run 95, =10930, $10 biition, lambda -
(78850 x .7, 7885 x .3), NIGHT DAY, 5050 ascuned; run 92, =46136,
$15 billion, lambda = (47300 x .6, 5500 x .4), NIGHT, DAY, 50,50
assumed; run 93, =87480, %20 billion, lambda = (31540 x .5, 4500 x .5),
NIGHT /DAY, 50.50 assumed.

Figure 13: run 106, =40642, $10 billion, lambda - 100000, DAY. DAY,
pure population assumed; run 145, =60592, $10 billion, lambda =(78850 x
.75, 7885 x .25), DAY/DAY, 70/30 assumed,

Figure 14: run 149, =30353, $20 billion, lambda = 25000, DAY,DAY,
80,20 ass:umed; run 160, =62474, $20 billion, lambda = (40000 x .65,
2500 x .35), DAY, DAY, 80,20 ass:ined.

Figure 15: run 98, unsheltered population; run 145, =60592, $10 billion,
lambda = (78350 x .75, 7885 x .25), DAY,DAY, 70.30 assumed; run
113, the 10,0 DAY DAY bounds.

Figure 16: runs 79 and 80, =95458, $10 billion, lambda = (78850 x .6,
7885 x .4), NIGHT,/DAY, 50,50 assumed.

Figures 17-29: runs 79, 80, 0, 91, 97, and 122, =56728, =95455,

and =38442, $10 billion, lambda = (78850 x .6, 7885 x .4), NIGHT/DAY.

Figure 30: run 79, =95458, $10 billion, lambda -(78850 x .6, 7885 x .4),
NIGHT /DAY, 50,50 assumed; run 109, =18480, lambda = (78850 x .6,
7885 x .4), DAY/DAY, 50,50 assumed.

Figure 31: run 108, 95458, $10 biliion, lambda = (788504.6, 7885 x.4),
NIGHT /DAY, 50/50 assumed; run 117, 7426, $10 billion, lambda =
(78850 x .6, 7885 x .4), NIGHY/NIGHT, 50,50 assumed; run 103,
$10 biliion, NIGHT/NIGHT, pure population.

Figare 32: runs 71, 77, 85, and 86; FINAL shelters, NIGHT /DAY, pure
population attack.
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Figure 33: run number 155, 56762, $5 bitlion, lambda = (118270 x .7,
11827 x .3), NIGHT/DAY, 50/50 assumed, time-phased with #27218,
run 153, #27218, $10 billion, lambda= (78850 x .7, 7885 x .3),
NIGHT /DAY, 50/50 assumed, time-phased with #11364, run 148, *11364,
$15 billion, (47300 x .6, 550 x .4), NIGHT/DAY, 50/50 assumed,
time-phased with #87480. All other curves identical with Figure 12.

Figure 35: The standard case for the next severa! figures is run 125, #46521,
$10 biition, tambda = minimax (78850, 7885), NIGHT/DAY, 70/30
assumed. The minimax lambda selection is to hold down "twisting" between
the standard case and variational cases; run 147, #60402, $10 billion
STATCOST, lambda = minimax (78859, 7885), NIGHT/DAY, 70,30
assumed.

Figwe 36: run 135, 507 alert evaluation of defense #46521, the standard
case; run 127, #417, $10 billion optimized with 50% alert, lambda =
minimax (78850, 7885), NIGHT/DAY, 70/30 assumed,

Figure 37: run 135, 15% softer evaluation of defense #46521, the standard
case; run 146, #5016, $10 billion optimized with 15% softer shelters,
tambda = minimax (78850, 7885), NIGHT/DAY, 70/30 assumed.

Figure 38: run 131, #65717, $10 billion, FINAL-3 sheliters (3 addad shelter
mixes), lambda = minimax (78850, 7885), NIGHT/DAY, 70/30 assumed,

Figure 39;: run 4and 7, #51944, both are HOUSTON she'ters, $15 billion,
lambda = 10000, DAY/DAY, pure population assumed; total population is
90,619,000.

Figure 40: runs 79 and 133, #95458, $10 billion, lambda = (78850 x .6,
7885 x .4), NIGHT/DAY, 50/50 assumed.

Figure 43: run 161, #14396; run 93, #87480; both are $15 billion, lambda =
(31540 x .5, 4500 x .5), NIGHT/DAY, 50/50 assumed.

Figure 44; runs 137, 138, 143, and 144; run 106, #40642, $10 billion,
lambda = 100000 DAY/DAY pure population assumed.

Figure 45: run 125, #46521, $10 billion, lambda = minimax (78850,
7885), NIGHT/DAY, 70/30 assumed.

Figure 47: runs 29 and 30, #59995 and #54375, HOUSTON shelters,
$15 billion, lambda = (40000 x.65, 2500 x .35), DAY/DAY,
population attack only.

Figure 48: runs 79 and 122, #95458 and #38442; both are $10 billion,
lambda = (78850 x .6, 7885 x .4), NIGHT/DAY.
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Figure 49: rui 150, #87454, $20 billion, lambda ~ (31540 x .5,
4500 x .5), NIGHT/DAY, pure industry assumed; run 124, #692, lambda
minimax (400000,4500), NIGHT/DAY, pure population assumed.

Table IV; runs 8, 19, 11, 13, 14,17, 18, 19;=947¢ 13575,
77414, 73500, 52785, and 28249; $£15 billion, lan..da — 40,000,
pure popilati on assumed; total population is 90,619,000,

Table V: runs 82, 100, 101, 102; #1236, 41036, and 49068;
$5 billion, lambda = (118270 x .7, 11827 x .3) 50/50 assumed;
rins 79, 108, 109, 111, and 117; defense numbers 95458, 18480
and 7426; lambda = (78850 x .6, 7885 x .4), 50/50 assumed; runs
93,123,128, 129, and 130; defense numbers 87480, 42734, 90382,
and 96390; $20 billion, lambda = (31540 x .5, 4500 x .5), 50/50
assumed,

Tantes Xl and XHE: run 12, #2274C, HOUSTON Shelters; run 20, #36505,
HOUSTON2; both are $15 billion, lambda ~ (40,000 x .522, 2500 x .47%),
DAY/DAY, pue population assumed; total population is 90,619,000,
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APPENDIX G

HOUSTON AND APRIL SHELTER DATA

Some of the computer runs were made with shelter data other than the FINAL
set. These other two sets of data have labels HOUSTON and APRIL; Table G-1 shows

the HOUSTON parameters and Table G-2 the APRIL data.
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Table G-1. HOUSTON Parameters

°o - ;
DEFENSE CODE HJuSTON _ N
© LISTING OF SHELTER TYPES
° SHELTER TYPE  COST SPREAD OF PS! LEVELS
e 2IMSHEL 0.0 3,6 » 0,33 6,6 ¢ 0,33 13,0 « 0,33
-~ PSI 325,10 0 e 0,3V 80,8 e 0,38 68,0 v g,y T T T
(o] 180 PS] 379,08 117,0 « 0,33 43,0 « 0,33 175,0 » 0,33
390 + S} 774,09 359,0 & 0,33 4380,0 ¢ 0,33 520,0 ¢ 0,33
o .
LISTING JF PUSSTeLE SHELTEN ALLOCATIONS o o
(o ) DEFENSE 0PTIO. FRACTION OF PUPULATINN SUPPLIEN FACH SWELTER TYPE
1 ENTIveE BIPOLATION SUPPLIFD SHeLTER TYPF UNSHFEL
(o 2 P] » NTIRE FOPRLATION SUPPLIFD SHELTER TYPF 35 PSI
3 ENTIRE PORPLATION SUPPLIFD SHELTFR TYPE 100 PSt
T T T T T T T T T L HETEYROLAYTON  SURPLTEDT SHELTERCTYPRE 800 RS T T T T
(o] 5 ANERFL * 0,50 35 pS] *« 0,50
’ 6 15 Ps * 0,50 190 P51 ¢ 0,50
7 100 PSL e €,50 300 PSI e 0,50
8 8 LINSHEL e« 0,50 100 PS] + 0,50
. 9 NGMRL e 0,50 30D PS! e+ 0,50
- 10 TNSHEL e 0,70 100 PST * 0,30 s
O 11 UNGHFL e 0,20 190 PSI w 0,80 _
- 12 SHEL s 0,80 7360 PST 0,20 Tt T -
13 15 PS1 e 0,10 100 PSI » 0,50 300 PSt e« 0,40
(s 14 INSHEL « 0,407 100 PSI e 0,40 300 PSI ¢ 0,20 T
L 15 HNSHEL e 0,20 100 PSI + 0,50 300 PS] ¢ 0,30 . .
o _ e S _ e
__DYTPUT FOR RUN TYPE  INPUT e
N LETHAL ARFA TA3JLE
ookst
I 3780 6707 13,00 4,00 TS07007 60T T {17,000 143,00 175,00 50,00 437,n0 520,00
n,n0 30,68 14,36 4,73 2,39 1,89 1,54 nN,R4 n,71 0,62 0,34 9,11 0,25
25un,00° “4T,13° 17,87 R,33 7,48 1,92 1,50 1,07 0,90 0,76 0,19 0,14 5.n8
3egn.n0 43,02 18,77 A,B4 2,57 1,94 1,78 1,13 n,93 0,71 Nyn7 nend 2,00
300,00 44,96 20,16 9,37 2,47 2,107 7 1,96 0,R7 0,53 ny34 0,90 .00 .00
4500,90 51,01 21,76 1t1,h4 2,91 2,30 2,00 1,92 0,00 n,ng 0,00 0,400 2,00
5500,10 53,12 21,14 17,65 712 A, 87 53 Th,n0 0,10 7T TR 8,00 U n.ng
6500,00 59,88 24,03 13,92 0,62 0,00 0,10 a,.n0 0,00 0,00 0,00 0,00 n,no
8000,50 64,27 29,09 A,S50 0,00 0,00 0,0 n,n0 n,00 0,00 0,00 n,no n,00
900n,00 65,68 29,72 1,93 0,00 0,00 n,0 n,no n,Nno 0,00 0,00 n,no 8,00
10000,00 ~ 54,63 27,54 2,39 0,00 0,00 0,10 a,n0 n,00 0,00 0,00 0,00 2,10
B ~EVISED LETHAL AREA TauiF
vyl
N 34060 AlAC 15,00 4P,80 50,00 AN."0 117.n0 143,00 175,00 350,00 430,00 &20,00
0,00 3N, 6y 14,306 hy73 2,39 1,8y 1,54 NGR4T 0, 7L T TTTAVEST 0,847 0,0 A0
6500 ,00 59,68 26,03 15,92 1,42 0,00 0o n,n0 0,00 0,00 0,00 0,00 n.00
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