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A method, based on cowplex variable theory, is presénted

-‘for solving potuvtial problems involving conducting solids of

revolution. Attention is paid exclisively tc tke right circular

¢ylinder, both Beea.use:~this problem possesses a high degrce of

symmetry which brings about certain simplifications, and because

coaparisan can te made vith previous resulis. The generaliistion

~frmn the ~qy1inder to other axially symmetric geometries showad .
become obtvious. Thiz method depends on the establishmént of an
integral represectation for the potential function, vhichlea-ds

to the fovmulation of the proble: in terms of a pair of coupled
¥redholm integral equacions of tiis first :ind. As an illustrative
example these equations are solved numericaily in tlgg lowest

approximation and the capacitaince of the cylinder is cnlcialaged.
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1. Introduction

Ir this vork we vresent a method for solving the electrostatic
protlem of a charged, right circular, conducting cylinder. This

Brovis= has beer treated previously by Fﬂthel 2

, using a method
vwhich depends cn tic following very important property of an axially
symmctric potential function, nan;ely, the vaiue of the potential every-
vhere is know: «gn‘ce\its value on the Symetry axjs is determined. Our
method also dep?nds on this property, but in quite a different way.
Here wo use it té“:é‘t...&i«}sh an integral representation for the poten-
tial functicn which 5as & ver: simple form. The problem is then
formulated in terms o u pair of integral cguaticns vhich are well
suited for numerical integration. Inasmuch as Snurthe~ has published
nunerical results of high sccuracy, it is not our primary intention to
reproduce these solutions in great detail. No heavy computation is
therefore attempted:. Our interest is mainly methodological. It is

hoped that this method can te applied with equal ease to other solids

of revolution.

2. Whittaker's Solution

Denote the radius of the cylinder by a and its length 2b .
Let us set up a cylindrical coordinate system such that the origin and
the z-axis coincide with the ceuater and the symmetry axis of the cylin-
der. Thus the cylinder is defined by th: intersecting surfaces o = a
and 2z = +b. The potential function we seek is a solution of the

axially symmetric Laplace equation

R SO "“"‘Jﬁg
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vitn the condition that it vanishez at infinity and that it reduces to

b

a constant value Vo on the surface of the cylinger.

For r =Vo + z2 >b , let us expand the axially symmetric

potential function Y%(p,z) in terms of the spherical harmonics:

D i et B e T
.

i -
: -n=-1
l Y(o,2) = ) ar P (cos 0) (2.2)
: n=0
! ‘ vhere the an's are real constants. On the upper z-axis 0 =0 and
]

r =2 . Therefore

v(0,z) » | a 2~ . z>b (2.3)

. n=0 n

The spherical harmonics have the integral representation

n
r.n-l Pn(cos Q) = -}r- l (z + ipcos c)-n-l da (2.4)
0

Multiplying (2.4) by a and suming over n wve get

n=0

L
% 4
V(e,z) = %—J ) an(z +ipcos a) "t da (2.5)
0

] Ty e e e

Assuming that v(0,z) is an analytic function, we can regard the inte-

grand as the analytic continuation of V(0,z) to complex values of its

[

argument. Hence
n

V(p,z) = %- J V(0,z + i p cos a) do
0

(2.6)




5.

Tnis is a special case of Whittaker's solution cf Lapiace's equation3.
It gives a prescription for obtaining the off-axis value of the pcten-
tial in tems of the v2lue on the upper axis provided, of course, thct
the iatter is an analytic function. We note that for -b <z <b ,
v(0,z} 1is undefrined. Its value there must be obtained by analytic

cqntinuation.
3. Analytic Froperties of VY{(0,z

The potential funciion V(gs,z) has another integral represcntation

in tke f5mm of the particular solution of Poisson's equation:

-~
V(p,z) = ,;,,—::J %ds (3.1)

where o 1is the surface charge density, R the distance from a point on
the cylinder to an observation point, and the integral is tsken over the

surface of tie cylinder. For points on the axis

o(p',b) o'dp" a(p',-b) p'do’

1

v(0,z) = 52 * zi
°0 Yo¥s (207 20 \orBr (z + )
p o{a,z') adz’'

2;
2
° b o+ (2 - 2')

The three integrals represent contributions from charges on the top, the

bottom and the side of the cylinder respectively. From symmetry we have

o(p',b) = ofp',-b)

o(a,z') = o(a,-2") (3.3)
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The o's are continuous and bounded except at the edges p = z ,

z = $b , vhere, according to the edge comui:ion“t Q‘e;:s&ﬁe;gg ozfly

/3

like 6-1 » & being the distance from the edge. Thus (3.2) defines

V(0,z) as an analytic i\mcticn* ofF =2, ~t':lea.rly v(0,z) is real for 2z
resl and tends to zero like z 1 as |z| + = . o
The singularities of V(0,z) can be read off from (3.2).. The first

fntegral bes & branch cut from b-ia to b+ia ; the secord intégrai hos

a cut frux -b-ia to -b+ia ; and the third integral has tvo cuts from

" ~btia to biia respectively. These branch cuts of V(0,z) from a rec-

tangle in the z-plane which is 1déntica1~to the section of the cylinder
by & plane conteining the symmetry axis. It can be shown that this prop-
erty of V(0,z) 1is true of all solids of revolution.

The zymmetry of the problem in the physical space implies a certain
symmetry in the z-plane. We readily deduce from (3.2) a.;:d (3.3) that the
absolute values of V(0,z) and V{U,-z) are equal. If we analytically

continue V(0,z} from the point 2z to the point -z , we must choose a

path which avoids the branch cuts near the origin. Then during the

 process all the square roots in (3.2) change sign. We conclude that

whereas the value of the potential on the symmetry axis is an even function

of 2z in the physical space, it is an odd function in the complex z-plane:
v(0,-z) = - vi{0,z) " (3:.%)

in general, the value of V(0,z) on the positive real axis of thé z-plane
coincides with the physical value of the potential on the upper symmetry
axis, while the value on the pegative real axis 2%ffers in sign from the

physical value on the lower symmetry axiz. This is easily seen from (2.2)

A St M 4 1
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- and (2:.3). In the physical spate th® sviich from the upper axis to the

fover axis is_done by chang:ing‘ @ from O to = . This brings in a2 ” -
rastor  (-1)" 1in (2.2}, On the z-plane the switch from the positive

real axis to the nzgative real axis is done by replacing z bty -z .

n+l

This brings in a factor {=1) in (2.3).

We nuw use the above analytic properties to establish an integral
representatics for V(0,z) which is simpler than (3.2). We represent

the first integral in {2.2) By an open contour iuntegral of the Cauchy

“type along it3 branch cut: S

b+ia

1 - c(p",b) p'dp’ g-V—o J £(£) g

2¢_ | w1
o \/9'2‘4’ (z-b)° b-ia &~ 2

v ]‘ t(y) dy

L
n
-8

(3.5)

b+ iy -z

where the unknown density function f(y) is takén to be real. It is no
difficult to show that both sides of {3.5) have the same singularities
and the same asymptotic behavior. The left-hand side being real for =2

real, f(y) must be an even function:
fl-y! = f(y) (3.6)

Let 2z approach the contour of integration from the right=hand

side, i.8i,2+b+e+in, >0, -a<n<a. Then, by the Plemel

formula, )
v, e ece) ag v, fotivt

< mroveiB ST & J — San

b-ia & n -8 - Zi
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Equating the real parts of (3.5) and (3.7} we get

SR e e s T )
1 I ol{p sb) ' do -
0

‘Vor(-y) = Re

26 ‘/“.2 2
— p -}
1 & o(o',b) o' dp"r-
-2 | (3.8)
o % '2 2
lvi P -y

From this result we see that f(y) is continucus in the interval
‘&*-?V‘a. - -
A similer integral representation for the second integral in (3.2)

ie obtained by putting -b for b in (3.5):

&  o(p',-0) p* dp' v T oty)
e J R -2 ] . (3.9)
[o] 0 /°'2+ (z+b)§ -b + iy -2

The third integral in (3.2) has two branch cuts and is represented
as follows:

b+ia b-ia

) T ola,z') adz' ¥ g (€) dg v [ g,(£) A
| T ) L b T
S \/“2"‘ (z - 2')° btia T2 <boja &7 Z

T (3.10)

where gl(ﬁ), 82(5) are real density functions. The left-hand side is

real for 2z real; hence
g (€) = g,(€) = sle) (3.11)

and we have

PRy

W&h‘%\‘a@lnm.‘uu;‘m e o -
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1 ] o(s,z') adz’ V. elx)ax Vv [ g(z) & =
2 =2l Povrmttal Beroits

o =y Ag,, P v - x+ia -~z B x -14; sz
T S e (3.22)

: Ey/(3.|¢), g{x)} 1is an even function :
g(-x) = g(x) (3.13) o

It can also be shown that g(x) is continuous in the interval -b € x € b .
Collecting all the results we have the f£5ilowing integral representa-

tion for V{0,z); -

: v, $ e v, T ofy) ey
R e :
<_a'b+iy-z ;a-_.ﬁzy-z

: 3-1!3) i -

vhere f(y) and g(x) ure a pair of real, continucis, even functions.

L. An Integral Representation for V/p,z)

”

We replace z by z + ip cos a in (3.14), subst®tute the result
in (2.6), and interchange ike order of integration. The integrals over

a have the form

n
% j da (%.1)
0 A+ Bcosa

where A and B are couliex numbers. By an identity of Jacobi (4.1) is

equal to

1 , (L.2)

Va2 - 8
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where the sign of the sjuare root is chocen to satisfy the inequality

IA - \/AQ- a"’l < |8 (4.3)

we therefore obtain the irtegral representation
a

a
‘o2 = :_o l r(y) & . ;9_ r(y) ay
-a V(z-b-—i;r)z + 02

-a l’(z +b- i:’:2+ 02

v 5 g{x) & v 7 g(x) ax
+ 2 + 2 (4.4)
J
~b V(z-x-ia)z* 92 -t z-x+ ia)2+ 92

For o0,z large arnd positive, the signs of tne sjuare roots are chosen to
make the real parts positive. For other ranges of vaiue the signs ere
dete;=ined by continuation. It cau be shown that the resal parts are taken
to be positive througkout. Using the evenness and reality of f(y) and

&(x), ve can ulso write (L.k) in the form

a
2V, 1(y) & A (K
Y(p,z) = —;-Re l + no Re I
ﬁ-b-iy)a«r 0% 0 I/(z +b-iy)2+ %
v v g(x) ax
+ = Re J (4.5)
-b |ﬁz-x-—ia)2+ p2
The capacitance is given by
a b
c = 1Gso [ J f(y) dy + J g(x) dx] (4.6)
0 0
The doundary conditions for V(p,z) are
Vip,¥b) = V . O<p<a (v.7)

(o]
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b
> g(x) a&x

2 ? £(y) ay oty ay
;-Re ] + = Re J
G (b-z+iy)2+ a2 o I/(b-tz-iy)z* a2
N T g(x) dx
+ 2 e J =1, -b<z<b (4.10)
T / 2. 2
-b ‘/(x-z+ia) +a

These are a pair of coupled Fredholm integral equations of the first kind
which summarize the formuiation of the problem. We note that in the

usual integral equation formulaticn of the problem we start with the inte-
gral representation (3.1) and impose the bounaary conaitions (4.7) and
(4.8). In this way we alsc obtain a pair of coupled integrel equations--in
a(p',b) and of{a,z') . But here the kernels are elliptic integrals.

Moreover the surface charge densities are known to diverge at the edges.

5. Two Special Cases

Before proceeding to discuss the solution of (4.9) and (4.10) we

shall first examine a few special cases.
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Case I: A Circular Disk

Letting b =0 in {%.9) ve obtain the limiting case of a charged

circular disk:

=1, O<p<a (5.1)

This is a special case of the Abel integral equation

o
f(y) a
J —_— = F(p) . O<p<a (5.2)
2 2
0 Vo -y
The sclution is
o & ¥ Flo) p dp
£(y) =;‘EJ . O<y<a (5.3)
2 2
Y-o»
Therefore we have
fy) = 3 (5.4)
and
v e dy
0
V(O,Z) = _,“ J

-a /(z-iy)2 + 02

v z-ia+/(z-ia)2+p2

o .
= — i gn

T ~

z + ia + \/(z + ia)+ 02

2V r 2a2 \lllz
_ o) -l[ .
= —— tan

i1 ~

0% 22 a2 0% 2= a2)% hagl)

(5.5)
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Our method of sclution of tnis rrotien is clzosely related to that of

5

Heirs and JacCamy” .
Case II: Two Ccaxial Circular Disks

Letting g(x) = 0 in (L.G) ve have

S Way 7
:I—-—-——=+;—J +1., O<p<a (5.6)
0 \oo- y2 -a J(2b-iy)+ c°

where the upper and lover signs ccrrespond to tze cases of equally and
oppositely charged éisks rescectively. If wve treat the right-hand side
of (5.6) forzally as a kncwn function of ¢ , this is an Abel integral

equation. Upon applying (5.3) we éet

a ]
fy) + 2y If(y ) &

-

-a b+ (y'- 5)

=1 (5.7)

2

which is a Fredholm integral equation cof the second Kind. This equation
. . 6 3 <
was first derived by Love , who 21so obtained, by a different method, an

integral representation similar to (L4.h4).

6. lumerical Solution of the Integral Eguations

We are unable to solve the equations (L4.9) and (4.10) exactly.
This should becowe quite clear in the last section where we could not
even obtain an exact analytic solution for the special case of two
coaxial disks. However, the form of these equations is simple enough
for them to be integrated numerically. A numerical solution usually

gives f(y) eand g(x) as polynomials of y and x respectively.
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Alternatively ve can approximate f(y) and g(x) by pclynceials

from the start:

J
2n
) = I A, @
n=0
glx) = ’Zl B, (5> (6.1)
=0 2n'b

Substituting these expressions into (k.9) and (4.10) and carrying out
the integration=. we cbtain two ftu:ctional equat:ions involving the

H+ M+ 2 coefficients AZn and Ban . In these equaticns ve set o
successively equal to ¥+41 wvalues in the range 0 <p <a and z
equal to ¥+l values in the range 0 <z <b . In this way we obtain
N+ M4+ 2 linear algebraic equations for the determination of the

" unknown coefficients.

As an illustration we use the lowest approximation by taking only

the first terms in (6.1):

[}

A, g{x) = B (6.2)

£{y) o A

Putting o = %-a sy T = %-b respectively in {4.9) and (4.10) we get

ah, v 3B = 1
8y A, 88, = 1 (6.3)

In terms of the ratio A = b/a , the coefficients are given by

m
2\ + a



y—p

TV T —" era—

T T T

W T

(2 + a)° + (1 + 8)°

a ., = l'ln
|

a,.. = —tan
2 Tt Il 3hs
L @aarene e
a.. = —1in
22 T Ga-aPe P
where
xy 2 3,2 2 2 3,,1/2
(3) = (@237« 1%+ 22 )
- / L, 1,212
\81) = [ :8
(!“ _ ; . 2 1/2
(Bn) {2 ‘/% +L

The capacitance is given by

cC = 16€°(Ao + ABO) a

15.

(6.k)

(6.5)

(6.6)

Letting A = 0, %3 %3 1, 2, 4 successively, we obtain the following
results:
A Ao Bo C in farads Smythe's value
0 .500 —  .708 x 10710 .708 x 10710
1/ .578 .310  ,928 x 10-10g .922 x 10-104
1/2  .625 .290 1.G6™ x 10-10g 1.07 x 10-10g
1 .63k .330 1.36 x 107104 1.33 x 10-10g
2 .588 .34l 1.79 x 10-10g 1.75 x 10-10q
L .531 .312  2.52 x 10104 2.47 x 310104




I» this approximation the capacitance differs from Smythe's value by
about 2%.

However, if we uvse the zbhove solution to compute the surface charge
density, we find that our value deviates quite seriously from the result
of Smythe. Tnis is not surprising in view of the crudity of our approxi-
mation and the fact that the charge density is a local quantity. The
capacitance, on tne other hand, is a glotal gquantity anéd is not very
sensitive to the number of terms we take in (6.1) to represent f(y) and
gixj. Teking morc tevms will certainly increase the accuracy. Neverihe-

less, ve will not go iurther into elaborate calculations.
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