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A -. ethod, based i-n comlex variable theor, Is presented

TIr solving pottmtial problems involving conducting solids of

revolution. Attention is paid exclusively t. the right circular

cylinder, both because this problem possee es a high dee:-e of

syumtry which brings about certain simplifications, and becauseI co~gari n can be made with previous results. The generali" ation

I from the -en'linder to other axially symmetric geometries shouLd,

become obvious. This method depends on the establishm6ma of an

integral represeftation :nr the potential function, vhieh leads

j • to the rwlc-at ion of the .problesa in terms of a pair of coupled

Fzd'holm integral equw' ions of t.e first !tnd. As an illustrative

exmple these equations are solved numerlially i h e lowest

approximation and the capacitane of the cylinder is calcii.ted.
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1. Introduction

I- this work ye present a method for solving the electrostatic

problem of! a eharwed, right circular, conducting cylinder. This

proi:r bas beer .treated p=reviously by fewlthe 1 .2, using a method

which depends on tiic fOlloving very important property of an axially

symietric potential function, namely, the value of the potential every-

where is knoin once its value on the -y.v*etr:.y axis is determined. Our

method also depends on this'property, but in quite a different vay.

Here ve use it t=.ta_ 5-; an integral representation for the poten-

tial functic1 whi et bas a . simple form. The problem is then

formulated in terms of a pair of integral eq'.aticns which are well

suited for numerical integration. Inasmuch as Smythe has published

numterical results of high eccuracy, it is not oar primary intention to

reproduce these solutions in great detail. No heavy computation is

therefore attempted, Our interest is mainly methodological. It is

hoped that this method can be applied with equal ease to other solids

of revolution.

2. Whittaker's Solution

Denote the radius of the cylinder by a and its length 2b

Let us set up a cylindrical coordinate system such that the origin and

the z-axis coincide with the center and the symuetry axis of the cylin-

der. Thus the cylinder is defined by thz intersecting surfaces o - a

and z +b. The potential function we seek is a solution of the

axially symetric Laplace equation
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(__L+ + ) V(p.z) - 0 (2.1)

vith the condition that it vanishes at infinity and that It reduces to

a constant value V0 on the surface of the cylinder.

For r 7-7-- >> b , let us expand the axially symmetric

potential function V(P,z) in terms of the spherical harmonics:

(o,.) = a r P (cos Q) (2.2)
SninOnn

where the a 's are real constants. On the upper z-axis 0 = 0 and~n

r a z . Therefore
ra

V(0,z) an z z b (2.")n0o

The spherical harmonics have the integral representation

rn-I P(Cos ) = 1 (z icos) do (2.4)

0

Multiplying (2.14) by a nand summing over n we get

vlIPz) = 1 )£ a (z + iP cos a) - n- , da (2.5)
0 n .i0 

n
0

Assuming that i(O,z) is an analytic function, we can regard the inte-

grand 3s the analytic continuation of V(O,z) to complex values of its

argument. Hence

V(Pz) = i V(O,z + i p cos a) da (2.6)

0
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3Tihis is a special case of Whittaker's solution of Laplane's equation

It gives a prescription for obtaining the off-axis value of the poten-

tial in tems of the value on the upper axis provided, of course, thut

the latter i- an analytic function. We note that for -b c z < b

V(O,z is undefined. Its value there ust be obtained by analytic

continuation.

3. Analytic Promerties of V(O.z)

The potential function Y(rz) has another integrl representation

in the forte of the particular solution of Poisson's equation:

V(PZ) dS (3-1)

where a is the surface charge density, R the distance fro a point on

the cylinder to an observation point, and the integral is teken over the

surface of the cylinder. For points on the axis

a a -(p',b) 'd -' -- o(PI',-b) O'do
V(O,Z)+

0 42+(z-b' 2 J,2+ (z+ b) 2

b (a,z') adz'

+ - O-iZ az (3.2)
2 -b a+ (z z'-b)

The three integrals represent contributions from charges on the top, the

bottom and the side of the cylinder respectively. From symmetry we have

a(o',b) = (',-z)

o(a,z') = o(a,-z') (3.3)
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The a's are continuous and bounded except at the edges o = a ,

z -+-b , where, according to the edge condition the, &i'erge only

-1/3like 6- , 6 being the distance fror. the edge. -hus (3.2) defines

V(O,z) as an analytic function o?- z. Clearly V(O,z) is real for z

real and tends to zero like z -  as z1 - -

The sIngularities of V(O,z) can be read off from ( -. ) _ The first
integrl h- a branch cut from b-ia to b+ia ; the see.n itral h

a cut frm= -b-ia to -b+ia ; and the third integral has tvo cuts from

-b+ia to b+ia respectively. These branch cuts of V(3,z) from a rec-

tangle in the z-plane vhivh is identical-to the section of the cylinder

by a plane containing the symmetry axis. It can be shown that this prop-

erty of V(O,z) is true of all solids of revolution.

The ;v-iwetry of the problem in the physical space implies a certain

symmetry in the z-plane. We readily deduce from (3.2) nd (3.3) that the

absolute values of V(O,z) and V(-o,-z) are equal. If we analytically

continue V(O,z) from the point z to the point -z , we must choose a

path which avoids the branch cuts near the origin. Then during the

process all the square roots in (3.2) change sign. We conclude that

whereas the vaive of the potential on the symmetry axis is an even function

of z in the physical space, it is an odd function in the complex z-plane:

V(O,-z) = - V(-O.z) (3!)

In general, the value of V(O,z) on the positive real axis of the z-plane

coincides with the physical value of the potential on the upper symmetry

aXid, while the value on the negative real axis d ifters in sign from the

physical value on the lower symmetry axi . This is easily seen from (2.2)

i



and (2,3). In h- he nhvsa- spate thk switch from the upper axis to the

lower axis is-done by changing 0 from 0 to x . This brings in a

f~ct-r (- 1 ) n  in (2.2). On the z-plane the switch from the positive

real axis to the fiegative real axis is done by replacing z r$ -z

This brings in a factor (-1 )n+
l in (2.3).

We nuw use the above analytic properties to establish an integral

representation for V(O,z) which is simpler than (3.2). We represent

the first integral in .2.) by an open contour integral of the Cauchy

-type along "tS branch cut:

a c,(p',b) bo'' V +ia
2c f = -. f(E) d&

0-+( -b2 - a (3z

a

b+iy-z-a

where the unknown density function f(y) is taken to be real. It is not

difficult to show that both sides of (3.5) have the same singularities

and the same asymptotic behavior. The left-hand side being real for z

real, f(y) must be an even function:

f(-y-1 f(y) (3.6)

Let z approach the contour of integration from the righthwand

side, i.e., z b + c + in , 0-_, -a < n < a Then, by the PlemelJ

formula,
b+ia f(.) d a fL' dy

V f(n) - P (3.7)
b-ia - (b +in) oa y iib-ia -a
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Equating the real parts of (3.5) and (3.j - get

V~ "b ffy Re'I-- -
0- 2c, J

a (l pb ) o l d o '
I ~ ~ip4'2-,

a a~',b)o' d' (.8)IE i
From this result we see that f(y) is continuous in the interval

-a y !6 a.

L A similar integral representation for the Pecond integral in (3.2)

r ir obtained by putting -b for b in,(3.5):

a--(p'-,-ojp dp - .f1(y) da'

rT (39)
10 , 2 + (z+b 2  -z

The third integral in (3.2) has two branch cuts and is represented

as follows:

b b+ia b-ia
a.c(a,z')a dz' i 0 91) dE V 0 2~ dFt

-- , 2.,(z ) -b+-a -b-ia

. .. (3.10)

where gl(&), g2 (E) are real density functions. The left-hand side is

real for z real; hence

1 = ( = g() (3.11)

ard we have

I
I - -
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4&4~') adV~ g(x) dx V b ()d

BY (3.-4 gl=F,) Is on even funton- :

g(-x) =gl W (3.13)

It can also be shown that g(x) is continuous in the interval -b it x it b•

Collecting all the results ve have the faJllovnlg integral frepre.,-tntao

tion for V(-O,)i; -

~,) -v, a f-(r) d o a f (y) dy

bb 1y - z-iy -z -

x.ia- -- z X -ia - z-b-

where f(y) and g(x) te a pair of real, contevennd, even functions.

(. An Integral Repres3ntation for V.1)z

We replace z by z + is cos a in (31), substitute the result

in (2.6), and rnterchaee the order ofion integrals over t

ahave the for.

1 d

Y(!) b diy (Sl

A + B cos a

where A and B are co,l-ex nvmbers. By an identity of Jacobi (4.1) is

equal to

1*

1 (4.2)_
'2 -B 2  (.)-

A$
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ubere the sign of the square root is chosen to satis-fy the .-equamuty

IA - l'7B2I < c (I4*3)

We therefore obtain thc Integral representation

VV~z a f2 Y t() dy V, f (y) d,

-a - -;)2 2 " -a € + b, - 2

gVxbdV b g(x)dx

-b Oz- -ia)*P2 - x ia)(

For o,z large and positive, the signs of tie square roots are chosen to

nake the real parts positive. For other ranges of value the signs ere

detesined b7 continuation. It can be shovn that the real parts are taken

to be positive throughout. Using the evenness and reality of f(y) and

gwx), ve can also write (J.I.) in the form

f(y) di 2V f(y) dy
VC_z) = R_____e + - Re

oz-b- y)+ ) 0-i,+

2V Rb g(x) dx+ - Ref (___.5)_

-b )2--ia2 + 2

The c.pacitance is given by

a b

c = 16%[ jf(Y) dy + j (x) dx (4.6)
0 0

The boundary conditions for V(p,z) are

V(o,+b) = V 0 0 < p < a (4.7)
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VV4 , -b < . .

Combining (.5), (I ,'7) and (4.8) ve have

0 a f".-"dy 2 7', y
2 f + 7 Be!_

+ ZRe b g(x) dx < (4.9)W ] 1 + a ) 2 +  2

-b (x -b +ia o

a f(y) dy 2 f(y) dy
___Re +- Re

J(b z + iy)2+ a2  b+z-iy)+a

+ - ReJ = I~x , -b < z < b (-4.101

-b x- z + i)+ a2

These are a pair of coupled Fredholm integral equations of the first kind

which summarize the formulation of the problem. We note that in the

usual integral equation formulation of the problem we start with the inte-

gral representation (3.1) arid impose the boundary conaitions (4.7) and

(4.8). In this way we also obtain a pair of coupled integral equations--in

a(p',b) and o(az') . But here the kernels are elliptic integrals.

Moreover the surface charge densities are known to diverge at the edges.

5. Two Special Cases

Before proceeding to discuss the solution of (4.9) and (4.1o) we

shall first examine a few special cases.
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Case I: A Circular Disk

Letting b = 0 in ,-.. we obtain the limiting case of a charged

circular disk:

4 f P f ( y ) dyI
_ = 1 . o< <a (5.1)

This is a special case of the Abel integral equation

y)I= = F) , 0 < p < a (5.2)
0 2_ y

The solution is

f(y) = 0 < y < a (5.3)

Therefore we have

f(y) 1(54)
2

and
a dy

V(pz) = f
J( iy2 2

-a (z-iy) + 0

2r 2
V°- z -ia + (z- ia)2+

z + ia + z + ia) 2 + P

2V ° 2a2  -2

Tr z anI 2 _ 2 2 I 2 2 . 2 2i2+ z2- a2 + 42+ z- a2 ) 2 + a.

(5.5)
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Our methcd of solution of this Frotit is ciosely relatei to that of

Heir.s and X.acCa_ 7y.

Case II: Two Coaxial Circular Disks

Letting g(x) = 0 in (4.9) we have

a
2 f(y) dy -l f(y) dy

2- + 12, 0 < a < a (5.6)
0 V2_ -Y -a - iy) 2 + J

where the upper and. lover signs corresrond to tne cases of e4ually and

oppositely charged disks respectively. If we treat the right-hand side

of (5.6) form-ally as a known function of a , this is an Abel in.egral

equation. Upon applying (5.3) ye get

a f(y') dy'
_L(Y) + - f = 1 (5.7)

-a 4b1+ (y._ Y)2

which is a Fredholm integral equation of the second kind. This equation

was first derived by Love , who also obtained, by a different method, an

integral representation similar to (4.4).

6. Numerical Solution of the Integral Equations

We are unable to solve the equations (4.9) and (4.1O) exactly.

This should beco,: quite clear in the last section where we could not

even obtain an exact analytic solution for the special case of two

coaxial disks. However, the form of these equations is simple enough

for them to be integrated numerically. A numeec-cal solution usually

gives f(y) and g(x) as polynomials of y and x respectively.



Alternatively we can approximate f(y) and g(x) by polynceials

frc the start:

f(y) A A
n--O

g(x) = X 
(6

Substituting these expressions into (4.9) and (4.1O) and carrying out

the integration:, we obtain two fui:ztional equations involving the

N + M + 2 coefficients ". and B . In these equations we set o
diia 2M

successively equal to N+i values in the range 0 < a < a and z

equal to M+i values in the range 0 < z < b . In this way we obtain

N + 4 + 2 linear algebrodc equations for the determination of the

unknown coefficients.

As an illustration we use the lowest approximation by taking only

the first terms in (6.1):

f(y) A , g(x) = B (6.2)0 0

1 1
Putting 1 = b respectively in (a9) and (4.10) we get

,aia + a2 B° = 1

a 2A +a 22B  = 1 (6.3)

In terms of the ratio A = b/a , the coefficients are given by

a = 1 + -tan - 1

2X+a
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2 M (2+ 2 +( s)

a2 = T.I + , 1  31

2 2

1 (tL + ')2 + (1 n 1 +)2

a2 2 = n (6.)722 (1 _ a-)2 + (I _ 8)2

vhere

(a) II /,42A - + + (2X-- -)]12

,8, = 32 * _*.
8 8

8: ) -LA r i X11

8 (6.5)

The capacitance is given by

C =162o(A + ABo) a (6.6)

Letting X = 0, 1, i, 1, 2, 4 successively, we obtain the following

results:

x A B C in farads Smythe's value0 0

0 .500 -- .708x10 a .708x10 a
1/4 .578 .310 .928 x 10-10a .922 x 10- 0 a

1/2 .625 .290 1.0-' x 10-1 0a 1.07 x 10-1 0a
1 .634 .330 1.36 x 10-1 0a 1.33 x 10-10a

2 .588 .341 1.79 x 10-1 0a 1.75 x 10-1 0a
4 .531 .312 2.52 x 10-1 0a 2.47 x 10-10a
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In this approximation the capacitance dL~fers from Smythe's value by

about 2%.

However, if we use the above solution to compute the surface charge

density, we find that our value deviates quite seriously from the result

of Szythe. This is not surprising in view of the crudity of our approxi-

mation and the fact that the charge density is a local quantity. The

capacitance, on the other hand, is a global quantity and is not very

sensitive to the number of terms we take in (6.1) to represent f(y) and

g(x). Taking moie te.ms will certainly increase the accuracy. .everLhe-

less, we will not go arther into elaborate calculations.
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