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INTRODUCTION

Regression theory is frequently used in the development of cost
estimating relationships (CERs). Unfortunately there is a tendency to
use this tool and the statistics that are gssociated with it without
fully understanding ~ither., A good understanding, however, is necessary

for both the user and the reviewer,

To develop this understanding I would like to discuss two main
topics. The first centers on the meaning of some ¢of the commonly used
statistics and the differences between common interval estimates. The
second addresses the applicability of the usual interpratation of these
statistics and interval estimetes in cosi analysis and the possible mean-
ings that might be attached to them even if statistical assumptions are

not fully satisfied.

This presentation will address the above through a discussion of
the following topics:

3. Assumptions of the multiple linear regression model and how
well they are fulfilled in the cost analysis application.

2. Least squares estimators as "best" estimators.

3. Properties of some commonly used statistics from a
geometrical point of view.

4, Dpifferences in commonly used interval estimates.

For most of the presentation a multiple linear regression model

will be assumed with only passing remarks to other types of regression




functions. It is assumed that thez reader has some experience in
using statistics. Certain terms will therefore not be defipned. Any
good statistics booxy should give the definitions of terms tha? are

unknown to the reader.

1/ Lindgren, B. W., Statistical Theory, Macmillan, New York, 1962.
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THE MODEL

The usual form of the multiple linear regression model is given

below.
Yi=a+blxli+b2x21+a-.+kaki+ei

fori=1,2, ..., n
For each of the n sample points, indexed by i, Y; is the sample observa-
tion, a + by Kli + by Kzi + ...+ bk xki is the value of the regression

function and ey is the errcr term.

Regression theory assumptions fall into two categories, those per-
taining t- the regression function and those pertaining to the error term.
They are listed below:

Assumptions
Regression Function
1. Independent variables are non-random.

2. The regression function is a true relation.

Error Term
3. Normally distributed
4. Identically distributed
5. Mutually independent

6. Random sample.

The independent variables {not statistically independent but func-
tionally independent) are assumed to be non.random, i.e., their value is

not in doubt. It shoula be ncted that they need not be just one




T

characteristic such &s thrust, but might represent a functica of character-
istics such as weight times speed squared. That is Xn = T:l and

_ 2
Xy = i(si) vhere T,, W, and 5, are the thrust, weight and speed of
the 1.1‘2 cbservation respectively.

The wvariables must be brought together by the regression function
in such a way that & true relation is represented between the sample
observations, Yi’ of cost in our case, and the characteristics that
mke uvp X4, Xei’ ceny ’&1' By true relaticn I mean that the sample
observations and the characteristics must be related in & semi-
deterministic way, that is, if the error term e; were not present,
in the model, then the relationship would be deterministic. It is
required in the multiple linear regression model that the regression
function be linear in the parameters &, bl’ bz, esey bk‘ Other models
do exist, such as the log-linear regression model, that treat other

forms of the regression function.

Turning to the error term, it is usually assumed that the e, are

normlly distributed with zero mean and a common but unknown variance

(vl 2. Hence, they are identlically distributed. It is also assumed

that the e; are mutually independent, that is, knowing the value of any

ey, 58y €, does not change the distribution on any of the other ey

The final assumption listed, that of a random sample, is really

eguivalent to the independent and identically distributed assumptions

.
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on the ei. It is mentioned here to polnt ocut that a sample from a

population is asgumed.

A graphic representation of the simple linear regression model
is shown in Figure 1. RNote that for each value of X there is & normal
density function {represented by the bell shaped curve) centered on the
true regressicn line ¥ = a + b X. The densities 811 look the same

reflecting the assumed identical distribution of the error terms, ey

Y=a+bX

X
Flgure 1.

How well are these assumptions met in the typical cost analysis

application? In general, not very well. Let's take them one at a

tire and see.

é Independent variables are non-random. There are two problem

. areas here for the cost analyst. First, unknown to the analyst, the
characteristic desired may lack a common definition for all objects
in the sample. For example, peyload might be a desirable characteristic,

but it may not be defined the same for fighters and transport aircraft.




If both are included in the sample some of the cbserved variation will
be due to the definition of the characteristic. Secondly, for lack
of anything better one might attempt to estimate some costs as
functions of other costs, for example

CO =a+b

1
where CO ig the operating cost
and CI is the investment cost.

Unfortunately the independent varisble (CI) i in general random.

The regression function is a true relation. This topic will be

covered later on by another paper on this panelfl/ Iet 1t suffice to
say here that the regression function should be picked ahead of time
{based perhaps on some logical or physical relationship). Allowing a
machinc to pick the regression function might yield a "good fitting"

relationship, but one that has little to do with the real world.

Normal distribution. This assumption is the least restrictive,

for if we had a large sample, it would not be necessary to worry about
it. But cost analysts are not given this luxury in general. There

are, however, plenty of other problem areas to ccncern ourselves with,
so the pros and cons of the smull sample normal assumption will not be

discussed further in this presentation.

Identically distributed. This assumption is often violated.

For example, in order to build up vhe sample size, bomber and fighter

aircraft may be included in the same sample. If the cost that one is

1/ Yates, Edward H. and Frederic, Brad C., Cost Hypothesis: ‘heir

Development and Their Data Implications, D.R.C.
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trying to predict depends on mission, then one would expect that the
error term would require a different mean and/or variance assumption
for the two classes of gireraft. This is because the sample should

be stratified and it would be difficult to deviss a regression function
that could handle thils stratification. Note that attempts have been
made 0 do this by the use of dummy variables (variabies that take

on the value of zero for bombers and one for the fighters). In the
linear regression model, this technique will work if the strata have

either common slopes or intercepts. Unfortunately this will not be the

case in general.

Independence. This assumption is also violated quite often.
For instance, initial aircraft types and follow-on aireraft types are
sometimes included ir the same sample. Knowing the value of the

initial aircraft type must change the distribution on the follow-on

aircrafit.

Random Sample. When building a CER we generally take all
possible ecxperience into the sample. Is this collection of data =
sample or is it the population? If it is really a sample from a
larger populaticn, i.e., other sample points have not yet been built
but theoretically exist, we still have the problem of whether or not

the sample Is random. A whole paper can probably be addressed to this

Question.




From the sbove, it becomes evident that the assumptions are
generally violated in the cost analysis application. Of course in
each application one strives to satisfy as many of the assumptions

as possgible. But, we often faill.

Unfortunately, the usual interpretation of many of the sta-
tistics and interval estlmates that we wish to make use of depend
heavily on the assumptions. Should we then throw the whole tool away?
Ho. The statistics are still a valuable mid, and the extent to which
tney can be used and the interpretation that can be given to them

wil. become cliearer as we proceed.

oaRehy,
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SELECTION OF A CRITERION OF "BEST"

Before discussing particuler statistics, a few remarks should be

made sbout why the estimates of the parameters s, Bis eees bk are picked

to minimize S (¥, - (a + by Xy + ...+ by X)),

that is, why least squares estimators are picked as best estimators.,

First the method is intuitively appealing. One way to judge how
well a particular CER will predict is to see how well it fits past obser-
vations. Therefore, picking the estimates of the parameters to minimize
some gdditive form of the differences between the observed and what would
be predicted by the CER is desirable. Of course the above expressim is mly

one of a mumber of functional forms that will do this.

Secondly, the method is mathematically convenient. To understand
how important this property is one need only look for examples of cases
where non-linear regression functions are hypothesized. With the excep-
tion of the log-linear functional form or some other functional form that
can be transformed into a linear model, one would have a great deasl of
difficulty finding such examples. Even in the log-linear example, the
procedure usually consists of taking the logarithms, so that a linear
form is obtained..y Hence, estimators of the parameters are picked to

k1 by
minimize ¥ (In ¥; - In (a X3 Xpi --- X ))°- In effect best estimators

LyA routine is available at RAND that uses an iterative technique to
solve for the parameters without taking logarithms. See

Beoren, H, E. and Graver, C. A., Multivariate Logarithmic and Exponential
Regression Models, RM-4L879 PR, RAND Corporation, 1966.

-9-




are therefore defined differently (as can be zeen by compering the
two summations being minimized), so that a solution for the esti-
mators can be obtained. HNote that the statistical assumptions are
usually made in the linear form so the ususl statlstics are obtained
for the In ¥, and not Y, itself. Hence, these statistics are not

i i

directly compareble to those obtained for Yi in a linear model.

Thi. 11y, the estimators are unbimsed, that is B = a and Ef > = B
wvhere E stands for expected value of. This 1s a nice property, but
not a necessary one. In fact some blased estimators have less varlance
than their unbiased counterparts. However, it sounds un-American to

have & biased estimator, so we had better stick with unbiased ones.

The estimators alsc have a minimm varlance property. By the

Gauss-Markoff theorem,g/ the least squares estimators have simul-
tanecusly smaller variances among tbe class of linear, unbiased
estimators. This, of course, 1s highly desirable if you want linear,

unbiased estimators.

Finally, the least squares estimators are the Maximum Idkelihood

Estimators. This means that the particular parameters heve been
picked that maximize the probability content of the sample among the
clase of regression functions (represented by different values of a,
by, eves bk) being considered. This is portrayed graphically in

Figure 2 for the simple linear regression case. The same sample is

g/ Lindgren, B. W., Statistical Theory, mMucmillan, New York, 1962, page 387.

-10-
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represented in both graphs. The line in the left graph, however, is
8 poor cholce because most of the points lie in the tall of the
density functions and hence the sample has a low probability content.
The line in the right graph contains a higher probability content for
the sample as the points generally lie under the bell of the density

function. This line is closer to the Maximum Likelihood Estimate.

Bad Fit Better Fit

Figure 2

It is apparent fror the atove that the choice of least squares
estimators as "best" has a lot going for it. Note that the first two
properties listed have nothing to do with the statistical assumptions.

Hence, even if the statistical assumptions are violated, thes least




-

squares technique can be used to obtain an estimating relationship.
The proceas should probably be rabeled curve fitting but whatever

label is put onm it, it still is of value as long as fitting the ob-
served data is the basis for Judging the goodness of the cost esti-

mating relationships.

U R,
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COMMONLY USED STATISTICS

Having decided to use least square ecstimators and after obtain-
ing the estimates, the analyst is ususlly interested in answering
questions like the following:

1. How well does the relationship fit the sample experience?

2. How does the particular form of the regression function

compare with other pre-selected forme of the regression
function?

Convenient tools for answering these guestions are found in the
following statistics:

1. Standard Error of the Estimate: (sY)
2. Correlation Coefficient: (r)

§ 3. "I Statisties

; It turns out that ull these statistics are related. Their relationship
can be seen in a geometrical model.;/ Examining this model will hopefully
add some insight into the behavior of the statistics as well as indicate

how they may be validly used when the regression theory assumptions are

not fulfilled.

As in any mathematical discussion, a number of definitions will
have to be made for notationil convenience., Three models will be looked

at.

;/ This model can be found in most advanced statistics books that treat
the topic of regression theory. In particular, it can be found in
Lehmann, E., Testing Statistical Hypotheses, Wiley, New York, 1952.

-13-




In the one dimensional model it is assumed that the regression

function has the form Y=a, s constant. That is each cbservation will
be estimated by the sare constant. The least squares estimate of the

paraneter is ?, the arithmetic average of the observations in the sample,

The two dimensional model assumes a regression function of the form

Y=ea+b) X. The least squares estimates of & and b are denoted by 4
A
and bl’ and the least squares estimate of Y is then denocted by ? and

is equsal to 2 +‘5l X.

Similarly, the three dimensiopal model has ¥ = a + b1 Xl + b2 x2

as the form of the regression functiocn. ?E is the least squeres estimate

A ~r Ped o~
and 15 equal to 3 +b) Xy +, X, where 4%

squares estimates of the three parameters.

l,"b'e are the least

The models are related in the sense that xli must represent the
same characteristic or combination of characteristics in both the two
and three dimensional models, Thus, for an airfrasme estimating problem,
we might have the following:

¥y

cost of the ild airplane

!

Xli = welght times speed squared for the ilb airplane

thrust of the ilh airplane.

and Xei

The models are summarized below:

Dimension Regression Functien Least-Squares Estimate
One Y; = a a=7Y

Two Y= a+by Xy Y =8+% %y

Three Y, =atb Xy +b Xy Y =TT %y + T, Xy

[P TTPWONPA ORICTY TNG cr e oc
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There are various sums of squared deviations that are usually

of interest. These are defined below:

.

Sums of Sguared Deviations

Type Definition Notation
- Total > (v, - T)° =

Explained by two dimensional A _

model > Y, - Y)2 B

Unexplained by two dimen- A LD

sional model > (¥; - ¥)) v

Explained by three dimen~

sional model over the one ~ .~ D

dimensional model 2 -9 E

Unexplained by three dimen- -~ .2 D

sional model > (¥, - Yi)

Additional explained by

three dimensional model ~ A

ovar two dimensional model > (y; - Yi)2 'ﬁi

Notice that each of these sum of squares represents the square of
the Buclidean distance between points in n dimensional space, the sample
space. This fact is the basis of the geometrical model. The points I
refer to are (Yl, Yoy eves Yn), the observed sample; (Y, Y, ..., ¥), the
"best" one dimensional model explanation of the cobserved sample;

A N
(,Y\l, Yos eees Y ), the "vest" two dimensional model explanation of the

~ o ~ " " .
observed sample; and (Yl, Y.y cons Yn), the "best"” three dimensional model

2l

explanation of the observed sample.

-15=-




An initial view of the model is presented in Figure 3., Each
point in the space represents one possibie outcame of the sample of
observations, (Yi, cees Eﬁ). Two points have been identified, the

origin and the sample we have observed.

/ (Yl’ YE’ 4 Yn)
Y=g + bl

/

e

(0, euey 0)

Figure 3

The line ¥ = a is a representative of all the possible one dimen=~
sional models, while the plane ¥ = a + b1 Xl represents all possible
two dimensional models. That is each point on the plane represents a

tr _ 1

particular value for "a  and "bl". The line, Y = a, lies in the plane

and represents those models for which b, = 0.

P
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If we orthogonally project the sample point on to the line and
the plane (Figure 4), the least squares estimate of the parameters are
obtained, that is, a = ¥ for the projection onto the line, and
a= Q., by = ‘81 for the projection on to the plane, This is because a
line connecting the orthogonal projection to the zample point is perpin-
dicular to the plane (line) and hence is the shortest line between the
point and the plane (line). But the square of the Euclidean distance of
& line froam the sample point fto any point on the plane (line) is nothing
more than the sum of squared deviations szbout the point on the pliane.
For example, suppose the point was given by ii =a+ f:l yli' Then the
square of the Euclidean distance is given by >_ (y; - i’i)'?. In the

orthogonal projection, the shortest line is picked and hence this guantity

is minimized. But that Is equivalent to the least squares estimating pro-
cedure, i.e., we pick 2 and Abl s¢ that the sum of the squared deviations
is minimized.
(Yy, o5 eres ¥n)

Y =a + bl X

1

Figure &

=-17=
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Now ~omplete the triangle by drawing a line between (?l, ares in)
and (¥, ..., ¥). This triangle (see Figure 5) is a right triangle
{because of the orthogonal projection) and the length of the sides are
given by T, E and Y. The square of the distance of the sides are
nothing more than the total sum of squares, explained sum of squares

and unexplained sum of squares, defined earlier. Of course T2 = E2 + U2,

& consequence of the Pythagorean theorenm.

(Yl, Y2, LI I Yn)

—a+blxl

Figure 5

What about the statistics I referred to earlier? How do they fit

into the model? To begin with the standard error of the estimate,

denoted by SY’ is equal to U/ /n-2. The correlation coefficient, r,

-18-

S e SRS BRI




is equal to E/T. The F test for by = 0 is given by‘.7,!fi_~_ . The
U</ (n-2}

latier has the P distribution since, under the assumption that ¥ = s
is the true model, TE, E2 and U2 have chi-square distributions with
n-1, 1 and n-2 degrees of freedom, respectively. Furthermore r and
E° are injependent (expressed geometrically by the right angle ztween

sides E and U).

So the common statistics that are used are no more than comparisons
of distance {sometimes adjusted for degrees of freedom). Let's see how
they work., When (Yl’ cony Yn) is close to the plane, i.e., the saaple
observations fit the two dimensional model well, then U is small and E

is aimost as large as T. Fences, the standard error of the estimate is

zinall, the correlation coefficient is close to 1 and F is large

{significant).

Of course when the sample point is far away from the plane, i.e.,
it does not fit the two dimensional model (using X_) so well, then U is
L
large and E is small when compared with T so that SY is la.o-, 1 is

close to 0 wnd F is small (insignificant). Notice that the relationship

between the point and the plane depends on Xl' The fact that this two

dimensional model is insignificant does not rule out all two dimensicnal

models. 'There mav be a different definition of Xl, for example speed
irstead of weight times speed squared, that will describe a plane that

lies closer to the observed sample.

-19-
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(A, «vey Y)

It should be noted that the F statlstic used in this model is
the square of the usual "tV statistic that is used to test bl = 0,
Either statistic can be used, but the F statistic is more general and

can be used for comparing models of different dimension such as three

dimensions with one dimension.

Now let's add another dimension to the model. To retain the corre-
lation coefficient it will be necessary to start with (f, ...,'?) as the
origin., This is because we are limited to the number of dimensions that
can be portrayed in a two dimensional picture. Shown in this model

(Figure 6) is the same triangle that was examined earlier, tut now the

line represents what the plane represented in the previous picture, that

is we he e a two dimensional line.

(Yl’ 2) A ] Yn)

A
(¥, ?2, cee,

¥)

Y=2a+ bl Xl
Figure 6

-20-
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(Y, Yoy ven, )

The three dimensional model (Figure 7) can now be added in the

form of a (3 dimensional) plane, As before, the sample point can be
orthogonally projected onto the plane to pick up the legst squares esti-

mates (?i, ...,‘§;). And we can orthogonally project that point onto

the 2 and 1 dimensional models, completing two new triangles, The Sguares

of the.-new sides of the triangles cbtained represent the following:

o is the sum of squares explained over the one dimensional
, model
_ 7 is the sum of Squares explained over the two dimensional
i A nmodel

and ‘52 is the still tnexplained sum of squares,

«2l-




B, L

As before we have the statistics for the two dimensionsal models:

8y = U/y/n-2
r = E/T
2
F= which tests by = 0
/(a-2)

But now we alsc have the comparable statistics for the three dimen-

sional model. These are given by:

8y = bij /+/n-3

2
t
n

@
124
I
4]
o
[
I
o
n
1
(s

A Tests b2 =

|
o

Two interesting facts come out of this picture. First the triangle
Ei ?ﬁ T is used to compare the three dimensional model to the one dimen-
sional model while the triangle U, ET} qf'is used to compare the three di-
mensional model to the two dimensional model. In the former case we have
have the F statistic that simultaneously tests bl = b2 = 0. In the latter
we test b2 = 0 only., Notice that the F statistics are adjusted for degrees
of freedom. There is a penalty that must be paid for going to a model of
higher dimension, as the more dimensions you have the easier it is to ex-

plain the sample point by chance.

Secondly, the correlation coefficient, r, is larger in the three

dimensional model than the two. This can be seen by the following:

NEXY A
-1'+ 2‘?’3‘ = T2dim

¥
F3dim T T

PP
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Each new dimension that is added will explain more of T. Thus if r
is being used as the criterion of "best.” the higher dimensional model
will always be preferred, even if the F test for b2 = 0 is insignificant.

This is why some people adjust r for degrees of freedom.

It should be peianted out at this time that we are not limited in
this geometrical model to comparing 3 dimensicnal, £ dimensional and 1
dimensional models. The plane could represent a k dimensional model
while the line could represent a p dimensional model. All that is

required is that k) p, and X_, X

l’
models. Of course SY and the F tests would have to be adjusted for the

09 mees Xp be identical for the twoe

correct degrees of freedom and the F test between k and p dimensions

would test bp+l = bp+2 = L.. = bk = O while the F test between one dimen-~

sior. and k dimensions would test all b's equal to zero. The degrees of
freedom are easy to figure out. They are equal to the difference in the
dimension of the models that the line is comnecting. T2 connects the

sample point in n space with the point representing the best one dimen-
sicunal model. Hence, T has n-1 degrees of freedom. Similarly the fol-

lowing lines have the identified degrees of freedam.

U2 has n-p
E° has p-1
T has n-k
¥ nas k-1
and ﬁﬁ has k-p

-23-
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An interesting question can be raised gt this point., Why do we
use F tests, rather than {adjusted) r to compare dirferent medels?

One important factor is that the distribution is known. But even more . '

important it has been shown that statistically they are the best tests -

availgble. This is a consequence of the Neyman-Pearson Iemmag/ which
‘Y says the following:

For any given Probability of rejecting the 2 dimensional
model when it is true, the probabllity of rejecting the 3 di-
¢ mensional model when it is frue is minimized, Statisticians
H have lsbeled this property most powerful.

{E By using this model one can discover the reasons for the behavior
25 of the statistics and gusrd oneself sgainst certain pitfalls. An

example of this is pictured in Figure B. In this example if one just

| looked at the three dimensional model., he would be very pleased. Sy
-

: (equal to'ﬁ7\/n-3 } is small, r (equal to E/T) is close to one and F
| {equal to w_éfiéL____) is significant.
: ¥/ (n-3)

l model Sy (equal to U/\/n-2 ) is small, r (equal to E/T) is close to one

and F (equal to _GE_EE__—_) is signifizant also. The reason for this, of
/(n=2

course, is that the three dimensional model is insignificant when caom-

But looking at the two dimensional

P
pared to the two Qimensional model, that is, F (equal toﬁyziéi_n_) is

/(n-3)
small. Hence, from the statistical point of view, the two dimensional

model is preferred.

2/ See Lindgren, B. W., Statistical Theory, Macmillan, New York, 1962,
page 238.

-2l-
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Y=a+b1xl+b2X2

(Y, Yo, ooy ¥5)

Notice it is from the statistical point of view that the two

dimensional model would be preferred. If all of the assumptions men-
tioned earlier were satisfied this would be the case. But as was
pointed out earlier, the assumptions are usually not satisfied. How

do we make use of all these statistics then?

If it is agreed that it is desirable to fit the sample observa-
tions closely without increasing the number of iundependent variables
substantially and if one keeps in mind that all of the statistics dis-
2ieaed are mevelv continatione 57 certain distances that describe how

welli the model fits the sample observations, then the statistics can be

meaningfully used. As an example, suppose one has no reason for prefering

-25-




one model over another. He might use an F test to decide between
them., After gll) the itest does provide a decision rule and the
statistic iz aqjusted Tor degrees of freedom, thus penalizing the
higher dimensionsl model for some of the "better fit" implied in the
technique. In using this test, however, one should not make a level
of significance statement (which is a statistical statement that de-
pends on the assumptions), and one should display the value of the F
statistic so that a user would be able to judge if the conclusion is

consistent with his own model preferences.

Suppose now that one does have a strong preference for one of
the two models (based perhaps on some physical relationship). Then he
can adjust the decision point (the value that divides the acceptance
region of the lower dimensional model from the rejection region) to a
higher value if the lower dimensional model is preferred or o a lower
value if the higher dimensional model is preferred. This would probably
be done implicitly and as in the no preference case, the value of the F
statistic should be porirayea 30 that the user will be able to apply his
own model preferences. This use of the F statistic will put one in the
position of rejecting "statistically" significant terms or accepting
"statistically" insignificant terms. However, the point is that if the
assumptions are not satisfied the decision points described in the tables
for the F test are no more meaningful than a decision rule (such as value

of the F statistic) supplied by the analyst.

-26~
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It should be pointed out that care should be used in retaining
a term that has a small velue for the F statistic, for this is8 an
in@ication that the sample contains little information concerning the
vaiue of the coefficient of this term. In this case one ought to cone
sider somehow independently plcking the value of this coefficient, i.e.,
not using the least squares estimate of the coefficient. The right
triangle in the model will be lost in this case, but the advantages could

outweigh this disadvantage.

It should also be pointed out that during the preceding discussion,
the F statistic has played a dominate role. If the statistical assump-
tions were satisfied, then this domination is Jjustified (see bottom of
page 2L}, But in the cost analysis application, the favoritism of the
F test cannot be championed as strongly. The correiation coefficient
(preferably adjusted for degrees of freedom) can justifiably be used as
a decision rule and the standard error of the estimate can provide valuable
information concerning the amount of unexplained variance. Other measures,
such as the coefrlicient of Variationé/which have not been discussed in
this paper but are functionally related to those measures discussed, can
also supply meaningful information. The choice of what measures to use
is not nearly as important as keeping in mind what the measures mean and
displaying the value of the stutistics (distances) so that another analyst

can decide what measure to use and what decision rule to follow.

}/ Fisher, G. H., Use of Statistical Regression Analysis in Deriving

Estimating Relationshipsj Concepts and Procedures of Cost Analysis;
RM 3589-PR, RAND Corporation, June 1963, P. V-17.

=27 =




el <SR § N

INTERVAL ESTIMATES

8o far we have been concerned with comparing multiple linear
models, and have discussed the types of statistics that will help us
to choose between them. Ancther group of statistics, interval esti-
mates, is used to make statements sbout the range of values that s

variable of interest may take.

A main reason for discussing interval estimates is to point out
the similarities and differences between them. Very often the types
of interval estimates are confused. The intervals to be discussed are
the confidence interval, prediction interval,sl and the interval based
on the standard error of the estimate which I will label the standard

error interval for lack of a better name.

A few notational symbols will be helpful., In this section ithe

following definitions of symbols will hold:

Y : the random variable of interest
YT the true value of ¥
A
Y the estimated value of Y, i.e.,
& A
Y=18a+ 91 xl
EY : the true expected value of Y, i.e.,

EY = a +b, X
-1

The intervals have some similarities. All of them take the same

form, e.g., P(Ly{Y<L ) = .95. The form states that the probability

1/Lindgren, B. W., Statistical Theory, Macmillan, New York, 1962, page 371.
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of the random intervel, described ty random lower and upper bounds

(LE and Lu), covers the value of unterest {Y) with probability .95

{or zome other amount). Notice that T did not say that the probability
of the value of interest lying in the interval is .95. The interval
is random and if 100 such intervals were constructed from 100 inde-
pendent samples, the statement says that we would expect to see 95 of

them cover the value of interest,

Another similarity is the Jorm of the bounds. They all take

the form of'?_i t \/some variance measure where t is the value of

the t statistic at the level desired.

But here the similarities end, The standard error interval is a
statement about YT’ and is only valid (from a prediction point of view)
if ? = EY, That is, we must have picked the right parameters, i.e.,

3 = a and gl = bl in the simple linear case. The variance that is used
in the bounds is the square of the standard error of the estimate,
denoted VAR Y, which is the estimate of o2, the variance of the
error term in the original model, This i terval estimate has bounds
that are parallel to the estim.ted line of means, Q. The interval can
be used to describe the sample data but it is theoretically useless

A
because it assumes Y = EY.

The next interval to be examined is the confidence interval. It
is not a statement about YT, but a statement about EY. Since this is

usually not the prediction problem of interest, it also is not a very
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useful interval, The variance used in the bounds is an estimate
of the variance inherent in selecting -the estimated line of meanslg
and is denoted VAR ?. It is equal to {in the simple linear case)
VAR + X° VARD. The bounds are no longer parsilel but take on &
parabolic shape. The bounds are closest together when X = X the

arithmetic average of X's used in the sample.

The last interval to be discussed is the prediction interval.
It in a sense combines the Standard Error interval and tue confidence
interval. It is a statement about YT' The variance used in the
bounds combines the variances previously discussed, hence the bounds
pick up the estimate of the variances of e {the error term in the
original model), 4 ana®. It is a statistically sousd interval for
prediction and hence is the most useful. The prediction interval is
wider than either of the preceding intervals and like the confidence
interval the bounds are parabolic in shape and closest together when
X = X.

A summary of the characteristics of the different intervals and
a graphical representation of the usual relationship between the in-~

tervals are given below.

Characteristics
Interval Interval On Bounds
Standard Error YT 9 + t \/VAR YT
Confidence EY Q +t \/VAR §
A
. . +
Prediction Y T+t JuAR Y, + VAR §
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USUAL RELATIONSHIP OF INTERVALS

Standard Error Interval ~ ~ -

Confidence Interval -——m— o ——

Prediction Interval

. Figure ¢
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What good are these intervals in the Cost Analysis application?
The prediction interval would be applicable provided all the assump-
tions that we discussed earlier were satisfied as it expresses
precisely the statement we are interested in making in cost estimates.
Namely with probability .95, the lower bound is less than YT is less

than the upper bound. But we have already seen that these assumptions

are often violated.

In the preceding seckion, we have seen how the F statistir could
be uzed in comparing different linear models even though the assump-

tions were not satisfied. In a similar manner the prediction intervals

might be useful in comparing models with different functional forms.
In particular, they could be used in comparing linear regression func~
tions with log-linear regression functions. The bounds can be compared
(after the log-linear bounds have been exponentiated). The model with
the narrowest bounds over the ¥ region of interest can be assumed to

be the better model assuming that there is no reason to prefer one form
of the regression function over the other. The intervals after all

have taken into account the different variances that are working as

well as the effect of the functional form of the regression on these

variances.

But one must be careful in making such comparisons. As was
pointed out earlier, the definition of best is different between the

two models. What effect this has on the above cemparison must be
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looked into. One might suggest that we use the same defipition of
best but this leads to some rather complicated mathematical provlems
and the solution for the estimators, if one exists, will probably

have tc be found with the aid of a computer,

In eny case when the validity of the assumptions are suspect,
one should never make the strong probability content statement that
is implicit in the interval eshimates. We can perhaps talk about
the comparison of the .95 prediction intervals but the conclusion

cannot be drawn that the interval covers YT with probability .95 or
any other probability.
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In conclusion, we have discussed the fact that in general the
Cost Analysis application does not satisfy the assumptions of regres- ;‘
sion theory. BEven so the cost analyst has a problem to solve. He
must develop CERs and in so doing he must usually choose between dif-
ferent CER candidates. It has been shown that even if the assumptions
are not satisfied, statistics such as F tests can be used to pick
between various multiple linear regression models, Prediction intervals
might be used to compare non linear regression functions with linesr
regression functions. The theoretical statistician might argue that we
are fooling ourselves by using these techniques., 3ut each of these
techniques is based on determining how well the model fits the past
data, Since a good fit of historical data is about all we have to go
on in uvuilding our CERs, it would seem that the techniques discussed

can be effectively used in a comparative fashion to provide a decision

between models.
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