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IMODUCTION

Regression theory is frequently used in the development of cost

estimating relationships (CERs). Unfortunately there is a tendency to

use this tool a•n the statistics that are associated with it without

fully understanding either. A god understanding, however, is necessary

for both the user and the rev5 eer.

To develop this understanding I would like to discuss two main

topics. The first centers on the meaning of some of the conmonly used

statistics and the differences between common interval estimates. The

second addresses the applicability of the usual inthrpratation of these

statistics and interval estimates in cost analysis and the possible mean-

ings that might be attached to them even if statistical assumptions are

not fully satisfied.

This presentation will address the above through a discussion of

the following topics:

I. Assumptions of the multiple linear regression model and how
well they are fulfilled in the cost analysis application.

2. Least squares estimators as "best" estimators.

3. Properties of some commonly used statistics from a
geometrical point of view.

4. Differences in commonly used interval estimates.

For most of the presentation a multiple linear regression model

will be assumed with only passing remarks to other types of regression
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functions. It is assuamed that the reader has some experience in

using statistics. Certain terms will therefore not be defined. Any

good statistics bookl/ should give the definitions of terms that are

unknown to the reader.

/ Lindgren, B. W., Statistical Theory, Macmillan, New York, 1962.
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nMODEL

The usual form of the multiple linear regression model is given

below.
Yi = + bl Xi + b2Xi ' + bk k + ei

Y~~I b X +2 X2 i + kb Xk±+i

for i = 1, 2, .,., n

For each of the n sample points, indexed by i, Yj is the sample observa-

tion, a + bi X + b2 X2  + ... + b X is the value of the regression
li 2 21k ki

function and ei is the error term.

Regression theory assumptions fall into two categories, those per-

taining t9 the regression function and those pertaining to the error term.

They are listed below:

Assumptions

Regression Function

1. Independent variables are non-random.

2. The regression function is a true relation.

Error Term

3. Normally distributed

4. Identically distributed

5. Mutually independent

6. Random sample.

The independent variables (not statistically independent but func-

tionally independent) are assumed to be non-random, i.e., their value is

not in doubt. It shoula be noted that they need not be just one
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characteristic such as tiuust, but might represent a functic of character-

istics such as weight times speed squared. That is T, and

X2i = Wi(Si) where Ti, Wi and S, are the thrust, weight and speed of

the t observation respectively.

The variables must be brought together by the regression function

in such a way that a true relation is represented between the sanple

observations, Yi, of cost in our case, and the characteristics that

make up Xli, X2 1 , ... , Xki. By true relation I mean that the sample

observations and the characteristics must be related in a semi-

deterministic way, that is, if the error term ej were not present

in the model, then the relationship would be deterministic. It is

required in the multiple linear regression model that the regression

function be linear in the parameters a, bl, b 2 , ... , b . Other models

do exist, such as the log-linear regression model, that treat other

forms of the regression function.

Turning to the error term, it is usually assumed that the e are

normally distributed with zero mean and a common but unknown variance

2
Oro . Hence, they are identically distributed. It is also assumed

that the ei are mutually independent, that is, knowing the value of any

ei, say el, does not change the distribution on any of the other ei.

The final assumption listed, that of a random sample, is really

equivalent to the independent and identically distributed assumptions



on the ei. It is mentioned here to point out that a sample from a

population is assumed.

A graphic representation of the simple linear regression model

is shown in Figure 1. Note that for each value of X there is a normal

dmnnity function (represented by the bell shaped eurve) centered on the

true regression line Y = a + b X. The densities all look the same

reflecting the assumed identical distribution of the error terms, ei.

Y a +b X

Y

Figure l-

How well are these assumptions met in the typical cost analysis

application? In general, not very well. Let's take them one at a

time and see.

Independent variables are non-random. There are two problem

areas here for the cost analyst. First, unknown to the analyst, the

characteristic desired may lack a common definition for all objects

in the sample. For exaunple, ptyload might be a desirable characteristic,

but it may not be defined the same for fighters and transport aircraft.
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If both are included in the sample some of the observed variat-ion will

be due to the definition of the characteristic. &econdly, for lack

of anything better one might attempt to estimate sr-sne costs as

functions of other costs, for exe--ple

co = a + b C I

where C 0 is the operating cost

and C I is the investment cost.

Unfortunately the independent variable (CI) iz in general random.

The regression function is a true rnlation. This topic will be

covered later on. by another paper on this pane.1,11 Let it suffice to

say here that the regression function should be picked ahead of Lime

(based perhaps on some logical or physical relationship). AJIowing a

machinc to pick the regression function might yield a "good fitting"

relationship, but one that Iris little to do with the real world.

Normal distribution. This assumption is the least restrictive,

for if we had a large sample, it would not be necessary to worry about

it. But cost analysts are not given this luxury in general. There

are, however, plenty of other problem areas to concern ourselves with,

so the pros and cons of the small sample normal assumption will not be

discussed further in this presentation.

Identically distributed. This assumption is often violated.

For example, in order to build up -uhe sample size, bomber and fighter

aircraft may be included in the same sample. If the cost that one is

-fates, Edward H. and Frederic, Brad C., Cost Hypothesis: 71,eir
Development and Their Data Implications, D.RC.
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try.ng to predict depends on mission, then one would expect that the

error term would require a different mean and/or variance assumption

for the two classes of aircraft. This is because the sample should

be stratified and it would be difficult to devise a regression function

that could handle this stratification. Note that attempts have been

made to do this by the use of dummy variables (variables that take

on the value of zero for bombers and one for the fighters). In the

linear regression model, this technique will work if the strata have

either common slopes or intercepts. Unfortunately this will not be the

case in general.

Independence. This assumption is also violated quite often.

For instance, initial aircraft types and follow-on aircraft types are

sometimes included in the same sample. Knowing the value of the

initial aircraft type must change the distribution on the follow-on

aircraft.

Random Sample. When building a CER we generally take all

possible experience into the sample. Is this collection of data a

sample or is it the population? If it is really a sample from a

larger population, i.e., other sample points have not yet been built

but theoretically exist, we still have the problem of whether or not

the sample is random. A whole paper can probably be addressed to this

question.

-7-



From the above, it becomes evident that the assumptions are

generally violated in the cost analysis application. Of course in

each application one strives to satisfy as many of the assumptions - _

as possible. But, we often fail.

Unfortunately, the usual interpretation of many of the sta-

tistics and interval estimates that we wish to make use of depend

heavily on the assumptions. Should we then throw the whole tool away?

No. The statistics are still a valuable aid, and the extent to which

they can be used and the interpretation that can be given to them

wil-. become clearer as we proceed.

-8-



SELCTrON OF A CRITEION OF "BEST

Before discussing particular statistics, a few remarks should be

made about why the estimates of the parameters a, b., ... , bk are picked

to minimize - (Y- (a + b Xl! + "' + bk Xki))2

that is, why least squares estimators are picked as best estimators.

First the method is intuitively appealing. One way to judge how

well a particular CER will predict is to see how well it fits past obser-

vations. Therefore, picking the estimates of the parameters to minimize

some additive form of the differences between the observed and what would

be predicted by the CER is desirable. Of course the above eqrmsia is MUY

one of a number of functional forms that will do this.

Secondly, the method is mathematically convenient. To understand

how important this property is one need only look for examples of cases

where non-linear regression functions are hypothesized. With the excep-

tion of the log-linear functional form or some other functional form that

can be transformed into a linear model, one would have a great deal of

difficulty finding such examples. Even in the log-linear example, the

procedure usually consists of taking the logarithms, so that a linear

form is obtained..!/ Hence, estimators of the parameters are picked to
t1 b2  bk 2

minimize • (ln Yi - in (a Xii X2 i ... Xki)) . In effect best estimators

l/A routine is available at RAND that uses an iterative technique to
solve for the parameters without taking logarithms. See
Boren, H. E. and Graver, C. A., Multivariate Logarithmic and Exponential
Regression Models, RM-4879 PR, RAND Corporation, 1966.
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are therefore defined differently (as can be seen by comparing the

two summations being minimized), so that a solution for the esti-

mators can be obtained. Note that the statistical assumptions are

usually made in the linear form so the usual statistics are obtained

for the In Yi and not Yi itself. Hence, these statistics are not

directly comparable to those obtained for Yi in a linear model.

Thi- Ily, the estimators are unbiased, that is E• = a and E~p = bp,

where E stands for expected value of. This is a nice property, but

not a necessary one. In fact some biased estimators have less variance

than their unbiased counterparts. However, it sounds un-American to

have a biased estimator, so we had better stick with unbiased ones.

The estimators also have a minimum variance property. By the

Gauss-Markoff theorem,./ the least squares estimators have simul-

taneously smaller variances among the class of linear, unbiased

estimators. This, of course, is highly desirable if you want linear,

unbiased estimators.

Finally, the least squares estimators are the Maximmnn Lirelihood

Estimators. This means that the particular parameters have been

picked that maximize the probability content "of the sample among the

class of regression functions (represented by different values of a,

bl, ... , b ) being considered. This is portrayed graphically in
k

Figure 2 for the simple linear regression case. The same sample is

2/ Lindgren, B. W., Statistical Theory, Pliemillan, New York, 1962, page 387.
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represented in both graphs. The line in the left graph, however, is

a poor choice because most of the points lie in the tail of the

density functions and hence the sample has a low probability content.

The line in the right graph contains a higher probability content for

the sample as the points generally lie under the bell of the density

function. This line is closer to the Maximum Likelihood Estimate.

Bad Fit Better Fit

y

X X

IFigure 2

It is apparent from the above that the choice of least squares

estimators as "best" has a lot going for it. Note that the first two

propertiez listed have nothing to do with the statistical assumptions.

Hence, even if the statistical assumptions are violated, the least

- ll-



squares technique can be used to obtain an estimating relationship.

The process k•hould probably be labeled curve fitting but whatever

label is put on it, it still is of value as long as fitting the ob-

served data is the basis for judging the goodness of the cost esti-

mating relationships.

-12-



CO4ONLY USED STATISTICS

Having decided to use least square estimators and after obtain-

ing the estimates, the analyst is usually interested in answering

questions like the following:

1. How well does the relationship fit the sample experience?

2. How does the particular form of the regression function
compare with other pre-selected forms of the regression
function?

Convenient tools for answering these questions are found in the

following statistics:

1. Standard Error of the Estimate: (SY)

2. Correlation Coefficient: (r)

3. "F" Statistics

It turns out that all these statistics are related. Their relationship

can be seen in a geometrical mod-l .1/ Examining this model will hopefully

add some insight into the behavior of the statistics as well as indicate

how they may be validly used when the regression theory assumptions are

Snot fuLlf illed.

As in any mathematical discussion, a number of definitions will

have to be made for notational convenience. Three models will be looked

at.

_ This model can be found in most advanced statistics books that treat
the topic of regression theory. In particular, it can be found in
Lehmann, E., Testing Statistical Hypotheses, Wiley, New York, 1952.
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In the one dimensional model it is assumed that the regression

function has the form Y=a, a constant. That is each observation will

be estimated by the same constant. The least squares estimate of the

parameter is T, the arithmetic average of the observations in the sample.

The two dimensional model assumes a regression function of the form

Y a a + b1 X1. The least squares estimates of a and b are denoted by

A
and b,, and the least squares estimate of Y is then denoted by I and

is equal 1 + '" X.

Similarly, the three dimensional mdel has Y = a f b, X Ib X

as the form of the regression function. Y is the least squares estimate

and is equal to a+ b1 X1 + b2 X2  where ai,, b, b 2 are the least

squares estimates of the three parameters.

The models are related in the sense that X must represent the

same characteristic or combination of characteristics in both the two

and three dimensional models. Thus, for an airframe estimating problem,

we might have the following:

Y = cost of the ith airplane

X =weight times speed squared for the ith airplane

and X2i= thrust of the iU airplane.

The models are summarized below:

Dimension Regression Function Least-Squares Estimate

One Yi = a a=

Two Yi = a + bI Xli Yi a + Xli

Three Y i = a + bI x i + b2 X2 i Yi = + Xli + b22

*1 ,



There are various sums of squared deviations that are usually

of interest. These are defined below:

Sums of Squared Deviations

pe Definition Notation

Total b(i tw2 Ti

Explained by two dimensional
model m ode

Unexplained by two dimen-
sional model (Y. -'2-I

Explained by three dimen-sional model over the one
dimensional model (Yi -•2y

Unexplained by three dimen- 2ý

sional model • (Yi "Y ) U

Additional explained by
three dimensional model 2
over two dimensional model - (Yi d EA

Notice that each of these sum of squares represents the square of

the Euclidean distance between points in n dimensional space, the sample

space. This fact is the basis ef the geometrical model. The points I

refer to are (YI, Y2, "". Yn), the observed sample; (Y, Y, ... , Y), the

"best" one dimensional model explanation of the observed sample;

i **' Yn), the "best" two dimensional model explanation of the

observed sample; and (Y Y , the "best" three dimensional model
1' 2' " n

explanation of the observed sample.
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An initial view of the model is presented in Figure 3. Each

point in the space represents one possible outcome of the sample of

observations, (YI, "'*' Yn)" Two points have been identified, the

origin and the sample we have observed.

(Y) 2 ... I Yn)

y = + bI X

(Y0.

Y= a

Figure 3

The line Y a is a representative of all the possible one dimen-

sional models, while the plane Y = a + b X represents all possible

two dimensional models. That is each point on the plane represents a

particular value for "a" and "bl". The line, Y a, lies in the plane

and represents those models for which b, 0.
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If we orthogonally project the sample point on to the line and

the plane (Figure 4), the least squares estimate of the parameters are

obtained, that is, a Y for the projection onto the line, and

a =, bI = for the projection on to the plane. This is because a

line connecting the orthogonal projection to the sample point is perpin-

dicula to the plane (line) and hence is the shortest line between the

point and the plane (line). But the square of the Euclidean distance of

a line from the sample point to any point on the plane (line) is nothing

more than the sum of squared deviations about the point on the plane.

For example, suppose the point was given by Yi = a ÷ X Then the

square of the Euclidean distance is given by (y -i)2. In the

ortbogonal projection, the shortest line is picked and hence this quantity

is minimized. But that is equivalent to the least squares estimating pro-
A

cedure, i.e., we pick a andt 1  so that the sum of the squared deviations

is minimized.ii (YI' Y23 ... Yn)

Y a + bi X1

A A

Figure 4
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Now complete the triangle by drawing a line between Y.J. )

and (i, ... , Y). This triangle (see Figure 5) is a right triangle

(because of the orthogonal projection) and the length of the sides are

given by T, E and U. The square of the distance of the Bides are

nothing more than the total sum of squares, explained sum of squares

and unexplained sum of squares, defined earlier. Of course T2  £ E2 _ U2 ,

a consequence of the Pythagorean theorem.

(Yr, Y2, Yn)
y a- + b, X I

Figure 5

What about the statistics I referred to earlier? How do they fit

into the model? To begin with the standard error of the estimate,

denoted by Sy, is equal to U/v'i2. The correlation coefficient, r,

-18-



is equal to E/T. The F test for b= 0 is given by E . The
Ltt/(n-2)

latter has the F distribution since, under the assumption that Y = a

is the true model, T2 , E2 and U2 have chi-square distributions with

n-i, 1 and n-2 degrees of freedom, respectively. Furthermore U12 and

E' are independent (expressed geometrically by the right angle Atween

sides E and U).

So the common statistics that are used are no more than comparisons

of distance (sometimes adjusted for degrees of freedom). Let's see how

they work. When (Y1, "'.1 Y) is close to the plane, i.e., the sample

observations fit the two dimensional model well, then U is small and E

is aýmost as large as T. Henca, the standard error of the estimate is

--nall, the correlation coefficient is close to 1 and F is large

(significant).

Of course when the sample point is far away from the plane, i.e.,

it does not fit the two dimensional model (using X) so well, then U in

large and E is small when compared with T so that S is la.,-, r is

close to 0 mnd F is small (insignificant). Notice that the relationship

between the point and the plane depends on X1 . The fact that this two

dimensional model is insignificant does not rule out all two dimensional

models. There may be a different definition of X1 , for example speed

instead of weight times speed squared, that will describe a plane that

lies closer to the observed sample.,

-19-
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It should be noted that the F statistic used in this model is

the square of the usual "t" statistic that is used to test bI = 0.

Either statistic can be used, but the F statistic is more general and

can be used for comparing models of different dimension such as tbree

dimensions with one dimension.

Now let's add another dimension to the model. To retain the corre-

lation coefficient it will be necessary to start with (Y, ... , Y) as the

origin. This is because we are limited to the number of dimensions that

can be portrayed lin a two dimensional picture. Shown in this model

(Figure 6) is the same triangle that was examined earlier, but now the

line represents what the plane represented in the previous picture, that

is we h,, -e a two dimensional line.

(Yr y2, "', Y)

T

Y a + bI X1

Figure 6

-20-
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In

L - • . . . . . -•( Y " , Y ý ' " " Y d)

2 h tnd ee dmensional models o(leigur two anenw triangles. nthe uae

i of the~new sides of' the triangles obtained represent the following:
•E2 is the sum of squares explained over the one dimensional

model
•A is the sum of squares explained over the two dimensional

model
and U2 is the still unexplained sum of squares.
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As before we have the statistics for the two dimensional models:

Sy U/Vn-

r /

F which tests b, = 0

But now we also have the comparable statistics for the three dimen-

sional model. These are givezi by:

r =E•/T

E /2 Tests bI = b 2 = 0

and F = U/(n-3)

A Tests b 2 = 0

Two interesting facts come out of this picture. First the triangle

E, U, T is used to compare the three dimensional model to the one dimen-

sional model while the triangle U,A U is used to compare the three di-

mensional model to the two dimensional model. In the former case we have

have the F statistic that simultaneously tests b = b2 = 0. In the latter

we test b 2 = 0 only. Notice that the F statistics are adjusted for degrees

of freedom. There is a penalty that must be paid for going to a model of

higher dimension, as the more dimensions you have the easier it is to ex-

plain the sample point by chance.

Secondly, the correlation coefficient, r, is larger in the three

dimensional model than the two. This can be seen by the following:

3dim T ;_ = r2dim

-22-



Each new dimension that is added will explain more of T. Thus if r

is being used as the criterion of "best." the higher' dimensional model

will always be preferred, even if the F test for b 2 = 0 is insignificant.

This is why some people adjust r for degrees of freedom.

It should be pointed out at this time that we are not limited in

this geometrical model to comparing 3 dimensional, 2 dimensional and 1

dimensional models. The plane could represent a k dimensional model

while the line could represent a p dimensional model. AUl that is

required is that k> p, and X1 , X2 , ... , X be identical for the twoP

models. Of course S and the F tests would have to be adjusted for the

correct degrees of freedom and the F test between k and p dimensions

would test bP+1 = ... = bk = 0 while the F test between one dimen-

sion and k dimensions would test all b's equal to zero. The degrees of

freedom are easy to figure out. They are equal to tl,' difference in the

dimension of the models that the line is connecting. connects the

sample point in n space with the point representing the best one dimen-

sional model. Hence, T2 has n-i degrees of freedom. Similarly the fol-

lowing lines have the identified degrees of freedom.

U2 has n-p

E2 has p-1

U2 has n-k

12 has k-l

and has k-p

-23-



An interesting question can be raised at this point. Why do we

use F tests, rather than (adjusted) r to compare different mirels?

One important factor is that the di~tribution is known. But even more

important it has been shown that statistically they are the beat tests

available. This is a consequence of the Neyman-Pearson Irmmai which

says the following:

For any given Probability of rejecting the 2 dimensional

model when it is true, the probability of rejecting the 3 di-
mensional model when it is true is minimized. Statisticians
have labeled this property most powerful.

By using this model one can discover the reasons for the behavior

of the statistics and guard oneself against certain pitfalls. An

example of this is pictured in Figure 8. In this example if one just

looked at the three dimensional model, he would be very pleased. Sy

(equal to gl/vrn- is small, r (equal to E/T) is close to one and F

(equal to I/2 ) is significant. But looking at the two dimensional
"62/(n-3)

model Sy (equal to U/r,- is small, r (equal to E/T) is close to one

and F (equal to E2 is signifizant also. The reason for this, of-7/(n-2)
course, is that the three dimensional model is insignificant when com-

pared to the two dimensional model, that is, F (equal to _ A_•_)_is
"TF/(n-3)

small. Hence, from the statistical point of view, the two dimensional

model is preferred.

SJ See Lindgren, B. W., Statistical Theary, Maamillan, New York, 1962,
page 238.
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Yj + blX + b2 X2

I' Y21"' n

S~U

Yl'~ ' +blXl

Figure 8

Notice it is from the statistical point of view that the two

dimensional model would be preferred. If all. of the assumptions men-I tioned earlier were satisfied this would be the case. But as was

pointed out earlier, the assumptions are usually not satisfied. How

do we make use of all these statistics then?

If it is agreed that it is desirable to fit the sample observa-

tions closely without increasing the number of independent variables

substantially and if one keeps in mind that all of the statistics dis-

.r•u•'L ar" m~e- bi natc. ,1y , certain distances thAt describe how

well the model fits the sample observations, then the statistics can be

meaningfully used. As an example, suppose one has no reason for prefering

-25-



one model aver another. He might use an F test to decide between

them. After all the test does provide a decision rule and the

statistic is adjusted for degrees of freedom, thus penalizing the

higher dimensional model for some of the "better fit" implied in the

technique. In using this test, however, one should not make a level

of significance statement (which is a statistical statement that de-

pends on the assumptions), and one should display the value of the F

statistic so that a user would be able to judge if the conclusion is

consistent with his own model preferences.

Suppose now that one does have a strong preference for one of

the two models (based perhaps on some physical relationship). Then he

can adjust the decision point (the value that divides the acceptance

region of the lower dimensional model from the rejection region) to a

higher value if the lower dimensional model is preferred or to a lower

value if the higher dimensional model is preferred. This would probably

be done implicitly and as in the no preference case, the value of the F

statistic should be portrayea io that the user will be able to apply his

own model preferences. This use of the F statistic will put one in the

position of rejecting "statistically" significant terms or accepting

"statistically" insignificant terms. However, the point is that if the

assumptions are not satisfied the decision points described in the tables

for the F test are no more meaningful than a decision rule (such as value

of the F statistic) supplied by the analyst.

-26-



It should be pointed out that care should be used in retaining

a term that has a small value for the F statistic, for this is an

indication that the sample contains little information concerning the

value of the coefficient of this term. In this case one ought to con-

sider somehow independently picking the value of this coefficient. ie-,

not using the least squares estimate of the coefficient. The right

triangle in the model will be lost in this case, but the advantages could

outweigh this disadvantage.

It should also be pointed out that during the preceding discussion,

the F statistic has played a dominate role. If the statistical assump-

tions were satisfied, then this domination is justified (see bottom of

page 24). But in the cost analysis application, the favoritism of the

F test cannot be championed as strongly. The correlation coefficient

(preferably adjusted for degrees of freedom) can justifiably be used as

a decision rule and the standard error of the estimate can provide valuable

information concerning the amount of unexplained variance. Other measures,

such as the coefficient of variatioajy'which have not been discussed in

this paper but are functionally related to those measures discussed, can

also supply meaningfhul information. The choice of what measures to use

is not nearly as important as keeping in mind what the measures mean and

displaying the value of the statistics (distances) so that another analyst

can decide what measure to use and what decision rule to follow.

•/ Fisher, G. H., Use of Statistical Regression Analysis in Deriving
Estimating Relationships; Concepts and Procedures of Cost Analysis;
RM 3589-PR, RAND Corporation, June 1963, P. V-17.
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INMEVAL ESTDK4&S

So far we have been concerned with ecaparing multiple linea

models, and have discussed the types of statistics that will help us

to choose between them. Another group of statistics, interval esti-

mates, is used to make statements about the range of values that a

variable of interest may take.

A main reason for discussizC interval estimates is to point cot

the similarities and differences between them. Very often the types

of interval estimates are confused. The intervals to be discussed are

the confidence interval, prediction interval.,!/ and the interval based

on the standard error of the estimate which I will label the standard

error interval for lack of a better name.

A few notational symbols will be helpful. In this section the

following definitions of symbols will hold:

Y : the random variable of interest

YT : the true value of Y

A
Y : the estimated value of Y, i.e.,

EY the true expected value of Y, i.e.,

EY a+b X1

The intervals have some similarities. All of them take the same

form, e.g., P(LB<Y(Lu) ý .95. The form states that the probability

l/Lindgren, B. W., Statistical Theory, Macmillan, New York, 1962, page 371.
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of the random interval, described by random lower and upper bounds

(L8 and LU), covers the value of ir.terest (Y) with probability .95

(or some other amount). Notice that T did not say that the probability

of the value of interest lying in the interval is .95. The interval

is random and if 100 such intervals were constructed from 100 inde-

pendent samples, the statement says that we would expect to see 95 of

them cover the value of interest.

Another similarity is the form of the bounds. They all take

A
the form of Y + t vsome variance measure where t is the value of

the t statistic at the level desired.

But here the similarities end. The standard error interval is a

statement about YT, and is only valid (from a prediction point of view)

A
if Y = EY. That is, we must have picked the right parameters, i.e.,
A A

•a = a and b1 = b1 in the simple linear case. The variance that is used

in the bounds is the square of the standard error of the estimate,

denoted VAR YT' which is the estimate of c2, the variance of the

error term in the original model. This i terval estimate has bounds

A
that are parallel to the estimated line of means, Y. The interval can

be used to describe the sample data but it is theoretically useless

A
because it assumes Y = EY.

The next interval to be examined is the confidence interval. It

is not a statement about YT' but a statement about EY. Since this is

usually not the prediction problem of interest, it also is not a very
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useful interval. The variance used in the bounds is an estimate
A

of the variance inherent in selecting-the estimated line of means Y

A
and is denoted VAR Y. It is equal to (in the simple linear case)

VAR 4 + Xý VAR O'. The bounds are no longer parallel but take on a

parabolic shape. The bounds are closest together when X X the

arithmetic average of X's used in the sample.

The last interval to be discussed is the prediction interval.

It in a sense combines the Standard Error interval and the confidence

interval. It is a statement about YT. The variance used in the

bounds combines the variances previously discussed, hence the bounds

pick up the estimate of the variances of e (the error term in the

original model), • and S. It is a statistically souad interval for

prediction and hence is the most useful. The prediction interval is

wider than either of the preceding intervals and like the confidence

interval the bounds are parabolic in shape and closest together when

A summary of the characteristics of the different intervals and

a graphical representation of the usual relationship between the in-

tervals are given below.

Characteristics

Interval Interval On Bounds

Standard Error YT + t %'VAUYT

Confidence _+ t

Prediction YT Y + t VVAR YT + VAR
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What good are these intervals in the Cost Analysis application?

The prediction interval would be applicable provided all the assump-

tions that we discussed earlier were satisfied as it expresses

precisely the statement we are interested in making in cost estimates.

Namely with irobability .95, the lower bound is less than Y is lessV T
than the upper bound. But we have already seen that these assumptions

are often violated.

In the preceding section, we have seen how the F statistic could

be used in comparing different linear models even though the assump-

tions were not satisfied. In a similar manner the prediction intervals

might be useful in comparing models with different functional forms.

In particular, they could be used in comparing linear regression func-

tions with log-linear regression functions. The bounds can be compared

(after the log-linear bounds have been exponentiated). The model with

the narrowest bounds over the Y region of interest can be assumed to

be the better model assuming that there is no reason to prefer one form

of the regression function over the other. The intervals after all

have taken into account the different variances that are working as

well as the effect of the functional form of the regression on these

variances.

But one must be careful in making such comparisons. As was

pointed out earlier, the definition of best is different between the

two models. What effect this has on the above ccmparison must be
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looked into. One might suggest that we use the same definition of

best but this leads to some rather campJicated mathematical problems

and the solution for the estimators, if one exists, will probably

have to be found with the aid of a computer.

In ary case when the validity of the assumptions are suspect,

one should never make the strong probability content statement that

is implicit in the interval estimates. We can perhaps talk about

the comparison of the .95 prediction intervals but the conclusion

cannot be drawn that the interval covers YT with probability .95 or

any other probability.
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CONCLUSION

In conclusion, we have discussed the fact that in general the

Cost Analysis application does not satisfy the assumptions of regres-

sion theory. Even so the cost analyst has a problem to solve. He

must develop CERs and in so doing he must usually choose between dif-

ferent CER candidates. It has been shown that even if the assumptions

are not satisfied, statistics such as F tests can be used to pick

between various multiple linear regression models. Prediction intervals

might be used to compare non linear regression functions with linear

regression functions. The theoretical statistician might argue that we

are fooling ourselves by using these techniques. 3ut each of these

techniques is based on determining how well the model fits the past

data. Since a good fit of historical data is about all we have to go

on in 'building our CERs, it would seem that the techniques discussed

can be effectively used in a comparative fashion to provide a decision

between models.
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